Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

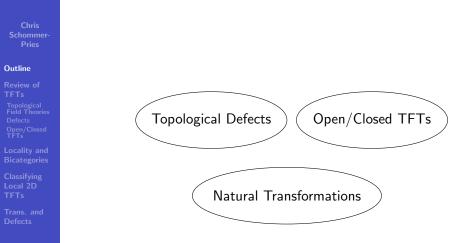
Topological Defects and Classifying Local Topological Field Theories in Low Dimensions

Chris Schommer-Pries

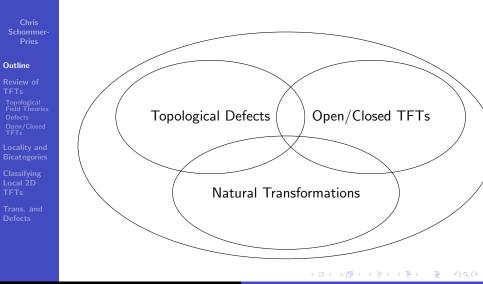
Departments of Mathematics:

University of California, Berkeley Max Planck Institute for Mathematics Harvard University MIT

Talk at the Mathematisches Forschungsinstitut Oberwolfach


イロト イヨト イヨト イヨト

Three Concepts in



イロト イヨト イヨト イヨト

Э

Three Concepts in Local TFT

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

1 Review of TFTs

- Topological Field Theories
- Defects
- Open/Closed TFTs
- 2 Locality and Bicategories
- 3 Classifying Local 2D TFTs via Generators and Relations

イロト イヨト イヨト イヨト

4 Transformations, Defects, and All That

What is a Topological Field Theory?

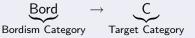
Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories


Classifying Local 2D TFTs

Trans. and Defects

Atiyah-Segal Axioms:

Definition

A TFT is a symmetric monoidal functor:

イロト イヨト イヨト イヨト

Usually C is (Vect, \otimes)

Algebra from Geometry

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Theorem (Folklore)

2D TFTs are Commutative Frobenius Algebras

[R. Dijkgraaf, L. Abrams, S. Sawin, B. Dubrovin, Moore-Segal, ...]

unit

multiplication

comultiplication

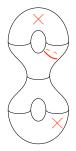
イロト イヨト イヨト イヨト

counit

Chris Schommer-Pries

Chris
Schommer
Pries

Outline


Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

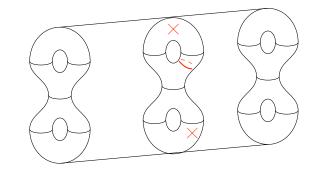
Locality and Bicategories

Classifying Local 2D TFTs

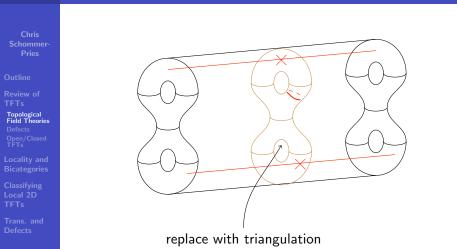
Trans. and Defects

Chris Schommer-Pries

Outline

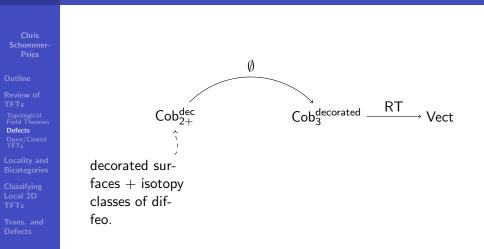

Review o TFTs

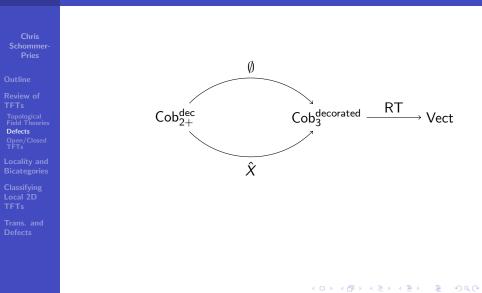
Topological Field Theories Defects Open/Closed TFTs

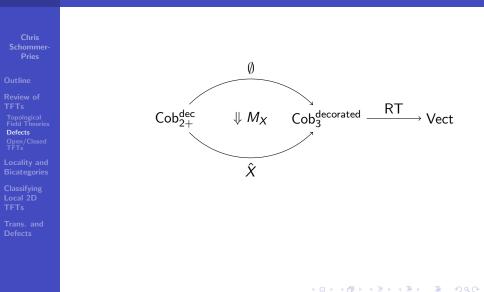

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects


<ロ> (四) (四) (注) (注) (注) (三)


(ロ) (同) (E) (E) (E)

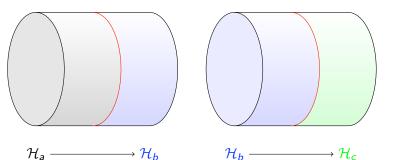

Chris Schommer- Pries			
Outline			
Review of TFTs Topological Field Theories Defects Open/Closed TFTs		$Cob_3^{decorated} \xrightarrow{RT} V$	/ect
Classifying Local 2D TFTs			
Trans. and Defects			

- 4 回 2 - 4 □ 2 - 4 □

イロト イヨト イヨト イヨト

$\mathsf{Defects} \to \mathsf{Operators}$

Outline


Review o TFTs

Topological Field Theorie Defects Open/Closed TFTs

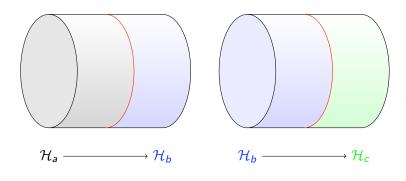
Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

$\mathsf{Defects} \to \mathsf{Operators}$

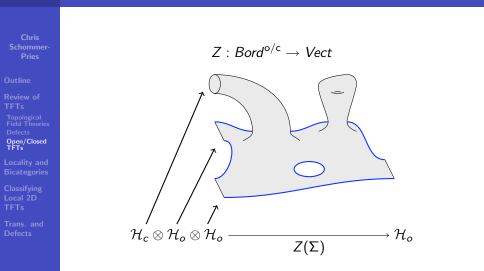
Outline


Review o TFTs

Topological Field Theorie Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs


Trans. and Defects

Composition = "Fusion"

<ロ> (四) (四) (注) (注) (注) (三)

$\mathsf{Open}/\mathsf{Closed}\ \mathsf{TQFTs}$

・ロン ・回 と ・ヨン ・ヨン

$\mathsf{Open}/\mathsf{Closed}\ \mathsf{TQFTs}$

Chris Schommer-Pries

Outline

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Theorem (Moore-Segal, Cardy-Lewellen, Lazaroiu, Lauda-Pfeiffer)

Open/Closed TFTs ⇔ "Knowledgeable Frobenius Algberas"

 $i_{!}: A \rightleftharpoons C: i^{*}$

Cardy Condition! Non-semisimple examples.

イロン イ団と イヨン イヨン

Local Topological Field Theories

Chris Schommer Pries

Outline

Review of TFTs Topological Field Theorie Defects Open/Closed

Open/Close TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Higher Categorical Bordism Category: (Bord, ⊔)
 A Local TFT is a symmetric monoidal *n*-functor:

 $\mathsf{Bord} \to \mathsf{C}$

・ロト ・回 ト ・ヨト ・ヨトー

Easiest Case: Bicategory, Bord₂

Objects are zero manifolds.

- 1-Morphisms are 1-bordisms.
- 2-Morphisms are 2-bordisms (between 1-bordisms) (up to isomorphism)

Local Topological Field Theories

Chris Schommer Pries

Outline

Review of TFTs

Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Higher Categorical Bordism Category: (Bord, ⊔)
 A Local TFT is a symmetric monoidal *n*-functor:

 $\mathsf{Bord} \to \mathsf{C}$

イロン イ団と イヨン イヨン

Easiest Case: Bicategory, Bord₂

- Objects are zero manifolds.
- 1-Morphisms are 1-bordisms.
- 2-Morphisms are 2-bordisms (between 1-bordisms) (up to isomorphism)

Chris Schommer-Pries

Outline

Review of TFTs Topological Field Theorie Defects Open/Closed

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects • Objects: *a*, *b*, *c*, . . .

а

b

◆□ > ◆□ > ◆□ > ◆□ > ●

æ

Chris Schommer-Pries

Chris Schommer Pries

Outline

Review of TFTs Topological Field Theorie Defects Open/Closed

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

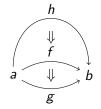
- Objects: *a*, *b*, *c*, . . .
- Categories B(a, b)

・ロト ・回ト ・ヨト ・ヨト

Э

Chris Schommer Pries

Outline


Review of TFTs Topological Field Theorie Defects Open/Closed

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects ■ Objects: *a*, *b*, *c*, . . .

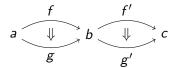
Categories B(a, b)

Э

Chris Schommer Pries

Outline

Review of TFTs Topological Field Theorie Defects Open/Closed


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

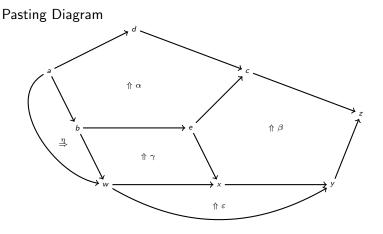
- Objects: *a*, *b*, *c*, ...
- Categories B(a, b)
- Horizontal composition functors: Strict

 $\mathsf{B}(a,b)\times\mathsf{B}(b,c)\to\mathsf{B}(a,c)$

イロト イヨト イヨト イヨト

Pasting Diagrams vs String Diagrams

Outline


Review of TFTs Topological Field Theori

Defects Open/Close TFTs

Locality and Bicategories

Classifying Local 2D TFTs

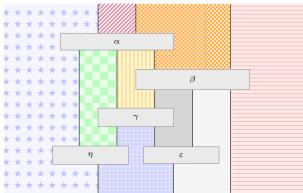
Trans. and Defects

・ロト ・回ト ・ヨト ・ヨト

Pasting Diagrams vs String Diagrams

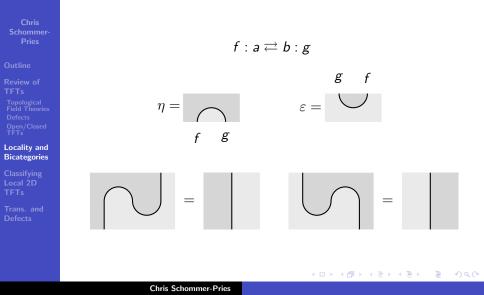
Chris Schommer-Pries

Outline


Review of TFTs Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs


Trans. and Defects

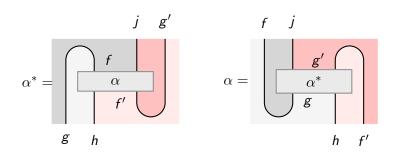
String Diagram

・ロト ・回 ト ・ヨト ・ヨトー

Adjunctions

Mates

Chris Schommer-Pries


Outline

Review of TFTs Topological Field Theorie Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Homomorphisms of Bicategories

Chris Schommer Pries

Outline

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

•
$$F: B_i \to C_i$$
,

• $\phi: F(g) \circ F(f) \rightarrow F(gf),$ (2-morphisms)

Such that:

・ロト ・回 ト ・ヨト ・ヨトー

Transformations of Homomorphisms

Chris Schommer-Pries

Outline

Review of TFTs Topological Field Theorie: Defects Open/Closed

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Ordinary Transformation

• $\sigma_a: Fa \rightarrow Ga$

 $F(a) \xrightarrow{\sigma_a} G(a)$ $F(f) \downarrow \qquad \qquad \downarrow G(f)$ $F(b) \xrightarrow{\sigma_b} G(b)$

イロン イヨン イヨン イヨン

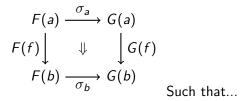
Transformations of Homomorphisms

Chris Schommer Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects **Bicategory Transformations**

イロン イ団と イヨン イヨン

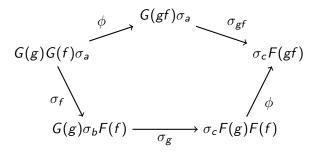
• $\sigma_a : Fa \to Ga$ • $\sigma_f : G(f) \circ \sigma_a \to \sigma_b \circ F(f)$

Transformations of Homomorphisms

Chris Schommer-Pries

Outline

Review of TFTs Topological Field Theories Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

1 σ_f is natural in f,

2 and...

イロト イヨト イヨト イヨト

Classification Theorem

Chris Schommer-Pries

Outline

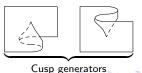
Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects


Theorem (SP)

The Oriented Bordism Bicategory has the following Generators and Relations as a Symmetric Monoidal Bicategory:

Generating Objects: + • - • Generating 1-Morphisms: $^+ \supset ~ \subset^+$

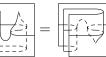
Generating 2-Morphisms:

2D Morse generators

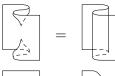
The Relations

Chris Schommer-Pries

Outline


Review of TFTs

Topological Field Theorie Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Relations among 2-Morphisms:

æ

Chris Schommer-Pries

Proof: Step 1

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

$\label{eq:make-sense} \begin{array}{l} \mbox{Make Sense of Generators/Relations for Symmetric Monoidal} \\ \mbox{Bicats.} \end{array}$

heorem (SP)

Given Generators/Relations Data: (G, R) symmetric monoidal bicat. F_(G,R) s.t.

 $\mathsf{SymBicat}(\mathsf{F}_{(G,R)},\mathsf{C}) \xleftarrow{\simeq} (G,R)\text{-}data \text{ in }\mathsf{C}.$

イロト イヨト イヨト イヨト

Proof: Step 1

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Make Sense of Generators/Relations for Symmetric Monoidal Bicats.

Theorem (SP)

Given Generators/Relations Data: (G, R) \exists symmetric monoidal bicat. $F_{(G,R)}$ s.t.

 $\mathsf{SymBicat}(\mathsf{F}_{(G,R)},\mathsf{C}) \xleftarrow{\simeq} (G,R) \text{-}data \text{ in }\mathsf{C}.$

イロン イヨン イヨン イヨン

3

(Part of) a Universal Property

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Corollary (SP)

Homomorphisms, Transformations, Modifications determined by

$$egin{aligned} h &: (G_0, G_1, G_2) o (M_0, M_1, M_2) \ t &: (G_0, G_1) o (M_1, M_2) \ m &: G_0 o M_2 \end{aligned}$$

イロン イヨン イヨン イヨン

æ

(Any target symmetric monoidal bicat M)

Statement of Classification Theorem

Chris Schommer-Pries

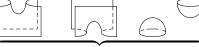
Outline

Review of TFTs

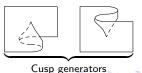
Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs


Trans. and Defects

Theorem (SP)


The Oriented Bordism Bicategory has the following Generators and Relations as a Symmetric Monoidal Bicategory:

Generating Objects: + • - • Generating 1-Morphisms: $^+ \supset ~ \subset^+$

Generating 2-Morphisms:

2D Morse generators

Statement of Classification Theorem

Chris Schommer Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Theorem (SP)

$\mathsf{F}_{(G,R)} \to \mathsf{Bord}_2$

イロン イ団と イヨン イヨン

æ

is an equivalence of symmetric monoidal bicategories.

Skip proof

Proof: Step 2

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Theorem (SP)

 $F_{(G,R)} \rightarrow \text{Bord}_2$ is an equivalence of symmetric monoidal bicategories iff

イロン イヨン イヨン イヨン

- Essentially surjective on objects
- Essentially full on 1-morphisms
- Fully-faithful on 2-morphisms.

Proof: Step 2

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Theorem (SP)

 $F_{(G,R)} \rightarrow \text{Bord}_2$ is an equivalence of symmetric monoidal bicategories iff

イロン イヨン イヨン イヨン

- Essentially surjective on objects \checkmark
- Essentially full on 1-morphisms
- Fully-faithful on 2-morphisms.

Proof: Step 2

Chris Schommer-Pries

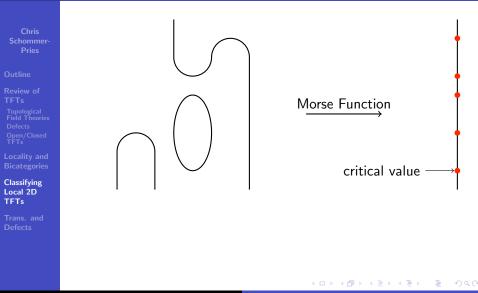
Outline

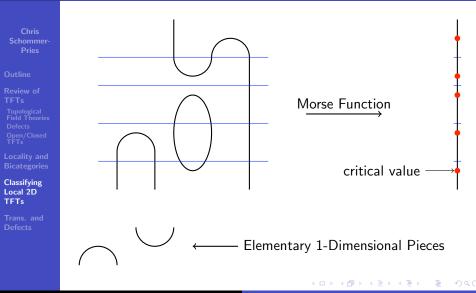
Review of TFTs

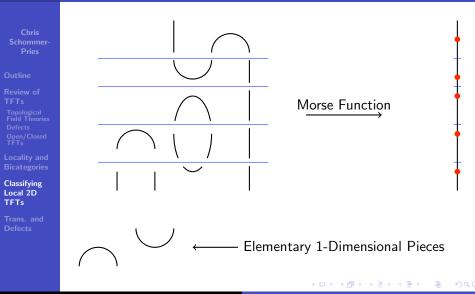
Topological Field Theories Defects Open/Closed TFTs

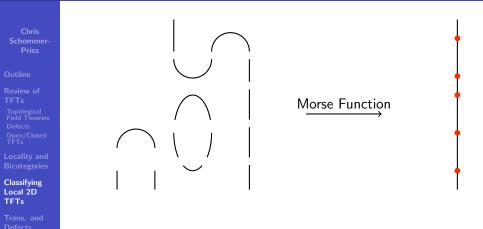
Locality and Bicategories

Classifying Local 2D TFTs


Trans. and Defects


Theorem (SP)


 $F_{(G,R)} \rightarrow \text{Bord}_2$ is an equivalence of symmetric monoidal bicategories iff


イロン イヨン イヨン イヨン

- Essentially surjective on objects \checkmark
- Essentially full on 1-morphisms \checkmark
- Fully-faithful on 2-morphisms.

Cerf Theory Gives Relations!

イロト イヨト イヨト イヨト

Singularities of Generic maps $\Sigma^2 \to \mathbb{R}^2$

Chris Schommer Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Use the projection $\Sigma \to \mathbb{R}^2 \to \mathbb{R}$.

3 Kinds of Singularities:

Folds

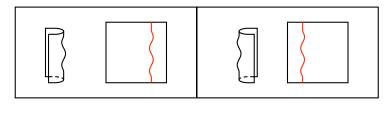
Cusps

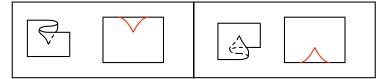
2D Morse

イロト イヨト イヨト イヨト

Folds and Cusps

Outline


Review o TFTs


Topological Field Theories Defects Open/Closed TFTs

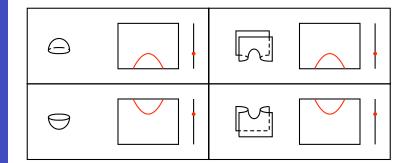
Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

<ロ> (四) (四) (三) (三) (三) (三)

Outline


Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

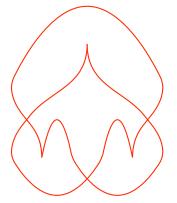
Trans. and Defects

Example

Chris Schommer-Pries

Outline

Review of TFTs


Topological Field Theorie Defects Open/Closed TFTs

Locality and Bicategorie

Classifying Local 2D TFTs

Trans. and Defects

What is it?

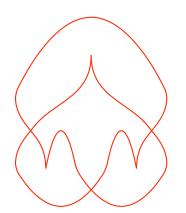
<ロ> (四) (四) (注) (注) (注) (三)

Example

Chris Schommer-Pries

Outline

Review of TFTs


Topological Field Theorie Defects Open/Closed TFTs

Locality and Bicategorie

Classifying Local 2D TFTs

Trans. and Defects

What is it? \mathbb{RP}^2 !

◆□→ ◆□→ ◆三→ ◆三→

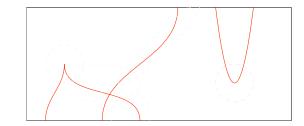
э

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Skip rest of proof

Generic Maps to \mathbb{R}^2 Decompose Surfaces! (String Diagram!)

イロト イヨト イヨト イヨト

Question:

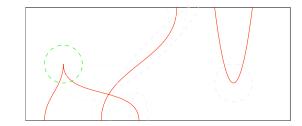
When are two Decompositions Equivalent?

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Skip rest of proof

Generic Maps to \mathbb{R}^2 Decompose Surfaces! (String Diagram!)

イロト イヨト イヨト イヨト

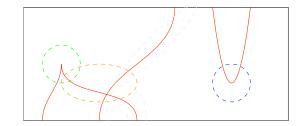
Question:

When are two Decompositions Equivalent?

Chris Schommer-Pries

Outline

Review of TFTs


Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Skip rest of proof

Generic Maps to \mathbb{R}^2 Decompose Surfaces! (String Diagram!)

イロト イヨト イヨト イヨト

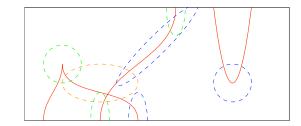
Question:

When are two Decompositions Equivalent?

Chris Schommer-Pries

Outline

Review of TFTs


Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Skip rest of proof

Generic Maps to \mathbb{R}^2 Decompose Surfaces! (String Diagram!)

イロト イヨト イヨト イヨト

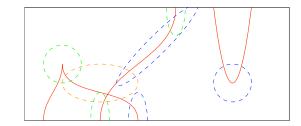
Question:

When are two Decompositions Equivalent?

Chris Schommer-Pries

Outline

Review of TFTs


Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Skip rest of proof

Generic Maps to \mathbb{R}^2 Decompose Surfaces! (String Diagram!)

イロト イヨト イヨト イヨト

Question:

When are two Decompositions Equivalent?

Singularities of Generic Maps $\Sigma \times I \rightarrow \mathbb{R}^2 \times I$

Chris Schommer Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

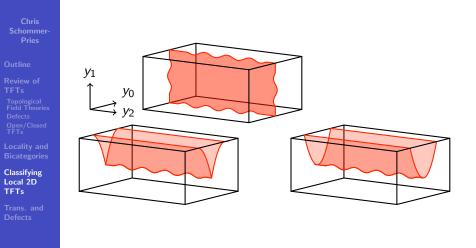
Classifying Local 2D TFTs

Trans. and Defects

Paths of ...

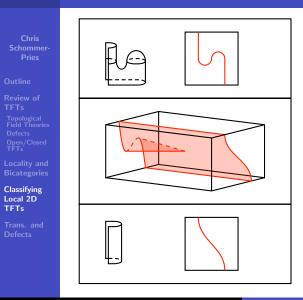
Folds

- Cusps
- 2D Morse


And...

- 2D Morse Relation
- Cusp Inversion

イロト イヨト イヨト イヨト


- Cusp Flip
- Swallowtails

Paths of Folds, Cusps, and 2D Morse

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

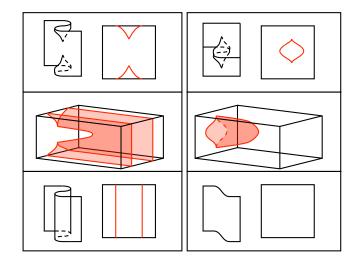
2D Morse Relation

<ロ> (四) (四) (三) (三) (三) (三)

Cusp Inversion

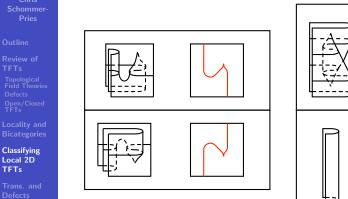
Chris Schommer-Pries

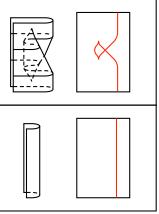
Outline


Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories


Classifying Local 2D TFTs


Trans. and Defects

<ロ> (四) (四) (注) (注) (注) (三)

Cusp Flip and Swallowtail

<ロ> (四) (四) (注) (注) (注) (三)

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Theorem (SP)

Maps for surfaces give elementary generators:

- Folds,
- Cusps,
- 2D Morse, and
- "Gluing Data"

Maps for $\Sigma \times I$ give elementary relations.

イロト イヨト イヨト イヨト

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Theorem (SP)

Maps for surfaces give elementary generators:

- Folds,
- Cusps,
- 2D Morse, and
- "Gluing Data"

Maps for $\Sigma \times I$ give elementary relations.

$$\Rightarrow$$
 Step 3 \checkmark

・ロト ・回 ト ・ヨト ・ヨトー

Chris Schommer-Pries

Outline

Review of TFTs

Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Prove:

 \simeq

Application

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects Alg = Bicat. of Algebras, Bimodules, Intertwiners.

Corollary (SP)

 $TFT_2(Alg) \simeq$ the bicategory of Separable Symmetric Frobenius Algebras with Morita equivalences as 1-morphisms, isomorphisms as 2-morphisms.

 $\mathsf{Open}/\mathsf{Closed} \neq \mathsf{Local}$

イロン イヨン イヨン イヨン

Transformations of Local 2D TFTs

Schommer-Pries

Outline

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Recall:

Corollary (SP)

Homomorphisms, Transformations, Modifications determined by

$$egin{aligned} h: (G_0, G_1, G_2) & o (M_0, M_1, M_2) \ t: (G_0, G_1) & o (M_1, M_2) \ m: G_0 & o M_2 \end{aligned}$$

イロン イ団と イヨン イヨン

(Any target symmetric monoidal bicat M)

Transformations of Local 2D TFTs

Chris Schommer-Pries

Outline

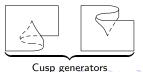
Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects


Theorem (SP)

Bord₂ has the following generators as a symmetric monoidal bicategory:

Generating Objects: + • - • Generating 1-Morphisms: + - - +-

> Generating 2-Morphisms:

2D Morse generators

Transformations of Local TFTs

Chris Schommer Pries

Outline

Review c TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

$$\sigma: Z_0 \Rightarrow Z_1$$

•
$$\sigma(pt^+): Z_0(pt^+) \to Z_1(pt^+)$$

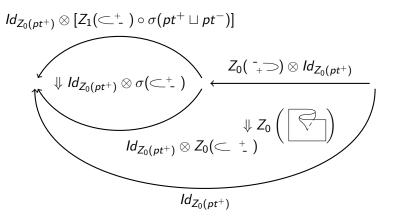
• $\sigma(pt^-): Z_0(pt^-) \to Z_1(pt^-)$
• $\sigma(\subset_{-}^+): Z_1(\subset_{-}^+) \circ \sigma(pt^+ \sqcup pt^-) \to \sigma(\emptyset) \circ Z_0(\subset_{-}^+)$
• $\sigma(\stackrel{+}{\longrightarrow}): Z_1(\stackrel{+}{\longrightarrow}) \circ \sigma(\emptyset) \to \sigma(pt^+ \sqcup pt^-) \circ Z_0(\stackrel{+}{\longrightarrow})$

・ロト ・回ト ・ヨト ・ヨト

Write in terms of pt^+ ...

Chris Schommer-Pries

Outline


Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

イロン イヨン イヨン イヨン

In String Diagrams...

Chris Schommer-Pries

Outline

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

$$Z_{1}(pt^{+})$$

$$\tilde{\sigma}(pt^{+}) \downarrow \sigma(pt^{+})$$

$$\downarrow \tilde{\sigma}(\subset^{+})$$

$$Z_{0}(pt^{+})$$

$$Z_{1}(pt^{+})$$

$$\tilde{\sigma}(pt^{+}) \uparrow \sigma(pt^{+})$$

$$Z_{0}(pt^{+})$$

Graphical Notation

Chris Schommer-Pries

Outline

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

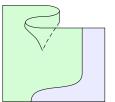
Trans. and Defects

$$\eta \leftrightarrow \boxed{} = \sigma(+) \qquad \sigma(<+)$$

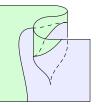
 $(\subset^+) =$

Naturality w.r.t. Cusps

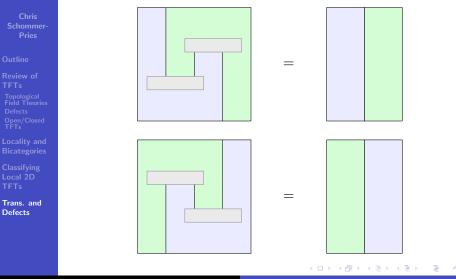
Outline


Review o TFTs

Topological Field Theories Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs


Trans. and Defects

=

Graphical Notation

Duality in Bord ₂	
------------------------------	--

Chris Schommer-Pries

Outline

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects \supset is left and right adjoint to <. Ambidextrous Adjoints

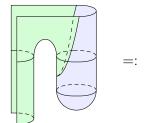
・ロ・ ・ 日・ ・ 田・ ・ 日・

Э

Mates

Chris Schommer-Pries

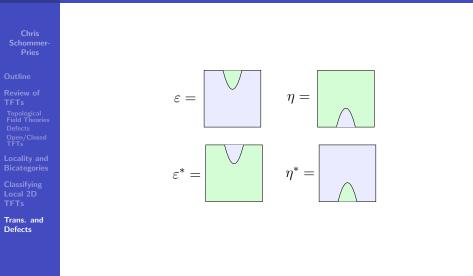
Outline


Review o TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs


Trans. and Defects

<ロ> (四) (四) (注) (注) (注) (三)

Ambidextrous Adjunction!

・ロ・ ・ 日・ ・ 日・ ・ 日・

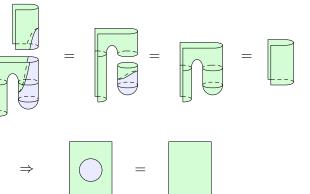
Э

Naturality w.r.t. Cup

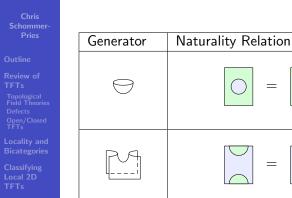
・ロ・ ・ 日・ ・ 日・ ・ 日・

Implied Relation

Outline

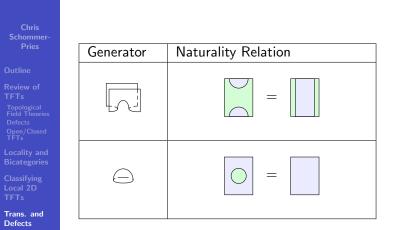

Review o TFTs

Topological Field Theories Defects Open/Closed TFTs


Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects


Naturality Relations

Trans. and Defects

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ●

Naturality Relations

Э

TFTs are a Space!

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Corollary

Transformations between TFTs \leftrightarrow Adjoint Equivalences

・ロト ・回 ト ・ヨト ・ヨトー

æ

Note: Does not apply to Positive Boundary TFTs.

Supernatural Transformations

Chris Schommer-Pries

Outline

Review of TFTs

Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

Definition

Supernatural Transformation = transformation data: σ_a, σ_f only natural w.r.t. invertible 2-morphisms.

$$i_0, i_1 : \mathsf{Bord}_2 \rightrightarrows \mathsf{Bord}_2^{\mathsf{dec}}$$

Theorem

$$\underbrace{(Z: \text{Bord}_2^{dec} \to \text{C})}_{\text{CTET with defects}} = Supernatural Trans. Zi_0 \Rightarrow Zi_1$$

イロン イヨン イヨン イヨン

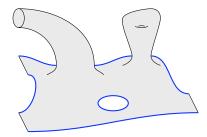
Remark: point defects \leftrightarrow "supernatural modifications"

Examples of Supernatural Transformations

Chris Schommer Pries

Outline

Review of TFTs


Topological Field Theories Defects Open/Closed TFTs

Locality and Bicategories

Classifying Local 2D TFTs

Trans. and Defects

- Natural Transformations. ✓
- Local Topological Defects. √
- Local Open-Closed TFTs...

イロト イヨト イヨト イヨト