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BV-BFV Approach to General Relativity

Abstract

This thesis is devoted to the study of different formulations of General Relativity* (GR)
as a a fundamental theory of the gravitational interaction in the setting of Cattaneo, Mnev
and Reshetikhin (CMR) on manifolds with boundary. The Batalin (Fradkin) Vilkovisky
formalisms (BV and BFV) were joined by CMR** to associate to a BV gauge theory on
a space-time manifold M a correspondent BFV structure on its boundary M, and a set
of axioms for general gauge theories was proposed in this context, in order to have a neat
quantisation scheme.

The present work is aimed at testing the axioms on different, classically equivalent for-
mulations of General Relativity, namely the Einstein Hilbert metric theory of gravity, the
Palatini Holst®’ tetrad formulation of GR and two BF-like theories that go under the name
of Plebanski action® and McDowell-Mansouri action”.

We prove that only some of these formulations satisfy the CMR axioms, thus inducing a
BV-BFV theory: the Einstein Hilbert theory, for all manifolds with boundary of dimension
d + 1 # 2 with spacelike or timelke boundary components, and the BF-formulation of the
McDowell-Mansoury action, under some natural regularity assumptions on the field B.

The classical canonical analysis for the Einstein Hilbert and the Palatini Holst actions
is also discussed, and we show how the machinery is capable of recovering known results
in a straightforward way, yielding in addition an explicit symplectic characterisation of the
phase space of the theory.

This is a first step in the programme of CMR quantisation of gauge theories on manifolds
with boundary, applied to the fundamental, and still open case of General Relativity.
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Zusammenfassung

Diese Dissertation ist dem Studium verschiedener Formulierungen der Allgemeinen Rel-
ativititstheorie (AR) als Grundtheorie der Gravitationswechselwirkung, im Rahmen des
Cattaneo, Mnev, Reshetikhin Formalismus tiber Mannifaltigkeiten mit Rand gewidmet. Um
durch die Verbindung der Formalismen von Batalin (Fradkin) und Vilkovisky, einer BV-
Theorie tber einer Mannigfaltigkeit mit Rand M eine entsprechende BFV-Theorie iiber
threm Rand zu assoziieren, haben CMR Axiome vorgeschlagen, die eine Eichtheorie er-
fillen muss, um ein ordentliches Quantisierungsschema zu erlauben.

Diese Arbeit testet diese Axiome fiir verschiedene, klassisch dquivalente Formulierungen
der AR: der Einstein-Hilbert-Theorie der Schwerkraft, der Palatini-Holst-Formulierung
der AR, sowie zwei BF-ihnlichen Theorien, die Plebanksi, b.z.w. MacDowell-Mansouti-
Theorie genannt werden.

Wir beweisen, dass nur manche dieser Formulierungen die CMR Axiome erfillen, und
somit eine BV-BFV Theorie induzieren: die Einstein-Hilbert-Theorie, fir alle Mannig-
faltigkeiten mit Rand in Dimension d + 1 # 2 mit Zeit/Raum-artigem Rand, und die
MacDowell-Mansouri-Theorie, mit natiitlichen Annahmen tber die Felder.

Die klassische, kanonische Analysis fiir die Einstein-Hilbert und die Palatini-Holst Wirkun-
gen wird auch diskutiert, und wir zeigen, dass der Formalismus in der Lage ist, bekannte
Ergebnisse in einfacher Weise zu reproduzieren, und ausserdem eine explizite symplektis-
che Beschreibung des Phasenraums ermdoglicht.

Dies ist ein erster Schritt des CMR-Programmes zur Quantiesierung der Eichtheorien
iber Mannifaltigkeiten mit Rand, angewandt auf das fundamentale offene Problem der
Allgemeinen Relativititstheorie.
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Introduction

One of the most important tasks of modern theoretical and mathematical physics is that of
formalising the notion of quantisation of a physical theory, in such a way that established
results can be recovered, and that the process of quantising classical field theories can be
understood within a well defined mathematical framework.

Learning from the algebraic lesson taught by category theory, one can arguably think
that, whatever the appropriate notion of quantisation eventually turns out to be, it should
be understood as a functor between two adequately chosen categories, encoding and joining
on one hand the data of classical field theories, and on the other their quantum counter-
part. In this direction have been focused the efforts of axiomatic field theory of Atiyah and
Segal '™ 'and of Costello'? and Lurie "’
dism with additional geometric data, i.e. manifolds with boundary and possibly corners,

, more recently. In this sense, the notion of cobor-

becomes the source category on which classical field theory is cast: higher codimension
manifolds representing objects and lower codimension ones representing morphisms, and
morphisms between them.

On the other hand, much has been learned by the mathematical physics’ community
from the successful endeavours of Becchi, Rouet, Stora, Tyutin'* (BRST), as well as Batalin,
(Fradkin) and Vilkovisky'>!® (B(F)V), to understand the perturbative quantisation of gauge
theories in the framework of cohomological resolutions of quotients. There, instead of
making sense of integrals on some (generically non smooth) reduced space of fields, one
is able to work with some appropriate replacement, at the price of dealing with non-physical



fields to encode gauge symmetries. This has been hinting that physical states, and the pazh
integral itself should be related to the cohomology of an appropriate complex, and this
technology has been proven successful where other methods fail.

The natural step would be that of putting these ideas together: keeping the interpretation
of path integration as some a/gebraic entity, while casting it in an axiomatic way and clarifying
the functoriality of some process that we might hope to call quantisation.

A recent attempt in this direction came from Cattaneo, Mnév and Reshetikhin®** (CMR)
that understood that the B(F)V formalism is flexible enough to treat BV structures on
manifolds with boundaries in such a way that the gluing becomes a natural operation, thus
setting the stage for a possible axiomatic approach to boundary BV quantisation (see also !’
for gluing of manifolds in the general framework of synthetic differential geometry). They
were able to show” that a large class of physically relevant theories satisfy their BV-BFV ax-
ioms, i.e. they induce a BFV structure on the boundary, when the input data is that of a BV
structure on the bulk manifold. Furthermore, introducing the notion of extended theory, they
showed that this induction process is self-similar, in the sense that the induced boundary
structure might furthermore induce a compatible theory on its boundary (when the bulk
manifold has corners, indeed). The rich machinery of AKSZ (Alexandrov, Kontsevich,
Schwarz and Zaboronsky'®) satisfies rather naturally the BV-BFV axioms, and provides
important examples of extended theories.

The key observation in CMR is that one needs some compatibility between the bulk
BV structure and the boundary BFV structure for the state associated to the bulk to be a
cocycle (and hence to define a physical state). At the semiclassical level, the fundamental
compatibility condition is that the failure of the bulk action to be the Hamiltonian function
for the BV operator should be given by the pullback of the boundary Noether 1-form. This
can always be achieved in terms of a larger space of boundary fields on which the differ-
ential of the Noether 1-form is degenerate. The crucial assumption is that the symplectic
reduction of this 2-form should be smooth.

The proposed quantisation procedure” is a modified version of the BV quantisation,
whenever the bulk-to-boundary compatibility can be transferred to the quantum setting;
This is different from the usual BEV Hawmiltonian analysis of field theories, precisely due to
this novel compatibility relations between bulk and boundary structures, which imply that
the gauge fixing (and the associated bulk BV-quantisation) is controlled by the cohomo-
logical data coming from the quantisation of the boundary.

This is a first step in joining the two strands together, as one can view the higher co-
dimension theories as the objects in some suitable category (encoding classical data), while
the morphisms and higher transformations being interpreted as lower co-dimension man-
ifolds, all enriched by the respective extended-BV-BFV structures.

This promising new way of looking at gauge theories has been tested already on a series



of examples. For instance, in the first CMR paper3 a long chapter is dedicated to casting
fundamental theories like Yang Mills, Chern Simons and the broad class of AKSZ theories
in the new formalism. The CMR quantisation of abelian BF theory has been worked out
in detail® .

It is therefore expected that the formalism be challenged with, possibly, one of the most
hard-to-handle gauge theories: General Relativity (GR). The aim of this PhD thesis is in
fact that of initiating the journey of BV-BFV quantum gravity, by performing a from scratch
analysis of different formulations of GR, from the point of view of the BV-BFV formalism
of CMR.

A plethora of actions

In this work we consider General Relativity as the mathematical theory of the gravitational
interaction, encoded in the fundamental equivalence principle and the Einstein field equa-
tions for a pseudo-Riemannian metric on a space-time manifold M, and we will make a
tour through its different formulations. We start from the older formalism of Einstein and
Hilbert "%, where the basic field is a pseudo-Riemannian metric, to more abstract formula-
tions where the metric is seen as a derived quantity.

The Palatini-Holst formalism®’ is taken into account, where the basic fields are chosen
to be a connection in the associated bundle of the frame bundle, and a section of the
frame bundle itself. The Plebanski formalism® and other formulations of gravity’, instead,
consider even the frame field to be a derived entity, which comes into play only when the
equations of motion are enforced.

The literature in the field is thick and immensely rich. Many attempts in view of a direct
canonical quantisation are to be mentioned'*****_ and yet the community working in
quantum gravity is profoundly divided into different schools of thought, S#ng Theory and
Loop Quantum Gravity being the two main lines of research.

From a sort of super partes view point, we decided to analyse the different possible the-
ories without necessarily backing one or the other description of GR, and we have found
some clear differences in applying our formalism to this example or the other. We believe
that this phenomenon is of non-trivial relevance, if we have confidence in the process of
falsification of scientific theories, as well as their refinement through conflicting theoretical
or experimental outcomes.

In particular, we have shown that while the Eistein Hilbert formulation allows for an
essentially straightforward BV-BFV treatment, the Palatini-Holst formalism does not, and
in a robust way. Since the BV-BFV axioms essentially state the compatibility of the sym-
metries with the boundary data, a first mathematical interpretation of this result could tell



us that the phase space of Palatini-Holst gravity is far from being a smooth space.

On the other hand, further generalisations that describe GR as broken BF theories, such
as the Plebanski action or the McDowell Mansouri action in the BF formalism, exhibit a
better behaved BV-BFV structure, even if still not enough to satisfy the CMR axioms.

We will see that satisfying the BV-BFV axioms when diffeomorphisms are into play is
far less trivial than one would expect by looking at other fundamental theories such as Yang
Mills. This somehow reflects the more complicated nature of gravity and its resistance in
being treated in the same framework of ordinary gauge theories.

In particular, the very fact that soze formulations of GR, which would otherwise be re-
garded as classically equivalent, fail to yield a well defined BV-BFV theory might be hinting
that they are not truly suitable for the programme of (perturbative) quantisation. In this
sense the CMR axioms might be taken as a criterion to decide which fundamental descrip-
tion should be chosen. The very way one theory or another fails to satisfy the axioms
tells us something about which potentials can be chosen in the action functional, in order
to grant the CMR compatibility with the boundary, and guides us in the selection of an
appropriate action functional.

Einstein Hilbert action

In Chapter 3 and 4 the Einstein Hilbert formulation of General Relativity is taken into
account as the classical input to construct an extended BV theory.

After some training with one dimensional examples in Chapter 3, we tackle the general
problem of the BV-BFV structure of General Relativity for any d + 1 # 2 spacetime
dimensions. The case d = 1 has to be treated separately, owing to the presence of a larger
invariance, and it will be done in a further development of the present work. It is interesting
to notice that our technique does not work in d = 1, namely the BV-BFV theory fails if we
do not consider the appropriate symmetries.

Owing to the complexity of the calculations, we resort to two procedures. One is the
choice of a preferred set of coordinates (Section 4.2) that makes the metric block-diagonal
on the boundary. The second one is the adoption of the ADM variables (Arnowitt Deser
Misner®*! | in Section 4.3). This is done only in a neighborhood of the boundary, which
is required to be either space-like or time-like, and without asking global hyperbolicity,
as opposed to what is usually done in the literature. What this means, more precisely,
is that one has to impose some compatibility with the boundary of the allowed pseudo-
Riemannian structures. In particular, we will restrict the space of classical fields to those
Lorentzian metrics on M such that their residual signature when restricted to a boundary
component is either space-like or time-like. We will eventually show that the two procedures



yield equivalent results once some compatibility conditions are enforced, clarifying what it
means to choose such adapted coordinates.

Notice that global hyperbolicity turns out to be an unnecessary restriction for what con-
cerns the canonical structure. We work in a more general context where all the results
can be carried out without requiring any global equal-time slicing. An improvemement in
generality for what concerns the canonical structure and the compatibility with symmetries
goes in the direction of path integral quantisation, where contributions from outside the
critical locus of the action must be taken into account. So even if global existence and
uniqueness of solutions to the field equations is not granted for non globally hyperbolic
structures, it is important that the statements about the canonical structure hold true more
generally.

The main result of Chapter 4 is that the extended BV theory of gravity in the Einstein
Hilbert formalism yields a BV-BFV structure when the above mentioned conditions on
the boundary are met (Theorem 4.11). The explicit expressions for the relevant quantities
are given in a local Darboux chart and we automatically recover the known Hamiltonian
formulation of GR, including the algebra of constraints, from the boundary data (Theorem
4.12). As a byproduct we can show that the algebra of constraints yields a non-trivial
example of a coisotropic structure that does not manifestly come from a Lie algebra action,
and yet is linear in the ghost fields. Indeed, the structure constants are replaced by structure
Sfunctions, depending on the metric on the boundary (c.f. Section 4.4.2). This addresses a
question posed by Blohmann, Fernandes and Weinstein® .

We observe that the BV-BFV machinery yields interesting results already in the classical
case. By interpreting the boundary terms as a 1-form on the space of (pre-)boundary
fields (the Noether form) we are able to recover part of the Hamiltonian description of
general relativity. In fact we are able to write down the symplectic form on the phase
space - the symplectic reduction of the space of restriction of fields and normal jets to the
boundary - explicitly (more on this in Section 2.1). We argue that this explicit description
of the true phase space of the system through symplectic reduction (when possible) gives
a cleaner understanding of the canonical relations among fields than the usual Poisson
bracket formalism.

Turning on the symmetries by extending the space of fields according to the BV/BRST
prescriptions (Chapter 2, Section 2.2) and performing the CMR boundary analysis, we are
then able to recover the rest of the canonical data, i.e. the algebra of canonical constraints
and the residual gauge symmetry on the boundary, in the form of an induced (degree 1)
action functional. The Dirac analysis of constraints®® is greatly simplified by the tools
of symplectic geometry and the interpretation of the boundary action as embodying the
resolution of the coisotropic submanifold defined by the constraints. As a matter of fact
we believe that this procedure should become a standard one for the canonical analysis of



classical field theories.

Moreover, all of the one-dimensional models we analysed also satisfy the CMR axioms
(c.f. Chapter 3). We consider both pure gravity and scalar matter coupled with the gravita-
tional field, as well as a Robertson Walker cosmological model coupled with scalar matter,
following Hartle and Hawking®'. In the latter case, we again find that the boundary action
automatically encodes the algebra of constraints, in the form of (a reduced version of) the
Wheeler DeWitt Hamiltonian constraint®*.

Palatini-Holst action

The first non-metric theory of the gravitational interaction that we approach in this thesis is
the Palatini-Holst (PH) formulation®’, which has the interesting feature of embedding GR
in the usual framework of gauge theories, by making it a theory of principal connections.
Chapter 5 is devoted to this.

The main idea is that of relaxing the requirement that the connection be dependent
on the metric (as it is the case of the Levi-Civita connection) by letting the compatibility
become dynamical, i.e. encoded in an Euler Lagrange equation for a new variational prob-
lem. Instead of considering the pseudo-Riemannian metric as a fundamental field, in the
Palatini-Holst theory it is regarded as a derived quantity constructed from a co-tetrad, i.e.
a section of the frame bundle.

This means that the two theories are equivalent only oz shell, that is on the critical locus
of the action, i.e. on those field configurations that solve the equations of motion. As we
will see, this eguivalence-on-shell does not say much on the symmetries of the action and on
their compatibility with the boundary, or on the structure of the reduced phase space.

In Chapter 5, Section 5.2, we will show how to describe the symplectic space of boundary
fields - the (non reduced) phase space of the system - by providing an explicit expression
for the symplectic structure, and clarifying the Hamiltonian picture of GR in the tetrad
formalism.

We will then turn to the BV-framework, and to its BFV counterpart, by presenting a
natural result that implements the diffeomorphisms as gauge symmetries in such setting,
for all theories of differential forms on a principal bundle (like the present one). This is
necessary to extend the classical theory to a BV theory on the bulk manifold M. The main
result, to be found in Section 5.3, Theorem 5.10, will state that the BV Palatini-Holst theory
does not satisfy the BV-BFV axioms, and therefore does not induce a well defined BFV
structure on the boundary dM.

We stress that this is a strong deviation from the Einstein Hilbert theory, and it crucially
implies that there is no way to retain the required compatibility conditions between bulk and



boundary structures. More precisely, the failure is of the pre-boundary structure to be pre-
symplectic and to allow for a smooth symplectic reduction. This means in particular that the
reduced phase space (most likely non smooth) does not have a smooth BFV replacement
induced from the bulk.

In Section 5.4 we will test the idea of dynamically implementing the Ha/f-Shel/ constraint,
i.e. compatibility between the connection and the frame field, that fixes the independent
principal connection to the Levi Civita connection. The classical phase space and the
canonical structure are found in a straightforward way. In the BV setting we prove that the
said constraint is coisotropic in the space of bulk fields and symmetry-invariant, and yet we
show that this will only worsen the singularity that is found when adopting the BV-BFV
approach (Theorem 5.15).

This result poses an important question about what variational principles that describe
the same Euler Lagrange equations should be considered truly equivalent, and which should
be regarded as better guantisable. The BV-BFV axioms might then be used as a criterion to
determine whether a given variational principle has better chances than others to yield a
sensible quantisation theory, if we believe that whatever quantisation eventually turns out
to be, it should essentially be a functorial association of a suitable target category of linear
objects, to the source category of space-time cobordisms with structure.

In other words, the naturality of the requirement of a bulk theory to be compatible
with its boundary data, makes it hard to think that a correct notion of quantisation can be
developed without taking this requirement into account.

BF-like actions for General Relativity

In Chapter 6 we will go one step further in abstraction and consider the tetrad field as a
derived quantity as well. Retaining the geometric data of a principal bundle with connection
on the space time manifold M, the basic field will be chosen to be any two form B with
values in the Lie algebra, and the action functional will be a modification of the topological
BF action.

Topological theories of the BF kind exhibit a large group of symmetries under the action
of which all solutions to the field equations are equivalent. The theory has no local degrees
of freedom, and clearly some symmetry breaking must be taken into account if we want
it to be a model for General Relativity, which instead has two local physical degrees of
freedom?®. Different ways of breaking this symmetry will generate different realisations of
General Relativity as a BF theory?»%3!,

We will analyse two of these realisations, first the (non-chiral) Plebanski theory®*!,

when the symmetry breaking is realised through the introduction of a suitable Lagrange



multiplier, which can be considered as a singular quadratic potential term for the field
B. Later we will turn to the BF version of the McDowell-Mansouri action for General
Relativity, which achieves symmetry breaking at the level of the Lie algebra instead, in a
sort of Higgs-like fashion.

The two theories have different interesting features and analysing their interaction with
diffeomorphisms will tells us something more on the compatibility of such an algebra of
symmetries with Lagrange multipliers and potential terms, in relation to the boundary.

As a matter of fact, the main result of Section 6.1 is that the non-chiral Plebanski formu-
lation does not satisfy the CMR axioms, and therefore does not induce a globally smooth
symplectic reduction, even though, under some regularity assumptions for the fields B its
singularity is much more tame than the Palatini-Holst version presented in Chapter 5. The
explicit implementation of diffeomorphisms (Proposition 5.8) yields the important obser-
vation that when considering Lagrange multipliers and relative constraints, their invariance
with respect to the symmetries is not a trivial issue. Our result shows in fact that the main
source of singularity in the BV Plebanski theory comes precisely from the terms needed to
establish the invariance of the constraints under space-time diffeomorphisms.

This already suggests that the particular way we break the symmetry does indeed matter
when we explicitly consider symmetries, even if the action functional has a critical locus
which is diffeomorphic to that of Einstein and Hilbert. As a matter of fact, in the BF
formulation of McDowell Mansouri theory, where the symmetry breaking is performed by
introducing a regular potential term, the problem associated with the Lagrange multipliers
is not present anymore.

In Section 6.2 we will show that under appropriate regularity conditions for the field B,
the BV-extended BF formulation of the McDowell-Mansouri action for General Relativity
does indeed satisfy the CMR axioms and therefore yields a BV-BFV structure.



Lagrangian field theories on manifolds

with boundary

In this introductory Chapter we will expound the basic ideas and mathematical tools that
will be fundamental throughout the rest of the work. We will present first the general
picture of field theories on manifolds with boundary, and then we will dwell on the BV-
BFV machinery, and the relationship with the BRST formalism for gauge theories.

This work is a first step in the programme of BV-BFV quantisation of General Relativity
and we will be focusing mainly on the classical framework. Nonetheless, being quantisation
the final goal, we shall briefly review the ideas underlying the boundary BV quantisation

technique, as recently proposed by Cattaneo Mnév and Reshetikhin®.



2.1 Field Theory with boundary

It is customary to describe classical field theories by means of an action functional § on
some space of fields ¥, usually sections of vector bundles or sheaves, with the property of

being /ocal, i.e. dependent on the fields and a finite number of derivatives in the form

S = f L(p,0'¢,00¢,...] 2.1)
M

with I, J multiindices and L a Lagrangian density.
The first example to bear in mind is given by classical mechanics, seen as a field theory
where fields are paths in a target manifold. For simplicity we will choose R as a target, the

space of fields being F = Maps([a, b], R), and the action reads:

b

1
Slql = f (Eméf - V(q)) dt

a

with ¢ € ¥, and V a potential. The classical machinery then extracts information from
this data by solving the associated variational problem, meaning that the physica/ dynamical
content is encoded in the critical locus of the functional S, which yields the Euler Lagrange
equations.

On the other hand, turning to the quantum formulation of the theory, one wishes to

interpret the factor
e S14]

as a probability amplitude, to be integrated against the “to-be-made-sense-of-measure” D,
with which one would like to endow the space of fields. Following Feynman, the physical
content of the quantum theory is encoded in the above mentioned integrals on the space
of fields, which can be made sense of perturbatively, i.e. expanding in 7 around the critical
locus of the classical action.

If on the physical side this is understood by saying that the quantum behaviour should

be a perturbation of the classical behaviour, adding guantum contributions of different orders,
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the mathematical problem becomes that of making sense of the (formal) neighbourhood
of the critical locus of S in the space of fields.

In the mentioned example of classical mechanics, this procedure is understood and it
can be fully carried out after analytical continuation, the outcome being the path integral
formulation of quantum mechanics. In that case the measure on the space of fields makes
sense and the integral is an actnal integral (using the Wiener measure, see®” for a recent
account on the subject). In passing to field theory, we will assume that things work analo-
gously, while waiting for a formal proof that the perturbative expansions through which we
define the path integral really are an approximation of a well defined mathematical object,
which behaves like an integral on the space of fields.

This involved picture is further complicated by possible extra data our theory might
enjoy, such as boundaries, for which one has to handle possibly non vanishing conditions,
and symmetries that make the critical locus degenerate.

Traditionally, the canonical/Hamiltonian analysis data (4 la Dirac®®) and the problem of
symmetries and gauge fixings have been considered separately. A great deal of literature
has tackled the problem of symmetries of field theories through the Faddeev Popov ghost
method™, later understood under the more general framework of BRST (Becchi Rouet
Stora, Tyutin'*) and ultimately generalised by Batalin (Fradkin) and Vilkovisky (B(F)V)'>!¢
to treat also symmetries that do not come from Lie algebra actions. On the other hand, the
Hamiltonian analysis of field theories has been independently developed in order to make
sense of canonical quantisation.

It was only recently that a consistent treatment of the two problems has been developed,
by allowing a gauge theory to be cast on manifolds with boundary, and understanding under
which conditions the boundary structure is compatible with the bulk data. Theories whose
symmetric data and boundary can be consistently treated together are called BV-BFYV, or
CMR (Cattaneo, Mnév, Reshetikhin) theories>*® (see Section 2.2, Definition 2.5). This
approach and technology will be the starting point of our analysis, and the basic frame-
work we will refer to in this work. The main CMR technology will be presented in this
background chapter.

This approach has many advantages, such as a compatible cutting-gluing procedure,

which allows to break topologically nontrivial manifolds into pieces, for which one might
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expect the quantisation to be simpler, as well as a powerful understanding of the quantisa-
tion procedure itself as a suitable generalisation of the Atiyah-Segal axioms for (topological)
gauge theories™'"!!. Moreover, this approach gives a clear handle on the classical theory,
providing a much cleaner understanding of the Hamiltonian approach to classical gauge the-
ories, after Dirac and his canonical constraint analysis** which is in fact a first step towards
their quantisation.

Before we begin, we would like to outline here the general idea. Consider again the
previous case of classical mechanics on an interval, Eq. (2.1). If we compute the variation

of the action and integrate by parts we get

oS = —f(mq+ Vg + fquq
———
1

EL ol

where the term EL will yield the Euler Lagrange equations, which in this case are Newton’s
equations: mg = =V".

Before interpreting the remaining boundary term, notice that the space of Cauchy data,
L.e. the information one needs to complement EL with, in order to uniquely solve the
equations of motion, is given by C = T M, i.e. the assignment of a value of position and
velocity at the boundary (at time a, or b). On the other hand, once we have a path g, i.e. a

point in F we can find its initial and final position and velocity, i.e. we have

o F — C
g v (ga), )

and equivalently for b.
Therefore, it is easy to gather that we can interpret the boundary term as the pullback

of a one form on C:
6S =el+ma—nmia, «a=mgoqe Q' (C)

and its differential w := da is nothing less than the pullback of the canonical symplectic

form on the cotangent bundle along the Legendre transform (enforcing p = mgq).
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Alternatively, if we want to avoid facing the problem of the well definiteness of the E.L.
equations at this stage, we can interpret the extra term on the boundary as the pullback
of a one form on a different space, defined as the space of germs of functions on the
boundary cross an infinitesimal interval 01 X [0, €], computed at 01 X {0}. This procedure
will generalise in a straightforward way to more general manifolds M with boundary OM
and the space of such germs will be denoted by %M. The link between these two analo-
gous descriptions is clear after the respective reduction is performed (C as a coisotropic
submanifold and %M as a presymplectic manifold).

The advantage of this point of view is already clear if we observe that for degenerate
Lagrangians the Legendre transform will not be well defined on the whole phase space,
and the Hamiltonian formalism is less trivially employed. In those situations, as it will be
clear from our discussions, the boundary Lagrangian setting will be far more fruitful (on
another approach to Lagrangian field theories see also Costello'?).

Let us sketch the general construction for classical gauge theories on manifolds with

boundary and the direction to go in order to tackle the quantum theory.

2.2 BV and BFV axioms

We will consider here a general framework for gauge field theories. First of all we fix the
space dimension, say d, and assign to a d-dimensional manifold M (possibly with boundary,
and other geometric data, like a Riemannian structure) a space of fields Fy, i.e. a Z-graded
odd-symplectic manifold, with a symplectic form €, of degree || = k together with a
local, degree k + 1 functional Sy of the fields and a finite number of their derivatives.

The equations of motion (i.e. the dynamical content of the theory) are encoded in the
Euler Lagrange variational problem for the functional § . The Z grading is sometimes
called ghost number, but it will be often replaced by the computationally friendly zoza/ degree,
which takes into account the sum of different gradings when the fields belong to some
graded vector space themselves (e.g. differential forms).

The symmetries are encoded by an odd vector field Oy € I'(T[1]M) such that [Qy, Ou] =
0. A vector field with such a property is said to be cwhomological. Q) is also referred to as

the classical BRST operator.
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Among these pieces of data some compatibility conditions are required. We give the
following definitions for different values of k. In the convention we adopt ordinary sym-
plectic manifolds are called (0)-symplectic in the graded setting. Our model for a bulk
theory will be given by

Definition 2.1. A Bl ~theory on a closed manifold M is the collection of data (Fpr, S s, Om> Qpr)
with (Fuy, Qum) a L-graded (=1)-symplectic manifold, and S yy and Qy respectively a degree O function
and a degree 1 vector field on Fyy such that

1. 10, Qm = 08y, i.e. Sy is the Hamiltonian function of Qm
2. [Owm, Oul =0, ice. Qu is cobomological.

The symplectic structure defines an odd-Poisson bracket (, ) on Fayp and the above conditions together inaply

($,5)=0 2.2)

the Classical Master Equation (CME).
S

On the other hand, the model for a boundary theory, induced in some sense to be ex-

plained, will be given by

Definition 2.2. A BEL ~theory on a closed manifold N is the collection of data (Fy, S n, On, Qn)
with (Fn, Qn) a Z-graded O-symplectic manifold, and S n and Qn respectively a degree 1 function and
a degree 1 vector field on Fy such that

1. 19y Qn = 0S N, i.e. Sy is the Hamiltonian function of Qn
2. [On, On] =0, i.e. Qn is cobomological.

This implies that S n satisfies the CME.
o4

In general one starts from a classical theory, that is an action functional S for some

space of classical fields Fj and a distribution D)y, in the bulk encoding the symmetries,
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ie. Lx(Sq) = 0 for all X € I'(Dy). The main requirement on Dy for the formalism
to make sense is that Dy, be involutive on the critical locus of S4. Notice that Dy can
be the distribution induced by a Lie algebra (group) action, in which case it is involutive
on the whole space of fields. When this is the case we will talk of the BRST formalism,
even though the setting will be slightly different from the original one (for another account
on the relationship between the BV and BRST formalism see, e.g.**). We will be mainly
interested in these types of theories, but for the sake of completeness we will sketch the
general construction.

To construct a BV theory on the bulk starting from classical data, and assuming that M
has no boundary, we must first extend the space of fields to accommodate the symmetries:
Fy ~ Fy = T7[-1]1Dy[1]. Symmetries are considered with a degree shift of +1, whereas
the dualisation introduces a different class of fields (called anti-fields) with opposite parity
to their conjugate fields, owing to the —1 shift in the cotangent functor. This yields a (—1)-
symplectic manifold, which is a good candidate to be the space of bulk fields we want to
work with.

The classical action has to be extended as well to a new local functional on ¥y, and if
we want this to satisfy the axioms of the BV theory we must impose the CME on the ex-
tended action. This process will a priori need the introduction of higher degree fields to the
space of fields in order to resolve, under some regularity assumptions, the relations among
degree 1 fields. This process of extension goes through co-homological perturbation the-

Ory35,36,15,37,4

and it will ensure us to end up with a BV structure on the bulk. However, for
a theory which is BRST-like, the extension is determined by the following straightforward

result:

Theorem 2.3. If Dy comes from a Lie algebra action, the functional S gy = S ;+ (DT, QDY on the
space of fields Foy = T*[=11Dpy[1] satisfies the CME, where @ is a multiplet of fields in D[ 1], O
denotes the corresponding multiplet of conjugate (anti-)fields and Qy is the degree 1 vector field encoding
the symmetries of Dy

Fu is then a (=1)-symplectic manifold and together with S gy and Qyy it yields a BV theory that
(minimally) extends the classical theory.

More details on the BRST formalism and how it can be embedded in the BV framework
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will be given in Section 2.4.

2.3 BV-BFV axioms on manifolds with boundary

As we already mentioned, Definition 2.2 will be a boundary model for Definition 2.1. In
what follows we will explain in which sense. Say that we start from the data defining a BV
theory, but this time we allow M to have a boundary: the requirement that tp, Qy = 6S
is (in general) no longer true. What will happen is that the integration by parts one usually
has to take into account when computing 65 will leave some non zero terms oz the boundary.

More precisely, consider the map
7T Fu — Fou 2.3)

that takes all fields and their transversal jets to their restrictions to the boundary (it is a
surjective submersion). We can interpret the boundary terms as the pullback of a one
form” @ on %M, namely

L Qu=0Sy+ma 2.4

We will call @ the pre-boundary one form.

Notice that if we are given this data, we can interpret this as a broken Bl theory, which
induces some data on the boundary. We can in fact consider the pre-boundary two form
w = 6w and if it is pre-symplectic (i.e. its kernel has constant rank) then we can define
the true space of boundary fields 7:56/\/1 to be the symplectic reduction of the space of pre-

boundary fields, namely:

Fi = Fotfer(@) 2.5)

with projection to the quotient denoted by 7 : 7?:9M — ¥, fM. If all of the above assump-

tions ate satisfied, the map 7y := 7 o 7 is a surjective submersion, the reduced two form

a)g y = @ is a O-symplectic form, and we have the following

“In full generality @ is a connection on a line bundle, yet when S y is a function on the space of fields, @
is a globally well defined 1-form, since integration by patts is a local operation in the space of fields.
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Proposition 2.4 (CMR*"). The cohomological vector field Qs projects to a cohomological vector field
Qg v 07 the space of boundary fields 7':9‘9M. Moreover Qg v 25 Hamiltonian for a function S g v the

boundary action.

We can now summarise this as follows: we will call a pre-BV-BFV theory on a d-
dimensional manifold M with boundary OM a collection of data (Fus, Sy, Our, Qar) with
(Fum, Qum) a Z-graded (—1)-symplectic manifold, and Sy and Qy respectively a degree 0

local functional and a degtree 1 vector field on Fjs such that

1. [Owm, Om] = 0,1ie. Qp is cohomological,

2. The map 7 from the space of bulk fields ) to the space of pre-boundary fields 7?3/‘,1

is a surjective submersion.
3. Qu is T-projectable to a cohomological vector field Q on 7}:9M
4. The BV-BFV formula 1pQy = S y + T is satisfied.

Definition 2.5 (CMR?). Whenever the pre-boundary 2-form @ is pre-symplectic on %M and the
symplectic reduction to the space of boundary fields (7:68M’ a)g ) can be performed, this induces the BET”
theory (ﬂaM, SgM, ZM’ a)gM) on OM.

The composition of T with the symplectic reduction map 7 : 7?5 M — T;M will yield another pre-B1/-
BEV theory, for the symplectic form )%),, and the surjective submersion tyg = m o 2 Foyg —> Fl,
satisfying axioms from (1) to (3). In this case we say that the theory is BU-BFV. Furthermore, if @ is

basic, @ = r*a,,, we say that the BV-BFV theory is exact and we have the fundamental formula

L0y Qu = 68 iy + Tyal,, (2.6)

e

The advantage of such a point of view is at least twofold. First of all, as we just saw, the
formalism is Zarge enough to be able to describe consistently what happens both in the bulk
and in the boundary. On the other hand it is flexible enough to allow for symmetries that are

more general than a Lie group action. For instance it is possible to accomodate symmetries
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that close only on shell (e.g. Poisson sigma model) or symmetries whose generators are
not linearly independent, where higher relations among the relations are required (e.g. BF
theory or other theories involving (d > 1)-differential forms).

The BV theory that we have constructed in Theorem 2.3 starting from a gauge theory
of the BRST-kind is sometimes called the minimal Bl extension of the gauge theory. When
a non trivial boundary is allowed, we will use this minimal extension as the starting point
for the BV-BFV analysis.

What one aims to establish is whether this minimal BV theory on the bulk is indeed a
BV-BFV theory. In this work we will analyse different source classical actions, all classically

equivalent, and we will determine which of these do indeed satisty the CMR axioms.

24 BV versus BRST

In our language, the data that has to be specified in order to define a gauge theory consists
essentially of a space of fields # on which a /oca/ functional is given, the action functional
S, and a distribution P in the tangent space such that S is invariant under the action of all
the vector fields in the distribution: S € C*(F)?.

We have already mentioned that this is potentially a problem for setting up a perturbative
quantisation scheme (even ahead of the well definiteness issue of the path integral), because
the critical locus of S, of which formal power series in 7 represent a formal neighborhood,
is degenerate due to the symmetries, and no perturbative expansions around classical solu-
tions can be performed.

In other words, what is happening is that in summing over all field cofigurations we are
summing over physically equivalent ones, where by equivalent we roughly mean that they lie
in the same leaf of the distribution D.

Sometimes, i.e. most of the times in physically-relevant examples, the distribution is
given by a (faithful) Lie algebra action, and it is therefore involutive on the whole space of
tields. This is a strong condition that allows us to use a very particular technique, that goes
under the name of BRST!* formalism. In this section we will outline the generalities of
this mechanism and explain how this is generalised to the BV setting,

To fix the ideas, using a simplified example, consider a function S in R3 that only depends
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on the distance from the center, that is the modulus of a vector. Such a function is clearly
invariant under the action of the group of rotations S O(3) and the distribution in this case
is given by the Lie algebra action on R® (adjoint or coadjoint action). If we interpret R® to
be the space of fields and the function S as the action, the problem now is to sum over all
configurations, without counting redundant field configurations, whose total contributions
equal the volume of the gauge group (finite in this simple example).

One would like to count each § O(3) orbit only once by integrating on a submanifold
which is transversal to all orbits (in this case a ray from the origin). This idea lies at the
heart of the concept of gauge fixing. The difference, though, is that while in this simple
example it is possible to integrate directly the space of leaves of the distribution, for the
more general examples this will not be possible and one needs a way to characterise this
space in a different way.

The BRST formalism allows us to do so by cohomologically resolving the functions on the
space of fields that are invariant under the action of a Lie group, essentially by extending

the space of fields with the Chevalley-Eilemberg complex. Let us see how, in greater detail.

2.4.1 BRST formalism and gauge fixing

To sketch a first generalisation of the previous discussion let us assume that we can encode
the data of a submanifold N transversal to the G-orbits in a function H: ¥ — g, for
which 0 is the regular value fixing N = H ~1(0). Moreover we will denote by X' a basis
of fundamental vector fields coming from the lie algebra action p: g — X(F), so that
X' = p(&"), with {£'} a basis in g.

Now, extend the space of fields to include a shifted copy of the Lie algebra:

7:min =Feo g[l] B/ (‘P’ C) (27)

We are now working in the setting of graded vector spaces (and manifolds). Shifting the Lie
algebra by 1 means considering a graded vector space concentrated in degree —1. For prac-

tical matters, we are simply declaring the elements in g to behave like Grassmann variables.
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Consider the operator
S B
Omin = ¢iX' — ECiijkja—Ck (2.8)

as a vector field on C*(Fin) = C(F) ® A°*g*, which is the g-module given by the
Chevalley-Eilemberg complex and the smooth functions on F, with the ¢;’s representing
coordinates on g[1]. It is easy to check that [Qpuin, Omin]l = 0, of degree 1, yielding a
differential on C*(%,,in), and we have that

HO(C™(Fin): Qin) = C(F)* = €= (F /) (2.9)

The idea behind the BRST formalism and gauge fixing, as we will see, is that one wants
to interpret S as a cocycle in degree zero for some operator of the space of functions,
encoding the symmetries as O, does. Since we are only interested in the cohomology, a
cocycle can be shifted by an appropriate coboundary. The problem one has to face, at this
stage, is that in order to change the representative degree-zero cocycle in a given class, one
must be able to build degree —1 coboundaries, and to do so we must extend the space of
fields once more, to be able to deal with negative degrees.

The choice of a different representative represents the gauge fixing, i.e. the choice of a
particular transversal section to the orbits in the space of fields.

Notice that we need to enlarge the space of fields in a way that the equality (2.9) is not
crucially spoiled. We do it by adding a contractible space with a deRham differential on it,

so that its contribution to the cohomology will be trivial. Namely, the space

For =g [-11@g" 3 (¢, ) (2.10)
together with the differential
0
ng = /ll—_l (211)
dc

which clearly squares to zero. Then the correct BRST space for gauge fixing is given by

ForsT = Fmin © Fgr (2.12)
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with differential Qprs7 = Omin + Qgr. The gauge fixed action will look like S, = § +
QOprsTY for some [¥| = —1 (sometimes called gauge fixing fermion).

In the simplified case we are outlining, considering the functions H; to be those that
define the submanifold N = H~!(0) we can choose the gauge fixing fermion to be ¥ :=
Hic'. The resulting gauge fixed action in this case will represent the well known Faddeev-
Popov action™.

To summarise, the BRST formalism provides a resolution of the functions on the quo-
tient, i.e. the space of leaves for the group action, in such a way that the action functional

is interpreted as a class in the cohomology of the differential Qpgrsr. Choosing a represen-

tative in the class is tantamount to the choice of a gauge fixing,

2.4.2 BRST in the BV formalism

As we said, the BV formalism is somehow an extension of the BRST formalism. This
is true in many ways: on the one hand for it allows us to treat more general symmetries
than Lie algebra actions, but also because it is potentially compatible with a BFV structure
on the boundary. In this section we would like to understand how one can embed the
BRST construction in the BV setting. We will do this in a rather general example where we
consider theories of principal connections.

The space of fields that we shall consider is the space of connections Ap on a principal
bundle G — P — M and the action functional is a local functional of the gauge connection,
that is invariant under infinitesimal gauge transformations (in the sense of principal bundle

morphisms). For instance, Yang-Mills theory is specified by
Sym = fTr(FA A xFy)
M

where * is the hodge star induced by the choice of some Riemannian or Lorentzian metric
g on the closed manifold M, whereas the trace comes from any bilinear invariant pairing

in g = Lie(G). Another example is given by the Chern Simons action on a three manifold
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Scs = f% <A,dA > +% <A,[AA] >
M
where again <, > is an invariant, bilinear non degenerate inner product in g.

The basic fields in these examples are connections A € Ap on a principal bundle P, that
can be seen as one-forms on P with values in g, or as one-forms on M with values in the
adjoint bundle adP. The symmetries are encoded by the odd fields ¢ € Q%(M,adP)[1],
that are nothing but the generators of the gauge transformations, with degree shifted by

+1. As a matter of fact the gauge transformations read
0A = dyc; oc = %[c, c]
It is possible to think of this d-operator as a vector field on the space of fields
Frin = Q' (Pg) X Q°(M, adP)[1]

and it clearly satisfies [0, ] = 0, the cohomological condition. What we are doing is again
simply considering the Chevalley-Eilemberg complex to encode the symmetry degrees of
freedom: so far, nothing new.

Now consider the total space of fields to be the shifted cotangent bundle

with
AT e QNP g[1], ¢ € QUM,ad*P)[-2]

and define the BV symplectic form to be the canonical (—1)-symplectic two form on Fpy

Qpy = f (AT, 8A) + (6¢7, 6¢)
M

where we used the canonical pairing (, ) between g and its dual.

Observe that if we are given a vector field 6 on the space F i, by taking its cotangent
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lift & we get the vector field
OprsT = Se L(T*F i) [1]

and its Hamiltonian function with respect to Qpy, denoted by S grs7 reads
.{. 1 —;—
Serst = | (A',dsc) + E(C ,[e,cl)
M

Now, denoting the new action by § =S + S grsr we can check (if M is closed)
{§,51=0

where {-,-} is the (odd) Poisson bracket induced by Qpy, whereas the gauge invariance
enforces 05 = 0 and the fact that Qpgsr squares to zero implies that {S grs7, S grs7} = 0
as well. Notice that this partly proves Theorem 2.3, stated in Section 2.2

Up until here we have rewritten the minimal BRST structure in the BV formalism, and
this will agree with what was presented in 2.4.1, mutatis mutandis. Again, to perform the

oauge fixing as we did before we would like to add the new fields
1€ Q4M,ad’P), e QUM,ad P)[-1]
and their cotangent fibres:
F = F x T*[~1] (QO[—l] X QO) (M, ad* P)

with additional fibre fields ¢ and AT, The action gets extended to
S = SBRST + f&’/l
M

together with
W™ = w+ f (6¢",6¢) + (647, 6)

M
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It is a matter of easy calculations to show that we still have
(S5, Sy = ()
and the extension of the action of the cohomological vector field reads
($,e)=2, (S AN =¢", (S )=(c)=0

This can be interpreted as the De Rham differential, through the identification A = d¢ and
¢ =da.

We can now choose a function ¢ of degree —1 such that

AT_(S_l// *_% ‘T—(SL// /ﬂ:%

oA S T e ¢ T e 51
that is to say o = % where @ are the base fields and the dagger marks the cotangent fibre

%Sext
e

776)([

fields. Therefore one writes

.-_75.&

=55 [DO]

where the integral is taken over the base fields.

Typically one chooses ¢ = f Ed;’;o (A —Ap) + ac * A to obtain the gauge fixed action

S ext

z =S+ fEdZOdAC +/ldA0(A —Ag)+ad=xA

FP-det Lorenz Extra

where the first term yields the usual Faddeev Popov determinant, the second term en-
forces the Lorenz gauge and the extra term depending on « is a non-necessary correction
that helps in simplifying later computations.

If we chose @ = 0 we would have, eliminating A by using its equation of motion, that
¢' =0. Soin the space (f:”t := Foin X {c, €} we have a coisotropic submanifold C = (¢t =

0} together with the Lagrangian £, C Fext, Reducing, we get the Lagrangian submanifold

Llﬁ = {(A, C,AT,CT) S 7: | dZO(A —Ao) = O, Cj = 0’ AT c Im(dzo)} c '_?‘;ext _ ?d
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so that finally we have

LyCFex Ly

Assume now that the principal bundle is trivial, P = M X G and the reference connection
Ap =0. Then A = Q' (M, q),d"A = 0and AT € Im(d*). So the reduced Lagrangian reads:

L, ={(A,c, A" |dA=0, " =0, A" € Im(d"))

Gauge fixing in the BV formalism is interpreted as integration over Lagrangian sub-
manifolds, and the main BV theorem states that when the extended action satisfies some
particular non trivial condition, called Quantum Master Equation (cf. below) the BV path
integral will not depend on the gauge fixing, i.e. on the particular Lagrangian submanifold.
More on this can be found in Appendix B.

By reading the BRST formalism in the BV setting one is able to observe that when the
gauge fixing is performed by means of a gauge fixing fermion, the Lagrangian submanifold
is of a very peculiar kind: it is the graph of an exact one form. This is an unnecessary
restriction, that we can conveniently get rid of in the BV framework, by simply requiring

the gauge fixing to be given by the choice of a Lagrangian submanifold.

2.5 Quantum bulk-boundary correspondence

The CMR axioms of Definition 2.5 for BV-BFV theories provide a notion of compat-
ibility between a bulk BV and a boundary BFV theory. Assume we are given an exact
BV-BFV theory in the form of bulk data (Fr, S », Om, Qur), and the respective boundary

data (ﬂaM, S g o Qg " a)g 1)> we have the fundamental CMR formula

L0, Qu = 08 i + Tyal,, (2.13)
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Now, assume we are given an operator A of degree —1 on ¥ such that A? = 0 and the

following compatibility relation holds:
(a.b)ay, = (=) (Alab) — A@b - (~)aA®D)) (2.14)

where (-, )q, is the odd-Poisson structure associated with the odd-symplectic structure
Q. Such an operator A is called BV-Laplacian. We will not go into details of the con-
struction of such an operator, whose existence is not in general granted as soon as we work
in an infinite dimensional setting, and for the general theory of BV algebras and Gestern-
haber brackets and their relationship with homological algebra we refer to the vast literature
on the subject™?*%, A brief expansion on this will be anyway considered in Appendix B.

In field theory we are interested in functions of the form g = eXp{%S} and one can
check that

Aei® =0 = %(S,S) — ihAS =0

This is called Quantum Master Equation (QME), and since we are interested in integrating g
on some Lagrangian submanifold, encoding the gauge fixing, the BV Theorem'¢ tells us
that if QME holds, we can conclude that the integral is independent of the choice of gauge
fixing (cf. Lemmas B.2 and B.3, Appendix B).

Generally, though, we start from the classical counterpart i — 0 that would be (S, S o)
(the classical master equation, CME) in the hypothesis S = )}, #"S, and M a closed man-

ifold. Then one can start computing the perturbative corrections, for instance
(S0,51) = —iAS,

and this will produce corrections to the CME. It is clear that there are obstructions, since
the above equations tell us that S is a cocycle, that we want to write as a coboundary, and
this is not possible in general.

Notice that the Classical master equation makes sense also in the co-dimensional setting,
in that it relies only on the BV bracket (-, -). We need to regularise the theory to make sense

of the full QME. Obstructions to this perturbative approach are usually given by anomalies.

TOn the contrary A does indeed always exists, in finite dimensions.
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Turning back to our bulk-boundary correspondence, let us assume that such a BV-
Laplacian is given, in addition to the BV-BFV theory, and let us require for simplicity that
AS = 0. We will need to assume a series of thing in what follows, in order to illustrate how
the BV-BFV compatibility should carry over to the quantum setting. The general theory
has been set forth by CMR in their work>, to which we refer.

Assume that we are given a polarisation in ??M such that we have the splitting in the
space of bulk fields:

Fu=Yx8B (2.15)

where B is the space of leaves of the polarisation. Moreover, as it is customary in geometric
quantisation, we will require that ag ,; Vanishes on the Lagrangian fibres of the polarisation.
These requirements are somehow natural when working with affine spaces. Finally, we will
require that Qy be concentrated in Y, and yet is nondegenerate. Notice that this is possible
only in infinite dimensions, as it is true that in finite dimensions the very requirement that
both Fy and F,), be symplectic is provably impossible to satisfy. It can be amended
precisely by asking that £, be symplectic on the fibres Y ot, equivalently that ¥y — B
be a symplectic fibration. As a matter of fact we should think of ¥, as being essentially a
BV-space Y that depends on parameters that live in the space 8.
Recalling (2.13) and splitting 6 = 0y + dg, we deduce that

OoyS =19,Q
ve T e 2.16)
0gS = —n*a?
Moreover we have
Lemma 2.6. With the above assumptions, the following formmula holds:
1 " a
E(S,S)y =S (2.17)

27



Proof. Starting from (2.13) we compute

LQMLQMQM :LQMSM + ﬂLLQﬁa’a (218)
Lo, Qy =r,0° (2.19)

then we need the following computation

LQMLQMQM = — 6LQMSM + ﬂ;,[LQaa’a
~10, Loy Qu = — 6(Lg,S) + miytsda’ — miyydtgoa’

~Tytida’ = = 8(Lg,,S) + Myt — w6t gea®

where we used [Lo,,, to,,] = to,.0u1 = 0, equation (2.19) and Proposition 2.4. Rearranging
the terms and using the BFV CME, 1.e. LQawa =659, we get an equivalence of exact forms,
hence

Lp,S = —mygia® + m3,(25%) (2.20)

Plugging this into (2.18) we get the failure of the Classical Master equation in the bulk:
1 *ad
E(SMaSM) =S (2.21)

and using the fact that Q) is concentrated on Y we obtain the result. v

The quantisation scheme, following CMR?® is as follows. First of all we have to pet-
form the quantisation of the symplectic manifold of boundary fields, for instance through
geometric quantisation. It is in fact likely that the structure of 7:66M be that of a cotan-
gent bundle. Assuming that this is the case and that @’ = —pdg, denoting by p the fiber
coordinates and by g the base coordinates, we have that % = p.

The key step is that of quantising the boundary action §9 to an operatort using the

canonical quantisation rules and standard ordering, placing all derivatives to the right:

D:=59 (q, —ihi) (2.22)
0q

In their papc:r5 CMR call it . We change the notation to avoid confusion with the BV form.
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and this will give us the following quantum compatibility relation

Lemma 2.7 (CMR?). Under all of the previous assumptions we have the fundamental formula

—

Dei = (R’A+D)ei* =0 (2.23)

which we will call Modified Quantum Master Equation (#QME).

Proof. First of all we compute Der$ = S 91 by using the splitting ) = Y X B and
the linearity in p of the action. Then we can compute
AetS = 1(1)2 (S, S)yehS = (1)2 DetS
2\h ’ h
using Lemma 2.6. v

The quantisation scheme then carries over to the bulk, under certain assumptions. As
we already mentioned, and accordingly to what happens in the closed BV case, we have to
choose a Lagrangian submanifold £ C Y to fix the gauge. Then we can define a state for

this choice of gauge fixing as a function on the base parameter space 8, namely:

P, o= f e’ € Fun(B) (2.24)
L

and the fundamental result is that a change in the Lagrangian submanifold results in a D-
exact error term, and that the state itself is D-closed. The physical Hilbert space, when D? =
0, is then interpreted as the cohomology of Din degree zero. A state is therefore a cocycle

for D and gauge fixing is nothing but the choice of a representative in its cohomology class.

2.6  General remarks

In this work we will consider several action functionals for General Relativity and the vari-
ational problems associated to them, establishing whether they satisfy the CMR axioms.
All of the functionals we consider have somehow diffeomorphic critical loci, since they de-

scribe the metric dynamics given by the Einstein Equation. At the same time it is assumed
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that the principle of general covariance lies at the foundations of all of these different for-
mulations, thus requiring that the fundamental symmetries of the theory be given by the
action of diffeomorphisms on the fields (plus possible internal symmetries, if the funda-
mental fields have additional internal degrees of freedom). This is essentially the notion of
classical equivalence of field theories.

It is important to notice that we will assume that the basic symmetries of the system
be determined for closed manifolds, i.e. when the boundary is empty. In the presence of
a boundary we will employ the same distribution of symmetries and interpret the results
so obtained. For instance we will not only consider diffeomorphisms that preserve the
boundary, as this will allow us to encode important information. Moreover, this procedure
is compatible with the interpretation of symmetries being given by the action of a cohomo-
logical vector field Q, which is defined on a cosed manifold, and the boundary structure
is induced by the failure of the Classical Master Equation. As a matter of fact, from the
fundamental BV-BFV formula

L0, Qu = 08 y + Ty, (2.25)

we get that

LQMSM = LQMLQMQM - ﬂ*MLQgMQ’gM (226)

showing how the failure of the gauge invariance in the presence of boundaries is controlled
by the boundary structure.

Strictly speaking, in fact, invariance under diffeomorphisms is broken when a boundary
is taken into account, as the integration by part will produce boundary terms that must
be compensated. This will anyway result in a canonical transformation of the symplectic
space of boundary fields, without modifying the boundary BFV structure. Looking at
the remarkable and well-known case of Chern-Simons theory, whose action is not gauge
invariant in the presence of a boundary, one can construct a line bundle over the space of
tields and recover the gauge invariance of the action by extending it to a functional on the
line bundle. A similar feature can be similarly expected for the case of General Relativity,
even though this issue will not be explicitly addressed here.

As a second remark, I would like to make a comment on the functoriality of the assignment
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of a space of fields and a BV structure to every bulk manifold, and of the boundary BFV
structure to every boundary manifold. Consider the case of GR in the Einstein Hilbert
formalism, where we have to apply the ADM decomposition in a neighborhood of the
boundary, and thus require that the Lorentzian metrics we consider be compatible with such
boundary geometry. This assignment is not functorial: the space of fields we associate to
the manifold obtained by gluing two pieces does not coincide (it is indeed smaller) than the
space of fields we could associate to the same manifold if we forget about the compatibility
conditions along the gluing submanifold.

However, we argue that this is not a crucial problem, as the relevant functoriality prop-
erties should be guaranteed when passing from the category of classical BV-BFV theories
to some appropriate category of quantum theories. At the level of cobordisms it is suffi-
cient that the infinitesimal BV-BFV structure on cylinders X X [0, €] yields a Lagrangian
submanifold of the space of boundary fields, given by the projection to the boundary of

the solutions of the Euler Lagrange equations.
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One dimensional examples

To start off with our analysis of the BV-BFV boundary structure for general relativity, we
shall consider first some simple, yet instructive 1-dimensional examples. Although some
of the results that we will find along the way can be recovered from the general picture
presented in Chapter 4, it will be possible to go a little deeper in the analysis of the boundary
structure and couple matter to pure gravity, due to the simplicity of the circumstances.

We will in fact consider the case of a pure-gravity model, to which we will add a scalar
field, and finally a Robertson-Walker cosmological model.

All of the examples presented in this Chapter (and in the rest of the Thesis) will be of
the BRST type, with gauge group given by space-time diffeomorphisms. We will therefore

construct a BV theory by minimally-extending the classical theory (c.f. Theorem 2.3).
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3.1 Pure 1-d gravity.

The simplest example of a model for gravity in one dimension is General Relativity with-
out matter on an interval. Since in one dimension the Riemann-Ricci tensor vanishes, the
classical action for pure gravity in the Einstein Hilbert formalism is given just by the cos-

mological term:
c _
Spure = Af \gdt (3.1)
1

where g € I’ (S 2T ) represents the nondegenerate metric (hence the + subscript) in one
dimension g(#)dt* and I is some one dimensional interval I ~ [0, 1]. In this case the system
is invariant w.r.t any diffeomorphism of the interval, which means that the infinitesimal
symmetries are encoded by the space of vector fields on M. The cohomological vector

field Q is then described by the following action on the fields:

Qg =ég+2g¢

. (3.2)
Q¢ =4¢¢

with & € I'(T[1]M) an odd vector field of ghost number (degree) 1, encoding the action
of infinitesimal diffeomorphisms, and it is simple to check that 0% =0.

The BV extended action is then given by

Shve=A f Vgdt - f (g +2g6)g" dt + f EEET dt (3.3)

where we have introduced the degree -1 anti-field g7 € F(S 2T[-111 ) and the degree 0
anti-ghost field &7 € Q!(I). Altogether the space of fields reads

Foue = D(SITT) @ T (TN & T (S*T[-11) @ T (T°1) (3.4)

and it is endowed with a canonical odd-symplectic form Qpy.
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Theorem 3.1. The data given by (Fpues Q, S fﬂ‘;, Qpy) yields an exact BY-BEV” theory on the
boundary O1.

Progf. To prove the statement, we must first show that we can induce a pre-symplectic
exact two-form @ on the space of pre-boundary fields, and then show that the one-form
is indeed horizontal with respect to the vertical distribution induced by its kernel, for this
will ensure its basicity and the fact that the BV-BFV structure is exact.

To begin with, the variation of the BV-extended action is

A L ] . .
8 e =f{(ﬁ—§g1 +§g1)6g+(§g+2g§)6g'

1
+ (28" + 288" + 28&" +§é*)6§+f§'6§*}dt (3.5)

+(~¢g'0g - 28'0¢ - £€'5¢) |

=EL + mya

where 717 : F pure — (fiurc is the surjective submersion that takes all the fields and jets to
their restriction to the boundary . To simplify the notation, we will use the same symbols
to denote the fields and their restrictions.

Taking into account the incoming boundary of I, we have that the boundary one-form

@ reads:

@ = f £g'6g +2gg"0¢ + ££o¢ (3.6)
ol

from which we compute the boundary two-form to be
= da = f —g'6é6g — €696 + 28657 6¢ + £T6¢6¢ — £68T6¢ 3.7)
ol

Contracting the two form w with the general expression for a vector field X

0 0 0 0

X

X=X =+ Xe— + Xpi —
“ogt " o o

— +
g6g
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it is straightforward to find the kernel to be such that

T i
Xe= X2 xo=x(% 8 ) x. L (3.8)
| 2g 28 2 2g
and a basis is given by the choice of the free parameters X, Xi:
[r._5+(f§T g*)é £
- og \2g% 2g)og" 2g6¢ (.9
—._ 9 &9 '
T st 2g6gt

This proves that the two form @ is presymplectic, for its kernel has constant dimension

everywhere on the boundary. Moreover, with a simple computation one can check that
L[ra" = LzT& =0

ensuring the horizontality of the pre-boundary one-form.
Performing symplectic reduction of the pre-symplectic manifold (%, ) one is left with

a (0-)symplectic manifold, the space of boundary fields:
(7’ "= F [Ker@) o = Q)

v

Now that we have ensured that the data (Fpue, O, S gxe, Qpy) yields a BV-BFV theory,
the following result will tell us how the boundary structure looks like in local coordinates,
and will give us a procedure to adopt also in the more involved examples to come. The
surjective submersion from the space of bulk fields to the space of pre-boundary fields
7 Foure — 7’~‘pure composed with the symplectic reduction map no: T:ure — ﬁire isa

sutjective submersion that we will denote by r; = 72 o 7}
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Theorem 3.2. The surjective submersion niy = Fpppe — F

pure

is given by

¢
g =Lty 2=
4~

VI
&= gt

Moreover, the boundary one-form @® € QUF?) reads:

ol

(3.10)

(3.11)

and is pulled back to & in (3.6) along the projection 7y, namely & = T;&°, whereas the boundary

cohomological vector field Q° is given by:

_ﬂ'l*Q f46~ﬁu
pm‘e: _fé‘:

Finally, the boundary action reads

(3.12)

(3.13)

Proof. We divide the proof in two parts. First we will find the explicit expression in coor-

dinates of the projection map and find the one-form on the boundary. Then we will turn

to the pushforward of the cohomological vector field.

* We would like to quotient the kernel of the form w in projecting on the space of

boundary fields so to have a symplectic form on the reduction. One way to do this

is to find an explicit global section by flowing along the Vertical vector fields (3.9) in

the kernel. For example, we can set &' = T=0 using the flow of =

—t g0 _pf 0
0= _95fl 925 =&Y =0
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where (') means the derivative with respect to the flow parameter s. Then
Ei(s) =&+ 05~ 0= ¢

by imposing £7(1) = 0. It follows that

i t
g" = Sk g'(s) =g+ S0t
280 280
and therefore the temporary new variable reads:
+
S ) = o 4 5050
g =g'()=¢gy+-—
0 280

fixing the value of the variable g" after flowing along =

Now we use the other vector in the kernel [ to set g = 1, since it cannot be set to

zero due to nondegeneracy. Then

J & gt ¢ &0 ,
(2g2 Zg)@_’l@%:}(g) —#

but this time we have
g)=go+tur—u=1-gy— g(r) =go+ (1 —go)T

The remaining differential equations are the one for &

_ (-g)
20 + (1 - g0)7)

&) = &= (1)

leading to"

V8o
V& + (1 —go)r

&) = £o

“The field & is odd, so it does not make sense to divide by & and recognise the derivative of a logarithm.

Rather, we check that the given ansatz for £(7) is indeed a solution.
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from which we define
£= &1 = ko,
and the other one for g’
(") = ¢()g'
which is similarly solved to yield

Eléo
2 \/(%

g' = Veog = vVaog) + (3.14)

Notice that the vector field [ has one more term in %, but since in s = 1 along the

flow of = we have imposed & = 0, the term vanishes.

The projection map 7 to the symplectic reduction reads then as a map from the

pre-boundary fields g, g', &, ' to some new variables ?,gsuch that

¢

oy

_\E
7 (3.15)

g+

B

where we set g’ = % g'. Pre-composing m with the pre-boundary map 7; yields the
formula in (3.10).

It is easy to check that the ansatz

a’ = fﬁg‘f&g (3.16)

ol
is pulled back to @ in (3.6) along the projection, namely @ = n*a?.

* We consider now the pushforward of the vector field Q along 7r;. On the space of
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fields we have the canonical two form
Q= f {6g0g" + 6£6&T)dt
and considering the BV equation in the absence of boundary
ipQ =68 sy,

where Q is given by the generic expression

s 5 s 5
0= [arfors, + 0o+ 0z 0o )
wherefrom
ipQ = f dt{Q,08" + Q08 + Q06" + Oy 02},

one obtains

) A . )
0= fdt{(§g+2g§)@+(ﬁ_§gf+§g.)gﬁ
.0 . )
et (28" +2g3" + 28" + ££) 5—5}

Clearly the original symmetry relations are recovered and extended to the antifields:

Qg =¢&g+2g¢
Q¢ =&
8§58 e

Q&' = gg' +2g8" + 286" + &€

whereby one means, for instance

0 ;
Qg(1) = fdt’Qg(t')gg(t')&t — 1) = Q1) = £& + 28¢
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The general theory® guarantees that Q is projectable on the boundary, factoring
through the pre-boundary, where the pre-boundary cohomological vector field Qs
obtained by restricting fields and jets to dI. By adding to O some combination of
the vectors fields in the kernel of the boundary form G, E", one can express Qina
manifestly projectable way. More precisely, recalling the expressions (3.9), one may

write:
0'=0-01-0:~
Now let the generators in the tangent space be transformed as

S _N96
5¢_Z5¢5}Z

¢

for ¢ € {g, g, &, &) Indeed, using (3.15) we have

§ g8 NESs 5§ 6Es 6
ogt — ogtogt 2

s o sk i

Then, simplifying the resulting expression for Q' and using the explicit expression

for 7y, one is left with the boundary vector field:

Ao
0 _
Q‘f4@
ol

The (straightforward) details of the calculation can be found in Computation A.1,
Appendix A.

Finally, to find the boundary action we use the formula*’

59 = LQaL[Eaa)a
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where the vector field F? is the graded Euler vector field on the boundary

and it is simple to check that

v

Now that we have the full boundary structure, we can analyse the properties of the bulk
critical locus EL, i.e. the solutions to the Euler Lagrange equations, and their projection
to the space of boundary fields. This one dimensional example is easy enough to be fully

computed. We have the following

Theorem 3.3. Denote by EL the critical locus of the BL” action (3.3) in the space of bulk fields F and
by EL? = m(EL) its projection to the boundary. Then, when N = O one has that

EL? c FOx 79 (3.17)

is the Lagrangian submanifold given by the graph of the identity. Otherwise EL® = 0.

Proof. We need to solve first the Euler Lagrange equations coming from the variational

problem (3.5), that is to say

Eg+28E=0 (3.182)
E=0 (3.18b)
A itrggt =0 (3.18¢)

2VE

28 +2gg" +2éT + £ =0. (3.18d)
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From (3.18a) one gathers that

- [80
&) = g(t)fo

which means in particular that 4/g1&1 = +/g0éo and thus the projection variable ;5 = /8¢

is preserved:

d—
—E=0 (3.19)

Equation (3.18b) follows from (3.18a) and after some rewritings one can express equa-
tion (3.18d) as
. g ¥
v, 88 1d (&) =_
+—+=-—(=]£=0 3.20
V88 + 5 NARYAVIA (3.20)
~1—

Now, taking into consideration the projection in (3.10) and deriving the definition of g
with respect to time, one obtains:

d o g8t ld (&5 1[N d+
ot = o086 L 275 1= 1=
G +2\/§+2dt(g S b

which vanishes, since (3.19) enforces the vanishing of last term and the rest coincides with

the left hand side of (3.20). So

d
—Zg"=0. 3.21
78 3.21)

We are left with equation (3.18¢). Using (3.18a) to express & = —%f and inverting /g
in (3.20) to find an expression for g', it simplifies to

A
e
28

and it is only satisfied when A = 0, since /g cannot be zero. When A = 0 one has that

(3.22)

the coisotropic submanifold C defined by the constraint equation:

on which the Euler Lagrange equations take place, coincides with the whole space of
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boundary fields. Moreover the submanifold
EL’ c 7 (3.23)

will yield the graph of the identity, i.e. a Lagrangian submanifold, in £ x ¥,

3.2 Coupling with matter

We will describe now a one dimensional theory where gravity is coupled to a matter field.
First we will be considering the case where the cosmological contribution is turned off
A = 0, and then we will see how the picture changes when we introduce a cosmological

correction.

3.2.1 Pure matter, A =0

The classical action is given by the following expression

1
S = f Sygldr (3.24)

1

where y is the reciprocal y = g7! of the metric component g(t) and ¢ = @(?) is a scalar
matter field.
Again, the cohomological vector field is a datum of the problem since the symmetries

are given by any diffeomorphism (vector fields). The action on the variables is as follows:

Qy=&-&
Q¢ =¢&¢ (3.25)
Qé=¢&

as it can be checked by computing Qy = Qg™' = -g72Q0g, using 0g = &g + &g, and the
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BV-extended action reads

1 . . ; :
S = f {§y¢2—§¢¢' —(fy'—fy)yufff*}dr (3.26)

1

The space of fields in this case is analogous to what we had in Section 3.1, plus the addition
of the matter fields F e := T*[-11C() 3 (¢, ¢"). We have the following

Theorem 3.4. The data (F e ®F yyar O, S BY Qv yields an exact BV-BFV theory on the bound-

mat?

ary 01.

SBV

mat

Proof. By performing a variation of with respect to all variables and integrating by

parts we are left with

oS oY, = f {(-30 -y + £o" + £67) 69 + £45¢"

1
1., .
+ (§¢2 +2&y" + é-‘f) 6y + (&) — €y)oy'
+ (=" — 299" —yy" + 28" + £) 68 - Egoe |
+ (ypop — £¢op — EyToy + yy'6E — ££16€)

(3.27)

ol

where the boundary term defines a one-form on the space of pre-boundary fields ‘f‘:pure ®

Fmar given once more by the fields’ and jets’ restrictions to the boundary:
@= f (90469 — £676¢ — &v'6y + yy'6 — £€'5¢). (3.28)
ol

where we introduced a notation for the normal jet Jy = ®lar. Notice that when the cou-
pling is introduced, the relevant normal jet Jy appears in the explicit expression of the

pre-boundary one and two forms and it is to be considered as an independent field on the

44



boundary. We compute w = da as

= f {y5J¢(5¢ — J40900 + 69T 0 — ¢ 5E5p — 2y 5ESy
a1 (3.29)

+£6y'0y + yoy'0& — £ 6£6¢ + £6¢1 08

whose kernel is given by the following equations

X,=0
Xé: = Xy§
y
J i
X]¢ = —Xy(—¢ - é%) —X¢T§
y y y
T T
Xy = —2X, (y— %) + Xgé,
y y Yy

and it is easy to gather that a basis of the kernel is given by

Y:g_(h §¢*)i+56 z(y* f-f*)a

oy \y ¥ ]oJy yoé y ¥ )6y
t_ 0§06 (3.30)
S¢t yol,
—~_ 90 &9
OET  y oy

The dimension of the kernel of @ is constant everywhere on the boundary, and the pre-
boundary two form is therefore presymplectic.

It is straightforward to check that @ is horizontal, i.e.
@ = Lgia = g = 0
and therefore the symplectic reduction

(7:8 = (ﬁure ® %mat)/Ker(a)’ (,()a = Q)
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is an exact symplectic manifold.

v
The boundary structure is made explicit with the following
Theorem 3.5. The surjective submersion ny : F —> F2 is given by
X=X
=_¢
==
my: y (3.31)
Yo=Yy -&ey
Jo=Joy+ ¢'¢
Moreover, the boundary one-form o reads
a’ = f]¢ 5 + y1 6 (3.32)
al
whereas the bulk cobomological vector field Q projects to
~=0 1-296
= 7T]*Q J¢f + J¢ é‘,‘,_*_ (333)
Finally, the boundary action reads
1 —2—
S0 = f Jo €. (3.34)
al
Proof. * Using the basis of the kernel of w wisely it is possible to mimic the procedure

used in Theorem 3.2 to find a global section, in order to perform the symplectic

reduction to the space boundary fields. In particular we will use ®' to set ¢°

a reference point s = 1 on the flow, = to set & = 0and Y to sety = 1.

§ £6

0b" =0— + 02— = (¢') =60

o&t "y oyt

46

=0at



again this means that 6 = —¢(T) and therefore we have

.
§ ’ ¢ {-:O
g_z = (Jp) = Jg(8) = Jgy + ;—Os.

We can set at the reference point s = 1

— oo
Jp = Ty(1) = Jyy + ——
Yo
Analogously we proceed to set & = 0.
_ 0 0
oty oy
from which A = —fg and thus, solving the remaining part we have
&b _ 1, &b
—= =7 =) =y - s
Yo Yo
and we define :
oo
Y=y =y -
Yo

Now we are ready to act with Y and fix y(r = 1) = 1.

Notice that we have eliminated the terms in (3.30) containing &' and ¢ because we
set them to zero at time § = 1. Now from u = (y)" we conclude that u = 1 —yg and

that y(1) = yg + (1 — yo)7, therefore we have

— Yo

Jg) = —————
T R

J¢ =: f(T)J¢
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that integrates to

—~yo+ (-
I =7, Yo+ (1 —=yo)t

Yo

allowing us to define the first projection change of coordinates
Js = Jy(1) = Jypyo + B0

The third factor gives the equation

’ — Yo
= —-— e — T
@ = s =~k
whose solution reads
&) = f0)’0 + (I =yo)T
allowing us to define
_ &
§ yo'

Eventually, we are left to deal with the last equation, namely

07 =£0) = 2f()

which by an analogous computation leads to
Y=y = yovs — Eéovo.

Summing up, the projection from the pre-boundary fields F to the space of bound-

ary fields is given by:
X=x
z_¢
£=<
v/ Yy
Yo=Yy -&ey
Jo=Joy+ '€



and pre-composing with 7; one obtains the similar expression (3.31).

It is once more a matter of straightforward computations to check that the boundary

forms @ and w? are given respectively by:
o’ = f Js60 +7' 66
ol

and
W’ = f&ﬁ55+ §y'6€

ol

The standard two form € on the space of bulk fields is simply given by

Q= f (6900" + oyoy' + s¢5¢") dt.

and the strategy to find Q is analogous to the one used in Theorem 3.5:

Q¢:§J¢
Qy = f)"‘éy
Q; = ¢

Oy = E¢" + ¢
1 . ,
Oy = EJ"% +2&yT + &7
O = 286" + EE = Jyp" — 299" — yy'

The pre-boundary cohomological vector field Q is found by restricting all of the

above, although in this case we must add the component along J,; = ®lor, the first

jet of ¢, namely

~ - d L. . ) )

Qy, :(Q(]ﬁ)‘ 1: EQ(P 'aI:(§¢+§¢)|aI:§J¢+§J¢ (3.35)
Again, by adding some combinations of the vertical vector fields Y, =t & we obtain
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an expression of Q which is projectable. Namely

+ qu + Qé:T

0= Q"’(qu ’ an ’ Qfég ’ Q"’*(w

55*
4042~ 0, - Oy’ - 0=
J¢6J¢ y ¢ 3

After some computations, analogous to those of Theorem 3.5 one obtains the pro-

jected Q% cohomological vector field on the boundary:
~=0 1 ~2 0
Q f J, ¢§ ~ 6“1

The boundary action S is found using the boundary Euler vector

and it reads

ol

v

Remark 3.6. Observe that from the expression of the boundary action, one can compute the coisotropic
submanifold containing the solutions of the Euler-Lagrange equations to be given by
589 1-2

i >Jo =0 (3.36)
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3.2.2 Cosmological correction.

Now we turn to a coupling of matter with gravity together with a cosmological contribution.
To do this it turns out it is sufficient to combine the previous examples together in a suitable

way.

Theorem 3.7. The exact BV-BEL theory induced by the data
(Tpﬂm @ ¢mat’ Q’ Sz:;a QBV)

is stable under the replacement S BY, v SBY + S The respective new cohomological vector field on the

mat mat pure*

boundary reads

L =6 (12 5
A:J¢§£+ §J¢ -A ﬁ (337)

and the boundary action is

0 = (A - %7)2 (3.38)

The projected critical locus wi(EL) is 1agrangian in F° XFO Jor N # O, while the coisotropic submanifold

C s defined by
682 1

~2
Crh:—=—=0= - =A#0. 3.39
A oF > ) F ( )
Proof. The replacement S8V +— §BV 1 g ;{He induces
1
o2, Sy = A [ Sovar B0

where we changed the fields in the pure action to be y, y' instead of g, g™ and the coefficient

along y' of the cohomological vector field gets modified as
Oy — Qi — Ay,

Therefore, after straightforward computations, the new boundary and pre-boundary vector
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field read

- — A S s ~=0 | ) 0
=Uod— 7= — =Jyéf—=+|=Jy —Al— 3.41
QA Q 1d ) 6}7' QA ¢§5¢ (2 [ )Sjﬁ ( )
from which the action on the boundary is found to be
SN = A_E(/’ 3 (3.42)

Now, taking into account the variation (3.27) with the correction in (3.40) we obtain the

following set of Euler Lagrange equations:

Ep=0 (3.432)
&y—&y=0 (3.43b)
EE=0 (3.43c¢)
£t — €' 3¢ —yp =0 (3.43d)
%q}z + 28T+ & - )% =0 (3.43¢)
2" +EE —gp" - 2yy" - 3" =0 (3.43f)

From (3.43b) one immediately finds & = &yy™! and using it together with (3.43f) in (3.43¢)

one finds
dy(dy — 2£¢") = (¢y — 2647)" = 2A (3.44)

If A < 0itis clear that the solutions cannot be solved, and the critical locus collapses to

the empty set. Assuming A > 0, one can use the projection (3.31) to obtain from (3.44)
Jp = £V2A (3.45)
ot, multiplying (3.44) by & and using (3.43a)

oz¢§y—¢*§2:i\/ﬂ§g§=0 (3.46)
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Moreover, it is easy to check that in this case

d— d
—&=— § =0
dt dt\y
and therefore
£ = constant = 0 (3.47)

which will then be enforced in what follows. With a simple computation one can show
now that (3.43d) is satisfied by simply deriving (3.44).
Using (3.43f) we compute
d d -y
25— Z (v = - [ i
dty = (y y ) = —¢dyx' = FV2Ax (3.48)
So altogether we conclude that when A > 0 the submanifold defined by the critical locus

of the projected Euler Lagrange equations is given by
n(EL) = {(J5,€,6.5") | Iy = £ V2A; € = 0] (3.49)

We have already seen that the constrained coisotropic submanifold C on which motion
takes place is described by the equation (3.39) and it is easy to gather that the submanifold
n;(EL) is a Lagrangian submanifold in 79 x 5,

Now let us analyse what happens when A = 0. This is compatible with (3.44), but we
cannot conclude (3.46) anymore. Using ¢y = —¢'€ in (3.44) we can derive

—(¢y)2 =0= ¢ =0 = ¢ = constant

Moreover, with a straightforward computation one checks that (c.f. Eq. (3.48))

d .
—('y =&E'¢) =0

d
- _
" ar
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Looking at Cy X C_O instead, the relation is then given by
— — _0 £ .3 _ .5 _<tf ran
ni(EL) ={Jyy = Jy, = 0; &g = &5 o =15 ¥y =} € Co X Cy (3.50)

where the indices (0, 1) denote the two connected components of the boundary represent-

ing the two copies of Co, and L is then not Lagrangian. v

Remark 3.8. Recall that the constrained coisotropic submanifold on which motion takes place is described

by the equation
582 I -2
2 -0=-J, =A (3.51)
o6& 2
For A < O the coisotropic submanifold collapses to the empty set, and most interesting is the case A > 0.
In this case the coisotropic submanifold is given by the set

C={0.75.5.86|Jy = + VA€ = 0} (3.52)

and the foliation is given by the two vector fields: %, % with the reduction being a single point C = {pt}.

51 ~6 5 ~5 =6
oo el

3.3 Minisuperspace model. Robertson Walker metric and mat-

ter

In this section we would like to analyse the Lagrangian theory of gravity coming from the

dynamics of a metric of the Robertson-Walker form

ds* = —-N*(t)dt* + a*(t)dQ3 (3.54)
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where N(2) is usually referred to as the lapse function and a(t) as the scale factor, and compare
the results with?’. By dQ3 we denote the spherically symmetric 3 dimensional volume
element. It is possible to couple a scalar matter field y to gravity so that the classical action

becomes

. 1 a . a . N
Sow = 3 fdt {—Na2 + NXz + Na — ;/\(2 - ANa3} (3.55)

1

with the obvious prescription that a, N be non vanishing,

Comparing with the already discussed cases, we may gather that the geometric nature
of N(1) is that of a 1-dimensional metric, in fact N2di* = g(t)dt* when N = +/g. We
will interpret the pair (a, x) as a map from the interval to R?, endowed with the pseudo
euclidean metric 17, = diag(—a, a). Therefore the kinetic and quadratic potential terms for

a and y in (3.55) are interpreted as

f ,X)——fna (a,x) \gdt
1

and we will see at the end that this interpretation carries over to the boundary.

The symmetries of the action are given by

QN = &N + NE

Qa =2 (3.56)
Qx =¢&x

Qé=¢&¢

since N transforms like a metric and a,y € C*(I) transform like functions. The BV-

extended action is then again given by the minimal BV extension

SBY =85, + f di{- (&N + NE)N' — gaa’ — gy + £é6') (3.57)
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The last piece of data we need is the space of fields, which in this case is given by

Frw = T*[~1](T(S2TT)®Maps(I, R) @ T(T[1]]) ) (3.58)
N (a.x) 13

endowed with the canonical (—1)-symplectic structure Qpy. We have the following
Theorem 3.9. The data (Frw, S g;/v’ Q, Qpy) defines an exact BU-BEV theory.

Proof. The variation of the action (we drop the specifications BV, RW) reads

N -2 22 3 NZ
6S:fdt{(3+)(—+a——iaN+—a——ANa + X L +§a)

2N 2n N2 N 2 2a?
1

a a , N, a , & -
+z+ =i - = - ==& - 2+ ¢NT|6N

(2 WY T2 TNt T tE
N a N aN a _ Ny +§ rE

NN - g e v
+ (286 + EE + NN - aa — xx') 6¢

+(EN +EN)SN' + (a) oa" + (&) o' + (£€) o0&

+— (—5)( _ 9 - EETSE — ENTON — NN'6& — éd' Sa — g)ﬁa)() }
(3.59)

The last term above gives rise to the pre-boundary one- and two-forms that, denoting

by J, = algr, and J,, := xlor the normal jets on the boundary, read

o= f {a; ; Sa — ££76E — ENTSN — NN'6¢ — £a'da — &' 5)(} (3.60)
ol

&= f _ 4 5T.6a _ a'6t6a + £6a 60+ Xsasy + L61.6
a1 (3.61)

al,
- —XENGSy — x 686y + E6x T8y — ET666¢ + ESNTEN — NSNT6¢ + £6¢° 55}
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A vector field in the kernel of @ turns out to be a combination of the basis

J . &\ 6 (] M\ s f s S
N=—+ J_+§i +_X_§L _+2éi__£_
ON N a |oJ, N a )oJ, N2 6Nt N &€
6 N& S
N:F+_§6J
a a
a (3.62)
wio O _Neo
St a dJ,
TT:i_éi
68T NONT

showing that @ is pre-symplectic. It is again by means of a simple computation that one
checks

L[E,,b? =0

with E; € {N, A, X, =}, showing that @ is horizontal, and therefore w? = 8a? is the exact

symplectic form one obtains after the symplectic reduction of the space of fields:
7 Frw — F (3.63)

for @ = n*a®. The projection to the boundary fields is then given by composing 7 with the

surjection to the space of pre-boundary fields 7: FxW — %RW, namelym; =monm.

The procedure to obtain the explicit boundary structure for this case is totally analogous

to the one used in Theorems 3.2 and 3.5. As a matter of fact we obtain
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Theorem 3.10. The surjective submersion rty . Fry — TI?W is given by

a=a
X=X
€= N¢
9~ Ja f .
T Ja:——a—f (3.64)
Y :
7 X
J — e + =
YN aﬁ
_ &
N'=N"+ ¢
N
Moreover, the boundary one-form o e Ql(“fgw) reads:
o’ = f ~al,6a+al oy — N'6¢ (3.65)
ol
W hereas the boundary cohomological vector field Q° is given by:
_ ——6 (JJ, ¥)=¢
b X
= Ja +&J,— — — + = |E—
ol X
(1 (30 7 75 o
——[:+[%+%—3’5+X—]E]—~ (3.66)
2\a a a a’ 57,
~2 . ¥\ ¢
+ —(a]a2 ~aJ, +ad-Aa _/\/:)T}
a ) sNt
Finally, the boundary action reads
[~ _~2 _ 5 ¥\~
§9 = f_i (aJaz ~Gl, +d—- AP - X:)g. (3.67)
a
ol
Proof. e As we already mentioned, the procedure to find the explicit section goes

through by solving the straightforward differential equations that arise from the pro-

cedure already discussed in Theorems 3.2 and 3.5.
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* As for the projection of Q to the boundary, from the variation of the action (3.59)

we find as usual that

) ) 2
X a a a 3 Ny - i
Qa'l 2+i\7 %—ﬁaN+Na—§ANa +ﬁ+§a +§:Cl
a . aN a _ Ny
Q)(*:ﬁXN—W—NX—?Jer + &'
_ a , A ; fz
Ov =5+ i’ = 50"~ gt g TN
Qp =266+ ¢+ NNT —aa” — yx' (3.68)
Qa:é:a
Oy =&
Oy = éN +¢N
Qs = &€

then, from (3.560) we obtain the transformations for the relevant jets (J, = dlos, J, =
Xlar) to be
Q.= 0@) =¢éa+&i; Q=0 =&y +&F (3.69)

so that Q in the bulk is completed as
Q= Z Ql (3.70)

where the indices run over I = {a,a,a’, x, x,x", N, N', & &), Again it is possible
to combine Q with some multiples of the vectors in the kernel of w, in particular we

compute

0=0-0xN=QuA" — QX - Qu=" (3.71)

obtaining
0=n0Q’ (3.72)

where Q7 is given by the expression in Eq. (3.66) and the boundary action is found,
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as usual, via

S() = LQ@LE(?(,()E)

v

Remark 3.11. The coisotropic submanifold of the space of boundary fields containing the projection of
the Enler Iagrange equations’ set of solutions on the boundary is given by the derivative along E of the

boundary action:

687 —
— =TI -TL+a@-Aa - =0 (3.73)

29
and it yields a projected version of the classical Wheeler deW itt equation.
%

Remark 3.12. Notice that we can still interpret the boundary action as the pairing in R* given by the
psendo-enclidean metric 7 = diag(=a, @) for the fields’ pairs (@, x) and (T4, J,)). As a matter of fact

1 ~ — o~
S9= 3 f(na(Ja,JX) -5 @x) + AT)E (3.74)

ol
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Einstein Hilbert action in d + 1 dimensions

General relativity in the formulation of Einstein and Hilbert'? is a theory of the gravita-
tional interaction where the dynamical field is a pseudo-Riemannian metric g of some (d+1)
dimensional manifold M. The principle of general covariance requires that all the relevant
expressions be invariant under the action of space-time diffeomorphisms and this makes
General Relativity a gauge theory in the extended sense, that is, even if the basic field is not a
principal connection. We will see in Chapter 5 and Chapter 6 how alternative descriptions
of GR exist, casting it in a more standard way.

In this Chapter we will start from the said classical variational principle and symmetry
distribution, and we will embed this data in the general framework we outlined in Section 2.2
as a BV theory, in order to understand whether such a theory satisfies the BV-BFV/CMR
axioms (Definition 2.5), when the space-time manifold is allowed to have a boundary.

In Section 4.3.1 we will also analyse the classical canonical structure (i.e. the Hamilto-

nian formulation of GR**) and we will show how the bulk-to-boundary machinery yields
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a powerful and straightforward algorithm to perform such a canonical analysis, even when
the BV extension is not performed. This will give us a clean grasp and understanding of

26,35

the constraint algebra“™, providing a non trivial example of a coisotropic submanifold,

which does not manifestly come from a Lie algebra action, in agreement with some recent
observations®.

Throughout the Chapter we will always assume that M has a non-empty boundary dM.
In Section 4.2 we will analyse a simplified version, where we require that the metric be
block diagonal in a neighbourhood of the boundary, which is tantamount to choosing a
particular coordinate system. This is done in Section 4.2 and it will be rigorously justified
from the results in Section 4.3, where this assumption will be relaxed.

The procedure that we will use to compute the boundary structure in Section 4.3 will
be more efficient and more general. The assumption we will consider instead, namely that
the boundary is entirely space/time-like and that it has a globally hyperbolic neighborhood,
will allow us to adopt the ADM?* coordinates (after Arnowitt, Deser and Misner), which
will make the reduction to the boundary fields particularly straightforward.

The way we enforce this is by working only with those pseudo-Riemannian metrics on
the manifold M which have space/time-like signature when restricted to the boundary.
This space will be denoted by W?‘%) to emphasise that the pseudo-Riemannian structures
have to have some compatibility with the boundary in order to be acceptable.

Observe that in the literature >>**

it is customary to require that the spacetime manifold
M be globally hyperbolic ot, equivalently, that it has the product structure £ X R for X an
embedded space/time-like submanifold of M. This is indeed a much stronger requirement,
and in fact we only ask that it be true in a neighborhood of the boundary.

Although it is true that this assumption will keep the results from being completely gen-
eral, and that the extension to more general boundaries will require an adapted approach,
this result represents a non trivial generalization of existing results on the canonical struc-
ture of GR. This is especially valuable in view of perturbative quantisation, since as many
different space-time geometries as possible must be allowed for, in the spirit of integration
over non extremal field configurations.

We will see how the results of Sections 4.2 and 4.3 agree when the appropriate consis-

tency conditions are applied (cf. Subsection 4.4.1). In fact, one has to require that the off
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diagonal components of the metric vanish in a thin neighborhood of the boundary, rather
than only on the boundary, when the block diagonal shape of the metric is enforced. This
in particular implies that the normal jets of the metric vanish in the off diagonal direction,
when restricted to the boundary, i.e. 0,84 oy = 0. Notice, that even if the ADM proce-
dure is significantly more general than the one presented in Section 4.2, the fact that we
were able to solve the simplified version first was a non trivial step in the understanding of

the general case.

4.1 FEinstein Hilbert Formalism

The theory is formulated as a variational problem for the (second-order) Einstein-Hilbert

action? (modulo multiplicative constants):
( p )
S = f (Rlg] - 2A) V—gd*'x 4.1)
M

where R[g] is the Ricci scalar of the pseudo-Riemannian metric g € PR1)(M) with sig-
nature (d, 1) in the bulk’, g := —det(g) and A is the cosmological constant. The dynamical
equations for g are derived from the action as Euler Lagrange equations for the variational
problem.

The symmetries of the action are given by the diffeomorphism of M and, generalizing
to (d + 1) dimensions what has been done for the simpler 1-dimensional models, they can

be implemented as follows:

Og=Leg

1 4.2
0¢ = S1£.¢]

The theory is an example of what we called a BRST-like theory, since the symmetry distri-

bution is involutive everywhere on the space of fields. Then we can find the BV action by

“We will require it to have space/time-like signature when restricted to the boundary, later on.
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minimally extending the classical action; it reads

N |
N f (R[g] - 2A) VEd**'x - f (Leg)s" + 3 f el (4.3)
M

M M

We introduced three new fields &, g" and &, respectively an odd vector field¢ € T'(T[1]M)
a section gt € T'[-1] (SZTM) ® QP(M), i.e. a symmetric tensor of type (2,0) of ghost
number —1 with values in top forms, and a one form with values in top forms & €
QM) ® QP(M). TFor the computations we will factor &' = y ® v into its one form
part y and top form value v, which we may assume fixed. The space of fields we will

consider is then given by
Fot = T*[=11[PRu1(M) @ T (T[1]1M)]. (4.4)

As we already announced, we will first analyse a simplified version, where a certain partic-
ular shape of the metric on the boundary is assumed, and then we will proceed with a more
general approach. This will require to consider some appropriate submanifold of ¥ as
space of fields for the BV datum. The two strategies will yield the same results, when the
appropriate compatibility is required. The hasty reader can skip directly to Section 4.3 for

the general results.

4.2 Adapted coordinates

Since the action contains the derivatives of the fields, its variation is composed by a bulk
term and a boundary term, the former will give us the Euler-Lagrange equations for the
physical fields and the ghosts, while the latter will induce a theory on the boundary. With

a straightforward computation from (4.3) one obtains

68 = f | VE (80T, — 8701, ) — (28,s0678™” ~ €580 ™" ) | d " x

4.5)
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By v/ we denote the fixed top form on the boundary coming from v. The normal coordi-
nate is denoted by the special superscript *. The term EL denotes what will generate the
Euler Lagrange equations, and it is interpreted as a one form on the space of fields. There

is a surjective submersion on the space of pre-boundary fields
T Fu — Fom (4.6)

where the target is defined as in Chapter 3 by the restrictions of the fields on the boundary
plus the normal jets of fields computed at the boundary. As we shall see, the relevant jets
of fields appearing in the pre-boundary one form are just the first jets Jy, = 0,8uvlom-

The Euler Lagrange term reads:

R -
EL = f {dd”x [— N (R,W - Eg/zv) + 0,808 + £, — 20,¢ (”8”)'3] 08"+
M

+ {28(/)gv);1ng + Zg#(vap)gTPV + 6,0pr/1 + é:pap)(u - 6ugpongU + aﬂé:p)(p} 5€:ll+

+{€0,8, + 20,5 g0) 5g“”} +{&0,8"} 5x,v
4.7)
with brackets around the indices standing for symmetrisation of indices, namely A(,B,) =
1(AuB, + A,By).
Let us simplify the computations by choosing an adapted coordinate system in which
the normal vector is perpendicular to the boundary hypersurface. This, together with the

requirement that g,, be different from zero, requires that the metric g, takes the following

gm O
8uv = [ J (48)
0 8ab

with g, 2 non degenerate d-dimensional Riemannian metric. This means that g,, = 0Va =

form:

1...d. For simplicity we assume the transversal direction to be timelike!. The space of
pseudo-Riemannian metrics on M will be then restricted to those metrics for which the

block-diagonal decomposition (4.8) is allowed. We will denote the resulting space of fields

TThe computations in Section 4.3 will anyway cover the other possible cases.
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by 2, € Fu. With this choice of space of fields we have that the pre-boundary one

form simplifies to:

@y = f d"x (£"6gumg"™ + £'08u,8™ — 208" g8 ™ — 266“gug™")

oM ( 4 9)
+ f m? (70 (5" Jus) + 85 (8" Jun)) = &"6€"x"

oM
whete Jup = 0n8aplon is now an independent field on the space of pre-boundary fields
F i
Remark 4.1. We will take care of the cobomological vector field later, but notice that the condition

8na = O on the boundary implies

(Qdalyy = 0 = 0,8 = —gug™'dL" on M (4.10)
¢
We have that
Theorem 4.2. Foralld # 1, the data (FL£,, Q,SBY. + F, Qpy) where
F= —% f Le(g'g) “11)
M

is a boundary term, induces an exact BU-BF1 theory on the boundary OM, provided that the latter is

everywhere either space-like or time-like.

Proof. From the expression (4.9) for @5, we can obtain the two form @ = da%,, and its

kernel. After some straightforward computations, denoting a general vector field by

)
X = Z(X¢)6_¢’ Where ¢ € {g’m, gab’ Jnm Jaba gTab’ ngn, nga’ é_«n’ é‘:aaXnaXa}
¢
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with a = 1...d, one gets to the result:

(X)) = 0 Va, b (4.12a)
1
(Xf)" = —g,m(Xg)"".f" (4.12b)
2
(X =0 (4.12¢)
nn 1 nn _ftnn 1 1 nn
(Xg*) = gnn(Xg) + _(X) Xn‘f - _g (X,\/)ng (412d)
na 1 nn ab 1 ab n
(th) = _Zgnn( g) 8 Xb— 2g (X)()b‘f (4.12¢)
(XJ)ab - gnn (X )nn fed 8ca8bd — Lgcdgab §n+
Vet d—1
gnn( T)Cd 8ca8bd — 77 8cd8ab fn - 1gnn()( )nn ab (4'12f)
e d—1 o 8mi e
The generators are easily found to be:
6 1 nngn 5 (4 13 )
n = - = — 13a
OXn 2% ogim
1) 1 9)
Ay = — — —ghie"—— 4.13b
b 5Xb 2g é: 5nga ( )
0 2g 1 0
fed _ + nn ca - ———9.48a n 413
Y (8 8bd = 77 8cd8 b)f 5T (4.13¢)
s |1 g 1
G = = =8&mJa = fed ca - 5 cd8a +
S [2g b \/g(g 8ca8bd = 7 1g 9cag b)f](sjab
1 1 0 1
Tnn n ab n n
+=(gm - Xn - = + =8m 4.13d
2 (g 8 Xné ) 5ngn 4 5nga 28 g Sén ( )

and it is easy to gather that @ is pre-symplectic.
It is now possible to check if the one-form @ is horizontal. As a matter of fact we have

that

L@y = %g“dgcdg" = —igm6F 4.14)

together with

=B 2 n
lgiad@py = chdé‘ = —L@'I'cdéF
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whereas

pragH = préF =0

Therefore, the corrected one-form @ := @py + 6F is horizontal, and cleatly w = da%,, =

oa.

v

Remark 4.3. Notice that the bulk-extended boundary term F has to be added to the bulk action S gl‘;
in order to correct the horigontality of the pre-boundary one-form. Observe that the failure to horizontality
is a function of degree O, but it depends excplicitly on the odd fields. We shall see later on how this is linked

to the Gibbons-Hawking-York boundary term.

¢

The previous result ensures that the symplectic reduction in the space of pre-boundary

fields %IfH can be performed. The explicit coordinate expression for the boundary struc-

tures can be computed in this case as well following a procedure similar to the one used

for the examples in Chapter 3.

Theorem 4.4. The surjective submersion Ty = F oy — cha 15 given by the local expression:

T = Julg" - ﬁ (gTCdgcagbd - ﬁg“dgcdgab) &"
g = (8" + 58" xa") Vil
n g = gha g Loaby, e
& =" Igml
Z oo
b = Gab

Moreover, the boundary one-form o reads

oM

[

(@abj;b + 2§ab5-7;b) + 25?1?"” - 2§abéga?bn}

and the two-form w° = da

68

(4.15)
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The cohomological vector field Q projects to a vector field Q° that is also cobomological if and only if one
assumes that the normal jets 0, 8nq vanish on the boundary: Jya = 0. Such a vector field is Hamiltonian

with respect to the boundary action

57— f {[V: T (T T T) T~ TR - 20, nn)_zynaagn]gu
\/Eab dj é: +6 (\F Ld‘]ad)é: + _6bgad~]ad§ Hnb?ah }
“.17)

Proof. First, let us find the explicit expression for the map my. It is possible to adapt the
procedure used in Chapter 3 to eliminate some variables and find an explicit section of
the symplectic reduction : 7‘~‘£H — F72,. In particular we can flow along X%, to set
Xpls=1 = 0, and this will give us the temporary values of g™

stnn nn 1 nn

g = "+ S8 X

ATha na 1 a

" = gy + S80S

The same can be done using G to set gw’|sz 1 = 0 and this implies

2 C 1 C n
]ab = ‘]217 - %ggn (g(I) dggaggd - ﬂgg dggdggb) é:o

Finally we can use G" to set g""|;=1 = 1. After some straightforward calculations one gets
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that the symplectic reduction map 7: FJ, — F2,, is described in local coordinates by

Jab = Ja |g""| - ﬁ (g
g = (" + 18" né") \lgml

?na — nga + %gab)(bé:n

fedgeugha = 7787gcagu) €"

T —
é:n = é:n |gnn|
Fo-e
§ab = 8ab

showing the first claim after composing with 7). To find the boundary one-form, consider

the ansatz

0 ~ ~ . .
o’ = - f d'x {g (68 Tup + 2867 p) + 2063 ™ — 28,0E"G l’”} (4.18)

oM

and, recalling the bulk-extended boundary term

2
F=—" | Lg'
d—lf (8'8)
M

we compute

mad® =ab, +6F =1 a

Clearly: 6a8,, = 6@ = n*6a’ = n*w?, so we can safely compute the boundary two form
by differentiating expression (4.16). Therefore also the second claim is proven.

Now we can move on to prove the statements concerning the rest of the boundary
structure, namely 0? and S?. Most of the computations have been removed from the
proof and put in Appendix A, Computation A.2.

Let us take into account the bulk part of the variation, namely the Euler Lagrange term

in (4.7). The defining equation of the cohomological vector field tpQpy = S EH + 73,07,
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where Qpy is the symplectic BV form in the bulk, yields:

(QX)p = Za@gc)yngU + 2gp(<rap)g%po— - 8ugp<rng(T + a/t‘fp)(p + ap‘fp)(u + fpap)(,u
R
()" = 0,8 + £0,8™ ~ 20,645 — \E(R” - ")
(Qg)/lv = 26(}1€pgv)p + 'fpapgyv
1
(Qef' = &70,8" = S[&. €1
Clearly the expressions for Q, and Q; agree with (4.2). Along the surjective submersion
4.6), T2 Fy — F 2, the bulk vector field descends to a pre-boundary vector field 0=

7.0, its components along a field ¢ being (Qy) = (Q¢)| oy Since the transversal jets J,,, =

Onuv oM

pre-boundary vector field Q with their transformation law:

are relevant for the boundary structure, we must complete the cohomological

QJ/JV = aan,uV oM = angpapgllv + fpaPJIJV + Zaﬁla”fpgv)l? + 26(#6/)‘]1’)/3 (419)

Remark 4.5. Notice that requiring §na = O in an arbitrarily thin neighborhood of the boundary
antomatically implies having J,q = O on the boundary, and this yields QJnq = O with no extra restrictions
on the fields, as it can be checked by direct computation from Eq. (4.19). Compare this with Remark
4.1.

The pre-boundary vector field Q then reads:

— — 5 —
Q = (Q/\()u% + (Qg'?')'uvé. (Ql)pv (Qg)pv (Qf)“

6J,W Sgm

We can add to Q appropriate combinations of vertical vector fields to obtain one that is

projectable. In particular we consider:
Q' =0~ (0)"C' ~ (@) — (Q)"C"

whose expression can be found in (A.3).
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Now we must write the above expression in terms of the boundary fields, and to do so
we must first transform the basis of vector fields via the formula: <= = >3 gg % . This
is done in Computation A.2, Equation (A.4), and it leads to the exphc1t expression for Q'
given in (A.5).

Expanding the Je ¢ coefficient shown in Computation A.2, Equation (A.5), one is left
with an expression that should depend solely on the boundary fields. Then, after some

rewriting we get (cf. (A.8)):

0) A )
Q5= QJ’H + Q/_—];f[-]an]? (4.20)
ef ef

where Q’ J:f[J,m] is an expression that depends on the off diagonal jets J,,,, and is therefore
not projectable. Before elaborating any further on this, let us analyse the other coefficients.

In Computation A.2 we find, analogously, that

nn Ar o
‘i’nn (Q ) 6 Tnn Qg‘tnn [Jna] ? (4‘.21)

o

fnn

where again Q,ET"” [/1a] is a function of the non-projectable jets. A similar issue is encoun-

tered when computing Q,;Tm, since again we find

Ql

(4.22)

0
’g‘i‘n(' = (QET e

6ngL + QE‘MC[ na]6 Fne

Some of the expressions above contain non projectable coefficients, that are functions of
the off diagonal normal jets J,,. To get rid of these terms we must (at least) assume that
the off diagonal components of the metric g,, vanish on the boundary together with their
first normal jets.

The rest of the coefficients of the cohomological vector field on the boundary do not
share this projectability issue, and are computed in Computation A.2.

When this prescription is taken into account the cohomological vector field Q on the
space of pre-boundary fields projects to a vector field Q% of degree 1 on the space of
boundary fields, which is also cohomological, and whose components are given in (A.10).

From these expression of the boundary cohomological vector field we can compute the
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induced boundary action via
S = 1pitpre” (4.23)

where the vector field EY is the boundary Euler vector field and reads:

=, 6 5
Ea = pT —gime
T

The boundary action is given then by the following expression:

Sﬁ — f{[ ?’gab (‘Eb]:d _ 7 f \/ERB 20 ) naaa~n)~n
\/E 9 ad-]ad + 0, (\/E Cd]ad) g 0,8 T0aE” ~ (~U?"h§ab)~“}

Remark 4.6. Looking at the construction that Wheeler and DeW itt proposed for the Hamiltonian

theory of gravity”* we may gather that the formula relating their conjugate momenta ;; to our dynamical
variables is as follows:

0

a —_—
IL; = @ \/ﬁ(]ij - gingdch) = (g (J EJ§CdJCd)]

(4.24)

gf=¢=0

It is a matter of a straightforward check to show that plugging (4.24) into the W heeler DeW itt Hamil-
tonian term:

(zga(cgd)h _ gahgcd) HabHcd _ \/;Ra —
0 _ — — —
=7, [‘/Tg‘g'ab (Jardea = et Taa \F Ra]

This is what we get from the induced boundary action after taking the E” ~derivative and setting to zero
the remaining ghost fields (that is to say considering the degree-Q part of the remaining expression). For a
non light-like boundary OM we obtain the W heeler DeW itt constraint projected on the space of boundary

1
N

(4.25)
g¥=£=0
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felds, and we can consider E" as a Lagrange multiplier.

4.3  ADM decomposition

Here we would like to generalise the previous analysis and establish whether the action
functional (4.3) satisfies the CMR axioms of Definition 2.5, by using a different technique.
The usual assumption taken into consideration in the literature is that the space-time man-
ifold be globally hypetrbolic, namely a direct product £ X R, with X a space/time-like hy-
persurface. This condition is somehow natural when dealing with issues of existence and
uniqueness of solutions to the Einstein equations, but from a general point of view it is
somehow restrictive.

This gives us the idea to consider the case of a non-null boundary, described by a sub-
manifold of the form x" = const, such that it has a hyperbolic neighborhood. This is
equivalent to (or rather means) asking that the space of pseudo-Riemannian structures on
the manifold with boundary M be limited to those metrics whose restriction to the bound-
ary has either time-like or space-like signature.

When that is the case, and when the transverse x" component corresponds to a signaturei

23,04

—€, it is customary to write the metric and its inverse in the form:

. :e[ (7" = B ﬁb)
" ﬂa Yab
(4.26)

v oaf 71 B
gﬂ = €n 2[ ﬁa nZ,yab _ﬁaﬁb ]

where 17 and 3, are functions for alla = 1,2, 3.
Notice that this decomposition is valid in a neighborhood of the boundary M. This is
a much weaker requirement than asking that M be globally hyperbolic, or globally foliated

in spacelike (or timelike) slices.

For simplicity € = 1 if x" is a timelike direction, that is to say when the boundary is spacelike.
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With this decomposition we have that /=g = 174/|yle, with y = dety;;, and |y|e means
that we consider the absolute value of the determinant when needed (if € = —1). We will
understand this fact from now on and simply write /Y.

The classical Einstein Hilbert action gets rewritten as

S = f {nVr(e(KpK® - K*) + R? = 2A) +
M ey (4.27)

—20,( \/’?K) + 20,( WKﬁa — Wyababﬂ)}ddﬂx

where we define K, the second fundamental form of the boundary submanifold and its

trace K by means of the boundary covariant derivative V? as follows

1 1
Koy = 51 "2V By = Onyar) = 37 T (4.28)

ab 1 —1_ab 1 -1
K=y"Kap=sm " Tw=5n"T (4.29)

while T and T are introduced for later convenience. We will redefine the ADM Lagrangian

as

Lapy = 1 Vy(e(Kp, K — K*) + R% — 2A) (4.30)

The classical space of fields in this case is then simply given by Fy = Pﬂ?ﬁ)(M ) the space
of pseudo Riemannian metrics on M with signaure (d,1), and space/time-like signature
when restricted to the boundary.

The classical action we will consider from now on is the integral of the ADM Lagrangian:

GADM ._ f JADM
» .

Remark 4.7. The total derivatives appearing in the new formulation of the theory build up the Gibbons
Hawking York boundary term. In our framework it will change the one form on the boundary by an
excact term, that will not interfere with the boundary structure. This will have an important effect however
in connecting the BV-BEL theory for the Einstein Hilbert action in the adapted coordinates of 'T'heorem
4.2 to the one we will get in what follows.
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4.3.1 Classical boundary structure

To start off, we will consider first the classical (i.e. non-BV) structure that is induced on the
boundary. This is often called canonical analysis, and one replaces the Lagrangian descrip-
tion with the Hamiltonian in the phase space of the system. The advantage in applying
our variational approach to the classical case as well, is that we are able to perform the
symplectic reduction of the space of classical pre-boundary fields, to find a well defined
symplectic structure on the space of classical boundary fields, i.e. the phase space, encoding

the canonical relations in a straightforward way.

Proposition 4.8. The space of classical boundary fields for General Relativity in the ADM formalism
Jfor any dimension d + 1 # 2 is a symplectic manifold. In a local chart the symplectic form reads

W =€ f 5y oIl (4.31)
oM

where the symplectic reduction map reads:

e {70 (4.32)

i, = g (j;m - ylmyiij)
with
Jim = 77_1 (Jlm - ZV(Iﬂm)) (433)

Progf. Consider the variation of the ADM action S s4par, which splits in a bulk term and a
boundary term. The latter is interpreted as a one-form @ on the space of pre-boundary
fields 7?;1, which is given by restrictions of the bulk metric and its normal jets J,, :=

(9,1’)/,11, oM to OM:

=2 f {5( YYD Koy — gwbmb} d’x (4.34)

oM
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and we have that the two-form w = da, using the definitions (4.28) of K, and T, reads

w=¢€ f {&7‘15( NYY O Ty = 17 Sy T+

oM

a VY

YTy +1

S 5 ab
! \/Zy Tab_én_l\/_

6)/“”(5Tab}ddx (4.35)

The space of classical pre-boundary fields 721 is then given by restrictions to OM of the
. Both K and T are functions of g and J.

bulk metric and its normal jets Jup = OpYap oM
Observe that the transversal jets J,, are not present because of the clever rewriting of the
action, valid in a neighborhood of the boundary.

The kernel of the two form is found to be, for d # 1 by

(X,)* =0 (4.36)
X7)im = _U(Xn*I)Tlm (437)

as it can be seen with a straightforward computation. It turns out that the (Xp, ) component
of a vector field in the kernel is free, as well as the p™! component. In fact, equation (4.37)

can be unfolded to yield:
(XDim = —n(Xy-1)Jim + 2V ((Xg) ) + 20(X;-1) VB (4.38)

The generators in the Kernel are

0 0
= (X, 1) - n(X, 1)sz + 2n(X-)VaBmy—— (4.39)
odin, o0Jn
0
[BZX—QVXm— 4.40
! (ﬁ)16ﬁ1+ a(Xp) 5 (4.40)

and thus, solving the differential equations given by the kernel vector fields together with
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Equation (4.306) gives us the projection to the boundary fields:

R (4.41)
Jin =17 (Jim = 2VBm)
It is a matter of a simple check to verify that the one form
Y ij~ —Im 7T m T
o’ =€ f 7\/: (6777 T — 67" T1) 4.42)

oM

is hotizontal, i.e. tp-1@ = tg,@ = 0, and that it pulls back to the boundary one form @ along
TT:

6:&'

Ta
This implies that the symplectic manifold Fo, 5(1/‘9) is exact.

Introducing the new variables ¥ =5 and I, = g (J~1m — Vi Y J~, j) we have

o = —€ f Sy, = o’ =€ f 5y oI, (4.43)
oM oM

which is the symplectic form in the space of classical boundary fields, expressed in local

Darboux coordinates. v

Remark 4.9. We managed to recover the phase space description of General Relativity in the symplectic
framework. Notice that in the non-B1/ setting the compatibility with the boundary structure is encoded in
the boundary term ﬂ*Mag v @ Jailure of the variation of the action from being given by the Enler Iagrange
equations alone. When turning to the BV theory we will see how this compatibility can be enriched to yield
the full fundamental formula (2.0).

%

Remark 4.10. Observe that we have performed a symplectic reduction that encodes the usual canonical
analysis of General Relativity (this time explicitly in the ADM formalism). Our boundary field 11,
is a projected version of the usual (i.e. literature) momentum coordinate conjugate to y*° (let us call it

DPab = 70 W ap,), with the difference that in the present case the conjugacy is in the symplectic sense, as we
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quotient by the kernel of the pre-symplectic form @.
¢

In what follows we will show how this can be extended to the BV setting, which explicitly
encodes the symmetries. This will allow us to recover the usual energy and momentum
constraints in a straightforward way, still holding on to the clean symplectic description of

the phase space.

4.4 BV-BFV-ADM theory

Recalling the general theory we outlined in Section 2.2, in order to perform a consistent
analysis of the theory including the symmetries, one has to find the correct BV data. The
geometric information we need is the distribution in the space of fields that generates the
symmetries.

In our case, General Relativity is invariant under the action of the whole diffeomorphism
group of the space-time manifold M. The theory can be treated as a BRST-like theory since
the symmetry algebra I'(T M) closes everywhere in the space of fields, and we can use
Theorem 2.3 to extend the classical ADM action to its BV-extended counterpart. Indeed

we consider the following action:

1
SﬁZM = f{n W(G(KabKab - Kz) + Ie(9 - 2A)dd+1x - (Légg)g' + EL[f,ﬂé:T} (444)
M

where we introduced the same symmetry terms we used in (4.2), i.e.

Qg = Leg
1 (4.45)
Q¢ = 7l8.¢]
and the space of fields is given by the shifted cotangent bundle:
Faou = T'[-1]|[PRIL (M) © T (T[11M)) (4.46)
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equipped with the canonical odd-symplectic form Qgy. Our first result in this setting is

the following

Theorem 4.11. For all d + 1, the data (ﬂDM,SggM, 0, Qpy) induces an exact BI”-BF1”
theory. The induced data on the boundary will be denoted by (F°,S8°, Q%, P). 1n particular we have

that Q° = 1y, 0, czmz’LQaa)‘9 =687.

Proof. The variation of S&Y ~induces the following boundary one-form, where we fixed

the volume form v = dx" A v/:

— a Y n
QApM = ZEfU {5( \/%’ b)Kab - %57 hKab} Vv — ff 5§p)(pva
oM

oM

#26 [[((F + BBNE"S™ + BLOE'G™ + B0 ™ 4 yudE g ")

oM

—€ f (£"6(=1" + BuBYE™ + 28" 5Bug ™" + £"0yug™ )V (4.47)

oM

and two-form @ = SAapy:

_ . . GV 0 n
w = feé {17 Ls( \Vyy b)Kab -7 17(57/ "Kap —0&"0& x y+E"0E" 0x

oM
+ (017 + BBIOE ™" + 2= + BSISE" 5™ + 2B,06"58"™ "
+ 20,088 ™ + QBuSE 8™ + 2008 g + 2y6E“5g™")

— €(£"0(=1 + BuBOG ™ + 28" 5B0E " + 08" 5Yurg" + E'5ya0g ") (4.48)

Recalling that K, is a function of J,p, = 0,Y|om, it is just a matter of lengthy computations
to show that w is presymplectic: indeed, excluding the case d = 1, the equations defining

the kernel read:
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(XJ)lm =+ n_l(X )Jlm + 2V(I(X,B)m) - 277_1(Xn)v(lﬁm)

+ %( )( )’zmﬁa ﬁ(n’m)a) grg
4 ! tan gn
- Wﬂ (djylm(xﬁ)a - (Xﬁ)m/m)a) g
+ i(X )(L% Yab = Yia Vb )8“[75"
7\ g e «Ybm
1

2
- Wn (d — 171m7ab - 7a17bm) (Xg'l')abgn (449)
XD = =y (Xp)ag™™ + 77 B (X)g ™" +en B B xu(X)E"
=SB B X~ 51 B Xy Nt —en B X’

En‘ B X"~ Y XX )+ 27 (X (4.50)
X)) = =07 (X" —en > (X,)B ¥+ 77‘,3 (X )aé"

+—77‘ (XY X"+ (X" —577‘2( X )ué" (4.51)

(X =+ B0 (X&' =y (Xp)pé” (4.52)

X" == (X,)¢" (4.53)

As a matter of fact, contracting w with a general vector field X and collecting the terms

along the normal jet 6/, we have the equations

LY

) n_l(Xy)ab =0

Vr )
0Jap: — B Yy (X, )y

foralla,b =1, ...d and taking the trace of this results in the following condition:

(d - DTr(X,) =0 (4.54)

Assuming d # 1 we can conclude that Tr(X,) = 0 and consequently that (X,) =

Collecting all terms along the other fields one gets in a lengthy but straightforward way the
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rest of the kernel equations.

The kernel is generated by the (vertical) vector fields:

€

4 - n
X(n) :(X)()n_ - En Z(X/\/)ng

X(a) :( )a + En_zﬁa( )()aé:

€ b _—2 n o
+ —,3 N X" —
(5 Fnn X (5gTbn

5 tnn
0
- (—17‘ BB (X8 - —W(XX)af") 5

€ _ a
By =(Xpama — 7 (Xp)u' 5 e B

B &2
2V(X te o (x Xp)o| g e
+( a(Xg)m) + Wﬂ (( B Ymya — Yim( ﬁ)a)g f)
+ (—EU_Z,Bb Y (Xp)exal" = v (Xﬁ)ug“”) 0
) Sgion

0

1 0
d-1

0

@T(ub) =(X .+ ub -
(Xg) S

2 1
o T 7;77 (Yal)’bm - dj)’lm)’ab) (X)) &
_ e -1 _ a. —1
—(Xn)d -0 (X" § + B (X" 5§a

_677 (ﬁ /\/n)( n)‘f

-7 (X)g"M" ——

5g}nn 5 tnn

— — g - ba n 6
- (677 Bxn—en BB xa + 577 ly Xa)(Xq)f 5

1
d— 6Jlm

0

Tab ¢#n
mm)g & 5

4
- _G(Xr]) (B(l)/m)a - '}/lmﬁa) g-mné‘:

Yy

— E(X )( —
\/7 )\ YiaYbm

—1 pa nn 0 - g
+77 B Xg’ S5 + 17 (X)) (S — 2V4Bm) ST

b
d—1

6Jin

(4.55a)

(4.55b)

(4.55¢)

(4.55d)

(4.55¢)

It is easy to check that the boundary one form (4.47) is annihilated by all vertical vector

fields (4.55), and it is therefore basic, proving the exactness of the BV-BFV structure and

concluding the proof.

v

It is already clear from this result that the ADM decomposition of space and time makes
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the BV-BFV structure much better behaved than the block-diagonal EH version of Section
4.2, since the pre-boundary one-form is basic oz #he nose, not needing any correction term.
Moreover, this result is far more general.

The explicit expression in a local chart is established by the following result:

Theorem 4.12. The surjective submersion wyy = Fapy — 7—:?0 v 8 given by the local expression:

n - ()

0, =-2{ng"—" B —xa) ")
©0 = 27w (8" + ¥ Bug ™ =S¥ N uE")
£ =& rype

Ty (4.506)

fn — né_‘n
7ab = Yab
with
— _ 26 1 ab ¢n
Jim = {;7 (T — 2VBm) — W ()’al?’bm - djylm)/ab) ghe
_ ie BV — YimBy | g7E" — 2€ BuBm) — L Yl gmé:n}
\/7 AYm)b d—1 m, \/7/ UPm) d—1 m)

The boundary symplectic structure on the space of boundary fields reads in these coordinates (p = {n, a}):

W’ =€ f 5y oMy, + 68°5¢,. (4.57)
oM

Moreover, the boundary action is given by the expression

§%= f {i (nabnab - Llﬁ) + V7 (R? - 2A) + €0, (£°9,) - eyab(pbaag"}g"

NG d-1
oM
+ f{ - ac (YCdea) - (aaYCd)Hcd + Eac (fc‘pa) }ga' (458)
oM
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Proof. Using the vertical vector fields (4.55) to eliminate B, ¥, and g'® (see Computation
A.3) one finds the section of the symplectic reduction to the space of boundary fields to
be

T =" (i = 2YBum) = 25 (Yaryom = 7570 Y 87€"
—f/—; (ﬁ(n’m)b - ﬁ)’zmﬁb) ghmen — f—g (ﬁ(zﬁm) - ﬁ)’lmﬁbﬁb) ghme"
g =g+ (e = Bxa) €
;o Agin = gitn g yhag gimy by en (4.59)
'é?b = &b 4 yhag g
& =g
Yab = Yab

The boundary one-form @? will be given by the expression

Y a ~im7 m7T S =tnn S n
o = ff {7\/: (V" Fa?" i = 7" Tin) — 206" + 27,406 } (4.60)
oM

as it is straightforward to check that 7*a’ = @apy. Introducing the new variables =
t is straightforward to check that 7*a® Introducing th bles y* = y*

I = g (‘7;17 ~Yar¥"” Zj) together with @, = =28, @, = 278" and € = &, we

can write the symplectic boundary form as:

W =€ f oy“’ oIy, + 6€°5¢, (4.61)
oM

and recover expression (4.56) and (4.58) for the projection and the boundary action in the
Darboux coordinates.

We would like to compute the cohomological boundary vector field. First of all we
must extract the analogous bulk vector field, encoding the equations of motion and the

symmetries of the system, using the fundamental formula:

1oQpy = 6S +n*a’ (4.62)
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A shortcut to do this in the ADM formalism, instead of computing cumbersome integra-
tions by parts, consists in considering the classical Einstein Hilbert action, whose classical

vacuum equations of motion are given by

1
(b)) =60

and to express them using the ADM decomposition. This is done by projecting the above
equation on the new field direction, with the help of the Gauss-Codazzi equations and the
Ricci equations.

Doing so, one obtains the projection of the relevant Euler Lagrange terms in the ADM

formalism, namely:

. 0S¢ _ i) 2 ab
€G, =€ 5 ) V7 (€(R? = 2A) + K* - KK (4.63)
6SCI ba cd 1 cd
€Gp, =€ 5 =2y 0. (\yY“ Kua) + 50,1)/ K.q — \yo.K (4.64)
b
08 k ke
Gy, =€\ 5| =V (0K = B0y — 2Kia0)(8“B.)) (4.65)
ab

Notice that the formula for Gg, is only apparently different from the usual momentun con-

straint that can be found in the literature (see e.g.**):

H, = fyy™ (yCdeKda - VgK)

as it can be seen by manipulating the covariant derivatives.

Adding the BV part we have that the derivatives of the action with respect to the new
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fields read:
on
oS gy
0P

(55 BV
57ab

—2en (0,78 + &0, — 20,£"g™)

Qe (apfpgTan + gpapgTan _ apfangp _ apé;ngfap) +
+ 26,8“ (apégpngn + é_apapg?nn _ zapé_-ng?np)
) — E(apfpgw‘ab + é:papg”rab _ zapsa(ag”rb)p) +

_ 26ﬁaﬁb (aoé_«pg‘rnn + gpapg?nn _ zapé_«ng?np)

oS

6g7i‘; =€ (fp OpYab + 208" Br) + 208 C?’b)c)

gz D) — (0,0 + 0 Bu+ 0 Var + Dab" (=1 + B) + 0,y
oS : :

68;;2 = €(&0p(=11" + BeB°) + 20, (=11 + Bof) + 20,E°Ba)

In addition we have:

o8 9 nn C na ta
( = ;f) = €(0u(=1" + BSIE™" + 20u(—1" + BN + 208" )

+ €(20=17 + BBV ™ + 2Bu0,8™™ + 217 + BS)Dug™)
+ G(Zﬁ(aab)ghﬂj - abgmb) + é:pap nt apfp nt anfp/\/;o

oS
( 552‘/) = 2€ (6":808”” + Jabngb + 0bﬁagmb + a(b’y")“‘gwc)

N y 1 y
+ 26 (ﬁaangi'nn aabgvnb + ,yabang’rnb + ya(bac)gibc _ Eaa,ycdg‘icd)

- €0, (—n2 + ﬁcﬁ") gt — 26661,86.ch"” + 0% a + E 0o a + 0u X,

) — gpapfu

(55 BV
OXu

Now we would like to use these derivatives to write down the components of the bulk

vector field Q, by imposing (4.62). We are still using the antifields g™ and therefore we
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have to collect the terms as follows:

1, (S
Q)" == 37 16(5)

1 - Tnn n n
=— 577 1EG,, + (prpgk + §p8ngr —-20,¢"g t p)

na _€ oS
(Qqt) _2(5,3a

€ _ c ‘tan an a_tn n _tac
=Gy, + 517 'B'Gy + (0L + £0,8'" = 0,8°¢™ ~ 0.£"8)

) = BUQ)™

oS
Q)" =€ (5%117

€ _ a ta a a )
=€Gy,, — _77 1ﬁ BbGrl + (3p§pg ot gp@pgT b - 20{)5( gTb)l)
oS
(Q))ab = ( BV)

6 fab
= (&0 Yab + 20"y + 20t Vi)

0S gy
(Qp)a —e( 5g,a,,)

= (£0Ba + 018" Ba + 0" Yab + 0u" (= + BS) + 0" B
e (S (68 as [0S
0o (5] (2] 2w (32

6gTab
= (&0, + 0uE"n = 1B 0ut")

) + BB (Qe)™

_ 6SBV
Q=%
oS

Q) = 5;,V
oS

Q) = 55

Now, the bulk Q vector field is extended to the normal jets when projected to the pre-
boundary vector field 0:

(O = (04(08u))|,,,

= (anfpapguv + gpapangyv + 2a(;zanéjogv)p + 28(;151)angv);0) IZ)M
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of which we will only need

(éj)ab =€ (anfpap}/ab + fpap‘]ab + 2a(aan§pgb)p + 2a(a€:c']b)c + 2a(aé:nanﬁb))

so that the full pre-boundary vector field reads:

0

0 (Q;,)— + (Qﬁ>a o

+ (Qy)ab + (Qg )ab

+2(Qp)" ——

6 tab

(Qx),u 5 (Ql)lm

0Ba
+(Q0)"

+H( Q)™ +(Q)"

6 tnn é‘é_‘n 6é‘:a 6Jlm

Now there are two equivalent ways to obtain the rest of the boundary structure: either
we compute the explicit projection of the Q vector field (see below) or we consider the
following simplifying technique.

Produce a degree one function via*’:

S = (5w

where E is the Euler vector field on the space of pre-boundary fields, i.e.:

0
P gt 9
f§ o&r g Hlv Xp5Xp

Then the true boundary action S? is such that § = 7*S? for degree reasons and the
sutjectivity of the surjection 7y, which factors through Faps, and QF is its Hamiltonian

vector field. The boundary action is then found to be:

s'= [ {ﬁ(g (7T~ ) + B = ) - 260, (F5™) - 2Egrnaaagn}gn

oM

+ f{ ﬁaaf_ ac ( ﬁ’—fd:i;la) - ?(8117661):]:[1 + 2686‘ (gcynb?ba) }ga (466)

oM

where by J we denote the trace b T
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Even though the computations are simpler this way, it might be worthwhile to outline

the alternative procedure as well. This can be found in Computation A.4. v

Remark 4.13. Notice that this calculation was simplified by the ansatz given by the previous result:
Theorem 4.4. Both the boundary action and symplectic form agree with what we had computed previousl,
as was also discussed in subsection 4.4.1. One interesting thing to notice, is that we do not need explicitly to
assume that nq vanish in a neighbourbood of the boundary. This is possibly explained by saying that the
bare assumption of nalom = O on the boundary is not really appropriate. In subsection 4.4.1 we will see
explicitly how to understand the equivalence of this induced BEV structure to the one obtained assuming a
block diagonal metric tensor, with vanishing off diagonal normal jets on the boundary.

%

This result is a clean first step in the direction of BV-BFV quantisation of General Rela-
tivity as proposed by CMR in”. It states the compatibility of bulk and boundary structures,
in relation with the symmetries. Notice that the BV-BFV axioms in Definition 2.5 need
not be satisfied by a generic gauge theory and the statement is therefore nontrivial. Ar-
guable as it might be to consider gauge theories with this property to be somehow bezzer
quantisable, it provides nevertheless a clear mean of distinction between different variational
problems describing the same equations of motion (see Chapter 5 for a comparison with
the Palatini-Holst formulation of GR, and Chapter 6 for BF-like theories of gravity).

The machinery is able to handle a more complex and sophisticated set of data, than
the standard canonical analysis. When a theory on the boundary is induced, it encodes a
number of characteristic features packing up relevant data in a very efficient way. As we
will see in Section 4.4.2, the piece of data that carries all the relevant information on the
boundary is, not surprisingly, the boundary action.

Finally, recall that in the 141 dimensional case it is known that the Einstein equations are
trivial, and the symmetry distribution has to be amended to take conformal transformations
into account. The critical dimension d = 1 is however marked out by the equations for
the kernel of the pre-boundary 2-form w, both in the classical and the BV-extended case
(cf. Theorem 4.11 and Proposition 4.8), confirming that the strategy has to be altered to

analyse this specific example.
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4.4.1 Recovering adapted coodinates

Using only the B vertical vector fields in (4.55) it is possible to set the 8, fields to zero.
This means that it is possible to use some diffeomorphism (i.e. partially choose a gauge)
to put the metric tensor in the block diagonal form (4.8) without affecting the canonical
structure.

This is not only true for the classical theory, but as we will see in the following it carries

the BV structure along in a consistent fashion.

Theorem 4.14. There is a diffeomorphism of presymplectic manifolds
¢ . (%EBH’ J&EH) — (ﬁed’ 6a’red) (467)

where Ty Fapy — Fra 5 a surjective submersion and gy is given by Equation (4.9) .

Proof. The proof goes through by only quotienting the span of the B vector field in the
kernel of 6. This induces a projection to an intermediate space of ADM boundary fields
TMeed s ﬁDM — Frea- Solving the straightforward differential equations coming from the

explicit expression (4.55¢) (c.f. Computation A.3), it reads:

Tin = Jin = 2VaBy = 260 (Buvma = 757mBa) (87" +7*Beg™) €
g = g STy Bad”
gTan — g'hm + ,yabﬁhngn

Meedt 3oy (4.68)
E =& +yBE"
=g
?ab = Yab

and it is a simple check to show that @apy = T 4 Qe 1f We set

\/7 - ab— —Im™7 my “N—tnn —  A—ibn
=0 (7 V7" T = 07" Tin) =2 | O™ +2 | 7,08 8" (4.69)
oM oM oM

Areq =

The map ¢ is then simply given by the obvious assignhment of homologous coordinates in
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a local chart, with the prescripdon¢*(n2) = g.n.

Now, the pre-boundary structute (Freq, Wrea = 0Qeq) is equivalent to the one we would
find by taking the E.H. action and assuming that g, is block diagonal. As a matter of fact
the resulting boundary one-forms differ from one another by an exact term 26( \/_ijab)
that pulls back to the usual Gibbons-Hawking-York boundary term 26(4/yK) plus the
extra term OF that depends on the ghost fields and fixes the projectability of the boundary
one form in the Einstein Hilbert formalism (c.f. Theorem 4.2). More formally we have

that
g = " (Quea + 26" T ) (4.70)

and the pullback of the correction term is precisely what one would expect:

27;.46( \/%abjab) = -26(\YK) - 6F 4.71)

v

This means that, had we taken into account the Gibbons-Hawking-York term in com-
puting the boundary structure induced by the Eistein Hilbert action, we would have found

the additional exact term —26( 4/yK) in the pre-boundary one-form (4.9), closing the circle.

4.4.2 Constraints algebra on the boundary

As we already announced, from the boundary action (4.58) it is possible to read the con-

straint structure of canonical gravity. As a matter of fact, the degree zero (ghost number,

gh) part of the derivatives ‘;;—j reads
5S°? € ( 1
=— (1, - —HZ) + V7 (R -2A)=H 4.72)
o VY a- (=21
656 cd cd
| =0 (' Maa) = By )My = H, (4.73)
é: gh=0

which are the symplectic-reduced versions of the standard constraints (4.63) and (4.64)

respectively.
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On the other hand, the residual gauge symmetries can be found by computing the relative

components of the boundary cohomological vector field Q%, using the fact that LQa(ua =
589
0
o&"
(Q))er = (£ 0,€" + £°0.£")

(Q%)er = (£°0:£™
S
&
5

) +£°0cy . + 25(a§%>c) 5y
ab

2 14
0 _ n ab
(Qy,, =& —=Ma —
Y d-1
It is interesting to notice that the symmetries above are a corrected version of the usual
gauge symmetry for a d-dimensional metric on the boundary under the action of boundary

diffeomorphisms £ € T[110M. 1n fact they can be compactly rewritten as

2
(0", :f”W(H —~ di 1Trrl) + Ly (4.74)
1
Q") =€y 'VE" + S1€7.€"] (4.75)
(Q")¢r =Lg" (4.76)

This means that they do not manifestly show a Lie algebra behaviour and the structure func-
tions depend on 7!, Yet the boundary BFV action (4.58) is at most linear in the antighosts
@. This is in agreement with the observations in®. The BFV formalism provides for a

47,48,16,36,35 , and

cohomological resolution of symmetry-invariant coisotropic submanifolds
in this case of the constraint submanifold of canonical gravity, modulo residual gauge sym-
metry.

The (cohomological) description of the the canonical, constrained phase space for Gen-
eral Relativity is then obtained from a simple variational problem in the bulk. This encom-
passes a number of classical results in the field while clarifying related issues at the same
time. Moreover, we stress that on top of obtaining the expected BFV resolution of the

canonical structure on the boundary, we are able to establish a connection with the bound-

BV 0

ary data through the explicit projection 7, and the fundamental equation 1o = 68 5 ,,a°.
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This is the starting point for the BV-BFV programme to quantisation of gauge theories on

manifolds with boundary.

4.4.3 Extension to the boundary of the boundary

We would like to use our boundary action now as the new input for a theory on a mani-
fold with boundary, and therefore we will ask 00M # (. Moreovet, since we are left with a
gravity-like term fa I ﬁRafn in the boundary action, we will perform the ADM decompo-
sition in a neighborhood of the boundary of the boundary. To do this we will requirte d0M
to have only light-like isolated points if € = —1, or no condition at all if € = 1 (euclidean
boundary).

To fix the notation we will have

(4.77)

7”=¢?a4(+6 o )
- b/ a*h - b'b’
with roman indices {a, b, ¢, d, e, f, [, m, n, p, g} denoting boundary directions and {i, j, k, L, r, s, w, v, u}
denoting boundary of the boundary directions. Notice that ¢ = ¢% = 1 when e = 1
since there is no residual signature to be accounted for: the boundar_y metric has euclidean
signature. In the case € = —1 we have ¢ = ¢ = +1 when the new transversal direction x*
is timelike and ¢ = ¢ = —1 when it is not. -
Then the ADM d_ecornposition of M yields

VHRE" = M (¢ (HyH - H))E" + o ||l ,R7E"
—2(9&( |h|¢H);?" +20 ,( Ihl(Hb/ — hﬁaia))'.;?" 478)

where again we highlighted the fact that one might consider taking the absolute value of the
determinants of the various metrics involved, according to the spacetime signature and the

values of € and ¢. We will drop this notation from now on. The tensor H;; is the extrinsic
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curvature of the boundary of the boundary and reads

1 ,
H,'j = Ea_l(ZV?fbj) - 84}1”‘), H = h”H,‘j
with V% being the Levi-Civita connection on d0M w.r.t. the induced metric ;.

Notice that expression (4.78) differs from the previous ADM Lagrangian in that we

cannot neglect the total derivatives anymore, owing to the presence of the ghost fields &°.
g y > g p g

Claim 4.15. The data (ﬂaM, S9,0°, W) on the boundary OM induces the data of a surjective sub-

mersion

Tom: Fiyy — Fing (4.79)

with T';M the space of restrictions of the fields in 7:66M and their jets to OOM., together with a pre symplectic
Jorm @° on fa%vl Performing symplectic reduction and denoting Ta%aM = TgM we obtain the data
(F20 .89, 0%, %), with [0%, 0% = 0, tgww® = 6SP and woy: FLy — Fy a

surjective submersion.
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General Relativity in the tetrad formalism

The main difference between the Einstein Hilbert theory of gravity and other theories for
elementary forces is that the former does not strictly look like a gauge theory. In other
words, it is not a theory of connections, unlike electromagnetism or chromodynamics or
the standard model of particle physics. Nevertheless, there is a different formulation of
GR as a gauge theory, in the sense that there is an action functional that produces the same
physical data as EH, and yet it is different from a structural point of view.

Consider the principal fiber bundle of (co-)frames on M, with the natural action of
SO@3,1) on it. The dynamical fields are the co-frame field e: TM — V, which we
require to be an isomorphism with V being a vector bundle on M whose fiber is the
Pseudo-Riemannian vector space (V, 1), and a connection w in the principal S O(3, 1) bun-
dle wly: U — s0(3, 1). The vector bundle V is the associated bundle to the bundle of
SO(@3,1) frames, and it is isomorphic to T M, while 1 is a pseudo-Riemannian metric on
the fibers.
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Remark 5.1. Notice that this implicitly requires that we fix a reference metric on T M to break down
the group from GL(4) to S O(4, 1), as TM is naturally the associated vector bundle to the principal
bundle of GL(&)-frames. This metric has no relevance whatsoever in further computations and it is not
regarded as a background metric.

¢

Notice that one can consider /\2 V-valued connections, using the isomorphism with the

Lie algebra:
2
n: /\ vV — s0(3, 1) (5.1)

which maps the basis ¢; A¢; to the basis of matrices t; of the Lie algebra by raising/lowering
indices. Notice that we require w to be 17-compatible as a connection in V. This implies
that, when pulled back to a connection on the space-time using a non-degenerate e, we have
that the curvature F,, is antisymmetric in the internal indices and the connection turns out
to be torsion free, in agreement with the general assumption of General Relativity, when
spin matter is not coupled.

In this setting the theory is fully described by the Palatini action®:

SpalzTrfe/\e/\Fw+Ae4 (5.2)

M

By Tr: A*V — R we denote the volume form in A*V normalised such that Tr(i; A

uj ANug Aup) = €, where {u,-};‘:1 is an -orthonormal basis in V, and A is the cosmological
constant. The Euler Lagrange equations for the associated variational problem yield at
the same time the Einstein’s equation, and the compatibility condition of w and e. The
latter condition, together with the zero torsion requirement on the connection, requires
that covariant derivatives be taken wir.t. the Levi Civita connection. More explicitly, the

Euler Lagrange equations for (5.2) read

do(ene)=0&d,e=0 (5.3)
eNF,=06[F,]l=0 (5.4)
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with i, j,k = 1...4 indices in V. Notice that the double implication holds when we assume
that e is an isomorphism, and in this case Equations (5.3) and (5.4) describe the same

geometro-dynamics of the Einstein-Hilbert variational problem.

Remark 5.2. Observe that, strictly speaking, the two theories are equivalent only when condition (5.3) is
used to rewrite the Palatini-Holst action in terms of the curvature of Levi-Civita connection. Equivalence
on shell of he effective action does not ensure that the rest of the relevant structure carries through from one
description to another, as we will see. One should compare this with the option of dynamically implementing
the mentioned constraint (cf. Theorem 5.12, and Section 5.4).

¢

The minimality of the theory has been analysed by many authors, mainly in relation to
the canonical formulation of Loop Quantum Gravity (LQG). As it happens, it is shown
in*! how one can easily consider the most general theory of gravity of this kind to be a
topological modification of the Palatini action”. This modification goes under the name of
Holst action’, and it is still possible to add a finite number of boundary corrections. The

most general shape of a Palatini-like theory of gravity is indeed given by

S o = f Trlai(e Ae A F,)+ay % (e Ae) AF,]+ as(A)Tr(e*) (5.5)

M

+ f(ag —ias)dLcs(w™) + (a3 + ias)dLes(wh) + asd(d, x e A e)
M

A few comments are in order. The trace is induced by the orientation in V and we used

the internal Hodge *. The @), @, terms, with respect to a basis {u,-}?:] explicitly read:
(alfijklei Ne! NFY +aze' Ne! NF klﬂiknﬂ) € QP(M)

with 7;; being the given Lorenzian inner product, which is diagonal n = diag{1, 1,1, -1}
with respect to the basis {u,-}?zl. This will be interpreted later on in Lemma 5.3 as a volume

form in the top exterior power.

“The term topological being referred to the fact that it does not affect the dynamics.
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The coefficient a6(A) is proportional to the cosmological constant, whereas the compo-
nents w* are respectively the (anti-)selfdual parts of the connection w and the functionals
Lcs are Chern-Simons forms. It can be seen*!, that the total derivative terms in (5.5) unfold
to yield topological terms proportional to the Pontrjagin, Euler and Nieh-Yan classes.

Notice that the terms from a3 to a5 are relevant neither for the dynamical theory nor for
the boundary structure. As a matter of fact they arise as exact corrections to the boundary 1-
form, and therefore they will only induce canonical transformations in the (pre-) symplectic

space of (pre-) boundary fields.

5.1 Palatini-Holst action

The a; term in (5.5) will have a non trivial effect in both the bulk and the boundary theory,
and we shall retain it in what follows. The other topological boundary terms will be dis-
carded in this analysis. In doing this we will rename our parameters as it is customary in the

literature, namely by introducing the so-called Barbero-Immirzi?*?!

parameter y € R\{0}

and considering the (real) Holst action

S Holse = f (Tr(e AeAF,)+ % *x (e Ae) A F, |+ ag(A)Tr(eh (5.6)

This theory is equivalent to the Palatini action only in the limity — oo, but it still describes
the same (Finstein) equations, up to a rescaling factor y. However, this apparently harmless
shift turned out to be a source of ambignity in the quantisation scheme?"%%.

The parameter itself was first introduced by Barbero?” to generalise the construction of
Ashtekar canonical quantum gravity "’ in terms of a real § U(2) connection, later improved

by Immirzi?!

. Ashtekar’s formulation dealt with complex selfdual connections instead,
which are recovered by fixing y = i. This complexification can be avoided at the price
of introducing some parameter-dependend canonical transformation of the phase space,
mapping the Palatini fields to some y-rescaled fields. This parameter dependence has been
observed to be non-guantisable®, in the sense that it cannot be unitarily implemented, which

means that the quantisation of the theory without the y parameter is not unitarily equivalent
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to the scaled one.

For the time being we will be interested in the semiclassical structure only, and the gen-
eralisation introduced by the Barbero-Immirzi parameter will be taken into account only
for completeness. The standard Palatini descripion is obtained in the limit y — oo and,
as we will see, as long as the classical theory is concerned, the boundary structure will not
present any unexpected behaviour.

The introduction of the Barbero-Immmirzi parameter changes the pairing structure be-

tween e A e and F,. This can be understood in the following sense:

Lemma 5.3. Consider the psendo-Euclidean vector space (V, 1) and the maps

~ ANV — AV

A — a+lxa 7
4

T,: A _R (5.8)

aAp +— Tr[T,(a) AB]

2 N 2 yr#

T,: A A/\ v (5.9)
a — T(aAN)

Jory € R\{O}. Then all of the above are isomorphisms for all y # i, and they define a non-degenerate
Symimetric inner product in A* V. Moreover, Ty is symmetric with respect to the inner product induced by

the trace, i.e.

Tt[T,(@) A B] = Tila A T,(B)]

Remark 5.4. Observe that we askedy € R, so the condition 'y # *i should be automatic. As we
already mentioned, one can make sense of the formalism in the complexification of $0(3, 1), leading to the
Ashtekar formulation of Palatini gravity, when global hyperbolicity and possibly a time gange are enforced.

¢

Proof. Consider the linear map f} : /\4 V — R and evaluate it on the basis u; Auj Aug Auy,

where {u;} is the basis of V that diagonalises 1. It takes the value

A

T},[l/ll~ A uj AU A Ltl] =

2
€ijkl T ;ni(knl)j] . (5.10)
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as can be easily checked by the fact that

1
k l
*u; A\ uj = EE,‘jle] (mnn) Uy, N\ Uy,

and

Tr(u; A uj A\ up A uy) = €i jkil-

If we relabel the basis indices in /\2 V via (12,13,14,23,24,34) —» (1,2,3,4,5,6). Itis
simple to gather that the representative matrix of T, with respect to the canonical bases in

A*V and \? V¥, relabeled as just mentioned, is given by

1
0 y! 0 0 -1 0
0 0 —y' 1 0 0
[Ty] = 1
0O O 1 vy 0 0
0 -1 0 0 —y!' 0
1 0 0 0 0 —y!
and its determinant is det[T’, ] = —(1 + ¥72)3. Now, the combination

¥ . nkl
o= Ui ANUj+ & il ju€"" U A Uy

for @ € R is a basis of /\2 V forall @ # +i. In fact, the linear map F, sending {u; A u;} to
{fl(;} reads

1 00 0 0 «a
0O 1 0 —-a 0
0O 01 —aa 0 O
[Fa] =
0 0 a 1 0 O
0O aa 0 O 1 0
- 00 0 0 1

and det(F,) = (1 + a?). In particular, for @ = 5 we have Ty = F%.
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To prove the symmetry of T, we can compute

— . 1
Tr[T, (@) A B] = /™ Tr [(uiuj + 2—ei"].lukul) A umun] =
Y
_ Sijpgmn| . +L kl — ligmn| . +i Pl =
=a ﬁ el]mn 2y€ij€klmn =a ﬁ Eljmrl 2yEIJPq€mn -

.. 1 —~
= a’B™"Tr [u,-uj A (umu,, + Ze%upuq)] = Trla A T,(B)]
or equivalently use the fact that Tr[fy(oz) AB] = Ay(a/ A ) and that Ty is a manifestly
symmetric bilinear map (c.f. (5.10)) on A* V. v4

We are now ready to start the analysis of the boundary structure for the Palatini-Holst

theory in the classical and BV settings.

5.2 C(lassical boundary structure

Similarly to what we did for the classical Einstein Hilbert formulation of General Relativity,
we can analyse the classical phase space for the Palatini-Holst formulation. We will compare
this to the BV extension in Section 5.3.

According to the tetrad framework outlined at the begining of Chapter 5 the space of

classical fields for the Palatini-Holst theory of gravity is given by

Fie = QM V)& Ap (5.11)

where Ap denotes the space of principal connections on a principal bundle P — M with
structure group S O(3, 1). A connection is locally described by a one-form w (on a chart)
with values in s0(3, 1) =~ A> V.

Remark 5.5. Notice that, in the literature (e..""*), globally hyperbolic structure of space-time is usually
assumed for Palatini-Holst gravity. We will instead consider any 3 + 1-dimensional manifold with bound-

ary, without specifying the kind of boundaries we allow. This means we will not put any extra restriction
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on the fields (c.f. with Chapter 4, Section 4.2).

Theorem 5.6. The classical phase space for the Palatini-Holst theory of gravity

Spu = f T,[e A eF,] + ATr(e*) (5.12)

M

is a symplectic manifold for all values of the Barbero-Immirzi parametery € R. Denoting by %Iffq the
space of pre-boundary classical fields, i.e. the space of restrictions of fields an their jets to the boundary, the
symplectic reduction with respect to the kernel of the differential of the Noether 1-form m: F —s Fia
can be performed and it reads :

e=e
AT, [@] = T, [0 eq A e,dx® (5.13)
T,[8] = 3. T, [®]% e4 A ecdx*

and the symplectic form is found to be

@ =2 ny [Z/\ 5 A 8(@ +,E)] (5.14)
oM

Proof. The variation of the Palatini-Holst action (5.6) splits into a bulk term, which we
will not consider in what follows, and a boundary term. The latter is interpreted as a pre-
boundary one-form on the space of pre-boundary fields ?N‘fli)lst of all restrictions of fields
to the boundary, it reads
= ffy [e A e A dw] (5.15)
oM

and it gives rise to the pre-boundary two-form

@ = szy [6e A e A Sw] (5.16)

oM
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The restrictions of fields to the boundary are denoted with the same symbols, but we un-
derstand w as an $0(3, 1)-valued one form on the boundary, while e is again a V valued
one-form on the boundary. In particular, in the basis {u;};=1. 4 of V we have e = eéu,-dx“
whereas w = w;j u; A ujdx” where we fix that the indices a, b, ¢ run over the boundary
directions 1,2, 3. Notice, however, that the vectors ¢, = eéui are a basis of a three dimen-
sional subspace W C V, and we can complete it to a basis of V by introducing a vector e,
orthogonal to all the e,’s.

We rewrite (5.16) as @ = 2 faM Tr [(56 AeA (5Ty[w]], and using Lemma 5.3 we can read

the equations defining the kernel of @ from (5.16)

(X.)e =0 (5.17a)
(X7,1w))e =0 (5.17b)

Using the basis {e,} = {€4, €x}a=1..3 we can expand (X,) and (X7,[,7) in the basis and find,
for (5.17a)
(X Yieuere™ =0 &= (X,) =0 (5.18)

whereas, for (5.17b)
Xrwe' =0 Ya,b=1,2,3

(X101l euerer€™ = 0 & 3 (X7 ()2 free Ya+b+c (5.19)

Y Xrw)® =0 Vb=1,2,3

Indeed, with a closer look at the pre-boundary two-form one can gather that the com-
ponents (XTy[w])ZC do not appear explicitly, which means that they belong freely to the
kernel and therefore can be put to zero using their associated vertical vector fields. We can

perform a change of coordinates in the space of pre-boundary fields by writing
T, [w] = T, [®1 eq A erdx + T, [0]"" eq A e,dx" (5.20)

motreover we can define § == ), cbfced A e.dx‘ so that we can read the above kernel

equations as (XTY[&,])Z" = (XT)/[,B]) = 0 and project to the symplectic reduction. Pre-
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. . . . .. ~. cl —
composing the symplectic reduction with the restriction map 7: F ,, — Fi. We get

the map to the space of boundary fields

e=e¢e
T (T, [@] = T, [01" eq A endx (5.21)

TV[E] =>.T, [(I)]fc ey N e.dx”

It is easy to check that @ is hotizontal and that the one-form

o’ = f T, [’ée‘é(a +,E)] (5.22)
om
is the correct boundary one-form, namely: @ = 7},@°. v

5.3 Covariant BV theory

We would like to extend the classical theory to a BV theory including the symmetries. In
order to do this we must understand that the Palatini-Holst description of gravity is again
a BRST-like gauge theory (as for the Einstein Hilbert version, Chapter 4) so that it admits
a minimal BV extension.

Differently from the EH case, in the Palatini Holst theory one has to deal with a space-
time symmetry and an internal gauge freedom, due to the $0(3, 1) structure. For the results

in this Chapter and the following ones we will need this:

Lemma 5.7. Let P — M be a G principal bundle and let A be a connection on it. Consider any
degree 1 vector field & on M, and any associated vector bundle V with typical fiber the § module V4. For
any differential form ® € Q*(M, V) define the covariant Lie derivative to be

LE = [1g,da]® (5.23)
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with dp being the covariant derivative induced by the connection A. We have the formmula:

LA

@ — [LE, LI + [1z.F A, @] = 0 (5.24)

Proof. The proof is just a straightforward but lengthy computation:

LA

o ®— [L2, L?]CI) = Ligg® = [Lg, Le]® + iz 4[A, @] + [A, e 4 D]

— ted[1A, ®] — e[A, L{ D] + due[1zA, @] + [A, L D] =
= 2uedig[A, O] — tetd[A, © — digte[A, @] + [A, 2tedt D — 1:1:dD]
= 2tedie[A, D] + 1zd[A, 1 D] — 1[A, 1dD — 1£[A, [1A, D]]
+ 1[A, di @] + d[1zA, 1:DP] + [A, 11D + [LA, 1:P] — 1:dL D] = 0

as it can be carefully checked by expanding all terms. We used the well known identity

Liz 5/ ® — [Lg, Le]1® = 0, of which this Lemma is some special generalisation. v
This will be used to prove the following

Proposition 5.8. Consider the same assumptions of Lemma 5.7 and denote by p the representation on
the g-module Vy. Let ¢ € QU[11(M, adP) be a degree | function with adP the adjoint bundle to the
G-bundle P — M, and define Q a vector field on the graded manifold Ap®Q°* (M, V)®X[1](M)®
Q[1](M, adP) by the assignment:

QA =yFy—d,c Q(D:Létl)—p(c)(D
(5.25)
Qc = 31e1eF s — 3[c, ] Q¢ =1[&,€]

Then [Q, Q] = 0.

Proof. 1t is chiefly a long and straightforward computation to check that Q cohomological, that
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is to say Q% = 0. We shall report the main steps of the various checks:

Q2c = %([Lg, telteFat+ie[Le, Lg]FA)—%(Lngd(LgFA—dAC)-Hng[A, teFa—dacl+[izteFy, c])
= %(Ldeé:LgF A = LeledieF g — tetetedFp) — %Lgtg[A, teFyl
= éll(tfdthfdA —tetzdigdA) + %(Ldeng [A, Al = tetedie[A, Al = teteted[A, A]) = [LA, Let:dA]
= %(zgdszgdA — tetedigdA) = —%gpgﬂ(apaﬂAy)gv =0 (5.20)
with the last equality following from the contraction of a symmetric tensor by an antisym-

metric one. The rest essentially follows from Lemma 5.7, as we have

1
Op® =5 L ® = L L;® + L{[c, D] + telieFa, —dac, ]

~[t¢F a, —dsc, 0] + [C, L; @] = [c, [¢, @] =

1 A ATA 1
:EL[scvf](D - Lngq) - E[LfoFA’ (D] =0
together with
2y | 1
Q = Et[g,f]FA — LfdA (LfFA - dAC) + EdA (LngFA - [C, C]) - [LfFA — dAC, C]
1 1 1

= —EtgLdeA -l [A, L,fFA] + 5 [A, Lfté:FA] = _ELfodAFA =0

and Q*¢ = 0 follows from the Jacobi identity. v

This result tells us how to implement diffeomorphism as gauge symmetries for different
theories involving differential forms with values in some representation of the internal Lie
algebra g. As we shall see below this is the case of the Palatini formulation of General
Relativity.

In the literature, Piguet, following Moritsch, Schweda and Sorella***, suggested a BRST
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operator s for the Palatini Holst theory of gravity that reads
se=Lge+[0,e]
sw=Lw+d,0
1 5.27
& = S1£,6] o2
1
sO =L+ 5[9, 6]

where € is a vector field with ghost number gh(¢) = 1 and 6 is a function with values in
A2V and ghost number gh(6) = 1. This operator takes into account non global fields, like
w, which is a connection on a non trivial bundle, and non covariant derivatives. We can

now propose a covariant version as follows:

Proposition 5.9. Define the new ghost variable c,
c=tw—10 (5.28)

which is a function with values in N*V of ghost number gh(c) = 1. The BV operator for the Palatini
Sformalism is given by the cobomological vector field Q:

Quw=F,—d,c Qe:Lg’e—[c,e]
(5.29)
QC:%Lflwa_%[C’C] sz %[f"f]

where F, is the curvature of w, LZ;’ = [tg, dy,) is the covariant Lie derivative along & with connection w,
and & is a vector field with ghost number gh(€) = 1. Then, The minimal BV extension of S pu by Q in
(5.29) defines then a BV theory on the space of fields

(Fou = T"1=11Fmin» Q) (5.30)
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where Foin 15 defined as

Fin = QU M, VY& Ap & X[11(M)®Q°[1]1(M, adP) (5.31)

and the (—1)-symplectic form ., depending on the pairing T,.

Proogf. First of all notice that the operator (5.29) involves only global fields and covariant

operations. To prove that Q is indeed a symmetry of the action we check that QS py = 0:

OSpy = fZ[Lf, d,leeF, —2[c,eleF, — eed, (t:F, — d,c)
= —2d,ewcel, — 2d,eelsF,, — 2d,1:eeF,, — eed 1 F,, + ee[F,,c] —2[c,eleF,,

2ed el ,+eized, F,—2d eetsF,—2d ceeF ,+2d eel:F ,—(ee,ad .F,)—(ad.(ee), F,) = 0

whereas the property of Q being cohomological follows from Proposition 5.8, where /\2 Vx~

g, A = wand V clearly bears a representation of g. v

Starting from the Holst action given in (5.6), and recalling the pairing T, coming from
the twisted volume Ty in A*V defined in Lemma 5.3

T,(aB) = Tr ((a + % * a/) A ,6’)

foralla, B € AV the minimally-BV-extended Holst action is then given by the expression:

Sg}f, = ffy(e ANeANF,)+Tr {(Lwa - dwc) w' - ([Lf,dw]e - [c, e]) eT}
M

+%fTr{(LgL§Fw—[C,C])CT}+f%‘[§»_f]'fT

M M

(5.32)

where the nature of the fields, anti-fields, ghosts and anti-ghosts in Fpy = T [=1]F i is
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summarised in the following table:

Field | Q*(M) | A®V | Ghost | Total Degree

W 1 2 0 3

e 1 1 0 2

c 0 2 1 3

¢ / / 1 1 (5.33)
w' 3 2 -1 4

ef 3 3 -1 5

cf 4 2 -2 4

&l 401 / -2 3

The ghost field & is a vector field on M, and its dual anti-ghost is a one form with values

in top forms. We will decompose it as follows:

E=yv (5.34)

with y € QY(M)[-2] and v a volume form.
We are now ready to establish whether the BV theory (5.32) obtained by minimally ex-

tending the Palatini Holst action does satisfy the BV-BFV axioms or not.

Theorem 5.10. The BV data (Fpy, S gg, 0, ng) on a (3 + 1) Pseudo-Riemannian manifold M

with boundary OM does not yield a BV-BFV theory. This is true for any value of y, including the limiting

case’y — 00, which yields the usnal Palatini formulation of gravity.
Proof. The full variation of S 8}, reads as follows:

885y = f ~T,(eedw) + Tr {&u(waT) +dcw’ + Se(iee’) + (L(;fe)eT}

oM

1
+ f Tr {—(Lgée)eT - E(S(J)(Lé:LgCT)} + f (Loex)Lev + f Bulk Terms
oM M

oM

(5.35)
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The variation of the &-ghost part is computed as:

1 1 1
0 f StV = f UseelX — SUea1OX |V = f [[eoe, d], telx —5te 10X |V
2 2 _ 2
M M M A

f Av = f (Léfdtf)(—tflggd)()\/'i' f (tsex)digy + f (tsex)tev  (5.30)
M oM

M M

and thus

1 1
0 f Slegxv = f (L(ggdLgX — Letsedy — EL[g’g](SX)V - f (tsex)dizv + f (tsex ey (5.37)
M oM

M M

If we denote by & the transversal part of & with respect to the boundary, and with v/ a
volume form on the boundary, we may rewrite gy = —&"7.

To obtain the pre-boundary one form @ we must consider the restriction of the fields
to the boundary and their possible residual transversal components. With an abuse of
notation, the restriction of the fields to the boundary will be denoted by the same symbol,
whereas an apex " will be assigned to the transversal components. For instance, we will
write L§¢| oM = Lfagba + $&" = 10 + $,&" by renaming the restrictions to the boundary
¢° = ¢ where ¢ is any suitable field, and £ = £. We obtain

a = f—f"y(eedw) +Tr {&u(tfwT) + 0w W E +Scw' - Seel e — 5€(L§€T)}

im (5.38)
+ f Tr{-d(e,t")e" — S(tce)e’ — 6w (1ec))E"} - E'15x

oM
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and we may compute the pre-boundary 2-form @ = da@ tobe (a =1...3)
@ = f — 2T (Seedw) + Tr[éw(wgaga) + dw(te0w") — SwdE"w]
oM

+ 0WEW E" + 6cdw’ + de(e)0EY) + See! 5E" + dede, " (5.39)
+ 8(e,&M0e" — e,06°5e" + 6w 0&"eC) — dw Etsec — dw fnL§5CZ]+

+ (£"08" X, — GE"SE X — OE" X u0E" + E"6x 106V

The kernel of @ is defined by the equations:

(X,) =0 (5.402)
(X.) = 1:(X,,) (5.40b)
(Xer)ep + (X, )" =0 (5.40¢)

together with
T,{(X,) A e A e} = %Tr{Q A de} (5.41)
T, ((X,) A e Adw) = %Tr {E A dw) (5.42)

where

Q = | (Xee] + (X)€" + x| (5.43)
E = |(X,)&" = (Xe)w) + Xeltec) — 10y cl" — 1e(X,)E" | (5.44)

with Q € Q*(OM) ® A’V and E € Q*(OM) ® A\*V. In addition we have

Tr [(Xo)e] = (X)) — (Xeden + (Xu)cl,&| + (5.45)
~ (2(Xen + (X, )E" + Xehya) V' = 0
Tr [(Xo)e] — (X)w) = (Xo)el & = (Xudea| + (5.46)

~ (Xe o + (X)) =0
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where the latter is valid for all @ = 1, 2, 3, and finally, forallp = 1...4

(X,)E =0 (5.472)
(X )E" =0 (5.47b)
L(X,)E" =0 (5.47¢)
(X)€" =0 (5.47d)

Although the equations in (5.47) look singular, it is easy to check they are not!, since (£")* =
0. Crucially, though, equation (5.42) is highly singular. As a matter of fact, counting the
number of unknowns (the (X,), are 12, independent fields) against the number of equations
(the 6w are 18 independent variations) it is easy to gather that the system admits solutions
only when relations among the E coefficients (5.44) are imposed. On the other hand such
relations are singular in that they involve polynomial expressions of odd fields only.

The kernel of @ has therefore a larger set of generators depending on the point on the

space of fields, and the pre-boundary two form is therefore not pre-symplectic. v

This result is a no-go theorem, at least for what concerns the BV-BFV quantisation
scheme. It is telling us that there is something that crucially fails when we try to induce
symmetry-compatible data on the boundary. The space of boundary fields - i.e. the re-
duction by the kernel of @ - is not smooth, and therefore it does not yield a smooth BFV
resolution of the classical reduced phase space, compatible with the boundary in the sense
of Definition (2.5), Section 2.2. The source of this degeneracy seems very much due to the

fact that we have #o0 many free fields.

Remark 5.11. What fails in satisfying the BV-BEV axcioms is the pre-symplecticity of the pre-boundary
two form W, as its kernel does not define a subbundle of the tangent bundle on the space of fields. This is
a first, highly non-trivial example where this condition is not fulfilled.

¢

Notice that the classical theory is well defined, since symplectic reduction is possible

when the symmetries are omitted. The (homogeneous) system of kernel equations is triv-

THere we are assuming that the rest of the equations for X,, and X, can be partially solved, even it it won’t
be possible to solve them fully. This is just to remark that the problem does not come from (5.47).
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ially solved, when symmetries are switched off. At the classical level we expect the structure
to be equivalent to the Eistein Hilbert action when the condition that w be Levi Civita is
imposed. This symplectic reduction, and the coisotropic submanifold of canonical con-
straints may also be independently formulated in terms of the BFV formalism, but this is
not compatible with bulk BV structure.

What this result is hinting, though, is that if we want to encode symmetries in a consistent
way we cannot consider the Palatini formalism as 7# zs. Observe that in three dimension
the ratio equations/unknowns becomes 1, and the problem is not present, in agreement
with the fact that the theory is basically a topological BF theory, and the CMR axioms are
satisfied for such theories.

Comparing this result with what we found in the case of the EH formalism (Theorems
4.11 and 4.12) we can understand that something goes wrong when extending the physical
fields to two separate entities: the tetrad e and the spin connection (with trivial torsion)
w. The two theories are, in fact, equivalent only oz half shell, that is to say, only when the
equation of motion (5.3) is enforced, i.e. requiring that w be the Levi-Civita connection.

To overcome this problem one could try to implement condition (5.3) in the BV machin-
ety, or resort to other equivalent descriptions of the classical theory®*>*". The former

approach is considered in Section 5.4, whereas the latter is analysed in detail in Chapter 6.

5.4 Half-shell localisation

We have seen in the previous sections how the BV version of the Palatini Holst action does
not satisfy the BV-BFV axioms. This is a deviation from the equivalence at the classical
level with the Einstein-Hilbert formulation of General Relativity (cf. Chapter 4).

It is clear that the Palatini-Holst action is slightly more general than the Einstein-Hilbert
formulation of GR. The fact that the (torsion free) connection is independent from the
metric, and it is uniquely determined only when the Half-Shell constraint (5.3) is enforced
marks a difference in the two theories. One question one could ask is whether there is a
way to implement it consistently with the symmetries, while still holding on to the tetrad
formalism.

In this Section we will consider such a localisation to the Half-Shell submanifold d,,e = 0
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through a Lagrange multiplier 1 € Q*(M, V*) where we may identify the fibers of V* with
A’V

1. A
S us :fETy[e/\e/\Fw]+Tr[t/\dwe]+ZTr[e/\e/\e/\e] (5.48)

M

Theorem 5.12. The equations of motion for the action functional S g coincide with those of the Einstein-
Hilbert theory and moreover, whenever M admits a boundary OM, it exhibits a symplectic space of bound-
ary fields. The projection to this space is given by

t=t+T,Jw—-w]Ae
T = (5.49)
e=e

where w s the Levi Civita e-compatible connection, and the (exact) symplectic form reads

@ = f Tr |67 o2 (5.50)

oM

Proogf. First of all let us analyse the Euler Lagrange equations for the action. They read:

dw:dene—tAhe=0 (5.51a)
Se:e ATy [F,]l+d,t+Ae’ =0 (5.51b)
§t:dye =0 (5.51c)

where t A e stands for %(l‘ Aw-e) = tL]z( e, €€’ for all o space-time index and lL,m
internal indices. The dot denotes indeed the action of w on e. Enforcing the half shell
constraint d,e = 0, which implies that w is the Levi-Civita connection, represented in the
tetrad formalism by the special connection w, we obtain ¢ = 0 and the Einstein equation
in the tetrad formalism

eANF,+Ae’ =0 (5.52)

Starting from the computations in Theorem 5.6, we gather that the pre-boundary two-
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form wyg reads
Tys = f T, [6e A e A Sw] — Tr[6t A Je] (5.53)
oM

and the kernel of this two-form is easily found to be:

(X;) = (Xr,(w) N e (5.54a)
(X)) =0 (5.54b)

This means that w can be fixed using the vertical vector field

5
+ (X1 w) A e— (5.55)

0 = (X7,[w)) 5

ST, [w]

and ¢ is modified accordingly. Flowing along () we can set w to be a background con-
nection w, which we may eventually choose to be the restriction to the boundary of the
solution to the EL equations, and this fixes (X7,1.1) = T, [Q - a)o]. Then, by solving the

straightforward differential equation f = T, [w — wy] A ep:
1(s) =ty +T)w—wol Aeys (5.56)

we set (1) =19 + T)’[Q — wo] A ep.

Notice, however, that the pre-boundary one-form is not horizontal with respect to the
kernel foliation defined by equations (5.54), as the generator () = % does not lie in the ker-
nel of @. We can nevertheless modify @ by adding the exact term 1 f 4 T, [e ANeA(w-— w)]+
J,, d(e A1) to the action (5.48), yielding

a=a+ %5(6 ANeAT,[w])+d(e At) (5.57)

and it is easy to gather that the following one form on the space of boundary fields

a’ = f e (5.58)

oM
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will be such that

@ =m0’ (5.59)

where the projection to the space of boundary fields mj is then clearly given by (5.49), as
we canset 7 ==t + T, [Q - a)] Ae. v

Proposition 5.13. The projection to the space of classical boundary fields of the Euler Iagrange equation
Jfor the action (5.48) is isotropic but not Lagrangian.

Proof. Consider the Euler Lagrange equations for the Half-Shell-constrained Palatini action
as given in (5.51). Their projection to the space of pre-boundary fields is given by their

restrictions as differential forms:

w=w
AEL) = EL|,,: {r=0 (5.60)
eNF,+Ae* =0
Notice that we substituted equation d,e with the equivalent condition on the connection

w = w. Taking into account the projection to the space of boundary fields (5.49) we can

easily recognise the projected critical locus to be

|

EL’ := ny(EL): (5.61)

=0
eANF,+Ae =0

sincet =t+T, [Q - w] A e, the critical locus yields precisely f = 0 when w = w. Itis easy
to check that EL? is isotropic, as = 0 implies w?

since S g = EL + JT;,[aa .

50 = 0, confirming the general theory

Actually, 7 = 0 defines a Lagrangian submanifold, which is then spoiled by equation
€A F,+ N =0. A way to see this is by explicitly checking that their Poisson bracket is

not proportional to the constraints, and thus EL? fails to be a coisotropic submanifold. v/

Since the two theories are actually classically equivalent only when the constraintd,e = 0

is imposed, it is not unreasonable to think that it precisely marks the deviation at the BV-
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BFV level, meaning that the BV Palatini action might in fact become BV-BFV equivalent
to the Einstein-Hilbert theory when the constraint is enforced in the right way.

The following result precisely hints at this direction:

Proposition 5.14. The submanifold H : d,e = O in the space of fields for the Bl -exctended Palatini-
Holst theory F i1, is coisotropic and Q-invariant.

Proof. To verify that H defines a coisotropic submanifold we must consider the Poisson

bracket of two local functions of the form

ffll,z = fTI' [01,2 AN dwE]

M

with a1, € Q*[-1](M,V*) (notice that we will consider its total parity to be odd), but
since the local form of the (odd)-Poisson structure induced by € involves a derivation with

respect to an anti-field for every derivation with respect to a field we can easily gather that

(fal’faz) = fTI' [al A dwe] ) fTr [QZ A dwe] = 0 (562)

M M Q

To prove the Q invariance we compute

QfTr [ Adye]l = — fTr [a A (Qw)e] + fTr [a Ad,(Qe)]
M

M M

= - f Tr|a A (Fy — duc)e| + f Tr @ A (dyLee - du(co))|
M

M

= - f Tr | A (eFue) |+ f Tr | A dutedue]- f Tr | A (Futee) |+ f Tr [a A (cde)]
M

M M M
(5.63)

where the terms containing d,,c¢ cancel out. Notice now that the expression iz (@ A Fe) is

identically zero for we are contracting a 5-form, and therefore we can move the contraction

117



at the price of a sign:
~Tr [a A (Fwtfe)] = Tr [Lga A (Fwe)] +Tr [a/ A (Lwae)]

Moreover, recalling that F,, = d2 we can carry on the computation as

0 fTr [ Adye] = fTr [Lga A die] + fTr [a A descdwe] + fTr [a A cdye] =
M M

M M

fTr [dwtfa/ A dwe] - fTr [Lfdwa A dwe] + fTr [ca Adye] (5.64)
M

M M

where we have integrated by parts d,, and we have used the identity (@, ad.d,e) = (ad.a, d,e)

owing to the degrees of ¢ and @. Understanding ad.@ = ca we conclude that

0 f Trla A dye] = — f Tr|(Le — ca) A dye] (5.65)
M

M

which vanishes on H. v

This is a first necessary step to think that one can recover a BV-BFV theory for the
Palatini-Holst formulation of GR, when the Half-Shell constraint is enforced. Remarkably,
though, this is not the case.

To incorporate the constraint in the BV formalism what one has to do is to extend the
Palatini-Holst action (5.6) by adding the term fM Tr [t Adye] as we did in (5.48). This
time, we have to take into account the explicit symmetry of f as well, which was spelled out

explicitly in Proposition 5.14. The new constrained action we will consider then reads

She =S8+ f Tr[r A dye] + f Tr|(Lgt - ct) £ (5.66)

M M

where t € Q*[-1](M, V) will be the field dual to . The space of fields gets enlarged
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accordingly to
3
Fuc =T [-1] (Tmm ® [QZ(M) ® /\ V)) (5.67)
with its modified canonical (—1)-symplectic form QJ, .

Theorem 5.15. The BL” theory given by the constrained Palatini-Holst action (Fuc, S uc, O, QZIC)
does not satisfy the BV-BF1" axioms.

Progf. To prove this statement we will need to start from the computations of Theorem

5.10. The additional terms in S y¢ will change the pre-boundary one-form to

Qe = Appy — f Tr [16¢] + f Tr [0t (et + £1€") + 6 (1t + 1,8") '] (5.68)

oM oM

were @py is like in (5.38). The addition to the pre-boundary two form @ of (5.39) is given
by
The = Tpy + f Tr [—6tSe + 5t (15et” + 61}¢" — £16€") + 15161 | (5.69)
oM
The kernel equations get modified such that on top of equations from (5.40) to (5.47)

we have the new equation
(Xe) = txpt’ = 1i(Xen) + (X)€" (5.70)

that will make equations (5.41) even more singular. As a matter of fact, using equation
(5.40c¢), namely
(Xe)ep + (X, )E" = 0

to solve for (X¢) as a function of (X,, )" we find that plugging (5.70) into (5.41) we obtain

a series of 18 unsolvable relations between odd fields, of the kind:

T, [(—t;(Xen)P + (XIZ)) A e];; £ =

= [(X,E" + (X W]~ (X V'€ wec) — 10l — X '] 5.71)
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The modified pre-boundary two-form @y is therefore not pre-symplectic, thus failing
to satisfy the BV-BFV axioms. v

The above Theorem 5.15 significantly strengthens the failure in fitting the Palatini-Holst
description of General Relativity in the CMR framework. The BV theory obtained by ex-
plicitly considering the Half Shell constraint is fully classically equivalent to the Einstein
Hilbert formulation of GR. Yet the two theories differ in the BV setting, i.e. when symme-
tries are explicitly taken into account.

As we will see in Chapter 6, the situation improves ever so slightly when a further step in
the abstraction is performed, and instead of a tetrad field e one considers a Lie algebra valued
2-form, by constructing a broken BF theory*. Understanding this behaviour will possibly
help us clarify which classically equivalent actions do indeed allow for a CMR description,

letting us step further in the program of BV-BFV quantisation5 .

Broken here means that the theory one has to consider does not enjoy the full distribution of symmetries
of the usual BF theory.
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BF formulations of General Relativity

In this Chapter we will focus on alternative formulations of General Relativity®**, The
main common idea underlying these alternative formulations is that both the space-time
metric (as in Chapter 4) and the (co-)tetrad field (as in Chapter 5) are to be considered
as non-fundamental, derived quantities. These are replaced by a rather abstract field B, a
two form with values in a Lie algebra, together with a connection A in a principal bundle
over the space-time manifold M for the corresponding Lie group. Typically one chooses
S O3, 1) to be the structure group, but generalisations are taken into account®, in view of
a unification of fundamental forces.

Generally speaking, theories of this kind are called BF theories, when the action func-

tional is taken to be of the form

S = fTr[B/\F] 6.1)

M
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where Tr denotes some pairing in g, like the Cartan-Killing form.

BF theories are invariant under the action of a large symmetry distribution. As a matter
of fact they are fopological theories, in that there are no local degrees of freedom left when
the symmetries are taken into account. In other words all solutions to the equations of
motion are locally gauge equivalent and there is no residual dynansics.

It is nevertheless known that General Relativity is a gauge theory that retains two propa-
gating degrees of freedom, up to gauge equivalence; therefore, if we want to describe GR,
it is of prime importance that we device some mechanism to break the symmetry down to
a basic diffeomorphism invariance, as we expect a theory of GR to enjoy.

In particular, on a closed manifold, a BF theory admits two different symmetry trans-
formations: the internal gauge transformation 60°A = duc, 0°B = [c, B] and the shift
transformation 0°B = d,T, where c is a g-valued function and 7 a g-valued one-form.

It is possible to add to the BF action a potential term V(B) depending solely on the B
field. One very typical example of a potential is a quadratic coupling of the kind V(B) =
%(B, B), with (-, -) being some possibly degenerate inner product, and A a constant, to be
interpreted as the cosmological constant.

Sometimes, the potential can break the shift symmetry, and the equations of motion will
yield an effective theory that recovers the Einstein Hilbert action of the Palatini action. In
what follows we will analyse two different examples of symmetry breaking. First we will
consider the singular potential given by the specification of a Lagrangian multiplier coupled
to a quadratic BB term. This action, together with its modifications and extensions, goes
under the name of Plebanski action? and will be analysed in Section 6.1.

Another possible way of describing General Relativity using a BF theory is through the
BF version of the MacDowell-Mansouri action®**°. There, the main idea is to extend the
Lie algebra s0(3, 1) to $0(4, 1) and then explicitly break the symmetry in the BF action by
introducing a potential that will at the same time reduce the internal gauge symmetry back
to the Lorentz group, and that will forbid the invariance under the shift symmetry. This
action will be analysed in Section 6.2.

The infinitesimal transformations for the Lie group of space-time diffeomorphism, namely

the Lie derivative along generic vector fields, can be recovered from the symmetries of the
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BF theory30. As a matter of fact, for & € I'(T[1]M) we can compute
§9A = LeA = 1:dA — dig + 1:[A, A] — 1[A,A] = 1 F — dat:A
and
6B = LB = 1;.dB — dusB + 1s[A, B] — ;[A, B] = 1;dsB — ds1:B — [1:A, B]

It is clear that the Lie derivatives above can be expressed oz shell (i.e. when F = 0,dsB = 0)
using the symmetries of the BF theory, under the identification ¢ = (zA and T = zB. This
however doesn’t keep a particular action from being symmetric with respect to diffeomor-
phism also off shell.

As a matter of fact in all BF theories we will consider in this Chapter, even though the
shift symmetry for the B field will be broken either by a potential term or by a constraint,

we will still retain the symmetry under space-time diffeomorphisms.

6.1 Plebanski action

The Plebanski action for GR is a BF-like action functional for the Lie algebra s0(3, 1) =
/\2 V, with (V,n7) a pseudo-Euclidean vector space, together with a dynamical constraint.
We include a Lagrange multiplier in the action, in such a way that when the constraint is
enforced, the Palatini(-Holst) formulation is recovered. This is done through the introduc-
tion of a function ¢ with values in the symmetric power ( A2 V*)®S2 coupled to the B field
as

¢ijuBY A B! (6.2)

Considering the symmetry of the indices of ¢;j; we gather that it has 21 free component,
which is one too many if we want to breakdown the symmetry of the BF action so, to
be left with 2 degrees of freedom. The customary way to overcome this is by fixing the
trace®*" | by weighing the two different invariant volume forms in ( A2 V)®X2, namely /¥
U

and One has to introduce a second Lagrange multiplier v € Q*(M) to
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enforce the condition
( a eijkl + bnijkz) ¢ijk1(x) -0

at every point.
It is well known in the literature (e.g. ** and references therein) that when such constraints
are enforced there exist tetrads e: TM — V, where V is a vector bundle with typical

fibre the pseudo-Euclidean vector space (V, 1), such that

B==+T,(eAe) 6.3)

where T, is the linear map defined in Lemma 5.3 of Chapter 5 and y is recovered as y = %

Remark 6.1. The constraint (6.2) is usually called simplicity constraint when the trace condition on
¢ is enforced. 1n the literature” "™, djfferent versions of this constraint are considered, basically depending
on which volume form one uses to take the trace. T'he mixed version we are considering here goes under the
name of Non-Chiral Plebanski action, and is the correct one to recover the Palatini-Holst formulation
of General Relativity with Barbero-Immirzi parameter. Other choices of volume forms will yield either the
standard Palatini formulation (when €' is chosen), or a topological term (when '™ is chosen). For a
complete account on this tapic we refer to the excellent paper™’.

¢

In this framework it is possible to introduce a cosmological term as well **", by adding
a constant coupling of the form
14 ij N Rkl
3 (zfijkl + llﬂijkz) BV AN B 6.4)
The action we will consider in this chapter is therefore obtained by putting together all

of the above modifications to (6.1)

1
SpL= f (B, F), = 54¢'"™*", BB) + y(Hap, $) 6.5)
M

2, j jkl i i . .
where 9051‘1:;) = (qﬁijkl + gel-jkl + %‘niﬂd), H;{b = (ae™ + bn”kl), while (-, -), denotes the inner
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product in g = s0(3,1) = /\2 V induced by 7, and (-, -)) the canonical pairing in (g")%2.
Denote by A V* the vector bundle with fiber (g*)®2. To explicitly include the symmetries

in the picture we will need the following result:

Proposition 6.2. et M be a 4 dimensional manifold together with an S O(3, 1) bundle P — M
over 1t. Consider the space of fields:

7:PL = T*[_I]Tmin (66)

where we define Frin 10 be'

2
Q’M, \ Vo Q' (M,adP)[11®_Ap @ Q°M, \ VHeQ (M)eT(T[1IM) (6.7)
—— s —_—— — o —

(B.©) A —_— ¥ £

¢

Ap denotes connections on the principal bundle P. Consider the degree 1 vector field Qpy, on Fpy, defined
by the assignment (we drop the PL. subscript)

OB =L{B-[c,Bl; QA=Fa—dac; Q¢ =Li¢—ps;

6.8
Qc = %(%FA — e, C]); Q¢ = 3[£,€1; Oy = Ly ©8)

where pe denotes the representation of 50(3, 1) in (g°)>2.
If we denote by S5 the minimally extended BV action (of. Theorem 2.3, Section 2.2) S8 =
S pr + (Q®, DY), with ® being the base fields in Fyin and O the respective cotangent fields, then the

data (Fpr, S gz, QOpr, Qpr) defines a BV theory. The action explicitly reads:

1

1
S = f {(B, F)y = 549", BB) + Y Hap, #) = Leag” + Suieré’

M

~((L¢B— 1. B1). BY) = (L = pe#) - ¢") + ( (1eF — dc) ,A*>} 6.9)

where -, ) is the canonical pairing between § and its dual.

“We use the shorthand notations V% and (V* M@V A2) for typographic reasons.
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Proof. First of all we prove that Qp;, annihilates S py,

1
OnSi = [IL2B~16.B1F), - (BduGes - dyo)), = 54126 ~ .6, BB)
M

— (8, (LB~ [c, BBY + Leae + bn, ¢) + yae + b, Li¢ — p.p) =

= f—(B, L?FA)U — ([C, B], FA)" + (B, dALg-‘FA — L{-'dAFA)n + <B, [F, C]>
M

1
+ (6. LeBB) + (pc§. BB) — (. LeBB) + (. [¢. BIB) — Y{Hap.pcd) =0 (6.10)

where we used H, ), = (ae + bn), the Bianchi identity dy 'y = 0, we integrated by parts the
Lie derivatives and used that {[c, X], Y) = (X, [Y, c]). The same holds for the representa-

tion p., namely {p.¢, BB)) = =2{¢, [c, B]B).
To check that Qp;, is cohomological we essentially resort to Proposition 5.8, Chapter 5,

Section 5.3, repeatedly, for @ being B, ¢ and . v

Given the facts above, we can proceed to the analysis of the boundary structure for this

BV theory. It turns out that we will encounter obstructions also in this case, in fact:

Theorem 6.3. The Bl data given in Proposition 6.2, when M is allowed to have a boundary, does
not satisfy the BU-BFV" axioms.

Proof. Compute the variation of the action (6.9) to obtain the pre-boundary one-form a:

a= f BOA + 6ALA" + SAATE" — 6BiB' — 6BB¢" — 5(1:B)B" — 6(B,£")B'

oM

= 091 — OppE" — S’ = S W' + 6eAT - %Mtgc};g" —£08E, (611)

where we omitted the obvious pairing symbols to keep the notation clean. The pre-
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boundary two-form reads

W= f OBSA + 6AtseAT + AL 0AT — SASE"A] + GAE"SA] + By B
oM
+ OBSE"B] + 15:BOB" — 6BE"6B] — 6¢"B,0B" + £€"6B,0B" + 6coAT

1
+ 0Lsed’ + SpL 00" + OPOE P — OPE P! + 15U + oYY — EaAL(;,fc;g”

1 1
+ §5Atgc,15§" - §5AL§5CZ§n — 68" OY" + E"0, 00" — 6E'SEE + E'6E5E] (6.12)
The kernel of the two-form w is defined by the following groups of relations:

N 1 N 1 ;
(XB) = (Xé:n)A:; - L(Xf)AI - (XAZ)fn + E (L(XSC)C?L + Lf(XcZ)) fn - E(Xé:n)LfC,S (6133)

(Xa) = —tx)B' = (Xz)é" = (Xe)B] (6.13b)
LB = —(Xp,)¢" (6.13¢)
(Xe) = te(Xa) (6.13d)
(Xa1) =0 (6.13¢)

where by the hat we mean that all components transverse and parallel to the boundary of the
respective field appear in the expression, that is to say L(@)B = —(X¢y’B,withp = 1,2,3,n.

In addition to equations (6.13) we have

(Xp1)B, = (Xp)B], — (XA} + (Xp)p} — Xy W+
+ (X ec) — (Xe)él - (X )E" = 6y (X )EL (6.14)

and the set of (critical) equations

6(Xp) = 1z, b (6.15)
(Xy) = W (6.15b)

Notice that these equations are singular in that they depend on generically not invertible
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fields, such as ¢ and ¢ (which is addition is an odd field). Finally

Xp)&" =0 (6.16a)
(X)E =0 (6.16b)
X)E" =0 (6.16¢)
(X )E =0 (6.16d)
(Xp)E" =0 (6.16¢)
(Xp)& =0 Vp=1,2,3,n (6.16f)
(X,)E =0 VYp =1,2,3,n (6.16)

Equations (6.13a), (6.13b), (6.13d) and (6.13¢) are easily solved. Analysing equation
(6.13c), we might require that B(x) is non degenerate as a map from /\Z(TXM ) to /\2 V,in
order to solve for (Yf). Anyway this does not solve the of singularity of equations (6.15).
Equations (6.16f) and (6.16g) are also singular: they imply that either & is the zero vector
field, or we have that (X,) = (Xj+) = 0.

The kernel of @ does not have constant rank, and symplectic reduction cannot be per-
formed. Therefore, the Plebanski formalism for General Relativity does not yield a BV-
BFV theory. v

From the proof of the Theorem some interesting things emerge. First of all the role
of the Lagrange multipliers. The main source of singularity comes, in fact, from equations
involving ¢, Y, their dual antifilelds and the respective vector field coefficients. Moreover, it
is crucial to observe that we enforced the constraint {H,;,, ¢) = 0 by means of a Lagrange
multiplier, but we could have done it as it is usually done in the literature, i.e. by simply
requiring ¢ to have null trace. This means that the among the simplicity constraints coming
from the variation of the term {p"*, BB) with respect to ¢, some relations would have
had to be enforced. Classically this is allowed, but additional care is required when dealing
with symmetries and non vanishing boundary conditions, as one should make sure that the
constraint be invariant under the action of symmetries, possibly up to boundary terms.

This is indeed the case for what concerns internal gauge symmetries, as the term {H, p, ¢)
ijkl

vanishes when acted upon by the generator of Lie algebra trasformations, for both €/* and

128



n'M are invariant volume-forms. It is nevertheless not true when considering diffeomor-
phisms as explicit gauge transformations. As a matter of fact, to keep the action invariant
one has to compensate for the transformation 69¢ = L?(;S with the obvious transformation
of the Lagrange multiplier 6%y = Lay (cf. Proposition 6.2).

The interaction between Lagrange multipliers and spacetime diffeomorphisms as gauge
symmetries appears to be incompatible, in the sense that the constraints spoil the regular-
ity of the B(F)V theory on the boundary. Part of the problem comes from the fact that
multipliers are not fully dynamical, in the sense that they are not allowed to have a kinetic
term. Such a term would otherwise make the critical locus different from that of General
Relativity, and the two theories would not even be classically equivalent anymore. Indeed,
one can compare the results in Chapter 5, Section 5.4, to see that in the Palatini-Holst for-
malism the observation applies, when we try to enforce the Half-Shell constraint with a
Lagrange multiplier.

We can probably say that the symmetry breaking is better achieved when a different
mechanism is taken into account, which doesn’t require localisation on a constraint sub-
manifold. In what follows we will see how this can be done for a theory of general Relativity,

0

by rewriting the MacDowell-Mansouri action® as a BF action**” for a suitable extension

of the Lie algebra.

6.2 MacDowell Mansouri action

The second action of the BF-kind that we would like to approach in the BV-BFV framework
was introduced by MacDowell and Mansouri’, later understood by Wise in the Cartan
formalism® and rewritten as a BF theory, as reported by Freidel and Speziale®’. The main
idea is to consider the splitting s0(4, 1) ~ s0(3,1) ® R*! and violate the shift symmetry of
the BF term while reducing the internal Lie symmetry back to S O(3, 1) at the same time by
introducing a potential term that explicitly breaks the symmetry. Such a symmetry breaking

term is chosen to be

1 - 1 A oA
SSB = 5 feijklmeBU A Bkl = 5 feijleBl] A Bkl (617)

M M
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where v = (0,0,0,0,v) is a fixed vector in s0(4, 1) and B is the projection of B to the
s0(3, 1) subalgebra.
Borrowing the notation from Section 6.1, the BF-formulation of the MacDowell-Mansouri

action is given by

SMM:fTr[BAFA—gBAB—%BAB 6.18)

M

where now A is an $0(4, 1) = g connection and B is a two-form with values in the extended
algebra g. Its subalgebra restriction B takes values in h = s0(3, 1).

The symmetry breaking statement is clarified by the following proposition:

Proposition 6.4. Let P be a principal G = S O4, 1) bundle over M and let H = S O(3,1)
be a subgroup. Consider the fields ¢ € Q(M,adPy) = Q(P,Y) where adPy = P >1§ h. Let
Fum = TH[— 1]77]81 v endowed with the canonical (—1)-symplectic form L, with

2
Fim = LM, [\ V)& Q' (M, adPy)l]e Ap @T(T[11M) (6.19)
_g_/ c A &

and define a vector field on Fappr by

QB = L?B - [C, B], QA = L,fFA — dAC;

6.20
Qc =3 (teteFa —le,cl); Q= 3E.&]; (620

If we denote by S 57, the minimally extended BV action given by S5, = S yy + (QD, @) with @
being the base fields in Fin and D the respective cotangent fields, then the data (Fym, S f,,‘jl,,, 0,Q)
define a Bl theory.

Progf. 'To see that Q is cohomological we resort once more to Proposition 5.8, Chapter 5,
Section 5.3, for the field B, and observing that ¢ € Q(P, 1) implies that ¢ € Q(P, g).

The only nontrivial part in checking that QS yy = 0 is to realise that the symmetry
breaking term (6.17) is invariant only under the action of the subalgebra b, and that the

subalgebra D) is invariant under the action of g as the splitting $0(4, 1) = s0(3,1) ® R3! is
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s0(4, 1)-invariant. v

Now that we have the necessary preparation we can face the main question of this Sec-

tion.

Claim 6.5. The Bl theory of Proposition 6.4 defined by the data (Fym, S f,[‘;w, Q, Q) defines a
BUV-BFV theory on M when it has a boundary, OM # 0.

Partial Proof. The computations are identical to those of Theorem 6.3, with the difference
that all terms containing @, ¢ and their relative anti-fields are set to zero. The equations in

the kernel of the pre-boundary one form w are grouped as follows:

(X41) =0 (6.21a)
(Xe) = te(Xa) (6.21D)
(Xa) = txo B + Bi(Xgn) + (X)€" (6.21¢)

. o 1 1
(Xp) = txpA" — Xe)A] + XAlE" - Ezg(xcz)gn + E(Xgn)%c; — EL()@Can (6.21d)

together with

LxB = —(Xp,)¢" (6.22a)

) 1
Tr[(Xg)B] = Tr [(X)B' — (X4)A" + 5(XA)%CT ~ Xex — E'ux,x (6.22b)

with ¢ meaning that we include both component transverse and tangent to the boundary,

and

X&' =0 (6.232)
(Xp)é" =0 (6.23b)
(Xp)¢" =0 (6.23¢)
Le(X2)E" = 0 (6.23d)

Equations in group (6.21) are regular. Using the fact that it is possible to define a metric
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with the combination
8uv = €7 na [y B BlsBYs (6.24)

when f are the structure constants of the lie algebra s0(4, 1), we can invert equations
(6.22), yielding ()_(é) oc &" which then will also imply (Xpt), (X4), (Xp) o< £, and equations
(6.23) will be automatically satisfied. v
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Conclusion

This Thesis was devoted to the analysis of different formulations of the theory of General
Relativity from the point of view of the (semiclassical) Batalin-Vilkovisky formalism on
manifolds with boundary.

The machinery that allows one to induce boundary data starting from an action func-
tional on the boundary, which essentially is analysis of the Noether form, turned out to
be useful to describe the classical theory in a manifestly symplectic fashion, even when the
symmetries are not taken into account dynamically (see Proposition 4.8 and Theorem 5.6).
As a matter of fact, this allows us to simplify the canonical Dirac analysis, by explicitly de-
scribing the symplectic space of boundary fields (which contains the coisotropic subalgebra
of canonical constraints).

The rest of the BV-BFV procedure, i.e. when symmetries are included, completes the
canonical description of the theory by yielding an explicit resolution of the said coisotropic
submanifold modulo gauge symmetries. Such information is encoded in the boundary ac-
tion S?, the Hamiltonian function of the boundary cohomological vector field 0?, when-
ever it can be computed and the axioms are satisfied.

The comparison of different formulations of General Relativity as a fundamental the-
ory of the gravitational interaction highlighted some fundamental differences in the BV
structures that the theories enjoy, marking a deviation with respect to the classical (i.e. non
BV) behaviours, which are considered to be eguivalent. The very fact that (e.g;) the Ein-
stein Hilbert formulation of GR does satisfy the CMR axioms, while the Palatini Holst
formulation does not, unequivocally tells us that the BV-BFV criterion refines the notion of
equivalence between gauge field theories.

This has crucial consequences in understanding to which extent we can replace theories
with one another and could possibly suggest that a particular formulation is more suitable
than others in view of quantisation. In any case, a clarification of what can be legitimately
considered equivalent is fundamental for the development of quantum field theory.

Moreover, it is interesting to notice that the failure of some action functionals to extend
to a BV-BFV theory gives us a better understanding of the use of Lagrange multipliers
and their relationship with diffeomorphisms as a gauge symmetry. In fact, comparing the
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Plebanski action and the MacDowell-Mansoutri actions for GR, both seen as broken BF
theories, the specific way we choose to break the symmetry does indeed matter, when
deciding if the BV data satisfies the CMR axiom:s.

The first challenge then is that of fixing the PH theory of gravity in the BV setting, that
is find the correct formulation under which it satisfies the CMR axioms, and interpret why
the theory does not work with the natural assumption we have considered here.

Secondly, it will be important to understand the profound meaning of the failure of
the CMR axioms and the possible way of fixing them. Our guess is that the BV-BFV
construction and the naturality of the way the boundary data is induced should indicate the
correct prescriptions to explicitly treat symmetries. More explicitly, requiring that sozze BV-
extension of the theory satisfies the CMR axioms and resolves the reduced phase space,
which in the end is classical data and it is well defined before the BV analysis is taken into
account, will tell us what are the correct symmetry prescriptions of the theory.

In the future it will be important to make contact with the physics literature and language,
translating problems and results from theoretical physics to test this formalism further,
and to exploit the power of the BV formalism in the quantum gravity communities’ daily
routine.

Eventually, once the tetradic and/or BF formulation of GR will be understood as a
BV-BFV theory, it will be of prime importance to attack the problem of its (perturbative)
quantisation, for instance by applying (and possibly adapting) the CMR prescription for the
quantisation of BV-BFV theories.

All'in all, this is a first step in that direction that has the good feature of highlighting an
important caveat when regarding alternative theories as equivalent, and this will actively help
us understanding which path should be chosen when treading towards a quantum theory
of gravity.
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Cumbersome or lengthy computations

Computation A.1 (Theorem 3.2, Chapter 3). We want to compute the explicit expression of the
projectable pre-boundary vector field Q' = Q — QI — Qg =". Recalling that

Qg = &g+ 2gé

Q&=¢é

0g' =~ &g +2i

248
Q& = gg" + 28" + 286 + &£
and that
.9 (f_é“_g_*)i_iﬁ
og \2¢% 2g)og" 2g6¢

—+._ 0 &0

-~ 8ET 2g0gT
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we excpand

0 = by + (ﬁ ~ &g fg) (g gf)(g—éi - %) =
+(§g+2g§>§% + (88" + 2¢¢ +2f§T +f§*>2§ -
o
using now the trangformation law 5o = A 55 we obtain the resull:
0o’ = %% (A.2)

Computation A.2 (Theorem 4.4, Chapter 4). Expanding the expression for the vector feld:

Q' =0~ (Q)"C™ —(Q)u %y — (Q)"C™

ve gt
0 = Q)" + (0 Q) 5g‘im - %(an“bgm (gacgbd - d%lgabgbd) £
—(Qg)””gnnch - T(Qg)”"gnn (g'”bgacgbd ﬁg”bgabgbd) é"") 57
- SO S + 500" 5 = 3 (00" ™ = Q") 7o
+ (Qg)"”g,mg “Xa&" 5inb ——(Qg)”"gnné-‘ g, +(Q1)ef 5;5
(A3)
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We transform the generators 5g

0

5en

0
6g ab

8Jos

é‘ngn

é‘g'}'na

S

_ 2 Tcd(
&

0 2

ted
Em—= T 8 (g ce8bf
é‘é‘:n /gﬂ bf d -

6 1ca db

8460 gur + geed 5

5
gl’lﬂ —
ST,

0
@@Tnn
0
@Tna
0

S5&a

1

1
T d-1

1
1

ab _tcd

oz, 2% 8 Xa& S \/g_g g

1
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O deriving the following formulas:

gcdgef) A

d-1

T Gt + )

1
(gcegdf - —gcbgdf)

nn

n T nn

5
é:nT
1.

1

10)
§HT+
oJ,

ef

0
g Xh&g" na

(A4)



which lead Q' to the have following expression:

Q/ _ 1 (Q ) ab tcd 1 é;n + 2 (Q )n fed 1
- \/E g ab8 8 gcegdf d— 1gcdgef \/E & 8 gcegdf d— lgcdgef
2 ted fed 1 ted 1 fed n
- \/? (Qg)ceg 8df + (Qg)dfg 8ce — d— 1(Qg)cdg 8ef — d— 1(Qg)efg 8cd g
2 ; 1 1 5
= 3 ce — ;7 1 8cdse "= nn i nnJe =
@(ng) (g 8af = 77808 f)§ 7 (QImg™ V8 f}djef
nc 1 ac  bd n 1 n_cd 1 cd gn 6
+9(Qg1)"™ - E(Qg)ubg 8 X" + E(Qg) 8 Xa+ E(Qx)dg & g

1 1
+{<ng>"" +5(Qm gmg™ + 5(Qo" V"X

1 1 S )
50 VE"E" = 2(Qom(8") X }W

1 0
+{(Q§)n @ + E(Qg)nn \/ﬁé‘:n}é_—gn

o 1)
+ @(Q»efﬁ + (Q§>“6—ga +(Qg)av

0
f @ab
(A.5)
. . . L . . . . . .
Expanding and computing the coefficient of 5 e obtains the following intermediate expression:

) gsa T a7 4 i =
n {f‘ OgJef + 208 pyy — —= (@ef?d gnHd —

V7
+{ - Vgnngababé:naagef + é:nan(-]ef Vgnn) - za(e(gnngababé:n)gf)a Vg""

1 en=tnd= | gn
0% dgef)f }

, R'-R’ .
+ 2 V8" 0t pru + 2 \Zmn (R(ef) + mgef)f }

Einstein term

The goal is clearly to write the whole coefficient as the pullback of some function on F°. Notice that the
Einstein term comes from the following computation:

1

ET = Rcd _ Egcd g _
1. > c(egf)d d— 1gcdgef
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where R = g"R,,, = "Ry + & @R = R"+ R. Hence:

R R"+R R'"+R d R"-R

E.-,::Re - 5 < 8ef e+ Re AN 1.0¢
(ef) d—lgf 3 8ef 7 d— lg en+ 2(d—1)gf

Now, the Ricci tensor and the difference between the two traces read:

2\ZuResE" = = 0, (Jop V&™) €" - % Vgm0 (e8"' 0 8mé"
- \/ﬁa(ea H&mé" + 208 f)bghaaa Vemé"
{Jb(eg Tpd' -5, STer 8 T + 2R, E" }
~ 058018 D \EmE" (A.0)
VB (R RO =0, (5" D &™) + £ T D Dt
o PTELE - LT LE -RE a0
W here ﬁf ¢ denotes the Ricei tensor of the d-dimensional manifold OM, and R its trace. Notice that
R.r # ﬁff and R + R°.
Putting all together, after some rewriting we get:
7T* {Esasj;f + 208 Tppa = 20(0pE" = 8" 0uBerOnE" + 2088 D"

4

=

F — T na— n D k’a - ~Vl
(a(efnydng fd = d 5d§ 3 dgef)f + (2Rff - ﬁgef)

+J J 6 1~ ~ba T é<_-+ 1 1abJ CdJ labJ ch "'g o
b(eg a efg ab J-1 4 ab8  Jed 4 b8 8 5~;f
a a C 5
{z VB E" T + E'0 (8" Ton /E™) + 5€" 8" T8 8 Dugea }57 (A.8)
ef

Let us turn now to the §'™ coefficient. We first notice that the term /g (R"” - § g™ ) g™ coming
Srom the (Qg: )" \™ factor is computed as:

nn n _nn 1 n _nn 1 nn
\/E(R ——g )\/@ "gnn(Rg —ERg —ER"g )=

[
S5

- )
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Using this, we can expand the g™ and obtain:

Ql

- — { (é_‘a""lfnn) + aa""fané_- + zg;’tnaaagn

T

——8 (achd Jcbjz;d)

T

581 nn

5
{ Jung' " \JgmE" — (ig”bfbng ]}5gm (A9)

For the g7 coefficient we will need to compute the following combination:

— VeR™ = - \/§ 8" Rug" =
a9
— aa [T\/g_gad-]db \/WJ gbc \/_ab ( adJ \/W) ’\/_ gnngcbabgadjad

which leads to

7 _ 7 7 _
- {E ab (’gad Jad)‘gbc _ aa [T\/g;g'ad Jdb]:g-bc _ T\/g'gcb 0b'§ad T

+ as (Eszﬂnc) +§cbabgng mn _ g égr"’fbn + J ~tan—t dcé_- }

6"Tnc
Vv ; 0
+ Tnn dc g nn %Jn db] ’ ac
{ & - > ——(8")>Jua8" a8 ST

Finally, the remaining terms for Q' 7o 04 2

and Q' |§ab are easily computed:

1 ) ~ .~y 0
&&fﬁm+§@@m@ﬁﬁ}:=fkmgﬂéh

(0" wE%ff”%}z

E
—_— = ~ 0

ab—— =T NE Ty + EODegapy + 20,E 8| ——
@m@b{fbfgb mﬁ%

where, in the second line, we have nsed (4.10). Altogether, the components of Q° read
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(Q%)es {f 0yJep + 20008 T — (3(5"?‘1'?]‘)(1 — T ladgn?"dge f) &

4
N
0

R —~ua
18ef)f — 200 E" — T0uZerOpE" + 208 g Dut”

+|2R%, -
.

1 en 1 1~ab~ ~cd T 1~ab~~cd~ ~ “en
+Jb(€g Jf)aé: efg abf +d—1 Zg Javg ch_Zg Jeb& S ad geff

(A.102)
— 0 — —_ 3 __
Ly ={ (£2™) + 0,8 8" + 28 0,E" - ‘/f_g (TanTea = TeoTaa) B4 + g,{a}
(A.10b)
d _ 3 - 9 —

(Q%)m :{gab (gad-]ad) g -8, [ggadfdb]?be - g?ljab?d]ad
(fs“'”nc) + gcba fn"'”nn 0 é'_-c obn ?angdcgn} (AlOC)
QY ={E"0.8") (A.10d)
Q) = (&0, ~E'5"0,€") (A.10¢)
(Qg)ab = {Enj;b + ?acgab + za(agcgb)c} (AlOf)

Computation A.3 (Theorem 4.12, Chapter 4). We use the vertical vector fields of Theorem 4.11
to find an excplicit section of the surjective submersion T . Fapy — ?fD - Lirst of all, nse B 1o set
Ba = 0, this implies (Xp)q = —,82 together with B,(t) = (1 — t)ﬁg and we have the first two differential

equations:

& = +y "B (A11a)
'Tnn__f -2 ab 0 n A11b
87 = = Y BuxvE (A.11b)
(A.11c)
that are easily solyed to yield
&) =& + ybaﬂof”t (A.12a)

ngn(t) :gonn —2 ahﬂaX é_- f (A12b)

2
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we use (A.12b) and the time rule for By(t) to solve the third and fourth equations

g =+ 77‘ By Bl + v Bag™
=y ﬁ2g$”” 2y By By g (2t = 1)
g =g + Vb“ﬂggé"” 1Y By Box " (F — 1)

, de 1 .

Jim (2V(1,3m) +— \/— (ﬁ(17m>a - myzmﬁg)g‘“"f n)
de I

777 (ﬁ?ﬂ’mm - dTwmﬁS) g+
- T (B(ﬁm) 'Ylmﬁbﬁo) Tnnf t

de 1 tan
Jim == 2Vt = N (ﬁ?ﬂm)a - ﬁ”’”ﬁg) &

= - 2V(lﬁ0m) -

1
- 7 (ﬁ(me) ')’lmﬁbﬁo) Tnn

So we can fix the temporary value of onr fields att = 1 to

N 4e 1 an
Jim = =2V, ~ i (ﬁ?l%nm - T?’lmﬁg) g+

Y (ﬁ(ﬁm) ?’lmﬁbﬁo) e (A.132)
ngb :ngb + ,ybaﬁag'f'ﬂn (A13b)
(A.13¢)

AtTnn nn E - a n
g =g 5N Y Boxé

Now we can turn to the vector fields X, and use them to set ', = O at some value of the internal

evolution parameter S. As usual we impose (X,,), = —Xg and x,(t) = (1 — t))(g. The new equations

are
- Ynn E - n
g' =+ XoE
. TN 6 a n
g = 27” XoE
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which will yield an additional correction to the temporary value of our fields:

Atnn m, € a n
i =gt 30 2 (0w = Y"Baxs) € (A.142)
R n a m_ € ba n
8 =g™" + Y Bug ™ ==y xuf (A.14b)

2

Similar is what happens when we use G', for we get the equation

j — 26 1 Tabg}’l
Im — \/777 Yal’Ybm d— lyah)/lm go

that will correct the temporary value of flm o

4e

A 1 Tan #n
Jim =—=2VB, - i (ﬁ?,ym)a - —mﬁiﬁ) g e+

d-1

2€ 1 wnon

v (ﬁ?ﬁ% -1 1mﬁ2ﬁ8) 8"
2 1

= = yarom — ——Yaryim | gL 2E" (A.15)
i d—1 0

Finally, we use the vector field U to set m = 1. This implies that the time law for n be given by
() = (1 —no)t +no and (X)) = 1 —no. The associated equations read

& =— igﬂ (A.16a)
(I =no)t +no
I —mno
. fnn _ Tnn
gm=— ———T0 A16b
A= +m (8.16b)
. 1 -
Jim o (A.160)

= = I
(I —no)t+m0"

yielding, at time t = 1, the following corrections to the fields: E” = &, g™ = g™ and Tim =
1%
n Jlm-

Computation A.4 (Theorem 4.12, Chapter 4). We will remove the vertical vector fields from Q in
the following combination:

0 =0~ (Q)"C" — (0p)aBs — (Q)E — (0}, %,
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yielding

Q (Q)/)ab i (QgT )nn

+(Qe)"—, + (Qe)°

6 fnn 6é‘:n
0

71m7ab) & m

5§a

1
+(Q1)im T

5 sz TU(QgT) (Vaz)’bm

V(00" S5 + SVt

de
(ZV(I(Q,B)m) + W ((Qﬁ)(lym)a

5
- (En_ZﬁbVCd(QB)chfn - V“b(Q/s)ag*"") 5

6 tnn

1 ) 6
Vzm(Qﬂ)a)g & ) S

d—

0
'Hfl(Qn)é: 56" lBan_l(QTI)é: 6{,‘:‘1 n_l(Q”)gTrmd fnn

0
—677_3 (ﬁa/\/a Xn)(Qn)f g an _77_118 (Q'I)g 6 tan

5
- (677_3ﬁb/\/n — e BB Y + 577 ly )(a)(Qq)f e

4 1
+_€(Q77) (ﬁ(l)’m)a - YImIBa) gmnf

\y

2e
+ W ( Qn) ()’la}’bm -

17 (Qy) (Jim — me

d- 0Jm

0

1
- taben =

)
5Jlm '7 Q" 5 sgimn

m%@mf ﬂ#@m§TM

Tnn

(K%N&M——WQM)Tb

n
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collecting:

2 1
Q, :{(Ql)lm - —eﬂ(ng)ab (YaIme - deImYab) 'fn - n_l(Qn) (Jlm - 2V(lﬁm)) +

VY

4 1 2
+7i—/(Qn) (ﬁ(lym)a - rylmﬁa) gmnfn + Ti—/(QU) (7la7bm -

4e 1 9
(ZV(I(Qﬁ)m) + W ((Qﬁ)(l)’m)a d— ylm(QB)a) g"'ang )}5Jlm

gn-zy“b(gmaxbg" + 7708 = en™ (BXa — xn) (QpE"

tab

1
m / a +
-1 yb)g &

+{(Qg%)”” +

_ _ 0
_ET] Z(Q)()néj + T] Zﬁ (Q,\/)aér }6 tnn

+ 2(Qg na _ —Zﬁa,ybc/\/cé_«n ,yab Tnn) (Qﬁ)b _ )7 ﬁ (Qn)ngn_'_

2

€ _ u 0
577 Zﬁﬁ (Q)()aé: R h (Q/\/)ué: )5 Tlm}5 Tna (Qy)ab ')/ab

0
(e - e B B0 + 507y ) e+ S Z(Qx)nf o

+{(Qo)" + ¥ (D" ﬁan‘l(Qn)S} +{(Qor +n‘1(Qn)§}

o0& o&"

Then, pushing forward the basis in the tangent space along the projection map we have:
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~ 2 1
(Q)J~1m :{n_l(QJ)lm - %(Qg* )ab (7{117!)111 - dj’ylm’yab) é‘:n - U_Z(Qn) (Jlm - 2V(lﬂm)) +
4 1 . 2 1
'7_1 %(Qn) (B(lym)a - dj’)/lmﬁa) g'ané_-n + 77_1 %(Qn) (714171)111 - ﬂ'}/lm'yab) gTab§"+
4 1
- (ZU_IV(I(Qﬁ)m) + 7; ((Qﬁ)(l)’m)a - H)’zm(Qﬁ)u) gwfn) +
1 m

+%(Q7)ab7ab (%mm b 171m7cd) gl + 5 (de)l BSg™ME"

2 1 1
_7; ((Qy)cl’)’dm + ’}/cl(Qy)dm d— ycd(Qy)lm 7cd(Qy)lm) gTCd'f +
#2017 " (Bime = )¢ - —(,8 R L

W b% ab’y AYm) d— 1ylm cl8 W Iy )m)c d—1 y)IlmPc 8

1
+ %(QY)aby (ﬁ(ﬁm) TV mPL )g e
1
(O™ + 77 (Qe™) (ﬁ(zﬁm> - b )g
1
20, + ¥ g™ (Qp)y — 1 B (QE™) (ﬁwm)a - djyzmﬁa)g"
1
dj’)/lm’)/ab) gTab

1
(Qe)" + U_I(Qn)fn) BaYmp = —— lylmﬁb) g

d

=
(
(o + 17" (@) [Yaryom -
(
( y i - ’ylmﬁbﬁb) g“’”}%

Q)" + 17 (") (BB -

slv alr el altaly s
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Simplifies to:

1
)’Zm%zh) E = n72(Qy) (Jim — 2VBmy) +

Q) = {77 (QDim = —(Qg ) (7a17hm I

\/_

de
- 2 _1V m _( m)ya —
( n Vu(Qp)m + NG (OB)aYm)

£ ab _

+ W(Qy)aby ()’cl'Ydm

2

_Ti—/ ((Qy)cl’)/dm + ycl(Qy)dm - - d—

+2E 0 (B = b €7 = 25 (8@~ Qb e
\/’}—/ b% ab’y AYm)e d— 171 cl8 \/— (I y/JIm)c y)imPc g

1
+i(Qy)uby (ﬁ(lﬁm) - ’)/lmﬁcﬁ )ngné_-

1
ﬁ’)/lm(Qﬁ)a) ngmé:n) +
2e (Qy)lm
Y d-
1
’}/cd(Qy)lm) gTCdg +

1

- C _Tnngn
. B

’ylmm) gl +

1
71 Yed(@)im

((Qg )nn) (B(lﬁm) ! 7lmﬁcﬁ )§n+

V7 V7
4 1 \
_767 (2 + 7™ (@) (ﬁ““ym)a B T“Ylw’)’a)fn + T(Qs)" (yamm - ﬂmm)g’“ﬁ
+0 )”(ﬁ Yo = —— ﬁ)gT + 2y (ﬁﬁ oy ﬁﬁ) *""}i

\/7, 3 ("Ym)b d—1 ImPb \/_ ¢ aBmy — mBh, (ﬁ;m
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together with

(@ ={17(Qg+)"” + S0 Yt + (08" = S (B =) (Q)E"+
=S Q)Y Y Boxat” + 517 Q) (Bxe = x) +
€ n € _1ma n 4
_577 (Q)()ng + 577 ﬁ (Q/\()aé‘: }5-57 n

Q) ={2(ng)”“ = (S =y g™ Qg — B0+

~ (7 Bxn — BB s + 517V 0| (0" + B0 + B Sy Qp)erat+
4 BU(Q8"™ — e B (Bxs = Xa) (QE" + 57" ((Q0)" +7(0,)¢") +

_(Qy)cdyca,ybdﬁbngn _ E(Qy)cdyacybd)(bfn + gﬁan—Z(QX)né‘n

0
- (STB B Q€ - Sy Q") - S + gn_zﬁ“ﬁb(QX)bf”} o

The simpler terms are easily computed:

Y n n 0
@) ={n(Q§) +(QE }5

={E0.8") =
sén
% )
© ={(Q§)“ + ¥ (Ot + (Qe)'B* = (Q))eay Y 'Boé n}afa

(E7" 0,8 + FoF) —
6&a

— S
(Q,)%b :(Qy)abm

_— - — 5
= {fn‘]ab + fcac')’ab + 26(a§ 'yb)c} 57)7 ;

In principle, it wonld be possible to proceed in the same way to compute all the other coefficients. To

simplify the calcnlations, thongh the remaining components of Q° can be recovered from 6S° = Ly .
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Generalities on the BV formalism

In this appendix we will review the basic concepts underlying the BV framework for gauge
theories. We will first work out some of the details in the local, finite dimensional case to
move on to manifolds and the globalisation of the BV machinery.

B.1 Finite dimensional local model

The finite dimensional BV formalism can be cast in local coordinates as follows. Let A be
a finitely generated, graded commutative algebra, with 2n generators ¢', pjand i = 1...n.
We shall ask that half of the generators have even parity, and that the p;’s have opposite
parity with respect to the ¢'s. In particular, for a Z-grading we have |p;| = —|¢| — 1.

We consider a completion A to allow for C* functions in the even generators, and so
we may encode the grading in a vector field E, the graded Euler vector field, as follows:

L0 0
E = ldld 5 +Ipilpig - = E() = If1f

i

9 5 =94

From now on we will use the shorthand notation 9; = 3 ;-
J
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Definition B.1. We define the Bl Laplacian to be the second order operator:

A= (-1)"9

Y

Notice that if we endow the local model with a symplectic structure, given a function f
we can retrieve its Hamiltonian vector field Xy. We can write

Af = —%diV(Xf)

where div(X) is the divergence of the vector field X, and it can be shown to be equal to the

supertrace Str [Xg]of the right-Jacobian matrix of X (we take derivatives from the right).

It is easy to show that such an operator satisfies

A’ =0

A(fg) = (Af)g + (D f(Ag) + (-DVI(f, g) (B.1)

where (f, g)a is an odd-Poisson bracket, called BV-bracket. Notice that, using derivatives
from the right, since

5f (_l)lz”|(|f|+1)f_a

oz+ oz
we can explicitly write
_ fo s fo dg
U-88= 2. 54 op, ~ opi o

which is the canonical Poisson bracket associated with the canonical symplectic form w =

Y dpidq'.
Now, one important application of this, which will generalise to the gauge-fixing proce-
dure, is the following: consider some smooth function f(p, g) and an odd function ¥(q).

Define
ff:: ff|p,-:6,-wdql"'dqn
Ly

where the integration measure is a Grassmann integral along the possibly odd ¢’ coordi-
nates and the Lebesgue integral along the even ones. Then we have
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Lemma B.2. If f = Ag then f f = O with vanishing boundary conditions.
Ly

Progf. Compute the total derivative
Z( 0, (5'g) Z( D (0.0%) _, +Z( D (0,08°0s)

where the second term in the r.h.s. vanishes by an anti-symmmetry argument and the first

:L[f+0

since the left hand side is a total derivative and we have assumed vanishing boundary con-

ditions. v

one is Ag. Integrating we have

Lemma B.3. Assume Af =0, then f [ @5 invariant under deformations of \b.
Ly

Proof. Let Y, be a family of odd functions and define I, = f f- Then

Ly,
dl, L 1 : 1
= = f (00 f)p:dw dq'...dq" =+ f (A(wtf))p:dw dg ...dq" =0

where we used the Leibniz property (B.1) of A, together with the fact that ¥ = ¥(q),
Af =0 and Lemma B.2. v

Typically this series of two lemmas is extended to the case where Af is not integrable
on some initial Lagrangian submanifold L. If it is integrable on a close enough lagrangian
submanifold £, then we define the ill defined integral to be this regularised version on
the new lagrangian submanifold.

BV-pushforward fixing a number of vatiables, say &, in {4, pi} we can split the variables
in four sets: ¢ = {q'...4"}, ¢" ={g""...q"}, p" = {pi...pi}and p”" = {Prs1, ... Pn)

Then the BV laplacian splits in

77

A=AN+A"

and given f(g, p) and an odd function off the g¢"’ variables only, one defines

)= [ Hata’ = [ 1
z
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and we have
Lemma B.4. Under the above assumptions

1. NF = L:,, Af ie. the pushforward is a chain map for the laplacians.
v

2. IfF, = fL{a’ f with Af =0 then F, is N -exact.

Proof. Analogous to the previous proofs. v

B.2 Global BV formalism

From now on we will consider odd-symplectic manifolds (M, w), and we will restrict our
scope to the finite dimensional case. For a more exhaustive review on supemanifolds and
graded manifolds see, e.g.”'%. Notice that for odd-symplectic manifolds there is the fol-
lowing strong structural theorem:

Theorem B.5 (Schwarz, Batchelor). Any odd symplectic manifold (M, w) is symplectomorphic to
the shifted cotangent bundle XXT*N for some even manifold N. More generally a C supermanifold is
always (non-canonically) superdiffeomorphic to a C* supermaniffold of the form 11E, with E an even
vector bundle.

The above Theorem provides a global version of Darboux theorem. Moreover, given a
Berezinian p on M we may define

1
Apf = —EdinXf
and this will automatically come satisfy the Leibniz identity (B.1). What may fail is the

nilpotency, which we shall ask as a separate requirement:

Definition B.6. (M, w, p) s called an SP-manifold iff A% =0.
oS

Proposition B.7. Let M =~ IIT*N with N an even manifold. 1et v be a volume form for N, then
V2 is a Berezinian such that

A%, =0
A%
Proof. Using that C*(IIT*N) = V(N), the space of multivector fields, we consider

¢y
V.(N) ;) QdimN—o(N)

X — 1yv
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Then, showing that the formula

sz :¢_1 Odo¢v

holds, we immediately show A52 =0. v

Remark B.8. IfC C N is a submanifold of N, then YIN*C will be Lagrangian in IXT*N. Therefore,

ifX € C*(IIT*N)
f X2 = f $u(X)
C

IIN*C

Given another choice of berezinian, say p = ¢*v* with ¢ € C(IIT*N), we have
f Xvp = f $v(Xp)
TIN*C c

So we are allowed to change either C to some homologous submanifold, and take its conormal bundle,
or we can use an Hamiltonian flow on IIN*C:

deform homologous deform

L — IINC — IINC — L

[ro- e

L L

and thus

¢

Now let (M, w) be odd symplectic. Consider the action of both the deRham differential
dand of 6 := w A - on w*(M). Cleatly 6% = 0. In the Z-grading we have |w| = —1, but
being it a 2-form we get 0] = 1. Notice that dw = 0 implies d6 + éd = 0.

The following is by P. Severa, >,

Lemma B.9. H*(Q/(M), 6) =~ {3—densities} canonically.

Lemma B.10. The induced differential on E, = H® QL 0) is zero. Therefore Ey = E\. The induced
differential on E is given by A, the canonical Laplacian on half densities.

If p is a Berezinian on M, define the map

C"i’SM) — { %-densities}

Ap — Acan

VE
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so that
Lemma B.11. Kp = A, if and only #A’% =0.

So finally, given L C M, consider [a] € H*(Q°®,0), ie. w A @ = 0, then the restriction
of @ to a tubular neighborhood of L is

lag] € H (Q'(IIT"L, 6)) = Ber(L).

where [az] means We, A &g = 0. Therefore
f [a] := f ar
L L

is well defined.

To give a reasonable integration theory one needs the notion of integral forms:

Definition B.12. Let N be a supermanifold, we define the set of integral forms on N to be
1
Int(N) := {E-demz'z‘z'es on HT*N} L H*(Q*(IIT*N),6.,,)

and therefore they form a complex with differential given by A,

Then if C C N is a submanifold, @ € Int(N)

f[oz] = f¢[a]
C

IN*C

and Stokes theorem carries over with A as deRham differential.
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