Quantum field theories on Lorentzian manifolds

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

Geometric/Topological Quantum Field Theories and Cobordisms, 15–18 March 2023, NYU Abu Dhabi.

Based on a research program with Marco Benini, with contributions from

S. Bruinsma, S. Bunk, V. Carmona, C. Fewster, L. Giorgetti, A. Grant-Stuart, J. MacManus, G. Musante, M. Perin, J. Pridham, P. Safronov, U. Schreiber, R. Szabo and L. Woike.

Alexander Schenkel

◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by \mathbf{Loc}_m the category of *m*-dim. spacetimes and spacetime embeddings.

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ◇ **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f : M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by \mathbf{Loc}_m the category of *m*-dim. spacetimes and spacetime embeddings.

- \diamond The following (tuples of) Loc_m-morphisms will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by \mathbf{Loc}_m the category of *m*-dim. spacetimes and spacetime embeddings.

- $\diamond\,$ The following (tuples of) $\mathbf{Loc}_m\text{-morphisms}$ will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N

(ii) Causally disjoint pair: $(f_1: M_1 \to N) \perp (f_2: M_2 \to N)$ s.t. $J_N(f_1(M_1)) \cap f_2(M_2) = \emptyset$

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ◇ **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f : M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by \mathbf{Loc}_m the category of *m*-dim. spacetimes and spacetime embeddings.

- $\diamond\,$ The following (tuples of) $\mathbf{Loc}_m\text{-morphisms}$ will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1: M_1 \to N) \perp (f_2: M_2 \to N)$ s.t. $J_N(f_1(M_1)) \cap f_2(M_2) = \emptyset$
 - (iii) Time-ordered tuple: $\underline{f} = (f_1, \dots, f_n) : \underline{M} = (M_1, \dots, M_n) \to N$ s.t. $J_N^+(f_i(M_i)) \cap f_j(M_j) = \emptyset$, for all i < j

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ◇ **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f : M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by \mathbf{Loc}_m the category of *m*-dim. spacetimes and spacetime embeddings.

- \diamond The following (tuples of) Loc_m-morphisms will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1: M_1 \to N) \perp (f_2: M_2 \to N)$ s.t. $J_N(f_1(M_1)) \cap f_2(M_2) = \emptyset$
 - (iii) Time-ordered tuple: $\underline{f} = (f_1, \dots, f_n) : \underline{M} = (M_1, \dots, M_n) \to N$ s.t. $J_N^+(f_i(M_i)) \cap f_j(M_j) = \emptyset$, for all i < j
 - (iv) Time-orderable tuple: $\underline{f}: \underline{M} \to N$ s.t. there exists $\rho \in \Sigma_n$ (time-ordering permutation) with $\underline{f}\rho = (f_{\rho(1)}, \dots, f_{\rho(n)}) : \underline{M}\rho \to N$ time-ordered

♦ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty$ -)category)

♦ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty)$ -)category)

♦ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty)$ -)category)

♦ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty)$ -)category)

that satisfies the (homotopy) time-slice axiom

♦ Inspired by algebraic QFT [Haag/Kastler, Brunetti/Fredenhagen/Verch, ...], one should study the following algebraic structure (for $T = SM (\infty)$ -)category)

◊ This is governed by the AQFT operad [Benini/AS/Woike, Benini/Carmona/AS]

$$\mathcal{O}_{(\mathbf{Loc}_m, \bot)}[\mathrm{Cauchy}^{-1}]^{\infty} \, \simeq \, \big(\mathcal{P}_{(\mathbf{Loc}_m, \bot)} \otimes \mathsf{uAs}\big)[\mathrm{Cauchy}^{-1}]^{\infty}$$

Alexander Schenkel

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq Mor \mathbf{C}$, then $\mathcal{O}_{(\mathbf{C}, \perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}], L_*(\perp))}$,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq Mor \mathbf{C}$, then $\mathcal{O}_{(\mathbf{C}, \perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}], L_*(\perp))}$,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

 $\diamond\,$ In low dimensions, these localizations can be determined explicitly. E.g.

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq Mor \mathbf{C}$, then $\mathcal{O}_{(\mathbf{C}, \perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}], L_*(\perp))}$,

where $L:\mathbf{C}\to\mathbf{C}[W^{-1}]$ is localization of underlying category.

◊ In low dimensions, these localizations can be determined explicitly. E.g.
(i) 1-dim. AQFT 𝔄 on Loc₁ ⇐⇒ [Benini/Carmona/AS]

 $\mathbb{R} \left(\begin{array}{c} \mathfrak{A}(I) \\ = \end{array} \right) = dynamical system with time evolution$ = quantum mechanics

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq \operatorname{Mor} \mathbf{C}$, then $\mathcal{O}_{(\mathbf{C}, \perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}], L_*(\perp))}$,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

◊ In low dimensions, these localizations can be determined explicitly. E.g.
(i) 1-dim. AQFT 𝔄 on Loc₁ ⇐⇒ [Benini/Carmona/AS]

 $\mathbb{R} \left(\begin{array}{cc} \mathfrak{A}(1) & = & \text{dynamical system with time evolution} \\ & = & \text{quantum mechanics} \end{array} \right)$

(ii) 2-dim. conformal AQFT \mathfrak{A} on $\mathbf{CLoc}_2 \iff [\mathsf{Benini}/\mathsf{Giorgetti}/\mathsf{AS}]$

$$\mathrm{Emb}(\mathbb{R})^2 \left(\begin{array}{c} \mathfrak{A}(\diamondsuit) \end{array} \right) \xrightarrow{\mathrm{Emb}(\diamondsuit, \fbox)} \hspace{0.1cm} \mathfrak{A}(\fbox) \end{array} \right) \operatorname{Diff}(\mathbb{S}^1)^2$$

Prop: [Benini/Woike/AS] Given orthogonal category (\mathbf{C}, \perp) and $W \subseteq \operatorname{Mor} \mathbf{C}$, then $\mathcal{O}_{(\mathbf{C}, \perp)}[W^{-1}] \simeq \mathcal{O}_{(\mathbf{C}[W^{-1}], L_*(\perp))}$,

where $L: \mathbf{C} \to \mathbf{C}[W^{-1}]$ is localization of underlying category.

◊ In low dimensions, these localizations can be determined explicitly. E.g.
(i) 1-dim. AQFT 𝔄 on Loc₁ ⇐⇒ [Benini/Carmona/AS]

 $\mathbb{R} \left(\begin{array}{cc} \mathfrak{A}(I) & = & \text{dynamical system with time evolution} \\ & = & \text{quantum mechanics} \end{array} \right)$

(ii) 2-dim. conformal AQFT \mathfrak{A} on $\mathbf{CLoc}_2 \iff [\mathsf{Benini}/\mathsf{Giorgetti}/\mathsf{AS}]$

$$\mathrm{Emb}(\mathbb{R})^2\left(\mathfrak{A}(\diamondsuit) \xrightarrow{\mathrm{Emb}(\diamondsuit,\fbox)} \mathfrak{A}(\fbox)\right) \longrightarrow \mathfrak{A}(\fbox) \right) \mathrm{Diff}(\mathbb{S}^1)^2$$

◊ Open problem: Higher dimensions? Some speculations later...

Alexander Schenkel

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\operatorname{char} \mathbb{K} = 0$)

 $\diamond~$ There are two (i.g. different) model categories for $\mathbf{Ch}_{\mathbb{K}}\text{-valued}$ AQFTs:

(i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \ := \ \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[W^{-1}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\operatorname{char} \mathbb{K} = 0$)

There are two (i.g. different) model categories for Ch_K-valued AQFTs:
(i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\perp)^W := \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))}} ig(\mathbf{Ch}_{\mathbb{K}}ig)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona]) $\mathbf{AQFT}(\mathbf{C}, \bot)^{\text{ho}W} := \mathbf{Alg}_{\mathcal{O}(\mathbf{C}, \bot)}[W^{-1}]^{\infty} (\mathbf{Ch}_{\mathbb{K}}) \simeq \mathcal{L}_{\widehat{W}} \mathbf{Alg}_{\mathcal{O}(\mathbf{C}, \bot)} (\mathbf{Ch}_{\mathbb{K}})$

Strictifying the time-slice axiom (for $\mathbf{T}=\mathbf{C}\mathbf{h}_{\mathbb{K}}$ with $\operatorname{char}\mathbb{K}=\mathbf{0})$

There are two (i.g. different) model categories for Ch_K-valued AQFTs:
(i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\perp)^W := \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C}[W^{-1}],L_*(\perp))}} ig(\mathbf{Ch}_{\mathbb{K}}ig)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} := \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[W^{-1}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \mathcal{L}_{\widehat{W}}\mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Thm: [Benini/Carmona/AS] The localization functor $L : (\mathbf{C}, \bot) \to (\mathbf{C}[W^{-1}], L_*(\bot))$ defines a Quillen adjunction

$$L_! : \mathbf{AQFT}(\mathbf{C}, \perp)^{\mathrm{ho}W} \xrightarrow{\longrightarrow} \mathbf{AQFT}(\mathbf{C}, \perp)^W : L^*$$

If L is a *reflective orthogonal localization*, then this is a Quillen equivalence.

.

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\operatorname{char} \mathbb{K} = 0$)

There are two (i.g. different) model categories for Ch_K-valued AQFTs:
(i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \ := \ \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[\boldsymbol{W}^{-1}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} := \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[W^{-1}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \mathcal{L}_{\widehat{W}}\mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Thm: [Benini/Carmona/AS] The localization functor $L : (\mathbf{C}, \bot) \to (\mathbf{C}[W^{-1}], L_*(\bot))$ defines a Quillen adjunction

$$L_! : \mathbf{AQFT}(\mathbf{C}, \perp)^{\mathrm{ho}W} \xrightarrow{\longrightarrow} \mathbf{AQFT}(\mathbf{C}, \perp)^W : L^*$$

If L is a *reflective orthogonal localization*, then this is a Quillen equivalence.

!!! Strictification theorems for the homotopy time-slice axiom for AQFTs on Loc_1 , $CLoc_2$ and Haag-Kastler-type Loc_m/M .

.

Strictifying the time-slice axiom (for $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$ with $\operatorname{char} \mathbb{K} = 0$)

There are two (i.g. different) model categories for Ch_K-valued AQFTs:
(i) Strict time-slice axiom (projective model structure)

$$\mathbf{AQFT}(\mathbf{C},\bot)^W \ := \ \mathbf{Alg}_{\mathcal{O}_{\left(\mathbf{C}[W^{-1}],L_*(\bot)\right)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

(ii) Homotopy time-slice axiom (left Bousfield localization à la [Carmona])

$$\mathbf{AQFT}(\mathbf{C},\bot)^{\mathrm{ho}W} := \mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}[W^{-1}]^{\infty}}\big(\mathbf{Ch}_{\mathbb{K}}\big) \simeq \mathcal{L}_{\widehat{W}}\mathbf{Alg}_{\mathcal{O}_{(\mathbf{C},\bot)}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

Thm: [Benini/Carmona/AS] The localization functor $L : (\mathbf{C}, \bot) \to (\mathbf{C}[W^{-1}], L_*(\bot))$ defines a Quillen adjunction

$$L_! : \mathbf{AQFT}(\mathbf{C}, \perp)^{\mathrm{ho}W} \xrightarrow{\longrightarrow} \mathbf{AQFT}(\mathbf{C}, \perp)^W : L^*$$

If L is a *reflective orthogonal localization*, then this is a Quillen equivalence.

- **!!!** Strictification theorems for the homotopy time-slice axiom for AQFTs on Loc_1 , $CLoc_2$ and Haag-Kastler-type Loc_m/M .
- **Rem:** Very different behavior to topological QFTs (via locally constant factorization algebras on \mathbb{R}^m) $\iff \mathbb{E}_m$ -algebras [Lurie, Ayala/Francis]

Alexander Schenkel

♦ Input data: A natural collection $\{\mathcal{F}(M), Q_M, \omega_M\}_{M \in \mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M), Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.

- ♦ Input data: A natural collection $\{\mathcal{F}(M), Q_M, \omega_M\}_{M \in \mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M), Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.
- Central hypothesis: Green-hyperbolic complexes, i.e. there exists (pseudo-)natural family of retarded/advanced Green's homotopies

$$\left\{\Lambda_K^\pm \in \left[\mathcal{F}_K(M), \mathcal{F}_{J_M^\pm(K)}(M)\right]^{-1} \, : \, \partial \Lambda_K^\pm = \mathrm{incl}\right\}_{K \subseteq M \text{ compact}}$$

- ♦ Input data: A natural collection $\{\mathcal{F}(M), Q_M, \omega_M\}_{M \in \mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M), Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.
- Central hypothesis: Green-hyperbolic complexes, i.e. there exists (pseudo-)natural family of retarded/advanced Green's homotopies

$$\left\{\Lambda_K^{\pm} \in \left[\mathcal{F}_K(M), \mathcal{F}_{J_M^{\pm}(K)}(M)\right]^{-1} \, : \, \partial \Lambda_K^{\pm} = \mathrm{incl}\right\}_{K \subseteq M \text{ compact}}$$

Thm: [Benini/Musante/AS] One can construct from this data an AQFT $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^{\mathrm{hoCauchy}}.$

- ♦ Input data: A natural collection $\{\mathcal{F}(M), Q_M, \omega_M\}_{M \in \mathbf{Loc}_m}$ of free BV theories [Costello/Gwilliam], i.e. $(\mathcal{F}(M), Q_M)$ is a complex of differential operators and ω_M is a (-1)-shifted symplectic structure.
- Central hypothesis: Green-hyperbolic complexes, i.e. there exists (pseudo-)natural family of retarded/advanced Green's homotopies

$$\left\{\Lambda_K^{\pm} \in \left[\mathcal{F}_K(M), \mathcal{F}_{J_M^{\pm}(K)}(M)\right]^{-1} \, : \, \partial \Lambda_K^{\pm} = \mathrm{incl}\right\}_{K \subseteq M \text{ compact}}$$

Thm: [Benini/Musante/AS] One can construct from this data an AQFT $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^{\mathrm{hoCauchy}}.$

Ex: Linear Yang-Mills theory [Benini/Bruinsma/AS]

 \diamond Time-orderable prefactorization algebras on Loc_m [Benini/Perin/AS]:

 \diamond Time-orderable prefactorization algebras on Loc_m [Benini/Perin/AS]:

 \diamond Time-orderable prefactorization algebras on Loc_m [Benini/Perin/AS]:

 \diamond Time-orderable prefactorization algebras on Loc_m [Benini/Perin/AS]:

♦ With some Lorentzian geometry, one shows that there exists an operad morphism $\Phi : t\mathcal{P}_{\mathbf{Loc}_m} \rightarrow \mathcal{O}_{(\mathbf{Loc}_m, \perp)}$ to the AQFT operad.

 \diamond Time-orderable prefactorization algebras on Loc_m [Benini/Perin/AS]:

- ♦ With some Lorentzian geometry, one shows that there exists an operad morphism $\Phi : t\mathcal{P}_{\mathbf{Loc}_m} \rightarrow \mathcal{O}_{(\mathbf{Loc}_m, \perp)}$ to the AQFT operad.
- Thm: [Benini/Perin/AS] For target $\mathbf{T}=$ cocomplete SM 1-category, we have an equivalence of categories

$$\Phi_{!} : \mathbf{tPFA}_{m}^{\mathrm{Cauchy}, \mathbf{add}} \xrightarrow{} \mathbf{AQFT}(\mathbf{Loc}_{m}, \bot)^{\mathrm{Cauchy}, \mathbf{add}} : \Phi^{*}$$

 \diamond Time-orderable prefactorization algebras on Loc_m [Benini/Perin/AS]:

- ♦ With some Lorentzian geometry, one shows that there exists an operad morphism $\Phi : t\mathcal{P}_{\mathbf{Loc}_m} \rightarrow \mathcal{O}_{(\mathbf{Loc}_m, \perp)}$ to the AQFT operad.
- Thm: [Benini/Perin/AS] For target $\mathbf{T}=$ cocomplete SM 1-category, we have an equivalence of categories

$$\Phi_{!} : \mathbf{tPFA}_{m}^{\mathrm{Cauchy}, \mathbf{add}} \xrightarrow{} \mathbf{AQFT}(\mathbf{Loc}_{m}, \bot)^{\mathrm{Cauchy}, \mathbf{add}} : \Phi^{*}$$

♦ Open problem: Generalization to $\mathbf{T} = \mathsf{SM} \infty$ -category, in particular $\mathbf{T} = \mathbf{Ch}_{\mathbb{K}}$? In this case there are so far only example-based comparisons [Gwilliam/Rejzner, Benini/Musante/AS].

Alexander Schenkel

♦ Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!

- ♦ Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- ♦ Conjecture: Consider the subcategory $Cau_m \subseteq Loc_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathrm{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathrm{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

- ♦ Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- ♦ Conjecture: Consider the subcategory $Cau_m \subseteq Loc_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathrm{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathrm{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

♦ Implication: Each $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^W$ has an underlying representation of the Lorentzian bordisms that captures time evolution, but ignores spatial locality associated with non-Cauchy morphisms $f: M \to N$.

- ♦ Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- ♦ Conjecture: Consider the subcategory $Cau_m \subseteq Loc_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\operatorname{Cau}_m[\operatorname{Cauchy}^{-1}] \simeq \operatorname{LBord}_m[\operatorname{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

♦ Implication: Each $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^W$ has an underlying representation of the Lorentzian bordisms that captures time evolution, but ignores spatial locality associated with non-Cauchy morphisms $f: M \to N$.

Prop: [Bunk/MacManus/AS; work in progress] The above holds true in spacetime dimension m = 1. (... and quite likely also in general dimension)

- ♦ Working with globally hyperbolic Lorentzian manifolds and Cauchy surfaces, all bordisms are cylinders $M \cong \mathbb{R} \times \Sigma$, but with rich geometry!
- ♦ Conjecture: Consider the subcategory $Cau_m \subseteq Loc_m$ given by all objects, but only Cauchy morphisms. I believe that its localization

$$\mathbf{Cau}_m[\mathrm{Cauchy}^{-1}] \simeq \mathbf{LBord}_m[\mathrm{All}^{-1}]$$

is equivalent to a Stolz-Teichner-style globally hyperbolic Lorentzian bordism category, localized at all bordisms.

- ♦ Implication: Each $\mathfrak{A} \in \mathbf{AQFT}(\mathbf{Loc}_m, \bot)^W$ has an underlying representation of the Lorentzian bordisms that captures time evolution, but ignores spatial locality associated with non-Cauchy morphisms $f: M \to N$.
- **Prop:** [Bunk/MacManus/AS; work in progress] The above holds true in spacetime dimension m = 1. (... and quite likely also in general dimension)
 - Open problem: What corresponds on the FFT side to the additional AQFT structure given by spatial locality? Is this related to extended field theories?

 $\diamond\,$ In examples arising in physics, one typically has that

 $\mathfrak{A}(M) = \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \in \mathbf{Alg}_{\mathsf{uAs}}(\mathbf{Ch}_{\mathbb{K}})$

 $\diamond\,$ In examples arising in physics, one typically has that

$$\mathfrak{A}(M) = \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \in \mathbf{Alg}_{\mathsf{uAs}}(\mathbf{Ch}_{\mathbb{K}})$$

♦ *Well-known problem:* Interesting derived stacks are almost never affine! Example: Classifying stack BG = [*/G] for G reductive affine group scheme $\rightsquigarrow \mathcal{O}(BG) \simeq N^{\bullet}(G, \mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- ♦ *Well-known problem:* Interesting derived stacks are almost never affine! Example: Classifying stack BG = [*/G] for G reductive affine group scheme $\rightarrow \mathcal{O}(BG) \simeq N^{\bullet}(G, \mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules $\mathfrak{A}(M) = \operatorname{QCoh}\left(\operatorname{derived} \operatorname{moduli} \operatorname{stack} \operatorname{of} \operatorname{fields}\right)_{\hbar} \in \operatorname{Alg}_{\mathbb{E}_{0}}\left(\operatorname{dgCat}_{\mathbb{K}}\right)$

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- ♦ *Well-known problem:* Interesting derived stacks are almost never affine! Example: Classifying stack BG = [*/G] for G reductive affine group scheme $\rightsquigarrow \mathcal{O}(BG) \simeq N^{\bullet}(G, \mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules $\mathfrak{A}(M) = \operatorname{QCoh}\left(\operatorname{derived} \operatorname{moduli} \operatorname{stack} \operatorname{of} \operatorname{fields}\right)_{\hbar} \in \operatorname{Alg}_{\mathbb{E}_{0}}\left(\operatorname{dgCat}_{\mathbb{K}}\right)$

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- ♦ *Well-known problem:* Interesting derived stacks are almost never affine! Example: Classifying stack BG = [*/G] for G reductive affine group scheme $\rightsquigarrow \mathcal{O}(BG) \simeq N^{\bullet}(G, \mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- $\diamond \ \ Way \ out: \ \ [CPTVV] \ \ Assign instead quantizations of dg-categories of modules \\ {\mathfrak A}(M) \ = \ \ {\rm QCoh} \Big({\rm derived moduli stack of fields} \Big)_{\hbar} \ \in \ {\bf Alg}_{{\mathbb E}_0} \big({\rm dgCat}_{{\mathbb K}} \big)$
- - ♦ The formal theory of such non-affine AQFTs was studied in a simpler 2-categorical context (replace $dgCat_{\mathbb{K}}$ by $Pr_{\mathbb{K}}$) by [Benini/Perin/AS/Woike].

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- ♦ *Well-known problem:* Interesting derived stacks are almost never affine! Example: Classifying stack BG = [*/G] for G reductive affine group scheme $\rightsquigarrow \mathcal{O}(BG) \simeq N^{\bullet}(G, \mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ♦ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules $\mathfrak{A}(M) = \operatorname{QCoh}(\operatorname{derived} \operatorname{moduli} \operatorname{stack} \operatorname{of} \operatorname{fields})_{\mathfrak{c}} \in \operatorname{Alg}_{\mathbb{E}_0}(\operatorname{dgCat}_{\mathbb{K}})$
- $\begin{array}{l} \text{Def: A non-affine AQFT is a } \mathbf{dgCat}_{\mathbb{K}}\text{-valued algebra } \mathfrak{A} \in \mathbf{Alg}_{\mathcal{P}_{(\mathbf{C},\perp)}}(\mathbf{dgCat}_{\mathbb{K}})\\ \text{ over the factor } \mathcal{P}_{(\mathbf{C},\perp)} \text{ of the AQFT operad } \mathcal{O}_{(\mathbf{C},\perp)} = \mathcal{P}_{(\mathbf{C},\perp)} \otimes \text{uAs.} \end{array}$
 - ♦ The formal theory of such non-affine AQFTs was studied in a simpler 2-categorical context (replace $dgCat_{\mathbb{K}}$ by $Pr_{\mathbb{K}}$) by [Benini/Perin/AS/Woike].
 - **Ex:** (i) Orbifold σ -models with fields $\phi: M \to [X/G_{\text{finite}}]$ [Benini/Perin/AS/Woike]

 $\diamond\,$ In examples arising in physics, one typically has that

$$\mathfrak{A}(M) \,=\, \mathcal{O}\Big(\mathsf{derived moduli stack of fields}\Big)_{\hbar} \,\in\, \mathbf{Alg}_{\mathsf{uAs}}\big(\mathbf{Ch}_{\mathbb{K}}\big)$$

- ♦ Well-known problem: Interesting derived stacks are almost never affine! Example: Classifying stack BG = [*/G] for G reductive affine group scheme $\rightsquigarrow \mathcal{O}(BG) \simeq N^{\bullet}(G, \mathbb{K}) \simeq \mathbb{K} = \mathcal{O}(*)$ forgets the group
- ◊ Way out: [CPTVV] Assign instead quantizations of dg-categories of modules

$$\mathfrak{A}(M) = \operatorname{QCoh}\left(\operatorname{derived} \operatorname{moduli} \operatorname{stack} \operatorname{of} \operatorname{fields}\right)_{\hbar} \in \operatorname{Alg}_{\mathbb{E}_{0}}\left(\operatorname{dgCat}_{\mathbb{K}}\right)$$

- - ♦ The formal theory of such non-affine AQFTs was studied in a simpler 2-categorical context (replace $dgCat_{\mathbb{K}}$ by $Pr_{\mathbb{K}}$) by [Benini/Perin/AS/Woike].
 - **Ex:** (i) Orbifold σ -models with fields $\phi: M \to [X/G_{\text{finite}}]$ [Benini/Perin/AS/Woike]
 - (ii) Non-Abelian Yang-Mills theory on spatial lattices [Benini/Pridham/AS]

Alexander Schenkel