F-theory and 2d (0,2) Theories

Sakura Schäfer-Nameki

Dave Day, Burke Institute, Caltech, February 25, 2016

1601.02015 in collaboration with Timo Weigand

F-theory at (2,0)

Sakura Schäfer-Nameki

Dave Day, Burke Institute, Caltech, February 25, 2016

1601.02015 in collaboration with Timo Weigand

Setup

Setup: F-theory on elliptically fibered Calabi-Yau five-fold Y_5 \Rightarrow 2d N = (0, 2) gauge theory, coupled to gravity.

Questions:

- 1. Why is this interesting?
- 2. What is the geometry-gauge theory dictionary?
- 3. Does this allow classification of 2d SCFTs?

Motivation

- * 2d N = (0, 2) theories provide a rich and complex class of susy gauge theories. Despite long history, much remains to be understood.
- ***** Well-studied as heterotic worldsheet theories

[Witten et al; Candelas, de la Ossa,....]

Recent resurgence in the context of M5-branes: In particular
 M5-branes on X₄ (embedded as co-associatives in G₂)
 [Gadde, Gukov, Putrov][Assel, SSN, Wong; to appear]
 Computation of elliptic genera, localization, etc have become available

[Benini, Bobev][Benini, Eager, Hori, Tachikawa], [Closset, Sharpe...]

Goal: Develop a setup where 2d (0,2) theories can be constructed systematically and potentially comprehensively.

F-theory on elliptic Calabi-Yau five-folds provide such a framework

2d Vacua: Brief History

2d Superstring vacua: very sparce history.

- * Type II on CY4 and T^8/Γ [Gates, Gukov, Witten][Font]
- * 1998 and again since 2015: D1s probing CY4 singularities [Hanany, Uranga] [Franco, Kim, Seong, Yokoyama]
- * 1/2016: F-theory on elliptic CY5

1601.02015 [SSN, Weigand]

* 2/2016: heterotic/Type I/F-theory compactified to 2d 1602.04221 [Apruzzi, Heckman, Hassler, Melnikov]

Plan

- I. 2d (0,2) Supersymmetry
- II. F-theory on CY5: Gauge Theory
- III. F-theory on CY5: Geometry
- IV. F-theory on CY5: Effective Theory and Anomalies
- V. F-theory on CY5: Spacetime-Worldsheet Corespondence

I. 2d (0,2) Supersymmetry

2d(0,2) Supersymmetry

- # $\mathbb{R}^{1,1}$ with coordinates $y^{\pm} = y^0 \pm y^1$
- # $SO(1,1)_L \equiv U(1)_L$: ± 1 charge $\leftrightarrow \pm 2d$ chirality
- # Negative chirality susy parameters: ϵ_{-} and $\overline{\epsilon}_{-}$.
- # Spectrum :

Vector Multiplet $(v_0 - v_1, \eta_-, \overline{\eta}_-; \mathfrak{D})$ and matter multiplets:

Multiplet	Content	SUSY
Chiral Φ	(φ, χ_+)	$\delta\varphi = -\sqrt{2}\epsilon\chi_+$
		$\delta \chi_{+} = i\sqrt{2}(D_0 + D_1)\varphi \overline{\epsilon}_{-}$
Fermi P	ho	$\delta\rho_{-} = \sqrt{2}\epsilon_{-} G - i\bar{\epsilon}_{-} E$
_	<u> </u>	

with $\bar{\mathcal{D}}_+ \Phi = 0$ but $\bar{\mathcal{D}}_+ P = \sqrt{2}E$:

$$P = \rho_- - \sqrt{2}\theta^+ G - i\theta^+ \bar{\theta}^+ (D_0 + D_1)\rho_- - \sqrt{2}\bar{\theta}^+ E$$
$$\bar{P} = \bar{\rho}_- - \sqrt{2}\bar{\theta}^+ \bar{G} + i\theta^+ \bar{\theta}^+ (D_0 + D_1)\bar{\rho}_- - \sqrt{2}\theta^+ \bar{E}$$

Interactions

Interacting theory with $i = 1, \dots, \#\Phi$ Chirals and $a = 1, \dots, \#P$ Fermis:

J-term (superpotentials) for $J^a = J^a(\Phi_i)$:

$$L^{J} = -\frac{1}{\sqrt{2}} \int d^{2}y \, d\theta^{+} P_{a} J^{a}(\Phi_{i})|_{\bar{\theta}^{+}=0} - \text{c.c.}$$
$$= -\int d^{2}y \left(G_{a} J^{a} + \rho_{-,a} \chi_{+,i} \frac{\partial J^{a}}{\partial \varphi_{i}} \right) - \text{c.c.}$$

E-term with $E_a = E_a(\Phi_i)$:

$$L^{E} = -\int d^{2}y \left(\bar{\rho}_{-,a} \chi_{+,i} \frac{\partial E_{a}}{\partial \varphi_{i}} + \rho_{-,a} \bar{\chi}_{+,i} \frac{\partial \bar{E}_{a}}{\partial \bar{\varphi}_{i}} \right) \subset -\frac{1}{2} \int d^{2}y d^{2}\theta P \bar{P} \,.$$

Supersymmetry:

$$\mathrm{Tr}J^a E_a = 0.$$

II. F-theory on CY5: Gauge Theory

F-theory on CY5

Elliptic CY5 with Kähler 4-fold base B_4 and (wtmlog) a section:

$$y^2 = x^3 + fx + g$$

Singular loci: $\{\Delta = 4f^3 + 27g^2 = 0\} \supset M_G.$

7-branes wrap $M_G \longleftrightarrow$ gauge algebra $\mathfrak{g} \longleftrightarrow$ Singular fiber type

- # In gauge-theory limit: effective theory on 7-branes, i.e. 8d SYM on $M_G \times \mathbb{R}^{1,1}$. 1601.02015 [SSN, Weigand] 1602.04221[Apruzzi, Heckman, Hassler, Melnikov]
- # M_G = Kähler 3-fold: $SO(6)_L \rightarrow U(3)_L \equiv U(1)_L \times SU(3)_L$ Scalar supercharges on M_G : topological twist along M_G with $U(1)_R$:

$$J_{twist} = \frac{1}{2} \left(J_L + 3J_R \right) \,.$$

Two susy parameters, with $q_{twist} = 0$ and are $SO(1,1)_L$ left-chiral spinors:

$$\bar{\epsilon}_{-} = \mathbf{1}_{-1}, \qquad \epsilon_{-} = \mathbf{1}_{-1}$$

Twisted 8d SYM

Remaining symmetries after the partial twist:

 $SO(1,7)_L \times U(1)_R \rightarrow SU(3)_L \times SO(1,1)_L \times U(1)_{\text{twist}}$

8d SYM spectrum: gauge fields $\mathbf{8}_{0}^{\mathbf{v}}$, fermions $\mathbf{8}_{-1}^{\mathbf{c}}$ and $\mathbf{8}_{+1}^{\mathbf{s}}$ and scalars $\mathbf{1}_{\pm 2}$. After topological twisting: fields along M_G become forms:

 $U(1)_{\text{twist}} \text{ charge } q \ge 0 \ (q \le 0)$ \updownarrow field is section of $\Omega^{(0,q)}(M_G) \ (\Omega^{(q,0)}(M_G)).$

 $[U(1)_L$ twisting corresponds to twisting with $K_{M_G} = \Omega^{(0,3)}]$.

'Bulk Spectrum'

 \pm = chirality in 2d and $L_{\mathbf{R}}$ = line bundle breaking $\operatorname{Ad}(G) \supset \mathbf{R} \oplus \overline{\mathbf{R}}$

Cohomology	Bosons	Fermions in R , Ā	Multiplet
$H^0_{\bar{\partial}}(M_G, L_{\mathbf{R}}) \oplus H^0_{\bar{\partial}}(M_G, L_{\mathbf{R}})^*$	$v_{\mu}, \mu = 0, 1$	$dbluear\eta,\eta$	Vector
$H^1_{\bar{\partial}}(M_G, L_{\mathbf{R}}) \oplus H^1_{\bar{\partial}}(M_G, L_{\mathbf{R}})^*$	$a_{ar{m}},ar{a}_m$	$\psi_{+ar{m}},ar{\psi}_{+m}$	Chiral and Chiral
$H^2_{\bar{\partial}}(M_G, L_{\mathbf{R}}) \oplus H^2_{\bar{\partial}}(M_G, L_{\mathbf{R}})^*$	_	$ar{ ho}_{-ar{m}ar{n}}, ho_{-mn}$	Fermi and Fermi
$H^3_{\bar{\partial}}(M_G, L_{\mathbf{R}}) \oplus H^3_{\bar{\partial}}(M_G, L_{\mathbf{R}})^*$	$ar{arphi}_{ar{k}ar{m}ar{n}},arphi_{kmn}$	$ar{\chi}_{+ar{k}ar{m}ar{n}},\chi_{+kmn}$	Chiral and Chiral

Supersymmetry and Hitchin Equations

Dim redux and twist of 10d SYM supersymmetry results in (0, 2) in 2d:

* Gaugino variation:

$$\mathfrak{D} = \frac{i}{2} \left(J \wedge J \wedge F_{M_G} + [\varphi, \overline{\varphi}] \right) \,.$$

* Variation of Fermi

$$\delta\rho_{-} = \sqrt{2}\epsilon_{-}G - i\overline{\epsilon}_{-}E \quad \Rightarrow \quad \begin{cases} G_{mn} = \overline{F}_{mn} \\ E_{mn} = (\overline{\partial}_{a}^{\dagger}\varphi)_{mn} \end{cases}$$

★ BPS equations: Higgs bundle (a, φ) over M_G

 $D_+\varphi = D_+\bar{\varphi} = 0, \qquad F^{(0,2)} = F^{(2,0)} = 0, \qquad J \wedge J \wedge F + [\varphi,\bar{\varphi}] = 0$

 \rightarrow cue Spectral covers, T-branes/Gluing data

'Bulk' Interactions

Interactions arise from overlaps of internal wave-functions: Superpotential (*J*-term):

$$S_{\text{bulk}}^{(J)} = \mathbf{g}_{\alpha\beta\gamma} \int d^2 y \ \rho_-^{\alpha} a^{\beta} \psi_+^{\gamma} + \text{c.c.}$$

with internal overlap

$$\mathbf{g}_{\alpha\beta\gamma} = \int_{M_G} \tilde{\rho}_{kmn\bar{n},\alpha} \wedge \hat{a}_{\bar{k},\beta} \wedge \hat{\psi}_{\bar{m},\gamma}, \qquad \tilde{\rho}_{kmn\bar{n},\alpha} = (\Omega \cdot \hat{\rho}_{\alpha})_{kmn\bar{n}}$$

E-term:

$$S_{\text{bulk}}^{(E)} = \mathbf{f}_{\alpha\mu\epsilon} \int d^2 y \ \bar{\rho}_{-}^{\alpha} \left(\varphi^{\mu} \psi_{+}^{\epsilon} + \chi_{+}^{\mu} a^{\epsilon} \right) + \text{c.c.}$$

with internal overlap

$$\mathbf{f}_{\alpha\mu\epsilon} = \int_{M_G} \hat{\bar{\rho}}_{\bar{k}\bar{m},\alpha} \wedge \left(\hat{\varphi}_{kmn,\mu} \wedge \hat{\psi}_{\bar{n},\epsilon}\right)$$

Matter from Defects

Matter from interacting 7-branes or codim 2 singularity enhancements in the elliptic CY5 along $S_{\mathbf{R}}$ = matter surface.

Twisted SYM: 6*d* defect theory, with bulk compatible twist to 2d (0,2).

Spectrum:

Chirals:
$$S = (\bar{S}, \bar{\sigma}_+)$$
 and $\mathcal{T} = (T, \tau_+)$
Fermi: $\bar{\mu}_-$

$$\psi_{+} \in H^{1}_{\bar{\partial}}(M_{G}, L_{\mathbf{R}}) \quad \rightarrow \quad \tau_{+} \in H^{0}_{\bar{\partial}}(S_{\mathbf{R}}, L_{\mathbf{R}} \otimes K^{1/2}_{S_{\mathbf{R}}})$$
$$\bar{\rho}_{-} \in H^{2}_{\bar{\partial}}(M_{G}, L_{\mathbf{R}}) \quad \rightarrow \quad \bar{\mu}_{-} \in H^{1}_{\bar{\partial}}(S_{\mathbf{R}}, L_{\mathbf{R}} \otimes K^{1/2}_{S_{\mathbf{R}}})$$
$$\bar{\chi}_{+} \in H^{3}_{\bar{\partial}}(M_{G}, L_{\mathbf{R}}) \quad \rightarrow \quad \bar{\sigma}_{+} \in H^{2}_{\bar{\partial}}(S_{\mathbf{R}}, L_{\mathbf{R}} \otimes K^{1/2}_{S_{\mathbf{R}}}),$$

 \rightarrow cue study of wave-function profiles.

Interactions

See also (for description in terms of W^{top}) [Apruzzi, Heckman, Hassler, Melnikov]

* 'Bulk'-Matter-surface interactions: (codim 2)

$$J_{(\mu_{-}^{\delta})} = -\mathbf{c}_{\delta\beta\epsilon} \mathcal{T}^{\beta} A^{\epsilon}$$
$$E^{(\rho_{-}^{\alpha})} = -\mathbf{f}_{\alpha\mu\epsilon} \Phi^{\mu} A^{\epsilon} - \mathbf{b}_{\alpha\beta\gamma} \mathcal{T}^{\beta} \mathcal{S}^{\gamma} \quad E^{(\mu_{-}^{\delta})} = -\mathbf{e}_{\delta\gamma\epsilon} \mathcal{S}^{\gamma} A^{\epsilon}$$

* Cubic Matter-surface interactions for any $\mathcal{Z} = \mathcal{S}, \mathcal{T}$ and gauge invariant triplet of representations \mathbf{R}_i (codim 3)

$$J_{\left(\mu_{-}^{\mathbf{R}_{b_{1}},\delta}\right)} = -\mathbf{h}_{\delta\epsilon\gamma}(\mathbf{R}_{b_{1}}\mathbf{R}_{b_{2}}\mathbf{R}_{b_{3}})\left(\mathcal{Z}_{b_{2}}^{\mathbf{R}_{b_{2}},\epsilon}\mathcal{Z}_{b_{3}}^{\mathbf{R}_{b_{3}},\gamma}\right)$$
$$E^{\left(\mu_{-}^{\mathbf{R}_{a_{1}},\delta}\right)} = -\mathbf{d}_{\delta\epsilon\gamma}(\mathbf{R}_{a_{1}}\mathbf{R}_{a_{2}}\mathbf{R}_{a_{3}})\left(\mathcal{Z}_{a_{2}}^{\mathbf{R}_{a_{2}},\epsilon}\mathcal{Z}_{a_{3}}^{\mathbf{R}_{a_{3}},\gamma}\right)$$

* Quartic Matter-surface interactions: (codim 4) \rightarrow see example

III. F-theory on CY5: Geometry

F-theory and Singular Fibers

Numerous F-theory@20 Talks: Above codim 1: Singular fibers are trees of \mathbb{P}^1 s associated to simple roots. Codim 2: these can split into weights:

How exactly this happens: see Box Graph paper

[Hayashi, Lawrie, Dave Morrison, SSN]

F-theory on elliptic CY5

Much as in higher-dimensions: Singular fibers above discriminant loci determine gauge algebra and higher codim give rise to matter (codim 2) and interactions (codim 3+).

Codim	\mathbb{P}^1 s in Fiber	Gauge Theory
1: M_G	Simple roots	Gauge algebra g
2: S _R	Weights for Reps R	Matter in R
3: Σ	Splitting gauge invariantly	Cubic interactions
4: <i>p</i>	Further gauge invariant splitting	Quartic interactions
Note:		

- Rational sections: U(1) gauge factors ⇒ engineer known and unknown (0,2) GLSM
- Non-abelian gauge groups occur quite naturally ⇒ non-abelian generalizations easily accessible (e.g. GLSM into Grassmanians)

An Example

An old friend: SU(5) with **10** and $\overline{5}$ matter. Almost as old, but some interesting new effects in fiber: non-Kodaira I_n^* fibers from monodromy

 $F_i = \mathbb{P}^1$ s associated to simple roots $C = \mathbb{P}^1$ s associated to weights of 5 (C_i) and 10 (C_{ij}) with sign specifying whether \pm the curve is effective.

Quartic Couplings from Codim 4

IV. F-theory on CY5: Effective Theory and Anomalies

LEEA by M/F duality

Comparison of the 1d Super-QM, which describes the effective theory of M-theory on resolved (not necessarily elliptic) CY5 with the circle-reduction of the 2d F-theory compactification:

G_4 -flux

Fluxes are vital to generate chirality of the spectrum. Study via M/F [lessons from CY4: [Grimm, Hayashi]. Here: Dual M-theory was analyzed in [Haupt, Lukas, Stelle].

- * Flux quantization + susy: $G_4 + \frac{1}{2}c_2(Y_5) \in H^4(Y_5, \mathbb{Z}) \cap H^{(2,2)}(Y_5)$
- * Transversality constraints to ensure gauge fluxes:

$$\int_{Y_5} G_4 \wedge S_0 \wedge \omega_4 = 0 \quad \text{and} \quad \int_{Y_5} G_4 \wedge \omega_6 = 0, \qquad \forall \, \omega_4 \in H^4(B_4), \, \omega_6 \in H^6(B_4)$$

 S_0 = zero-section

Induced gauge flux:
$$\int_{C_{\lambda}} G_4 = c_1(L_{\mathbf{R}})$$

Chirality contribution: $\chi(S_{\mathbf{R}}) = \frac{1}{2} \int_{S_{\mathbf{R}}} c_1^2(L_{\mathbf{R}})$

Direct relation of chirality to the intersections of G_4 and Cartans D_i :

E.g. in the situation $F_i \rightarrow C^+ + C^-$

 $\chi(S_{\mathbf{R}}) = \frac{1}{2} \int_{S_{\mathbf{R}}} c_1^2(L_{\mathbf{R}}) = -\frac{1}{2} G_4 \wedge G_4 \cdot_{Y_5} D_i$

$$D_{i} \cdot_{Y_{5}} \left(\frac{1}{24} [c_{4}(Y_{5})] - \frac{1}{2} G_{4} \wedge G_{4} \right)$$

$$= -\frac{1}{2} \sum_{\mathbf{R}} \left(n_{\mathbf{R}}^{+} - n_{\mathbf{R}}^{-} \right) \left(\sum_{a=1}^{\dim(\mathbf{R})} \varepsilon(\lambda_{a}^{\mathbf{R}}) \lambda_{ai}^{\mathbf{R}} \right)$$

$$= -\frac{1}{2} \sum_{\mathbf{R}} \left(n_{\mathbf{R}}^{+} - n_{\mathbf{R}}^{-} \right) \left(\sum_{a=1}^{\dim(\mathbf{R})} D_{i} \cdot_{Y_{5}} C_{\lambda_{a}^{\mathbf{R}}}^{\varepsilon(\lambda_{a}^{\mathbf{R}})} \right) = (\star)$$

Will see: this follows from 1-loop CS terms.

Wrapped M2/D3-branes

Additional sectors of chiral matter: D3-branes wrapping curves C in the base B that intersect M_G : chiral 3-7 strings.

In M-theory: M2-brane states.

Chiralities: # intersection points = $[M_G] \cdot_{B_4} [C_{M2}^B]$

Key in anomaly cancellation.

First principle description in F-theory: from D3s wrapping curves (\rightarrow in progress)

Anomalies and Tadpoles

Global consistency of the compactification: tadpole cancellation and anomaly cancellation. Again, consider M-theory effective action:

Two topological terms: C_{M2} = wrapped M2 curve class

$$S_{M2} + S_{curv} = -2\pi \int_{\mathbb{R} \times Y_5} C_3 \wedge \delta([C_{M2}]) + 2\pi \int_{\mathbb{R} \times Y_5} C_3 \wedge \left(\frac{1}{24}c_4(Y_5) - \frac{1}{6}G_4 \wedge G_4\right)$$

Via reduction of C_3 along $\omega_{\alpha}^{(1,1)}$ forms in Y_5 : CS-terms:

$$S_{\text{top}} = 2\pi \sum_{\alpha} \int_{\mathbb{R}} A_{\alpha} \wedge (k_{\text{M2}}^{\alpha} + k_{\text{curv}}^{\alpha}) \qquad \begin{cases} k_{\text{M2}}^{\alpha} = -\int_{Y_5} \omega_{\alpha} \wedge \delta([C_{\text{M2}}]) \\ k_{\text{curv}}^{\alpha} = \int_{Y_5} \omega_{\alpha} \wedge \left(\frac{1}{24}[c_4(Y_5)] - \frac{1}{2}G_4 \wedge G_4\right) \end{cases}$$

$$A_{\alpha}$$
-tadpole: $\delta([C_{M2}]) = \frac{1}{24}c_4(Y_5) - \frac{1}{2}G_4 \wedge G_4$

F-theory: 1-loop CS term

$$k_{\text{curv}}^{i} \equiv k_{1-\text{loop}}^{i} = -\frac{1}{2} \sum_{\mathbf{R}} \left(n_{\mathbf{R}}^{+} - n_{\mathbf{R}}^{-} \right) \sum_{a=1}^{\dim(\mathbf{R})} q_{ai} \operatorname{sign}(m_{0}(\lambda_{a}^{\mathbf{R}})) = (\star)$$

Anomalies

Chiral fermions \Rightarrow require gauge anomalies to cancel. For non-ablian gauge anomaly:

- Bulk matter: $\mathcal{A}_{\text{bulk}}(\mathbf{R}) = -C(\mathbf{R})\chi(M_G, L_{\mathbf{R}})$
- Surface matter **R**: $\mathcal{A}_{surface}(\mathbf{R}) = C(\mathbf{R})\chi(S_{\mathbf{R}}, L_{\mathbf{R}})$
- 3-7 sector: $A_{3-7} = -C(\mathbf{R}) \int_{B_4} [M_G] \wedge [C_{M2}^B]$

$$\mathcal{A}_{\text{bulk}} + \mathcal{A}_{\text{surface}} + \mathcal{A}_{3-7} = 0$$

Note: tadpole cancellation implies anomaly cancellation via anomaly inflow (at least for perturbative vacua).

Abelian gauge anomalies: rich structure of GS/Stückelberg couplings.

V. F-theory on CY5: Spacetime-Worldsheet Corespondence

2d F-theory vacua = heterotic ws theories

Proposed correspondence:

A 2d N = (0, 2) F-theory compactification can be viewed as (the UV completion of a) heterotic worldsheet theory

Example:

Heterotic on Quintic hypersurface in \mathbb{P}^4 + rk 3 vector bundle \leftrightarrow F on CY5 with rank 1 Mordell-Weil ($\rightarrow U(1)$) + G_4 flux.

In this case: phases of GLSM have interpretation in terms of topological transition in CY5: FI : $r \simeq G_4 \cdot S_1 \cdot J_B \cdot J_B$ (S_1 = Shioda of the section) $r \gg 0$: Non-linear sigma-model phase (no U(1) gauge symmetry) $r \ll 0$: Landau-Ginzburg phase (\mathbb{Z}_5)

Remarks on 2d F-theory vacua

- The proposed correspondence can be useful in various ways:
 - Not necessarily critical string worldsheet theories, nevertheless F-theory provides framework to study them coupled also to gravity, see also [Apruzzi, Heckman, Hassler, Melnikov]
 - Generically, non-ablian gauge symmetries are present
 ⇒ interesting models to study as GLSMs.
- Test whether a 2d F-theory vacuum flows to interesting SCFTs by computing elliptic genus [Benini, Eager, Hori, Tachikawa]
- Classification of 2d SCFTs \rightarrow cue NHC
- \Rightarrow Lots of things to explore.

Epilogue

F-theory certainly has something going for itself when it comes to even dimensions:

$$12d \leftarrow \text{F-theory}@20?$$

$$10d \leftarrow [\text{Morrison 2015}]$$

$$8d \\ 6d \\ 4d \end{pmatrix} \leftarrow [\text{Vafa}], [\text{Morrison Vafa}]$$

$$2d \leftarrow \text{F-theory}@20$$

$$0d \leftarrow ?$$

Happy *n*×20th Birthdays and many happy returns!