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Abstract

This thesis is devoted to the study of  different formulations of  General Relativity1,2 (GR)
as a a fundamental theory of  the gravitational interaction in the setting of  Cattaneo, Mnev
and Reshetikhin (CMR) on manifolds with boundary. The Batalin (Fradkin) Vilkovisky
formalisms (BV and BFV) were joined by CMR3,4,5 to associate to a BV gauge theory on
a space-time manifold M a correspondent BFV structure on its boundary ∂M, and a set
of  axioms for general gauge theories was proposed in this context, in order to have a neat
quantisation scheme.

The present work is aimed at testing the axioms on different, classically equivalent for-
mulations of  General Relativity, namely the Einstein Hilbert metric theory of  gravity, the
Palatini Holst6,7 tetrad formulation of  GR and two BF-like theories that go under the name
of  Plebanski action8 and McDowell-Mansouri action9.

We prove that only some of  these formulations satisfy the CMR axioms, thus inducing a
BV-BFV theory: the Einstein Hilbert theory, for all manifolds with boundary of  dimension
d + 1 , 2 with spacelike or timelke boundary components, and the BF-formulation of  the
McDowell-Mansoury action, under some natural regularity assumptions on the field B.

The classical canonical analysis for the Einstein Hilbert and the Palatini Holst actions
is also discussed, and we show how the machinery is capable of  recovering known results
in a straightforward way, yielding in addition an explicit symplectic characterisation of  the
phase space of  the theory.

This is a first step in the programme of  CMR quantisation of  gauge theories on manifolds
with boundary, applied to the fundamental, and still open case of  General Relativity.
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Zusammenfassung

Diese Dissertation ist dem Studium verschiedener Formulierungen der Allgemeinen Rel-
ativitätstheorie (AR) als Grundtheorie der Gravitationswechselwirkung, im Rahmen des
Cattaneo, Mnev, Reshetikhin Formalismus über Mannifaltigkeiten mit Rand gewidmet. Um
durch die Verbindung der Formalismen von Batalin (Fradkin) und Vilkovisky, einer BV-
Theorie über einer Mannigfaltigkeit mit Rand M eine entsprechende BFV-Theorie über
ihrem Rand zu assoziieren, haben CMR Axiome vorgeschlagen, die eine Eichtheorie er-
füllen muss, um ein ordentliches Quantisierungsschema zu erlauben.

Diese Arbeit testet diese Axiome für verschiedene, klassisch äquivalente Formulierungen
der AR: der Einstein-Hilbert-Theorie der Schwerkraft, der Palatini-Holst-Formulierung
der AR, sowie zwei BF-ähnlichen Theorien, die Plebanksi, b.z.w. MacDowell-Mansouri-
Theorie genannt werden.

Wir beweisen, dass nur manche dieser Formulierungen die CMR Axiome erfüllen, und
somit eine BV-BFV Theorie induzieren: die Einstein-Hilbert-Theorie, für alle Mannig-
faltigkeiten mit Rand in Dimension d + 1 , 2 mit Zeit/Raum-artigem Rand, und die
MacDowell-Mansouri-Theorie, mit natürlichen Annahmen über die Felder.

Die klassische, kanonische Analysis für die Einstein-Hilbert und die Palatini-Holst Wirkun-
gen wird auch diskutiert, und wir zeigen, dass der Formalismus in der Lage ist, bekannte
Ergebnisse in einfacher Weise zu reproduzieren, und ausserdem eine explizite symplektis-
che Beschreibung des Phasenraums ermöglicht.

Dies ist ein erster Schritt des CMR-Programmes zur Quantiesierung der Eichtheorien
über Mannifaltigkeiten mit Rand, angewandt auf  das fundamentale offene Problem der
Allgemeinen Relativitätstheorie.
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1
Introduction

One of  the most important tasks of  modern theoretical and mathematical physics is that of
formalising the notion of  quantisation of  a physical theory, in such a way that established
results can be recovered, and that the process of  quantising classical field theories can be
understood within a well defined mathematical framework.

Learning from the algebraic lesson taught by category theory, one can arguably think
that, whatever the appropriate notion of  quantisation eventually turns out to be, it should
be understood as a functor between two adequately chosen categories, encoding and joining
on one hand the data of  classical field theories, and on the other their quantum counter-
part. In this direction have been focused the efforts of  axiomatic field theory of  Atiyah and
Segal10,11, and of  Costello12 and Lurie13, more recently. In this sense, the notion of  cobor-
dism with additional geometric data, i.e. manifolds with boundary and possibly corners,
becomes the source category on which classical field theory is cast: higher codimension
manifolds representing objects and lower codimension ones representing morphisms, and
morphisms between them.

On the other hand, much has been learned by the mathematical physics’ community
from the successful endeavours of  Becchi, Rouet, Stora, Tyutin14 (BRST), as well as Batalin,
(Fradkin) and Vilkovisky15,16 (B(F)V), to understand the perturbative quantisation of  gauge
theories in the framework of  cohomological resolutions of  quotients. There, instead of
making sense of  integrals on some (generically non smooth) reduced space of  fields, one
is able to work with some appropriate replacement, at the price of  dealing with non-physical
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fields to encode gauge symmetries. This has been hinting that physical states, and the path
integral itself  should be related to the cohomology of  an appropriate complex, and this
technology has been proven successful where other methods fail.

The natural step would be that of  putting these ideas together: keeping the interpretation
of  path integration as some algebraic entity, while casting it in an axiomatic way and clarifying
the functoriality of  some process that we might hope to call quantisation.

A recent attempt in this direction came from Cattaneo, Mnëv and Reshetikhin3,4,5 (CMR)
that understood that the B(F)V formalism is flexible enough to treat BV structures on
manifolds with boundaries in such a way that the gluing becomes a natural operation, thus
setting the stage for a possible axiomatic approach to boundary BV quantisation (see also17

for gluing of  manifolds in the general framework of  synthetic differential geometry). They
were able to show3 that a large class of  physically relevant theories satisfy their BV-BFV ax-
ioms, i.e. they induce a BFV structure on the boundary, when the input data is that of  a BV
structure on the bulk manifold. Furthermore, introducing the notion of extended theory, they
showed that this induction process is self-similar, in the sense that the induced boundary
structure might furthermore induce a compatible theory on its boundary (when the bulk
manifold has corners, indeed). The rich machinery of  AKSZ (Alexandrov, Kontsevich,
Schwarz and Zaboronsky18) satisfies rather naturally the BV-BFV axioms, and provides
important examples of  extended theories.

The key observation in CMR is that one needs some compatibility between the bulk
BV structure and the boundary BFV structure for the state associated to the bulk to be a
cocycle (and hence to define a physical state). At the semiclassical level, the fundamental
compatibility condition is that the failure of  the bulk action to be the Hamiltonian function
for the BV operator should be given by the pullback of  the boundary Noether 1-form. This
can always be achieved in terms of  a larger space of  boundary fields on which the differ-
ential of  the Noether 1-form is degenerate. The crucial assumption is that the symplectic
reduction of  this 2-form should be smooth.

The proposed quantisation procedure5 is a modified version of  the BV quantisation,
whenever the bulk-to-boundary compatibility can be transferred to the quantum setting.
This is different from the usual BFV Hamiltonian analysis of  field theories, precisely due to
this novel compatibility relations between bulk and boundary structures, which imply that
the gauge fixing (and the associated bulk BV-quantisation) is controlled by the cohomo-
logical data coming from the quantisation of  the boundary.

This is a first step in joining the two strands together, as one can view the higher co-
dimension theories as the objects in some suitable category (encoding classical data), while
the morphisms and higher transformations being interpreted as lower co-dimension man-
ifolds, all enriched by the respective extended-BV-BFV structures.

This promising new way of  looking at gauge theories has been tested already on a series
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of  examples. For instance, in the first CMR paper3 a long chapter is dedicated to casting
fundamental theories like Yang Mills, Chern Simons and the broad class of  AKSZ theories
in the new formalism. The CMR quantisation of  abelian BF theory has been worked out
in detail5 .

It is therefore expected that the formalism be challenged with, possibly, one of  the most
hard-to-handle gauge theories: General Relativity (GR). The aim of  this PhD thesis is in
fact that of  initiating the journey of  BV-BFV quantum gravity, by performing a from scratch
analysis of  different formulations of  GR, from the point of  view of  the BV-BFV formalism
of  CMR.

A plethora of  actions

In this work we consider General Relativity as the mathematical theory of  the gravitational
interaction, encoded in the fundamental equivalence principle and the Einstein field equa-
tions for a pseudo-Riemannian metric on a space-time manifold M, and we will make a
tour through its different formulations. We start from the older formalism of  Einstein and
Hilbert1,2, where the basic field is a pseudo-Riemannian metric, to more abstract formula-
tions where the metric is seen as a derived quantity.

The Palatini-Holst formalism6,7 is taken into account, where the basic fields are chosen
to be a connection in the associated bundle of  the frame bundle, and a section of  the
frame bundle itself. The Plebanski formalism8 and other formulations of  gravity9, instead,
consider even the frame field to be a derived entity, which comes into play only when the
equations of  motion are enforced.

The literature in the field is thick and immensely rich. Many attempts in view of  a direct
canonical quantisation are to be mentioned19,20,21,22, and yet the community working in
quantum gravity is profoundly divided into different schools of  thought, String Theory and
Loop Quantum Gravity being the two main lines of  research.

From a sort of super partes view point, we decided to analyse the different possible the-
ories without necessarily backing one or the other description of  GR, and we have found
some clear differences in applying our formalism to this example or the other. We believe
that this phenomenon is of  non-trivial relevance, if  we have confidence in the process of
falsification of  scientific theories, as well as their refinement through conflicting theoretical
or experimental outcomes.

In particular, we have shown that while the Eistein Hilbert formulation allows for an
essentially straightforward BV-BFV treatment, the Palatini-Holst formalism does not, and
in a robust way. Since the BV-BFV axioms essentially state the compatibility of  the sym-
metries with the boundary data, a first mathematical interpretation of  this result could tell
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us that the phase space of  Palatini-Holst gravity is far from being a smooth space.
On the other hand, further generalisations that describe GR as broken BF theories, such

as the Plebanski action or the McDowell Mansouri action in the BF formalism, exhibit a
better behaved BV-BFV structure, even if  still not enough to satisfy the CMR axioms.

We will see that satisfying the BV-BFV axioms when diffeomorphisms are into play is
far less trivial than one would expect by looking at other fundamental theories such as Yang
Mills. This somehow reflects the more complicated nature of  gravity and its resistance in
being treated in the same framework of ordinary gauge theories.

In particular, the very fact that some formulations of  GR, which would otherwise be re-
garded as classically equivalent, fail to yield a well defined BV-BFV theory might be hinting
that they are not truly suitable for the programme of  (perturbative) quantisation. In this
sense the CMR axioms might be taken as a criterion to decide which fundamental descrip-
tion should be chosen. The very way one theory or another fails to satisfy the axioms
tells us something about which potentials can be chosen in the action functional, in order
to grant the CMR compatibility with the boundary, and guides us in the selection of  an
appropriate action functional.

Einstein Hilbert action

In Chapter 3 and 4 the Einstein Hilbert formulation of  General Relativity is taken into
account as the classical input to construct an extended BV theory.

After some training with one dimensional examples in Chapter 3, we tackle the general
problem of  the BV-BFV structure of  General Relativity for any d + 1 , 2 spacetime
dimensions. The case d = 1 has to be treated separately, owing to the presence of  a larger
invariance, and it will be done in a further development of  the present work. It is interesting
to notice that our technique does not work in d = 1, namely the BV-BFV theory fails if  we
do not consider the appropriate symmetries.

Owing to the complexity of  the calculations, we resort to two procedures. One is the
choice of  a preferred set of  coordinates (Section 4.2) that makes the metric block-diagonal
on the boundary. The second one is the adoption of  the ADM variables (Arnowitt Deser
Misner23,24, in Section 4.3). This is done only in a neighborhood of  the boundary, which
is required to be either space-like or time-like, and without asking global hyperbolicity,
as opposed to what is usually done in the literature. What this means, more precisely,
is that one has to impose some compatibility with the boundary of  the allowed pseudo-
Riemannian structures. In particular, we will restrict the space of  classical fields to those
Lorentzian metrics on M such that their residual signature when restricted to a boundary
component is either space-like or time-like. We will eventually show that the two procedures
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yield equivalent results once some compatibility conditions are enforced, clarifying what it
means to choose such adapted coordinates.

Notice that global hyperbolicity turns out to be an unnecessary restriction for what con-
cerns the canonical structure. We work in a more general context where all the results
can be carried out without requiring any global equal-time slicing. An improvemement in
generality for what concerns the canonical structure and the compatibility with symmetries
goes in the direction of  path integral quantisation, where contributions from outside the
critical locus of  the action must be taken into account. So even if  global existence and
uniqueness of  solutions to the field equations is not granted for non globally hyperbolic
structures, it is important that the statements about the canonical structure hold true more
generally.

The main result of  Chapter 4 is that the extended BV theory of  gravity in the Einstein
Hilbert formalism yields a BV-BFV structure when the above mentioned conditions on
the boundary are met (Theorem 4.11). The explicit expressions for the relevant quantities
are given in a local Darboux chart and we automatically recover the known Hamiltonian
formulation of  GR, including the algebra of  constraints, from the boundary data (Theorem
4.12). As a byproduct we can show that the algebra of  constraints yields a non-trivial
example of  a coisotropic structure that does not manifestly come from a Lie algebra action,
and yet is linear in the ghost fields. Indeed, the structure constants are replaced by structure
functions, depending on the metric on the boundary (c.f. Section 4.4.2). This addresses a
question posed by Blohmann, Fernandes and Weinstein25 .

We observe that the BV-BFV machinery yields interesting results already in the classical
case. By interpreting the boundary terms as a 1-form on the space of  (pre-)boundary
fields (the Noether form) we are able to recover part of  the Hamiltonian description of
general relativity. In fact we are able to write down the symplectic form on the phase
space - the symplectic reduction of  the space of  restriction of  fields and normal jets to the
boundary - explicitly (more on this in Section 2.1). We argue that this explicit description
of  the true phase space of  the system through symplectic reduction (when possible) gives
a cleaner understanding of  the canonical relations among fields than the usual Poisson
bracket formalism.

Turning on the symmetries by extending the space of  fields according to the BV/BRST
prescriptions (Chapter 2, Section 2.2) and performing the CMR boundary analysis, we are
then able to recover the rest of  the canonical data, i.e. the algebra of  canonical constraints
and the residual gauge symmetry on the boundary, in the form of  an induced (degree 1)
action functional. The Dirac analysis of  constraints26 is greatly simplified by the tools
of  symplectic geometry and the interpretation of  the boundary action as embodying the
resolution of  the coisotropic submanifold defined by the constraints. As a matter of  fact
we believe that this procedure should become a standard one for the canonical analysis of
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classical field theories.
Moreover, all of  the one-dimensional models we analysed also satisfy the CMR axioms

(c.f. Chapter 3). We consider both pure gravity and scalar matter coupled with the gravita-
tional field, as well as a Robertson Walker cosmological model coupled with scalar matter,
following Hartle and Hawking27. In the latter case, we again find that the boundary action
automatically encodes the algebra of  constraints, in the form of  (a reduced version of) the
Wheeler DeWitt Hamiltonian constraint24.

Palatini-Holst action

The first non-metric theory of  the gravitational interaction that we approach in this thesis is
the Palatini-Holst (PH) formulation6,7, which has the interesting feature of  embedding GR
in the usual framework of  gauge theories, by making it a theory of  principal connections.
Chapter 5 is devoted to this.

The main idea is that of  relaxing the requirement that the connection be dependent
on the metric (as it is the case of  the Levi-Civita connection) by letting the compatibility
become dynamical, i.e. encoded in an Euler Lagrange equation for a new variational prob-
lem. Instead of  considering the pseudo-Riemannian metric as a fundamental field, in the
Palatini-Holst theory it is regarded as a derived quantity constructed from a co-tetrad, i.e.
a section of  the frame bundle.

This means that the two theories are equivalent only on shell, that is on the critical locus
of  the action, i.e. on those field configurations that solve the equations of  motion. As we
will see, this equivalence-on-shell does not say much on the symmetries of  the action and on
their compatibility with the boundary, or on the structure of  the reduced phase space.

In Chapter 5, Section 5.2, we will show how to describe the symplectic space of  boundary
fields - the (non reduced) phase space of  the system - by providing an explicit expression
for the symplectic structure, and clarifying the Hamiltonian picture of  GR in the tetrad
formalism.

We will then turn to the BV-framework, and to its BFV counterpart, by presenting a
natural result that implements the diffeomorphisms as gauge symmetries in such setting,
for all theories of  differential forms on a principal bundle (like the present one). This is
necessary to extend the classical theory to a BV theory on the bulk manifold M. The main
result, to be found in Section 5.3, Theorem 5.10, will state that the BV Palatini-Holst theory
does not satisfy the BV-BFV axioms, and therefore does not induce a well defined BFV
structure on the boundary ∂M.

We stress that this is a strong deviation from the Einstein Hilbert theory, and it crucially
implies that there is no way to retain the required compatibility conditions between bulk and

6



boundary structures. More precisely, the failure is of  the pre-boundary structure to be pre-
symplectic and to allow for a smooth symplectic reduction. This means in particular that the
reduced phase space (most likely non smooth) does not have a smooth BFV replacement
induced from the bulk.

In Section 5.4 we will test the idea of  dynamically implementing the Half-Shell constraint,
i.e. compatibility between the connection and the frame field, that fixes the independent
principal connection to the Levi Civita connection. The classical phase space and the
canonical structure are found in a straightforward way. In the BV setting we prove that the
said constraint is coisotropic in the space of  bulk fields and symmetry-invariant, and yet we
show that this will only worsen the singularity that is found when adopting the BV-BFV
approach (Theorem 5.15).

This result poses an important question about what variational principles that describe
the same Euler Lagrange equations should be considered truly equivalent, and which should
be regarded as better quantisable. The BV-BFV axioms might then be used as a criterion to
determine whether a given variational principle has better chances than others to yield a
sensible quantisation theory, if  we believe that whatever quantisation eventually turns out
to be, it should essentially be a functorial association of  a suitable target category of  linear
objects, to the source category of  space-time cobordisms with structure.

In other words, the naturality of  the requirement of  a bulk theory to be compatible
with its boundary data, makes it hard to think that a correct notion of  quantisation can be
developed without taking this requirement into account.

BF-like actions for General Relativity

In Chapter 6 we will go one step further in abstraction and consider the tetrad field as a
derived quantity as well. Retaining the geometric data of  a principal bundle with connection
on the space time manifold M, the basic field will be chosen to be any two form B with
values in the Lie algebra, and the action functional will be a modification of  the topological
BF action.

Topological theories of  the BF kind exhibit a large group of  symmetries under the action
of  which all solutions to the field equations are equivalent. The theory has no local degrees
of  freedom, and clearly some symmetry breaking must be taken into account if  we want
it to be a model for General Relativity, which instead has two local physical degrees of
freedom28. Different ways of  breaking this symmetry will generate different realisations of
General Relativity as a BF theory29,30,31.

We will analyse two of  these realisations, first the (non-chiral) Plebanski theory8,30,31,
when the symmetry breaking is realised through the introduction of  a suitable Lagrange
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multiplier, which can be considered as a singular quadratic potential term for the field
B. Later we will turn to the BF version of  the McDowell-Mansouri action for General
Relativity, which achieves symmetry breaking at the level of  the Lie algebra instead, in a
sort of  Higgs-like fashion.

The two theories have different interesting features and analysing their interaction with
diffeomorphisms will tells us something more on the compatibility of  such an algebra of
symmetries with Lagrange multipliers and potential terms, in relation to the boundary.

As a matter of  fact, the main result of  Section 6.1 is that the non-chiral Plebanski formu-
lation does not satisfy the CMR axioms, and therefore does not induce a globally smooth
symplectic reduction, even though, under some regularity assumptions for the fields B its
singularity is much more tame than the Palatini-Holst version presented in Chapter 5. The
explicit implementation of  diffeomorphisms (Proposition 5.8) yields the important obser-
vation that when considering Lagrange multipliers and relative constraints, their invariance
with respect to the symmetries is not a trivial issue. Our result shows in fact that the main
source of  singularity in the BV Plebanski theory comes precisely from the terms needed to
establish the invariance of  the constraints under space-time diffeomorphisms.

This already suggests that the particular way we break the symmetry does indeed matter
when we explicitly consider symmetries, even if  the action functional has a critical locus
which is diffeomorphic to that of  Einstein and Hilbert. As a matter of  fact, in the BF
formulation of  McDowell Mansouri theory, where the symmetry breaking is performed by
introducing a regular potential term, the problem associated with the Lagrange multipliers
is not present anymore.

In Section 6.2 we will show that under appropriate regularity conditions for the field B,
the BV-extended BF formulation of  the McDowell-Mansouri action for General Relativity
does indeed satisfy the CMR axioms and therefore yields a BV-BFV structure.
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2
Lagrangian field theories on manifolds

with boundary

In this introductory Chapter we will expound the basic ideas and mathematical tools that

will be fundamental throughout the rest of  the work. We will present first the general

picture of  field theories on manifolds with boundary, and then we will dwell on the BV-

BFV machinery, and the relationship with the BRST formalism for gauge theories.

This work is a first step in the programme of  BV-BFV quantisation of  General Relativity

and we will be focusing mainly on the classical framework. Nonetheless, being quantisation

the final goal, we shall briefly review the ideas underlying the boundary BV quantisation

technique, as recently proposed by Cattaneo Mnëv and Reshetikhin5.
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2.1 Field Theory with boundary

It is customary to describe classical field theories by means of  an action functional S on

some space of  fields F , usually sections of  vector bundles or sheaves, with the property of

being local, i.e. dependent on the fields and a finite number of  derivatives in the form

S =
∫
M

L[ϕ, ∂Iϕ, ∂I∂Jϕ, . . . ] (2.1)

with I, J multiindices and L a Lagrangian density.

The first example to bear in mind is given by classical mechanics, seen as a field theory

where fields are paths in a target manifold. For simplicity we will choose R as a target, the

space of  fields being F = Maps([a, b],R), and the action reads:

S [q] =

b∫
a

(
1
2

mq̇2 − V(q)
)

dt

with q ∈ F , and V a potential. The classical machinery then extracts information from

this data by solving the associated variational problem, meaning that the physical dynamical

content is encoded in the critical locus of  the functional S , which yields the Euler Lagrange

equations.

On the other hand, turning to the quantum formulation of  the theory, one wishes to

interpret the factor

e
i
ℏ S [ϕ]

as a probability amplitude, to be integrated against the “to-be-made-sense-of-measure”Dϕ,

with which one would like to endow the space of  fields. Following Feynman, the physical

content of  the quantum theory is encoded in the above mentioned integrals on the space

of  fields, which can be made sense of  perturbatively, i.e. expanding in ℏ around the critical

locus of  the classical action.

If  on the physical side this is understood by saying that the quantum behaviour should

be a perturbation of  the classical behaviour, adding quantum contributions of  different orders,
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the mathematical problem becomes that of  making sense of  the (formal) neighbourhood

of  the critical locus of S in the space of  fields.

In the mentioned example of  classical mechanics, this procedure is understood and it

can be fully carried out after analytical continuation, the outcome being the path integral

formulation of  quantum mechanics. In that case the measure on the space of  fields makes

sense and the integral is an actual integral (using the Wiener measure, see32 for a recent

account on the subject). In passing to field theory, we will assume that things work analo-

gously, while waiting for a formal proof  that the perturbative expansions through which we

define the path integral really are an approximation of  a well defined mathematical object,

which behaves like an integral on the space of  fields.

This involved picture is further complicated by possible extra data our theory might

enjoy, such as boundaries, for which one has to handle possibly non vanishing conditions,

and symmetries that make the critical locus degenerate.

Traditionally, the canonical/Hamiltonian analysis data (á la Dirac26) and the problem of

symmetries and gauge fixings have been considered separately. A great deal of  literature

has tackled the problem of  symmetries of  field theories through the Faddeev Popov ghost

method33, later understood under the more general framework of  BRST (Becchi Rouet

Stora, Tyutin14) and ultimately generalised by Batalin (Fradkin) and Vilkovisky (B(F)V)15,16

to treat also symmetries that do not come from Lie algebra actions. On the other hand, the

Hamiltonian analysis of  field theories has been independently developed in order to make

sense of  canonical quantisation.

It was only recently that a consistent treatment of  the two problems has been developed,

by allowing a gauge theory to be cast on manifolds with boundary, and understanding under

which conditions the boundary structure is compatible with the bulk data. Theories whose

symmetric data and boundary can be consistently treated together are called BV-BFV, or

CMR (Cattaneo, Mnëv, Reshetikhin) theories3,4,5 (see Section 2.2, Definition 2.5). This

approach and technology will be the starting point of  our analysis, and the basic frame-

work we will refer to in this work. The main CMR technology will be presented in this

background chapter.

This approach has many advantages, such as a compatible cutting-gluing procedure,

which allows to break topologically nontrivial manifolds into pieces, for which one might
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expect the quantisation to be simpler, as well as a powerful understanding of  the quantisa-

tion procedure itself  as a suitable generalisation of  the Atiyah-Segal axioms for (topological)

gauge theories5,10,11. Moreover, this approach gives a clear handle on the classical theory,

providing a much cleaner understanding of  the Hamiltonian approach to classical gauge the-

ories, after Dirac and his canonical constraint analysis26 which is in fact a first step towards

their quantisation.

Before we begin, we would like to outline here the general idea. Consider again the

previous case of  classical mechanics on an interval, Eq. (2.1). If  we compute the variation

of  the action and integrate by parts we get

δS = −
∫
I

(mq̈ + V ′︸   ︷︷   ︸
EL

)δq +
∫
∂I

mq̇δq

where the term EL will yield the Euler Lagrange equations, which in this case are Newton’s

equations: mq̈ = −V ′.

Before interpreting the remaining boundary term, notice that the space of  Cauchy data,

i.e. the information one needs to complement EL with, in order to uniquely solve the

equations of  motion, is given by C = T M, i.e. the assignment of  a value of  position and

velocity at the boundary (at time a, or b). On the other hand, once we have a path q, i.e. a

point in F we can find its initial and final position and velocity, i.e. we have

πa :
F −→ C

q 7−→ (q(a), q̇(a))

and equivalently for b.

Therefore, it is easy to gather that we can interpret the boundary term as the pullback

of  a one form on C:

δS = el + π∗bα − π∗aα, α = mq̇δq ∈ Ω1(C)

and its differential ω := δα is nothing less than the pullback of  the canonical symplectic

form on the cotangent bundle along the Legendre transform (enforcing p = mq̇).
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Alternatively, if  we want to avoid facing the problem of  the well definiteness of  the E.L.

equations at this stage, we can interpret the extra term on the boundary as the pullback

of  a one form on a different space, defined as the space of  germs of  functions on the

boundary cross an infinitesimal interval ∂I × [0, ϵ], computed at ∂I × {0}. This procedure

will generalise in a straightforward way to more general manifolds M with boundary ∂M

and the space of  such germs will be denoted by F̃∂M . The link between these two analo-

gous descriptions is clear after the respective reduction is performed (C as a coisotropic

submanifold and F̃∂M as a presymplectic manifold).

The advantage of  this point of  view is already clear if  we observe that for degenerate

Lagrangians the Legendre transform will not be well defined on the whole phase space,

and the Hamiltonian formalism is less trivially employed. In those situations, as it will be

clear from our discussions, the boundary Lagrangian setting will be far more fruitful (on

another approach to Lagrangian field theories see also Costello12).

Let us sketch the general construction for classical gauge theories on manifolds with

boundary and the direction to go in order to tackle the quantum theory.

2.2 BV and BFV axioms

We will consider here a general framework for gauge field theories. First of  all we fix the

space dimension, say d, and assign to a d-dimensional manifold M (possibly with boundary,

and other geometric data, like a Riemannian structure) a space of  fields FM , i.e. a Z-graded

odd-symplectic manifold, with a symplectic form ΩM of  degree |ΩM | = k together with a

local, degree k + 1 functional S M of  the fields and a finite number of  their derivatives.

The equations of  motion (i.e. the dynamical content of  the theory) are encoded in the

Euler Lagrange variational problem for the functional S M . The Z grading is sometimes

called ghost number, but it will be often replaced by the computationally friendly total degree,

which takes into account the sum of  different gradings when the fields belong to some

graded vector space themselves (e.g. differential forms).

The symmetries are encoded by an odd vector field QM ∈ Γ(T [1]M) such that [QM,QM] =
0. A vector field with such a property is said to be cohomological. QM is also referred to as

the classical BRST operator.
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Among these pieces of  data some compatibility conditions are required. We give the

following definitions for different values of k. In the convention we adopt ordinary sym-

plectic manifolds are called (0)-symplectic in the graded setting. Our model for a bulk

theory will be given by

Definition 2.1. A BV-theory on a closed manifold M is the collection of  data (FM, S M,QM,ΩM)
with (FM,ΩM) a Z-graded (−1)-symplectic manifold, and S M and QM respectively a degree 0 function

and a degree 1 vector field on FM such that

1. ιQMΩM = δS M , i.e. S M is the Hamiltonian function of QM

2. [QM,QM] = 0, i.e. QM is cohomological.

The symplectic structure defines an odd-Poisson bracket (, ) on FM and the above conditions together imply

(S , S ) = 0 (2.2)

the Classical Master Equation (CME).

✠

On the other hand, the model for a boundary theory, induced in some sense to be ex-

plained, will be given by

Definition 2.2. A BFV-theory on a closed manifold N is the collection of  data (FN , S N ,QN ,ΩN)
with (FN ,ΩN) a Z-graded 0-symplectic manifold, and S N and QN respectively a degree 1 function and

a degree 1 vector field on FN such that

1. ιQNΩN = δS N , i.e. S N is the Hamiltonian function of QN

2. [QN ,QN] = 0, i.e. QN is cohomological.

This implies that S N satisfies the CME.

✠

In general one starts from a classical theory, that is an action functional S cl for some

space of  classical fields FM and a distribution DM in the bulk encoding the symmetries,
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i.e. LX(S cl) = 0 for all X ∈ Γ(DM). The main requirement on DM for the formalism

to make sense is that DM be involutive on the critical locus of S cl. Notice that DM can

be the distribution induced by a Lie algebra (group) action, in which case it is involutive

on the whole space of  fields. When this is the case we will talk of  the BRST formalism,

even though the setting will be slightly different from the original one (for another account

on the relationship between the BV and BRST formalism see, e.g.34). We will be mainly

interested in these types of  theories, but for the sake of  completeness we will sketch the

general construction.

To construct a BV theory on the bulk starting from classical data, and assuming that M

has no boundary, we must first extend the space of  fields to accommodate the symmetries:

FM { FM = T ∗[−1]DM[1]. Symmetries are considered with a degree shift of+1, whereas

the dualisation introduces a different class of  fields (called anti-fields) with opposite parity

to their conjugate fields, owing to the −1 shift in the cotangent functor. This yields a (−1)-
symplectic manifold, which is a good candidate to be the space of  bulk fields we want to

work with.

The classical action has to be extended as well to a new local functional on FM , and if

we want this to satisfy the axioms of  the BV theory we must impose the CME on the ex-

tended action. This process will a priori need the introduction of  higher degree fields to the

space of  fields in order to resolve, under some regularity assumptions, the relations among

degree 1 fields. This process of  extension goes through co-homological perturbation the-

ory35,36,15,37,4 and it will ensure us to end up with a BV structure on the bulk. However, for

a theory which is BRST-like, the extension is determined by the following straightforward

result15:

Theorem 2.3. If DM comes from a Lie algebra action, the functional S BV = S cl+⟨Φ†,QMΦ⟩ on the

space of  fields FM = T ∗[−1]DM[1] satisfies the CME, where Φ is a multiplet of  fields in DM[1], Φ†

denotes the corresponding multiplet of  conjugate (anti-)fields and QM is the degree 1 vector field encoding

the symmetries of DM .

FM is then a (−1)-symplectic manifold and together with S BV and QM it yields a BV theory that

(minimally) extends the classical theory.

More details on the BRST formalism and how it can be embedded in the BV framework
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will be given in Section 2.4.

2.3 BV-BFV axioms on manifolds with boundary

As we already mentioned, Definition 2.2 will be a boundary model for Definition 2.1. In

what follows we will explain in which sense. Say that we start from the data defining a BV

theory, but this time we allow M to have a boundary: the requirement that ιQMΩM = δS M

is (in general) no longer true. What will happen is that the integration by parts one usually

has to take into account when computing δS will leave some non zero terms on the boundary.

More precisely, consider the map

π̃ : FM −→ F̃∂M (2.3)

that takes all fields and their transversal jets to their restrictions to the boundary (it is a

surjective submersion). We can interpret the boundary terms as the pullback of  a one

form* α̃ on F̃∂M , namely

ιQMΩM = δS M + π̃
∗α̃ (2.4)

We will call α̃ the pre-boundary one form.

Notice that if  we are given this data, we can interpret this as a broken BV theory, which

induces some data on the boundary. We can in fact consider the pre-boundary two form

ω̃ B δα̃ and if  it is pre-symplectic (i.e. its kernel has constant rank) then we can define

the true space of  boundary fields F ∂
∂M to be the symplectic reduction of  the space of  pre-

boundary fields, namely:

F ∂
∂M =

F̃M
/
ker(ω̃) (2.5)

with projection to the quotient denoted by π : F̃∂M −→ F ∂
∂M . If  all of  the above assump-

tions are satisfied, the map πM B π ◦ π̃ is a surjective submersion, the reduced two form

ω∂
∂M B ω̃ is a 0-symplectic form, and we have the following

*In full generality α̃ is a connection on a line bundle, yet when S M is a function on the space of  fields, α̃
is a globally well defined 1-form, since integration by parts is a local operation in the space of  fields.
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Proposition 2.4 (CMR4). The cohomological vector field QM projects to a cohomological vector field

Q∂
∂M on the space of  boundary fields F ∂

∂M . Moreover Q∂
∂M is Hamiltonian for a function S ∂

∂M , the

boundary action.

We can now summarise this as follows: we will call a pre-BV-BFV theory on a d-

dimensional manifold M with boundary ∂M a collection of  data (FM, S M,QM,ΩM) with

(FM,ΩM) a Z-graded (−1)-symplectic manifold, and S M and QM respectively a degree 0
local functional and a degree 1 vector field on FM such that

1. [QM,QM] = 0, i.e. QM is cohomological,

2. The map π̃ from the space of  bulk fields FM to the space of  pre-boundary fields F̃∂M

is a surjective submersion.

3. QM is π̃-projectable to a cohomological vector field Q̃ on F̃∂M

4. The BV-BFV formula ιQΩM = δS M + π̃
∗α̃ is satisfied.

Definition 2.5 (CMR3). Whenever the pre-boundary 2-form ω̃ is pre-symplectic on F̃M and the

symplectic reduction to the space of  boundary fields (F ∂
∂M, ω

∂
∂M) can be performed, this induces the BFV

theory (F ∂
∂M, S

∂
∂M,Q

∂
∂M, ω

∂
∂M) on ∂M.

The composition of π̃ with the symplectic reduction map π : F̃∂M −→ F ∂
∂M will yield another pre-BV-

BFV theory, for the symplectic form ω∂
∂M and the surjective submersion πM = π ◦ π̃ : FM −→ F ∂

∂M

satisfying axioms from (1) to (3). In this case we say that the theory is BV-BFV. Furthermore, if α̃ is

basic, α̃ = π∗α∂
∂M , we say that the BV-BFV theory is exact and we have the fundamental formula

ιQMΩM = δS M + π
∗
Mα

∂
∂M (2.6)

✠

The advantage of  such a point of  view is at least twofold. First of  all, as we just saw, the

formalism is large enough to be able to describe consistently what happens both in the bulk

and in the boundary. On the other hand it is flexible enough to allow for symmetries that are

more general than a Lie group action. For instance it is possible to accomodate symmetries

17



that close only on shell (e.g. Poisson sigma model) or symmetries whose generators are

not linearly independent, where higher relations among the relations are required (e.g. BF

theory or other theories involving (d > 1)-differential forms).

The BV theory that we have constructed in Theorem 2.3 starting from a gauge theory

of  the BRST-kind is sometimes called the minimal BV extension of  the gauge theory. When

a non trivial boundary is allowed, we will use this minimal extension as the starting point

for the BV-BFV analysis.

What one aims to establish is whether this minimal BV theory on the bulk is indeed a

BV-BFV theory. In this work we will analyse different source classical actions, all classically

equivalent, and we will determine which of  these do indeed satisfy the CMR axioms.

2.4 BV versus BRST

In our language, the data that has to be specified in order to define a gauge theory consists

essentially of  a space of  fields F on which a local functional is given, the action functional

S , and a distributionD in the tangent space such that S is invariant under the action of  all

the vector fields in the distribution: S ∈ C∞(F )D.

We have already mentioned that this is potentially a problem for setting up a perturbative

quantisation scheme (even ahead of  the well definiteness issue of  the path integral), because

the critical locus of S , of  which formal power series in ℏ represent a formal neighborhood,

is degenerate due to the symmetries, and no perturbative expansions around classical solu-

tions can be performed.

In other words, what is happening is that in summing over all field cofigurations we are

summing over physically equivalent ones, where by equivalent we roughly mean that they lie

in the same leaf  of  the distribution D.

Sometimes, i.e. most of  the times in physically-relevant examples, the distribution is

given by a (faithful) Lie algebra action, and it is therefore involutive on the whole space of

fields. This is a strong condition that allows us to use a very particular technique, that goes

under the name of  BRST14 formalism. In this section we will outline the generalities of

this mechanism and explain how this is generalised to the BV setting.

To fix the ideas, using a simplified example, consider a function S in R3 that only depends
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on the distance from the center, that is the modulus of  a vector. Such a function is clearly

invariant under the action of  the group of  rotations S O(3) and the distribution in this case

is given by the Lie algebra action on R3 (adjoint or coadjoint action). If  we interpret R3 to

be the space of  fields and the function S as the action, the problem now is to sum over all

configurations, without counting redundant field configurations, whose total contributions

equal the volume of  the gauge group (finite in this simple example).

One would like to count each S O(3) orbit only once by integrating on a submanifold

which is transversal to all orbits (in this case a ray from the origin). This idea lies at the

heart of  the concept of  gauge fixing. The difference, though, is that while in this simple

example it is possible to integrate directly the space of  leaves of  the distribution, for the

more general examples this will not be possible and one needs a way to characterise this

space in a different way.

The BRST formalism allows us to do so by cohomologically resolving the functions on the

space of  fields that are invariant under the action of  a Lie group, essentially by extending

the space of  fields with the Chevalley-Eilemberg complex. Let us see how, in greater detail.

2.4.1 BRST formalism and gauge fixing

To sketch a first generalisation of  the previous discussion let us assume that we can encode

the data of  a submanifold N transversal to the G-orbits in a function H : F −→ g, for

which 0 is the regular value fixing N = H−1(0). Moreover we will denote by Xi a basis

of  fundamental vector fields coming from the lie algebra action ρ : g −→ X(F ), so that

Xi = ρ(ξi), with {ξi} a basis in g.

Now, extend the space of  fields to include a shifted copy of  the Lie algebra:

Fmin = F ⊕ g[1] ∋ (ϕ, c) (2.7)

We are now working in the setting of  graded vector spaces (and manifolds). Shifting the Lie

algebra by 1 means considering a graded vector space concentrated in degree −1. For prac-

tical matters, we are simply declaring the elements in g to behave like Grassmann variables.
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Consider the operator

Qmin = ciXi − 1
2

cic j f i j
k

∂

∂ck
(2.8)

as a vector field on C∞(Fmin) = C∞(F ) ⊗ ∧•
g∗, which is the g-module given by the

Chevalley-Eilemberg complex and the smooth functions on F , with the ci’s representing

coordinates on g[1]. It is easy to check that [Qmin,Qmin] = 0, of  degree 1, yielding a

differential on C∞(Fmin), and we have that

H0(C∞(Fmin),Qmin) ≃ C∞(F )g ≃ C∞
(
F /
g

)
(2.9)

The idea behind the BRST formalism and gauge fixing, as we will see, is that one wants

to interpret S as a cocycle in degree zero for some operator of  the space of  functions,

encoding the symmetries as Qmin does. Since we are only interested in the cohomology, a

cocycle can be shifted by an appropriate coboundary. The problem one has to face, at this

stage, is that in order to change the representative degree-zero cocycle in a given class, one

must be able to build degree −1 coboundaries, and to do so we must extend the space of

fields once more, to be able to deal with negative degrees.

The choice of  a different representative represents the gauge fixing, i.e. the choice of  a

particular transversal section to the orbits in the space of  fields.

Notice that we need to enlarge the space of  fields in a way that the equality (2.9) is not

crucially spoiled. We do it by adding a contractible space with a deRham differential on it,

so that its contribution to the cohomology will be trivial. Namely, the space

Fg f := g∗[−1] ⊕ g∗ ∋ (c, λ) (2.10)

together with the differential

Qg f := λi ∂

∂ci (2.11)

which clearly squares to zero. Then the correct BRST space for gauge fixing is given by

FBRS T = Fmin ⊕ Fg f (2.12)
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with differential QBRS T = Qmin + Qg f . The gauge fixed action will look like S g f = S +

QBRS TΨ for some |Ψ| = −1 (sometimes called gauge fixing fermion).

In the simplified case we are outlining, considering the functions Hi to be those that

define the submanifold N = H−1(0) we can choose the gauge fixing fermion to be Ψ :=
Hic

i. The resulting gauge fixed action in this case will represent the well known Faddeev-

Popov action33.

To summarise, the BRST formalism provides a resolution of  the functions on the quo-

tient, i.e. the space of  leaves for the group action, in such a way that the action functional

is interpreted as a class in the cohomology of  the differential QBRS T . Choosing a represen-

tative in the class is tantamount to the choice of  a gauge fixing.

2.4.2 BRST in the BV formalism

As we said, the BV formalism is somehow an extension of  the BRST formalism. This

is true in many ways: on the one hand for it allows us to treat more general symmetries

than Lie algebra actions, but also because it is potentially compatible with a BFV structure

on the boundary. In this section we would like to understand how one can embed the

BRST construction in the BV setting. We will do this in a rather general example where we

consider theories of  principal connections.

The space of  fields that we shall consider is the space of  connectionsAP on a principal

bundle G → P→ M and the action functional is a local functional of  the gauge connection,

that is invariant under infinitesimal gauge transformations (in the sense of  principal bundle

morphisms). For instance, Yang-Mills theory is specified by

S Y M =

∫
M

Tr (FA ∧ ⋆FA)

where ⋆ is the hodge star induced by the choice of  some Riemannian or Lorentzian metric

g on the closed manifold M, whereas the trace comes from any bilinear invariant pairing

in g = Lie(G). Another example is given by the Chern Simons action on a three manifold
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M:

S CS =

∫
M

1
2
< A, dA > +

1
3
< A, [A, A] >

where again <, > is an invariant, bilinear non degenerate inner product in g.

The basic fields in these examples are connections A ∈ AP on a principal bundle P, that

can be seen as one-forms on P with values in g, or as one-forms on M with values in the

adjoint bundle adP. The symmetries are encoded by the odd fields c ∈ Ω0(M, adP)[1],
that are nothing but the generators of  the gauge transformations, with degree shifted by

+1. As a matter of  fact the gauge transformations read

δA = dAc; δc =
1
2

[c, c]

It is possible to think of  this δ-operator as a vector field on the space of  fields

Fmin = Ω
1(P, g) ×Ω0(M, adP)[1]

and it clearly satisfies [δ, δ] = 0, the cohomological condition. What we are doing is again

simply considering the Chevalley-Eilemberg complex to encode the symmetry degrees of

freedom: so far, nothing new.

Now consider the total space of  fields to be the shifted cotangent bundle

FBV = T ∗[−1]Fmin ∋ (A, c, A†, c†)

with

A† ∈ Ωd−1(P, g∗)[1], c† ∈ Ωd(M, ad∗P)[−2]

and define the BV symplectic form to be the canonical (−1)-symplectic two form on FBV

ΩBV =

∫
M

(δA†, δA) + (δc†, δc)

where we used the canonical pairing (, ) between g and its dual.

Observe that if  we are given a vector field δ on the space Fmin, by taking its cotangent
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lift δ̌ we get the vector field

QBRS T B δ̌ ∈ Γ(T ∗Fmin)[1]

and its Hamiltonian function with respect to ΩBV , denoted by S BRS T reads

S BRS T =

∫
M

(A†, dAc) +
1
2

(c†, [c, c])

Now, denoting the new action by S = S cl + S BRS T we can check (if M is closed)

{S , S } = 0

where {·, ·} is the (odd) Poisson bracket induced by ΩBV , whereas the gauge invariance

enforces δS = 0 and the fact that QBRS T squares to zero implies that {S BRS T , S BRS T } = 0
as well. Notice that this partly proves Theorem 2.3, stated in Section 2.2

Up until here we have rewritten the minimal BRST structure in the BV formalism, and

this will agree with what was presented in 2.4.1, mutatis mutandis. Again, to perform the

gauge fixing as we did before we would like to add the new fields

λ ∈ Ωd(M, ad∗P), c̄ ∈ Ωd(M, ad∗P)[−1]

and their cotangent fibres:

F ext = F × T ∗[−1]
(
Ω0[−1] ×Ω0

)
(M, ad∗P)

with additional fibre fields c̄† and λ†. The action gets extended to

S ext = S BRS T +

∫
M

c̄†λ

together with

ωext = ω +

∫
M

(δc̄†, δc̄) + (δλ†, δλ)
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It is a matter of  easy calculations to show that we still have

(S ext, S ext) = 0

and the extension of  the action of  the cohomological vector field reads

(S ext, c̄) = λ, (S ext, λ†) = c̄†, (S ext, λ) = (S ext, c̄†) = 0

This can be interpreted as the De Rham differential, through the identification λ = dc̄ and

c̄† = dλ†.

We can now choose a function ψ of  degree −1 such that

A† =
δψ

δA
, c† =

δψ

δc
, c̄† =

δψ

δc̄
, λ† =

δψ

δλ

that is to sayΦ† = δψ

δΦ
whereΦ are the base fields and the dagger marks the cotangent fibre

fields. Therefore one writes ∫
F ext

e
i
ℏS ext

∣∣∣
Φ†= δψ

δΦ [DΦ]

where the integral is taken over the base fields.

Typically one chooses ψ =
∫

c̄d∗A0
(A − A0) + αc̄ ∗ λ to obtain the gauge fixed action

S ext
∣∣∣Lψ = S cl +

∫
c̄d∗A0

dAc︸  ︷︷  ︸
FP-det

+ λdA0(A − A0)︸          ︷︷          ︸
Lorenz

+αλ ∗ λ︸ ︷︷ ︸
Extra

where the first term yields the usual Faddeev Popov determinant, the second term en-

forces the Lorenz gauge and the extra term depending on α is a non-necessary correction

that helps in simplifying later computations.

If  we chose α = 0 we would have, eliminating λ by using its equation of  motion, that

c̄† = 0. So in the space F̃ ext := Fmin × {c, c̄} we have a coisotropic submanifold C = {c̄† =
0} together with the Lagrangian Lψ ⊂ F̃ ext. Reducing, we get the Lagrangian submanifold

Lψ = {(A, c, A†, c†) ∈ F
∣∣∣ d∗A0

(A − A0) = 0, c† = 0, A† ∈ Im(d∗A0
)} ⊂ F̃

ext
= F
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so that finally we have ∫
Lψ⊂F ext

e
i
ℏ S ext
=

∫
Lψ

e
i
ℏS

Assume now that the principal bundle is trivial, P = M×G and the reference connection

A0 = 0. ThenA = Ω1(M, g), d∗A = 0 and A† ∈ Im(d∗). So the reduced Lagrangian reads:

L
ψ
= {(A, c, A†, c†)

∣∣∣ d∗A = 0, c† = 0, A† ∈ Im(d∗)}

Gauge fixing in the BV formalism is interpreted as integration over Lagrangian sub-

manifolds, and the main BV theorem states that when the extended action satisfies some

particular non trivial condition, called Quantum Master Equation (cf. below) the BV path

integral will not depend on the gauge fixing, i.e. on the particular Lagrangian submanifold.

More on this can be found in Appendix B.

By reading the BRST formalism in the BV setting one is able to observe that when the

gauge fixing is performed by means of  a gauge fixing fermion, the Lagrangian submanifold

is of  a very peculiar kind: it is the graph of  an exact one form. This is an unnecessary

restriction, that we can conveniently get rid of  in the BV framework, by simply requiring

the gauge fixing to be given by the choice of  a Lagrangian submanifold.

2.5 Quantum bulk-boundary correspondence

The CMR axioms of  Definition 2.5 for BV-BFV theories provide a notion of  compat-

ibility between a bulk BV and a boundary BFV theory. Assume we are given an exact

BV-BFV theory in the form of  bulk data (FM, S M,QM,ΩM), and the respective boundary

data (F ∂
∂M, S

∂
∂M,Q

∂
∂M, ω

∂
∂M), we have the fundamental CMR formula

ιQMΩM = δS M + π
∗
Mα

∂
∂M (2.13)
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Now, assume we are given an operator ∆ of  degree −1 on FM such that ∆2 = 0 and the

following compatibility relation holds:

(a, b)ΩM = (−1)|a|
(
∆(ab) − ∆(a)b − (−1)|a|a∆(b)

)
(2.14)

where (·, ·)ΩM is the odd-Poisson structure associated with the odd-symplectic structure

ΩM . Such an operator ∆ is called BV-Laplacian. We will not go into details of  the con-

struction of  such an operator, whose existence is not in general granted as soon as we work

in an infinite dimensional setting†, and for the general theory of  BV algebras and Gestern-

haber brackets and their relationship with homological algebra we refer to the vast literature

on the subject35,38,39. A brief  expansion on this will be anyway considered in Appendix B.

In field theory we are interested in functions of  the form g = exp{ i
ℏ
S } and one can

check that

∆e
1
ℏ S = 0⇐⇒ 1

2
(S , S ) − iℏ∆S = 0

This is called Quantum Master Equation (QME), and since we are interested in integrating g

on some Lagrangian submanifold, encoding the gauge fixing, the BV Theorem16 tells us

that if  QME holds, we can conclude that the integral is independent of  the choice of  gauge

fixing (cf. Lemmas B.2 and B.3, Appendix B).

Generally, though, we start from the classical counterpart ℏ→ 0 that would be (S 0, S 0)
(the classical master equation, CME) in the hypothesis S =

∑
n ℏ

nS n and M a closed man-

ifold. Then one can start computing the perturbative corrections, for instance

(S 0, S 1) = −i∆S 1

and this will produce corrections to the CME. It is clear that there are obstructions, since

the above equations tell us that S 0 is a cocycle, that we want to write as a coboundary, and

this is not possible in general.

Notice that the Classical master equation makes sense also in the∞-dimensional setting,

in that it relies only on the BV bracket (·, ·). We need to regularise the theory to make sense

of  the full QME. Obstructions to this perturbative approach are usually given by anomalies.

†On the contrary ∆ does indeed always exists, in finite dimensions.
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Turning back to our bulk-boundary correspondence, let us assume that such a BV-

Laplacian is given, in addition to the BV-BFV theory, and let us require for simplicity that

∆S = 0. We will need to assume a series of  thing in what follows, in order to illustrate how

the BV-BFV compatibility should carry over to the quantum setting. The general theory

has been set forth by CMR in their work5, to which we refer.

Assume that we are given a polarisation in F ∂
∂M such that we have the splitting in the

space of  bulk fields:

FM = Y × B (2.15)

whereB is the space of  leaves of  the polarisation. Moreover, as it is customary in geometric

quantisation, we will require that α∂
∂M vanishes on the Lagrangian fibres of  the polarisation.

These requirements are somehow natural when working with affine spaces. Finally, we will

require thatΩM be concentrated inY, and yet is nondegenerate. Notice that this is possible

only in infinite dimensions, as it is true that in finite dimensions the very requirement that

both FM and F ∂
∂M be symplectic is provably impossible to satisfy. It can be amended

precisely by asking that ΩM be symplectic on the fibres Y or, equivalently that FM −→ B
be a symplectic fibration. As a matter of  fact we should think of FM as being essentially a

BV-space Y that depends on parameters that live in the space B.

Recalling (2.13) and splitting δ = δY + δB, we deduce thatδYS = ιQYΩM

δBS = −π∗α∂
(2.16)

Moreover we have

Lemma 2.6. With the above assumptions, the following formula holds:

1
2

(S , S )Y = π∗S ∂ (2.17)
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Proof. Starting from (2.13) we compute

ιQM ιQMΩM =LQM S M + π
∗
MιQ∂α∂ (2.18)

LQMΩM =π
∗
Mω

∂ (2.19)

then we need the following computation

LQM ιQMΩM = − δLQM S M + π
∗
MLQ∂α∂

−ιQM LQMΩM = − δ(LQM S ) + π∗MιQ∂δα∂ − π∗MδιQ∂α∂

−π∗MιQ∂δα∂ = − δ(LQM S ) + π∗MιQ∂ω∂ − π∗MδιQ∂α∂

where we used [LQM , ιQM ] = ι[QM ,QM] ≡ 0, equation (2.19) and Proposition 2.4. Rearranging

the terms and using the BFV CME, i.e. ιQ∂ω∂ = δS ∂, we get an equivalence of  exact forms,

hence

LQM S = −π∗MιQ∂α∂ + π∗M(2S ∂) (2.20)

Plugging this into (2.18) we get the failure of  the Classical Master equation in the bulk:

1
2

(S M, S M) = π∗S ∂ (2.21)

and using the fact that ΩM is concentrated on Y we obtain the result. ✓

The quantisation scheme, following CMR5 is as follows. First of  all we have to per-

form the quantisation of  the symplectic manifold of  boundary fields, for instance through

geometric quantisation. It is in fact likely that the structure of F ∂
∂M be that of  a cotan-

gent bundle. Assuming that this is the case and that α∂ = −pδq, denoting by p the fiber

coordinates and by q the base coordinates, we have that δS ∂

δq = p.

The key step is that of  quantising the boundary action S ∂ to an operator‡ using the

canonical quantisation rules and standard ordering, placing all derivatives to the right:

D B S ∂

(
q,−iℏ

δ

δq

)
(2.22)

‡In their paper 5 CMR call it Ω. We change the notation to avoid confusion with the BV form.
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and this will give us the following quantum compatibility relation

Lemma 2.7 (CMR5). Under all of  the previous assumptions we have the fundamental formula

D̂ e
i
ℏS B

(
ℏ2∆ + D

)
e

i
ℏS = 0 (2.23)

which we will call Modified Quantum Master Equation (mQME).

Proof. First of  all we compute De
1
ℏ S = π∗MS ∂e

i
ℏ S by using the splitting FM = Y × B and

the linearity in p of  the action. Then we can compute

∆e
i
ℏ S =

1
2

( i
ℏ

)2

(S , S )Ye
i
ℏS =

( i
ℏ

)2

De
i
ℏS

using Lemma 2.6. ✓

The quantisation scheme then carries over to the bulk, under certain assumptions. As

we already mentioned, and accordingly to what happens in the closed BV case, we have to

choose a Lagrangian submanifold L ⊂ Y to fix the gauge. Then we can define a state for

this choice of  gauge fixing as a function on the base parameter space B, namely:

ΨL B
∫
L

e
i
ℏ S ∈ Fun(B) (2.24)

and the fundamental result is that a change in the Lagrangian submanifold results in a D̂-

exact error term, and that the state itself  is D̂-closed. The physical Hilbert space, when D̂2 =

0, is then interpreted as the cohomology of D̂ in degree zero. A state is therefore a cocycle

for D̂ and gauge fixing is nothing but the choice of  a representative in its cohomology class.

2.6 General remarks

In this work we will consider several action functionals for General Relativity and the vari-

ational problems associated to them, establishing whether they satisfy the CMR axioms.

All of  the functionals we consider have somehow diffeomorphic critical loci, since they de-

scribe the metric dynamics given by the Einstein Equation. At the same time it is assumed
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that the principle of  general covariance lies at the foundations of  all of  these different for-

mulations, thus requiring that the fundamental symmetries of  the theory be given by the

action of  diffeomorphisms on the fields (plus possible internal symmetries, if  the funda-

mental fields have additional internal degrees of  freedom). This is essentially the notion of

classical equivalence of  field theories.

It is important to notice that we will assume that the basic symmetries of  the system

be determined for closed manifolds, i.e. when the boundary is empty. In the presence of

a boundary we will employ the same distribution of  symmetries and interpret the results

so obtained. For instance we will not only consider diffeomorphisms that preserve the

boundary, as this will allow us to encode important information. Moreover, this procedure

is compatible with the interpretation of  symmetries being given by the action of  a cohomo-

logical vector field Q, which is defined on a cosed manifold, and the boundary structure

is induced by the failure of  the Classical Master Equation. As a matter of  fact, from the

fundamental BV-BFV formula

ιQMΩM = δS M + π
∗
Mα

∂
∂M (2.25)

we get that

LQM S M = ιQM ιQMΩM − π∗MιQ∂
∂M
α∂∂M (2.26)

showing how the failure of  the gauge invariance in the presence of  boundaries is controlled

by the boundary structure.

Strictly speaking, in fact, invariance under diffeomorphisms is broken when a boundary

is taken into account, as the integration by part will produce boundary terms that must

be compensated. This will anyway result in a canonical transformation of  the symplectic

space of  boundary fields, without modifying the boundary BFV structure. Looking at

the remarkable and well-known case of  Chern-Simons theory, whose action is not gauge

invariant in the presence of  a boundary, one can construct a line bundle over the space of

fields and recover the gauge invariance of  the action by extending it to a functional on the

line bundle. A similar feature can be similarly expected for the case of  General Relativity,

even though this issue will not be explicitly addressed here.

As a second remark, I would like to make a comment on the functoriality of  the assignment
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of  a space of  fields and a BV structure to every bulk manifold, and of  the boundary BFV

structure to every boundary manifold. Consider the case of  GR in the Einstein Hilbert

formalism, where we have to apply the ADM decomposition in a neighborhood of  the

boundary, and thus require that the Lorentzian metrics we consider be compatible with such

boundary geometry. This assignment is not functorial: the space of  fields we associate to

the manifold obtained by gluing two pieces does not coincide (it is indeed smaller) than the

space of  fields we could associate to the same manifold if  we forget about the compatibility

conditions along the gluing submanifold.

However, we argue that this is not a crucial problem, as the relevant functoriality prop-

erties should be guaranteed when passing from the category of  classical BV-BFV theories

to some appropriate category of  quantum theories. At the level of  cobordisms it is suffi-

cient that the infinitesimal BV-BFV structure on cylinders Σ × [0, ϵ] yields a Lagrangian

submanifold of  the space of  boundary fields, given by the projection to the boundary of

the solutions of  the Euler Lagrange equations.
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3
One dimensional examples

To start off  with our analysis of  the BV-BFV boundary structure for general relativity, we

shall consider first some simple, yet instructive 1-dimensional examples. Although some

of  the results that we will find along the way can be recovered from the general picture

presented in Chapter 4, it will be possible to go a little deeper in the analysis of  the boundary

structure and couple matter to pure gravity, due to the simplicity of  the circumstances.

We will in fact consider the case of  a pure-gravity model, to which we will add a scalar

field, and finally a Robertson-Walker cosmological model.

All of  the examples presented in this Chapter (and in the rest of  the Thesis) will be of

the BRST type, with gauge group given by space-time diffeomorphisms. We will therefore

construct a BV theory by minimally-extending the classical theory (c.f. Theorem 2.3).
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3.1 Pure 1-d gravity.

The simplest example of  a model for gravity in one dimension is General Relativity with-

out matter on an interval. Since in one dimension the Riemann-Ricci tensor vanishes, the

classical action for pure gravity in the Einstein Hilbert formalism is given just by the cos-

mological term:

S cl
pure = Λ

∫
I

√
gdt (3.1)

where g ∈ Γ
(
S 2
+T
∗I

)
represents the nondegenerate metric (hence the + subscript) in one

dimension g(t)dt2 and I is some one dimensional interval I ≃ [0, 1]. In this case the system

is invariant w.r.t any diffeomorphism of  the interval, which means that the infinitesimal

symmetries are encoded by the space of  vector fields on M. The cohomological vector

field Q is then described by the following action on the fields:

Q g = ξġ + 2gξ̇

Q ξ = ξξ̇
(3.2)

with ξ ∈ Γ (T [1]M) an odd vector field of  ghost number (degree) 1, encoding the action

of  infinitesimal diffeomorphisms, and it is simple to check that Q2 = 0.

The BV extended action is then given by

S BV
pure = Λ

∫ √
g dt −

∫
(ξġ + 2gξ̇)g† dt +

∫
ξξ̇ξ† dt (3.3)

where we have introduced the degree -1 anti-field g† ∈ Γ
(
S 2T [−1]I

)
and the degree 0

anti-ghost field ξ† ∈ Ω1(I). Altogether the space of  fields reads

Fpure = Γ
(
S 2
+T
∗I

)
⊕ Γ (T [1]I) ⊕ Γ

(
S 2T [−1]I

)
⊕ Γ (T ∗I) (3.4)

and it is endowed with a canonical odd-symplectic form ΩBV .
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Theorem 3.1. The data given by (Fpure,Q, S BV
pure,ΩBV) yields an exact BV-BFV theory on the

boundary ∂I.

Proof. To prove the statement, we must first show that we can induce a pre-symplectic

exact two-form ω̃ on the space of  pre-boundary fields, and then show that the one-form

is indeed horizontal with respect to the vertical distribution induced by its kernel, for this

will ensure its basicity and the fact that the BV-BFV structure is exact.

To begin with, the variation of  the BV-extended action is

δS BV
pure =

∫
I

{ (
Λ

2
√

g
− ξ̇g† + ξġ†

)
δg +

(
ξġ + 2gξ̇

)
δg†

+
(
ġg† + 2gġ† + 2ξ̇ξ† + ξξ̇†

)
δξ + ξξ̇δξ†

}
dt

+
(
−ξg†δg − 2gg†δξ − ξξ†δξ

) ∣∣∣∣
∂I

= EL + π̃∗I α̃

(3.5)

where π̃I : Fpure −→ F̃pure is the surjective submersion that takes all the fields and jets to

their restriction to the boundary . To simplify the notation, we will use the same symbols

to denote the fields and their restrictions.

Taking into account the incoming boundary of I, we have that the boundary one-form

α̃ reads:

α̃ =

∫
∂I

ξg†δg + 2gg†δξ + ξξ†δξ (3.6)

from which we compute the boundary two-form to be

ω̃ = δα̃ =

∫
∂I

−g†δξδg − ξδg†δg + 2gδg†δξ + ξ†δξδξ − ξδξ†δξ (3.7)

Contracting the two form ω with the general expression for a vector field X

X = Xg
δ

δg
+ Xg†

δ

δg†
+ Xξ

δ

δξ
+ Xξ†

δ

δξ†
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it is straightforward to find the kernel to be such that

Xξ = −Xg
ξ

2g
; Xg† = Xg

(
ξξ†

2g2 −
g†

2g

)
− Xξ†

ξ

2g
(3.8)

and a basis is given by the choice of  the free parameters Xg, Xξ† :

Γ B
δ

δg
+

(
ξξ†

2g2 −
g†

2g

)
δ

δg†
− ξ

2g
δ

δξ

Ξ† B
δ

δξ†
− ξ

2g
δ

δg†

(3.9)

This proves that the two form ω̃ is presymplectic, for its kernel has constant dimension

everywhere on the boundary. Moreover, with a simple computation one can check that

ιΓα̃ = ιΞ†α̃ = 0

ensuring the horizontality of  the pre-boundary one-form.

Performing symplectic reduction of  the pre-symplectic manifold (F̃ , ω̃) one is left with

a (0-)symplectic manifold, the space of  boundary fields:(
F ∂ B F̃ /

Ker(ω̃), ω
∂ B ω̃

)
✓

Now that we have ensured that the data (Fpure,Q, S BV
pure,ΩBV) yields a BV-BFV theory,

the following result will tell us how the boundary structure looks like in local coordinates,

and will give us a procedure to adopt also in the more involved examples to come. The

surjective submersion from the space of  bulk fields to the space of  pre-boundary fields

π̃I : Fpure −→ F̃pure composed with the symplectic reduction map π∂ : F̃pure −→ F ∂
pure is a

surjective submersion that we will denote by πI = π
∂ ◦ π̃I .
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Theorem 3.2. The surjective submersion πI : Fpure −→ F ∂
pure is given by

πI :


g̃† =

√
g

2 g† +
ξ†ξ

4
√

g

ξ̃ =
√

gξ

(3.10)

Moreover, the boundary one-form α∂ ∈ Ω1(F ∂) reads:

α∂ =

∫
∂I

g̃†δξ̃ (3.11)

and is pulled back to α̃ in (3.6) along the projection πI , namely α̃ = π̃∗Iα
∂, whereas the boundary

cohomological vector field Q∂ is given by:

Q∂ B πI∗Q =
∫
∂I

Λ

4
δ

δ̃g†
. (3.12)

Finally, the boundary action reads

S ∂
pure =

Λ

4

∫
∂I

ξ̃ . (3.13)

Proof. We divide the proof  in two parts. First we will find the explicit expression in coor-

dinates of  the projection map and find the one-form on the boundary. Then we will turn

to the pushforward of  the cohomological vector field.

• We would like to quotient the kernel of  the form ω̃ in projecting on the space of

boundary fields so to have a symplectic form on the reduction. One way to do this

is to find an explicit global section by flowing along the vertical vector fields (3.9) in

the kernel. For example, we can set ξ† = 0 using the flow of Ξ†, namely:

θΞ† = θ
δ

δξ†
− θ ξ

2g
δ

δg†
⇒ (ξ†)′ = θ
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where (ξ†)′ means the derivative with respect to the flow parameter s. Then

ξ†(s) = ξ†0 + θs{ θ = −ξ†0

by imposing ξ†(1) = 0. It follows that

(g†)′ = +
ξ†0ξ0

2g0
=⇒ g†(s) = g†0 +

ξ†0ξ0

2g0
s

and therefore the temporary new variable reads:

ĝ† B g†(1) = g†0 +
ξ†0ξ0

2g0

fixing the value of  the variable g† after flowing along Ξ†.

Now we use the other vector in the kernel Γ to set g = 1, since it cannot be set to

zero due to nondegeneracy. Then

µΓ = µ
δ

δg
+ µ

(
ξξ†

2g2 −
g†

2g

)
δ

δg†
− µ ξ

2g
δ

δξ
⇒ (g)′ = µ

but this time we have

g(τ) = g0 + µτ −→ µ = 1 − g0 −→ g(τ) = g0 + (1 − g0)τ

The remaining differential equations are the one for ξ

(ξ)′ = − (1 − g0)
2(g0 + (1 − g0)τ)

ξ =: φ(τ)ξ

leading to*

ξ(τ) =
√

g0√
g0 + (1 − g0)τ

ξ0

*The field ξ is odd, so it does not make sense to divide by ξ and recognise the derivative of  a logarithm.
Rather, we check that the given ansatz for ξ(τ) is indeed a solution.
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from which we define

ξ B ξ(1) =
√

g0ξ0,

and the other one for g†

(g†)′ = ϕ(t)g†

which is similarly solved to yield

g† B
√

g0 ĝ† =
√

g0g†0 +
ξ†0ξ0

2
√

g0
. (3.14)

Notice that the vector field Γ has one more term in δ
δg† , but since in s = 1 along the

flow of Ξ† we have imposed ξ† = 0, the term vanishes.

The projection map π to the symplectic reduction reads then as a map from the

pre-boundary fields g, g†, ξ, ξ† to some new variables g̃†, ξ̃ such that

π :


g̃† =

√
g

2 g† +
ξ†ξ

4
√

g

ξ̃ =
√

gξ

(3.15)

where we set g̃† = 1
2g†. Pre-composing π with the pre-boundary map π̃I yields the

formula in (3.10).

It is easy to check that the ansatz

α∂ =

∫
∂I

g̃†δξ̃ (3.16)

is pulled back to α̃ in (3.6) along the projection, namely α̃ = π∗α∂.

• We consider now the pushforward of  the vector field Q along πI . On the space of
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fields we have the canonical two form

Ω =

∫
{δgδg† + δξδξ†}dt

and considering the BV equation in the absence of  boundary

iQΩ = δS BV ,

where Q is given by the generic expression

Q =
∫

dt
{

Qg
δ

δg
+ Qg†

δ

δg†
+ Qξ

δ

δξ
+ Qξ†

δ

δξ†

}
wherefrom

iQΩ =

∫
dt

{
Qgδg† + Qg†δg + Qξδξ

† + Qξ†δξ
}
,

one obtains

Q =
∫

dt
{ (
ξġ + 2gξ̇

) δ

δg
+

(
Λ

2
√

g
− ξ̇g† + ξġ†

)
δ

δg†

+ ξξ̇
δ

δξ
+

(
ġg† + 2gġ† + 2ξ̇ξ† + ξξ̇†

) δ

δξ†

}
.

Clearly the original symmetry relations are recovered and extended to the antifields:

Q g = ξġ + 2gξ̇

Q ξ = ξξ̇

Q g† =
Λ

2
√

g
− ξ̇g† + ξġ†

Q ξ† = ġg† + 2gġ† + 2ξ̇ξ† + ξξ̇†

whereby one means, for instance

Qg(t) =
∫

dt′Qg(t′)
δ

δg
g(t′)δ(t − t′) = Qg(t) = ξġ + 2gξ̇
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The general theory4 guarantees that Q is projectable on the boundary, factoring

through the pre-boundary, where the pre-boundary cohomological vector field Q̃ is

obtained by restricting fields and jets to ∂I. By adding to Q̃ some combination of

the vectors fields in the kernel of  the boundary form G,Ξ†, one can express Q̃ in a

manifestly projectable way. More precisely, recalling the expressions (3.9), one may

write:

Q̃′ = Q̃ − Q̃gΓ − Q̃ξ†Ξ
†

Now let the generators in the tangent space be transformed as

δ

δϕ
=

∑
ϕ̃

δϕ̃

δϕ

δ

δϕ̃

for ϕ ∈ {g, g†, ξ, ξ†}. Indeed, using (3.15) we have

δ

δg†
=
δ̃g†

δg†
δ

δ̃g†
=

√
g

2
δ

δ̃g†
;

δ

δξ
=
δξ̃

δξ

δ

δξ̃
=
√

g
δ

δξ̃

Then, simplifying the resulting expression for Q̃′ and using the explicit expression

for πI , one is left with the boundary vector field:

Q∂ =

∫
∂I

Λ

4
δ

δ̃g†

The (straightforward) details of  the calculation can be found in Computation A.1,

Appendix A.

Finally, to find the boundary action we use the formula40

S ∂ = ιQ∂ιE∂ω
∂
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where the vector field E∂ is the graded Euler vector field on the boundary

E∂ =

∫
∂I

ξ̃
δ

δξ̃
− g̃†

δ

δ̃g†

and it is simple to check that

S ∂
pure =

Λ

4

∫
∂I

ξ̃

✓

Now that we have the full boundary structure, we can analyse the properties of  the bulk

critical locus EL, i.e. the solutions to the Euler Lagrange equations, and their projection

to the space of  boundary fields. This one dimensional example is easy enough to be fully

computed. We have the following

Theorem 3.3. Denote by EL the critical locus of  the BV action (3.3) in the space of  bulk fields F and

by EL∂ B πI(EL) its projection to the boundary. Then, when Λ = 0 one has that

EL∂ ⊂ F ∂ × F ∂ (3.17)

is the Lagrangian submanifold given by the graph of  the identity. Otherwise EL∂ = ∅.

Proof. We need to solve first the Euler Lagrange equations coming from the variational

problem (3.5), that is to say

ξġ + 2gξ̇ = 0 (3.18a)

ξξ̇ = 0 (3.18b)

Λ

2
√

g
− ξ̇g† + ξġ† = 0 (3.18c)

ġg† + 2gġ† + 2ξ̇ξ† + ξξ̇ = 0. (3.18d)
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From (3.18a) one gathers that

ξ(t) =
√

g0

g(t)
ξ0

which means in particular that
√

g1ξ1 =
√

g0ξ0 and thus the projection variable ξ̃ =
√

gξ

is preserved:
d
dt
ξ̃ = 0 (3.19)

Equation (3.18b) follows from (3.18a) and after some rewritings one can express equa-

tion (3.18d) as
√

gġ† +
ġg†

2
√

g
+

1
2

d
dt

(
ξ†

g

)
ξ̃ = 0 (3.20)

Now, taking into consideration the projection in (3.10) and deriving the definition of g̃†

with respect to time, one obtains:

d
dt

g̃† =
√

gġ† +
ġg†

2
√

g
+

1
2

d
dt

(
ξ†

g

)
ξ̃ +

1
2

(
ξ†

g

)
d
dt
ξ̃

which vanishes, since (3.19) enforces the vanishing of  last term and the rest coincides with

the left hand side of (3.20). So
d
dt

g̃† = 0. (3.21)

We are left with equation (3.18c). Using (3.18a) to express ξ̇ = − ġ
2gξ and inverting

√
g

in (3.20) to find an expression for ġ†, it simplifies to

Λ

2
√

g
= 0 (3.22)

and it is only satisfied when Λ = 0, since
√

g cannot be zero. When Λ = 0 one has that

the coisotropic submanifold C defined by the constraint equation:

C :
δS ∂

δ̃g†
= Λ = 0

on which the Euler Lagrange equations take place, coincides with the whole space of
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boundary fields. Moreover the submanifold

EL∂ ⊂ F ∂ (3.23)

will yield the graph of  the identity, i.e. a Lagrangian submanifold, in F ∂ × F ∂.

✓

3.2 Coupling with matter

We will describe now a one dimensional theory where gravity is coupled to a matter field.

First we will be considering the case where the cosmological contribution is turned off

Λ = 0, and then we will see how the picture changes when we introduce a cosmological

correction.

3.2.1 Pure matter, Λ = 0

The classical action is given by the following expression

S cl
mat =

∫
I

1
2

yϕ̇2dt (3.24)

where y is the reciprocal y = g−1 of  the metric component g(t) and ϕ = ϕ(t) is a scalar

matter field.

Again, the cohomological vector field is a datum of  the problem since the symmetries

are given by any diffeomorphism (vector fields). The action on the variables is as follows:

Q y = ξẏ − ξ̇y
Q ϕ = ξϕ̇

Q ξ = ξξ̇

(3.25)

as it can be checked by computing Qy = Qg−1 = −g−2Qg, using Qg = ξġ + ξ̇g, and the
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BV-extended action reads

S BV
mat =

∫
I

{
1
2

yϕ̇2 − ξϕ̇ϕ† − (ξẏ − ξ̇y)y† + ξξ̇ξ†
}

dt (3.26)

The space of  fields in this case is analogous to what we had in Section 3.1, plus the addition

of  the matter fields Fmat B T ∗[−1]C∞(I) ∋ (ϕ, ϕ†). We have the following

Theorem 3.4. The data (Fpure⊕Fmat,Q, S BV
mat ,ΩBV) yields an exact BV-BFV theory on the bound-

ary ∂I.

Proof. By performing a variation of S BV
mat with respect to all variables and integrating by

parts we are left with

δS BV
mat =

∫
I

{ (
−ẏϕ̇ − yϕ̈ + ξ̇ϕ† + ξϕ̇†

)
δϕ + ξϕ̇δϕ†

+

(
1
2
ϕ̇2 + 2ξ̇y† + ξẏ†

)
δy + (ξẏ − ξ̇y)δy†

+
(
−ϕ̇ϕ† − 2ẏy† − yẏ† + 2ξ̇ξ† + ξξ̇†

)
δξ − ξ̇ξδξ†

}
dt

+
(
yϕ̇δϕ − ξϕ†δϕ − ξy†δy + yy†δξ − ξξ†δξ)∣∣∣∣∣∣

∂I

(3.27)

where the boundary term defines a one-form on the space of  pre-boundary fields F̃pure ⊕
F̃mat given once more by the fields’ and jets’ restrictions to the boundary:

α̃ =

∫
∂I

{
yJϕδϕ − ξϕ†δϕ − ξy†δy + yy†δξ − ξξ†δξ

}
. (3.28)

where we introduced a notation for the normal jet Jϕ B ϕ̇|∂I . Notice that when the cou-

pling is introduced, the relevant normal jet Jϕ appears in the explicit expression of  the

pre-boundary one and two forms and it is to be considered as an independent field on the
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boundary. We compute ω̃ = δα̃ as

ω̃ =

∫
∂I

{
yδJϕδϕ − Jϕδyδϕ + ξδϕ†δϕ − ϕ†δξδϕ − 2y†δξδy

+ξδy†δy + yδy†δξ − ξ†δξδξ + ξδξ†δξ
} (3.29)

whose kernel is given by the following equations

Xϕ = 0

Xξ = Xy
ξ

y

XJϕ = −Xy

(
Jϕ
y
− ξϕ

†

y2

)
− Xϕ†

ξ

y

Xy† = −2Xy

(
y†

y
− ξξ

†

y2

)
+ Xξ†

ξ

y
,

and it is easy to gather that a basis of  the kernel is given by

Y =
δ

δy
−

(
Jϕ
y
− ξϕ

†

y2

)
δ

δJϕ
+
ξ

y
δ

δξ
− 2

(
y†

y
− ξξ

†

y2

)
δ

δy†

Φ† =
δ

δϕ†
− ξ

y
δ

δJϕ

Ξ† =
δ

δξ†
+
ξ

y
δ

δy†

(3.30)

The dimension of  the kernel of ω̃ is constant everywhere on the boundary, and the pre-

boundary two form is therefore presymplectic.

It is straightforward to check that α̃ is horizontal, i.e.

ιYα̃ = ιΦ†α̃ = ιξ†α̃ = 0

and therefore the symplectic reduction(
F ∂ B (F̃pure ⊕ F̃mat)

/
Ker(ω̃), ω

∂ B ω̃
)

45



is an exact symplectic manifold.

✓

The boundary structure is made explicit with the following

Theorem 3.5. The surjective submersion πI : F −→ F ∂ is given by

πI :



x̃ = x

ξ̃ =
ξ

y
ỹ† = y†y2 − ξ†ξy

J̃ϕ = Jϕy + ϕ†ξ

(3.31)

Moreover, the boundary one-form α∂ reads

α∂ =

∫
∂I

J̃ϕ δϕ̃ + ỹ† δξ̃ (3.32)

whereas the bulk cohomological vector field Q projects to

Q∂ B πI∗Q =
∫
∂I

J̃ϕξ̃
δ

δϕ̃
+

1
2

J̃ϕ
2 δ

δ̃y†
(3.33)

Finally, the boundary action reads

S ∂
mat =

∫
∂I

1
2

J̃ϕ
2
ξ̃. (3.34)

Proof. • Using the basis of  the kernel of ω wisely it is possible to mimic the procedure

used in Theorem 3.2 to find a global section, in order to perform the symplectic

reduction to the space boundary fields. In particular we will use Φ† to set ϕ† = 0 at

a reference point s = 1 on the flow, Ξ† to set ξ† = 0 and Y to set y = 1.

θΦ† = θ
δ

δξ†
+ θ

ξ

y
δ

δy†
⇒ (ϕ†)′ = θ
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again this means that θ = −ϕ†0 and therefore we have

ϕ†0
ξ0

y0
= (Jϕ)′ =⇒ Jϕ(s) = Jϕ0 +

ϕ†0ξ0

y0
s.

We can set at the reference point s = 1

Ĵϕ B Jϕ(1) = Jϕ0 +
ϕ†0ξ0

y0

Analogously we proceed to set ξ† = 0.

ΛΞ† = Λ
δ

δξ†
+ Λ

ξ

y
δ

δy†
⇒ (ξ†)′ = Λ

from which Λ = −ξ†0 and thus, solving the remaining part we have

−
ξ†0ξ0

y0
= (y†)′ =⇒ y†(s) = y†0 −

ξ†0ξ0

y0
s

and we define

ŷ† ≡ y†(1) = y†0 −
ξ†0ξ0

y0

Now we are ready to act with Y and fix y(τ = 1) = 1.

µY = µ
δ

δy
− µ

Jϕ
y

δ

δJϕ
+ µ

ξ

y
δ

δξ
− 2µ

y†

y
δ

δy†

Notice that we have eliminated the terms in (3.30) containing ξ† and ϕ† because we

set them to zero at time s = 1. Now from µ = (y)′ we conclude that µ = 1− y0 and

that y(τ) = y0 + (1 − y0)τ, therefore we have

(Jϕ)′ = −
1 − y0

y0 + (1 − y0)τ
Jϕ =: f (τ)Jϕ
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that integrates to

Jϕ(τ) = Ĵϕ
y0 + (1 − y0)τ

y0

allowing us to define the first projection change of  coordinates

Jϕ B Jϕ(1) = Jϕ0y0 + ϕ
†
0ξ0

The third factor gives the equation

(ξ)′ =
1 − y0

y0 + (1 − y0)τ
ξ = − f (τ)ξ

whose solution reads

ξ(τ) = ξ0
y0 + (1 − y0)τ

y0

allowing us to define

ξ =
ξ0

y0
.

Eventually, we are left to deal with the last equation, namely

(y†)′ ≡ ξ(1) = 2 f (τ)y†

which by an analogous computation leads to

y† ≡ y†(1) = y†0y2
0 − ξ†0ξ0y0.

Summing up, the projection from the pre-boundary fields F̃ to the space of  bound-

ary fields is given by:

π :



x̃ = x

ξ̃ =
ξ

y
ỹ† = y†y2 − ξ†ξy
J̃ϕ = Jϕy + ϕ†ξ
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and pre-composing with π̃I one obtains the similar expression (3.31).

It is once more a matter of  straightforward computations to check that the boundary

forms α∂ and ω∂ are given respectively by:

α∂ =

∫
∂I

J̃ϕδϕ̃ + ỹ†δξ̃

and

ω∂ =

∫
∂I

δJ̃ϕδϕ̃ + δ̃y†δξ̃

• The standard two form Ω on the space of  bulk fields is simply given by

Ω =

∫ (
δϕδϕ† + δyδy† + δξδξ†

)
dt.

and the strategy to find Q is analogous to the one used in Theorem 3.5:

Qϕ = ξJϕ

Qy = ξẏ − ξ̇y
Qξ = ξξ̇

Qϕ† = ξ̇ϕ
† + ξϕ̇†

Qy† =
1
2

J2
ϕ + 2ξ̇y† + ξẏ†

Qξ† = 2ξ̇ξ† + ξξ̇† − Jϕϕ† − 2ẏy† − yẏ†

The pre-boundary cohomological vector field Q̃ is found by restricting all of  the

above, although in this case we must add the component along Jϕ = ϕ̇|∂I , the first

jet of ϕ, namely

Q̃Jϕ =
(
Qϕ̇

) ∣∣∣∣
∂I
=

(
d
dt

Qϕ
) ∣∣∣∣
∂I
= (ξ̇ϕ̇ + ξϕ̈)|∂I = ξ̇Jϕ + ξ J̇ϕ (3.35)

Again, by adding some combinations of  the vertical vector fields Y,Ξ†,Φ† we obtain
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an expression of Q̃ which is projectable. Namely

Q̃ =Q̃ϕ

δ

δϕ
+ Q̃y

δ

δy
+ Q̃ξ

δ

δξ
+ Q̃ϕ†

δ

δϕ†
+ Q̃y†

δ

δy†
+ Q̃ξ†

δ

δξ†
+

+Q̃Jϕ
δ

δJϕ
− Q̃yY − Q̃ϕ†Φ

† − Q̃ξ†Ξ
†

After some computations, analogous to those of  Theorem 3.5 one obtains the pro-

jected Q∂ cohomological vector field on the boundary:

Q∂ =

∫
∂I

J̃ϕξ̃
δ

δϕ̃
+

1
2

J̃ϕ
2 δ

δ̃y†

The boundary action S ∂ is found using the boundary Euler vector

E∂ =

∫
∂I

ξ̃
δ

δξ̃
− ỹ†

δ

δ̃y†

and it reads

S ∂
mat = ιQ∂ιE∂ω∂ =

∫
∂I

1
2

J̃ϕ
2
ξ̃

✓

Remark 3.6. Observe that from the expression of  the boundary action, one can compute the coisotropic

submanifold containing the solutions of  the Euler-Lagrange equations to be given by

δS ∂

δξ̃
=

1
2

J̃ϕ
2
= 0 (3.36)

♢
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3.2.2 Cosmological correction.

Now we turn to a coupling of  matter with gravity together with a cosmological contribution.

To do this it turns out it is sufficient to combine the previous examples together in a suitable

way.

Theorem 3.7. The exact BV-BFV theory induced by the data

(Fpure ⊕ Fmat,Q, S BV
mat ,ΩBV)

is stable under the replacement S BV
mat 7→ S BV

mat + S cl
pure. The respective new cohomological vector field on the

boundary reads

Q∂
Λ = J̃ϕξ̃

δ

δϕ̃
+

(
1
2

J̃ϕ
2 − Λ

)
δ

δ̃y†
(3.37)

and the boundary action is

S ∂
Λ =

(
Λ − 1

2
J̃ϕ

2
)
ξ̃ (3.38)

The projected critical locus πI(EL) is Lagrangian inF ∂×F ∂ forΛ , 0, while the coisotropic submanifold

CΛ is defined by

CΛ :
δS ∂
Λ

δξ̃
= 0 =⇒ 1

2
J̃ϕ

2
= Λ , 0. (3.39)

Proof. The replacement S BV
mat 7→ S BV

mat + S cl
pure induces

δS BV
mat 7→ δS BV

mat[y, y
†] − Λ

∫
1
y2 δydt (3.40)

where we changed the fields in the pure action to be y, y† instead of g, g† and the coefficient

along y† of  the cohomological vector field gets modified as

Qy† 7−→ Qy† − Λy−2.

Therefore, after straightforward computations, the new boundary and pre-boundary vector
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field read

Q̃Λ = Q̃old −
Λ

2
δ

δy†
=⇒ Q∂

Λ = J̃ϕξ̃
δ

δϕ̃
+

(
1
2

J̃ϕ
2 − Λ

)
δ

δ̃y†
(3.41)

from which the action on the boundary is found to be

S ∂
Λ =

(
Λ − 1

2
J̃ϕ

2
)
ξ̃ (3.42)

Now, taking into account the variation (3.27) with the correction in (3.40) we obtain the

following set of  Euler Lagrange equations:

ξϕ̇ = 0 (3.43a)

ξẏ − ξ̇y = 0 (3.43b)

ξξ̇ = 0 (3.43c)

ξ̇ϕ† − ξϕ̇† − ẏϕ̇ − yϕ̈ = 0 (3.43d)
1
2
ϕ̇2 + 2ξ̇y† + ξẏ† − Λ

y2 = 0 (3.43e)

2ξ̇ξ† + ξξ̇† − ϕ̇ϕ† − 2ẏy† − yẏ† = 0 (3.43f)

From (3.43b) one immediately finds ξ̇ = ξẏy−1 and using it together with (3.43f) in (3.43e)

one finds

ϕ̇y(ϕ̇y − 2ξϕ†) = (ϕ̇y − 2ξϕ†)2 = 2Λ (3.44)

If Λ < 0 it is clear that the solutions cannot be solved, and the critical locus collapses to

the empty set. Assuming Λ ≥ 0, one can use the projection (3.31) to obtain from (3.44)

J̃ϕ = ±
√

2Λ (3.45)

or, multiplying (3.44) by ξ and using (3.43a)

0 ≡ ϕ̇ξy − ϕ†ξ2 = ±
√

2Λξ
Λ,0
=⇒ ξ = 0 (3.46)

52



Moreover, it is easy to check that in this case

d
dt
ξ̃ ≡ d

dt

(
ξ

y

)
≡ 0

and therefore

ξ̃ = constant = 0 (3.47)

which will then be enforced in what follows. With a simple computation one can show

now that (3.43d) is satisfied by simply deriving (3.44).

Using (3.43f) we compute

d
dt

ỹ† =
d
dt

(
y†y2

)
= −ϕ̇yx† = ∓

√
2Λx† (3.48)

So altogether we conclude that when Λ > 0 the submanifold defined by the critical locus

of  the projected Euler Lagrange equations is given by

πI(EL) =
{
(J̃ϕ, ξ̃, ϕ̃, ỹ†)

∣∣∣ J̃ϕ = ±
√

2Λ; ξ̃ = 0
}

(3.49)

We have already seen that the constrained coisotropic submanifold CΛ on which motion

takes place is described by the equation (3.39) and it is easy to gather that the submanifold

πI(EL) is a Lagrangian submanifold in F ∂ × F ∂.

Now let us analyse what happens when Λ = 0. This is compatible with (3.44), but we

cannot conclude (3.46) anymore. Using ϕ̇y = −ϕ†ξ in (3.44) we can derive

−(ϕ̇y)2 = 0 =⇒ ϕ̇ = 0 =⇒ ϕ = constant

Moreover, with a straightforward computation one checks that (c.f. Eq. (3.48))

d
dt

ỹ† =
d
dt

(y†y2 − ξ†ξy) = 0

53



Looking at C0 ×C0 instead, the relation is then given by

πI(EL) = {Jϕ0 = Jϕ1 = 0; ξ̃0 = ξ̃1; ϕ̃0 = ϕ̃1; ỹ†0 = ỹ†1} ⊆ C0 ×C0 (3.50)

where the indices (0, 1) denote the two connected components of  the boundary represent-

ing the two copies of C0, and L is then not Lagrangian. ✓

Remark 3.8. Recall that the constrained coisotropic submanifold on which motion takes place is described

by the equation
δS ∂
Λ

δξ̃
= 0 =⇒ 1

2
J̃ϕ

2
= Λ (3.51)

For Λ < 0 the coisotropic submanifold collapses to the empty set, and most interesting is the case Λ ≥ 0.

In this case the coisotropic submanifold is given by the set

C =
{
(ϕ̃, J̃ϕ, ỹ†, ξ̃)

∣∣∣ J̃ϕ = ±
√
Λ, ξ̃ = 0

}
(3.52)

and the foliation is given by the two vector fields: δ

δϕ̃
, δ
δ̃y† with the reduction being a single point C = {pt}.[

Q∂
Λ,

δ

δξ̃

]
= J̃ϕ

δ

δϕ̃
;

Q∂
Λ,

δ

δJ̃ϕ

 = −˜̇ϕ δ

δ̃y†
− ξ̃ δ

δJ̃ϕ
(3.53)

♢

3.3 Minisuperspace model. Robertson Walker metric and mat-

ter

In this section we would like to analyse the Lagrangian theory of  gravity coming from the

dynamics of  a metric of  the Robertson-Walker form

ds2 = −N2(t)dt2 + a2(t)dΩ2
3 (3.54)
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where N(t) is usually referred to as the lapse function and a(t) as the scale factor, and compare

the results with27. By dΩ2
3 we denote the spherically symmetric 3 dimensional volume

element. It is possible to couple a scalar matter field χ to gravity so that the classical action

becomes

S cl
RW =

1
2

∫
I

dt
{
− a

N
ȧ2 +

a
N
χ̇2 + Na − N

a
χ2 − ΛNa3

}
(3.55)

with the obvious prescription that a,N be non vanishing.

Comparing with the already discussed cases, we may gather that the geometric nature

of N(t) is that of  a 1-dimensional metric, in fact N2dt2 = g(t)dt2 when N =
√

g. We

will interpret the pair (a, χ) as a map from the interval to R2, endowed with the pseudo

euclidean metric ηa = diag(−a, a). Therefore the kinetic and quadratic potential terms for

a and χ in (3.55) are interpreted as∫
I

ηa(ȧ, χ̇)
dt
√

g
−

∫
I

η−1
a (a, χ)

√
gdt

and we will see at the end that this interpretation carries over to the boundary.

The symmetries of  the action are given by

Q N = ξṄ + Nξ̇

Q a = ξȧ

Qχ = ξχ̇

Q ξ = ξξ̇

(3.56)

since N transforms like a metric and a, χ ∈ C∞(I) transform like functions. The BV-

extended action is then again given by the minimal BV extension

S BV
RW = S cl

RW +

∫
dt

{
−

(
ξṄ + Nξ̇

)
N† − ξȧa† − ξχ̇χ† + ξξ̇ξ†

}
(3.57)
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The last piece of  data we need is the space of  fields, which in this case is given by

FRW B T ∗[−1]
(
Γ(S 2

+T I)︸   ︷︷   ︸
N

⊕Maps(I,R2)︸        ︷︷        ︸
(a,χ)

⊕Γ(T [1]I)︸    ︷︷    ︸
ξ

)
(3.58)

endowed with the canonical (−1)-symplectic structure ΩBV . We have the following

Theorem 3.9. The data (FRW , S BV
RW ,Q,ΩBV) defines an exact BV-BFV theory.

Proof. The variation of  the action (we drop the specifications BV,RW) reads

δS =
∫
I

dt
{ (

N
2
+
χ̇2

2N
+

ȧ2

2n
− a

N2 ȧṄ +
a
N

ä − 3
2
ΛNa2 +

Nχ2

2a2 + ξ̇a
† + ξȧ†

)
δa

+

(
a
2
+

a
2N2 ȧ2 − Λ

2
a3 − a

2N2 ξ̇
2 − ξ2

2a
+ ξṄ†

)
δN

+

(
a

N2 χ̇Ṅ − ȧṄ
N
− a

N
χ̈ − Nχ

a
+ ξ̇χ† + ξχ̇†

)
δχ

+
(
2ξ̇ξ + ξξ̇† + NṄ† − ȧa† − χ̇χ†

)
δξ

+
(
ξṄ + ξ̇N

)
δN† + (ξȧ) δa† + (ξχ̇) δχ† +

(
ξξ̇

)
δξ†

+
d
dt

(aχ̇
N
δχ − aȧ

N
δa − ξξ†δξ − ξN†δN − NN†δξ − ξa†δa − ξχ†δχ

) }
(3.59)

The last term above gives rise to the pre-boundary one- and two-forms that, denoting

by Ja B ȧ|∂I , and Jχ B χ̇|∂I the normal jets on the boundary, read

α̃ =

∫
∂I

{
aJχ
N
δχ − aJa

N
δa − ξξ†δξ − ξN†δN − NN†δξ − ξa†δa − ξχ†δχ

}
(3.60)

ω̃ =

∫
∂I

{
− a

N
δJaδa +

aJa

N2 δNδa − a†δξδa + ξδa†δa +
Jχ
N
δaδχ +

a
N
δJχδχ

−
aJχ
N2 δNδχ − χ†δξδχ + ξδχ†δχ − ξ†δξδξ + ξδN†δN − NδN†δξ + ξδξ†δξ

} (3.61)
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A vector field in the kernel of ω̃ turns out to be a combination of  the basis

N =
δ

δN
+

(
Ja

N
+
ξa†

a

)
δ

δJa
+

(
Jχ
N
− ξχ

†

a

)
δ

δJχ
+ 2

ξξ†

N2

δ

δN†
− ξ

N
δ

δξ

A† =
δ

δa†
+

Nξ
a

δ

δJa

X† =
δ

δχ†
− Nξ

a
δ

δJχ

Ξ† =
δ

δξ†
− ξ

N
δ

δN†

(3.62)

showing that ω̃ is pre-symplectic. It is again by means of  a simple computation that one

checks

ιEiα̃ = 0

with Ei ∈ {N,A,X,Ξ}, showing that α̃ is horizontal, and therefore ω∂ = δα∂ is the exact

symplectic form one obtains after the symplectic reduction of  the space of  fields:

π : F̃RW −→ F ∂
RW (3.63)

for α̃ = π∗α∂. The projection to the boundary fields is then given by composing π with the

surjection to the space of  pre-boundary fields π̃ : FRW −→ F̃RW , namely πI = π ◦ π̃. ✓

The procedure to obtain the explicit boundary structure for this case is totally analogous

to the one used in Theorems 3.2 and 3.5. As a matter of  fact we obtain
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Theorem 3.10. The surjective submersion πI : FRW −→ F ∂
RW is given by

πI :



ã = a

χ̃ = χ

ξ̃ = Nξ

J̃a =
Ja

N
− a†

a
ξ

J̃χ =
Jχ
N
+
χ†

a
ξ

Ñ† = N† +
ξ†

N
ξ

(3.64)

Moreover, the boundary one-form α∂ ∈ Ω1(F ∂
RW) reads:

α∂ =

∫
∂I

−ãJ̃aδ̃a + ãJ̃χδχ̃ − Ñ†δξ̃ (3.65)

Whereas the boundary cohomological vector field Q∂ is given by:

Q∂ =

∫
∂I

{
ξ̃ J̃a

δ

δ̃a
+ ξ̃ J̃χ

δ

δχ̃
−

 J̃a J̃χ
ã
+
χ̃

ã

 ξ̃ δ

δJ̃χ

− 1
2

1
ã
+

 J̃χ
2

ã
+

J̃a
2

ã
− 3̃a +

χ̃2

ã3

 ξ̃
 δ

δJ̃a

+
1
2

(̃
aJ̃a

2 − ãJ̃χ
2
+ ã − Λã3 − χ̃

2

ã

)
δ

δÑ†

}
(3.66)

Finally, the boundary action reads

S ∂ =

∫
∂I

−1
2

(̃
aJ̃a

2 − ãJ̃χ
2
+ ã − Λã3 − χ̃

2

ã

)
ξ̃. (3.67)

Proof. • As we already mentioned, the procedure to find the explicit section goes

through by solving the straightforward differential equations that arise from the pro-

cedure already discussed in Theorems 3.2 and 3.5.
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• As for the projection of Q to the boundary, from the variation of  the action (3.59)

we find as usual that

Qa† =
N
2
+
χ̇2

2N
+

ȧ2

2n
− a

N2 ȧṄ +
a
N

ä − 3
2
ΛNa2 +

Nχ2

2a2 + ξ̇a
† + ξȧ†

Qχ† =
a

N2 χ̇Ṅ − ȧṄ
N
− a

N
χ̈ − Nχ

a
+ ξ̇χ† + ξχ̇†

QN† =
a
2
+

a
2N2 ȧ2 − Λ

2
a3 − a

2N2 ξ̇
2 − ξ2

2a
+ ξṄ†

Qξ† = 2ξ̇ξ + ξξ̇† + NṄ† − ȧa† − χ̇χ†

Qa = ξȧ

Qχ = ξχ̇

QN = ξṄ + ξ̇N

Qξ = ξξ̇

(3.68)

then, from (3.56) we obtain the transformations for the relevant jets (Ja = ȧ|∂I , Jχ =

χ̇|∂I) to be

Qȧ ≡ Q(ȧ) = ξ̇ȧ + ξä ; Qχ̇ ≡ Q(χ̇) = ξ̇χ̇ + ξχ̈ (3.69)

so that Q in the bulk is completed as

Q =
∑
i∈I

Qi
δ

δi
(3.70)

where the indices run over I = {a, ȧ, a†, χ, χ̇, χ†,N,N†, ξ, ξ†}. Again it is possible

to combine Q with some multiples of  the vectors in the kernel of ω, in particular we

compute

Q̃ = Q − QNN − Qa†A
† − Qχ†X

† − Qξ†Ξ
† (3.71)

obtaining

Q̃ = π∗Q∂ (3.72)

where Q∂ is given by the expression in Eq. (3.66) and the boundary action is found,
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as usual, via

S ∂ = ιQ∂ιE∂ω∂

✓

Remark 3.11. The coisotropic submanifold of  the space of  boundary fields containing the projection of

the Euler Lagrange equations’ set of  solutions on the boundary is given by the derivative along ξ̃ of  the

boundary action:
δS ∂

δξ̃
= ã2 J̃2

a − ã2 J̃2
χ + ã2 − Λã4 − χ̃2 = 0 (3.73)

and it yields a projected version of  the classical Wheeler deWitt equation.

♢

Remark 3.12. Notice that we can still interpret the boundary action as the pairing in R2 given by the

pseudo-euclidean metric ηã = diag(−ã, ã) for the fields’ pairs (̃a, χ̃) and (J̃a, J̃χ). As a matter of  fact:

S ∂ =
1
2

∫
∂I

(
ηã(J̃a, J̃χ) − η−1

ã (̃a, χ̃) + Λã3
)
ξ̃ (3.74)

♢
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4
Einstein Hilbert action in d + 1 dimensions

General relativity in the formulation of  Einstein and Hilbert1,2 is a theory of  the gravita-

tional interaction where the dynamical field is a pseudo-Riemannian metric g of  some (d+1)

dimensional manifold M. The principle of  general covariance requires that all the relevant

expressions be invariant under the action of  space-time diffeomorphisms and this makes

General Relativity a gauge theory in the extended sense, that is, even if  the basic field is not a

principal connection. We will see in Chapter 5 and Chapter 6 how alternative descriptions

of  GR exist, casting it in a more standard way.

In this Chapter we will start from the said classical variational principle and symmetry

distribution, and we will embed this data in the general framework we outlined in Section 2.2

as a BV theory, in order to understand whether such a theory satisfies the BV-BFV/CMR

axioms (Definition 2.5), when the space-time manifold is allowed to have a boundary.

In Section 4.3.1 we will also analyse the classical canonical structure (i.e. the Hamilto-

nian formulation of  GR24) and we will show how the bulk-to-boundary machinery yields
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a powerful and straightforward algorithm to perform such a canonical analysis, even when

the BV extension is not performed. This will give us a clean grasp and understanding of

the constraint algebra26,35, providing a non trivial example of  a coisotropic submanifold,

which does not manifestly come from a Lie algebra action, in agreement with some recent

observations25.

Throughout the Chapter we will always assume that M has a non-empty boundary ∂M.

In Section 4.2 we will analyse a simplified version, where we require that the metric be

block diagonal in a neighbourhood of  the boundary, which is tantamount to choosing a

particular coordinate system. This is done in Section 4.2 and it will be rigorously justified

from the results in Section 4.3, where this assumption will be relaxed.

The procedure that we will use to compute the boundary structure in Section 4.3 will

be more efficient and more general. The assumption we will consider instead, namely that

the boundary is entirely space/time-like and that it has a globally hyperbolic neighborhood,

will allow us to adopt the ADM23 coordinates (after Arnowitt, Deser and Misner), which

will make the reduction to the boundary fields particularly straightforward.

The way we enforce this is by working only with those pseudo-Riemannian metrics on

the manifold M which have space/time-like signature when restricted to the boundary.

This space will be denoted by PR∂M
(d,q) to emphasise that the pseudo-Riemannian structures

have to have some compatibility with the boundary in order to be acceptable.

Observe that in the literature23,24 it is customary to require that the spacetime manifold

M be globally hyperbolic or, equivalently, that it has the product structure Σ × R for Σ an

embedded space/time-like submanifold of M. This is indeed a much stronger requirement,

and in fact we only ask that it be true in a neighborhood of  the boundary.

Although it is true that this assumption will keep the results from being completely gen-

eral, and that the extension to more general boundaries will require an adapted approach,

this result represents a non trivial generalization of  existing results on the canonical struc-

ture of  GR. This is especially valuable in view of  perturbative quantisation, since as many

different space-time geometries as possible must be allowed for, in the spirit of  integration

over non extremal field configurations.

We will see how the results of  Sections 4.2 and 4.3 agree when the appropriate consis-

tency conditions are applied (cf. Subsection 4.4.1). In fact, one has to require that the off
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diagonal components of  the metric vanish in a thin neighborhood of  the boundary, rather

than only on the boundary, when the block diagonal shape of  the metric is enforced. This

in particular implies that the normal jets of  the metric vanish in the off  diagonal direction,

when restricted to the boundary, i.e. ∂ngna

∣∣∣
∂M
= 0. Notice, that even if  the ADM proce-

dure is significantly more general than the one presented in Section 4.2, the fact that we

were able to solve the simplified version first was a non trivial step in the understanding of

the general case.

4.1 Einstein Hilbert Formalism

The theory is formulated as a variational problem for the (second-order) Einstein-Hilbert

action1,2 (modulo multiplicative constants):

S cl
EH =

∫
M

(R[g] − 2Λ)
√−g dd+1x (4.1)

where R[g] is the Ricci scalar of  the pseudo-Riemannian metric g ∈ PR(d,1)(M) with sig-

nature (d, 1) in the bulk*, g B −det(g) and Λ is the cosmological constant. The dynamical

equations for g are derived from the action as Euler Lagrange equations for the variational

problem.

The symmetries of  the action are given by the diffeomorphism of M and, generalizing

to (d + 1) dimensions what has been done for the simpler 1-dimensional models, they can

be implemented as follows:

Qg = Lξg

Qξ =
1
2

[ξ, ξ]
(4.2)

The theory is an example of  what we called a BRST-like theory, since the symmetry distri-

bution is involutive everywhere on the space of  fields. Then we can find the BV action by

*We will require it to have space/time-like signature when restricted to the boundary, later on.
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minimally extending the classical action; it reads

S BV
EH =

∫
M

(R[g] − 2Λ)
√

g dd+1x −
∫
M

(
Lξg

)
g† +

1
2

∫
M

ι[ξ,ξ]ξ
† (4.3)

We introduced three new fields ξ, g† and ξ†, respectively an odd vector field ξ ∈ Γ (T [1]M)

a section g† ∈ Γ[−1]
(
S 2T M

)
⊗ Ωtop(M), i.e. a symmetric tensor of  type (2, 0) of  ghost

number −1 with values in top forms, and a one form with values in top forms ξ† ∈
Ω1(M) ⊗ Ωtop(M). For the computations we will factor ξ† = χ ⊗ v into its one form

part χ and top form value v, which we may assume fixed. The space of  fields we will

consider is then given by

F full
EH = T ∗[−1]

[PR(d,1)(M) ⊕ Γ (T [1]M)
]
. (4.4)

As we already announced, we will first analyse a simplified version, where a certain partic-

ular shape of  the metric on the boundary is assumed, and then we will proceed with a more

general approach. This will require to consider some appropriate submanifold of F full
EH as

space of  fields for the BV datum. The two strategies will yield the same results, when the

appropriate compatibility is required. The hasty reader can skip directly to Section 4.3 for

the general results.

4.2 Adapted coordinates

Since the action contains the derivatives of  the fields, its variation is composed by a bulk

term and a boundary term, the former will give us the Euler-Lagrange equations for the

physical fields and the ghosts, while the latter will induce a theory on the boundary. With

a straightforward computation from (4.3) one obtains

δS =
∫
∂M

[√
g
(
gµνδΓn

νµ − gσnδΓρρσ
)
−

(
2gρσδξ(ρg†nσ) − ξnδgρσg†ρσ

)]
dd+1x

−
∫
∂M

ξnδξρχρ v∂ + EL
(4.5)
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By v∂ we denote the fixed top form on the boundary coming from v. The normal coordi-

nate is denoted by the special superscript n. The term EL denotes what will generate the

Euler Lagrange equations, and it is interpreted as a one form on the space of  fields. There

is a surjective submersion on the space of  pre-boundary fields

π̃ : FM −→ F̃∂M (4.6)

where the target is defined as in Chapter 3 by the restrictions of  the fields on the boundary

plus the normal jets of  fields computed at the boundary. As we shall see, the relevant jets

of  fields appearing in the pre-boundary one form are just the first jets Jµν B ∂ngµν|∂M .

The Euler Lagrange term reads:

EL =
∫
M

{
dd+1x

[
−√g

(
Rµν −

R
2

gµν
)
+ ∂ρξ

ρg†µν + ξρ∂ρg†µν − 2∂ρξ(µg†ν)ρ
]
δgµν+

+
{
2∂(ρgν)µg†ρν + 2gµ(ν∂ρ)g†ρν + ∂ρξρχµ + ξρ∂ρχµ − ∂µgρσg†ρσ + ∂µξρχρ

}
δξµ+

+
{
ξρ∂ρgµν + 2∂(µξ

ρgν)ρ
}
δg†µν

}
+

{
ξρ∂ρξ

µ
}
δχµv

(4.7)

with brackets around the indices standing for symmetrisation of  indices, namely A(µBν) =
1
2 (AµBν + AνBµ).

Let us simplify the computations by choosing an adapted coordinate system in which

the normal vector is perpendicular to the boundary hypersurface. This, together with the

requirement that gnn be different from zero, requires that the metric gµν takes the following

form:

gµν =

 gnn 0
0 gab

 (4.8)

with gab a non degenerate d-dimensional Riemannian metric. This means that gna = 0∀a =

1 . . . d. For simplicity we assume the transversal direction to be timelike†. The space of

pseudo-Riemannian metrics on M will be then restricted to those metrics for which the

block-diagonal decomposition (4.8) is allowed. We will denote the resulting space of  fields

†The computations in Section 4.3 will anyway cover the other possible cases.
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by F B
EH ⊂ F full

EH . With this choice of  space of  fields we have that the pre-boundary one

form simplifies to:

α̃B
EH = −

∫
∂M

dd x
(
ξnδgnng†nn + ξnδgabg†ab − 2δξngnng†nn − 2δξ(agabg†b)n

)
+

∫
∂M

dd x
√

g
2

(
gabδ (gnnJab) + gnnδ

(
gabJab

))
− ξnδξµχµv∂

(4.9)

where Jab = ∂ngab|∂M is now an independent field on the space of  pre-boundary fields

F̃ B
EH .

Remark 4.1. We will take care of  the cohomological vector field later, but notice that the condition

gna = 0 on the boundary implies

(Qg)na

∣∣∣
∂M
= 0 =⇒ ∂nξ

b = −gnngba∂aξ
n on ∂M (4.10)

♢

We have that

Theorem 4.2. For all d , 1, the data (F B
EH,Q, S

BV
EH + F,ΩBV) where

F = − 2
d − 1

∫
M

Lξ(g†g) (4.11)

is a boundary term, induces an exact BV-BFV theory on the boundary ∂M, provided that the latter is

everywhere either space-like or time-like.

Proof. From the expression (4.9) for α̃B
EH we can obtain the two form ω̃ = δα̃B

EH and its

kernel. After some straightforward computations, denoting a general vector field by

X =
∑
ϕ

(Xϕ)
δ

δϕ
; where ϕ ∈ {gnn, gab, Jnn, Jab, g†ab, g†nn, g†na, ξn, ξa, χn, χa}
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with a = 1 . . . d, one gets to the result:

(Xg)ab = 0 ∀a, b (4.12a)

(Xξ)n =
1
2

gnn(Xg)nnξn (4.12b)

(Xξ)a = 0 (4.12c)

(Xg†)nn =
1
2

gnn(Xg)nng†nn +
1
2

(Xg)nnχnξ
n − 1

2
gnn(Xχ)nξ

n (4.12d)

(Xg†)na = −1
4

gnn(Xg)nngabχb −
1
2

gab(Xχ)bξ
n (4.12e)

(XJ)ab =
g2

nn√
g

(Xg)nng†cd

(
gcagbd −

1
d − 1

gcdgab

)
ξn+

+
2gnn√

g
(Xg†)cd

(
gcagbd −

1
d − 1

gcdgab

)
ξn − 1

2
gnn(Xg)nnJab (4.12f)

The generators are easily found to be:

Xn =
δ

δχn
− 1

2
gnnξn δ

δg†nn (4.13a)

Xb =
δ

δχb
− 1

2
gbaξn δ

δg†na (4.13b)

G†cd =
δ

δg†cd +
2gnn√

g

(
gcagbd −

1
d − 1

gcdgab

)
ξn δ

δJab
(4.13c)

Gnn =
δ

δgnn −
[
1
2

gnnJab −
g2

nn√
g

(
g†cdgcagbd −

1
d − 1

g†cdgcdgab

)
ξn

]
δ

δJab
+

+
1
2

(
gnng†nn − χnξ

n
) δ

δg†nn −
1
4

gnngabχbξ
n δ

δg†na +
1
2

gnnξ
n δ

δξn (4.13d)

and it is easy to gather that ω̃ is pre-symplectic.

It is now possible to check if  the one-form α̃ is horizontal. As a matter of  fact we have

that

ιGnnα̃B
EH =

gnn

d − 1
g†cdgcdξ

n = −ιGnnδF (4.14)

together with

ιG†cd α̃B
EH =

2
d − 1

gcdξ
n = −ιG†cdδF
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whereas

ιXρα̃B
EH = ιXρδF = 0

Therefore, the corrected one-form α B α̃EH + δF is horizontal, and clearly ω̃ = δα̃B
EH =

δα.

✓

Remark 4.3. Notice that the bulk-extended boundary term F has to be added to the bulk action S BV
EH

in order to correct the horizontality of  the pre-boundary one-form. Observe that the failure to horizontality

is a function of  degree 0, but it depends explicitly on the odd fields. We shall see later on how this is linked

to the Gibbons-Hawking-York boundary term.

♢

The previous result ensures that the symplectic reduction in the space of  pre-boundary

fields F̃ B
EH can be performed. The explicit coordinate expression for the boundary struc-

tures can be computed in this case as well following a procedure similar to the one used

for the examples in Chapter 3.

Theorem 4.4. The surjective submersion πM : F B
EH −→ F ∂

EH is given by the local expression:

πM :



J̃ab = Jab
√
|gnn| − 2√

g∂

(
g†cdgcagbd − 1

d−1g†cdgcdgab

)
ξn

g̃†nn =
(
g†nn + 1

2gnnχnξ
n
) √
|gnn|

g̃†na = g†na + 1
2gabχbξ

n

ξ̃n = ξn
√
|gnn|

ξ̃a = ξa

g̃ab = gab

(4.15)

Moreover, the boundary one-form α∂ reads

α∂ = −
∫
∂M


√

g̃∂

2

(
δ̃gab J̃ab + 2g̃abδJ̃ab

)
+ 2δξ̃ng̃†nn − 2g̃abδξ̃

ag̃†bn

 (4.16)

and the two-form ω∂ = δα∂.
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The cohomological vector field Q projects to a vector field Q∂ that is also cohomological if  and only if  one

assumes that the normal jets ∂ngna vanish on the boundary: Jna = 0. Such a vector field is Hamiltonian

with respect to the boundary action

S ∂ =

∫
∂M

{  √
g̃∂

4
g̃ab

(
J̃ab J̃cd − J̃cb J̃ad

)
g̃cd −

√
g̃∂R̃∂ − 2∂a

(̃
ξag̃†nn

)
− 2g̃†na∂aξ̃

n

 ξ̃n+

−
√

g̃∂∂b

(̃
gad J̃ad

)
ξ̃b + ∂c

(√
g̃∂g̃cd J̃ad

)
ξ̃a +

√
g̃∂

2
∂bg̃ad J̃adξ̃

b − 2∂c

(̃
ξcg̃†nbg̃ab

)
ξ̃a

}
v∂

(4.17)

Proof. First, let us find the explicit expression for the map πM . It is possible to adapt the

procedure used in Chapter 3 to eliminate some variables and find an explicit section of

the symplectic reduction π : F̃ B
EH −→ F ∂

EH . In particular we can flow along Xρ to set

χρ|s=1 = 0, and this will give us the temporary values of g†nρ:

ĝ†nn B g†0
nn +

1
2

gnn
0 χ

0
nξ

n
0;

ĝ†na B g†0
na +

1
2

gab
0 χ

0
bξ

n
0

The same can be done using G†ab to set g†ab|s=1 = 0 and this implies

Ĵab B J0
ab −

2
√

g
g0

nn

(
g†0

cdg0
cag0

bd −
1

d − 1
g†0

cdg0
cdg0

ab

)
ξn

0

Finally we can use Gnn to set gnn|s=1 = 1. After some straightforward calculations one gets
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that the symplectic reduction map π : F̃ B
EH −→ F ∂

EH is described in local coordinates by

π :



J̃ab = Jab
√
|gnn| − 2√

g∂

(
g†cdgcagbd − 1

d−1g†cdgcdgab

)
ξn

g̃†nn =
(
g†nn + 1

2gnnχnξ
n
) √
|gnn|

g̃†na = g†na + 1
2gabχbξ

n

ξ̃n = ξn
√
|gnn|

ξ̃a = ξa

g̃ab = gab

showing the first claim after composing with π̃M . To find the boundary one-form, consider

the ansatz

α∂ = −
∫
∂M

dd x


√

g∂

2

(
δ̃gab J̃ab + 2g̃abδJ̃ab

)
+ 2δξ̃ng̃†nn − 2g̃abδξ̃

ag̃†bn

 (4.18)

and, recalling the bulk-extended boundary term

F = − 2
d − 1

∫
M

Lξ(g†g)

we compute

π∗α∂ = α̃B
EH + δF =: ᾱ

Clearly: δα̃B
EH = δᾱ = π

∗δα∂ = π∗ω∂, so we can safely compute the boundary two form

by differentiating expression (4.16). Therefore also the second claim is proven.

Now we can move on to prove the statements concerning the rest of  the boundary

structure, namely Q∂ and S ∂. Most of  the computations have been removed from the

proof  and put in Appendix A, Computation A.2.

Let us take into account the bulk part of  the variation, namely the Euler Lagrange term

in (4.7). The defining equation of  the cohomological vector field ιQΩBV = δS EH
BV + π

∗
Mα

∂,
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where ΩBV is the symplectic BV form in the bulk, yields:

(Qχ)µ = 2∂(ρgσ)µg†ρσ + 2gµ(σ∂ρ)g†ρσ − ∂µgρσg†ρσ + ∂µξρχρ + ∂ρξρχµ + ξρ∂ρχµ

(Qg†)µν = ∂ρξρg†µν + ξρ∂ρg†µν − 2∂ρξ(µg†ν)ρ − √g
(
Rµν − R

2
gµν

)
(Qg)µν = 2∂(µξ

ρgν)ρ + ξρ∂ρgµν

(Qξ)µ = ξρ∂ρξµ =
1
2

[ξ, ξ]µ

Clearly the expressions for Qg and Qξ agree with (4.2). Along the surjective submersion

(4.6), π̃ : F B
EH −→ F̃ B

EH , the bulk vector field descends to a pre-boundary vector field Q̃ =

π̃∗Q, its components along a field ϕ being (Q̃ϕ) = (Qϕ)
∣∣∣
∂M

. Since the transversal jets Jµν =

∂ngµν
∣∣∣
∂M

are relevant for the boundary structure, we must complete the cohomological

pre-boundary vector field Q̃ with their transformation law:

Q̃Jµν = ∂nQgµν
∣∣∣
∂M
= ∂nξ

ρ∂ρgµν + ξρ∂ρJµν + 2∂(µ∂nξ
ρgν)ρ + 2∂(µξ

ρJν)ρ (4.19)

Remark 4.5. Notice that requiring gna = 0 in an arbitrarily thin neighborhood of  the boundary

automatically implies having Jna = 0 on the boundary, and this yields QJna = 0 with no extra restrictions

on the fields, as it can be checked by direct computation from Eq. (4.19). Compare this with Remark

4.1.

♢

The pre-boundary vector field Q̃ then reads:

Q̃ = (Q̃χ)µ
δ

δχµ
+ (Q̃g†)µν

δ

δg†µν
+ (Q̃J)µν

δ

δJµν
+ (Q̃g)µν

δ

δgµν
+ (Q̃ξ)µ

δ

δξµ

We can add to Q̃ appropriate combinations of  vertical vector fields to obtain one that is

projectable. In particular we consider:

Q̃′ = Q̃ − (Q̃g†)abG†ab − (Q̃χ)µXµ − (Q̃g)nnGnn

whose expression can be found in (A.3).
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Now we must write the above expression in terms of  the boundary fields, and to do so

we must first transform the basis of  vector fields via the formula: δ
δΦ
=

∑
Φ̃
δΦ̃
δΦ

δ

δΦ̃
. This

is done in Computation A.2, Equation (A.4), and it leads to the explicit expression for Q′

given in (A.5).

Expanding the J̃e f coefficient shown in Computation A.2, Equation (A.5), one is left

with an expression that should depend solely on the boundary fields. Then, after some

rewriting we get (cf. (A.8)):

Q′|J̃ = Q∂

J̃e f

δ

δJ̃e f

+ Q̂′ J̃e f
[Jan]

δ

δJ̃e f

(4.20)

where Q̂′ J̃e f
[Jan] is an expression that depends on the off  diagonal jets Jan, and is therefore

not projectable. Before elaborating any further on this, let us analyse the other coefficients.

In Computation A.2 we find, analogously, that

Q′
∣∣∣̃
g†nn = (Q∂

g̃† )
nn δ

δg†nn + Q̂′g̃†nn[Jna]
δ

δg†nn (4.21)

where again Q̂′g̃†nn[Jna] is a function of  the non-projectable jets. A similar issue is encoun-

tered when computing Q′g̃†nc since again we find

Q′
∣∣∣̃
g†nc = (Q∂

g̃† )
nc δ

δg†nc + Q̂′g̃†nc[Jna]
δ

δg†nc (4.22)

Some of  the expressions above contain non projectable coefficients, that are functions of

the off  diagonal normal jets Jna. To get rid of  these terms we must (at least) assume that

the off  diagonal components of  the metric gna vanish on the boundary together with their

first normal jets.

The rest of  the coefficients of  the cohomological vector field on the boundary do not

share this projectability issue, and are computed in Computation A.2.

When this prescription is taken into account the cohomological vector field Q on the

space of  pre-boundary fields projects to a vector field Q∂ of  degree 1 on the space of

boundary fields, which is also cohomological, and whose components are given in (A.10).

From these expression of  the boundary cohomological vector field we can compute the
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induced boundary action via

S ∂ = ιQ∂ιE∂ω∂ (4.23)

where the vector field E∂ is the boundary Euler vector field and reads:

E∂ = ξ̃ρ
δ

δξ̃ρ
− g̃†nρ δ

δ̃g†nρ

The boundary action is given then by the following expression:

S ∂ =

∫
∂M

{  √
g̃∂

4
g̃ab

(
J̃ab J̃cd − J̃cb J̃ad

)
g̃cd −

√
g̃∂R̃∂ − 2∂a

(̃
ξag̃†nn

)
− 2g̃†na∂aξ̃

n

 ξ̃n

−
√

g̃∂∂b

(̃
gad J̃ad

)
ξ̃b + ∂c

(√
g̃∂g̃cd J̃ad

)
ξ̃a +

√
g̃∂

2
∂bg̃ad J̃adξ̃

b − 2∂c

(̃
ξcg̃†nbg̃ab

)
ξ̃a

}
✓

Remark 4.6. Looking at the construction that Wheeler and DeWitt proposed for the Hamiltonian

theory of  gravity24 we may gather that the formula relating their conjugate momenta Πi j to our dynamical

variables is as follows:

Πi j =

√
g∂

2

√
gnn

(
Ji j − gi jgcd Jcd

)
= π∗

 √
g̃∂

2

(
J̃i j − g̃i j̃gcd J̃cd

) ∣∣∣∣∣∣
g†=ξ=0

(4.24)

It is a matter of  a straightforward check to show that plugging (4.24) into the Wheeler DeWitt Hamil-

tonian term:

1

2
√

g∂

(
2ga(cgd)b − gabgcd

)
ΠabΠcd −

√
g∂R∂ =

= π∗M

 √
g̃∂

4
g̃ab

(
J̃ab J̃cd − J̃cb J̃ad

)
g̃cd −

√
g̃∂R̃∂

 ∣∣∣∣∣∣
g†=ξ=0

(4.25)

This is what we get from the induced boundary action after taking the ξ̃n-derivative and setting to zero

the remaining ghost fields (that is to say considering the degree-0 part of  the remaining expression). For a

non light-like boundary ∂M we obtain the Wheeler DeWitt constraint projected on the space of  boundary
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fields, and we can consider ξ̃n as a Lagrange multiplier.

♢

4.3 ADM decomposition

Here we would like to generalise the previous analysis and establish whether the action

functional (4.3) satisfies the CMR axioms of  Definition 2.5, by using a different technique.

The usual assumption taken into consideration in the literature is that the space-time man-

ifold be globally hyperbolic, namely a direct product Σ × R, with Σ a space/time-like hy-

persurface. This condition is somehow natural when dealing with issues of  existence and

uniqueness of  solutions to the Einstein equations, but from a general point of  view it is

somehow restrictive.

This gives us the idea to consider the case of  a non-null boundary, described by a sub-

manifold of  the form xn = const, such that it has a hyperbolic neighborhood. This is

equivalent to (or rather means) asking that the space of  pseudo-Riemannian structures on

the manifold with boundary M be limited to those metrics whose restriction to the bound-

ary has either time-like or space-like signature.

When that is the case, and when the transverse xn component corresponds to a signature‡

−ϵ , it is customary23,24 to write the metric and its inverse in the form:

gµν = ϵ

 −(η2 − βaβ
a) βb

βa γab


gµν = ϵη−2

 −1 βb

βa η2γab − βaβb


(4.26)

where η and βa are functions for all a = 1, 2, 3.

Notice that this decomposition is valid in a neighborhood of  the boundary ∂M. This is

a much weaker requirement than asking that M be globally hyperbolic, or globally foliated

in spacelike (or timelike) slices.

‡For simplicity ϵ = 1 if xn is a timelike direction, that is to say when the boundary is spacelike.
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With this decomposition we have that
√−g = η

√
|γ|ϵ , with γ = detγi j, and |γ|ϵ means

that we consider the absolute value of  the determinant when needed (if ϵ = −1). We will

understand this fact from now on and simply write
√
γ.

The classical Einstein Hilbert action gets rewritten as

S =
∫
M

{
η
√
γ(ϵ(KabKab − K2) + R∂ − 2Λ)︸                                     ︷︷                                     ︸

LADM

+

− 2∂n(
√
γK) + 2∂a(

√
γKβa − √γγab∂bη)

}
dd+1x

(4.27)

where we define Kab, the second fundamental form of  the boundary submanifold and its

trace K by means of  the boundary covariant derivative ∇∂ as follows

Kab =
1
2
η−1(2∇∂(aβb) − ∂nγab) =

1
2
η−1Tab (4.28)

K = γabKab =
1
2
η−1γabTab =

1
2
η−1T (4.29)

while Tab and T are introduced for later convenience. We will redefine the ADM Lagrangian

as

LADM B η
√
γ(ϵ(KabKab − K2) + R∂ − 2Λ) (4.30)

The classical space of  fields in this case is then simply given by Fcl = PR∂M
(d,1)(M) the space

of  pseudo Riemannian metrics on M with signaure (d,1), and space/time-like signature

when restricted to the boundary.

The classical action we will consider from now on is the integral of  the ADM Lagrangian:

S ADM B
∫

M
LADM .

Remark 4.7. The total derivatives appearing in the new formulation of  the theory build up the Gibbons

Hawking York boundary term. In our framework it will change the one form on the boundary by an

exact term, that will not interfere with the boundary structure. This will have an important effect however

in connecting the BV-BFV theory for the Einstein Hilbert action in the adapted coordinates of  Theorem

4.2 to the one we will get in what follows.

♢
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4.3.1 Classical boundary structure

To start off, we will consider first the classical (i.e. non-BV) structure that is induced on the

boundary. This is often called canonical analysis, and one replaces the Lagrangian descrip-

tion with the Hamiltonian in the phase space of  the system. The advantage in applying

our variational approach to the classical case as well, is that we are able to perform the

symplectic reduction of  the space of  classical pre-boundary fields, to find a well defined

symplectic structure on the space of  classical boundary fields, i.e. the phase space, encoding

the canonical relations in a straightforward way.

Proposition 4.8. The space of  classical boundary fields for General Relativity in the ADM formalism

for any dimension d + 1 , 2 is a symplectic manifold. In a local chart the symplectic form reads

ω∂ = ϵ

∫
∂M

δγabδΠab (4.31)

where the symplectic reduction map reads:

π :

γi j = γi j

Πlm =
√
γ

2

(
J̃lm − γlmγ

i j J̃i j

) (4.32)

with

J̃lm = η
−1 (

Jlm − 2∇(lβm)
)

(4.33)

Proof. Consider the variation of  the ADM action S ADM , which splits in a bulk term and a

boundary term. The latter is interpreted as a one-form α̃ on the space of  pre-boundary

fields F̃cl, which is given by restrictions of  the bulk metric and its normal jets Jab :=
∂nγab

∣∣∣
∂M

to ∂M:

α̃ = 2ϵ
∫
∂M

{
δ(
√
γγab)Kab −

√
γ

2
δγabKab

}
dd x (4.34)
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and we have that the two-form ω̃ = δα̃, using the definitions (4.28) of Kab and Tab, reads

ω̃ = ϵ

∫
∂M

{
δη−1δ(

√
γγab)Tab − η−1δ(

√
γγab)δTab+

− η−1 δ
√
γδγab

2
Tab − δη−1

√
γ

2
δγabTab + η

−1
√
γ

2
δγabδTab

}
dd x (4.35)

The space of  classical pre-boundary fields F̃cl is then given by restrictions to ∂M of  the

bulk metric and its normal jets Jab B ∂nγab

∣∣∣
∂M

. Both K and T are functions of g and J.

Observe that the transversal jets Jna are not present because of  the clever rewriting of  the

action, valid in a neighborhood of  the boundary.

The kernel of  the two form is found to be, for d , 1 by

(Xγ)ab = 0 (4.36)

(XT )lm = −η(Xη−1)Tlm (4.37)

as it can be seen with a straightforward computation. It turns out that the (Xβm) component

of  a vector field in the kernel is free, as well as the η−1 component. In fact, equation (4.37)

can be unfolded to yield:

(XJ)lm = −η(Xη−1)Jlm + 2∇(l(Xβ)m) + 2η(Xη−1)∇(lβm) (4.38)

The generators in the Kernel are

E−1 = (Xη−1)
δ

δη−1 − η(Xη−1)Jlm
δ

δJlm
+ 2η(Xη−1)∇(lβm)

δ

δJlm
(4.39)

Bl = (Xβ)l
δ

δβl
+ 2∇(l(Xβ)m)

δ

δJlm
(4.40)

and thus, solving the differential equations given by the kernel vector fields together with
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Equation (4.36) gives us the projection to the boundary fields:

π :

γ̃i j = γi j

J̃lm = η
−1 (

Jlm − 2∇(lβm)
) (4.41)

It is a matter of  a simple check to verify that the one form

α∂ = ϵ

∫
∂M

√
γ̃

2

(
δγ̃i jγ̃i jγ̃

lm J̃lm − δγ̃lm J̃lm

)
(4.42)

is horizontal, i.e. ιE−1α̃ = ιBlα̃ = 0, and that it pulls back to the boundary one form α̃ along

π:

π∗α∂ = α̃

This implies that the symplectic manifold
(
F ∂, δα∂

)
is exact.

Introducing the new variables γab ≡ γ̃ab and Πlm =
√
γ

2

(
J̃lm − γlmγ

i j J̃i j

)
we have

α∂ = −ϵ
∫
∂M

δγabΠab =⇒ ω∂ = ϵ

∫
∂M

δγabδΠab (4.43)

which is the symplectic form in the space of  classical boundary fields, expressed in local

Darboux coordinates. ✓

Remark 4.9. We managed to recover the phase space description of  General Relativity in the symplectic

framework. Notice that in the non-BV setting the compatibility with the boundary structure is encoded in

the boundary term π∗Mα
∂
∂M , a failure of  the variation of  the action from being given by the Euler Lagrange

equations alone. When turning to the BV theory we will see how this compatibility can be enriched to yield

the full fundamental formula (2.6).

♢

Remark 4.10. Observe that we have performed a symplectic reduction that encodes the usual canonical

analysis of  General Relativity (this time explicitly in the ADM formalism). Our boundary field Πab

is a projected version of  the usual (i.e. literature) momentum coordinate conjugate to γab (let us call it

pab = π
∗Πab), with the difference that in the present case the conjugacy is in the symplectic sense, as we
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quotient by the kernel of  the pre-symplectic form ω̃.

♢

In what follows we will show how this can be extended to the BV setting, which explicitly

encodes the symmetries. This will allow us to recover the usual energy and momentum

constraints in a straightforward way, still holding on to the clean symplectic description of

the phase space.

4.4 BV-BFV-ADM theory

Recalling the general theory we outlined in Section 2.2, in order to perform a consistent

analysis of  the theory including the symmetries, one has to find the correct BV data. The

geometric information we need is the distribution in the space of  fields that generates the

symmetries.

In our case, General Relativity is invariant under the action of  the whole diffeomorphism

group of  the space-time manifold M. The theory can be treated as a BRST-like theory since

the symmetry algebra Γ(T M) closes everywhere in the space of  fields, and we can use

Theorem 2.3 to extend the classical ADM action to its BV-extended counterpart. Indeed

we consider the following action:

S BV
ADM =

∫
M

{
η
√
γ(ϵ(KabKab − K2) + R∂ − 2Λ)dd+1x −

(
Lξg

)
g† +

1
2
ι[ξ,ξ]ξ

†
}

(4.44)

where we introduced the same symmetry terms we used in (4.2), i.e.

Qg = Lξg

Qξ =
1
2

[ξ, ξ]
(4.45)

and the space of  fields is given by the shifted cotangent bundle:

FADM B T ∗[−1]
[
PR∂M

d+1(M) ⊕ Γ (T [1]M)
]

(4.46)
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equipped with the canonical odd-symplectic form ΩBV . Our first result in this setting is

the following

Theorem 4.11. For all d , 1, the data (FADM, S BV
ADM,Q,ΩBV) induces an exact BV-BFV

theory. The induced data on the boundary will be denoted by (F ∂, S ∂,Q∂, ω∂). In particular we have

that Q∂ = πM∗Q, and ιQ∂ω∂ = δS ∂.

Proof. The variation of S BV
ADM induces the following boundary one-form, where we fixed

the volume form v = dxn ∧ v∂:

α̃ADM = 2ϵ
∫
∂M

η

{
δ(
√
γγab)Kab −

√
γ

2
δγabKab

}
v∂ −

∫
∂M

ξnδξρχρv∂

+ 2ϵ
∫
∂M

(
(−η2 + βaβ

a)δξng†nn + βaδξ
ng†an + βaδξ

ag†nn + γabδξ
(ag†b)n

)
v∂

− ϵ
∫
∂M

(
ξnδ(−η2 + βaβ

a)g†nn + 2ξnδβag†an + ξnδγabg†ab
)

v∂ (4.47)

and two-form ω̃ = δα̃ADM :

ω̃ =

∫
∂M

ϵδ

{
η−1δ(

√
γγab)Kab − η−1

√
γ

2
δγabKab

}
−δξnδξρχρ+ξ

nδξρδχρ

+ ϵ
(
δ(−η2 + βaβ

a)δξng†nn + 2(−η2 + βaβ
a)δξnδg†nn + 2βaδξ

nδg†an

+ 2δβaδξ
ag†nn + 2βaδξ

aδg†nn + 2δγabδξ
(ag†b)n + 2γabδξ

(aδg†b)n
)

− ϵ
(
ξnδ(−η2 + βaβ

a)δg†nn + 2ξnδβaδg†an + δξnδγabg†ab + ξnδγabδg†ab
)

(4.48)

Recalling that Kab is a function of Jab B ∂nγ|∂M , it is just a matter of  lengthy computations

to show that ω̃ is presymplectic: indeed, excluding the case d = 1, the equations defining

the kernel read:
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(XJ)lm = + η
−1(Xη)Jlm + 2∇(l(Xβ)m) − 2η−1(Xη)∇(lβm)

+
4
√
γ

(Xη)
(

1
d − 1

γlmβa − β(lγm)a

)
g†anξn

− 4
√
γ
η

(
1

d − 1
γlm(Xβ)a − (Xβ)(lγm)a

)
g†anξn

+
2
√
γ

(Xη)
(

1
d − 1

γlmγab − γlaγbm

)
g†abξn

− 2
√
γ
η

(
1

d − 1
γlmγab − γalγbm

)
(Xg†)abξn (4.49)

(X†g)bn = − γab(Xβ)ag†nn + η−1βb(Xη)g†nn+ϵη−3βbβaχa(Xη)ξn

− ϵ
2
η−2βbβa(Xχ)aξ

n− ϵ
2
η−2βb(Xβ)cγ

cdχdξ
n−ϵη−3βb(Xη)χnξ

n

+
ϵ

2
η−2βb(Xχ)nξ

n− ϵ
2
η−1γbaχa(Xη)ξn+

ϵ

2
γba(Xχ)aξ

n (4.50)

(Xg†)nn = − η−1(Xη)g†nn−ϵη−3(Xη)βaχaξ
n+
ϵ

2
η−2βa(Xχ)aξ

n

+
ϵ

2
η−2(Xβ)bγ

abχaξ
n+ϵη−3(Xη)χnξ

n− ϵ
2
η−2(Xχ)nξ

n (4.51)

(Xξ)a = + βaη−1(Xη)ξn − γab(Xβ)bξ
n (4.52)

(Xξ)n = − η−1(Xη)ξn (4.53)

As a matter of  fact, contracting ω̃ with a general vector field X and collecting the terms

along the normal jet δJab we have the equations

δJab : −
√
γ

2
η−1γcd(Xγ)cdγab +

√
γ

2
η−1(Xγ)ab = 0

for all a, b = 1, . . . d and taking the trace of  this results in the following condition:

(d − 1)Tr(Xγ) = 0 (4.54)

Assuming d , 1 we can conclude that Tr(Xγ) = 0 and consequently that (Xγ) ≡ 0.

Collecting all terms along the other fields one gets in a lengthy but straightforward way the
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rest of  the kernel equations.

The kernel is generated by the (vertical) vector fields:

X(n) =(Xχ)n
δ

δχn
− ϵ

2
η−2(Xχ)nξ

n δ

δg†nn +
ϵ

2
βbη−2(Xχ)nξ

n δ

δg†bn (4.55a)

X(a) =(Xχ)a
δ

δχa
+
ϵ

2
η−2βa(Xχ)aξ

n δ

δg†nn (4.55b)

−
(
ϵ

2
η−2βbβa(Xχ)aξ

n − ϵ
2
γba(Xχ)aξ

n
)

δ

δg†bn

B(a) =(Xβ)a
δ

δβa
− γab(Xβ)aξ

n δ

δξb +
ϵ

2
η−2γab(Xβ)aχbξ

n δ

δg†nn (4.55c)

+

(
2∇(l(Xβ)m) +

4ϵ
√
γ
η

(
(Xβ)(lγm)a −

1
d − 1

γlm(Xβ)a

)
g†anξn

)
δ

δJlm

+

(
− ϵ

2
η−2βbγcd(Xβ)cχdξ

n − γab(Xβ)ag†nn
)

δ

δg†bn

G†(ab) =(Xg†)ab δ

δg†ab +
2ϵ
√
γ
η

(
γalγbm −

1
d − 1

γlmγab

)
(Xg†)abξn δ

δJlm
(4.55d)

E =(Xη)
δ

δη
− η−1(Xη)ξn δ

δξn + β
aη−1(Xη)ξn δ

δξa (4.55e)

− η−1(Xη)g†nn δ

δg†nn − ϵη
−3 (βaχa − χn) (Xη)ξn δ

δg†nn

−
(
ϵη−3βbχn − ϵη−3βbβaχa +

ϵ

2
η−1γbaχa

)
(Xη)ξn δ

δg†bn

− 4ϵ
√
γ

(Xη)
(
β(lγm)a −

1
d − 1

γlmβa

)
g†anξn δ

δJlm

− 2ϵ
√
γ

(Xη)
(
γlaγbm −

1
d − 1

γlmγab

)
g†abξn δ

δJab

+ η−1βa(Xη)g†nn δ

δg†an + η
−1(Xη)

(
Jlm − 2∇(lβm)

) δ

δJlm

It is easy to check that the boundary one form (4.47) is annihilated by all vertical vector

fields (4.55), and it is therefore basic, proving the exactness of  the BV-BFV structure and

concluding the proof. ✓

It is already clear from this result that the ADM decomposition of  space and time makes
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the BV-BFV structure much better behaved than the block-diagonal EH version of  Section

4.2, since the pre-boundary one-form is basic on the nose, not needing any correction term.

Moreover, this result is far more general.

The explicit expression in a local chart is established by the following result:

Theorem 4.12. The surjective submersion πM : FADM −→ F ∂
ADM is given by the local expression:

πM :



Πlm =

√
γ̃

2

(
J̃lm − γ̃lmγ̃

i j J̃i j

)
φn = −2

{
ηg†nn− ϵ2η−1 (βaχa − χn) ξn

}
φa = 2 γab

{
g†bn + γbaβag†nn− ϵ2γbaχaξ

n
}

ξb = ξb + γbaβaξ
n

ξn = η ξn

γab = γab

(4.56)

with

J̃lm =
{
η−1 (

Jlm − 2∇(lβm)
) − 2ϵ
√
γ

(
γalγbm −

1
d − 1

γlmγab

)
g†abξn

− 4
√
γ
ϵ

(
β(lγm)b −

1
d − 1

γlmβb

)
g†bnξn − 2ϵ

√
γ

(
β(lβm) −

1
d − 1

γlmβbβ
b

)
g†nnξn

}
The boundary symplectic structure on the space of  boundary fields reads in these coordinates (ρ = {n, a}):

ω∂ = ϵ

∫
∂M

δγabδΠab + δξ
ρδφρ. (4.57)

Moreover, the boundary action is given by the expression

S ∂ =

∫
∂M

{
ϵ
√
γ

(
ΠabΠab −

1
d − 1

Π2
)
+
√
γ
(
R∂ − 2Λ

)
+ ϵ∂a

(
ξaφn

) − ϵγabφb∂aξ
n

}
ξn

+

∫
∂M

{
− ∂c

(
γcdΠda

)
− (∂aγ

cd)Πcd + ϵ∂c
(
ξcφa

) }
ξa. (4.58)

83



Proof. Using the vertical vector fields (4.55) to eliminate βa, χρ and g†ab (see Computation

A.3) one finds the section of  the symplectic reduction to the space of  boundary fields to

be

π :



J̃lm = η−1 (
Jlm − 2∇(lβm)

) − 2ϵ√
γ

(
γalγbm − 1

d−1γlmγab

)
g†abξn

− 4ϵ√
γ

(
β(lγm)b − 1

d−1γlmβb

)
g†bnξn − 2ϵ√

γ

(
β(lβm) − 1

d−1γlmβbβ
b
)

g†nnξn

g̃†nn = ηg†nn+ ϵ2η
−1 (χn − βaχa) ξn

g̃†bn = g†bn + γbaβag†nn+ ϵ2γ
baχaξ

n

ξ̃b = ξb + γbaβaξ
n

ξ̃n = ηξn

γ̃ab = γab

(4.59)

The boundary one-form α∂ will be given by the expression

α∂ = ϵ

∫
∂M


√
γ̃

2

(
δγ̃abγ̃abγ̃

lm J̃lm − δγ̃lm J̃lm

)
− 2δξ̃ng̃†nn + 2γabδξ̃

ag̃†bn

 (4.60)

as it is straightforward to check that π∗α∂ = α̃ADM . Introducing the new variablesγab ≡ γ̃ab,

Πab =

√
γ̃

2

(
J̃ab − γ̃abγ̃

i j J̃i j

)
together with φn = −2g̃†nn, φa = 2γ̃abg̃†bn and ξρ = ξ̃ρ, we

can write the symplectic boundary form as:

ω∂ = ϵ

∫
∂M

δγabδΠab + δξ
ρδφρ (4.61)

and recover expression (4.56) and (4.58) for the projection and the boundary action in the

Darboux coordinates.

We would like to compute the cohomological boundary vector field. First of  all we

must extract the analogous bulk vector field, encoding the equations of  motion and the

symmetries of  the system, using the fundamental formula:

ιQΩBV = δS + π∗α∂ (4.62)
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A shortcut to do this in the ADM formalism, instead of  computing cumbersome integra-

tions by parts, consists in considering the classical Einstein Hilbert action, whose classical

vacuum equations of  motion are given by

√
γ

(
Rµν −

(
1
2

R − Λ
)

gµν

)
≡ Gµν = 0

and to express them using the ADM decomposition. This is done by projecting the above

equation on the new field direction, with the help of  the Gauss-Codazzi equations and the

Ricci equations.

Doing so, one obtains the projection of  the relevant Euler Lagrange terms in the ADM

formalism, namely:

ϵGη B ϵ

(
δS cl

δη

)
=
√
γ
(
ϵ
(
R∂ − 2Λ

)
+ K2 − KabKab

)
(4.63)

ϵGβa B ϵ

(
δS cl

δβb

)
= 2γba

[
∂c(
√
γγcdKda) +

1
2
∂aγ

cdKcd −
√
γ∂aK

]
(4.64)

ϵGγab B ϵ

(
δS cl

δγab

)
=
√
γ
(
∂nKab − βk∂kKab − 2Kk(a∂b)(gkcβc)

)
(4.65)

Notice that the formula for Gβa is only apparently different from the usual momentum con-

straint that can be found in the literature (see e.g.24):

Hc B
√
γγba

(
γcd∇∂c Kda − ∇∂aK

)
as it can be seen by manipulating the covariant derivatives.

Adding the BV part we have that the derivatives of  the action with respect to the new
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fields read:(
δS BV

δη

)
= −2ϵη

(
∂ρξ

ρg†nn + ξρ∂ρg†nn − 2∂ρξng†nρ
)

(
δS BV

δβa

)
= 2ϵ

(
∂ρξ

ρg†an + ξρ∂ρg†an − ∂ρξag†nρ − ∂ρξng†aρ
)
+

+ 2ϵβa
(
∂ρξ

ρg†nn + ξρ∂ρg†nn − 2∂ρξng†nρ
)(

δS BV

δγab

)
= ϵ

(
∂ρξ

ρg†ab + ξρ∂ρg†ab − 2∂ρξ(ag†b)ρ
)
+

− 2ϵβaβb
(
∂ρξ

ρg†nn + ξρ∂ρg†nn − 2∂ρξng†nρ
)(

δS BV

δg†ab

)
= ϵ

(
ξρ∂ργab + 2∂(aξ

nβb) + 2∂(aξ
cγb)c

)
(
δS BV

δg†na

)
= ϵ

(
ξρ∂ρβa + ∂nξ

nβa + ∂nξ
bγab + ∂aξ

n(−η2 + βcβ
c) + ∂aξ

bβb

)
(
δS BV

δg†nn

)
= ϵ

(
ξρ∂ρ(−η2 + βcβ

c) + 2∂nξ
n(−η2 + βcβ

c) + 2∂nξ
aβa

)
In addition we have:(

δS BV

δξn

)
= ϵ

(
∂n(−η2 + βcβ

c)g†nn + 2∂a(−η2 + βcβ
c)g†na + 2∂(aβb)g†ab

)
+ ϵ

(
2(−η2 + βcβ

c)∂ng†nn + 2βa∂ng†na + 2(−η2 + βcβ
c)∂ag†na

)
+ ϵ

(
2β(a∂b)g†ab − Jabg†ab

)
+ ξρ∂ρχn + ∂ρξ

ρχn + ∂nξ
ρχρ(

δS BV

δξa

)
= 2ϵ

(
∂nβag†nn + Jabg†nb + ∂bβag†nb + ∂(bγc)ag†bc

)
+ 2ϵ

(
βa∂ng†nnβa∂bg†nb + γab∂ng†nb + γa(b∂c)g†bc − 1

2
∂aγcdg†cd

)
− ϵ∂a

(
−η2 + βcβ

c
)

g†nn − 2ϵ∂aβccg†cn + ∂ρξ
ρχa + ξ

ρ∂ρχa + ∂aξ
ρχρ(

δS BV

δχµ

)
= ξρ∂ρξ

µ

Now we would like to use these derivatives to write down the components of  the bulk

vector field Q, by imposing (4.62). We are still using the antifields g†µν and therefore we
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have to collect the terms as follows:

(Qg†)nn = − 1
2
η−1ϵ

(
δS
δη

)
= − 1

2
η−1ϵGη +

(
∂ρξ

ρg†nn + ξρ∂ρg†nn − 2∂ρξng†nρ
)

(Qg†)na =
ϵ

2

(
δS
δβa

)
− βa(Qg†)nn

=ϵGβa +
ϵ

2
η−1βaGη +

(
∂cξ

cg†an + ξρ∂ρg†an − ∂ρξag†nρ − ∂cξ
ng†ac

)
(Qg†)ab =ϵ

(
δS
δγab

)
+ βaβa(Qg†)nn

=ϵGγab −
ϵ

2
η−1βaβbGη +

(
∂ρξ

ρg†ab + ξρ∂ρg†ab − 2∂ρξ(ag†b)ρ
)

(Qγ)ab =ϵ

(
δS BV

δg†ab

)
=

(
ξρ∂ργab + 2∂(aξ

nβb) + 2∂(aξ
cγb)c

)
(Qβ)a =ϵ

(
δS BV

δg†an

)
=

(
ξρ∂ρβa + ∂nξ

nβa + ∂nξ
bγab + ∂aξ

n(−η2 + βcβ
c) + ∂aξ

bβb

)
(Qη) = −

ϵ

2
η−1

(
δS BV

δg†nn

)
+ ϵη−1βa

(
δS BV

δg†na

)
− ϵ

2
η−1βaβb

(
δS BV

δg†ab

)
=

(
ξρ∂ρη + ∂nξ

nη − ηβa∂aξ
n
)

(Qξ)ρ =
(
δS BV

δχρ

)
(Qχ)n =

(
δS BV

δξn

)
(Qχ)a =

(
δS BV

δξa

)
Now, the bulk Q vector field is extended to the normal jets when projected to the pre-

boundary vector field Q̃:

(Q̃J)µν = (∂n(Qgµν))
∣∣∣
∂M
=

(
∂nξ

ρ∂ρgµν + ξρ∂ρ∂ngµν + 2∂(µ∂nξ
ρgν)ρ + 2∂(µξ

ρ∂ngν)ρ
) ∣∣∣
∂M
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of  which we will only need

(Q̃J)ab = ϵ
(
∂nξ

ρ∂ργab + ξ
ρ∂ρJab + 2∂(a∂nξ

ρgb)ρ + 2∂(aξ
cJb)c + 2∂(aξ

n∂nβb)

)
so that the full pre-boundary vector field reads:

Q̃ =(Q̃η)
δ

δη
+ (Q̃β)a

δ

δβa
+ (Q̃γ)ab

δ

δγab
+ (Q̃g†)ab δ

δg†ab + 2(Q̃g†)na δ

δg†na

+(Q̃g†)nn δ

δg†nn + (Q̃ξ)n δ

δξn + (Q̃ξ)a δ

δξa + (Q̃χ)µ
δ

δχµ
+ (Q̃J)lm

δ

δJlm

Now there are two equivalent ways to obtain the rest of  the boundary structure: either

we compute the explicit projection of  the Q vector field (see below) or we consider the

following simplifying technique.

Produce a degree one function via40:

S̃ = ιQ̃ιẼω̃

where Ẽ is the Euler vector field on the space of  pre-boundary fields, i.e.:

Ẽ =
∫
∂M

ξρ
δ

δξρ
− g†µν

δ

δg†µν
− 2χρ

δ

δχρ

Then the true boundary action S ∂ is such that S̃ = π∗S ∂ for degree reasons and the

surjectivity of  the surjection πM , which factors through F̃ADM , and Q∂ is its Hamiltonian

vector field. The boundary action is then found to be:

S ∂ =

∫
∂M

{√
γ̃
(
ϵ

4

(
J̃ab J̃ab − J̃2

)
+ R∂ − Λ

)
− 2ϵ∂a

(̃
ξag̃†nn

)
− 2ϵg̃†na∂aξ̃

n

}
ξ̃n

+

∫
∂M

{√
γ̃∂a J̃ − ∂c

( √
γ̃γ̃cd J̃da

)
−

√
γ̃

2
(∂aγ̃

cd)J̃cd + 2ϵ∂c

(̃
ξcg̃†nbγ̃ba

) }
ξ̃a (4.66)

where by J̃ we denote the trace γ̃ab J̃ab.
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Even though the computations are simpler this way, it might be worthwhile to outline

the alternative procedure as well. This can be found in Computation A.4. ✓

Remark 4.13. Notice that this calculation was simplified by the ansatz given by the previous result:

Theorem 4.4. Both the boundary action and symplectic form agree with what we had computed previously,

as was also discussed in subsection 4.4.1. One interesting thing to notice, is that we do not need explicitly to

assume that gna vanish in a neighbourhood of  the boundary. This is possibly explained by saying that the

bare assumption of gna|∂M = 0 on the boundary is not really appropriate. In subsection 4.4.1 we will see

explicitly how to understand the equivalence of  this induced BFV structure to the one obtained assuming a

block diagonal metric tensor, with vanishing off  diagonal normal jets on the boundary.

♢

This result is a clean first step in the direction of  BV-BFV quantisation of  General Rela-

tivity as proposed by CMR in5. It states the compatibility of  bulk and boundary structures,

in relation with the symmetries. Notice that the BV-BFV axioms in Definition 2.5 need

not be satisfied by a generic gauge theory and the statement is therefore nontrivial. Ar-

guable as it might be to consider gauge theories with this property to be somehow better

quantisable, it provides nevertheless a clear mean of  distinction between different variational

problems describing the same equations of  motion (see Chapter 5 for a comparison with

the Palatini-Holst formulation of  GR, and Chapter 6 for BF-like theories of  gravity).

The machinery is able to handle a more complex and sophisticated set of  data, than

the standard canonical analysis. When a theory on the boundary is induced, it encodes a

number of  characteristic features packing up relevant data in a very efficient way. As we

will see in Section 4.4.2, the piece of  data that carries all the relevant information on the

boundary is, not surprisingly, the boundary action.

Finally, recall that in the 1+1 dimensional case it is known that the Einstein equations are

trivial, and the symmetry distribution has to be amended to take conformal transformations

into account. The critical dimension d = 1 is however marked out by the equations for

the kernel of  the pre-boundary 2-form ω̃, both in the classical and the BV-extended case

(cf. Theorem 4.11 and Proposition 4.8), confirming that the strategy has to be altered to

analyse this specific example.
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4.4.1 Recovering adapted coodinates

Using only the B vertical vector fields in (4.55) it is possible to set the βa fields to zero.

This means that it is possible to use some diffeomorphism (i.e. partially choose a gauge)

to put the metric tensor in the block diagonal form (4.8) without affecting the canonical

structure.

This is not only true for the classical theory, but as we will see in the following it carries

the BV structure along in a consistent fashion.

Theorem 4.14. There is a diffeomorphism of  presymplectic manifolds

ϕ : (F̃ B
EH, δα̃EH) −→ (Fred, δαred) (4.67)

where πred : F̃ADM −→ Fred is a surjective submersion and α̃EH is given by Equation (4.9) .

Proof. The proof  goes through by only quotienting the span of  the B vector field in the

kernel of δα̃. This induces a projection to an intermediate space of  ADM boundary fields

πred : F̃ADM −→ Fred. Solving the straightforward differential equations coming from the

explicit expression (4.55c) (c.f. Computation A.3), it reads:

πred :



Jlm = Jlm − 2∇(lβm) − 4ϵ√
γ
η
(
β(lγm)a − 1

d−1γlmβa

) (
g†an + γacβcg†nn

)
ξn

g†nn = g†nn + ϵ
2η
−2γabβaχbξ

n

g†an = g†an + γabβbg†nn

ξ
a
= ξa + γabβbξ

n

ξ
n
= ξn

γab = γab

(4.68)

and it is a simple check to show that α̃ADM = π
∗
redαred if  we set

αred =

∫
∂M

√
γ

2
η−1

(
δγabγabγ

lmJlm − δγlmJlm

)
− 2

∫
∂M

η2δξ
n
g†nn + 2

∫
∂M

γabδξ
a
g†bn (4.69)

The map ϕ is then simply given by the obvious assignment of  homologous coordinates in
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a local chart, with the prescriptionϕ∗(η2) = gnn.

Now, the pre-boundary structure (Fred, ωred = δαred) is equivalent to the one we would

find by taking the E.H. action and assuming that gµν is block diagonal. As a matter of  fact

the resulting boundary one-forms differ from one another by an exact term 2δ(
√
γγabJab)

that pulls back to the usual Gibbons-Hawking-York boundary term 2δ(
√
γK) plus the

extra term δF that depends on the ghost fields and fixes the projectability of  the boundary

one form in the Einstein Hilbert formalism (c.f. Theorem 4.2). More formally we have

that

α̃EH = ϕ
∗(αred + 2δ(

√
γγabJab)) (4.70)

and the pullback of  the correction term is precisely what one would expect:

2π∗redδ(
√
γγabJab) = −2δ(

√
γK) − δF (4.71)

✓

This means that, had we taken into account the Gibbons-Hawking-York term in com-

puting the boundary structure induced by the Eistein Hilbert action, we would have found

the additional exact term−2δ(
√
γK) in the pre-boundary one-form (4.9), closing the circle.

4.4.2 Constraints algebra on the boundary

As we already announced, from the boundary action (4.58) it is possible to read the con-

straint structure of  canonical gravity. As a matter of  fact, the degree zero (ghost number,

gh) part of  the derivatives δS ∂

δξµ
reads

δS ∂

δξn

∣∣∣∣∣∣
gh=0

=
ϵ
√
γ

(
ΠabΠab −

1
d − 1

Π2
)
+
√
γ
(
R∂ − 2Λ

)
≡ H (4.72)

δS ∂

δξa

∣∣∣∣∣∣
gh=0

= − ∂c

(
γcdΠda

)
− (∂aγ

cd)Πcd ≡ Ha (4.73)

which are the symplectic-reduced versions of  the standard constraints (4.63) and (4.64)

respectively.
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On the other hand, the residual gauge symmetries can be found by computing the relative

components of  the boundary cohomological vector field Q∂, using the fact that ιQ∂ω∂ =

δS ∂:

(Q∂)ξn = (ξc∂cξ
n)

δ

δξn

(Q∂)ξa =
(
ξnγab∂bξ

n + ξc∂cξ
a
) δ

δξa

(Q∂)γab
=

(
ξn 2
√
γ

(Πab −
γab

d − 1
Π) + ξc∂cγab + 2∂(aξ

cγb)c

)
δ

δγab

It is interesting to notice that the symmetries above are a corrected version of  the usual

gauge symmetry for a d-dimensional metric on the boundary under the action of  boundary

diffeomorphisms ξ∂ ∈ T [1]∂M. In fact they can be compactly rewritten as

(Q∂)γ =ξn 2
√
γ

(Π − γ

d − 1
TrΠ) + Lξ∂γ (4.74)

(Q∂)ξ∂ =ξ
nγ−1∇ξn +

1
2

[ξ∂, ξ∂] (4.75)

(Q∂)ξn =Lξ∂ξ
n (4.76)

This means that they do not manifestly show a Lie algebra behaviour and the structure func-

tions depend on γ−1. Yet the boundary BFV action (4.58) is at most linear in the antighosts

φ. This is in agreement with the observations in25. The BFV formalism provides for a

cohomological resolution of  symmetry-invariant coisotropic submanifolds47,48,16,36,35, and

in this case of  the constraint submanifold of  canonical gravity, modulo residual gauge sym-

metry.

The (cohomological) description of  the the canonical, constrained phase space for Gen-

eral Relativity is then obtained from a simple variational problem in the bulk. This encom-

passes a number of  classical results in the field while clarifying related issues at the same

time. Moreover, we stress that on top of  obtaining the expected BFV resolution of  the

canonical structure on the boundary, we are able to establish a connection with the bound-

ary data through the explicit projection π, and the fundamental equation ιQΩ = δS BV
ADMα

∂.
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This is the starting point for the BV-BFV programme to quantisation of  gauge theories on

manifolds with boundary.

4.4.3 Extension to the boundary of  the boundary

We would like to use our boundary action now as the new input for a theory on a mani-

fold with boundary, and therefore we will ask ∂∂M , ∅. Moreover, since we are left with a

gravity-like term
∫
∂M

√
γ̃R∂ξn in the boundary action, we will perform the ADM decompo-

sition in a neighborhood of  the boundary of  the boundary. To do this we will require ∂∂M

to have only light-like isolated points if ϵ = −1, or no condition at all if ϵ = 1 (euclidean

boundary).

To fix the notation we will have

γ̃ab = ϕ
1−ϵ

2

 +ϵα2 + bibi bi

b j hi j


γ̃ab = ϕ

1−ϵ
2 α−2

 +ϵ bi

b j α2hi j − bib j


(4.77)

with roman indices {a, b, c, d, e, f , l,m, n, p, q} denoting boundary directions and {i, j, k, l, r, s,w, v, u}
denoting boundary of  the boundary directions. Notice that ϕ B ϕ

1−ϵ
2 = 1 when ϵ = 1

since there is no residual signature to be accounted for: the boundary metric has euclidean

signature. In the case ϵ = −1 we have ϕ = ϕ = +1 when the new transversal direction xn

is timelike and ϕ = ϕ = −1 when it is not.

Then the ADM decomposition of ∂M yields

√
|̃γ|ϵR∂ξ̃n =α

√
|h|ϕ

(
ϕ
(
Hi jHi j − H2

))
ξ̃n + α

√
|h|ϕR∂∂ξ̃n

−2∂n

(√
|h|ϕH

)
ξ̃n + 2∂ j

(√
|h|ϕ(Hb j − h ji∂iα)

)
ξ̃n (4.78)

where again we highlighted the fact that one might consider taking the absolute value of  the

determinants of  the various metrics involved, according to the spacetime signature and the

values of ϵ and ϕ. We will drop this notation from now on. The tensor Hi j is the extrinsic
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curvature of  the boundary of  the boundary and reads

Hi j =
1
2
α−1(2∇∂∂(i b j) − ∂nhi j), H = hi jHi j

with ∇∂∂ being the Levi-Civita connection on ∂∂M w.r.t. the induced metric hi j.

Notice that expression (4.78) differs from the previous ADM Lagrangian in that we

cannot neglect the total derivatives anymore, owing to the presence of  the ghost fields ξ̃ρ.

Claim 4.15. The data (F ∂
∂M, S

∂,Q∂, ω∂) on the boundary ∂M induces the data of  a surjective sub-

mersion

π̃∂M : F ∂
∂M −→ F̃ ∂

∂M (4.79)

with F̃ ∂
∂M the space of  restrictions of  the fields in F ∂

∂M and their jets to ∂∂M, together with a pre symplectic

form ω̃∂ on F̃ ∂
∂M . Performing symplectic reduction and denoting F ∂∂

∂∂M B F̃ ∂
∂M we obtain the data

(F ∂∂
∂∂M, S

∂∂,Q∂∂, ω∂∂), with [Q∂∂,Q∂∂] = 0, ιQ∂∂ω∂∂ = δS ∂∂ and π∂M : F ∂
∂M −→ F ∂∂

∂∂M a

surjective submersion.
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5
General Relativity in the tetrad formalism

The main difference between the Einstein Hilbert theory of  gravity and other theories for

elementary forces is that the former does not strictly look like a gauge theory. In other

words, it is not a theory of  connections, unlike electromagnetism or chromodynamics or

the standard model of  particle physics. Nevertheless, there is a different formulation of

GR as a gauge theory, in the sense that there is an action functional that produces the same

physical data as EH, and yet it is different from a structural point of  view.

Consider the principal fiber bundle of  (co-)frames on M, with the natural action of

S O(3, 1) on it. The dynamical fields are the co-frame field e : T M −→ V, which we

require to be an isomorphism with V being a vector bundle on M whose fiber is the

Pseudo-Riemannian vector space (V, η), and a connection ω in the principal S O(3, 1) bun-

dle ω|U : U −→ so(3, 1). The vector bundle V is the associated bundle to the bundle of

S O(3, 1) frames, and it is isomorphic to T M, while η is a pseudo-Riemannian metric on

the fibers.
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Remark 5.1. Notice that this implicitly requires that we fix a reference metric on T M to break down

the group from GL(4) to S O(4, 1), as T M is naturally the associated vector bundle to the principal

bundle of GL(4)-frames. This metric has no relevance whatsoever in further computations and it is not

regarded as a background metric.

♢

Notice that one can consider
∧2 V-valued connections, using the isomorphism with the

Lie algebra:

η :
2∧

V
∼−→ so(3, 1) (5.1)

which maps the basis ei∧e j to the basis of  matrices ti
j of  the Lie algebra by raising/lowering

indices. Notice that we require ω to be η-compatible as a connection in V. This implies

that, when pulled back to a connection on the space-time using a non-degenerate e, we have

that the curvature Fω is antisymmetric in the internal indices and the connection turns out

to be torsion free, in agreement with the general assumption of  General Relativity, when

spin matter is not coupled.

In this setting the theory is fully described by the Palatini action 6:

S Pal = Tr
∫
M

e ∧ e ∧ Fω + Λe4 (5.2)

By Tr:
∧4 V −→ R we denote the volume form in

∧4 V normalised such that Tr(ui ∧
u j∧uk∧ul) = ϵi jkl, where {ui}4i=1 is an η-orthonormal basis in V , andΛ is the cosmological

constant. The Euler Lagrange equations for the associated variational problem yield at

the same time the Einstein’s equation, and the compatibility condition of ω and e. The

latter condition, together with the zero torsion requirement on the connection, requires

that covariant derivatives be taken w.r.t. the Levi Civita connection. More explicitly, the

Euler Lagrange equations for (5.2) read

dω(e ∧ e) = 0⇔ dωe = 0 (5.3)

e ∧ Fω = 0⇔ [Fω]i j
ik = 0 (5.4)
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with i, j, k = 1 . . . 4 indices in V . Notice that the double implication holds when we assume

that e is an isomorphism, and in this case Equations (5.3) and (5.4) describe the same

geometro-dynamics of  the Einstein-Hilbert variational problem.

Remark 5.2. Observe that, strictly speaking, the two theories are equivalent only when condition (5.3) is

used to rewrite the Palatini-Holst action in terms of  the curvature of  Levi-Civita connection. Equivalence

on shell of  the effective action does not ensure that the rest of  the relevant structure carries through from one

description to another, as we will see. One should compare this with the option of  dynamically implementing

the mentioned constraint (cf. Theorem 5.12, and Section 5.4).

♢

The minimality of  the theory has been analysed by many authors, mainly in relation to

the canonical formulation of  Loop Quantum Gravity (LQG). As it happens, it is shown

in41 how one can easily consider the most general theory of  gravity of  this kind to be a

topological modification of  the Palatini action*. This modification goes under the name of

Holst action7, and it is still possible to add a finite number of  boundary corrections. The

most general shape of  a Palatini-like theory of  gravity is indeed given by

S tot =

∫
M

Tr [α1(e ∧ e ∧ Fω) + α2 ⋆ (e ∧ e) ∧ Fω] + α6(Λ)Tr(e4) (5.5)

+

∫
M

(α3 − iα4)dLCS (ω−) + (α3 + iα4)dLCS (ω+) + α5d(dω ⋆ e ∧ e)

A few comments are in order. The trace is induced by the orientation in V and we used

the internal Hodge ⋆. The α1, α2 terms, with respect to a basis {ui}4i=1 explicitly read:(
α1ϵi jklei ∧ e j ∧ Fkl + α2ei ∧ e j ∧ Fklηikη jl

)
∈ Ωtop(M)

with ηi j being the given Lorenzian inner product, which is diagonal η = diag{1, 1, 1,−1}
with respect to the basis {ui}4i=1. This will be interpreted later on in Lemma 5.3 as a volume

form in the top exterior power.

*The term topological being referred to the fact that it does not affect the dynamics.
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The coefficient α6(Λ) is proportional to the cosmological constant, whereas the compo-

nents ω± are respectively the (anti-)selfdual parts of  the connection ω and the functionals

LCS are Chern-Simons forms. It can be seen41, that the total derivative terms in (5.5) unfold

to yield topological terms proportional to the Pontrjagin, Euler and Nieh-Yan classes.

Notice that the terms from α3 to α5 are relevant neither for the dynamical theory nor for

the boundary structure. As a matter of  fact they arise as exact corrections to the boundary 1-

form, and therefore they will only induce canonical transformations in the (pre-) symplectic

space of  (pre-) boundary fields.

5.1 Palatini-Holst action

The α2 term in (5.5) will have a non trivial effect in both the bulk and the boundary theory,

and we shall retain it in what follows. The other topological boundary terms will be dis-

carded in this analysis. In doing this we will rename our parameters as it is customary in the

literature, namely by introducing the so-called Barbero-Immirzi20,21 parameter γ ∈ R\{0}
and considering the (real) Holst action

S Holst =

∫
M

(
Tr(e ∧ e ∧ Fω) +

1
γ
⋆ (e ∧ e) ∧ Fω

)
+ α6(Λ)Tr(e4) (5.6)

This theory is equivalent to the Palatini action only in the limit γ → ∞, but it still describes

the same (Einstein) equations, up to a rescaling factor γ. However, this apparently harmless

shift turned out to be a source of ambiguity in the quantisation scheme21,22.

The parameter itself  was first introduced by Barbero20 to generalise the construction of

Ashtekar canonical quantum gravity19 in terms of  a real S U(2) connection, later improved

by Immirzi21. Ashtekar’s formulation dealt with complex selfdual connections instead,

which are recovered by fixing γ = i. This complexification can be avoided at the price

of  introducing some parameter-dependend canonical transformation of  the phase space,

mapping the Palatini fields to some γ-rescaled fields. This parameter dependence has been

observed to be non-quantisable 22, in the sense that it cannot be unitarily implemented, which

means that the quantisation of  the theory without the γ parameter is not unitarily equivalent
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to the scaled one.

For the time being we will be interested in the semiclassical structure only, and the gen-

eralisation introduced by the Barbero-Immirzi parameter will be taken into account only

for completeness. The standard Palatini descripion is obtained in the limit γ → ∞ and,

as we will see, as long as the classical theory is concerned, the boundary structure will not

present any unexpected behaviour.

The introduction of  the Barbero-Immmirzi parameter changes the pairing structure be-

tween e ∧ e and Fω. This can be understood in the following sense:

Lemma 5.3. Consider the pseudo-Euclidean vector space (V, η) and the maps

T̃γ :
∧2 V −→ ∧2 V

α 7−→ α + 1
γ
⋆ α

(5.7)

T̂γ :
∧4 V −→ R

α ∧ β 7−→ Tr[T̃γ(α) ∧ β]
(5.8)

Tγ :
∧2 V −→ ∧2 V∗

α 7−→ T̂γ(α ∧ ·)
(5.9)

for γ ∈ R\{0}. Then all of  the above are isomorphisms for all γ , ±i, and they define a non-degenerate

symmetric inner product in
∧2 V . Moreover, T̃γ is symmetric with respect to the inner product induced by

the trace, i.e.

Tr[T̃γ(α) ∧ β] = Tr[α ∧ T̃γ(β)]

Remark 5.4. Observe that we asked γ ∈ R, so the condition γ , ±i should be automatic. As we

already mentioned, one can make sense of  the formalism in the complexification of so(3, 1), leading to the

Ashtekar formulation of  Palatini gravity, when global hyperbolicity and possibly a time gauge are enforced.

♢

Proof. Consider the linear map T̂γ :
∧4 V −→ R and evaluate it on the basis ui∧u j∧uk∧ul,

where {ui} is the basis of V that diagonalises η. It takes the value

T̂γ[ui ∧ u j ∧ uk ∧ ul] =
[
ϵi jkl +

2
γ
ηi(kηl) j

]
. (5.10)
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as can be easily checked by the fact that

⋆ui ∧ u j =
1
2
ϵi jklη

k⟨mηn⟩lum ∧ un

and

Tr(ui ∧ u j ∧ uk ∧ ul) = ϵi jkl.

If  we relabel the basis indices in
∧2 V via (12, 13, 14, 23, 24, 34) → (1, 2, 3, 4, 5, 6). It is

simple to gather that the representative matrix of Tγ with respect to the canonical bases in∧2 V and
∧2 V∗, relabeled as just mentioned, is given by

[Tγ] =



γ−1 0 0 0 0 1
0 γ−1 0 0 −1 0
0 0 −γ−1 1 0 0
0 0 1 γ−1 0 0
0 −1 0 0 −γ−1 0
1 0 0 0 0 −γ−1


and its determinant is det[Tγ] = −(1 + γ−2)3. Now, the combination

f αi j B ui ∧ u j + α ηimη jnϵ
mnkluk ∧ ul

for α ∈ R is a basis of
∧2 V for all α , ±i. In fact, the linear map Fα sending {ui ∧ u j} to

{ f αi j } reads

[Fα] =



1 0 0 0 0 α

0 1 0 0 −α 0
0 0 1 −α 0 0
0 0 α 1 0 0
0 α 0 0 1 0
−α 0 0 0 0 1


and det(Fα) = (1 + α2)3. In particular, for α = γ

2 we have T̃γ ≡ F γ
2
.
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To prove the symmetry of T̃γ we can compute

Tr[T̃γ(α) ∧ β] = αi jβmnTr
[(

uiu j +
1

2γ
ϵkl

i j ukul

)
∧ umun

]
=

= αi jβmn

(
ϵi jmn +

1
2γ
ϵkl

i j ϵklmn

)
= αi jβmn

(
ϵi jmn +

1
2γ
ϵi jpqϵ

pq
mn

)
=

= αi jβmnTr
[
uiu j ∧

(
umun +

1
2γ
ϵ pq

mnupuq

)]
= Tr[α ∧ T̃γ(β)]

or equivalently use the fact that Tr[T̃γ(α) ∧ β] = T̂γ(α ∧ β) and that T̂γ is a manifestly

symmetric bilinear map (c.f. (5.10)) on
∧2 V . ✓

We are now ready to start the analysis of  the boundary structure for the Palatini-Holst

theory in the classical and BV settings.

5.2 Classical boundary structure

Similarly to what we did for the classical Einstein Hilbert formulation of  General Relativity,

we can analyse the classical phase space for the Palatini-Holst formulation. We will compare

this to the BV extension in Section 5.3.

According to the tetrad framework outlined at the begining of  Chapter 5 the space of

classical fields for the Palatini-Holst theory of  gravity is given by

F cl
Holst = Ω

1(M,V)︸     ︷︷     ︸
e

⊕ AP︸︷︷︸
ω

(5.11)

whereAP denotes the space of  principal connections on a principal bundle P −→ M with

structure group S O(3, 1). A connection is locally described by a one-form ω (on a chart)

with values in so(3, 1) ≃ ∧2 V .

Remark 5.5. Notice that, in the literature (e.g.19,22), globally hyperbolic structure of  space-time is usually

assumed for Palatini-Holst gravity. We will instead consider any 3+1-dimensional manifold with bound-

ary, without specifying the kind of  boundaries we allow. This means we will not put any extra restriction
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on the fields (c.f. with Chapter 4, Section 4.2).

♢

Theorem 5.6. The classical phase space for the Palatini-Holst theory of  gravity

S PH =

∫
M

T̂γ [e ∧ eFω] + ΛTr(e4) (5.12)

is a symplectic manifold for all values of  the Barbero-Immirzi parameter γ ∈ R. Denoting by F̃ cl
PH the

space of  pre-boundary classical fields, i.e. the space of  restrictions of  fields an their jets to the boundary, the

symplectic reduction with respect to the kernel of  the differential of  the Noether 1-form π : F̃ −→ F cl∂
PH

can be performed and it reads :

π :


ẽ = e

Tγ

[
ω̃
]
= Tγ [ω̂]dn

c ed ∧ endxc

Tγ[β̃] =
∑

c Tγ [ω̂]dc
c ed ∧ ecdxc

(5.13)

and the symplectic form is found to be

ϖ∂ = 2
∫
∂M

T̂γ

[̃
e ∧ δ̃e ∧ δ(ω̃ + β̃)

]
(5.14)

Proof. The variation of  the Palatini-Holst action (5.6) splits into a bulk term, which we

will not consider in what follows, and a boundary term. The latter is interpreted as a pre-

boundary one-form on the space of  pre-boundary fields F̃ cl
Holst of  all restrictions of  fields

to the boundary, it reads

α̃ =

∫
∂M

T̂γ [e ∧ e ∧ δω] (5.15)

and it gives rise to the pre-boundary two-form

ϖ̃ =

∫
∂M

2T̂γ [δe ∧ e ∧ δω] (5.16)
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The restrictions of  fields to the boundary are denoted with the same symbols, but we un-

derstand ω as an so(3, 1)-valued one form on the boundary, while e is again a V valued

one-form on the boundary. In particular, in the basis {ui}i=1...4 of V we have e = ei
auidxa

whereas ω = ω
i j
a ui ∧ u jdxa where we fix that the indices a, b, c run over the boundary

directions 1, 2, 3. Notice, however, that the vectors ea = ei
aui are a basis of  a three dimen-

sional subspace W ⊂ V , and we can complete it to a basis of V by introducing a vector en

orthogonal to all the ea’s.

We rewrite (5.16) as ϖ̃ = 2
∫
∂M

Tr
[
δe ∧ e ∧ δTγ[ω]

]
, and using Lemma 5.3 we can read

the equations defining the kernel of ϖ̃ from (5.16)

(Xe)e = 0 (5.17a)

(XTγ[ω])e = 0 (5.17b)

Using the basis {eµ} = {ea, en}a=1...3 we can expand (Xe) and (XTγ[ω]) in the basis and find,

for (5.17a)

(Xe)µaeµebϵ
abc = 0⇐⇒ (Xe) ≡ 0 (5.18)

whereas, for (5.17b)

(XTγ[ω])µνa eµeνebϵ
abc = 0⇐⇒


(XTγ[ω])bn

a = 0 ∀a, b = 1, 2, 3

(XTγ[ω])bc
a free ∀a , b , c∑

a(XTγ[ω])ab
a = 0 ∀b = 1, 2, 3

(5.19)

Indeed, with a closer look at the pre-boundary two-form one can gather that the com-

ponents (XTγ[ω])bc
a do not appear explicitly, which means that they belong freely to the

kernel and therefore can be put to zero using their associated vertical vector fields. We can

perform a change of  coordinates in the space of  pre-boundary fields by writing

Tγ [ω] = Tγ [ω̂]d f
c ed ∧ e f dxc + Tγ [ω̂]dn

c ed ∧ endxc (5.20)

moreover we can define β B
∑

c ω̂
dc
c ed ∧ ecdxc so that we can read the above kernel

equations as (XTγ[ω̂])bn
a = (XTγ[β]) = 0 and project to the symplectic reduction. Pre-
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composing the symplectic reduction with the restriction map π̃ : F cl
Holst −→ F̃ cl

Holst we get

the map to the space of  boundary fields

πM :


ẽ = e

Tγ

[
ω̃
]
= Tγ [ω̂]dn

c ed ∧ endxc

Tγ [̃β] =
∑

c Tγ [ω̂]dc
c ed ∧ ecdxc

(5.21)

It is easy to check that α̃ is horizontal and that the one-form

α∂ =

∫
∂M

T̂γ

[̃
ẽeδ(ω̃ + β̃)

]
(5.22)

is the correct boundary one-form, namely: α̃ = π∗Mα
∂. ✓

5.3 Covariant BV theory

We would like to extend the classical theory to a BV theory including the symmetries. In

order to do this we must understand that the Palatini-Holst description of  gravity is again

a BRST-like gauge theory (as for the Einstein Hilbert version, Chapter 4) so that it admits

a minimal BV extension.

Differently from the EH case, in the Palatini Holst theory one has to deal with a space-

time symmetry and an internal gauge freedom, due to the so(3, 1) structure. For the results

in this Chapter and the following ones we will need this:

Lemma 5.7. Let P −→ M be a G principal bundle and let A be a connection on it. Consider any

degree 1 vector field ξ on M, and any associated vector bundleV with typical fiber the g module Vg. For

any differential form Φ ∈ Ω•(M,V) define the covariant Lie derivative to be

LA
ξ = [ιξ, dA]Φ (5.23)
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with dA being the covariant derivative induced by the connection A. We have the formula:

LA
[ξ,ξ]Φ − [LA

ξ , L
A
ξ ]Φ + [ιξιξFA,Φ] = 0 (5.24)

Proof. The proof  is just a straightforward but lengthy computation:

LA
[ξ,ξ]Φ − [LA

ξ , L
A
ξ ]Φ = L[ξ,ξ]Φ − [Lξ, Lξ]Φ + ι[ξ,ξ][A,Φ] + [A, ι[ξ,ξ]Φ]

− ιξd[ιξA,Φ] − ιξ[A, LA
ξΦ] + dιξ[ιξA,Φ] + [A, ιξLA

ξΦ] =

= 2ιξdιξ[A,Φ] − ιξιξd[A,Φ − dιξιξ[A,Φ] + [A, 2ιξdιξΦ − ιξιξdΦ]

− 2ιξdιξ[A,Φ] + ιξd[A, ιξΦ] − ιξ[A, ιξdΦ − ιξ[A, [ιξA,Φ]]

+ ιξ[A, dιξΦ] + d[ιξA, ιξΦ] + [A, ιξιξΦ + [ιξA, ιξΦ] − ιξdιξΦ] = 0

as it can be carefully checked by expanding all terms. We used the well known identity

L[ξ,ξ]Φ − [Lξ, Lξ]Φ = 0, of  which this Lemma is some special generalisation. ✓

This will be used to prove the following

Proposition 5.8. Consider the same assumptions of  Lemma 5.7 and denote by ρ the representation on

the g-module Vg. Let c ∈ Ω0[1](M, adP) be a degree 1 function with adP the adjoint bundle to the

G-bundle P −→ M, and define Q a vector field on the graded manifoldAP⊕Ω•(M,V)⊕X[1](M)⊕
Ω0[1](M, adP) by the assignment:

Q A = ιξFA − dωc QΦ = LA
ξΦ − ρ(c)Φ

Q c = 1
2 ιξιξFA − 1

2 [c, c] Q ξ = 1
2 [ξ, ξ]

(5.25)

Then [Q,Q] = 0.

Proof. It is chiefly a long and straightforward computation to check that Q cohomological, that

105



is to say Q2 = 0. We shall report the main steps of  the various checks:

Q2c =
1
4

([Lξ, ιξ]ιξFA+ιξ[Lξ, ιξ]FA)−1
2

(ιξιξd(ιξFA−dAc)+ιξιξ[A, ιξFA−dAc]+[ιξιξFA, c])

=
1
4

(ιξdιξιξFA − ιξιξdιξFA − ιξιξιξdFA) − 1
2
ιξιξ[A, ιξFA]

=
1
4

(ιξdιξιξdA− ιξιξdιξdA)+
1
8

(ιξdιξιξ[A, A]− ιξιξdιξ[A, A]− ιξιξιξd[A, A])− [ιξA, ιξιξdA]

=
1
4

(ιξdιξιξdA − ιξιξdιξdA) = −1
2
ξρξµ(∂ρ∂µAν)ξν = 0 (5.26)

with the last equality following from the contraction of  a symmetric tensor by an antisym-

metric one. The rest essentially follows from Lemma 5.7, as we have

Q2
PLΦ =

1
2

LA
[ξ,ξ]Φ − LA

ξ LA
ξΦ + LA

ξ [c,Φ] + ιξ[ιξFA,−dAc,Φ]

−[ιξFA,−dAc, ιξΦ] + [C, LA
ξΦ] − [c, [c,Φ]] =

=
1
2

LA
[ξ,ξ]Φ − LA

ξ LA
ξΦ −

1
2

[ιξιξFA,Φ] = 0

together with

Q2A =
1
2
ι[ξ,ξ]FA − ιξdA

(
ιξFA − dAc

)
+

1
2

dA

(
ιξιξFA − [c, c]

)
−

[
ιξFA − dAc, c

]
= −1

2
ιξιξdFA − ιξ

[
A, ιξFA

]
+

1
2

[
A, ιξιξFA

]
= −1

2
ιξιξdAFA = 0

and Q2ξ = 0 follows from the Jacobi identity. ✓

This result tells us how to implement diffeomorphism as gauge symmetries for different

theories involving differential forms with values in some representation of  the internal Lie

algebra g. As we shall see below this is the case of  the Palatini formulation of  General

Relativity.

In the literature, Piguet, following Moritsch, Schweda and Sorella42,43, suggested a BRST
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operator s for the Palatini Holst theory of  gravity that reads

s e = Lξe + [θ, e]

sω = Lξω + dωθ

s ξ =
1
2

[ξ, ξ]

s θ = Lξθ +
1
2

[θ, θ]

(5.27)

where ξ is a vector field with ghost number gh(ξ) = 1 and θ is a function with values in

Λ2V and ghost number gh(θ) = 1. This operator takes into account non global fields, like

ω, which is a connection on a non trivial bundle, and non covariant derivatives. We can

now propose a covariant version as follows:

Proposition 5.9. Define the new ghost variable c,

c B ιξω − θ (5.28)

which is a function with values in Λ2V of  ghost number gh(c) = 1. The BV operator for the Palatini

formalism is given by the cohomological vector field Q:

Qω = ιξFω − dωc Q e = Lωξ e − [c, e]

Q c = 1
2 ιξιξFω − 1

2 [c, c] Q ξ = 1
2 [ξ, ξ]

(5.29)

where Fω is the curvature of ω, Lωξ = [ιξ, dω] is the covariant Lie derivative along ξ with connection ω,

and ξ is a vector field with ghost number gh(ξ) = 1. Then, The minimal BV extension of S PH by Q in

(5.29) defines then a BV theory on the space of  fields(
FPH B T ∗[−1]Fmin,Ω

γ
BV

)
(5.30)
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where Fmin is defined as

Fmin B Ω1(M,V)︸     ︷︷     ︸
e

⊕ AP︸︷︷︸
ω

⊕X[1](M)︸   ︷︷   ︸
ξ

⊕Ω0[1](M, adP)︸            ︷︷            ︸
c

(5.31)

and the (−1)-symplectic form ΩγBV depending on the pairing Tγ.

Proof. First of  all notice that the operator (5.29) involves only global fields and covariant

operations. To prove that Q is indeed a symmetry of  the action we check that QS PH = 0 :

QS PH =

∫
2[ιξ, dω]eeFω − 2[c, e]eFω − eedω(ιξFω − dωc)

= −2dωeιξeFω − 2dωeeιξFω − 2dωιξeeFω − eedωιξFω + ee[Fω, c] − 2[c, e]eFω

2edωιξeFω+eιξedωFω−2dωeeιξFω−2dωιξeeFω+2dωeeιξFω−⟨ee, adcFω⟩−⟨adc(ee), Fω⟩ = 0

whereas the property of Q being cohomological follows from Proposition 5.8, where
∧2 V ≃

g, A = ω and V clearly bears a representation of g. ✓

Starting from the Holst action given in (5.6), and recalling the pairing Tγ coming from

the twisted volume T̂γ in
∧4 V defined in Lemma 5.3

T̂γ(αβ) = Tr
((
α +

1
γ
⋆ α

)
∧ β

)
for all α, β ∈ ∧2 V the minimally-BV-extended Holst action is then given by the expression:

S BV
PH =

∫
M

T̂γ(e ∧ e ∧ Fω) + Tr
{(
ιξFω − dωc

)
ω† −

(
[ιξ, dω]e − [c, e]

)
e†

}
+

1
2

∫
M

Tr
{(
ιξιξFω − [c, c]

)
c†

}
+

∫
M

1
2
ι[ξ,ξ]ξ

†
(5.32)

where the nature of  the fields, anti-fields, ghosts and anti-ghosts in FPH = T ∗[−1]Fmin is
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summarised in the following table:

Field Ω•(M) Λ•V Ghost Total Degree

ω 1 2 0 3
e 1 1 0 2
c 0 2 1 3
ξ / / 1 1
ω† 3 2 −1 4
e† 3 3 −1 5
c† 4 2 −2 4
ξ† 4 ⊗ 1 / −2 3

(5.33)

The ghost field ξ is a vector field on M, and its dual anti-ghost is a one form with values

in top forms. We will decompose it as follows:

ξ† = χv (5.34)

with χ ∈ Ω1(M)[−2] and v a volume form.

We are now ready to establish whether the BV theory (5.32) obtained by minimally ex-

tending the Palatini Holst action does satisfy the BV-BFV axioms or not.

Theorem 5.10. The BV data (FPH, S BV
PH,Q,Ω

γ
BV) on a (3+ 1) Pseudo-Riemannian manifold M

with boundary ∂M does not yield a BV-BFV theory. This is true for any value of γ, including the limiting

case γ → ∞, which yields the usual Palatini formulation of  gravity.

Proof. The full variation of S BV
PH reads as follows:

δS BV
PH =

∫
∂M

−T̂γ(eeδω) + Tr
{
δω(ιξω†) + δcω† + δe(ιξe†) + (ιδξe)e†

}
+

∫
∂M

Tr
{
−(ιξδe)e† − 1

2
δω(ιξιξc†)

}
+

∫
∂M

(ιδξχ)ιξv +
∫
M

Bulk Terms
(5.35)
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The variation of  the ξ-ghost part is computed as:

δ

∫
M

1
2
ι[ξ,ξ]χv =

∫
M

(
ι[δξ,ξ]χ −

1
2
ι[ξ,ξ]δχ

)
v =

∫
M

[[ιδξ, d], ιξ]χ︸        ︷︷        ︸
A

−1
2
ι[ξ,ξ]δχ

 v

∫
M

Av =
∫
M

(
ιδξdιξχ − ιξιδξdχ

)
v +

∫
M

(ιδξχ)dιξv +
∫
∂M

(ιδξχ)ιξv (5.36)

and thus

δ

∫
M

1
2
ι[ξ,ξ]χv =

∫
M

(
ιδξdιξχ − ιξιδξdχ −

1
2
ι[ξ,ξ]δχ

)
v −

∫
M

(ιδξχ)dιξv +
∫
∂M

(ιδξχ)ιξv (5.37)

If  we denote by ξn the transversal part of ξ with respect to the boundary, and with v∂ a

volume form on the boundary, we may rewrite ιξv = −ξnv∂.

To obtain the pre-boundary one form α̃ we must consider the restriction of  the fields

to the boundary and their possible residual transversal components. With an abuse of

notation, the restriction of  the fields to the boundary will be denoted by the same symbol,

whereas an apex n will be assigned to the transversal components. For instance, we will

write ιξϕ
∣∣∣
∂M
= ιξ∂ϕ

∂ + ϕnξ
n ≡ ιξϕ + ϕnξ

n by renaming the restrictions to the boundary

ϕ∂ ≡ ϕ where ϕ is any suitable field, and ξ∂ ≡ ξ. We obtain

α̃ =

∫
∂M

−T̂γ(eeδω) + Tr
{
δω(ιξω†) + δωω†nξ

n + δcω† − δe e†nξ
n − δe(ιξe†)

}
+

∫
∂M

Tr
{
−δ(enξ

n)e† − δ(ιξe)e† − δω (ιξc†n)ξn
}
− ξnιδξχ v∂

(5.38)
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and we may compute the pre-boundary 2-form ϖ̃ = δα̃ to be (a = 1 . . . 3)

ϖ̃ =

∫
∂M

− 2T̂γ(δeeδω) + Tr
[
δω(ω†aδξ

a) + δω(ιξδω†) − δωδξnω†n

+ δωδω†nξ
n + δcδω† + δe(e†aδξ

a) + δee†nδξ
n + δeδe†nξ

n

+ δ(enξ
n)δe† − eaδξ

aδe† + δω δξnιξc†n − δω ξnιδξc†n − δω ξnιξδc†n
]
+

+ (ξnδξnδχn − δξnδξnχn − δξnχaδξ
a + ξnδχaδξ

a) v∂

(5.39)

The kernel of ϖ̃ is defined by the equations:

(Xω†) = 0 (5.40a)

(Xc) = ιξ(Xω) (5.40b)

(Xξρ)eρ + (Xen)ξ
n = 0 (5.40c)

together with

T̂γ {(Xω) ∧ e ∧ δe} = 1
2

Tr {Ω ∧ δe} (5.41)

T̂γ {(Xe) ∧ e ∧ δω} = 1
2

Tr {E ∧ δω} (5.42)

where

Ω B
[
(Xξn)e†n + (Xe†n

)ξn + ι(Xξ)e
†
]

(5.43)

E B
[
(Xω†n

)ξn − (Xξρ)ω†ρ + (Xξn)ιξc†n − ι(Xξ)c†nξn − ιξ(Xc†n
)ξn

]
(5.44)

with Ω ∈ Ω2(∂M) ⊗∧3V and E ∈ Ω2(∂M) ⊗∧2V . In addition we have

Tr
[
(Xe)e†n − (Xω)ω†n − (Xe†)en + (Xω)c†naξ

a
]
+ (5.45)

−
(
2(Xξn)χn + (Xχn)ξ

n + (Xξa)χa

)
v∂ = 0

Tr
[
(Xe)e†a − (Xω)ω†a − (Xω)c†naξ

n − (Xe†)ea

]
+ (5.46)

−
(
(Xξn)χa + (Xχa)ξ

n
)

v∂ = 0
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where the latter is valid for all a = 1, 2, 3, and finally, for all ρ = 1 . . . 4

(Xω)ξn = 0 (5.47a)

(Xe)ξn = 0 (5.47b)

ιξ(Xω)ξn = 0 (5.47c)

(Xξ)ρξn = 0 (5.47d)

Although the equations in (5.47) look singular, it is easy to check they are not†, since (ξn)2 =

0. Crucially, though, equation (5.42) is highly singular. As a matter of  fact, counting the

number of  unknowns (the (Xe)i
a are 12, independent fields) against the number of  equations

(the δωi j
a are 18 independent variations) it is easy to gather that the system admits solutions

only when relations among the E coefficients (5.44) are imposed. On the other hand such

relations are singular in that they involve polynomial expressions of  odd fields only.

The kernel of ϖ̃ has therefore a larger set of  generators depending on the point on the

space of  fields, and the pre-boundary two form is therefore not pre-symplectic. ✓

This result is a no-go theorem, at least for what concerns the BV-BFV quantisation

scheme. It is telling us that there is something that crucially fails when we try to induce

symmetry-compatible data on the boundary. The space of  boundary fields - i.e. the re-

duction by the kernel of ω̃ - is not smooth, and therefore it does not yield a smooth BFV

resolution of  the classical reduced phase space, compatible with the boundary in the sense

of  Definition (2.5), Section 2.2. The source of  this degeneracy seems very much due to the

fact that we have too many free fields.

Remark 5.11. What fails in satisfying the BV-BFV axioms is the pre-symplecticity of  the pre-boundary

two form ω̃, as its kernel does not define a subbundle of  the tangent bundle on the space of  fields. This is

a first, highly non-trivial example where this condition is not fulfilled.

♢

Notice that the classical theory is well defined, since symplectic reduction is possible

when the symmetries are omitted. The (homogeneous) system of  kernel equations is triv-

†Here we are assuming that the rest of  the equations for Xω and Xe can be partially solved, even it it won’t
be possible to solve them fully. This is just to remark that the problem does not come from (5.47).

112



ially solved, when symmetries are switched off. At the classical level we expect the structure

to be equivalent to the Eistein Hilbert action when the condition that ω be Levi Civita is

imposed. This symplectic reduction, and the coisotropic submanifold of  canonical con-

straints may also be independently formulated in terms of  the BFV formalism, but this is

not compatible with bulk BV structure.

What this result is hinting, though, is that if  we want to encode symmetries in a consistent

way we cannot consider the Palatini formalism as it is. Observe that in three dimension

the ratio equations/unknowns becomes 1, and the problem is not present, in agreement

with the fact that the theory is basically a topological BF theory, and the CMR axioms are

satisfied for such theories.

Comparing this result with what we found in the case of  the EH formalism (Theorems

4.11 and 4.12) we can understand that something goes wrong when extending the physical

fields to two separate entities: the tetrad e and the spin connection (with trivial torsion)

ω. The two theories are, in fact, equivalent only on half  shell, that is to say, only when the

equation of  motion (5.3) is enforced, i.e. requiring that ω be the Levi-Civita connection.

To overcome this problem one could try to implement condition (5.3) in the BV machin-

ery, or resort to other equivalent descriptions of  the classical theory8,29,30,50. The former

approach is considered in Section 5.4, whereas the latter is analysed in detail in Chapter 6.

5.4 Half-shell localisation

We have seen in the previous sections how the BV version of  the Palatini Holst action does

not satisfy the BV-BFV axioms. This is a deviation from the equivalence at the classical

level with the Einstein-Hilbert formulation of  General Relativity (cf. Chapter 4).

It is clear that the Palatini-Holst action is slightly more general than the Einstein-Hilbert

formulation of  GR. The fact that the (torsion free) connection is independent from the

metric, and it is uniquely determined only when the Half-Shell constraint (5.3) is enforced

marks a difference in the two theories. One question one could ask is whether there is a

way to implement it consistently with the symmetries, while still holding on to the tetrad

formalism.

In this Section we will consider such a localisation to the Half-Shell submanifold dωe = 0
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through a Lagrange multiplier t ∈ Ω2(M,V∗) where we may identify the fibers ofV∗ with∧3 V :

S HS =

∫
M

1
2

T̂γ [e ∧ e ∧ Fω] + Tr [t ∧ dωe] +
Λ

4
Tr [e ∧ e ∧ e ∧ e] (5.48)

Theorem 5.12. The equations of  motion for the action functional S HS coincide with those of  the Einstein-

Hilbert theory and moreover, whenever M admits a boundary ∂M, it exhibits a symplectic space of  bound-

ary fields. The projection to this space is given by

πM :

̃t = t + Tγ[ω − ω] ∧ e

ẽ = e
(5.49)

where ω is the Levi Civita e-compatible connection, and the (exact) symplectic form reads

ϖ∂ =

∫
∂M

Tr
[
δ̃t δ̃e

]
(5.50)

Proof. First of  all let us analyse the Euler Lagrange equations for the action. They read:

δω : dωe ∧ e − t
◦
∧ e = 0 (5.51a)

δe : e ∧ Tγ [Fω] + dωt + Λe3 = 0 (5.51b)

δt : dωe = 0 (5.51c)

where t
◦
∧ e stands for δ

δω
(t ∧ ω · e) = ti jk

µν em
ρ ϵi jklϵ

µνρσ for all σ space-time index and l,m

internal indices. The dot denotes indeed the action of ω on e. Enforcing the half  shell

constraint dωe = 0, which implies that ω is the Levi-Civita connection, represented in the

tetrad formalism by the special connection ω, we obtain t = 0 and the Einstein equation

in the tetrad formalism

e ∧ Fω + Λe3 = 0 (5.52)

Starting from the computations in Theorem 5.6, we gather that the pre-boundary two-
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form ϖ̃HS reads

ϖ̃HS =

∫
∂M

T̂γ [δe ∧ e ∧ δω] − Tr [δt ∧ δe] (5.53)

and the kernel of  this two-form is easily found to be:

(Xt) = (XTγ[ω]) ∧ e (5.54a)

(Xe) = 0 (5.54b)

This means that ω can be fixed using the vertical vector field

Ω = (XTγ[ω])
δ

δTγ [ω]
+ (XTγ[ω]) ∧ e

δ

δt
(5.55)

and t is modified accordingly. Flowing along Ω we can set ω to be a background con-

nection ω, which we may eventually choose to be the restriction to the boundary of  the

solution to the EL equations, and this fixes (XTγ[ω]) = Tγ

[
ω − ω0

]
. Then, by solving the

straightforward differential equation ṫ = Tγ[ω − ω0] ∧ e0:

t(s) = t0 + Tγ[ω − ω0] ∧ e0 s (5.56)

we set t(1) = t0 + Tγ[ω − ω0] ∧ e0.

Notice, however, that the pre-boundary one-form is not horizontal with respect to the

kernel foliation defined by equations (5.54), as the generator Ω = δ
δω

does not lie in the ker-

nel of α̃. We can nevertheless modify α̃ by adding the exact term 1
2

∫
M

d T̂γ

[
e ∧ e ∧ (ω − ω)

]
+∫

M
d(e ∧ t) to the action (5.48), yielding

α = α̃ +
1
2
δ(e ∧ e ∧ Tγ[ω]) + δ(e ∧ t) (5.57)

and it is easy to gather that the following one form on the space of  boundary fields

α∂ =

∫
∂M

t̃δ̃e (5.58)
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will be such that

α = π∗Mα
∂ (5.59)

where the projection to the space of  boundary fields πM is then clearly given by (5.49), as

we can set t̃ B t + Tγ

[
ω − ω

]
∧ e. ✓

Proposition 5.13. The projection to the space of  classical boundary fields of  the Euler Lagrange equation

for the action (5.48) is isotropic but not Lagrangian.

Proof. Consider the Euler Lagrange equations for the Half-Shell-constrained Palatini action

as given in (5.51). Their projection to the space of  pre-boundary fields is given by their

restrictions as differential forms:

π̃(EL) ≡ EL
∣∣∣
∂M

:


ω = ω

t = 0

e ∧ Fω + Λe3 = 0

(5.60)

Notice that we substituted equation dωe with the equivalent condition on the connection

ω = ω. Taking into account the projection to the space of  boundary fields (5.49) we can

easily recognise the projected critical locus to be

EL∂ B πM(EL) :

̃t = 0

ẽ ∧ Fω + Λẽ3 = 0
(5.61)

since t̃ = t + Tγ

[
ω − ω

]
∧ e, the critical locus yields precisely t = 0 when ω = ω. It is easy

to check that EL∂ is isotropic, as t̃ = 0 implies ω∂
∣∣∣
EL∂
= 0, confirming the general theory

since δS HS = EL + π∗Mα
∂ .

Actually, t̃ = 0 defines a Lagrangian submanifold, which is then spoiled by equation

ẽ ∧ Fω + Λẽ3 = 0. A way to see this is by explicitly checking that their Poisson bracket is

not proportional to the constraints, and thus EL∂ fails to be a coisotropic submanifold. ✓

Since the two theories are actually classically equivalent only when the constraint dωe = 0
is imposed, it is not unreasonable to think that it precisely marks the deviation at the BV-
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BFV level, meaning that the BV Palatini action might in fact become BV-BFV equivalent

to the Einstein-Hilbert theory when the constraint is enforced in the right way.

The following result precisely hints at this direction:

Proposition 5.14. The submanifold H : dωe = 0 in the space of  fields for the BV-extended Palatini-

Holst theory FHolst is coisotropic and Q-invariant.

Proof. To verify that H defines a coisotropic submanifold we must consider the Poisson

bracket of  two local functions of  the form

fα1,2 =

∫
M

Tr
[
α1,2 ∧ dωe

]
with α1,2 ∈ Ω2[−1](M,V∗) (notice that we will consider its total parity to be odd), but

since the local form of  the (odd)-Poisson structure induced byΩ involves a derivation with

respect to an anti-field for every derivation with respect to a field we can easily gather that

(
fα1 , fα2

)
=


∫
M

Tr [α1 ∧ dωe] ,
∫
M

Tr [α2 ∧ dωe]


Ω

= 0. (5.62)

To prove the Q invariance we compute

Q
∫
M

Tr [α ∧ dωe] = −
∫
M

Tr [α ∧ (Qω)e] +
∫
M

Tr [α ∧ dω(Qe)]

= −
∫
M

Tr
[
α ∧ (ιξFω − dωc)e

]
+

∫
M

Tr
[
α ∧ (dωLξe − dω(ce))

]
= −

∫
M

Tr
[
α ∧ (ιξFωe)

]
+

∫
M

Tr
[
α ∧ dωιξdωe

]
−
∫
M

Tr
[
α ∧ (Fωιξe)

]
+

∫
M

Tr [α ∧ (cdωe)]

(5.63)

where the terms containing dωc cancel out. Notice now that the expression ιξ (α ∧ Fωe) is

identically zero for we are contracting a 5-form, and therefore we can move the contraction
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at the price of  a sign:

−Tr
[
α ∧ (Fωιξe)

]
= Tr

[
ιξα ∧ (Fωe)

]
+ Tr

[
α ∧ (ιξFωe)

]
Moreover, recalling that Fω = d2

ω we can carry on the computation as

Q
∫
M

Tr [α ∧ dωe] =
∫
M

Tr
[
ιξα ∧ d2

ωe
]
+

∫
M

Tr
[
α ∧ dωιξdωe

]
+

∫
M

Tr [α ∧ cdωe] =

∫
M

Tr
[
dωιξα ∧ dωe

]
−

∫
M

Tr
[
ιξdωα ∧ dωe

]
+

∫
M

Tr [cα ∧ dωe] (5.64)

where we have integrated by parts dω and we have used the identity ⟨α, adcdωe⟩ = ⟨adcα, dωe⟩
owing to the degrees of c and α. Understanding adcα ≡ cα we conclude that

Q
∫
M

Tr [α ∧ dωe] = −
∫
M

Tr
[(

Lωξ α − cα
)
∧ dωe

]
(5.65)

which vanishes on H. ✓

This is a first necessary step to think that one can recover a BV-BFV theory for the

Palatini-Holst formulation of  GR, when the Half-Shell constraint is enforced. Remarkably,

though, this is not the case.

To incorporate the constraint in the BV formalism what one has to do is to extend the

Palatini-Holst action (5.6) by adding the term
∫

M
Tr [t ∧ dωe] as we did in (5.48). This

time, we have to take into account the explicit symmetry of t as well, which was spelled out

explicitly in Proposition 5.14. The new constrained action we will consider then reads

S HC B S BV
PH +

∫
M

Tr [t ∧ dωe] +
∫
M

Tr
[(

Lωξ t − ct
)

t†
]

(5.66)

where t† ∈ Ω2[−1](M,V) will be the field dual to t. The space of  fields gets enlarged
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accordingly to

FHC B T ∗[−1]

Fmin ⊕
Ω2(M) ⊗

3∧
V

 (5.67)

with its modified canonical (−1)-symplectic form ΩγHC .

Theorem 5.15. The BV theory given by the constrained Palatini-Holst action (FHC, S HC,Q,Ω
γ
HC)

does not satisfy the BV-BFV axioms.

Proof. To prove this statement we will need to start from the computations of  Theorem

5.10. The additional terms in S HC will change the pre-boundary one-form to

α̃HC = α̃PH −
∫
∂M

Tr [tδe] +
∫
∂M

Tr
[
δt

(
ιξt† + t†nξ

n
)
+ δ

(
ιξt + tnξ

n
)

t†
]

(5.68)

were α̃PH is like in (5.38). The addition to the pre-boundary two form ϖ̃ of (5.39) is given

by

ϖ̃HC = ϖ̃PH +

∫
∂M

Tr
[
−δtδe + δt

(
ιδξt† + δt†nξ

n − t†nδξ
n
)
+ ιδξtδt†

]
(5.69)

The kernel equations get modified such that on top of  equations from (5.40) to (5.47)

we have the new equation

(Xe) = ι(Xξ)t
† − t†n(Xξn) + (Xt†n

)ξn (5.70)

that will make equations (5.41) even more singular. As a matter of  fact, using equation

(5.40c), namely

(Xξρ)eρ + (Xen)ξ
n = 0

to solve for (Xξ) as a function of (Xen)ξ
n we find that plugging (5.70) into (5.41) we obtain

a series of  18 unsolvable relations between odd fields, of  the kind:

Tγ

[(
−t†ρ(Xen)

ρ + (Xt†n
)
)
∧ e

]i j

ab
ξn =

=
[
(Xω†n

)ξn + (Xen)
ρξnω†ρ − (Xen)

nξnιξc†n − ι(Xξ)c†nξn − ιξ(Xc†n
)ξn

]i j

ab
(5.71)
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The modified pre-boundary two-form ϖ̃HC is therefore not pre-symplectic, thus failing

to satisfy the BV-BFV axioms. ✓

The above Theorem 5.15 significantly strengthens the failure in fitting the Palatini-Holst

description of  General Relativity in the CMR framework. The BV theory obtained by ex-

plicitly considering the Half  Shell constraint is fully classically equivalent to the Einstein

Hilbert formulation of  GR. Yet the two theories differ in the BV setting, i.e. when symme-

tries are explicitly taken into account.

As we will see in Chapter 6, the situation improves ever so slightly when a further step in

the abstraction is performed, and instead of  a tetrad field e one considers a Lie algebra valued

2-form, by constructing a broken BF theory‡. Understanding this behaviour will possibly

help us clarify which classically equivalent actions do indeed allow for a CMR description,

letting us step further in the program of  BV-BFV quantisation5.

‡Broken here means that the theory one has to consider does not enjoy the full distribution of  symmetries
of  the usual BF theory.

120



6
BF formulations of  General Relativity

In this Chapter we will focus on alternative formulations of  General Relativity8,45,30. The

main common idea underlying these alternative formulations is that both the space-time

metric (as in Chapter 4) and the (co-)tetrad field (as in Chapter 5) are to be considered

as non-fundamental, derived quantities. These are replaced by a rather abstract field B, a

two form with values in a Lie algebra, together with a connection A in a principal bundle

over the space-time manifold M for the corresponding Lie group. Typically one chooses

S O(3, 1) to be the structure group, but generalisations are taken into account29, in view of

a unification of  fundamental forces.

Generally speaking, theories of  this kind are called BF theories, when the action func-

tional is taken to be of  the form

S =
∫
M

Tr [B ∧ F] (6.1)
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where Tr denotes some pairing in g, like the Cartan-Killing form.

BF theories are invariant under the action of  a large symmetry distribution. As a matter

of  fact they are topological theories, in that there are no local degrees of  freedom left when

the symmetries are taken into account. In other words all solutions to the equations of

motion are locally gauge equivalent and there is no residual dynamics.

It is nevertheless known that General Relativity is a gauge theory that retains two propa-

gating degrees of  freedom, up to gauge equivalence; therefore, if  we want to describe GR,

it is of  prime importance that we device some mechanism to break the symmetry down to

a basic diffeomorphism invariance, as we expect a theory of  GR to enjoy.

In particular, on a closed manifold, a BF theory admits two different symmetry trans-

formations: the internal gauge transformation δgA = dAc, δgB = [c, B] and the shift

transformation δsB = dAτ, where c is a g-valued function and τ a g-valued one-form.

It is possible to add to the BF action a potential term V(B) depending solely on the B

field. One very typical example of  a potential is a quadratic coupling of  the kind V(B) =
Λ
2 ⟨B, B⟩, with ⟨·, ·⟩ being some possibly degenerate inner product, and Λ a constant, to be

interpreted as the cosmological constant.

Sometimes, the potential can break the shift symmetry, and the equations of  motion will

yield an effective theory that recovers the Einstein Hilbert action of  the Palatini action. In

what follows we will analyse two different examples of  symmetry breaking. First we will

consider the singular potential given by the specification of  a Lagrangian multiplier coupled

to a quadratic BB term. This action, together with its modifications and extensions, goes

under the name of  Plebanski action29 and will be analysed in Section 6.1.

Another possible way of  describing General Relativity using a BF theory is through the

BF version of  the MacDowell-Mansouri action9,49,30. There, the main idea is to extend the

Lie algebra so(3, 1) to so(4, 1) and then explicitly break the symmetry in the BF action by

introducing a potential that will at the same time reduce the internal gauge symmetry back

to the Lorentz group, and that will forbid the invariance under the shift symmetry. This

action will be analysed in Section 6.2.

The infinitesimal transformations for the Lie group of  space-time diffeomorphism, namely

the Lie derivative along generic vector fields, can be recovered from the symmetries of  the
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BF theory30. As a matter of  fact, for ξ ∈ Γ(T [1]M) we can compute

δdA B LξA = ιξdA − dιξ + ιξ[A, A] − ιξ[A, A] = ιξF − dAιξA

and

δdB B LξB = ιξdB − dιξB + ιξ[A, B] − ιξ[A, B] = ιξdAB − dAιξB − [ιξA, B]

It is clear that the Lie derivatives above can be expressed on shell (i.e. when F = 0, dAB = 0)

using the symmetries of  the BF theory, under the identification c = ιξA and τ = ιξB. This

however doesn’t keep a particular action from being symmetric with respect to diffeomor-

phism also off  shell.

As a matter of  fact in all BF theories we will consider in this Chapter, even though the

shift symmetry for the B field will be broken either by a potential term or by a constraint,

we will still retain the symmetry under space-time diffeomorphisms.

6.1 Plebanski action

The Plebanski action for GR is a BF-like action functional for the Lie algebra so(3, 1) ≃∧2 V , with (V, η) a pseudo-Euclidean vector space, together with a dynamical constraint.

We include a Lagrange multiplier in the action, in such a way that when the constraint is

enforced, the Palatini(-Holst) formulation is recovered. This is done through the introduc-

tion of  a function ϕ with values in the symmetric power
(∧2 V∗

)⊗s2
coupled to the B field

as

ϕi jklBi j ∧ Bkl (6.2)

Considering the symmetry of  the indices of ϕi jkl we gather that it has 21 free component,

which is one too many if  we want to breakdown the symmetry of  the BF action so, to

be left with 2 degrees of  freedom. The customary way to overcome this is by fixing the

trace 31,44,30, by weighing the two different invariant volume forms in
(∧2 V

)⊗s2
, namely ϵ i jkl

and ηi jkl = ηi⟨ jηk⟩l. One has to introduce a second Lagrange multiplier ψ ∈ Ω4(M) to
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enforce the condition (
aϵ i jkl + bηi jkl

)
ϕi jkl(x) = 0

at every point.

It is well known in the literature (e.g.46 and references therein) that when such constraints

are enforced there exist tetrads e : T M −→ V, where V is a vector bundle with typical

fibre the pseudo-Euclidean vector space (V, η), such that

B = ±Tγ(e ∧ e) (6.3)

where Tγ is the linear map defined in Lemma 5.3 of  Chapter 5 and γ is recovered as γ = b
a .

Remark 6.1. The constraint (6.2) is usually called simplicity constraint when the trace condition on

ϕ is enforced. In the literature31,44, different versions of  this constraint are considered, basically depending

on which volume form one uses to take the trace. The mixed version we are considering here goes under the

name of Non-Chiral Plebanski action, and is the correct one to recover the Palatini-Holst formulation

of  General Relativity with Barbero-Immirzi parameter. Other choices of  volume forms will yield either the

standard Palatini formulation (when ϵ i jkl is chosen), or a topological term (when ηi jkl is chosen). For a

complete account on this topic we refer to the excellent paper30.

♢

In this framework it is possible to introduce a cosmological term as well44,30, by adding

a constant coupling of  the form

1
6

(
λ

2
ϵi jkl + µηi jkl

)
Bi j ∧ Bkl (6.4)

The action we will consider in this chapter is therefore obtained by putting together all

of  the above modifications to (6.1)

S PL =

∫
M

(
B, F

)
η −

1
2
⟨⟨φ(λ,µ), BB⟩⟩ + ψ⟨⟨Ha,b, ϕ⟩⟩ (6.5)

where φ(λ,µ)
i jkl =

(
ϕi jkl +

λ
6ϵi jkl +

µ

3ηi jkl

)
, Hi jkl

a,b = (aϵ i jkl+bηi jkl), while (·, ·)η denotes the inner
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product in g = so(3, 1) ≃ ∧2 V induced by η, and ⟨⟨·, ·⟩⟩ the canonical pairing in (g∗)⊗s2.

Denote by
∧

S V∗ the vector bundle with fiber (g∗)⊗s2. To explicitly include the symmetries

in the picture we will need the following result:

Proposition 6.2. Let M be a 4 dimensional manifold together with an S O(3, 1) bundle P −→ M

over it. Consider the space of  fields:

FPL = T ∗[−1]Fmin (6.6)

where we define Fmin to be*

Ω2(M,
2∧
V) ⊕Ω0(M, adP)[1]︸                                  ︷︷                                  ︸

(B,c)

⊕ AP︸︷︷︸
A

⊕Ω0(M,
∧

S

V∗)︸            ︷︷            ︸
ϕ

⊕Ω4(M)︸ ︷︷ ︸
ψ

⊕Γ(T [1]M)︸     ︷︷     ︸
ξ

(6.7)

AP denotes connections on the principal bundle P. Consider the degree 1 vector field QPL on FPL defined

by the assignment (we drop the PL subscript)

QB = LA
ξ B − [c, B]; QA = ιξFA − dAc; Qϕ = LA

ξ ϕ − ρcϕ;
Qc = 1

2

(
ιξιξFA − [c, c]

)
; Qξ = 1

2 [ξ, ξ]; Qψ = Lξψ
(6.8)

where ρc denotes the representation of so(3, 1) in (g∗)⊗s2.

If  we denote by S BV
PL the minimally extended BV action (cf. Theorem 2.3, Section 2.2) S BV

PL =

S PL + (QΦ,Φ†), with Φ being the base fields in Fmin and Φ† the respective cotangent fields, then the

data (FPL, S BV
PL ,QPL,ΩPL) defines a BV theory. The action explicitly reads:

S BV
PL =

∫
M

{(
B, F

)
η −

1
2
⟨⟨φ(λ,µ), BB⟩⟩ + ψ⟨⟨Ha,b, ϕ⟩⟩ − Lξψψ† +

1
2
ι[ξ,ξ]ξ

†

−⟨ (LA
ξ B − [c, B]

)
, B†

⟩ − ⟨ (
LA
ξ − ρcϕ

)
, ϕ†

⟩
+

⟨ (
ιξF − dAc

)
, A†

⟩}
(6.9)

where ⟨·, ·⟩ is the canonical pairing between g and its dual.
*We use the shorthand notations V∧2 and

(
V∗∧2⊗sV∗∧2

)
for typographic reasons.
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Proof. First of  all we prove that QPL annihilates S PL

QPLS PL =

∫
M

[
(
LA
ξ B − [c, B], FA

)
η −

(
B, dA(ιξFA − dAc)

)
η −

1
2
⟨⟨LA

ξ ϕ − ρcϕ, BB⟩⟩

− ⟨⟨ϕ, (LA
ξ B − [c, B])B⟩⟩ + Lξψ⟨⟨aϵ + bη, ϕ⟩⟩ + ψ⟨⟨aϵ + bη, LA

ξ ϕ − ρcϕ⟩⟩ =

=

∫
M

−(B, LA
ξ FA

)
η −

(
[c, B], FA

)
η +

(
B, dAιξFA − ιξdAFA

)
η + ⟨B, [F, c]⟩

+ ⟨⟨ϕ, LξBB⟩⟩ + 1
2
⟨⟨ρcϕ, BB⟩⟩ − ⟨⟨ϕ, LξBB⟩⟩ + ⟨⟨ϕ, [c, B]B⟩⟩ − ψ⟨⟨Ha,b, ρcϕ⟩⟩ = 0 (6.10)

where we used Ha,b = (aϵ + bη), the Bianchi identity dAFA = 0, we integrated by parts the

Lie derivatives and used that ⟨[c, X],Y⟩ = ⟨X, [Y, c]⟩. The same holds for the representa-

tion ρc, namely ⟨⟨ρcϕ, BB⟩⟩ = −2⟨⟨ϕ, [c, B]B⟩⟩.
To check that QPL is cohomological we essentially resort to Proposition 5.8, Chapter 5,

Section 5.3, repeatedly, for Φ being B, ϕ and ψ. ✓

Given the facts above, we can proceed to the analysis of  the boundary structure for this

BV theory. It turns out that we will encounter obstructions also in this case, in fact:

Theorem 6.3. The BV data given in Proposition 6.2, when M is allowed to have a boundary, does

not satisfy the BV-BFV axioms.

Proof. Compute the variation of  the action (6.9) to obtain the pre-boundary one-form α̃:

α̃ =

∫
∂M

BδA + δAιξA† + δAA†nξ
n − δBιξB† − δBB†nξ

n − δ(ιξB)B† − δ(Bnξ
n)B†

− δϕιξϕ† − δϕϕ†nξn − δ(ιξψ)ψ† − δ(ψnξ
n)ψ† + δcA† − 1

2
δAιξc†nξ

n − ξnδξρξ†ρ (6.11)

where we omitted the obvious pairing symbols to keep the notation clean. The pre-

126



boundary two-form reads

ω̃ =

∫
∂M

δBδA + δAιδξA† + δAιξδA† − δAδξnA†n + δAξnδA†n + δBιδξB†

+ δBδξnB†n + ιδξBδB† − δBξnδB†n − δξnBnδB† + ξnδBnδB† + δcδA†

+ δϕιδξϕ
† + δϕιξδϕ

† + δϕδξnϕ†n − δϕξnδϕ†n + ιδξψδψ
† + ιξδψδψ

† − 1
2
δAιδξc†nξ

n

+
1
2
δAιξc†nδξ

n − 1
2
δAιξδc†nξ

n − δξnψnδψ
† + ξnδψnδψ

† − δξnδξρξ†ρ + ξ
nδξρδξ†ρ (6.12)

The kernel of  the two-form ω̃ is defined by the following groups of  relations:

(XB) = (Xξn)A†n − ι(Xξ)A† − (XA†n
)ξn +

1
2

(
ι(Xξ)c

†
n + ιξ(Xc†n

)
)
ξn − 1

2
(Xξn)ιξc†n (6.13a)

(XA) = −ι(Xξ)B† − (XB†n
)ξn − (Xξn)B†n (6.13b)

ι(X̂ξ)B̂ = −(XBn)ξ
n (6.13c)

(Xc) = ιξ(XA) (6.13d)

(XA†) = 0 (6.13e)

where by the hat we mean that all components transverse and parallel to the boundary of  the

respective field appear in the expression, that is to say ι(X̂ξ)B̂ = −(Xξ)ρBρ with ρ = 1, 2, 3, n.

In addition to equations (6.13) we have

(XB†)Bρ = (XB)B†n − (XA)A†n + (Xϕ)ϕ†n − (Xψ†)ψn+

+ (XA)ιξc†ρ − (Xξn)ξ†ρ − (Xξ†ρ
)ξn − δn

ρ(Xξµ)ξ†µ (6.14)

and the set of  (critical) equations

ιξ̂(X̂ϕ†) = ι(X̂ξ)ϕ̂
† (6.15a)

ιξ̂(X̂ψ) = ι(X̂ξ)ψ̂ (6.15b)

Notice that these equations are singular in that they depend on generically not invertible
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fields, such as ψ̂ and ϕ̂† (which is addition is an odd field). Finally

(XB)ξn = 0 (6.16a)

(XA)ξn = 0 (6.16b)

(X̂ξ)ξn = 0 (6.16c)

ι(XA)ξn = 0 (6.16d)

(XB†)ξn = 0 (6.16e)

(Xϕ)ξρ = 0 ∀ρ = 1, 2, 3, n (6.16f)

(Xψ†)ξρ = 0 ∀ρ = 1, 2, 3, n (6.16g)

Equations (6.13a), (6.13b), (6.13d) and (6.13e) are easily solved. Analysing equation

(6.13c), we might require that B(x) is non degenerate as a map from
∧2(TxM) to

∧2 V , in

order to solve for (X̂ξ). Anyway this does not solve the of  singularity of  equations (6.15).

Equations (6.16f) and (6.16g) are also singular: they imply that either ξ is the zero vector

field, or we have that (Xϕ) = (Xψ†) = 0.

The kernel of ω̃ does not have constant rank, and symplectic reduction cannot be per-

formed. Therefore, the Plebanski formalism for General Relativity does not yield a BV-

BFV theory. ✓

From the proof  of  the Theorem some interesting things emerge. First of  all the role

of  the Lagrange multipliers. The main source of  singularity comes, in fact, from equations

involving ϕ, ψ, their dual antifilelds and the respective vector field coefficients. Moreover, it

is crucial to observe that we enforced the constraint ⟨⟨Ha,b, ϕ⟩⟩ = 0 by means of  a Lagrange

multiplier, but we could have done it as it is usually done in the literature, i.e. by simply

requiring ϕ to have null trace. This means that the among the simplicity constraints coming

from the variation of  the term ⟨⟨φ(λ,µ), BB⟩⟩ with respect to ϕ, some relations would have

had to be enforced. Classically this is allowed, but additional care is required when dealing

with symmetries and non vanishing boundary conditions, as one should make sure that the

constraint be invariant under the action of  symmetries, possibly up to boundary terms.

This is indeed the case for what concerns internal gauge symmetries, as the term ⟨⟨Ha,b, ϕ⟩⟩
vanishes when acted upon by the generator of  Lie algebra trasformations, for both ϵ i jkl and
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ηi jkl are invariant volume-forms. It is nevertheless not true when considering diffeomor-

phisms as explicit gauge transformations. As a matter of  fact, to keep the action invariant

one has to compensate for the transformation δdϕ = LA
ξ ϕ with the obvious transformation

of  the Lagrange multiplier δdψ = Lξψ (cf. Proposition 6.2).

The interaction between Lagrange multipliers and spacetime diffeomorphisms as gauge

symmetries appears to be incompatible, in the sense that the constraints spoil the regular-

ity of  the B(F)V theory on the boundary. Part of  the problem comes from the fact that

multipliers are not fully dynamical, in the sense that they are not allowed to have a kinetic

term. Such a term would otherwise make the critical locus different from that of  General

Relativity, and the two theories would not even be classically equivalent anymore. Indeed,

one can compare the results in Chapter 5, Section 5.4, to see that in the Palatini-Holst for-

malism the observation applies, when we try to enforce the Half-Shell constraint with a

Lagrange multiplier.

We can probably say that the symmetry breaking is better achieved when a different

mechanism is taken into account, which doesn’t require localisation on a constraint sub-

manifold. In what follows we will see how this can be done for a theory of  general Relativity,

by rewriting the MacDowell-Mansouri action9,50 as a BF action49,30 for a suitable extension

of  the Lie algebra.

6.2 MacDowell Mansouri action

The second action of  the BF-kind that we would like to approach in the BV-BFV framework

was introduced by MacDowell and Mansouri9, later understood by Wise in the Cartan

formalism50 and rewritten as a BF theory, as reported by Freidel and Speziale30. The main

idea is to consider the splitting so(4, 1) ≃ so(3, 1) ⊕ R3,1 and violate the shift symmetry of

the BF term while reducing the internal Lie symmetry back to S O(3, 1) at the same time by

introducing a potential term that explicitly breaks the symmetry. Such a symmetry breaking

term is chosen to be

S S B =
1
2

∫
M

ϵi jklmvmBi j ∧ Bkl =
1
2

∫
M

ϵi jklvB̂i j ∧ B̂kl (6.17)
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where vi = (0, 0, 0, 0, v) is a fixed vector in so(4, 1) and B̂ is the projection of B to the

so(3, 1) subalgebra.

Borrowing the notation from Section 6.1, the BF-formulation of  the MacDowell-Mansouri

action is given by

S MM =

∫
M

Tr
[
B ∧ FA −

β

2
B ∧ B − α

2
B̂ ∧ B̂

]
(6.18)

where now A is an so(4, 1) = g connection and B is a two-form with values in the extended

algebra g. Its subalgebra restriction B̂ takes values in h = so(3, 1).
The symmetry breaking statement is clarified by the following proposition:

Proposition 6.4. Let P be a principal G = S O(4, 1) bundle over M and let H = S O(3, 1)
be a subgroup. Consider the fields c ∈ Ω(M, adPH) = Ω(P, h) where adPH = P ×

H
h. Let

FMM = T ∗[−1]F 0
MM , endowed with the canonical (−1)-symplectic form Ω, with

F 0
MM = Ω

2(M,
2∧
V)︸          ︷︷          ︸

B

⊕Ω0(M, adPH)[1]︸              ︷︷              ︸
c

⊕ AP︸︷︷︸
A

⊕ Γ(T [1]M)︸     ︷︷     ︸
ξ

(6.19)

and define a vector field on FMM by

QB = LA
ξ B − [c, B]; QA = ιξFA − dAc;

Qc = 1
2

(
ιξιξFA − [c, c]

)
; Qξ = 1

2 [ξ, ξ];
(6.20)

If  we denote by S BV
MM the minimally extended BV action given by S BV

MM = S MM + (QΦ,Φ†) with Φ

being the base fields in Fmin and Φ† the respective cotangent fields, then the data (FMM, S BV
MM,Q,Ω)

define a BV theory.

Proof. To see that Q is cohomological we resort once more to Proposition 5.8, Chapter 5,

Section 5.3, for the field B, and observing that c ∈ Ω(P, h) implies that c ∈ Ω(P, g).
The only nontrivial part in checking that QS MM = 0 is to realise that the symmetry

breaking term (6.17) is invariant only under the action of  the subalgebra h, and that the

subalgebra h is invariant under the action of g as the splitting so(4, 1) = so(3, 1) ⊕ R3,1 is
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so(4, 1)-invariant. ✓

Now that we have the necessary preparation we can face the main question of  this Sec-

tion.

Claim 6.5. The BV theory of  Proposition 6.4 defined by the data (FMM, S BV
MM,Q,Ω) defines a

BV-BFV theory on M when it has a boundary, ∂M , ∅.

Partial Proof. The computations are identical to those of  Theorem 6.3, with the difference

that all terms containing ϕ, ψ and their relative anti-fields are set to zero. The equations in

the kernel of  the pre-boundary one form ω̃ are grouped as follows:

(XA†) = 0 (6.21a)

(Xc) = ιξ(XA) (6.21b)

(XA) = ι(Xξ)B + B†n(Xξn) + (XB†n
)ξn (6.21c)

(XB) = ι(Xξ)A
† − (Xξn)A†n + XA†nξ

n − 1
2
ιξ(Xc†n

)ξn +
1
2

(Xξn)ιξc†n −
1
2
ι(Xξ)c

†
nξ

n (6.21d)

together with

ι(Xξ)B = −(XBn)ξ
n (6.22a)

Tr [(XB†)B] = Tr
[
(XB)B† − (XA)A† +

1
2

(XA)ιξc†
]
− (Xξn)χ − Enι(Xξ)χ (6.22b)

with ϕ meaning that we include both component transverse and tangent to the boundary,

and

(XA)ξn = 0 (6.23a)

(XB)ξn = 0 (6.23b)

(XB†)ξn = 0 (6.23c)

ιξ(XA)ξn = 0 (6.23d)

Equations in group (6.21) are regular. Using the fact that it is possible to define a metric
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with the combination

gµν = ϵαβγδηab f a
cdBc

µαBd
νβBb

γδ (6.24)

when f a
bc are the structure constants of  the lie algebra so(4, 1), we can invert equations

(6.22), yielding (Xξ) ∝ ξn which then will also imply (XB†), (XA), (XB) ∝ ξn, and equations

(6.23) will be automatically satisfied. ✓
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Conclusion

This Thesis was devoted to the analysis of  different formulations of  the theory of  General
Relativity from the point of  view of  the (semiclassical) Batalin-Vilkovisky formalism on
manifolds with boundary.

The machinery that allows one to induce boundary data starting from an action func-
tional on the boundary, which essentially is analysis of  the Noether form, turned out to
be useful to describe the classical theory in a manifestly symplectic fashion, even when the
symmetries are not taken into account dynamically (see Proposition 4.8 and Theorem 5.6).
As a matter of  fact, this allows us to simplify the canonical Dirac analysis, by explicitly de-
scribing the symplectic space of  boundary fields (which contains the coisotropic subalgebra
of  canonical constraints).

The rest of  the BV-BFV procedure, i.e. when symmetries are included, completes the
canonical description of  the theory by yielding an explicit resolution of  the said coisotropic
submanifold modulo gauge symmetries. Such information is encoded in the boundary ac-
tion S ∂, the Hamiltonian function of  the boundary cohomological vector field Q∂, when-
ever it can be computed and the axioms are satisfied.

The comparison of  different formulations of  General Relativity as a fundamental the-
ory of  the gravitational interaction highlighted some fundamental differences in the BV
structures that the theories enjoy, marking a deviation with respect to the classical (i.e. non
BV) behaviours, which are considered to be equivalent. The very fact that (e.g.) the Ein-
stein Hilbert formulation of  GR does satisfy the CMR axioms, while the Palatini Holst
formulation does not, unequivocally tells us that the BV-BFV criterion refines the notion of
equivalence between gauge field theories.

This has crucial consequences in understanding to which extent we can replace theories
with one another and could possibly suggest that a particular formulation is more suitable
than others in view of  quantisation. In any case, a clarification of  what can be legitimately
considered equivalent is fundamental for the development of  quantum field theory.

Moreover, it is interesting to notice that the failure of  some action functionals to extend
to a BV-BFV theory gives us a better understanding of  the use of  Lagrange multipliers
and their relationship with diffeomorphisms as a gauge symmetry. In fact, comparing the
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Plebanski action and the MacDowell-Mansouri actions for GR, both seen as broken BF
theories, the specific way we choose to break the symmetry does indeed matter, when
deciding if  the BV data satisfies the CMR axioms.

The first challenge then is that of fixing the PH theory of  gravity in the BV setting, that
is find the correct formulation under which it satisfies the CMR axioms, and interpret why
the theory does not work with the natural assumption we have considered here.

Secondly, it will be important to understand the profound meaning of  the failure of
the CMR axioms and the possible way of  fixing them. Our guess is that the BV-BFV
construction and the naturality of  the way the boundary data is induced should indicate the
correct prescriptions to explicitly treat symmetries. More explicitly, requiring that some BV-
extension of  the theory satisfies the CMR axioms and resolves the reduced phase space,
which in the end is classical data and it is well defined before the BV analysis is taken into
account, will tell us what are the correct symmetry prescriptions of  the theory.

In the future it will be important to make contact with the physics literature and language,
translating problems and results from theoretical physics to test this formalism further,
and to exploit the power of  the BV formalism in the quantum gravity communities’ daily
routine.

Eventually, once the tetradic and/or BF formulation of  GR will be understood as a
BV-BFV theory, it will be of  prime importance to attack the problem of  its (perturbative)
quantisation, for instance by applying (and possibly adapting) the CMR prescription for the
quantisation of  BV-BFV theories.

All in all, this is a first step in that direction that has the good feature of  highlighting an
important caveat when regarding alternative theories as equivalent, and this will actively help
us understanding which path should be chosen when treading towards a quantum theory
of  gravity.
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A
Cumbersome or lengthy computations

Computation A.1 (Theorem 3.2, Chapter 3). We want to compute the explicit expression of  the
projectable pre-boundary vector field Q̃′ = Q̃ − Q̃gΓ − Q̃g†Ξ†. Recalling that

Q̃ g = ξġ + 2gξ̇

Q̃ ξ = ξξ̇

Q̃ g† =
Λ

2
√

g
− ξ̇g† + ξġ†

Q̃ ξ† = ġg† + 2gġ† + 2ξ̇ξ† + ξξ̇†

and that

Γ B
δ

δg
+

(
ξξ†

2g2 −
g†

2g

)
δ

δg†
− ξ

2g
δ

δξ

Ξ† B
δ

δξ†
− ξ

2g
δ

δg†
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we expand

Q̃′ = (ξξ̇)
δ

δξ
+

(
Λ

2
√

g
− ξ̇g† + ξġ†

)
δ

δg†
− (ξġ + 2gξ̇)

(
ξξ†

2g2 −
g†

2g

)
δ

δg†

+ (ξġ + 2gξ̇)
ξ

2g
δ

δξ
+ (ġg† + 2gġ† + 2ξ̇ξ† + ξξ̇†)

ξ

2g
δ

δg†

=

(
Λ

2
√

g
− ξ̇g† + ξġ† + ξġg†

2g
− ξ̇ξξ

†

g
+ ξ̇g† +

ġg†ξ
2g
+ ġ†ξ +

ξ̇ξ†ξ

g

)
δ

δg†
=
Λ

2
√

g
δ

δg†

(A.1)

using now the transformation law δ
δg† =

√
g

2
δ
δ̃g† we obtain the result:

Q∂ =
Λ

4
δ

δ̃g†
(A.2)

Computation A.2 (Theorem 4.4, Chapter 4). Expanding the expression for the vector field:

Q′ = Q − (Qg†)abG†ab − (Qχ)µXµ − (Qg)nnGnn

we get

Q′ = (Qg)ab δ

δgab
+ (Qξ)µ

δ

δξµ
+ (Qg†)nν δ

δg†nν −
2
√

g
(Qg†)abgnn

(
gacgbd −

1
d − 1

gabgbd

)
ξn δ

δJcd

+

(
1
2

(Qg)nngnnJcd −
1
√

g
(Qg)nng2

nn

(
g†abgacgbd −

1
d − 1

g†abgabgbd

)
ξn

)
δ

δJcd

+
1
2

(Qχ)ngnnξn δ

δg†nn +
1
2

(Qχ)agabξn δ

δg†bn −
1
2

(
(Qg)nngnng†nn − (Qg)nnχnξ

n
) δ

δg†nn

+
1
4

(Qg)nngnngbaχaξ
n δ

δg†nb −
1
2

(Qg)nngnnξ
n δ

δξn + (QJ)e f
δ

δJe f
(A.3)
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We transform the generators δ
δΦ

deriving the following formulas:

δ

δξn =
√

gnn
δ

δξ̃n
+

2√
g∂

g†cd

(
gcegb f −

1
d − 1

gcdge f

)
δ

δJ̃e f

+
1
2

√
gnnχn

δ

δ̃g†nn +
1
2

gabχb
δ

δ̃g†na

δ

δgab
=

δ

δ̃gab
− 1

2
gcagdbχdξ

n δ

δ̃g†nc +
1√
g∂

gabg†cd

(
gcegd f −

1
d − 1

gcbgd f

)
ξn δ

δJ̃e f

+

− 2√
g∂

g†cd

(
δa

cδ
b
egd f + gceδ

a
dδ

b
f −

1
d − 1

(
δa

cδ
b
dge f + gcdδ

a
eδ

b
f

))
ξn δ

δJ̃e f

δ

δJe f
=

√
gnn δ

δJ̃e f

δ

δg†nn =
√

gnn
δ

δ̃g†nn

δ

δg†na =
δ

δ̃g†na

δ

δξa =
δ

δξ̃a

(A.4)

137



which lead Q′ to the have following expression:

Q′ =
{

1√
g∂

(Qg)abgabg†cd

(
gcegd f −

1
d − 1

gcdge f

)
ξn +

2√
g∂

(Qξ)ng†cd

(
gcegd f −

1
d − 1

gcdge f

)
− 2√

g∂

(
(Qg)ceg†cdgd f + (Qg)d f g†cdgce −

1
d − 1

(Qg)cdg†cdge f −
1

d − 1
(Qg)e f g†cdgcd

)
ξn

− 2√
g∂

(Qg†)cd

(
gcegd f −

1
d − 1

gcdge f

)
ξn − 1

2
(Qg)nngnn

√
gnnJe f

}
δ

δJ̃e f

+

{
(Qg†)nc − 1

2
(Qg)abgacgbdχdξ

n +
1
2

(Qξ)ngcdχd +
1
2

(Qχ)dgcdξn

}
δ

δ̃g†nc

+

{
(Qg†)nn +

1
2

(Qg)nn
√

gnng†nn +
1
2

(Qξ)n
√

gnnχn

+
1
2

(Qχ)n
√

gnnξn − 1
4

(Qg)nn(gnn)
3
2χnξ

n

}
δ

δ̃g†nn

+

{
(Qξ)n√gnn +

1
2

(Qg)nn
√

gnnξn

}
δ

δξ̃n

+
√

gnn(QJ)e f
δ

δJ̃e f

+ (Qξ)a δ

δξ̃a
+ (Qg)ab

δ

δ̃gab

(A.5)
Expanding and computing the coefficient of δ

δJ̃e f
one obtains the following intermediate expression:

π∗
{
ξ̃s∂s J̃e f + 2∂(eξ̃

a J̃ f )a −
4√
g̃∂

(
∂(eξ̃

ng̃†dng̃ f )d −
1

d − 1
∂dξ̃

ng̃†ndg̃e f

)
ξ̃n

}
+

{
− √gnngab∂bξ

n∂age f + ξ
n∂n(Je f

√
gnn) − 2∂(e(gnngab∂bξ

n)g f )a
√

gnn

+ 2
√

gnn∂(eξ
nJ f )n + 2

√
gnn

(
R(e f ) +

Rn − R∂

2(d − 1)
ge f

)
︸                    ︷︷                    ︸

Einstein term

ξn

}

The goal is clearly to write the whole coefficient as the pullback of  some function on F ∂. Notice that the
Einstein term comes from the following computation:

E.T. =
(
Rcd − R

2
gcd

) (
gc(eg f )d −

1
d − 1

gcdge f

)
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where R = gµνRµν = gnnRnn + gabRab =: Rn + R. Hence:

E.T. = R(e f ) −
R

d − 1
ge f −

Rn + R
2

ge f +
Rn + R

2
d

d − 1
ge f = R(e f ) +

Rn − R
2(d − 1)

ge f

Now, the Ricci tensor and the difference between the two traces read:

2
√

gnnRe f ξ
n = − ∂n

(
Je f

√
gnn

)
ξn − 1

2
√

gnn∂(egnn∂ f )gnnξ
n

−
√

gnn∂(e∂ f )gnnξ
n + 2∂(eg f )bgba∂a

√
gnnξ

n

+ π∗
{

J̃b(eg̃ba J̃ f )aξ̃
n − 1

2
J̃e f g̃ba J̃abξ̃

n + 2R̃∂
e f ξ̃

n

}
− ∂bge f gba∂a

√
gnnξ

n (A.6)
√

gnn(Rn − R)ξn =ξn∂a

(
gabJbn

√
gnn

)
+

1
2
ξn

√
gnnJnbgbagcd∂agcd

+π∗
{

1
4

g̃ab J̃abg̃cd J̃cdξ̃
n − 1

4
g̃ab J̃cbg̃cd J̃adξ̃

n − R̃∂ξ̃n

}
(A.7)

Where R̃∂
e f denotes the Ricci tensor of  the d-dimensional manifold ∂M, and R̃∂ its trace. Notice that

Re f , R̃∂
e f and R , R̃∂.

Putting all together, after some rewriting we get:

π∗
{
ξ̃s∂s J̃e f + 2∂(eξ̃

a J̃ f )a − 2∂(e∂ f )ξ̃
n − g̃ab∂ag̃e f∂bξ̃

n + 2∂(eg̃ f )bg̃ab∂aξ̃
n

− 4√
g̃∂

(
∂(eξ̃

ng̃†dng̃ f )d −
1

d − 1
∂dξ̃

ng̃†ndg̃e f

)
ξ̃n +

2R̃∂
e f −

R̃∂

d − 1
g̃e f

 ξ̃n

+ J̃b(eg̃ba J̃ f )aξ̃
n − 1

2
J̃e f g̃ba J̃abξ̃

n +
1

d − 1

(
1
4

g̃ab J̃abg̃cd J̃cd −
1
4

g̃ab J̃cbg̃cd J̃ad

)
g̃e f ξ̃

n

}
δ

δJ̃e f

+

{
2
√

gnn∂(eξ
nJ f )n + ξ

n∂a

(
gabJbn

√
gnn

)
+

1
2
ξn

√
gnnJnbgbagcd∂agcd

}
δ

δJ̃e f

(A.8)

Let us turn now to the g̃†nn coefficient. We first notice that the term
√

g
(
Rnn − R

2 gnn
) √

gnn coming
from the (Qg†)nn√gnn factor is computed as:

√
g
(
Rnn − R

2
gnn

) √
gnn =

√
g∂gnn

(
Rngnn − 1

2
Rngnn − 1

2
R∂gnn

)
=

√
g∂

2

(
Rn − R∂

)
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Using this, we can expand the g†nn and obtain:

Q′
∣∣∣̃
g†nn = π

∗
{
∂a

(̃
ξag̃†nn

)
+ ∂ag̃†anξ̃n + 2g̃†na∂aξ̃

n

−
√

g̃∂

8
g̃ab

(
J̃ab J̃cd − J̃cb J̃ad

)
g̃cd +

√
g̃∂

2
R̃∂

}
δ

δg†nn{
1
2

Jang†an
√

gnnξn − ∂a

 √
g∂

2
gabJbngnn

 } δ

δg†nn (A.9)

For the g†nc coefficient we will need to compute the following combination:

− √gRnc = −
√

g∂
√

gnnRnbgbc =

− ∂a

 √
g∂

2
gad Jdb

√
gnn

 gbc +

√
g∂

2
∂b

(
gad Jad

√
gnn

)
gbc −

√
g∂

4

√
gnngcb∂bgad Jad

which leads to

π∗
{ √

g̃∂

2
∂b

(̃
gad J̃ad

)
g̃bc − ∂a

 √
g̃∂

2
g̃ad J̃db

 g̃bc −
√

g̃∂

4
g̃cb∂bg̃ad J̃ad

+ ∂s

(̃
ξsg̃†nc

)
+ g̃cb∂bξ̃

ng̃†nn − ∂bξ̃
cg̃†bn + J̃adg̃†ang̃dcξ̃n

}
δ

δ̃g†nc

+

{
Jndg†nngdcξn −

√
g∂

2
(gnn)

3
2 JndgdbJbagac

}
δ

δ̃g†nc

Finally, the remaining terms for Q′
∣∣∣̃
ξn ,Q′

∣∣∣̃
ξa and Q′

∣∣∣̃
gab

are easily computed:{
(Qξ)n√gnn +

1
2

(Qg)nn
√

gnnξn

}
δ

δξ̃n
=π∗

{̃
ξa∂aξ̃

n
} δ

δξ̃n

(Qξ)a δ

δξ̃a
=π∗

{̃
ξb∂bξ̃

a − ξ̃ng̃ab∂bξ̃
n
} δ

δξ̃a

(Qg)ab
δ

δ̃gab
=π∗

{
ξ̃n J̃ab + ξ̃

c∂cg̃ab + 2∂aξ̃
cg̃bc

} δ

δ̃gab

where, in the second line, we have used (4.10). Altogether, the components of Q∂ read
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(Q∂

J̃
)e f =

{
ξ̃s∂s J̃e f + 2∂(eξ̃

a J̃ f )a −
4√
g̃∂

(
∂(eξ̃

ng̃†dng̃ f )d −
1

d − 1
∂dξ̃

ng̃†ndg̃e f

)
ξ̃n

+

2R̃∂
e f −

R̃∂

d − 1
g̃e f

 ξ̃n − 2∂(e∂ f )ξ̃
n − g̃ab∂ag̃e f∂bξ̃

n + 2∂(eg̃ f )bg̃ab∂aξ̃
n

+ J̃b(eg̃ba J̃ f )aξ̃
n − 1

2
J̃e f g̃ba J̃abξ̃

n +
1

d − 1

(
1
4

g̃ab J̃abg̃cd J̃cd −
1
4

g̃ab J̃cbg̃cd J̃ad

)
g̃e f ξ̃

n

}
(A.10a)

(Q∂
g̃†)

nn =

{
∂a

(̃
ξag̃†nn

)
+ ∂ag̃†anξ̃n + 2g̃†na∂aξ̃

n −
√

g̃∂

8
g̃ab

(
J̃ab J̃cd − J̃cb J̃ad

)
g̃cd +

√
g̃∂

2
R̃∂

}
(A.10b)

(Q∂
g̃†)

nc =

{ √
g̃∂

2
∂b

(̃
gad J̃ad

)
g̃bc − ∂a

 √
g̃∂

2
g̃ad J̃db

 g̃bc −
√

g̃∂

4
g̃cb∂bg̃ad J̃ad

+ ∂s

(̃
ξsg̃†nc

)
+ g̃cb∂bξ̃

ng̃†nn − ∂bξ̃
cg̃†bn + J̃adg̃†ang̃dcξ̃n

}
(A.10c)

(Q∂

ξ̃
)n =

{̃
ξa∂aξ̃

n
}

(A.10d)

(Q∂

ξ̃
)a =

{̃
ξb∂bξ̃

a − ξ̃ng̃ab∂bξ̃
n
}

(A.10e)

(Q∂
g̃)ab =

{̃
ξn J̃ab + ξ̃

c∂cg̃ab + 2∂(aξ̃
cg̃b)c

}
(A.10f)

Computation A.3 (Theorem 4.12, Chapter 4). We use the vertical vector fields of  Theorem 4.11
to find an explicit section of  the surjective submersion π : FADM −→ F ∂

ADM . First of  all, use B to set
βa = 0, this implies (Xβ)a = −β0

a together with βa(t) = (1− t)β0
a and we have the first two differential

equations:

ξ̇b = +γabβ0
aξ

n (A.11a)

ġ†nn = − ϵ
2
η−2γabβ0

aχbξ
n (A.11b)

(A.11c)

that are easily solved to yield

ξ(t) =ξb
0 + γbaβ0

aξ
nt (A.12a)

g†nn(t) =g†0
nn− ϵ

2
η−2γabβ0

aχbξ
nt (A.12b)

141



we use (A.12b) and the time rule for βa(t) to solve the third and fourth equations

ġ†nb =+
ϵ

2
η−2βbγcdβ0

cχdξ
n + γabβ0

ag†nn

=γbaβ0
ag†0

nn− ϵ
2
η−2γbaβ0

aγ
cdβ0

cχdξ
n(2t − 1)

g†nb(t) =g†0
nb + γbaβ0

ag†0
nnt− ϵ

2
η−2γbaβ0

aγ
cdβ0

cχdξ
n(t2 − t)

J̇lm = −
(
2∇(lβ

0
m) +

4ϵ
√
γ
η

(
β0

(lγm)a −
1

d − 1
γlmβ

0
a

)
g†anξn

)
= − 2∇(lβ

0
m) −

4ϵ
√
γ
η

(
β0

(lγm)a −
1

d − 1
γlmβ

0
a

)
g†0

anξn+

− 2ϵ
√
γ

(
β0

(lβ
0
m) −

1
d − 1

γlmβ
0
bβ

b
0

)
g†0

nnξnt

Jlm = − 2∇(lβ
0
m)t −

4ϵ
√
γ
η

(
β0

(lγm)a −
1

d − 1
γlmβ

0
a

)
g†0

anξnt+

− 2ϵ
√
γ

(
β0

(lβ
0
m) −

1
d − 1

γlmβ
0
bβ

b
0

)
g†0

nnξnt2

So we can fix the temporary value of  our fields at t = 1 to

Ĵlm = − 2∇(lβ
0
m) −

4ϵ
√
γ
η

(
β0

(lγm)a −
1

d − 1
γlmβ

0
a

)
g†0

anξn+

− 2ϵ
√
γ

(
β0

(lβ
0
m) −

1
d − 1

γlmβ
0
bβ

b
0

)
g†0

nnξn (A.13a)

ĝ†nb =g†nb + γbaβag†nn (A.13b)

ĝ†nn =g†nn− ϵ
2
η−2γabβaχbξ

n (A.13c)

Now we can turn to the vector fields Xρ and use them to set χρ = 0 at some value of  the internal
evolution parameter s. As usual we impose (Xχ)ρ = −χ0

ρ and χρ(t) = (1 − t)χ0
ρ. The new equations

are

ġ†nn =+
ϵ

2
η−2χ0

nξ
n

ġ†nb =− ϵ
2
γbaχ0

aξ
n
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which will yield an additional correction to the temporary value of  our fields:

ˆ̂g†nn =g†nn+
ϵ

2
η−2

(
χn − γabβaχb

)
ξn (A.14a)

ˆ̂g†nb =g†nb + γbaβag†nn− ϵ
2
γbaχaξ

n (A.14b)

Similar is what happens when we use G†ab, for we get the equation

J̇lm = −
2ϵ
√
γ
η

(
γalγbm −

1
d − 1

γabγlm

)
g†0

abξn

that will correct the temporary value of Ĵlm to

ˆ̂Jlm = − 2∇(lβ
0
m) −

4ϵ
√
γ
η

(
β0

(lγm)a −
1

d − 1
γlmβ

0
a

)
g†0

anξn+

− 2ϵ
√
γ

(
β0

(lβ
0
m) −

1
d − 1

γlmβ
0
bβ

b
0

)
g†0

nnξn

− 2ϵ
√
γ
η

(
γalγbm −

1
d − 1

γabγlm

)
g†0

abξn (A.15)

Finally, we use the vector field E to set η = 1. This implies that the time law for η be given by
η(t) = (1 − η0)t + η0 and (Xη) = 1 − η0. The associated equations read

ξ̇n = − 1 − η0

(1 − η0)t + η0
ξn (A.16a)

ġ†nn = − 1 − η0

(1 − η0)t + η0
g†nn (A.16b)

J̇lm =
1 − η0

(1 − η0)t + η0
Jlm (A.16c)

yielding, at time t = 1, the following corrections to the fields: ξ̃n = ηξn, g̃†nn = η ˆ̂g†nn and J̃lm =

η−1 ˆ̂Jlm.

Computation A.4 (Theorem 4.12, Chapter 4). We will remove the vertical vector fields from Q̃ in
the following combination:

Q̃′ = Q̃ − (Qg†)abG†ab − (Qβ)aBa − (Qη)E − (Qχ)µXµ
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yielding

Q′ =(Qγ)ab
δ

δγab
+ 2(Qg†)na δ

δg†na + (Qg†)nn δ

δg†nn + (Qξ)n δ

δξn + (Qξ)a δ

δξa

+(QJ)lm
δ

δJlm
− 2ϵ
√
γ
η(Qg†)ab

(
γalγbm −

1
d − 1

γlmγab

)
ξn δ

δJlm

+γab(Qβ)aξ
n δ

δξb +
ϵ

2
η−2γab(Qβ)aχbξ

n δ

δg†nn

−
(
2∇(l(Qβ)m) +

4ϵ
√
γ
η

(
(Qβ)(lγm)a −

1
d − 1

γlm(Qβ)a

)
g†anξn

)
δ

δJlm

−
(
ϵ

2
η−2βbγcd(Qβ)cχdξ

n − γab(Qβ)ag†nn
)

δ

δg†bn

+η−1(Qη)ξn δ

δξn − β
aη−1(Qη)ξn δ

δξa + η
−1(Qη)g†nn δ

δg†nn

−ϵη−3 (βaχa − χn) (Qη)ξn δ

δg†nn − η
−1βa(Qη)g†nn δ

δg†an

−
(
ϵη−3βbχn − ϵη−3βbβaχa +

ϵ

2
η−1γbaχa

)
(Qη)ξn δ

δg†bn

+
4ϵ
√
γ

(Qη)
(
β(lγm)a −

1
d − 1

γlmβa

)
g†anξn δ

δJlm

+
2ϵ
√
γ

(Qη)
(
γlaγbm −

1
d − 1

γlmγab

)
g†abξn δ

δJab

−η−1(Qη)
(
Jlm − 2∇(lβm)

) δ

δJlm
− ϵ

2
η−2(Qχ)nξ

n δ

δg†nn

+
ϵ

2
η−2βa(Qχ)aξ

n δ

δg†nn +
ϵ

2
βbη−2(Qχ)nξ

n δ

δg†bn

−
(
ϵ

2
η−2βbβa(Qχ)aξ

n − ϵ
2
γba(Qχ)aξ

n
)

δ

δg†bn
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collecting:

Q′ =
{

(QJ)lm −
2ϵ
√
γ
η(Qg†)ab

(
γalγbm −

1
d − 1

γlmγab

)
ξn − η−1(Qη)

(
Jlm − 2∇(lβm)

)
+

+
4ϵ
√
γ

(Qη)
(
β(lγm)a −

1
d − 1

γlmβa

)
g†anξn +

2ϵ
√
γ

(Qη)
(
γlaγbm −

1
d − 1

γlmγab

)
g†abξn+

−
(
2∇(l(Qβ)m) +

4ϵ
√
γ
η

(
(Qβ)(lγm)a −

1
d − 1

γlm(Qβ)a

)
g†anξn

) }
δ

δJlm

+

{
(Qg†)nn +

ϵ

2
η−2γab(Qβ)aχbξ

n + η−1(Qη)g†nn − ϵη−3 (βaχa − χn) (Qη)ξn

− ϵ
2
η−2(Qχ)nξ

n +
ϵ

2
η−2βa(Qχ)aξ

n

}
δ

δg†nn

+

{
2(Qg†)na −

(
ϵ

2
η−2βaγbcχcξ

n − γabg†nn
)

(Qβ)b − η−1βa(Qη)g†nn+

−
(
ϵη−3βaχn − ϵη−3βaβbχb +

ϵ

2
η−1γabχb

)
(Qη)ξn +

ϵ

2
βbη−2(Qχ)nξ

n δ

δg†bn

−
(
ϵ

2
η−2βbβa(Qχ)aξ

n − ϵ
2
γba(Qχ)aξ

n
)

δ

δg†bn

}
δ

δg†na + (Qγ)ab
δ

δγab

+
{
(Qξ)a + γab(Qβ)bξ

n − βaη−1(Qη)ξn
} δ

δξa +
{
(Qξ)n + η−1(Qη)ξn

} δ

δξn

Then, pushing forward the basis in the tangent space along the projection map we have:
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(Q̃)J̃lm
=

{
η−1(QJ)lm −

2ϵ
√
γ

(Qg†)ab

(
γalγbm −

1
d − 1

γlmγab

)
ξn − η−2(Qη)

(
Jlm − 2∇(lβm)

)
+

+η−1 4ϵ
√
γ

(Qη)
(
β(lγm)a −

1
d − 1

γlmβa

)
g†anξn + η−1 2ϵ

√
γ

(Qη)
(
γlaγbm −

1
d − 1

γlmγab

)
g†abξn+

−
(
2η−1∇(l(Qβ)m) +

4ϵ
√
γ

(
(Qβ)(lγm)a −

1
d − 1

γlm(Qβ)a

)
g†anξn

)
+

+
ϵ
√
γ

(Qγ)abγ
ab

(
γclγdm −

1
d − 1

γlmγcd

)
g†cdξn +

2ϵ
√
γ

(Qγ)lm

d − 1
βcβ

cg†nnξn

− 2ϵ
√
γ

(
(Qγ)clγdm + γcl(Qγ)dm −

1
d − 1

γcd(Qγ)lm −
1

d − 1
γcd(Qγ)lm

)
g†cdξn+

+
2ϵ
√
γ

(Qγ)abγ
ab

(
β(lγm)c −

1
d − 1

γlmβc

)
g†cnξn − 4ϵ

√
γ

(
β(l(Qγ)m)c −

1
d − 1

(Qγ)lmβc

)
g†cnξn

+
ϵ
√
γ

(Qγ)abγ
ab

(
β(lβm) −

1
d − 1

γlmβcβ
c

)
g†nnξn

− 2ϵ
√
γ

(
(Qg†)nn + η−1(Qη)g†nn

) (
β(lβm) −

1
d − 1

γlmβcβ
c

)
ξn

− 4ϵ
√
γ

(
2(Qg†)na + γabg†nn(Qβ)b − η−1βa(Qη)g†nn

) (
β(lγm)a −

1
d − 1

γlmβa

)
ξn

+
2ϵ
√
γ

(
(Qξ)n + η−1(Qη)ξn

) (
γalγbm −

1
d − 1

γlmγab

)
g†ab

+
4ϵ
√
γ

(
(Qξ)n + η−1(Qη)ξn

) (
β(lγm)b −

1
d − 1

γlmβb

)
g†bn

+
2ϵ
√
γ

(
(Qξ)n + η−1(Qη)ξn

) (
β(lβm) −

1
d − 1

γlmβbβ
b

)
g†nn

}
δ

δJ̃lm
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Simplifies to:

(Q̃)J̃lm
=

{
η−1(QJ)lm −

2ϵ
√
γ

(Qg†)ab

(
γalγbm −

1
d − 1

γlmγab

)
ξn − η−2(Qη)

(
Jlm − 2∇(lβm)

)
+

−
(
2η−1∇(l(Qβ)m) +

4ϵ
√
γ

(
(Qβ)(lγm)a −

1
d − 1

γlm(Qβ)a

)
g†anξn

)
+

+
ϵ
√
γ

(Qγ)abγ
ab

(
γclγdm −

1
d − 1

γlmγcd

)
g†cdξn +

2ϵ
√
γ

(Qγ)lm

d − 1
βcβ

cg†nnξn+

− 2ϵ
√
γ

(
(Qγ)clγdm + γcl(Qγ)dm −

1
d − 1

γcd(Qγ)lm −
1

d − 1
γcd(Qγ)lm

)
g†cdξn+

+
2ϵ
√
γ

(Qγ)abγ
ab

(
β(lγm)c −

1
d − 1

γlmβc

)
g†cnξn − 4ϵ

√
γ

(
β(l(Qγ)m)c −

1
d − 1

(Qγ)lmβc

)
g†cnξn+

+
ϵ
√
γ

(Qγ)abγ
ab

(
β(lβm) −

1
d − 1

γlmβcβ
c

)
g†nnξn − 2ϵ

√
γ

(
(Qg†)nn

) (
β(lβm) −

1
d − 1

γlmβcβ
c

)
ξn+

− 4ϵ
√
γ

(
2(Qg†)na + γabg†nn(Qβ)b

) (
β(lγm)a −

1
d − 1

γlmβa

)
ξn +

2ϵ
√
γ

(Qξ)n

(
γalγbm −

1
d − 1

γlmγab

)
g†ab+

+
4ϵ
√
γ

(Qξ)n

(
β(lγm)b −

1
d − 1

γlmβb

)
g†bn +

2ϵ
√
γ

(Qξ)n

(
β(lβm) −

1
d − 1

γlmβbβ
b

)
g†nn

}
δ

δJ̃lm
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together with

(Q̃)g̃†nn =

{
η(Qg†)nn +

ϵ

2
η−1γab(Qβ)aχbξ

n + (Qη)g†nn − ϵ
2
η−2 (βaχa − χn) (Qη)ξn+

− ϵ
2
η−1(Qγ)abγ

acγbdβcχdξ
n +

ϵ

2
η−1(Qξ)n (βcχc − χn)+

− ϵ
2
η−1(Qχ)nξ

n +
ϵ

2
η−1βa(Qχ)aξ

n

}
δ

δ̃g†nn

(Q̃)g̃†na =

{
2(Qg†)na −

(
ϵ

2
η−2βaγbcχcξ

n − γabg†nn
)

(Qβ)b − η−1βa(Qη)g†nn+

−
(
ϵη−3βaχn − ϵη−3βaβbχb +

ϵ

2
η−1γabχb

)
(Qη)ξn + βa(Qg†)nn + βa ϵ

2
η−2γcd(Qβ)cχdξ

n+

+η−1βa(Qη)g†nn − ϵη−3βa
(
βbχb − χn

)
(Qη)ξn +

ϵ

2
γabχb

(
(Qξ)n + η−1(Qη)ξn

)
+

−(Qγ)cdγ
caγbdβbg†nn − ϵ

2
(Qγ)cdγ

acγbdχbξ
n +

ϵ

2
βaη−2(Qχ)nξ

n

−
(
ϵ

2
η−2βbβa(Qχ)bξ

n − ϵ
2
γab(Qχ)bξ

n
)
− ϵ

2
η−2βa(Qχ)nξ

n +
ϵ

2
η−2βaβb(Qχ)bξ

n

}
δ

δ̃g†na

The simpler terms are easily computed:

(Q̃′)ξ̃n =

{
η(Qξ)n + (Qη)ξn

}
δ

δξ̃n

≡
{̃
ξc∂cξ̃

n
} δ

δξ̃n

(Q̃′)ξ̃a =

{
(Qξ)a + γab(Qβ)bξ

n + (Qξ)nβa − (Qγ)cdγ
caγbdβbξ

n

}
δ

δξ̃a

≡
{̃
ξnγ̃ab∂bξ̃

n + ξ̃c∂cξ̃
a
} δ

δξ̃a

(Q̃′)γ̃ab =(Qγ)ab
δ

δγ̃ab

≡
{̃
ξn J̃ab + ξ̃

c∂cγ̃ab + 2∂(aξ̃
cγ̃b)c

} δ

δγ̃ab

In principle, it would be possible to proceed in the same way to compute all the other coefficients. To
simplify the calculations, though the remaining components of Q∂ can be recovered from δS ∂ = ιQ∂ω∂.
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B
Generalities on the BV formalism

In this appendix we will review the basic concepts underlying the BV framework for gauge
theories. We will first work out some of  the details in the local, finite dimensional case to
move on to manifolds and the globalisation of  the BV machinery.

B.1 Finite dimensional local model

The finite dimensional BV formalism can be cast in local coordinates as follows. Let A be
a finitely generated, graded commutative algebra, with 2n generators qi, pi and i = 1 . . . n.
We shall ask that half  of  the generators have even parity, and that the pi’s have opposite
parity with respect to the qi’s. In particular, for a Z-grading we have |pi| = −|qi| − 1.

We consider a completion Â to allow for C∞ functions in the even generators, and so
we may encode the grading in a vector field E, the graded Euler vector field, as follows:

E =
∑

i

|qi|qi ∂

∂qi + |pi|pi
∂

∂pi
=⇒ E( f ) = | f | f

From now on we will use the shorthand notation ∂i =
∂
∂qi , ∂

j = ∂
∂p j

.

149



Definition B.1. We define the BV Laplacian to be the second order operator:

∆ =
∑

i

(−1)|q
i |∂i∂

i

✠

Notice that if  we endow the local model with a symplectic structure, given a function f
we can retrieve its Hamiltonian vector field X f . We can write

∆ f = −1
2

div(X f )

where div(X) is the divergence of  the vector field X, and it can be shown to be equal to the

supertrace Str
[
X
←
∂

]
of  the right-Jacobian matrix of X (we take derivatives from the right).

It is easy to show that such an operator satisfies

∆2 = 0

∆( f g) = (∆ f )g + (−1)| f | f (∆g) + (−1)| f |( f , g) (B.1)

where ( f , g)∆ is an odd-Poisson bracket, called BV-bracket. Notice that, using derivatives
from the right, since

∂ f
∂zµ
= (−1)|z

µ |(| f |+1) f
←
∂

∂zµ

we can explicitly write

( f , g)∆ =
∑

i

f
←
∂

∂qi

→
∂g
∂pi
− f

←
∂

∂pi

→
∂g
∂qi

which is the canonical Poisson bracket associated with the canonical symplectic form ω =∑
i dpidqi.
Now, one important application of  this, which will generalise to the gauge-fixing proce-

dure, is the following: consider some smooth function f (p, q) and an odd function ψ(q).
Define ∫

Lψ

f :=
∫

f
∣∣∣
pi=∂iψ

dq1 . . . dqn

where the integration measure is a Grassmann integral along the possibly odd qi coordi-
nates and the Lebesgue integral along the even ones. Then we have
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Lemma B.2. If f = ∆g then
∫
Lψ

f = 0 with vanishing boundary conditions.

Proof. Compute the total derivative∑
i

(−1)|q
i |∂i

(
∂ig

)
p=dψ
=

∑
i

(−1)|q
i |
(
∂i∂

ig
)

p=dψ
+

∑
i j

(−1)|q
i |
(
∂i∂ jψ∂

j∂ig
)

p=dψ

where the second term in the r.h.s. vanishes by an anti-symmmetry argument and the first
one is ∆g. Integrating we have

0 =
∫
Lψ

f + 0

since the left hand side is a total derivative and we have assumed vanishing boundary con-
ditions. ✓

Lemma B.3. Assume ∆ f = 0, then
∫
Lψ

f is invariant under deformations of ψ.

Proof. Let ψt be a family of  odd functions and define It =
∫
Lψt

f . Then

dIt

dt
=

∫ (
∂iψ̇t∂

i f
)

p=dψ
dq1 . . . dqn = ±

∫ (
∆(ψ̇t f )

)
p=dψ

dq1 . . . dqn = 0

where we used the Leibniz property (B.1) of ∆, together with the fact that ψ = ψ(q),
∆ f = 0 and Lemma B.2. ✓

Typically this series of  two lemmas is extended to the case where ∆ f is not integrable
on some initial Lagrangian submanifoldL0. If  it is integrable on a close enough lagrangian
submanifold Lψ, then we define the ill defined integral to be this regularised version on
the new lagrangian submanifold.

BV-pushforward fixing a number of  variables, say k, in {qi, pi} we can split the variables
in four sets: q′ = {q1 . . . qk}, q′′ = {qk+1 . . . qn}, p′ = {p1 . . . pk} and p′′ = {pk+1, . . . pn}.
Then the BV laplacian splits in

∆ = ∆′ + ∆′′

and given f (q, p) and an odd function off  the q′′ variables only, one defines

F(q′p′) =
∫

f
∣∣∣
p′′=dψ

dq′′ =:
∫
L′′ψ

f
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and we have

Lemma B.4. Under the above assumptions

1. ∆′F =
∫
L′′ψ
∆ f i.e. the pushforward is a chain map for the laplacians.

2. If Ft =
∫
L′′ψt

f with ∆ f = 0 then Ḟt is ∆′-exact.

Proof. Analogous to the previous proofs. ✓

B.2 Global BV formalism

From now on we will consider odd-symplectic manifolds (M, ω), and we will restrict our
scope to the finite dimensional case. For a more exhaustive review on supemanifolds and
graded manifolds see, e.g.51,52. Notice that for odd-symplectic manifolds there is the fol-
lowing strong structural theorem:

Theorem B.5 (Schwarz, Batchelor). Any odd symplectic manifold (M, ω) is symplectomorphic to
the shifted cotangent bundle ΠT ∗N for some even manifold N. More generally a C∞ supermanifold is
always (non-canonically) superdiffeomorphic to a C∞ supermaniffold of  the form ΠE, with E an even
vector bundle.

The above Theorem provides a global version of  Darboux theorem. Moreover, given a
Berezinian ρ on M we may define

∆ρ f := −1
2

divρX f

and this will automatically come satisfy the Leibniz identity (B.1). What may fail is the
nilpotency, which we shall ask as a separate requirement:

Definition B.6. (M, ω, ρ) is called an SP-manifold iff ∆2
ρ = 0.

✠

Proposition B.7. Let M ≃ ΠT ∗N with N an even manifold. Let v be a volume form for N, then
v2 is a Berezinian such that

∆2
v2 = 0

Proof. Using that C∞(ΠT ∗N) ≃ V(N), the space of  multivector fields, we consider

V•(N)
ϕv∼−→ ΩdimN−•(N)

X −→ ιXv
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Then, showing that the formula

∆v2 = ϕ−1
v ◦ d ◦ ϕv

holds, we immediately show ∆2
v2 = 0. ✓

Remark B.8. If C ⊂ N is a submanifold of N, thenΠN∗C will be Lagrangian inΠT ∗N. Therefore,
if X ∈ C∞(ΠT ∗N) ∫

ΠN∗C

X
√

v2 =

∫
C

ϕv(X)

Given another choice of  berezinian, say ρ = ϕ2v2 with ϕ ∈ C∞(ΠT ∗N), we have∫
ΠN∗C

X
√
ρ =

∫
C

ϕv(Xϕ)

So we are allowed to change either C to some homologous submanifold, and take its conormal bundle,
or we can use an Hamiltonian flow on ΠN∗C:

L deform−→ ΠN∗C
homologous
−→ ΠN∗C′

deform−→ L′

and thus ∫
L

X
√
ρ =

∫
L′

X
√
ρ

♢

Now let (M, ω) be odd symplectic. Consider the action of  both the deRham differential
d and of δ := ω ∧ · on ω•(M). Clearly δ2 = 0. In the Z-grading we have |ω| = −1, but
being it a 2-form we get |δ| = 1. Notice that dω = 0 implies dδ + δd = 0.

The following is by P. Ševera,53.

Lemma B.9. H•(Ωi(M), δ) ≃ { 12−densities} canonically.

Lemma B.10. The induced differential on E1 = H•(Ω1, δ) is zero. Therefore E2 = E1. The induced
differential on E2 is given by ∆, the canonical Laplacian on half  densities.

If ρ is a Berezinian on M, define the map

√
ρ· : C∞(M) −→

{
1
2 -densities

}
∆̃ρ ←− ∆can
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so that

Lemma B.11. ∆̃ρ = ∆ρ if  and only if ∆2
ρ = 0.

So finally, given L ⊂ M, consider [α] ∈ H•(Ω•, δ), i.e. ω ∧ α = 0, then the restriction
of α to a tubular neighborhood of L is

[αL] ∈ H• (Ω•(ΠT ∗L, δ)) = Ber(L).

where [αL] means ωcan ∧ αL = 0. Therefore∫
L

[α] :=
∫
L

αL

is well defined.
To give a reasonable integration theory one needs the notion of  integral forms:

Definition B.12. Let N be a supermanifold, we define the set of  integral forms on N to be

Int(N) :=
{

1
2

-densities on ΠT ∗N
}

ϕ≃ H•(Ω•(ΠT ∗N), δcan)

and therefore they form a complex with differential given by ∆can.
✠

Then if C ⊂ N is a submanifold, α ∈ Int(N)∫
C

[α] :=
∫
ΠN∗C

ϕ[α]

and Stokes theorem carries over with ∆ as deRham differential.
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