M-theory and cohomotopy

Hisham Sati New York University Abu Dhabi (NYUAD)

M-Theory and Mathematics

NYUAD Workshop

27-30 January 2020

Outline

- I. From 11d sugra to M-theory
- II. Where do fields live?

III. (Twisted) Cohomotopy vs. (twisted) cohomology description of the M-theory fields

- 1. Rationally.
- 2. Integrally.
- 3. Differentially.

IV. Further applications: branes and gauge theory

Joint with: Urs Schreiber, Domenico Fiorenza, Dan Grady, Vincent Braunack-Mayer

```
[BMSS] = Braunack-Mayer-S.-Schreiber
[FSS] = Fiorenza-S.-Schreiber
[GS] = Grady-S.
[S] = S.
[SS] = S.-Schreiber
```

Richness of M-theory

I. From 11d supergravity to M-theory

Bosonic 11D supergravity

• Bosonic Lagrangian: given by the eleven-form [Cremmer-Julia-Scherk]

$$\mathcal{L}_{11}^{\mathrm{bos}} = R * \mathbf{1} - \frac{1}{2} G_4 \wedge * G_4 - \frac{1}{6} G_4 \wedge G_4 \wedge C_3$$

• Equations of motion: The variation $\frac{\delta L_{(11),\text{bos}}}{\delta C_3} = 0$ for C_3 gives the corresponding equation of motion

$$d * G_4 + \frac{1}{2}G_4 \wedge G_4 = 0$$
 (1)

• Bianchi identity:

$$dG_4 = 0 (2)$$

• The second order equation (1) can be written in a first order form, by first writing $d(*G_4 + \frac{1}{2}C_3 \wedge G_4) = 0$ so that

$$*G_4 = G_7 := dC_6 - \frac{1}{2}C_3 \wedge G_4 \,, \qquad (3)$$

where C_6 is the potential of G_7 , the Hodge dual field strength to G_4 in 11 dimensions.

The effect of the fermions

 The femionic field ψ ∈ Γ(S ⊗ TM) (the gravitino) satisfies the generalized Dirac equation, the Rarita-Schwinger equation

$$\overline{D_{RS}\psi}=0,\qquad\psi\in\Gamma(S\otimes T^*M)$$
.

(involves mixing of terms).

• The fields themselves are in fact combinations of bosonic and fermionic fields. Physics literature usually writes:

$$G_4^{\text{super}} = \underbrace{G_4}_{\sim \text{topology/geometry}} + \underbrace{\overline{\psi}\Gamma_2\psi}_{\sim \text{topology/geometry}}$$

• Similarly for the connections

$$\omega^{\text{super}} = \omega + \text{fermion-bilinears}$$

See Duff-Nilsson-Pope

Strategy: Extract topology/higher geometry from bosons and fermions separately.

II. Where do fields live?

Generalities on what physics wants

Nontrivial physical entities, such as fields, charges, etc. generically take values in cohomology.

- I. Generalized: Capture essential topological and bundles aspects.
- II. Twisting: Account for symmetries via automorphisms.
- III. **Differentially refined**: Include geometric data, such as connections, Chern character form, smooth structure, smooth representatives of maps ...

Differential refinement

• Introduce geometric data via differential forms (connections, Chern forms, ...), i.e., retain differential form representatives of cohomology classes.

• Amalgam of an underlying (topological) cohomology theory and the data of differential forms:

• That is, we have a fiber product or twisted product

"Differential cohomology = Cohomology $\times_{de \ Rham}$ Forms"

Differential generalized cohomology

- Start with a generalized cohomology theory h
- $\Omega(X, h_*) := \Omega(X) \otimes_{\mathbb{Z}} h_*$ Smooth differential forms with coefficients in $h_* := h(*)$
- $\Omega_{
 m cl}(X,h_*)\subseteq \Omega(X,h_*)$ closed forms
- $H_{\mathrm{dR}}(X,h_*)$ cohomology of the complex $\left(\Omega(X,h_*),d\right)$

Definition

A smooth extension of h is a contravariant functor

 \widehat{h} : Compact Smooth Manifolds \longrightarrow Graded Abelian Grps

Full structure

$\mathsf{Twisted} \, \cap \, \mathsf{Differential} \, \cap \, \mathsf{Generalized}$

Examples ([GS])

- Type I (II) RR fields live in twisted differential KO-theory $\widehat{KO}_{\hat{\tau}}$ (K-theory $\widehat{K}_{\hat{\tau}}$).
- O Differential refinements of various twisted cohomology theories.
 - Fields in *M-theory* are proposed to live in a theory of this type [S06]. Which one?

III. (Twisted) Cohomotopy vs. (twisted) cohomology description of the M-theory fields

- Cohomology of Y with R-coefficients: $[Y, K(R, n)] \cong H^n(Y; R)$. old
- Cohomotopy of Y with R-coefficients: $[Y, S_R^n] \cong \pi_R^n(Y)$. new

Compare cohomotopy to cohomology of various flavors:

- Rational: $S^4_{\mathbb{Q}}$ vs. $H^4(-; \mathbb{Q})$.
- **2** Integral: $S^4_{\mathbb{Z}}$ vs. $H^4(-;\mathbb{Z})$.
- **O ifferential:** \widehat{S}^4 vs. $\widehat{H}^4(-)$.

1. Rationally

Connection to rational homotopy theory

Definition

The field equations of (a limit) of M-theory on an 11-dimensional manifold Y^{11} are

$$d * G_4 = \frac{1}{2}G_4 \wedge G_4$$
$$dG_4 = 0$$

- Q. What topological & geometric information can the above system provide us?
 - <u>Rational structures</u>: Differential forms, rational cohomology, rational homotopy theory ...
 - <u>More refined structures</u>: (twisted) 2-gerbes, (twisted) String structures, orientations ...
- A priori, G_4 should be described by a map $f: Y \to K(\mathbb{Z}, 4) \rightsquigarrow H^4(Y; \mathbb{Z})$
- Differential refinement \widehat{G}_4 corresponds to $Y \to B^3 U(1)_{\nabla} \longrightarrow \widehat{H}^4(Y)$
- Product structure on Eilenberg-MacLane spaces is *cup product*, with no a priori information about *trivialization*.
- Need (G_4, G_7) satisfying above $\Leftrightarrow Y \to ?$.
- Need $(\widehat{G}_4, \widehat{G}_7)$ satisfying above $\Leftrightarrow \quad Y \to \widehat{?}$.

Rational degree four twists [S]

• Consider a 3-form C_3 with $G_4 = dC_3$. We can build a differential with G_4 as $d_{G_4} = d + v_3^{-1}G_4 \wedge$

Observation

The de Rham complex can be twisted by a differential of the form $d + v_{2i-1}^{-1}G_{2i} \wedge provided$ that G_{2i} is closed and v_{2i-1} is Grassmann algebra-valued.

• Form a duality-symmetric graded uniform degree form $G = v_3^{-1}G_4 + v_6^{-1}G_7$. This expression can now be used to twist the de Rham differential, leading to

$$d_G=d+G\wedge=d+v_3^{-1}G_4\wedge+v_6^{-1}G_7\wedge\ .$$

Observation

The de Rham complex can be twisted by the differential d_G provided

- $\{v_3, v_3\} = v_6$
- $dG_7 = \frac{1}{2}G_4 \wedge G_4$.

The first condition is the M-theory gauge algebra and the second is the equation of motion.

Observation (The Sullivan model as the equations of motion [S])

The above equations correspond to the Sullivan DGCA model of the 4-sphere S^4 $\mathcal{M}(S^4) = (\wedge(y_4, y_7); dy_7 = y_4^2, dy_4 = 0)$

What about the factor of $\frac{1}{2}$?

- Whitehead bracket $[\iota_4, \iota_4]_W : S^7 \to S^4$ generates \mathbb{Z} (Q)-summand in $\pi_7(S^4)$.
- There is an extra symmetry as we are in the dimension of a Hopf fibration,
 i.e. σ the ℍ-Hopf map and so the generator is σ = ½[ι₄, ι₄]_W.

Observation (Quillen model as the M-theory gauge algebra [FSS])

The Sullivan model for S^{2n} is given by the DGCA

$$\mathcal{M}(S^{2n}) = \left(\wedge (x_{2n}, x_{4n-1}); \ dx_{2n} = 0, \ dx_{4n-1} = x_{2n}^2 \right).$$

Imposing the Maurer-Cartan equation on the degree 1 element $x_{2n}\xi_{1-2n} + x_{4n-1}\xi_{2-4n}$ we find the Lie bracket dual to the differential is given by

$$[\xi_{1-2n},\xi_{1-2n}]=2\xi_{2-4n}$$

with all the other brackets zero.

Example (n = 2)

The graded Lie algebra $\mathbb{R}\xi_{-3} \oplus \mathbb{R}\xi_{-6}$ with bracket $[\xi_{-3}, \xi_{-3}] = 2\xi_{-6}$ (Quillen model) can be identified with the M-theory gauge Lie algebra.

Proposal ([S])

Higher gauge fields in M-theory are cocycles in (rational) cohomotopy.

Developed via Rational Homotopy Theory (RHT) in [FSS]: $X \xrightarrow{(G_4,G_7)} S^4_{\mathbb{R}}$.

- $[Y, S^4_{\mathbb{Q}}] = \pi^4_{\mathbb{Q}}(Y)$ rational cohomotopy.
- Ultimately interested in full $Map(Y, S^4) \ni f$.
- Geometry + physics ⇒ differential cohomotopy [FSS]
- Formulate in stacks/chain complexes.

RHT. Generalized Chern character maps are examples of rationalization

RHT amenable to computations due to *Sullivan models*: differential graded-commutative algebras (dgc-algebras) on a finite number of generating elements (spanning the rational homotopy groups) subject to differential relations (enforcing the intended rational cohomology groups). In Sugra: "FDA"s.

Examples

	Rational super space	Loop super L_{∞} -algebra	Chevalley-Eilenberg super dgc-algebras ("Sullivan models", "FDA"s)
General	x	ιx	CE(1X)
Super spacetime	$\mathbb{T}^{d,1 N}$	$_{\mathbb{R}}^{d,1 N}$	$\mathbb{R}[\{\psi^{\alpha}\}_{\alpha=1}^{N}, \{e^{a}\}_{a=0}^{d}] / \begin{pmatrix} d \psi^{\alpha} = 0 \\ d e^{a} = \psi \Gamma^{a} \psi \end{pmatrix}$
Eilenberg-MacLane space	$ \begin{aligned} & \mathcal{K}(\mathbb{R},\rho+2) \\ & \simeq_{\mathbb{R}} B^{p+1} S^{1} \end{aligned} $	$\mathbb{R}[p+1]$	$\mathbb{R}[c_{p+2}] / (d c_{p+2} = 0)$
Odd-dimensional sphere	$S_{\mathbb{R}}^{2k+1}$	$\mathfrak{l}(S^{2k+1})$	$\mathbb{R}[\omega_{2k+1}] / (d \omega_{2k+1} = 0)$
Even-dimensional sphere	5 <mark>2</mark> k ℝ	ι(S ^{2k})	$\mathbb{R}[\omega_{2k}, \omega_{4k-1}] / \begin{pmatrix} d \omega_{2k} = 0 \\ d \omega_{4k-1} = -\omega_{2k} \wedge \omega_{2k} \end{pmatrix}$
M2-extended super spacetime	$\mathbb{T}^{\widehat{10,1 32}}$	m2brane	$\mathbb{R}\left[\left\{\psi^{\alpha}\right\}_{\alpha=1}^{32}, \left\{e^{a}\right\}_{a=0}^{10}, h_{3}\right] \left(\begin{array}{c} d \ \psi^{\alpha} = \ 0 \\ d \ e^{a} = \ \overline{\psi} \ \Gamma^{a} \psi \\ d \ h_{3} = \ \frac{i}{2} \left(\overline{\psi} \Gamma_{ab} \psi\right) \wedge e^{a} \wedge e^{b} \right) \right)$

- Reduction via a circle bundle ⇒ new functors formalizing dimensional reduction via loop (and mapping) spaces with rich structure retained (topological, geometric, gauge).
- The rational data of S⁴ on the total space Y¹¹ of a circle bundle
 S¹ → Y¹¹ → X¹⁰ leads exactly to rational data of twisted K-theory on base
 X¹⁰. → [see Vincent's talk]
- Even if we take *flat + rational* we can still see a lot of structure: Study of cocycles in Super-Minkowski space recovers cocycles in rational twisted K-theory.
- Furthermore, T-duality can be derived at the level of supercocycles.

Branes from supercocycles

- Superspace formulation of 11d supergravity [D'Auria-Fre]: fully controlled by an iterated pair of invariant super-cocycles $\mu_{\rm M2}$ and $\mu_{\rm M5}$ on D = 11, N = 1 super Minkowski spacetime.
- In the super homotopy-theoretic formulation [FSS]:

which are the super-flux forms to which the M2-brane and M5-brane couple, in ⁽⁴⁾ their incarnation as Green-Schwarz-type sigma models [FSS].

- $\overline{\mathbb{T}^{10,1|32}} = \mathfrak{m}2\mathfrak{brane}$ arises as the homotopy fiber of $\mu_{_{M2}}$ and is the extended super Minkowski spacetime or the M2-brane super Lie 3-algebra.
- $\mu_{\rm M2}$ = super-form component of *magnetic flux* sourced by charged M5-branes.
- $\mu_{\rm M5}$ = super-form component of *electric flux* source by charged M2-branes.

So these cocycles are avatars of M-brane charge/flux at the level of super $RHT_{_{24}/_{50}}$

Twisted K-theory in type II from M-theory

Type IIA. [BMSS] The double dimensional reduction of rational M-brane supercocycles (μ_{M2}, μ_{M5}) is indeed the tuple of F1/D*p*-brane supercocycles (μ_{F1}μ_{D0}, μ_{D2}, μ_{D4}, μ_{D6}, μ_{D8}) in rational twisted K-theory, which the literature demands to be the rational image of a cocycle in actual twisted K-theory.

Objects	Cohomology theory]
M-branes	twisted Cohomotopy	double dimensional reduction/oxidation
		[see talk by Vincent]
D-branes	twisted K-theory	

- Type IIB. Characterization of T-duality for circle and sphere bundles using RHT [FSS].
 - Novel effect: T-duality in super-exceptional spacetimes in 11d M-theory [FSS][SS].

2. Integrally

③ Rationally and stably $S^4_{\mathbb{Q}}$ is just the Eilenberg-MacLane space $K(\mathbb{Q}, 4)$, and

 $H^4(Y^{11};\mathbb{Q})\cong \pi^4_s(Y^{11})\otimes\mathbb{Q}$.

• In the unstable case, schematically, we have Rational cohomotopy = Rational cohomology + trivialization of the cup square Integrally and stably we do see new effects.

- In between full non-abelian cohomotopy and abelian ordinary cohomology sits stable cohomotopy, represented not by actual spheres, but by their stabilization to the sphere spectrum.
- There is a description of the C-field in each one of these flavors [FSS][BMSS].

Cohomology	Rational	Integral	Stable	Non-abelian
theory	cohomology	cohomology	cohomotopy	cohomotopy
Cocycle	G4	\widetilde{G}_4	$\Sigma^{\infty}c$	с

Hypothesis H. The C-field is charge-quantized in cohomotopy theory, even non-rationally.

Cancellation of main anomalies of M-theory follows naturally from cohomotopy:

- C-field charge quantization in twisted cohomotopy implies various fundamental anomaly cancellation and quantization conditions [FSS].
- Similar effects for D-branes and orientifolds [SS].

24 / 50

Lifting rational S^4 to integral S^4

- If we start with the rational 4-sphere $S^4_{\mathbb{Q}}$, then how can we lift it to an "integral" space?
- The actual 4-sphere S^4 stands out as not only the most natural but the finite-dimensional one.

• Start with integral cohomology as describing the (shifted/twisted) C-field and then transition to a description in terms of cohomotopy. By representability, this amounts to lifting

$$\begin{array}{cccc}
 & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$$

The map ι assembles, upon taking homotopy classes, into the integral cohomology $H^4(S^4;\mathbb{Z})$ generated by a fundamental class.

• Description:

C-field in $\pi^4(Y^{11}) \iff$ C-field in $H^4(Y^{11};\mathbb{Z})$ + nontrivial conditions.

Proposition (Integral Postnikov tower for S^4 [GS])

Note that at the top level the three conditions vanish necessarily on Y^{11} , for dimension reasons.

Cohomotopy in deg 4 \sim Integral 4-cohomology + four sets of obstructions.

Pulling back to spacetime Y, where the fundamental class ι_4 pulls back to the field

$$G_4 - \frac{1}{2}\lambda =: \widetilde{G}_4 = f^*\iota_4$$

where $\lambda = \frac{1}{2}p_1$ is the first Spin characteristic class of TY.

(i) First obstruction.

$$\operatorname{Sq}^2\widetilde{G}_4\stackrel{!}{=} 0\in H^6(Y;\mathbb{Z}_2)$$
 .

This follows from anomaly cancellation in M-theory [FSS].

(ii) Second obstruction.

$$\mathsf{f}^*(\alpha_7) \stackrel{!}{=} \mathsf{0} \in H^7(Y;\mathbb{Z}_2)$$

where α_7 is a secondary operation, restricting fiberwise to Sq² ι_5 . No candidate degree 5 classes.

(iii) Third obstructions. $f^*("\operatorname{Sq}^4 \iota_4") \stackrel{!}{=} 0 \in H^8(Y; \mathbb{Z}_8)$

• Note that by construction, this implies also that (upon mod 2 reduction)

$$f^*(\mathrm{Sq}^4\iota_4)=\mathrm{Sq}^4f^*(\iota_4)=\mathrm{Sq}^4\widetilde{G}_4=\widetilde{G}_4\cup\widetilde{G}_4=0\in H^8(Y;\mathbb{Z}_2)\;.$$

• Recall that rationally we have the EOM $d * G_4^{\text{form}} = \frac{1}{2} G_4^{\text{form}} \wedge G_4^{\text{form}}$...

• Coefficients being \mathbb{Z}_8 rather than \mathbb{Z}_2 : Fields reduced modulo 4: $\frac{1}{2}\lambda \rightsquigarrow$ modding out p_1 by 4. (Pontrjagin square operation). We also have $\mathcal{P}_3^1 \iota_4 = 0$.

• Mod 3 reductions are shown to play a prominent role in topological considerations in M-theory [S], where similar conditions, including $\mathcal{P}_3^1\rho_3 G_4 = 0$, have been highlighted in the context of *Spin K-theory*.

(iv) Fourth obstruction.

$$f^*(P_{11}) \stackrel{!}{=} 0$$

where P_{11} is a class which fiberwise restricts to Sq⁴ ι_7 .

- Reminiscent of $G_4 \wedge G_7$.
- The universal coefficient theorem gives detectable effect for M-theory on orientable spacetimes.
- (v) Fifth obstructions. \Box_i

$${}^{^{\prime}}\mathrm{Sq}^{8}\iota_{4} \stackrel{!}{=} 0, \ \iota_{4}^{3} \stackrel{!}{=} 0, \ \mathcal{P}_{5}^{1}\iota_{4} \stackrel{!}{=} 0$$

These obstructions necessarily vanish on Y^{11} . However on a 12-manifold Z^{12} , for analyzing the congruences of the Chern-Simons term in the M-theory action, the three conditions are nontrivial (but natural to have).

Proposition (Cohomotopy vs. cohomology for the C-field)

Consider the M-theory (shifted) C-field \widetilde{G}_4 as an integral cohomology class in degree four. Then if \widetilde{G}_4 lifts to a cohomotopy class $\mathcal{G}_4 \in \pi^4(Y^{11})$ the following obstructions necessarily vanish

(v) If $dG_7 = G_4 \wedge G_4 = 0$ and G_7 can be lifted to an integral class \widetilde{G}_7 , then we also have the condition $\operatorname{Sq}^4 \widetilde{G}_7 = 0 \in H^{11}(Y^{11}; \mathbb{Z}_2)$.

Consequences:

Occupie Congruences for the action The Chern-Simons term in the action

$$\frac{1}{6}\int_{Y^{\mathbf{11}}} C_3 \wedge G_4 \wedge G_4 \; .$$

Since C_3 may not be globally defined in general, one may consider Y^{11} as the boundary of a 12-manifold Z^{12} and analyzes the globally well defined term

$$\frac{1}{6}\int_{Z^{12}}G_4\wedge G_4\wedge G_4 \tag{7}$$

[Witten]: usual quantization law of G_4 does not give rise to a well defined Chern-Simons action, as (7) might fail to be integral by a factor of 6. Cohomotopy implies the added condition that

 $\widetilde{G}_4^3 \equiv 0 \mod 3$.

This, with $\widetilde{G}_4^2 = \operatorname{Sq}^4(\widetilde{G}_4) \equiv 0 \mod 2$, gives result (without E_8 -gauge theory).

- **②** The anomaly in the partition function Quantization in cohomotopy yields the condition $Sq^2(\widetilde{G}_4) = 0$ for some integral lift of G_4 .
 - Implies the vanishing of the DMW anomaly $\operatorname{Sq}^3(\widetilde{G}_4) = 0$ [FSS].
 - Obstruction theory for $S^4 \Rightarrow$ fields which contribute to the phase are just the field which lift to the first Postnikov stage in cohomotopy [GS].

Example (Flux compactification spaces)

Anti-de Sitter space $AdS_n \rightsquigarrow simply-connected cover \widetilde{AdS}_n$ of AdS_n .

- $\underline{\widetilde{AdS}_4 \times \mathbb{C}P^2 \times T^2}$: Supersymmetry without supersymmetry [Duff-Lu-Pope] and T-duality [Bouwknegt-Evslin-Mathai]. $\pi^4(\mathbb{C}P^2) \cong \mathbb{Z}$ while $H^4(\mathbb{C}P^2;\mathbb{Z}) \cong \mathbb{Z}$.
- $\widehat{\operatorname{AdS}}_7 \times \mathbb{R}P^4: \text{ M-theory on an orientifold [Witten][Hori]. } \pi^4(\mathbb{R}P^4) \cong \mathbb{Z}_2 \text{ while } \overline{H^4(\mathbb{R}P^4;\mathbb{Z})} = 0, \text{ indeed shows that cohomotopy detects more.}$
- $\widehat{\operatorname{AdS}}_4 \times \mathbb{R}P^5 \times T^2: \pi^4(\mathbb{R}P^5) \text{ is cyclic or order 4, i.e. either } \mathbb{Z}_4 \text{ or } \mathbb{Z}_2 \times \mathbb{Z}_2, \\ \overline{\text{while } H^4(\mathbb{R}P^5;\mathbb{Z})} \cong \mathbb{Z}_2.$
- $\widetilde{\operatorname{AdS}}_4 \times \mathbb{C}P^3 \times S^1$: $\pi^4(\mathbb{C}P^3) \cong \mathbb{Z} \oplus \mathbb{Z}_2$ while $H^4(\mathbb{C}P^3; \mathbb{Z}) \cong \mathbb{Z}$, so that there is an extra contribution of \mathbb{Z}_2 present in cohomotopy.
- For $\mathbb{H}P^2$: $\pi^4(\mathbb{H}P^2) \cong \mathbb{Z}$ while $H^4(\mathbb{H}P^2; \mathbb{Z}) \cong \mathbb{Z}$, and hence no new contribution,
- For $\mathbb{O}P^2$: $\pi^4(\mathbb{O}P^2) \cong \mathbb{Z}$. while $H^4(\mathbb{O}P^2; \mathbb{Z}) = 0$, signaling a new effect. Important for bosonic M-theory ([Ramond][S]).

Interpretation and consequences? Work in progress (via Pontrjagin-Thom theory).

Twisted Cohomotopy theory [FSS]

In degree d - 1 there is a canonical twisting on Riemannian *d*-manifolds, given by the unit sphere bundle in the orthogonal tangent bundle:

Since the canonical morphism $O(d) \longrightarrow Aut(S^{d-1})$ is known as the *J*-homomorphism, we may call this *J*-twisted Cohomotopy theory, for short.

Twisted cohomotopy and anomalies [FSS]

Hypothesis H: The C-field 4-flux & 7-flux forms in M-theory are subject to charge quantization in J-twisted Cohomotopy cohomology theory in that they are in the image of the non-abelian Chern character map from J-twisted Cohomotopy theory.

 \Rightarrow Cancellation of main anomalies:

Half-integral flux quantization	$\left[\underbrace{G_4+rac{1}{4}p_1}{} ight]\in H^4(X,\mathbb{Z})$
	$=: \widetilde{G}_4$ integral flux
Background charge	$\underline{q}(\widetilde{G}_4) = \widetilde{G}_4\left(\widetilde{G}_4 - \frac{1}{2}p_1\right)$
	$\widetilde{G_4}_0$
DMW-anomaly cancellation	$W_7(TX) = 0$
Integral equation of motion	$\underbrace{\operatorname{Sq}}^{3}(\widetilde{G}_{4}) = 0$
	$=\beta Sq^2$
M5-brane anomaly cancellation	$I_{\rm ferm}^{\rm M5}$ + $I_{\rm sd}^{\rm M5}$ + $I_{\rm infl}^{\rm bulk}$ = 0
	chiral self-dual bulk fermion 3-flux inflow
M2-brane tadpole cancellation	N_{M2} $+q(\widetilde{G}_{4}) = l_{8}$
	number of One loop M2-branes polynomial

Consequences for WZW model associated to M5-brane \Rightarrow [See talk by Domenico]

J-Twisted Cohomotopy and Topological G-Structure

 For every topological coset space realization G/H of an n-sphere, there is a canonical homotopy equivalence between the classifying spaces for G-twisted Cohomotopy and for topological H-structure (i.e., reduction of the structure group to H), as follows:

(One may think of this as "moving G from numerator on the right to denominator on the left".)

- Existence of a *G*-structure is a non-trivial topological condition, so is the existence of *J*-twisted Cohomotopy cocycles.
- Notice that this is a special effect of twisted non-abelian generalized Cohomology: A non-twisted generalized cohomology theory (abelian or non-abelian) always admits at least one cocycle, namely the trivial or zero-cocycle. But here for non-abelian J-twisted Cohomotopy theory on 8-manifolds, the existence of *any* cocycle is a non-trivial topological condition.

Equivalence for Spin 8-manifolds

Stable vs. unstable

The quaternionic Hopf fibration.

• So composition with the quaternionic Hopf fibration can be viewed as a *transformation* that translates deg-7 to deg-4 Cohomotopy classes:

36 / 50

Proposition (Differential form data underlying twisted Cohomotopy)

Let X be a simply connected smooth manifold and $\tau : X \to BO(n+1)$ a twisting for Cohomotopy in degree n. Let ∇_{τ} be any connection on the real vector bundle V classified by τ with Euler form $\chi_{2k+2}(\nabla_{\tau})$ (see [Mathai-Quillen]). (i) If n = 2k + 1 is odd $n \ge 3$: a cocycle defining a class in the rational

 $\overline{\tau}$ -twisted Cohomotopy of X is equivalently given by

$$\pi^{ au}_{\mathbb{Q}}(X) \simeq \left\{ G_{2k+1} \mid d \; G_{2k+1} = \chi_{2k+2}(
abla_{ au}) \right\}_{/\sim}$$

(ii) If n = 2k is even, $n \ge 2$: a cocycle defining a class in the rational τ -twisted Cohomotopy of X is given by a pair of differential forms $G_{2k} \in \Omega^{2k}(X)$ and $G_{4k-1} \in \Omega^{4k-1}(X)$ such that

$$dG_{2k} = 0; \qquad \pi^* G_{2k} = \frac{1}{2} \chi_{2k}(\nabla_{\hat{\tau}})$$

$$dG_{4k-1} = -G_{2k} \wedge G_{2k} + \frac{1}{4} \rho_{\nu}(\nabla_{\tau}),$$

where $p_k(\nabla_{\tau})$ is the k-th Pontrjagin form of ∇_{τ} , $\pi: E \to X$ is the unit sphere bundle over X associated with τ , $\hat{\tau}: E \to BO(n)$ classifies the vector bundle \hat{V} on E defined by the splitting $\pi^*V = \mathbb{R}_E \oplus \hat{V}$ associated with the tautological section of π^*V over E, and $\nabla_{\hat{\tau}}$ is the induced connection on \hat{V} . That is,

$$\pi_{\mathbb{Q}}^{\tau}(X) \simeq \left\{ \left(G_{2k}, G_{4k-1} \right) \middle| \begin{array}{l} d \ G_{2k} = 0 \,, \quad \pi^* G_{2k} = \frac{1}{2} \chi_{2k}(\nabla_{\hat{\tau}}) \\ d \ G_{4k-1} = -G_{2k} \wedge G_{2k} + \frac{1}{4} \rho_k(\nabla_{\tau}) \end{array} \right\} / \sim \right|_{37/5}$$

3. Differentially

Differential refinement

• Refine the topological lift (5) to a geometric lift at the level of smooth stacks of the form

where $\widehat{S^4}$ is the differential refinement of the 4-sphere and $\mathbf{B}^3 U(1)_{\nabla}$ is the smooth stack of 3-bundles with connections

• This would require a differential refinement of the *Postnikov tower* which uses refinement of cohomology operations, primary (such as Steenrod operations) and secondary (such as Massey products) [GS].

Differential cohomotopy [Fiorenza-S.-Schreiber]

- \mathbb{H} -Hopf fibration: $S^3 \longrightarrow S^7 \longrightarrow S^4 \longrightarrow BSU(2) \xrightarrow{c_2} K(\mathbb{Z}, 4)$.
- Rationalize: $S^3_{\mathbb{Q}} \longrightarrow S^7_{\mathbb{Q}} \longrightarrow S^4_{\mathbb{Q}} \longrightarrow (BS^3)_{\mathbb{Q}}$ which is equivalent to

$$K(\mathbb{Q},7)\longrightarrow S^4_{\mathbb{Q}}\longrightarrow K(\mathbb{Q},4)$$

- Rational homotopy of spaces can be modelled using L_∞ -algebras.
- The Eilenberg-MacLane spaces K(Q, n) = BⁿQ can be modelled using algebras via chain complexes: bⁿQ = Q[n].
- Lie 7- algebra \mathfrak{s}^4 is defined by $\operatorname{CE}(\mathfrak{s}^4) = \mathbb{R}[g_4, g_7]$ with g_k in degree k and with the differential defined by $dg_4 = 0, dg_7 = g_4 \wedge g_4$.
- Has a natural structure of infinitesimal $\mathbb{R}[2]$ -quotient of $\mathbb{R}[6]$, i.e., there exists a natural homotopy fiber sequence of L_{∞} -algebras

$$\begin{array}{c} \mathbb{R}[6] \longrightarrow \mathfrak{s}^{4} \\ \downarrow \qquad \qquad \downarrow^{\rho} \\ 0 \longrightarrow \mathbb{R}[3] . \end{array}$$

$$(9)$$

Theorem (FSS) The system (\hat{G}_4, \hat{G}_7) forms a cocycle in differential cohomotopy.

Differential refinements: $\mathbf{B}^3 U(1)_{\nabla}$ vs. $\widehat{S^4}$

• Let \mathfrak{s}^4 be the Lie 7-algebra whose corresponding Chevellay-Eilenberg algebra is the exterior algebra on generators g_4 and g_7 with relations

$$dg_4=0$$
 , $dg_7=g_4\wedge g_4$.

• As a de Rham model for flat 1-forms with values in S^4 we take the sheaf on the site of Cartesian spaces given by the assignment

$$\Omega^{1}_{\mathrm{fl}}(-;\mathfrak{s}^{4}): U \longmapsto \hom_{\mathrm{dgcAlg}}(\mathrm{CE}(\mathfrak{s}^{4}), \Omega^{*}(U)) ,$$

for each Cartesian space $U \cong \mathbb{R}^n$. (The homotopy type of $\Omega^1_{\mathrm{fl}}(-;\mathfrak{s}^4)$ can be computed via the Sullivan construction as the \mathbb{R} -local 4-sphere $S^4_{\mathbb{R}}$).

ullet Then pulling back along the canonical map $S^4 \to S^4_{\mathbb{R}},$ we get a smooth stack

Definition (Differential unstable cohomotopy)

For a smooth manifold X, let i(X) denote its embedding as a smooth stacks via its sheaf of smooth plots. Then the differential cohomotopy of X in degree 4 is defined as the pointed set $\hat{\pi}_u^4(X) := \pi_0 \operatorname{Map}(i(X), \widehat{S}^4)$ where the maps on the right are those of smooth stacks.

Differential cohomotopy: stably

- Stably, S⁴ has only torsion groups in higher degrees and hence the canonical map S⁴ → K(ℝ, 4) is a stable ℝ-local equivalence.
- Geometrically, the realification if modeled by closed 4-forms $\Omega_{cl}^4(-)$.
- Stable differential cohomotopy in degree 4 fits into a pullback square

where $\Omega^{4+*}(-)$ denotes the de Rham complex, shifted so that Ω^4 is in degree zero, and $\tau^{\leq 0}$ truncates the complex in degree zero so that the complex is concentrated in negative degrees. The functor H denotes the Eilenberg-MacLane functor which turns a chain complex into a spectrum.

Definition (Differential stable cohomotopy)

Let X be a smooth manifold with i(X) its associated smooth stack. The *stable* differential cohomotopy group of X is defined as

$$\widehat{\pi}_s^4(X) := \pi_0 \operatorname{Map}(i(X); (\widehat{\Sigma^{\infty}S^4})_0).$$

where the subscript 0 denotes the deg 0 component of the sheaf of spectra $\Sigma^{\infty}S^4$

Definition (Geometric cohomotopy cocycles [GS])

If X is a smooth manifold, a morphism $\hat{c}: X \to \widehat{S}^4$ can be identified with a triple (c, h, ω) where

- (i) $c: X \to S^4$ is a cocycle in ordinary cohomotopy,
- (ii) $\omega : \operatorname{CE}(\mathfrak{s}^4) \to \Omega^*(X)$ is a DGA morphism, determined by specifying forms ω_4 and ω_7 on M satisfying $d\omega_7 = \omega_4^2$ and $d\omega_4 = 0$,
- (iii) and *h* is a homotopy interpolating between the rational cocycle represented by the form data and the rationalization of the classifying map $c: X \to S^4$. Thus, *h* exhibits a sort of *de Rham theorem* for cohomotopy.

Proposition (Differential refinement of Postnikov tower of the sphere)

where we have identified the first few obstructions.

Proposition (Differential cohomotopy vs. cohomology for the C-field)

Consider the differentially refined M-theory (shifted) C-field \widehat{G}_4 as an integral cohomology class in degree four. Then if \widehat{G}_4 lifts to a cohomotopy class $\mathcal{G}_4 \in \widehat{\pi}^4(Y^{11})$ the following obstructions necessarily vanish (i) $\operatorname{Sq}^2 I(\widehat{G}_4) = 0 \in H^6(Y^{11}; \mathbb{Z}_2).$ (ii) $\mathcal{P}_3^1 I(\widehat{G}_4) = 0 \in H^8(Y^{11}; \mathbb{Z}_3).$ (iii) Sq⁴ $I(\widehat{G}_4) = I(\widehat{G}_4 \cup_{DB} \widehat{G}_4) = 0 \in H^8(Y^{11}; \mathbb{Z}_2).$ (iv) If $\widehat{G}_4 = 0$ and C_3^{form} is quantized, with differential refinement \widehat{C}_3 , then we also have $\operatorname{Sq}^3\operatorname{Sq}^1(\widehat{C}_3) = 0 \in H^7(Y^{11}; \mathbb{Z}_2)$. (v) If $dG_7^{\text{form}} = G_4^{\text{form}} \wedge G_4^{\text{form}} = 0$ and G_7^{form} is quantized, with differential refinement \widehat{G}_7 , then we also have the condition $Sq^4 I(\widehat{G}_7) = 0 \in H^{11}(Y^{11}; \mathbb{Z}_2).$

Remark (Obstruction in M-theory via higher bundles with connections)

Deligne-Beilinson cup product in M-theory $\widehat{G}_4 \cup_{\text{DB}} \widehat{G}_4$ gives a 7-bundle with connection form locally given by $C_3^{\text{form}} \wedge G_4^{\text{form}}$ [FSS]. From the identification of the *k*-invariant at the second stage (the DB square): to lift past the 2nd stage in the Postnikov tower for \widehat{S}^4 , this connection must be globally defined. In terms of differential cohomology, $a(C_3^{\text{form}} \wedge G_4^{\text{form}}) = \widehat{G}_4 \cup_{\text{DB}} \widehat{G}_4$, where

Example (Differential cohomotopy of flux compactification spaces)

LES in stable cohomotopy

$$\ldots \longrightarrow \pi_s^3(X) \xrightarrow{\operatorname{deg}} \Omega^3(X) \longrightarrow \widehat{\pi}_s^4(X) \longrightarrow \pi_s^4(X) \longrightarrow \ldots$$

allows to compute some examples.

$$0 \longrightarrow \Omega^{3}(\mathbb{R}P^{5}) \longrightarrow \widehat{\pi}^{4}(\mathbb{R}P^{5}) \longrightarrow \pi^{4}(\mathbb{R}P^{5}) \longrightarrow 0$$

Since $\pi^4(\mathbb{R}P^5)$ is generated by $q_5\eta_4$, with $\eta_4: S^5 \to S^4$ the two-fold suspension of the Hopf map, the induced map on H^4 necessarily vanishes. Hence, in this case, differential cohomotopy yields considerably different information than ordinary differential cohomology.

$\mathsf{Cohomotopy} \Rightarrow \mathsf{branes} \text{ and gauge theory}$

Differential cohomotopy and D-brane gauge theories

Zoom in beyond foundational/structural M-theoretic considerations [SS]:

- (1) A differential refinement of Cohomotopy cohomology theory is given by *un-ordered configuration spaces of points*.
- (2) The fiber product of such differentially refined Cohomotopy cocycle spaces describing D6 ⊥ D8-brane intersections is homotopy-equivalent to the *ordered configuration space of points* in the transversal space.
- (3) The higher observables on this moduli space are equivalently weight systems on horizontal chord diagrams.

Combining the above seemingly distinct mathematical areas reflect a multitude of effects expected on brane intersections in string theory. So aside from structural utility for M-theory, Hypothesis H implies:

- *M*-theoretic observables on D6 \perp D8-configurations (cf. parametrized).
- Chan-Paton observables.
- String topology operations.
- Multi-trace observables of BMN matrix model.
- Hanany-Witten states.
- BLG 3-Algebra observables.
- Bulk Wilson loop observables.
- Single-trace observables
- of SYK & BMN model.
- Fuzzy funnel observables.
- Supersymmetric indices.
- 't Hooft string amplitudes.

Top-down M-theory via Hypothesis H: knowledge about gauge field theory and perturbative string theory is not used in deriving the algebras of observables of M-theory, but only to interpret them.

[See talk by Urs]

Thank you!