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Introduction

Global homotopy theory =
‘equivariant homotopy theory with maximal symmetry’

global = all compact Lie groups act compatibly

Aim: I explain a rigorous formalism
I motivate the theory by a geometric example

I. Global stable homotopy theory

I Orthogonal spectra
I Global equivalences
I Examples

II. Global equivariant bordism

I Equivariant bordism
I Global Thom spectra



Orthogonal spectra

Definition
An orthogonal spectrum X consists of

I based O(V )-spaces X (V ), for every inner product space V
I O(V )×O(W )-equivariant structure maps

σV ,W : X (V ) ∧ SW −→ X (V ⊕W )

subject to associativity and identity conditions.

Here: SW = W ∪ {∞} one-point compactification

An orthogonal spectrum X has an underlying spectrum in the
sense of stable homotopy theory:

I Xn = X (Rn), n ≥ 0
I σRn,R : ΣXn = X (Rn) ∧ S1 −→ X (Rn+1) = Xn+1

I forget the O(n)-actions



Equivariant homotopy groups

Let X be an orthogonal spectrum.
I G: compact Lie group
I V : orthogonal G-representation

}
=⇒ G acts on X (V )

[SV ,X (V )]G : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of X is

πG
0 (X ) = colimV [SV ,X (V )]G .

I colimit by stabilization via − ∧ SW , using structure maps
I πG

0 (X ) is an abelian group, natural in X
I similarly: πG

k (X ) for k ∈ Z



Global equivalences

Definition
A morphism f : X −→ Y of orthogonal spectra
is a global equivalence if the map

πG
k (f ) : πG

k (X ) −→ πG
k (Y )

is an isomorphism for all k ∈ Z and all G.

Definition
The global stable homotopy category is

GH = SpO[global equivalences−1] ,

the localization of orthogonal spectra at the class
of global equivalences.



Global stable homotopy category

I Model category structures are available
I GH is a tensor triangulated category
I objects in GH represent cohomology theories on stacks

(Gepner-Henriques, Gepner-Nikolaus)

Note: π
{e}
k (X ) = traditional (non-equivariant) homotopy group

of the underlying spectrum of X , so

global equivalence =⇒ stable equivalence

The forgetful functor

GH // (stable homotopy category)gg
ww

has fully faithful adjoints providing a recollement.



Restriction and transfers

A continuous homomorphism G ←− K : α
induces a restriction homomorphism α∗ : πG

0 (X ) −→ πK
0 (X )

[f : SV −→ X (V )] 7−→ [α∗(f ) : Sα∗(V ) −→ X (α∗(V ))]

A closed subgroup H ≤ G gives rise to
a transfer homomorphism trG

H : πH
0 (X ) −→ πG

0 (X )
(equivariant Thom-Pontryagin construction)

Relations:
I restrictions are contravariantly functorial
I transfers are covariantly functorial
I inner automorphisms are identity
I transfers commute with inflation
I double coset formula

=⇒ ‘global functors’ (‘inflation functors’)



Examples

Example
The global sphere spectrum S is given by

S(V ) = SV , σV ,W : SV ∧ SW ∼= SV⊕W

Example
The connective global K -theory spectrum ko:
ko(V ) = finite configurations of points in SV

labeled by finite dimensional
orthogonal subspaces of Sym(V )

Example
The Eilenberg-Mac Lane spectrum HZ:
(HZ)(V ) = Sp∞(SV )
infinite symmetric product

∞

V1
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Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko

dimension

��

πG
0 (ko) = RO(G)

rank
��

representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:

I The morphism SQ −→ HQ is a non-equivariant
equivalence, but not a global equivalence.

I The morphism mO −→ MO is a non-equivariant
equivalence, but not a global equivalence.



Equivariant bordism

G: compact Lie group, X : G-space

Definition
NG

n (X ) = G-equivariant bordism group of X
elements: bordism classes of (M,h) with:

I M: smooth closed G-manifold of dimension n
I h : M −→ X : continuous G-map

NG
n (−) is covariant functor, abelian group by disjoint union

Equivariant homology theory (Conner-Floyd, Stong,. . . ):

I G-homotopy invariant

I
⊕
NG

k (Xi)
∼=−−→ NG

k (
∐

Xi)

I a G-map f : X −→ Y yields a long exact sequence

. . . −→ NG
n (X )

f∗−−→ NG
n (Y )

i∗−−→ ÑG
n (Cone(f ))

∂−−→ NG
n−1(X ) −→ . . .



Examples

Non-equivariant bordism:
N∗ = F2[xi | i 6= 2n − 1]

Possible generators: xi = [RP i ], i even; xi = [Sm×τ CPn], i odd

Bordism of manifolds with involution:
I Define Γ : NC2

k −→ NC2
k+1 by

Γ[M, τ ] = S1 ×τ M, (z, x) ' (−z, τ(x))
with involution [z, x ] 7→ [−z̄, x ].

I Set yk = [RPk , τ ],
[x0 : x1 : . . . : xn] 7→ [−x0 : x1 : . . . : xn].

Then NC2
∗ is a free N∗-module with basis

1, Γn(yk1 · . . . · ykr )

for n ≥ 0, r ≥ 1, ki ≥ 2.

RP2, τ =?



Bordism and Thom spectra

Theorem (Thom ’54)
Non-equivariant bordism is represented by a spectrum MO:

Nn(X ) ∼= colimk [Sn+k ,MOk ∧ X+]

nowadays: Thom spectrum and
Thom-Pontryagin construction

Thom: version for oriented bordism (MSO)
also: almost complex (MU), spin (MSpin), . . .

Questions:

I G-equivariant version?
I Global version?

René Thom



Global Thom spectra

V : inner product space of dimension n
γV : tautological n-plane bundle

over the Grassmannian Grn(V ⊕ R∞)

Definition
The global Thom spectrum mO is the orthogonal spectrum with

mO(V ) = Thom space of γV .

The action of O(V ) and structure maps only affect V , not R∞.

Small changes can make a big difference:
I replacing Grn(V ⊕ R∞) by Grn(V ⊕ V ) yields

an orthogonal Thom spectrum MO
with different equivariant homotopy types.

I mO is equivariant connective; MO is equivariantly oriented



Equivariant Thom-Pontryagin construction

Smooth compact G-manifolds can be embedded into
G-representations (Mostow-Palais), so the equivariant
Thom-Pontryagin construction makes sense:

NG
n (X ) −→ colimV [SV⊕Rn

,mO(V ) ∧ X+] = mOG
n (X )

Theorem (Wasserman ‘69)
Let G be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an
isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction is not in general
bijective. For example, the map

N SU(2)
0 −→ π

SU(2)
0 (mO)

is not surjective.



Induction versus transfer

Question:
Why finite×torus? What goes wrong in general?
A closer look at the functoriality for closed subgroups H ≤ G

Geometry:
induction isomorphism:

NH
n−d (X )

IndG
H−−→ NG

n (G ×H X )

[M,h] 7−→ [G ×H M,G ×H h]

where d = dim(G/H)
→ shift by dimension

Homotopy theory:
‘Wirthmüller isomorphism’:

mOH
n (SL∧X+)

TrG
H−−→ mOG

n (G×HX+)

where L = TH(G/H)
→ twist by an H-representation

Answer:
Different formal behaviour of induction / transfer.
So no chance for an isomorphism in general.



Why ‘finite×torus’ !

However:
G is isomorphic to the product of a finite group and a torus
⇐⇒ for every closed subgroup H of G

the tangent H-representation TH(G/H) is trivial
⇐⇒ all transfers ‘up to G’ are untwisted

In fact, this suggests a homotopy theoretic proof
(induction over the size of G, isotropy separation)

More refined statement: let V be a G-representation
p : S(V ⊕ R) −→ SV stereographic projection
represents a tautological equivariant bordism class

dG,V ∈ ÑG
|V |(S

V )



Correction by tautological class

Recall: L = TH(G/H) tangent H-representation,
of dimension d = dim(G/H)

Proposition
For every closed subgroup H of a compact Lie group G and
every H-space X the following diagram commutes:

NH
n−d (X )

IndG
H
∼=

��

TP // mOH
n−d (X+)

dH,L×−��
mOH

n (SL ∧ X+)

TrG
H

∼= ��

NG
n (G ×H X )

TP
// mOG

n ((G ×H X )+)

I the tautological class dH,L measures the failure of
Thom-Pontryagin map to commute with induction/transfer.



Stable equivariant bordism and MO

I The classes dG,V are not invertible in NG
∗ (−) nor mOG

∗ (−).
I Formally inverting them forces

‘geometric induction = homotopical transfer’.

Corollary (Bröcker-Hook ‘72)
After formally inverting all tautological classes in NG

∗ (−) and in
mOG

∗ (−), the Thom-Pontryagin construction becomes an
isomorphism for all compact Lie groups G and all G-spaces X.

Formally inverting the classes dG,V yields:
I stable equivariant bordism:

NG:S
n (X ) = colimV ÑG

n+|V |(S
V ∧ X+)

I tom Dieck’s homotopical equivariant bordism:

MOG
n (X ) = colimV mOG

n+|V |(S
V ∧ X+)



Summary

Open questions:
I Does mOG

∗ (−) describe any geometric G-bordism theory?
We need to twist induction by the tangent representation...

I Are there generalizations to equivariant bordism theories
with more structure (mSOG

∗ , mSpinG
∗ , mUG

∗ ,. . . )?
Induction needs extra structure on G/H ...

Summary:
I The global stable homotopy category is the home of all

equivariant phenomena with ‘maximal symmetry’
I Orthogonal spectra and global equivalences provide a

convenient model
I The global perspective reveals the difference between

geometric bordism and equivariant Thom spectra

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Preview

Preview to Part II:
A global description of mO (analogues for mSO,mU,. . . ):

I mO = hocolimm mO(m), where
mO(m) is a specific global refinement of ΣmMT (m)

I exact triangles in the global stable homotopy category:

Sm−1∧BglO(m) −→ mO(m−1) −→ mO(m) −→ Sm∧BglO(m)

I Universal property: mO is obtained from S
by inductively coning off the classes

TrO(m)
O(m−1)(dO(m−1),Rm−1)

I This generalizes : TrO(1)
{e} (1) = 0

•
��

O(1)
��
• = ∂

(
•
��

O(1)
��
•
)


