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THE PLANE SYMMETRY GROUPS:
THEIR RECOGNITION AND NOTATION

DORIS SCHATTSCHNEIDER

Introduction. Groups of transformations which leave invariant a specified item are familiar objects
of study for students and researchers alike. Finite groups of plane isometries which leave invariant a
regular polygon are elementary examples: C,, the cyelic group of order », can be realized as the group
of rotations leaving invariant a regular »-gon, and D,, the dihedral group of order 2n, can be realized
as the group of all isometries {rotations and reflections) leaving invariant the same polygon. A very
interesting collection of discrete groups of plane isometries which are natural extensions of these
examples exists, but is lacking in most introductory algebra texts. These are the groups of plane
isometries which leave invariant a design or pattern in the plane. If the pattern is finite, such a group
is necessarily a subgroup of some dihedral group. If the pattern is repeated regularly in one or in two
directions, translations,and glide-reflections are additional possible isometries of the pattern, and so
the group leaving such a design invariant will be an infinite discrete group. Designs which are
invariant under all multiples of just one translation are frieze, or border ormaments, and their
associated groups are commonly cafled “frieze groups.” Patterns which are invariant under linear
combinations of two linearly independent translations repeat at regular intervals in two directions,
and hence their groups are often termed “wallpaper groups.”

The interweaving of elementary aspects of Euclidean transformation geometry and group theory
makes these groups excellent ones for study——but there are several non-mathematical bonuses which
make their study especially appealing. To analyze a repeating design to see what makes it “work,” and
to create original designs using the power of the mathematical “laws™ which govern these designs, 15 a
strong non-mathematical motive for studying these groups. (Suddenly, the word “symmetry” has true
dual meaning; both its artistic and mathematical connotations are seen as inseparable.) Rudiments of
clementary crystaflography are part of the theory as well—another bonus.

A very specific incentive to learn about these groups is the opportunity to study examples of the
imaginative interlocking patterns by the Dutch artist M. C. Escher (1898-1972). His work is perhaps
the most concrete testament to the power gained in understanding these groups. He struggled for
several years to produce animate interlocking designs, with very primitive results. When he became
aware that these types of designs were governed by groups of isometries, he studied the mathematical
literature available. In examining Escher’s notebooks, this author discovered that he copied in full the
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Escher Foundation, Haags (n

Two periodic drawings by M. C. Escher conirast his early effort at repeating design with his later masterful
skill. The pattern of lions, dated *1926 or 1927,” was done before he developed a system which grew out of his
study of mathematical articles and periodic designs on the Alhambra. The pattern of bugs is dated 1942, one vear
after Escher recorded his codified system in notebooks,

paper by G. Polya [18] which outlines the important properties of each of the groups and includes a
chart of illustrative designs. (This chart is also reproduced in [12], page 78.) Escher records that this
visual information was of more importance to him than the written text. Another rich source of visual
information for Escher was found in the Moorish tile patterns of the Alhambra, in Granada, Spain.
He visited this site and carefully recorded in sketchbooks many of these periodic geometric designs.
The designs he produced after he digested this information (and ultimately worked out his own
system) are amazingly intricate, even mind boggling, to the innocent viewer.

The literature available on the plane symmetry groups is scattered, and often incomplete. Good
descriptions of the frieze groups do exist ([1], [4], [5], [6], [11], [20]). However, gathering complete and
coherent information from the various sources on the “wallpaper groups” can be frustrating, since
terminology is not standard and several different notations for the groups are used. In addition, a
frequent error occurs—the notations for two of the groups are interchanged in several sources.

This article attempts to provide in compact form information to correct these problems and, in
addition, provide useful visual references for readers of the literature on the plane symmetry groups.
The sources used are listed in the teferences. Many other books and articles contain information on
this topic; the remarks that follow pertain to these as well.

Terminology. Classification of periodic patterns. Part of the difficulty in reading from various
sources on the plane symmetry groups is the variation in terminology used by authors. Not only are
different terms used to identify the same object, but sometimes the same terms are employed (in
different sources) to identify different objects. In this section we define terms as used in this
presentation and indicate some other common terminology. In using any source, the reader should be
especially careful to determine the definition of terms used by the author.

A “periodic™ or “repeating” pattern in the plane is a design having the following property: There
exist a finite region and two linearly independent translations such that the set of all images of the
region when acted on by the group generated by these translations produces the original design. In
addition (although rarely stated explicitly) it is assumed that there is a translation vector of minimum
length that maps the pattern onto itself. This excludes a pattern of stripes from being termed periodic.

The translation group of a periodic pattern is the set of all translations which map the pattern onto
itself. A smallest region of the plane having the property that the set of its images under this
translation group covers the plane is called a uniz of the pattern. All units have the same area, but
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their outlines can have infinite variation. They are like tiles, all alike, which fill the plane without gaps
or overlaps, and are laid in parallel rows. Some periodic designs incorporate part or all of the
boundary of a unit as part of the design; others suppress this outline and one sees only a repeated
figure against a blank background. For example, in the Escher lion design, four interlocked lions,
each one facing in a different direction, form a unit of the pattern.

Every periodic pattern has naturally associated to it a Jattice of points; choosing any point in the
pattern, this lattice is the set of all images of that point when acted on by the translation group of the
pattern, A lattice unit is a unit which is a parallelogram whose vertices are lattice points. The vectors
which form the sides of a lattice unit generate the translation group of the pattern. (Crystallographers
use the term primitive celf for a lattice unit; some authors use the term unit cell, or cell.)

In addition to translations, a periodic pattern may also be mapped onto itself by any of the other
plane isometries: rotations, reflections or glide reflections. The symmetry group of the pattern is the set
of all isometries which map the pattern onto itself. The classification of periodic patterns according to
their symmetry groups is the two-dimensional counterpart of the system used by crystallographers to
classify crystals. Hence, these groups are also termed the mwo-dimensional crystallographic groups.

The symmetry group of a periodic pattern necessarily maps a lattice associated to the pattern onto
itself. Since centers of rotation of a pattern are mapped by translations to new centers of rotation
(having the same order), only rotations of order 2, 3, 4, or 6 can occur as isometries of a periodic
design, (This is often referred to as the crystallographic restriction.) If a pattern has no rotational
symmetry, but teflections or glide reflections are in its symmetry group, then the lattice must have
parallel rows of points at right angles to each other. These restrictions imply that there are five
distinct types of lattice which can occur as the most general lattice possible for a plane symmetry
group. For each lattice type there are conventionally chosen lattice units for purposes of classification.
Chart 1 shows the five types of lattice, and for each a lattice unit.

.

LATTICES FOR PERIODIC PLANE PATTERNS

. . - - L] . . . - - L

Parallelogram Rectangular Rhombic

Square Hexagonal

(Equilateral Triangles)

CHART |. The laitice units ontlined are those chosen by crystallographers for purposes of classification. The
“centered cell,” containing 2 units, is shown in dotted outline on the rhombic lattice.
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Arguing on the isometries possible for each of the five lattice types, it can be shown that there are
scventeen distinct plane symmetry groups. In Chart 2, we show for each group a lattice unit and the
placement of symmetry elements in the group relative ta that lattice unit (i.e., centers of rotation, axes
of reflection and glide reflection). This is an adaptation of the symbolism used in the International
Tables for X-ray Crystallography [13]. Under each diagram is the crystallographic name or symbol for
that group, both in the short and full form. Full explanation of this notation is found in [13] but is
lacking in the mathematical literature, and so it might be helpful to include it here.

The crystallographic notation consists of four symbols which identify the conventionally chosen
“cell,” the highest order of rotation, and other fundamental symmetries. Usually a “primitive cell” (a
lattice unit) is chosen with centers of highest order of rotation at the vertices. In two cases a “centered
cell” is chosen so that reflection axes will be normal to one or both sides of the cell. The “x-axis” of
the cell is the left edge of the cell (the vector directed downward). The interpretation of the full
international symbol (read left to right) is as follows: (1) letter p or ¢ denotes primitive or centered
cell; (2) integer » denotes highest order of rotation; (3) symbol denotes a symmetry axis normal to the
x-axis: m (mirror) indicates a reflection axis, g indicates no reflection, but a glide-reflection axis, 1
indicates no symmetry axis; (4) symbol denotes a symmetry axis at angle a to x-axis, with «
dependent on n, the highest order of rotation: a=180° for n=1 or 2, a==45° for n=4, o =60° for
n=3 or 6; the symbols m,g, 1 are interpreted as in (3). No symbols in the third and fourth position
indicate that the group contains no reflections or glide-reflections. The many symmetry axes you see
in the diagrams on Chart 2 result from the combination of tramslations or rotations with the
symmetries indicated in the third and fourth position of the international symbol. Except in the case

RECOGNITION CHART FOR PLANE PERIODIC PATTERNS

Highest Non-Trivial
Order of Glide Generating Helpful

Type  Latlice Rotation Reflections Reflections  Region Distinguishing Properties

rl parallelogram 1 no no 1 unit

p parallelogram 2 no no 1/2 unit

pm rectangular 1 yes no 1/2 unit

74 rectangular 1 no yes 1/2 unit

cm rhombic 1 yes yes 1/2 unit

pmm  rectangular 2 yes no 1/4 unit

pmyg  rectangular 2 yes yes 1/4unit  paraltel reflection axes

pgg  rectangular 2 no . yes 1/4 unit

emm  thombic 2 yes I yes 1/4 unit  perpendicular reflection axes

£ square 4 no no 1/4 unit

pém  square 4 yes ' yes 1/8unit  4-fold centers on reflection axes

pdg  square 4 yes yes 1/8unit  4-fold centers not on
reflection axes

23 hexagonal 3 no no 1/3 unit

p3ml  hexagonal 3 yes yes 1/6 unit  alt 3-fold centers on
reflection axes

P31m  hexagonal 3 yes yes 1/6 unit  not all 3-fold centers
on reflection axes

ph hexagonal 6 no no 1/6 unit

pém  hexagonal 6 yes yes 1 /12 unit

CHART 3. A rotation through an angle of 360°/n is said to have order . A glide-reflection is non-trivial if its
component translation and reflection are not symmetries of the pattern.
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ART 4. All designs except pm, p3, pg are found in [20). The designs for p3 and pg are based on clements of Chinese lattice designs
ind in this book; the design for pm is based on a weaving pattern from the Sandwich Islands, found in [14].
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of p3ml and p31m, the four-place symbols can be shortened without loss of identification and the
shortened form of notation is in most common usage.

Recognition and classification of periodic patterns can be fun; in fact once you begin looking for
them, you become aware of how surrounded we are by these ornamental designs. (There is a slight
warning to those who engage in this pastime. While staring at a stranger’s printed dress or gazing
intently at a carpet design, you may find yourself the object of curious stares!) To classify a periodic
design as one of the seventeen types, it is not necessary to obtain all the information indicated on
Chart 2. A check list for recognition of patterns is provided in Chart 3. This was the result of several
attempts by the author and students to reduce to a minimum the information necessary to distinguish
between designs. Using this you can classify any design as to its symmetry group. For example, the
Escher design of lions has only 2-fold rotations (centered where the paws meet) and has glide
reflections, but no reflections; hence it is type pgg. The reader should assign the correct pattern type
to the design of bugs,

In addition to pattern bocks for wallpaper, tiles, floor coverings and fabrics, collections of
decorative art also provide rich sources of patterns. The collection of M. C. Escher’s designs [15] is a
delightful source for analyzing patterns and contains commentary by C. H. MacGillavry, a crystallog-
rapher, aimed at helping the beginner discover the symmetries of the patterns. Three other widely
differing collections currently in print appear in the bibliography: [2], [10), [14]. Journal articles [8),
{9]. [19] are also of interest. Museum collections often contain a wide variety of sources of repeating
patterns which attest to the timelessness and universality of their use as decorative art. See the article
"Mathematics and Islamic Art,” by John Niman and Jane Norman, this MONTHLY, pp. 489—490,

We provide representative patterns in Chart 4 to test the reader’s ability to recognize the various
types of designs associated to the seventeen groups. For each of these patterns, an instructive exercise
is to find a lattice unit of the type shown in Chart 2. (Hint: Begin by looking for a center of rotation
of highest order for the pattern; next find axes of reflection or glide reflection.)

Group generators. Creation of periodic patterns, Finding generators for a group is a standard task.
In the case of the plane symmetry groups, however, it has more than algebraic importance. Not only
will a few isometries generate the symmetry group of a periodic design, but the same isometries,
acting on a small portion of the design, will produce replicas of this region, and create the total
plane-covering design. We call a generaring region of a periodic pattern a smallest region of the plane
whose images under the full symmetry group of the pattern cover the plane. (Crystallographers use
the term asymmetric unit for a generating region; several mathematicians use the term fundamenial
region or fundamental domain.} The area of a generating region will always be a rational part of a unit,
and, as with units, all generating regions of a pattern will have the same area, even though their
outlines can vary greatly. In the Escher design of lions, one lion is a generating region. Often the term
motif is used to denote the smallest portion of a design which generates the whole periodic design
when acted on by the symmetry group of the design; in this usage the motif is a symbol which can be
located within a generating region.

For algebraic (and geometric) analysis of these groups, a minimal set of generators is the most
desirable choice. However, if we wish to use a set of generators to create a design by having it acton a
generating region, a different choice of generators may be better suited to the task. In Chart 5 we
show for each group two sets of generators and their location relative to a lattice unit containing a
generating region of the pattern. The choice of a minimal set of generators is adapted from [6, Table
1] (other minimal sets of generators are indicated in [11, p.40]). For each group, the second. set of
generators given includes the translation vectors which form the sides of the lattice uni'jt. These
generators may be preferred for producing a tile or printing a pattern by hand or computer. The
rotations, reflections, or glide reflections shown fill out a unit with images of the generating.iegion;
then the translations repeat this unit to cover the plane. (A lattice unit is filled out for the first 12
types; a unit in the shape of a regular hexagon is filled out for the last 5 types.)
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GENERATORS FOR THE PLANE SYMMETRY GROUPS

translation vector
-—-p glide-reflection vector
—_— reflection axis
¢ o centers of 2-, 3-, 4-, or 6-fold
rotation
CHART 5. For each group, two sels of generators are indicated relative to a lattice unit contalmng a shaded
generating region. A minimal set of generaiors is shown at the left, while a set of generators which includes the

lattice unit translation vectors is shown at the right.

Since patterns of types p3m] and p31m are often confused, we demonstrate in Figure '] how to use
Chart 5 by creating a pattern of each type generated from the same motif. In each case, we begin with
a single “hockey stick™ motif, placed in a shaded generating region of each pattern type, and having
its endpoints at centers of three-fold rotation. Each pattern is then produced by acting on the
generating region by the isometries indicated on Chart 5, in the sequence shown.
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Place “hockey stick”
motif in generating
region.

Reflect penerating
region about axis
shown,

Rotate 120° twice
about 3-fold center
of rotation shown.

Translate by vectors
forming edge of lattice unit.

piml pilm

Fig. 1. Generating patterns of types p3ml and p31m, beginning with the same motif. Note that in the completed
p3lm paltern, a “natural” generating region is half of the arrow-shaped tile, while a “patural” unit is 3 of these
interlocked tiles whose outline looks like a rotor.

Visually, the differences in the two patterns in Figure 1 are striking—there is no possibility that
one pattern could be mistaken for the other. Charts which show each of the seventeen patterns which
arise when the same motif (properly placed in a penerating region) is acted om by each of the
symmetry groups provide a clear visual demonstration of their differences. Such charts can be found
in [4], [5], [11], {17], [20]. (Note the remarks in the next section concerning p3mi and p31m.)

Notations for the groups. Interchange of p3ml and p31lm. The history of the classification of the
two-dimensional crystallographic groups dates back to the late nineteenth century. Both [7] and [11]
give a brief account of this history. An extensive discussion and comparison of the early literature is
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given in [3]. Many mathematicians have produced varying notations for the groups, and the variety of
notations continues, even in books published within the last twenty years. Thus it is difficult to read
the literature without some crossreference chart of notation. The notation adopted by the Interna-
tional Union of Crystallography in 1952 is in most widespread use, and this was used as the “norm”
in preparing our crossreference table of notation, Chart 6.

CoMPARISON OF NOTATION FOR THE PLANE SYMMETRY GROUPS

Internat’l Palya; Fejes Toth;  Shubnikov- Wells
(short) Guggenheimer Niggl Speiser Cadwell Kopisik Bell & Fletcher
pl Lol o C,, Abb. 17 W, (b/a)l 1
Py G o Cy, Abb. 18 W, (b/a):2 2
pm Dk cl ), Abb. 19 wi (b:a)im 3
8 Dygg c CM, Abb, 20 w} (b:a):b 4
om D kg c CH, Abb, 21 w) (a/ay/m g
prm Dakkkk G CL,Abb.22 w3 (bra):2em 5
pmg Dykkgg G, M, Abb. 24 w3 (bia):im:a 6
peg D, g88R G, CHL Abb.23 wi (b:a):h:a 7
cmm Dykghkg oA CiY, Abb. 25 W} (a/a):2-m 9
P4 Ca c C,, Abb. 26 W, (a:a):4 10
pAm D: ¢t Cl,Abb.27 W) (a:0):4'm 1
pdg 2 B I, Abb. 28 W} (a:a):404 12
3 C; Cy! €y, Abb. 29 W, (a/a):3 13
piml D1 Gl CJI, Abb.31 W} (afa):m'3 15
231m D3 G ¢l Abb.30 w3 (afa@)-m3 14
26 C cd Cg, Abb. 32 W, (a/a):6 16
pém Dy Ce! Ce,r Abb, 33 Wy (a/a):m6 17

{some alter-
natives exist)

CHaRT 6. Sources referred to in the fable are listed in the References. The groups are listed in consecutive order
as they appear in the International Tables of X-ray Crystallography, [13]. Note that Speiser interchanges the Niggli
notations of C;,' and CX (figure numbers in the Speiser column are for the 2Znd, 3rd, and 4th editions of his book).

In the preparation of this chart, it became apparent that the notation for the two groups p3m] and
p31m was frequently interchanged in the literature, and so other crossreference charts could not be
assumed to be accurate. The earliest occurrence of this interchange which was noted occurs in
Speiser’s book, [21]. He uses the notation of the paper by Niggli, [16], but interchanges Niggli’s
notation for these two groups. Since it is natural to assume these notations are the same, we include
information from both sources on our chart. Other books which include this interchange of notation
are: Bell and Fletcher [1], Budden, [4], Coxeter, [6], and Coxeter and Moser, [7]. It is quite likely that
this notational error has been perpetuated in other works referring to these sources. (The cross-
reference Table 3 in [7] is correct if in the left column p31m and p3ml are interchanged.)

If the interpretation of the crystallographic notation explained earlier is understood, then it is
always possible to determine the correct name for the symmetry group of a periodic design. This,
together with the other information provided here, should enable the reader to make any necessary
corrections of inaccurate identification in the literature.
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EULER’S FORMULA FOR ath DIFFERENCES OF POWERS
Dedicated to Professor L. Carlitz on his seventieth birthday,

H. W. GOULD

L. Introduction. Write down the sequence of fourth powers of the non-negative integers. Below
these, write the first differences, Below these, write differences again. Repeat this process as long as
you wish, and you obtain the following array of numbers:
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