Defects, SymTFTs, and (-1)-form symmetry from M-theory

Based on [2411.19683] with Marwan Najjar and Yi-Nan Wang

Leonardo Santilli Geometry, Topology and Physics Seminar New York University Abu Dhabi, UAE

March 05, 2025

Yau Mathematical Sciences Center Tsinghua University, Beijing

1/41

Outline

\triangleright Act I: Crash course on (-1)-form symmetries.

based on [2403.03119] w/ R.J. Szabo

- A closer look on higher form symmetries.
- Tensions and resolutions with gerbes \implies (-1)-form symmetries.
- ▷ Act II: Defects and symmetries from M-theory.

based on [2411.19683] w/ M. Najjar & Y.N. Wang + previous work [2112.02092]

- Geometric engineering in 2 minutes.
- Differential cohomology.
- Classification of defects and symmetries.
- \triangleright Finale: Geometric engineering of (-1)-form symmetries.

based on [2411.19683] w/ M. Najjar & Y.N. Wang

- Examples: 5d and 4d.
- Applications.

Disclaimers:

- A Detailed refs in the paper [2411.19683].
- \triangle In 2nd and 3rd part, only **invertible** symmetries are considered.

Disclaimers:

- Detailed refs in the paper [2411.19683].
- \Lambda In 2nd and 3rd part, only **invertible** symmetries are considered.
- A More details on generalized symmetries, SymTFT, and work by Bonetti et al, cf. Federico Bonetti's talk on Feb.19

Disclaimers:

- Detailed refs in the paper [2411.19683].
- A In 2nd and 3rd part, only **invertible** symmetries are considered.
- A More details on generalized symmetries, SymTFT, and work by Bonetti et al, cf. Federico Bonetti's talk on Feb.19
- Questions are welcome at any time.

Act I: (-1)-form symmetries

Textbook symmetries are group actions on local operators.

Textbook symmetries are group actions on all operators.

Generalized symmetries,

■ relax 'local' ⇒ higher form symmetries;

Textbook symmetries are categorical actions on *local* operators.

Generalized symmetries,

- relax 'local' ⇒ higher form symmetries;
- relax 'group' ⇒ non-invertible symmetries;

and combinations of the two.

Textbook symmetries are categorical actions on all operators.

Generalized symmetries,

- relax 'local' ⇒ higher form symmetries;
- relax 'group' ⇒ non-invertible symmetries;

and combinations of the two.

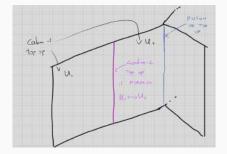
Modern definition/paradigm:

Symmetries of QFT are topological operators in it.

Categorical symmetries

Topological operators of *d*-dim QFT $\xrightarrow{\text{expectation}}$ (d-1)-category.

p-form symmetry \iff codim-(p + 1) top. op. \iff *p*-morphism.



Accounts for topological operator of codimension $1, \ldots, d \Longrightarrow p$ -form symmetries,

$$0 \leq p \leq (d-1)$$

Leonardo Santilli (YMSC)

SymTFTs, (-1)-form symmetry, M-theory

6/41

Symmetries can be gauged.

• Gauge 0-form in $d = 2 \implies$ dual 0-form; [Vafa '89]

Symmetries can be gauged.

- Gauge 0-form in $d = 2 \implies$ dual 0-form; [Vafa '89]
- Gauge *p*-form in $d \Longrightarrow$ dual (d p 2)-form; [GKSW '14, Tachikawa '17]

Symmetries can be gauged.

- Gauge 0-form in $d = 2 \implies$ dual 0-form; [Vafa '89]
- Gauge *p*-form in $d \Longrightarrow \text{dual} (d p 2)$ -form; [GKSW '14, Tachikawa '17]
- Gauge *p*-form in $d \Longrightarrow$ dual category. [Bhardwaj-Tachikawa '17,

Chang-Lin-Shao-Wang-Yin '18]

Is the lower form symmetry a thing?

• No! No $(p \leq -1)$ -objects to act on.

Is the lower form symmetry a thing?

- No! No (p ≤ −1)-objects to act on.
- Yes! (-1)-form symmetry is generated by top. op. filling connected components of spacetime.

Is the lower form symmetry a thing?

- No! No (p ≤ −1)-objects to act on.
- **Yes!** (-1)-form symmetry is generated by top. op. filling connected components of spacetime.
- Yes! Gauging is 'reversible' ⇒ gauge (d − 1), must obtain a dual (−1)-form symmetry. [Sharpe '19]

«Gauging cannot be undone» S.H. Shao. Here I am talking about invertible symmetries only.

Many issues:

- What is a (-1)-form gauge transformation?
- What is a gauge field for (-1)-form symmetry?

Many issues:

- What is a (-1)-form gauge transformation?
- What is a gauge field for (-1)-form symmetry?

Solution: [LS-Szabo [2403.03119]]

Invertible *p*-form symmetries are *p*-gerbes.

Invertible *p*-form symmetries are *p*-gerbes with connection.

p-form symmetry on $M \Longrightarrow$ characteristic class $\in H^{p+2}(M, \mathbb{Z})$.

- \implies Characteristic class \exists for $p \ge -2$;
- \implies Gauge fields \exists for $p \ge -1$.

Open problem: cast (-1)-form symmetries in categorical language

- Category of top. op. of SymTFT will include (-1)-form symmetry generators;
- Non-invertible (-1)-form symmetry. (example in [LS-Szabo [2403.03119]])

Rest of this talk: Show presence of (-1)-form symmetries from M-theory compactifications.

Act II: Defects and SymTFTs from M-theory

M-theory

M-theory is defined on 11d manifold M_{11} .

• In this talk: $M_{11} = M_d \times X_{11-d}$, with

$$\begin{cases} d = 7 \quad X_4 \text{ is CY2} \\ d = 5 \quad X_6 \text{ is CY3} \\ d = 4 \quad X_7 \text{ is G2} \\ d = 3 \quad X_8 \text{ is CY4} \end{cases}$$

or circle compactifications thereof.

- Dynamical 3-form field C_3 with curvature G_4 locally $G_4 = dC_3$
- Lagrangian

$$-\underbrace{G_4\wedge G_7}_{\text{analogue of YM}}-\frac{1}{3!}\underbrace{C_3\wedge G_4\wedge G_4}_{\text{analogue of CS}}.$$

Geometric engineering in 2 minutes (1/2)

 $\{\beta^a\}$ curve classes generating $H_2(X_{11-d},\mathbb{Z}) \Longrightarrow$ harmonic 2-forms $\{\omega_a\}$,

$$\int_{\beta^a} \omega_b = \delta^a_b.$$

J

Expand C_3 in this basis (sum over repeated indices understood)

$$C_3 = A_1^a \wedge \omega_a + \cdots$$

 $\implies U(1)$ Gauge fields A_1^a propagating in M_d .

Geometric engineering in 2 minutes (1/2)

 $\{\beta^a\}$ curve classes generating $H_2(X_{11-d},\mathbb{Z}) \Longrightarrow$ harmonic 2-forms $\{\omega_a\}$,

$$\int_{\beta^a} \omega_b = \delta^a_b.$$

Expand C_3 in this basis (sum over repeated indices understood)

$$C_3 = A_1^a \wedge \omega_a + \cdots$$

 $\implies U(1)$ Gauge fields A_1^a propagating in M_d .

- If X_{11-d} compact, all symmetries are gauged.
- If X_{11−d} non-compact, PD(ω_a) may be compact or not

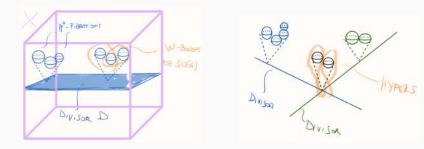
J

- PD(ω_a) compact divisor ⇒ A₁^a dynamical gauge field of Cartan of total gauge algebra;
- PD(ω_a) non-compact divisor ⇒ A₁^a background gauge field of Cartan of total symmetry algebra.

Geometric engineering in 2 minutes (2/2)

BPS states from wrapping M2-branes on curves in X

(d = 5, X CY3 for exposition)



What about torsion classes $\operatorname{Tor} H_2(X_{11-d}, \mathbb{Z})$?

Long known that appropriate formalism for M-theory is (a generalized) differential cohomology [Hopkins-Singer '02, many others including Freed-Moore-Segal, (Sati-Schreiber)ⁿ, (Fiorenza-Sati-Schreiber)^m, ...]

Leonardo Santilli (YMSC)

SymTFTs, (-1)-form symmetry, M-theory

Def. Differential character of degree-p on M is group homomorphism

$$\chi_p: \{(p-1)\text{-cycles in } M\} \longrightarrow U(1)$$

subject to some conditions.

Def. Group of all degree-p differential characters on M is Cheeger–Simons group $\check{H}^p(M)$.

Def. Differential character of degree-p on M is group homomorphism

$$\chi_p: \{(p-1)\text{-cycles in } M\} \longrightarrow U(1)$$

subject to some conditions.

Def. Group of all degree-p differential characters on M is Cheeger–Simons group $\check{H}^p(M)$.

Key advantage: deal with free and torsion at once.

 $\check{H}^{p}(M)$ is Abelian group with properties:

There exist a field strength map

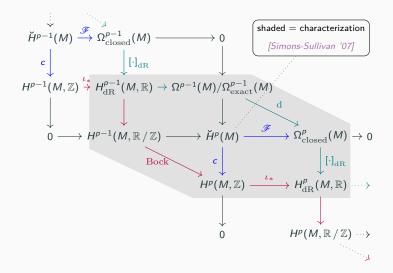
$$\mathscr{F} : \check{H}^p(M) \longrightarrow \Omega^p_{\mathbb{Z}}(M)$$

and a characteristic class map

$$c : \check{H}^p(M) \longrightarrow H^p(M,\mathbb{Z}).$$

- $\chi_p(\partial \Sigma) = \exp \int_{\Sigma} F$ if $\mathscr{F}(\chi_p) = F$.
- $\pi_0 \check{H}^p(M) = H^p(M, \mathbb{Z})$ and $\pi_1 \check{H}^p(M) = H^{p-1}(M, \mathbb{Z}) / \text{Tor} H^{p-1}(M, \mathbb{Z}).$

Differential cohomology in 5 minutes (3/5)



Leonardo Santilli (YMSC)

Differential cohomology in 5 minutes (4/5)

Geometry Topology Seminar \implies study gerbes

Differential cohomology in 5 minutes (4/5)

Geometry Topology & Physics Seminar study gerbes with connection

 \implies

Differential cohomology in 5 minutes (4/5)

Differential character generalizes holonomy of gauge field:

If A_{p-1} globally defined gauge field,

$$\chi_p(\Sigma) = \exp \oint_{\Sigma} A_{p-1}.$$

• If $\Sigma = \partial \Sigma'$, by def.

$$\chi_p(\Sigma) = \exp \oint_{\Sigma} A_{p-1}.$$

Free + torsion \implies provide gauge fields for U(1) and discrete symm.

Leonardo Santilli (YMSC)

Differential cohomology in 5 minutes (5/5)

∃ internal product ★ inducing graded ring structure

$$\star : \breve{H}^p(M) \otimes \breve{H}^q(M) \longrightarrow \breve{H}^{p+q}(M).$$

It descends to \wedge product in $\Omega^{\bullet}(M)$ and to cup product \smile in $H^{\bullet}(M,\mathbb{Z})$,

$$\star \xrightarrow{\mathscr{F}} \land \qquad \star \xrightarrow{c} \lor \smile .$$

Differential cohomology in 5 minutes (5/5)

∃ internal product ★ inducing graded ring structure

$$\star : \check{H}^p(M) \otimes \check{H}^q(M) \longrightarrow \check{H}^{p+q}(M).$$

It descends to \wedge product in $\Omega^{\bullet}(M)$ and to cup product \smile in $H^{\bullet}(M,\mathbb{Z})$,

$$\star \xrightarrow{\mathscr{F}} \land \qquad \star \xrightarrow{c} \smile$$

Fibration $M \hookrightarrow \mathcal{M} \twoheadrightarrow B$, M smooth of dim M = d. Integration map:

$$\int_{\mathcal{M}/B}^{\check{H}}$$
 : $\check{H}^p(\mathcal{M}) \longrightarrow \check{H}^{p-d}(B).$

In particular, using $\check{H}^1(\mathrm{pt}) \cong \mathbb{R} \, / \, \mathbb{Z}$, we have integral

$$\int_M^{\breve{H}} : \,\, \breve{H}^{d+1}(M) \longrightarrow \mathbb{R} \,/\, \mathbb{Z} \,.$$

Leonardo Santilli (YMSC)

SymTFTs, (-1)-form symmetry, M-theory

Differential cohomology in 5+1 minutes (5+1/5)

Notation: χ_p with $\mathscr{F}(\chi_p) = F_p$ denoted \check{F}_p .

Properties of product and integral:

•
$$\breve{F}_p \star \breve{G}_q = (-1)^{pq} \breve{G}_q \star \breve{F}_p.$$

• When \breve{F}_p is topologically trivial, $\mathscr{F}(\breve{F}_p \star \breve{G}_q) = d\left(A_{p-1} \wedge \frac{G_q}{2\pi}\right)$.

The integral operation defines a perfect pairing

$$\int_{M}^{\check{H}} : \check{H}^{p}(M) \times \check{H}^{d+1-p}(M) \longrightarrow \mathbb{R} / \mathbb{Z},$$
$$(\check{F}_{p}, \check{G}_{d+1-p}) \mapsto \int_{M}^{\check{H}} \check{F}_{p} \star \check{G}_{d+1-p}.$$

Chern–Simons term in differential cohomology

Notation: χ_p with $\mathscr{F}(\chi_p) = F_p$ denoted \breve{F}_p .

3d Chern–Simons action $\frac{k}{4\pi} \int_{M_3} A \wedge F$, but A is not globally defined \implies Replace by $\frac{k}{4\pi} \int_{M_3}^{\check{H}} \check{F} \star \check{F}$. **Notation:** χ_p with $\mathscr{F}(\chi_p) = F_p$ denoted \breve{F}_p .

3d Chern–Simons action $\frac{k}{4\pi} \int_{M_3} A \wedge F$, but A is not globally defined \implies Replace by $\frac{k}{4\pi} \int_{M_3}^{\check{H}} \check{F} \star \check{F}$.

Chern–Simons action for 3-form field C_3 becomes

$$\frac{1}{3!}\int_{M_{11}}^{\check{H}}\underbrace{\check{G}_4\star\check{G}_4\star\check{G}_4}_{\in\check{H}^{12}(M_{11})}.$$

(locally $dC_3 = G_4$)

Includes both U(1) and discrete Chern–Simons terms.

Geometric engineering of defects and SymTFTs

Key insight: [Apruzzi Bonetti García-Etxebarria Hosseini Schafer-Nameki '21]

differential cohomology + geometric engineering

 \implies classify defects and symmetries of QFT_d on M_d .

Geometric engineering of defects and SymTFTs

Key insight: [Apruzzi Bonetti García-Etxebarria Hosseini Schafer-Nameki '21]

differential cohomology + geometric engineering \implies classify defects and symmetries of QFT_d on M_d .

 Idea: SymTFT for discrete symmetries from differential cohomology [Apruzzi Bonetti García-Etxebarria Hosseini Schafer-Nameki '21]

[García-Etxebarria Hosseini '24] [+ related work by many others, refs in the paper]

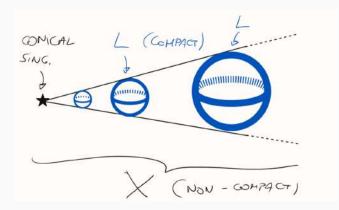
- New ingredients [Najjar-LS-Wang 2411.19683]
 - Unify continuous & finite symmetries;
 - Attention to (-1)-form symmetries.

24 / 41

SymTFTs from Geometric engineering (1/3)

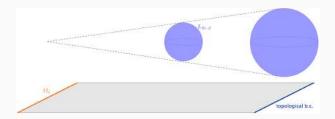
Assume $X_{11-d} = \text{Cone}(L_{10-d})$, where

 $L_{10-d} := \text{link of the singularity } X_{11-d}$



SymTFTs from Geometric engineering (2/3)

- differential cohomology: Replace $G_4 \mapsto \breve{G}_4$;
- Geometric engineering: Expand Ğ₄ in differential cohomology of L_{10-d};
- \implies Obtain (d + 1)-dim theory called **SymTFT**, coupled to physical QFT_d at the 'tip-of-the-cone' boundary.



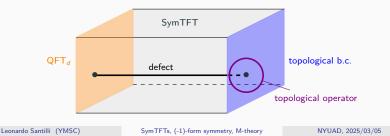
SymTFTs from Geometric engineering (3/3)

 $\{v_k^i\}$ = basis of Free $H^k(L,\mathbb{Z})$; $\{t_k^{\alpha}\}$ = basis of Tor $H^k(L,\mathbb{Z})$,

$$\breve{G}_4 = \sum_{k=0}^4 \sum_i \breve{F}_{4-k,i} \star \breve{v}_k^i + \sum_{k=0}^4 \sum_\alpha \breve{B}_{4-k,\alpha} \star \breve{t}_k^\alpha$$

- Reduce along free cycle $\implies F_{4-k,i}$ curvature of (2-k)-form U(1);
- Reduce along torsion cycle ⇒ B_{4-k,α} discrete gauge field of (3 − k)-form Z_{n_α};

all are **global symmetries** of QFT_d , fields live in $SymTFT_{d+1}$.

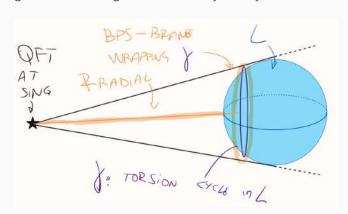


27 / 41

Defects from M-branes

Wrap M2 or M5 on $\gamma \in \text{Tor}H_{\bullet}(L_{10-d},\mathbb{Z})$ and stretch in radial direction \implies stretch in radial direction of SymTFT and pierces through physical QFT_d

 \Longrightarrow Engineer defect charged under finite symmetry.



Topological operators from M-branes (1/3)

 $\int_{L_{10-d}}^{\breve{H}}$ induces two $_{(perfect)}$ pairings:

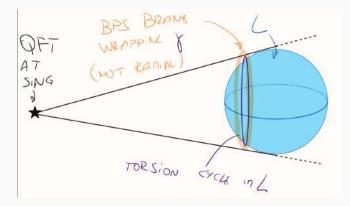
 $\mathsf{Tor} H^k \times \mathsf{Tor} H^{11-d-k} \longrightarrow \mathbb{R} / \mathbb{Z} \xrightarrow{\mathsf{Poincaré dual}} \mathsf{linking pairing}$ $\mathsf{Free} H^k \times \mathsf{Free} H^{10-d-k} \longrightarrow \mathbb{Z} \xrightarrow{\mathsf{Poincaré dual}} \mathsf{intersection pairing}$

H₀	charged defect	symmetry op.
Tor Tor	M2	M5
Tor	M5	M2
Free		P_7 -flux ($\neq G_7$ -flux)
Free	M5	P_4 -flux (= G_4 -flux)

 \implies M-branes on **Tor** cycles, fluxbranes on **Free** cycles

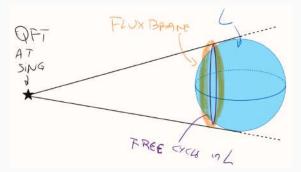
Topological operators from M-branes (2/3)

Wrap M2 or M5 on $\gamma \in \text{Tor}H_{\bullet}(L_{10-d}, \mathbb{Z}) \implies$ live in SymTFT parallel to physical QFT_d and to topological boundary conditions \implies Engineer topological operator generating **finite** symmetry.



Topological operators from M-branes (3/3)

Fluxbrane on $\gamma \in \text{Free}H_{\bullet}(L_{10-d},\mathbb{Z}) \implies$ live in SymTFT parallel to physical QFT_d and to topological boundary conditions \implies Engineer topological operator generating U(1) symmetry.



Fluxbranes, M5 and differential cohomology cf. Fiorenza-Sati-Schreiber '12, '19 etc

«Fluxbranes are unstable». But they are topological from SymTFT perspective.

Leonardo Santilli (YMSC)

SymTFTs, (-1)-form symmetry, M-theory

Finale: Classification of (-1)-form symmetries from M-theory

Applications of the formalism:

- X_6 CY3 \implies defects and SymTFTs of 5d SQFTs;
- X_7 G2 manifold \implies defects and SymTFTs of 4d SQFTs.

CY3 and 5d SCFTs

 X_6 : generic CY3 singularity. L_5 =link of $X_6 \implies 5d N = 1$ SCFT. Classify defects from branes:

	M2		M5	
$\operatorname{Tor} H_1(L_5,\mathbb{Z}) \times [0,\infty)$	Wilson line	\Diamond	Domain wall	۵
$\operatorname{Tor} H_2(L_5, \mathbb{Z}) \times [0, \infty)$	Local operator	0	3d defect	
$\operatorname{Tor} H_3(L_5, \mathbb{Z}) \times [0, \infty)$			Magnetic string	0
$\operatorname{Tor} H_1(L_5, \mathbb{Z})$	2-form sym. generator	\heartsuit	(-1)-form sym. generator	*
$\operatorname{Tor} H_2(L_5, \mathbb{Z})$	3-form sym. generator	Δ	0-form sym. generator	0
$\operatorname{Tor} H_3(L_5,\mathbb{Z})$	4-form sym. generator	٠	1-form sym. generator	\Diamond

CY3 and 5d SCFTs

 X_6 : generic CY3 singularity. L_5 =link of $X_6 \implies 5d \mathcal{N} = 1$ SCFT. Classify defects from branes:

	M2		M5	
$\operatorname{Tor} H_1(L_5,\mathbb{Z}) \times [0,\infty)$	Wilson line	\Diamond	Domain wall	
$\operatorname{Tor} H_2(L_5, \mathbb{Z}) \times [0, \infty)$	Local operator	0	3d defect	
$\operatorname{Tor} H_3(L_5,\mathbb{Z}) \times [0,\infty)$		*	Magnetic string	0
$\operatorname{Tor} H_1(L_5, \mathbb{Z})$	2-form sym. generator	\heartsuit	(-1)-form sym. generator	*
$\operatorname{Tor} H_2(L_5, \mathbb{Z})$	3-form sym. generator		0-form sym. generator	0
$\operatorname{Tor} H_3(L_5,\mathbb{Z})$	4-form sym. generator	٠	1-form sym. generator	\Diamond

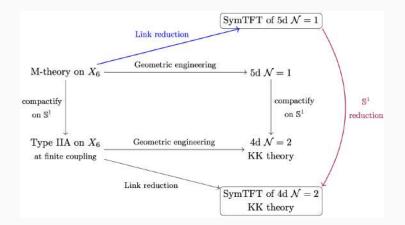
SymTFT derivation in differential cohomology from M-theory:

- Find background fields for all the symmetries;
- Find all mixed anomalies.
- Find (-1)-form symmetry background fields.

G2 and 4d N=2 SQFTs

 $X_7 = X_6 \times \mathbb{S}^1$: obtain 4d $\mathcal{N} = 2$ KK theory.

SymTFT from circle reduction:



G2 and 4d N=1 SQFTs

 X_7 : a manifold with G2 holonomy and link $L_6 = (\mathbb{S}^3/\mathbb{Z}_{pN}) \times (\mathbb{S}^3/\mathbb{Z}_p)$ \implies obtain 4d $\mathcal{N} = 1$ SQFT.

Classify defects from branes:

	M2		M5	
$\operatorname{Tor} H_1(L_6,\mathbb{Z}) \times [0,\infty)$	Wilson line	\diamond		
$\operatorname{Tor} H_2(L_6,\mathbb{Z})\times[0,\infty)$	Local operator	0	Domain wall	٠
$\operatorname{Tor} H_3(L_6,\mathbb{Z})\times [0,\infty)$		*	Surface defect	
$\operatorname{Tor} H_4(L_6,\mathbb{Z})\times[0,\infty)$			't Hooft line	Ø
$\operatorname{Tor} H_1(L_6,\mathbb{Z})$	1-form sym. generator	Ø		
$\operatorname{Tor} H_2(L_6, \mathbb{Z})$	2-form sym. generator	\triangle	(-1)-form sym. generator	*
$\operatorname{Tor} H_3(L_6,\mathbb{Z})$	3-form sym. generator		0-form sym. generator	0
$\operatorname{Tor} H_4(L_6,\mathbb{Z})$			1-form sym. generator	\diamond

G2 and 4d N=1 SQFTs

 X_7 : a manifold with G2 holonomy and link $L_6 = (\mathbb{S}^3/\mathbb{Z}_{pN}) \times (\mathbb{S}^3/\mathbb{Z}_p)$ \implies obtain 4d $\mathcal{N} = 1$ SQFT.

Classify defects from branes:

	M2		M5	
$\operatorname{Tor} H_1(L_6,\mathbb{Z}) \times [0,\infty)$	Wilson line	\diamond		
$\operatorname{Tor} H_2(L_6,\mathbb{Z}) \times [0,\infty)$	Local operator	0	Domain wall	
$\operatorname{Tor} H_3(L_6,\mathbb{Z})\times [0,\infty)$	-	*	Surface defect	
$\operatorname{Tor} H_4(L_6,\mathbb{Z})\times[0,\infty)$			't Hooft line	Ø
$\operatorname{Tor} H_1(L_6, \mathbb{Z})$	1-form sym. generator	0		
$\operatorname{Tor} H_2(L_6, \mathbb{Z})$	2-form sym. generator	Δ	(-1)-form sym. generator	*
$\operatorname{Tor} H_3(L_6,\mathbb{Z})$	3-form sym. generator		0-form sym. generator	0
$\operatorname{Tor} H_4(L_6,\mathbb{Z})$			1-form sym. generator	\diamond

SymTFT derivation in differential cohomology from M-theory:

- Find background fields and mixed anomalies for all the symmetries;
- Find **continuous** + **finite** (-1)-form symmetry background fields.
- Find modified instanton sum [Tanizaki-Unsal '19]

Fact: We have found discrete (-1)-form symmetries in 5d from M-theory geometric engineering.

Open problem: Understand them better with more canonical methods.

- Lagrangian description?
- Dynamical implications?

Fact: We have found discrete (-1)-form symmetries in 5d from M-theory geometric engineering.

Open problem: Understand them better with more canonical methods.

- Lagrangian description?
- Dynamical implications?

Open problem: More analysis in lower dimension and lower supersymmetry.

SymTFT for continuous symmetries

\triangle \exists Three proposals for SymTFT of **continuous** symmetries

Proposal 1 [Brennan-Sun 2401.06128] Proposal 2 [Antinucci-Benini 2401.10165] Proposal 3 [Apruzzi-Bedogna-Dondi 2402.14813]

Proposal 4 [Bonetti-Minasian-DelZotto 2402.12347]

Differ in electric/magnetic coupling:

- Proposal 1 & 2: $F \wedge h$ with h gauge field for \mathbb{R} -bundle;
- Proposal 3: $F \wedge H$ with H curvature.

 \triangle \exists Three proposals for SymTFT of **continuous** symmetries

Proposal 1 [Brennan-Sun 2401.06128] Proposal 2 [Antinucci-Benini 2401.10165]

Proposal 3 [Apruzzi-Bedogna-Dondi 2402.14813]

Differ in electric/magnetic coupling:

- Proposal 1 & 2: analogy with discrete symmetry BF-term;
- Proposal 3: derived from geometric engineering in M-theory [Najjar-LS-Wang 2411.19683].

SymTFT for continuous symmetries

 \triangle \exists Three proposals for SymTFT of **continuous** symmetries

Proposal 1 [Brennan-Sun 2401.06128] Proposal 2 [Antinucci-Benini 2401.10165] Proposal 3 [Apruzzi-Bedogna-Dondi 2402.14813]

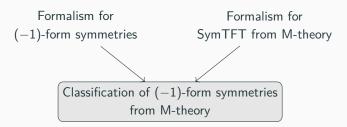
Differ in electric/magnetic coupling:

- Proposal 1 & 2: derived from symmetry descent in Type IIB [Gagliano-García-Extebarria 2411.15126]
- Proposal 3: derived from geometric engineering in M-theory [Najjar-LS-Wang 2411.19683].

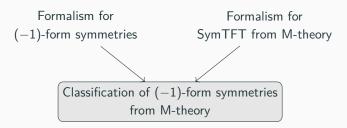
Open problem: settle this puzzle or reconcile approaches.

Conclusions

Summary



Summary



This talk:

Reality:

Leonardo Santilli (YMSC)

SymTFTs, (-1)-form symmetry, M-theory

Conclusions

- QFT: we gain a lot of mileage treating (-1)-form symmetries as actual symmetries;
- M-theory: (-1)-form symmetries are derived on same footing as any other symmetry.

Differential cohomology + geometric engineering on L = link of $X \implies$ we obtained

- Full SymTFT and classification of symmetries, both discrete and continuous;
- ▷ Detailed study of (-1)-form symmetries, both discrete and continuous, in 5d and 4d.

Conclusions

- QFT: we gain a lot of mileage treating (-1)-form symmetries as actual symmetries;
- M-theory: (-1)-form symmetries are derived on same footing as any other symmetry.

Differential cohomology + geometric engineering on L = link of $X \implies$ we obtained

- Full SymTFT and classification of symmetries, both discrete and continuous;
- ▷ Detailed study of (-1)-form symmetries, both discrete and continuous, in 5d and 4d.

Thank you for your attention!

Leonardo Santilli (YMSC)