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Some background on Lorentzian spacetimes

� Spacetime := oriented and time-oriented
globally hyperbolic Lorentzian manifold N

� Spacetime embedding := orientation and
time-orientation preserving isometric
embedding f : M → N s.t. f(M) ⊆ N is
open and causally convex

Def: Denote by Locm the category of m-dim.
spacetimes and spacetime embeddings.
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� The following (tuples of) Locm-morphisms will be important:

(i) Cauchy morphism: f : M → N s.t. f(M) ⊆ N contains Cauchy surface of N

(ii) Causally disjoint pair: (f1 : M1 → N) ⊥ (f2 : M2 → N) s.t.
JN (f1(M1)) ∩ f2(M2) = ∅

(iii) Time-ordered tuple: f = (f1, . . . , fn) : M = (M1, . . . ,Mn)→ N s.t.

J+
N (fi(Mi)) ∩ fj(Mj) = ∅, for all i < j

(iv) Time-orderable tuple: f : M → N s.t. there exists ρ ∈ Σn (time-ordering
permutation) with fρ = (fρ(1), . . . , fρ(n)) : Mρ→ N time-ordered
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What’s a QFT on Lorentzian spacetimes?

� Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, . . . ], one
should study the following algebraic structure (for T = SM (∞-)category)

N

QFT A(N) ∈ AlguAs(T)︸ ︷︷ ︸
quantum observables in N

N

M1 · · · Mn

n⊗
i=1

A(Mi) −→ A(N)︸ ︷︷ ︸
composition of causally independent subsystems

that satisfies the (homotopy) time-slice axiom

NM

Σ

A(M)
∼−→ A(N)︸ ︷︷ ︸

defines a concept of time evolution

� This is governed by the AQFT operad [Benini/AS/Woike, Benini/Carmona/AS]

O(Locm,⊥)[Cauchy−1]∞ '
(
P(Locm,⊥) ⊗ uAs

)
[Cauchy−1]∞
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Classification in low dimensions (for target T = SM 1-category)

Prop: [Benini/Woike/AS] Given orthogonal category (C,⊥) and W ⊆ MorC, then

O(C,⊥)[W
−1] ' O(C[W−1],L∗(⊥)) ,

where L : C→ C[W−1] is localization of underlying category.

� In low dimensions, these localizations can be determined explicitly. E.g.

(i) 1-dim. AQFT A on Loc1 ⇐⇒ [Benini/Carmona/AS]

A( )R
00

= dynamical system with time evolution

= quantum mechanics

(ii) 2-dim. conformal AQFT A on CLoc2 ⇐⇒ [Benini/Giorgetti/AS]

A( )Emb(R)2
))

Emb( , )
// A( ) Diff(S1)2

ss

� Open problem: Higher dimensions? Some speculations later. . .
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Strictifying the time-slice axiom (for T = ChK with charK = 0)

� There are two (i.g. different) model categories for ChK-valued AQFTs:

(i) Strict time-slice axiom (projective model structure)

AQFT(C,⊥)W := AlgO
(C[W−1],L∗(⊥))

(
ChK

)

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

AQFT(C,⊥)hoW := AlgO(C,⊥)[W
−1]∞

(
ChK

)
' L

Ŵ
AlgO(C,⊥)

(
ChK

)
Thm: [Benini/Carmona/AS] The localization functor L : (C,⊥)→ (C[W−1], L∗(⊥))

defines a Quillen adjunction

L! : AQFT(C,⊥)hoW
//
AQFT(C,⊥)W : L∗oo .

If L is a reflective orthogonal localization, then this is a Quillen equivalence.

!!! Strictification theorems for the homotopy time-slice axiom for AQFTs on
Loc1, CLoc2 and Haag-Kastler-type Locm/M .

Rem: Very different behavior to topological QFTs (via locally constant factorization
algebras on Rm) ! Em-algebras [Lurie, Ayala/Francis]
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Ŵ
AlgO(C,⊥)

(
ChK

)
Thm: [Benini/Carmona/AS] The localization functor L : (C,⊥)→ (C[W−1], L∗(⊥))

defines a Quillen adjunction

L! : AQFT(C,⊥)hoW
//
AQFT(C,⊥)W : L∗oo .

If L is a reflective orthogonal localization, then this is a Quillen equivalence.

!!! Strictification theorems for the homotopy time-slice axiom for AQFTs on
Loc1, CLoc2 and Haag-Kastler-type Locm/M .

Rem: Very different behavior to topological QFTs (via locally constant factorization
algebras on Rm) ! Em-algebras [Lurie, Ayala/Francis]

Alexander Schenkel QFTs on Lorentzian manifolds Abu Dhabi 2023 5 / 9



Strictifying the time-slice axiom (for T = ChK with charK = 0)

� There are two (i.g. different) model categories for ChK-valued AQFTs:

(i) Strict time-slice axiom (projective model structure)

AQFT(C,⊥)W := AlgO
(C[W−1],L∗(⊥))

(
ChK

)
(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])
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Construction of free (non-interacting) QFTs on Locm

� Input data: A natural collection {F(M), QM , ωM}M∈Locm
of free BV

theories [Costello/Gwilliam], i.e. (F(M), QM ) is a complex of differential
operators and ωM is a (−1)-shifted symplectic structure.

� Central hypothesis: Green-hyperbolic complexes, i.e. there exists
(pseudo-)natural family of retarded/advanced Green’s homotopies{

Λ±K ∈
[
FK(M),FJ±M (K)(M)

]−1
: ∂Λ±K = incl

}
K⊆M compact

Thm: [Benini/Musante/AS] One can construct from this data an AQFT
A ∈ AQFT(Locm,⊥)hoCauchy.

Ex: Linear Yang-Mills theory [Benini/Bruinsma/AS]

(−1)

Ω0
K(M)

⊆

��

d //
(0)

Ω1
K(M)

δG±2

xx

⊆

��

δd //
(1)

Ω1
K(M)

G±2

xx

⊆

��

δ //
(2)

Ω0
K(M)

dG±2

xx

⊆

��

Ω0

J±
M

(K)
(M)

d
// Ω1

J±
M

(K)
(M)

δd
// Ω1

J±
M

(K)
(M)

δ
// Ω0

J±
M

(K)
(M)
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Comparison to factorization algebras (à la [Costello/Gwilliam])

� Time-orderable prefactorization algebras on Locm [Benini/Perin/AS]:

N

tPFA F(N) ∈ T︸ ︷︷ ︸
no algebra structure!!!

N

M1 M2

M3

...

n⊗
i=1

F(Mi) −→ F(N)︸ ︷︷ ︸
time-ordered products

� With some Lorentzian geometry, one shows that there exists an operad
morphism Φ : tPLocm

→ O(Locm,⊥) to the AQFT operad.

Thm: [Benini/Perin/AS] For target T = cocomplete SM 1-category, we have an
equivalence of categories

Φ! : tPFACauchy,add
m ∼

//
AQFT(Locm,⊥)Cauchy,add : Φ∗oo

� Open problem: Generalization to T = SM ∞-category, in particular
T = ChK? In this case there are so far only example-based comparisons
[Gwilliam/Rejzner, Benini/Musante/AS].
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Comparison to functorial field theories (à la [Stolz/Teichner, . . . ])

� Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces,
all bordisms are cylinders M ∼= R× Σ, but with rich geometry!

� Conjecture: Consider the subcategory Caum ⊆ Locm given by all objects,
but only Cauchy morphisms. I believe that its localization

Caum[Cauchy−1] ' LBordm[All−1]

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism
category, localized at all bordisms.

� Implication: Each A ∈ AQFT(Locm,⊥)W has an underlying representation
of the Lorentzian bordisms that captures time evolution, but ignores spatial
locality associated with non-Cauchy morphisms f : M → N .

Prop: [Bunk/MacManus/AS; work in progress] The above holds true in spacetime
dimension m = 1. (. . . and quite likely also in general dimension)

� Open problem: What corresponds on the FFT side to the additional AQFT
structure given by spatial locality? Is this related to extended field theories?
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Future direction: Non-affine AQFTs

� In examples arising in physics, one typically has that

A(M) = O
(

derived moduli stack of fields
)
~
∈ AlguAs

(
ChK

)

� Well-known problem: Interesting derived stacks are almost never affine!
Example: Classifying stack BG = [∗/G] for G reductive affine group scheme
 O(BG) ' N•(G,K) ' K = O(∗) forgets the group

� Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh
(

derived moduli stack of fields
)
~
∈ AlgE0

(
dgCatK

)
Def: A non-affine AQFT is a dgCatK-valued algebra A ∈ AlgP(C,⊥)

(dgCatK)
over the factor P(C,⊥) of the AQFT operad O(C,⊥) = P(C,⊥) ⊗ uAs.

� The formal theory of such non-affine AQFTs was studied in a simpler
2-categorical context (replace dgCatK by PrK) by [Benini/Perin/AS/Woike].

Ex: (i) Orbifold σ-models with fields φ : M → [X/Gfinite] [Benini/Perin/AS/Woike]

(ii) Non-Abelian Yang-Mills theory on spatial lattices [Benini/Pridham/AS]
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 O(BG) ' N•(G,K) ' K = O(∗) forgets the group

� Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

A(M) = QCoh
(

derived moduli stack of fields
)
~
∈ AlgE0

(
dgCatK

)
Def: A non-affine AQFT is a dgCatK-valued algebra A ∈ AlgP(C,⊥)

(dgCatK)
over the factor P(C,⊥) of the AQFT operad O(C,⊥) = P(C,⊥) ⊗ uAs.

� The formal theory of such non-affine AQFTs was studied in a simpler
2-categorical context (replace dgCatK by PrK) by [Benini/Perin/AS/Woike].

Ex: (i) Orbifold σ-models with fields φ : M → [X/Gfinite] [Benini/Perin/AS/Woike]

(ii) Non-Abelian Yang-Mills theory on spatial lattices [Benini/Pridham/AS]
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