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I. From 11d supergravity to M-theory
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Bosonic 11D supergravity

Bosonic Lagrangian: given by the eleven-form [Cremmer-Julia-Scherk]

Lbos
11 = R ∗1l− 1

2G4 ∧ ∗G4 − 1
6G4 ∧ G4 ∧ C3

Equations of motion: The variation δL(11),bos

δC3
= 0 for C3 gives the

corresponding equation of motion

d ∗ G4 + 1
2G4 ∧ G4 = 0 . (1)

Bianchi identity:
dG4 = 0 . (2)

The second order equation (1) can be written in a first order form, by first
writing d

(
∗G4 + 1

2C3 ∧ G4
)

= 0 so that

∗G4 = G7 := dC6 − 1
2C3 ∧ G4 , (3)

where C6 is the potential of G7, the Hodge dual field strength to G4 in 11
dimensions.
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The effect of the fermions

The femionic field ψ ∈ Γ(S ⊗ TM) (the gravitino) satisfies the generalized
Dirac equation, the Rarita-Schwinger equation

DRSψ = 0 , ψ ∈ Γ(S ⊗ T ∗M) .

(involves mixing of terms).
The fields themselves are in fact combinations of bosonic and fermionic
fields. Physics literature usually writes:

G
super
4 = G4︸︷︷︸

;topology/geometry

+ ψΓ2ψ︸ ︷︷ ︸
;topology/geometry

Similarly for the connections

ωsuper = ω + fermion-bilinears

[See Duff-Nilsson-Pope]

Strategy: Extract topology/higher geometry from bosons and fermions separately.
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II. Where do fields live?
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Generalities on what physics wants

Nontrivial physical entities, such as fields, charges, etc. generically take values in
cohomology.

Cohomology

ww �� ''

Generalized Twisted Differential

I. Generalized: Capture essential topological and bundles aspects.

II. Twisting: Account for symmetries via automorphisms.

III. Differentially refined: Include geometric data, such as connections, Chern
character form, smooth structure, smooth representatives of maps ...
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Differential refinement
Introduce geometric data via differential forms (connections, Chern forms,
· · · ), i.e., retain differential form representatives of cohomology classes.

Ω•(M)

adjoin

uu
adjoin

��

adjoin

((
H•(M;Q)

refinement
��

H•(M;Z)

refinement
��

E•(M)

refinement
��

Ĥ•(M;Q) Ĥ•(M;Z) Ê•(M)

Amalgam of an underlying (topological) cohomology theory and the data of
differential forms:

Differential gen. cohomology

��

// Forms

��
Gen. cohomology // de Rham cohomology

That is, we have a fiber product or twisted product

“Differential cohomology = Cohomology×de Rham Forms” 9 / 50



Differential generalized cohomology

Start with a generalized cohomology theory h

Ω(X , h∗) := Ω(X )⊗Z h∗ Smooth differential forms with
coefficients in h∗ := h(∗)

Ωcl(X , h∗) ⊆ Ω(X , h∗) closed forms
HdR(X , h∗) cohomology of the complex

(
Ω(X , h∗), d

)
Definition
A smooth extension of h is a contravariant functor

ĥ : Compact Smooth Manifolds −→ Graded Abelian Grps
Ωcl(X , h∗)

��
ĥ(X )

R

66

I

(( ((

HdR(X , h∗)

h(X )

OO
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Full structure

Twisted ∩ Differential ∩ Generalized

Ω•(M)

adjoin

uu ��

adjoin

((

Geometric

H•(M;Q)

twistH

��

refinement
��

H•(M;Z)

twistH

��

refinement
��

E•(M)

twistE

��

refinement
��

Topological

Ĥ•(M;Q)

twistĤ

WW
Ĥ•(M;Z)

twistĤ

WW
Ê•(M)

twistÊ

WW
Combined

Examples ([GS])
1 Type I (II) RR fields live in twisted differential KO-theory K̂O τ̂ (K-theory K̂τ̂ ).
2 Differential refinements of various twisted cohomology theories.

Fields in M-theory are proposed to live in a theory of this type [S06].
Which one? 11 / 50



III. (Twisted) Cohomotopy vs. (twisted) cohomology
description of the M-theory fields
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Cohomotopy versus cohomology

Cohomology of Y with R-coefficients: [Y ,K (R, n)] ∼= Hn(Y ;R). old

Cohomotopy of Y with R-coefficients: [Y ,Sn
R ] ∼= πn

R(Y ). new

Compare cohomotopy to cohomology of various flavors:

1 Rational: S4
Q vs. H4(−;Q).

2 Integral: S4
Z vs. H4(−;Z).

3 Differential: Ŝ 4 vs. Ĥ4(−).
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1. Rationally
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Connection to rational homotopy theory

Definition
The field equations of (a limit) of M-theory on an 11-dimensional manifold Y 11 are

d ∗ G4 = 1
2G4 ∧ G4

dG4 = 0

Q. What topological & geometric information can the above system
provide us?

Rational structures: Differential forms, rational cohomology, rational
homotopy theory ...
More refined structures: (twisted) 2-gerbes, (twisted) String structures,
orientations ...

A priori, G4 should be described by a map f : Y → K (Z, 4) ; H4(Y ;Z)

Differential refinement Ĝ4 corresponds to Y → B3U(1)∇ ; Ĥ4(Y )

Product structure on Eilenberg-MacLane spaces is cup product, with no
a priori information about trivialization.

Need (G4,G7) satisfying above ⇔ Y → ?.
Need (Ĝ4, Ĝ7) satisfying above ⇔ Y → ?̂. 15 / 50



Rational degree four twists [S]

Consider a 3-form C3 with G4 = dC3. We can build a differential with G4 as
dG4 = d + v−13 G4∧

Observation
The de Rham complex can be twisted by a differential of the form d + v−12i−1G2i∧
provided that G2i is closed and v2i−1 is Grassmann algebra-valued.

Form a duality-symmetric graded uniform degree form G = v−13 G4 + v−16 G7.
This expression can now be used to twist the de Rham differential, leading to

dG = d + G∧ = d + v−13 G4 ∧+v−16 G7 ∧ .

Observation
The de Rham complex can be twisted by the differential dG provided
{v3, v3} = v6

dG7 = 1
2G4 ∧ G4.

The first condition is the M-theory gauge algebra and the second is the equation
of motion.
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Observation (The Sullivan model as the equations of motion [S])
The above equations correspond to the Sullivan DGCA model of the 4-sphere S4

M(S4) =
(∧

(y4, y7); dy7 = y24 , dy4 = 0
)

What about the factor of 1
2?

Whitehead bracket [ι4, ι4]W : S7 → S4 generates Z (Q)-summand in π7(S4).
There is an extra symmetry as we are in the dimension of a Hopf fibration,
i.e. σ the H-Hopf map and so the generator is σ = 1

2 [ι4, ι4]W .

Observation (Quillen model as the M-theory gauge algebra [FSS])
The Sullivan model for S2n is given by the DGCA

M(S2n) =
(∧

(x2n, x4n−1); dx2n = 0, dx4n−1 = x2n
2) .

Imposing the Maurer-Cartan equation on the degree 1 element
x2nξ1−2n + x4n−1ξ2−4n we find the Lie bracket dual to the differential is given by

[ξ1−2n, ξ1−2n] = 2ξ2−4n
with all the other brackets zero.

Example (n = 2)
The graded Lie algebra Rξ−3 ⊕ Rξ−6 with bracket [ξ−3, ξ−3] = 2ξ−6 (Quillen
model) can be identified with the M-theory gauge Lie algebra.
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Proposal ([S])
Higher gauge fields in M-theory are cocycles in (rational) cohomotopy.

Developed via Rational Homotopy Theory (RHT) in [FSS]: X
(G4,G7) // S4

R .

[Y ,S4
Q] = π4Q(Y ) rational cohomotopy.

Ultimately interested in full Map(Y ,S4) 3 f .
Geometry + physics ⇒ differential cohomotopy [FSS]
Formulate in stacks/chain complexes.

RHT. Generalized Chern character maps are examples of rationalization

Generalized
cohomology theory

OO
classifying
spaces

��

Chern character // L∞-valued
differential forms

OO
Sullivan model
construction

��

Full
homotopy theory rationalization

// Rational
homotopy theory

RHT amenable to computations due to Sullivan models: differential
graded-commutative algebras (dgc-algebras) on a finite number of generating
elements (spanning the rational homotopy groups) subject to differential relations
(enforcing the intended rational cohomology groups). In Sugra: “FDA”s. 18 / 50



Examples

Rational
super space

Loop
super L∞-algebra

Chevalley-Eilenberg
super dgc-algebras

(“Sullivan models”, “FDA”s)

General X lX CE
(
lX
)

Super
spacetime

Td,1|N Rd,1|N R
[
{ψα}Nα=1, {e

a}da=0
]/( d ψα = 0

d ea = ψ Γaψ

)

Eilenberg-MacLane
space

K(R, p + 2)

'R Bp+1S1
R[p + 1] R[cp+2 ]

/ (
d cp+2 = 0

)

Odd-dimensional
sphere

S2k+1
R l(S2k+1) R[ω2k+1 ]

/ (
d ω2k+1 = 0

)

Even-dimensional
sphere

S2kR l(S2k ) R
[
ω2k , ω4k−1

]/( d ω2k = 0
d ω4k−1 = −ω2k ∧ ω2k

)

M2-extended
super spacetime

̂T10,1|32 m2brane R
[
{ψα}32α=1, {e

a}10a=0, h3
]/ d ψα= 0

d ea = ψ Γaψ

d h3 = i
2 (ψΓabψ) ∧ ea ∧ eb
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Consequences [FSS][BMSS]

1 Reduction via a circle bundle ⇒ new functors formalizing dimensional
reduction via loop (and mapping) spaces with rich structure retained
(topological, geometric, gauge).

2 The rational data of S4 on the total space Y 11 of a circle bundle
S1 → Y 11 → X 10 leads exactly to rational data of twisted K-theory on base
X 10. → [see Vincent’s talk]

3 Even if we take flat + rational we can still see a lot of structure: Study of
cocycles in Super-Minkowski space recovers cocycles in rational twisted
K-theory.

4 Furthermore, T-duality can be derived at the level of supercocycles.
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Branes from supercocycles

Superspace formulation of 11d supergravity [D’Auria-Fre]: fully
controlled by an iterated pair of invariant super-cocycles µM2 and µM5 on
D = 11, N = 1 super Minkowski spacetime.
In the super homotopy-theoretic formulation [FSS]:

K (R, 3)

��

K (R, 3)

��
T̂10,1|32

fib(µM2 )
��

µM5 // K (R, 7)

��
T10,1|32

µM2 // K (R, 4)

R−quaternionicHopf fibration
µM5 = 1

5!

(
ψΓa1···a5ψ

)
ea1 ∧ · · · ∧ ea5

+ h3 ∧ µM2

µM2 = i
2

(
ψΓa1a2ψ

)
ea1 ∧ ea2

(4)which are the super-flux forms to which the M2-brane and M5-brane couple, in
their incarnation as Green-Schwarz-type sigma models [FSS].

T̂10,1|32 = m2brane arises as the homotopy fiber of µM2 and is the extended
super Minkowski spacetime or the M2-brane super Lie 3-algebra.
µM2 = super-form component of magnetic flux sourced by charged M5-branes.

µM5 = super-form component of electric flux source by charged M2-branes.

So these cocycles are avatars of M-brane charge/flux at the level of super RHT.21 / 50



Twisted K-theory in type II from M-theory

1 Type IIA. [BMSS] The double dimensional reduction of rational M-brane
supercocycles (µM2 , µM5) is indeed the tuple of F1/Dp-brane supercocycles
(µF1µD0 , µD2 , µD4 , µD6 , µD8) in rational twisted K-theory, which the literature
demands to be the rational image of a cocycle in actual twisted K-theory.

Objects Cohomology theory

M-branes
twisted

Cohomotopy
hh

double dimensional
reduction/oxidation

[see talk by Vincent]
vv

D-branes
twisted
K-theory

2 Type IIB. Characterization of T-duality for circle and sphere bundles using
RHT [FSS].

Novel effect: T-duality in super-exceptional spacetimes in 11d M-theory
[FSS][SS].
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2. Integrally
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1 Rationally and stably S4
Q is just the Eilenberg-MacLane space K (Q, 4), and

H4(Y 11;Q) ∼= π4s (Y 11)⊗Q .

2 In the unstable case, schematically, we have
Rational cohomotopy = Rational cohomology + trivialization of the cup square

Integrally and stably we do see new effects.

In between full non-abelian cohomotopy and abelian ordinary cohomology sits
stable cohomotopy, represented not by actual spheres, but by their
stabilization to the sphere spectrum.
There is a description of the C-field in each one of these flavors [FSS][BMSS].

Cohomology
theory

Rational
cohomology

Integral
cohomology

Stable
cohomotopy

Non-abelian
cohomotopy

Cocycle G4 G̃4 Σ∞c c

Hypothesis H. The C-field is charge-quantized in cohomotopy theory,
even non-rationally.

Cancellation of main anomalies of M-theory follows naturally from cohomotopy:
1 C-field charge quantization in twisted cohomotopy implies various

fundamental anomaly cancellation and quantization conditions [FSS].
2 Similar effects for D-branes and orientifolds [SS]. 24 / 50



Lifting rational S4 to integral S4

If we start with the rational 4-sphere S4
Q, then how can we lift it to an

“integral” space?
The actual 4-sphere S4 stands out as not only the most natural but the
finite-dimensional one.

S4

��
Y

Integral,
torsion

33

Rational,
non-torsion

// S4
Q

(5)

Start with integral cohomology as describing the (shifted/twisted) C-field and
then transition to a description in terms of cohomotopy. By representability,
this amounts to lifting

S4

ι��
Y

Nonlinear
prequantum

33

Linear
quantum

// K (Z, 4) .

(6)

The map ι assembles, upon taking homotopy classes, into the integral
cohomology H4(S4;Z) generated by a fundamental class.

Description:

C-field in π4(Y 11) ⇐⇒ C-field in H4(Y 11;Z) + nontrivial conditions.
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Proposition (Integral Postnikov tower for S4 [GS])

S4

.

.

.

K(Z2, 10) // (S4)4
“Sq8ι4”,ι34,P

1
5 ι4=0

holds
//

��

K(Z240,12) =K(Z16,12)×K(Z5,12)×K(Z3,12)

K(Z24, 7) // (S4)3
P11

fourth obstruction
//

��

K(Z2, 11)

K(Z2, 6) // (S4)2
(“Sq4ι4”,P13 ι4)

third obstruction
//

��

K(Z24, 8) = K(Z8, 8) × K(Z3, 8)

K(Z2, 5) // (S4)1
α7

second obstruction
//

��

K(Z2, 7)

Y
integral

Cohomology
//

first
lifting

33

second
lifting

22
third
lifting

11
fourth
lifting

11
degree 4

cohomotopy

00

(S4)0 = K(Z, 4)
Sq2ι4

first obstruction
// K(Z2, 6)

Note that at the top level the three conditions vanish necessarily on Y 11, for
dimension reasons.
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Cohomotopy in deg 4 ∼ Integral 4-cohomology + four sets of obstructions.

Pulling back to spacetime Y , where the fundamental class ι4 pulls back to the field

G4 − 1
2λ =: G̃4 = f ∗ι4

where λ = 1
2p1 is the first Spin characteristic class of TY .

(i) First obstruction. Sq2G̃4
!

= 0 ∈ H6(Y ;Z2) .

This follows from anomaly cancellation in M-theory [FSS].

(ii) Second obstruction. f∗(α7)
!

= 0 ∈ H7(Y ;Z2)

where α7 is a secondary operation, restricting fiberwise to Sq2ι5.
No candidate degree 5 classes.

(iii) Third obstructions. f∗(”Sq4ι4”)
!

= 0 ∈ H8(Y ;Z8)

Note that by construction, this implies also that (upon mod 2 reduction)

f ∗(Sq4ι4) = Sq4f ∗(ι4) = Sq4G̃4 = G̃4 ∪ G̃4 = 0 ∈ H8(Y ;Z2) .

Recall that rationally we have the EOM d ∗ G form
4 = 1

2G
form
4 ∧ G form

4 ..
Coefficients being Z8 rather than Z2: Fields reduced modulo 4:
1
2λ ; modding out p1 by 4. (Pontrjagin square operation).
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We also have P1
3 ι4 = 0 .

Mod 3 reductions are shown to play a prominent role in topological
considerations in M-theory [S], where similar conditions, including
P1
3ρ3G4 = 0, have been highlighted in the context of Spin K-theory.

(iv) Fourth obstruction. f∗(P11)
!

= 0

where P11 is a class which fiberwise restricts to Sq4ι7.
Reminiscent of G4 ∧ G7.
The universal coefficient theorem gives detectable effect for M-theory on
orientable spacetimes.

(v) Fifth obstructions.
“Sq8ι4

!
= 0, ι34

!
= 0, P1

5 ι4
!

= 0

These obstructions necessarily vanish on Y 11. However on a 12-manifold Z 12, for
analyzing the congruences of the Chern-Simons term in the M-theory action, the
three conditions are nontrivial (but natural to have).
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Proposition (Cohomotopy vs. cohomology for the C-field)

Consider the M-theory (shifted) C-field G̃4 as an integral cohomology class in
degree four. Then if G̃4 lifts to a cohomotopy class G4 ∈ π4(Y 11) the following
obstructions necessarily vanish
(i) Sq2G̃4 = 0 ∈ H6(Y 11;Z2).

(ii) P1
3 (G̃4) = 0 ∈ H8(Y 11;Z3).

(iii) Sq4G̃4 = G̃4 ∪ G̃4 = 0 ∈ H8(Y 11;Z2).

(iv) If G4 = 0 and dC3 = 0 can be lifted to an integral class C̃3, then we also
have Sq3Sq1C̃3 = 0 ∈ H7(Y 11;Z2).

(v) If dG7 = G4 ∧ G4 = 0 and G7 can be lifted to an integral class G̃7, then we
also have the condition Sq4G̃7 = 0 ∈ H11(Y 11;Z2).
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Consequences:

1 Congruences for the action The Chern-Simons term in the action

1
6

∫
Y 11

C3 ∧ G4 ∧ G4 .

Since C3 may not be globally defined in general, one may consider Y 11 as the
boundary of a 12-manifold Z 12 and analyzes the globally well defined term

1
6

∫
Z12

G4 ∧ G4 ∧ G4 (7)

[Witten]: usual quantization law of G4 does not give rise to a well defined
Chern-Simons action, as (7) might fail to be integral by a factor of 6.
Cohomotopy implies the added condition that

G̃ 3
4 ≡ 0 mod 3 .

This, with G̃ 2
4 = Sq4(G̃4) ≡ 0 mod 2, gives result (without E8-gauge theory).

2 The anomaly in the partition function Quantization in cohomotopy yields
the condition Sq2(G̃4) = 0 for some integral lift of G4.

Implies the vanishing of the DMW anomaly Sq3(G̃4) = 0 [FSS].
Obstruction theory for S4 ⇒ fields which contribute to the phase are just the
field which lift to the first Postnikov stage in cohomotopy [GS].
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Example (Flux compactification spaces)

Anti-de Sitter space AdSn ; simply-connected cover ÃdSn of AdSn.

1 ÃdS4 × CP2 × T 2: Supersymmetry without supersymmetry [Duff-Lu-Pope]
and T-duality [Bouwknegt-Evslin-Mathai]. π4(CP2) ∼= Z while
H4(CP2;Z) ∼= Z.

2 ÃdS7 × RP4: M-theory on an orientifold [Witten][Hori]. π4(RP4) ∼= Z2 while
H4(RP4;Z) = 0, indeed shows that cohomotopy detects more.

3 ÃdS4 × RP5 × T 2: π4(RP5) is cyclic or order 4, i.e. either Z4 or Z2 × Z2,
while H4(RP5;Z) ∼= Z2.

4 ÃdS4 × CP3 × S1: π4(CP3) ∼= Z⊕ Z2 while H4(CP3;Z) ∼= Z, so that there
is an extra contribution of Z2 present in cohomotopy.

5 For HP2: π4(HP2) ∼= Z while H4(HP2;Z) ∼= Z, and hence no new
contribution,

6 For OP2: π4(OP2) ∼= Z . while H4(OP2;Z) = 0, signaling a new effect.
Important for bosonic M-theory ([Ramond][S]).

Interpretation and consequences? Work in progress (via Pontrjagin-Thom theory).
31 / 50



Twisted Cohomotopy theory [FSS]

In degree d − 1 there is a canonical twisting on Riemannian d-manifolds, given by
the unit sphere bundle in the orthogonal tangent bundle:

J-twisted
Cohomotopy theoryπ

TXd

(X d) :=



tangent
unit sphere bundle

S(TX d)

p

��

//

universal tangent
unit sphere bundle

Sd−1�O(d)

��
X

continuous section
= twisted cocycle

44

X
TX d

classifying map of
tangent/frame bundle

// BO(d)

/
∼ homotopy

BO(d)

'


X

TX d

twist %%

continuous function // Sd−1�O(d)

ww
BO(d)

homotopy~�

/
∼ homotopy

BO(d)

Since the canonical morphism O(d) −→ Aut(Sd−1) is known as the
J-homomorphism, we may call this J-twisted Cohomotopy theory, for short.
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Twisted cohomotopy and anomalies [FSS]
Hypothesis H: The C-field 4-flux & 7-flux forms in M-theory are subject to charge
quantization in J-twisted Cohomotopy cohomology theory in that they are in the
image of the non-abelian Chern character map from J-twisted Cohomotopy theory.

⇒ Cancellation of main anomalies:

Half-integral flux quantization
[
G4 + 1

4p1︸ ︷︷ ︸
=: G̃4 integral flux

]
∈ H4(X ,Z)

Background charge q(G̃4)︸ ︷︷ ︸
quadratic form

= G̃4
(
G̃4 − 1

2p1︸︷︷︸
=(G̃4)0

)
DMW-anomaly cancellation W7

(
TX
)

= 0

Integral equation of motion Sq3︸︷︷︸
=βSq2

(
G̃4
)

= 0

M5-brane anomaly cancellation IM5
ferm︸︷︷︸
chiral
fermion

+ IM5
sd︸︷︷︸

self-dual
3-flux

+ I bulkinfl︸︷︷︸
bulk
inflow

= 0

M2-brane tadpole cancellation NM2︸︷︷︸
number of
M2-branes

+ q(G̃4) = I8︸︷︷︸
One loop
polynomial

Consequences for WZW model associated to M5-brane ⇒ [See talk by Domenico]
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J-Twisted Cohomotopy and Topological G -Structure

For every topological coset space realization G/H of an n-sphere, there is a
canonical homotopy equivalence between the classifying spaces for G -twisted
Cohomotopy and for topological H-structure (i.e., reduction of the structure
group to H), as follows:

coset space structure
on topological n-sphere

Sn '
homeo

G/H ⇒

G-twisted Cohomotopy /
topological H-structure

Sn�G '
htpy

BH .

(One may think of this as “moving G from numerator on the right to
denominator on the left”.)
Existence of a G -structure is a non-trivial topological condition, so is the
existence of J-twisted Cohomotopy cocycles.
Notice that this is a special effect of twisted non-abelian generalized
Cohomology: A non-twisted generalized cohomology theory (abelian or
non-abelian) always admits at least one cocycle, namely the trivial or
zero-cocycle. But here for non-abelian J-twisted Cohomotopy theory on
8-manifolds, the existence of any cocycle is a non-trivial topological condition.
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Equivalence for Spin 8-manifolds

S7�Spin(8)
' B Spin(7)

=⇒



classifying space
for J-twisted

Cohomotopy theory

S7�Spin(8)

��
X 8

c

cocycle in
J-twisted

Cohomotopy
44

TX8

tangent
spin structure

// BSpin(8)

homotopy

��



'



classifying space
for topological
Spin(7)-structure

BSpin(7)

Bi

��
X 8

g

topological
Spin(7)

structure
33

TX8

tangent
spin structure

// BSpin(8)

homotopy

��



S7�Sp(2) · Sp(1)
' BSp(1) · Sp(1)

⇒



classifying space
for Sp(2) · Sp(1)-twisted
Cohomotopy theory

S7�Sp(2) · Sp(1)

��
X 8

c

cocycle in
Sp(2) · Sp(1)-twisted
Cohomotopy theory 66

TX8

tangent
spin structure

// BSpin(8)

homotopy

��



'



classifying space
for topological

Sp(1) · Sp(1)-structure

BSp(1) · Sp(1)

Bi

��
X 8

g

topological
Sp(1) · Sp(1)
structure 55

TX8

tangent
spin structure

// BSpin(8)

homotopy

��
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Stable vs. unstable
The quaternionic Hopf fibration.

S7

quaternionic Hopf fibration
hH

++' S(H2)
unit sphere

in quaternionic
2-space

(q1,q2) 7→ [q1:q2]
// HP1
quaternionic
projective
1-space

' S4 ,

which represents a generator of the non-torsion subgroup in the 4-Cohomotopy of
the 7-sphere, as shown on the left here:

quaternionic
Hopf fibration

[S7 hH→ S4]

non-abelian/unstable
Cohomotopy group

π4(S7)

stabilization

Σ∞ //

abelian/stable
Cohomotopy group

S4(S7) Σ∞[S7 hH→ S4]
stabilized

quaternionic
Hopf fibration

non-torsion
generator (1, 0) ∈ Z× Z12

(n,a) 7→ (n mod 24)
// Z24 3 1 torsion

generator

So composition with the quaternionic Hopf fibration can be viewed as a
transformation that translates deg-7 to deg-4 Cohomotopy classes:

S7

hH
��

7-Cohomotopy

reflects into

π7(X )

(hH)∗��
X

c

66

(hH)∗(c)
// S4

4-Cohomotopy π4(X )
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Proposition (Differential form data underlying twisted Cohomotopy)
Let X be a simply connected smooth manifold and τ : X → BO(n + 1) a twisting
for Cohomotopy in degree n. Let ∇τ be any connection on the real vector bundle
V classified by τ with Euler form χ2k+2(∇τ ) (see [Mathai-Quillen]).
(i) If n = 2k + 1 is odd n ≥ 3: a cocycle defining a class in the rational
τ -twisted Cohomotopy of X is equivalently given by

πτQ(X ) '
{
G2k+1 | d G2k+1 = χ2k+2(∇τ )

}/
∼
.

(ii) If n = 2k is even, n ≥ 2: a cocycle defining a class in the rational τ -twisted
Cohomotopy of X is given by a pair of differential forms G2k ∈ Ω2k(X ) and
G4k−1 ∈ Ω4k−1(X ) such that

dG2k = 0; π∗G2k = 1
2
χ2k(∇τ̂ )

dG4k−1 = −G2k ∧ G2k + 1
4pk

(∇τ ),

where p
k
(∇τ ) is the k-th Pontrjagin form of ∇τ , π : E → X is the unit sphere

bundle over X associated with τ , τ̂ : E → BO(n) classifies the vector bundle V̂ on
E defined by the splitting π∗V = RE ⊕ V̂ associated with the tautological section
of π∗V over E , and ∇τ̂ is the induced connection on V̂ . That is,

πτQ(X ) '

{(
G2k ,G4k−1

) ∣∣∣ d G2k = 0 , π∗G2k = 1
2
χ2k(∇τ̂ )

d G4k−1 = −G2k ∧ G2k + 1
4pk

(∇τ )

}
/
∼

.
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3. Differentially
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Differential refinement

Refine the topological lift (5) to a geometric lift at the level of smooth stacks
of the form

Ŝ4

��
Y

Differential cohomotopy,
prequantum and geometric

33

Differential cocycle,
quantum and geometric

// B3U(1)∇ .

(8)

where Ŝ4 is the differential refinement of the 4-sphere and B3U(1)∇ is the
smooth stack of 3-bundles with connections

This would require a differential refinement of the Postnikov tower which uses
refinement of cohomology operations, primary (such as Steenrod operations)
and secondary (such as Massey products) [GS].
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Differential cohomotopy [Fiorenza-S.-Schreiber]

H-Hopf fibration: S3 −→ S7 −→ S4 −→ BSU(2)
c2−→ K (Z, 4).

Rationalize: S3
Q −→ S7

Q −→ S4
Q −→ (BS3)Q which is equivalent to

K (Q, 7) −→ S4
Q −→ K (Q, 4)

Rational homotopy of spaces can be modelled using L∞-algebras.
The Eilenberg-MacLane spaces K (Q, n) = BnQ can be modelled using
algebras via chain complexes: bnQ = Q[n].
Lie 7- algebra s4 is defined by CE(s4) = R[g4, g7] with gk in degree k and
with the differential defined by dg4 = 0, dg7 = g4 ∧ g4.

Has a natural structure of infinitesimal R[2]-quotient of R[6], i.e., there exists
a natural homotopy fiber sequence of L∞-algebras

R[6] //

��

s4

p��
0 // R[3] .

(9)

Theorem (FSS)

The system (Ĝ4, Ĝ7) forms a cocycle in differential cohomotopy.
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Differential refinements: B3U(1)∇ vs. Ŝ 4

Let s4 be the Lie 7-algebra whose corresponding Chevellay-Eilenberg algebra
is the exterior algebra on generators g4 and g7 with relations

dg4 = 0 , dg7 = g4 ∧ g4 .

As a de Rham model for flat 1-forms with values in S4 we take the sheaf on
the site of Cartesian spaces given by the assignment

Ω1
fl(−; s4) : U � // homdgcAlg(CE(s4),Ω∗(U)) ,

for each Cartesian space U ∼= Rn. (The homotopy type of Ω1
fl(−; s4) can be

computed via the Sullivan construction as the R-local 4-sphere S4
R).

Then pulling back along the canonical map S4 → S4
R, we get a smooth stack

Ŝ 4 //

��

Ω1
fl(−; s4)

��
S4 // S4

R .

Definition (Differential unstable cohomotopy)
For a smooth manifold X , let i(X ) denote its embedding as a smooth stacks via
its sheaf of smooth plots. Then the differential cohomotopy of X in degree 4 is
defined as the pointed set π̂ 4

u (X ) := π0Map
(
i(X ), Ŝ 4

)
where the maps on the

right are those of smooth stacks. 41 / 50



Differential cohomotopy: stably
Stably, S4 has only torsion groups in higher degrees and hence the canonical
map S4 → K (R, 4) is a stable R-local equivalence.
Geometrically, the realification if modeled by closed 4-forms Ω4

cl(−).
Stable differential cohomotopy in degree 4 fits into a pullback square

Σ̂∞S 4 //

��

H
(
τ≤0Ω4+∗(−)

)
��

Σ∞S4 // Σ4HR .

where Ω4+∗(−) denotes the de Rham complex, shifted so that Ω4 is in degree
zero, and τ≤0 truncates the complex in degree zero so that the complex is
concentrated in negative degrees. The functor H denotes the
Eilenberg-MacLane functor which turns a chain complex into a spectrum.

Definition (Differential stable cohomotopy)
Let X be a smooth manifold with i(X ) its associated smooth stack. The stable
differential cohomotopy group of X is defined as

π̂ 4
s (X ) := π0Map

(
i(X ); (Σ̂∞S 4)0

)
.

where the subscript 0 denotes the deg 0 component of the sheaf of spectra Σ̂∞S4.
42 / 50



Geometric cycles

Definition (Geometric cohomotopy cocycles [GS])

If X is a smooth manifold, a morphism ĉ : X → Ŝ 4 can be identified with a triple
(c , h, ω) where
(i) c : X → S4 is a cocycle in ordinary cohomotopy,
(ii) ω : CE(s4)→ Ω∗(X ) is a DGA morphism, determined by specifying forms ω4

and ω7 on M satisfying dω7 = ω2
4 and dω4 = 0,

(iii) and h is a homotopy interpolating between the rational cocycle represented
by the form data and the rationalization of the classifying map c : X → S4.
Thus, h exhibits a sort of de Rham theorem for cohomotopy.
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Proposition (Differential refinement of Postnikov tower of the sphere)

K(Z15, 11) // (Ŝ 4)7

��
K(Z24×Z3, 10) // (Ŝ 4)6

��

// K(Z15, 12)

K(Z2×Z2, 9) // (Ŝ 4)5

��

// K(Z24×Z3, 11)

K(Z2×Z2, 8) // (Ŝ 4)4

��

// K(Z2×Z2, 10)

K(Z12, 7)×K(Z, 7) // (Ŝ 4)3

��

// K(Z2×Z2, 9)

K(Z2, 6) // (Ŝ 4)2

��

(?,ι̂24) // K(Z12, 8)× B7U(1)∇

K(Z2, 5) // (Ŝ 4)1

��

α7I // K(Z2, 7)

(Ŝ 4)0 = B3U(1)∇
Sq2ρ2I // K(Z/2, 6)

where we have identified the first few obstructions. 44 / 50



Proposition (Differential cohomotopy vs. cohomology for the C-field)

Consider the differentially refined M-theory (shifted) C-field Ĝ4 as an integral
cohomology class in degree four. Then if Ĝ4 lifts to a cohomotopy class
G4 ∈ π̂4(Y 11) the following obstructions necessarily vanish

(i) Sq2I (Ĝ4) = 0 ∈ H6(Y 11;Z2).

(ii) P1
3 I (Ĝ4) = 0 ∈ H8(Y 11;Z3).

(iii) Sq4I (Ĝ4) = I (Ĝ4 ∪DB Ĝ4) = 0 ∈ H8(Y 11;Z2).

(iv) If Ĝ4 = 0 and C form
3 is quantized, with differential refinement Ĉ3, then we

also have Sq3Sq1I (Ĉ3) = 0 ∈ H7(Y 11;Z2).
(v) If dG form

7 = G form
4 ∧ G form

4 = 0 and G form
7 is quantized, with differential

refinement Ĝ7, then we also have the condition
Sq4I (Ĝ7) = 0 ∈ H11(Y 11;Z2).

Remark (Obstruction in M-theory via higher bundles with connections)
Deligne-Beilinson cup product in M-theory Ĝ4 ∪DB Ĝ4 gives a 7-bundle with
connection form locally given by C form

3 ∧ G form
4 [FSS]. From the identification of

the k-invariant at the second stage (the DB square): to lift past the 2nd stage in
the Postnikov tower for Ŝ 4, this connection must be globally defined. In terms of
differential cohomology, a(C form

3 ∧ G form
4 ) = Ĝ4 ∪DB Ĝ4 , where

a : Ω7(Y 11)→ Ĥ8(Y 11) is the canonical map.
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Example (Differential cohomotopy of flux compactification spaces)
LES in stable cohomotopy

. . . // π3s (X )
deg // Ω3(X ) // π̂ 4

s (X ) // π4s (X ) // . . . .

allows to compute some examples.

(i) ÃdS7 × RP4: π̂ 4
s

(
ÃdS7 × RP4

) ∼= Ĥ4
(
ÃdS7 × RP4

)
.

(ii) ÃdS4 × CP2: π̂ 4
s

(
ÃdS4 × CP2

) ∼= Ĥ4
(
ÃdS4 × CP2

)
.

(iii) ÃdS4 × CP2 × T 2: π̂ 4
s

(
ÃdS4 × CP2 × T 2

) ∼= Ĥ4
(
ÃdS4 × CP2 × T 2

)
.

(iv) ÃdS4 × RP5 × T 2: π4(RP5) is order 4, either Z4 or Z2 × Z2, while
H4(RP5;Z) ∼= Z2. Also π3(RP5) is finite. We therefore have a short exact
sequence

0 // Ω3(RP5) // π̂ 4(RP5) // π4(RP5) // 0 .

Since π4(RP5) is generated by q5η4, with η4 : S5 → S4 the two-fold
suspension of the Hopf map, the induced map on H4 necessarily vanishes.
Hence, in this case, differential cohomotopy yields considerably different
information than ordinary differential cohomology.
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Back to :

Cohomotopy ⇒ branes and gauge theory
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Differential cohomotopy and D-brane gauge theories

Zoom in beyond foundational/structural M-theoretic considerations [SS]:

(1) A differential refinement of Cohomotopy cohomology theory is given by
un-ordered configuration spaces of points.

(2) The fiber product of such differentially refined Cohomotopy cocycle spaces
describing D6 ⊥ D8-brane intersections is homotopy-equivalent to the ordered
configuration space of points in the transversal space.

(3) The higher observables on this moduli space are equivalently weight systems
on horizontal chord diagrams.

Cohomotopy cohomology
theory

Differential
refinement

//

Hypothesis H

��

Configuration spaces
of points

Cohomology
��

Fiber product

tt

Model

Intersecting branes oo
Observables

Weight systems on
Chord diagrams
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Combining the above seemingly distinct mathematical areas reflect a multitude of
effects expected on brane intersections in string theory. So aside from structural
utility for M-theory, Hypothesis H implies:

M-theoretic observables on D6 ⊥ D8-configurations (cf. parametrized).
Chan-Paton observables.
String topology operations.
Multi-trace observables of BMN matrix model.
Hanany-Witten states.
BLG 3-Algebra observables.
Bulk Wilson loop observables. [See talk by Urs]
Single-trace observables
of SYK & BMN model.
Fuzzy funnel observables.
Supersymmetric indices.
’t Hooft string amplitudes.

Top-down M-theory via Hypothesis H: knowledge about gauge field theory and
perturbative string theory is not used in deriving the algebras of observables of
M-theory, but only to interpret them.
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Thank you!
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