Equivariant bordism from the global perspective

Stefan Schwede

Mathematisches Institut, Universität Bonn

December 7, 2015 / Glasgow

Introduction

Global homotopy theory = 'equivariant homotopy theory with maximal symmetry' global = all compact Lie groups act compatibly

- Aim: explain a rigorous formalism
 - motivate the theory by a geometric example
- I. Global stable homotopy theory
 - Orthogonal spectra
 - Global equivalences
 - Examples
- II. Global equivariant bordism
 - Equivariant bordism
 - Global Thom spectra

Definition An orthogonal spectrum *X* consists of

- ▶ based O(V)-spaces X(V), for every inner product space V
- $O(V) \times O(W)$ -equivariant structure maps

$$\sigma_{V,W} : X(V) \land S^{W} \longrightarrow X(V \oplus W)$$

subject to associativity and identity conditions.

Here: $S^W = W \cup \{\infty\}$ one-point compactification

An orthogonal spectrum X has an <u>underlying spectrum</u> in the sense of stable homotopy theory:

•
$$X_n = X(\mathbb{R}^n), \quad n \ge 0$$

$$\bullet \ \sigma_{\mathbb{R}^n,\mathbb{R}}: \Sigma X_n = X(\mathbb{R}^n) \land S^1 \longrightarrow X(\mathbb{R}^{n+1}) = X_{n+1}$$

forget the O(n)-actions

Equivariant homotopy groups

Let X be an orthogonal spectrum.

- ► G: compact Lie group
- ► V: orthogonal G-representation

$$\Rightarrow \implies G \text{ acts on } X(V)$$

 $[S^V, X(V)]^G$: based *G*-homotopy classes of *G*-maps

Definition The G-equivariant stable homotopy group of X is

$$\pi_0^G(X) = \operatorname{colim}_V [S^V, X(V)]^G.$$

- colimit by stabilization via $\wedge S^W$, using structure maps
- $\pi_0^G(X)$ is an abelian group, natural in X
- similarly: $\pi_k^G(X)$ for $k \in \mathbb{Z}$

Definition

A morphism $f: X \longrightarrow Y$ of orthogonal spectra is a global equivalence if the map

$$\pi_k^G(f) : \pi_k^G(X) \longrightarrow \pi_k^G(Y)$$

is an isomorphism for all $k \in \mathbb{Z}$ and all *G*.

Definition The global stable homotopy category is

$$\mathcal{GH} \;=\; \mathbf{Sp}^{O}[\text{global equivalences}^{-1}]\;,$$

the localization of orthogonal spectra at the class of global equivalences.

Global stable homotopy category

- Model category structures are available
- \mathcal{GH} is a tensor triangulated category
- objects in *GH* represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)

Note: $\pi_k^{\{e\}}(X)$ = traditional (non-equivariant) homotopy group of the underlying spectrum of *X*, so

global equivalence \implies stable equivalence

The forgetful functor $\mathcal{GH} \longrightarrow$ (stable homotopy category)

has fully faithful adjoints providing a recollement.

Restriction and transfers

A continuous homomorphism $G \longleftarrow K : \alpha$ induces a restriction homomorphism $\alpha^* : \pi_0^G(X) \longrightarrow \pi_0^K(X)$

 $[f: S^V \longrightarrow X(V)] \longmapsto [\alpha^*(f) : S^{\alpha^*(V)} \longrightarrow X(\alpha^*(V))]$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\operatorname{tr}_{H}^{G} : \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial
- transfers are covariantly functorial
- inner automorphisms are identity
- transfers commute with inflation
- double coset formula
- \implies 'global functors' ('inflation functors')

Examples

Example

The global sphere spectrum S is given by

$$\mathbb{S}(V) = S^V, \qquad \sigma_{V,W} : S^V \wedge S^W \cong S^{V \oplus W}$$

Example

The connective global *K*-theory spectrum **ko**:

 $\mathbf{ko}(V) =$ finite configurations of points in S^V labeled by finite dimensional orthogonal subspaces of Sym(V)

Example

The Eilenberg-Mac Lane spectrum $H\mathbb{Z}$:

 $(H\mathbb{Z})(V) = Sp^{\infty}(S^{V})$ infinite symmetric product

Some global morphisms

For G finite:

Global versus non-equivariant equivalence:

- ► The morphism S_Q → HQ is a non-equivariant equivalence, but not a global equivalence.
- ► The morphism mO → MO is a non-equivariant equivalence, but not a global equivalence.

Equivariant bordism

G: compact Lie group, X: G-space

Definition

 $\mathcal{N}_n^G(X) = G$ -equivariant bordism group of X elements: bordism classes of (M, h) with:

- M: smooth closed G-manifold of dimension n
- $h: M \longrightarrow X$: continuous *G*-map

 $\mathcal{N}_n^G(-)$ is covariant functor, abelian group by disjoint union Equivariant homology theory (Conner-Floyd, Stong,...):

- G-homotopy invariant
- $\blacktriangleright \bigoplus \mathcal{N}_k^G(X_i) \xrightarrow{\cong} \mathcal{N}_k^G(\coprod X_i)$
- a *G*-map $f: X \longrightarrow Y$ yields a long exact sequence

 $\ldots \longrightarrow \mathcal{N}_n^G(X) \xrightarrow{f_*} \mathcal{N}_n^G(Y) \xrightarrow{i_*} \widetilde{\mathcal{N}}_n^G(\mathsf{Cone}(f)) \xrightarrow{\partial} \mathcal{N}_{n-1}^G(X) \longrightarrow \ldots$

Non-equivariant bordism:

$$\mathcal{N}_* = \mathbb{F}_2[x_i \mid i \neq 2^n - 1]$$

Possible generators: $x_i = [\mathbb{R}P^i]$, *i* even; $x_i = [S^m \times_{\tau} \mathbb{C}P^n]$, *i* odd

Bordism of manifolds with involution:

• Define
$$\Gamma : \mathcal{N}_k^{C_2} \longrightarrow \mathcal{N}_{k+1}^{C_2}$$
 by
 $\Gamma[M, \tau] = S^1 \times_{\tau} M, \quad (z, x) \simeq (-z, \tau(x))$
with involution $[z, x] \mapsto [-\overline{z}, x].$

• Set
$$y_k = [\mathbb{R}P^k, \tau]$$
,
 $[x_0: x_1: \ldots: x_n] \mapsto [-x_0: x_1: \ldots: x_n]$.

Then $\mathcal{N}^{\mathcal{C}_2}_*$ is a free $\mathcal{N}_*\text{-module}$ with basis

1,
$$\Gamma^n(y_{k_1}\cdot\ldots\cdot y_{k_r})$$

for $n \ge 0, r \ge 1, k_i \ge 2$.

$$\mathbb{R}P^2, \ \tau = ?$$

Theorem (Thom '54)

Non-equivariant bordism is represented by a spectrum MO:

$$\mathcal{N}_n(X) \cong \operatorname{colim}_k [S^{n+k}, MO_k \wedge X_+]$$

nowadays: Thom spectrum and Thom-Pontryagin construction Thom: version for oriented bordism (*MSO*) also: almost complex (*MU*), spin (*MSpin*), ...

Questions:

- ► G-equivariant version?
- Global version?

René Thom

V: inner product space of dimension *n* γ_V : tautological *n*-plane bundle over the Grassmannian $Gr_n(V \oplus \mathbb{R}^\infty)$

Definition

The global Thom spectrum mO is the orthogonal spectrum with

 $\mathbf{mO}(V) =$ Thom space of γ_V .

The action of O(V) and structure maps only affect V, not \mathbb{R}^{∞} .

Small changes can make a big difference:

- ► replacing $Gr_n(V \oplus \mathbb{R}^\infty)$ by $Gr_n(V \oplus V)$ yields an orthogonal Thom spectrum **MO** with different equivariant homotopy types.
- ▶ mO is equivariant connective; MO is equivariantly oriented

Smooth compact *G*-manifolds can be embedded into *G*-representations (Mostow-Palais), so the equivariant Thom-Pontryagin construction makes sense:

$$\mathcal{N}_n^G(X) \longrightarrow \operatorname{colim}_V[S^{V \oplus \mathbb{R}^n}, \operatorname{mO}(V) \wedge X_+] = \operatorname{mO}_n^G(X)$$

Theorem (Wasserman '69)

Let G be isomorphic to the product of a finite group and a torus. Then the equivariant Thom-Pontryagin construction is an isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction is **not** in general bijective. For example, the map

$$\mathcal{N}_0^{SU(2)} \longrightarrow \pi_0^{SU(2)}(\mathbf{mO})$$

is not surjective.

Question:

Why finite×torus? What goes wrong in general?

A closer look at the functoriality for closed subgroups $H \leq G$

Geometry:

induction isomorphism:

 $\begin{array}{rcl} \mathcal{N}_{n-d}^{H}(X) & \xrightarrow{\mathsf{Ind}_{H}^{G}} & \mathcal{N}_{n}^{G}(G \times_{H} X) \\ & & [M,h] & \longmapsto & [G \times_{H} M, G \times_{H} h] \end{array}$

where $d = \dim(G/H)$ \rightarrow shift by dimension

Homotopy theory:

'Wirthmüller isomorphism': $\mathbf{mO}_n^H(S^L \wedge X_+) \xrightarrow{\mathrm{Tr}_H^G} \mathbf{mO}_n^G(G \times_H X_+)$

where $L = T_H(G/H)$ \rightarrow twist by an *H*-representation

Answer:

Different formal behaviour of induction / transfer. So no chance for an isomorphism in general.

However:

G is isomorphic to the product of a finite group and a torus

- $\iff \text{ for every closed subgroup } H \text{ of } G$ the tangent *H*-representation $T_H(G/H)$ is trivial
- \iff all transfers 'up to G' are untwisted

In fact, this suggests a homotopy theoretic proof (induction over the size of G, isotropy separation)

More refined statement: let *V* be a *G*-representation $p: S(V \oplus \mathbb{R}) \longrightarrow S^V$ stereographic projection represents a tautological equivariant bordism class

$$d_{G,V} \in \widetilde{\mathcal{N}}^G_{|V|}(S^V)$$

Correction by tautological class

Recall: $L = T_H(G/H)$ tangent *H*-representation, of dimension $d = \dim(G/H)$

Proposition

For every closed subgroup H of a compact Lie group G and every H-space X the following diagram commutes:

the tautological class d_{H,L} measures the failure of Thom-Pontryagin map to commute with induction/transfer.

Stable equivariant bordism and MO

- ► The classes $d_{G,V}$ are not invertible in $\mathcal{N}^G_*(-)$ nor $\mathbf{mO}^G_*(-)$.
- Formally inverting them forces 'geometric induction = homotopical transfer'.

Corollary (Bröcker-Hook '72)

After formally inverting all tautological classes in $\mathcal{N}^G_*(-)$ and in $\mathbf{mO}^G_*(-)$, the Thom-Pontryagin construction becomes an isomorphism for all compact Lie groups G and all G-spaces X.

Formally inverting the classes $d_{G,V}$ yields:

stable equivariant bordism:

$$\mathfrak{N}_n^{G:S}(X) = \operatorname{colim}_V \widetilde{\mathcal{N}}_{n+|V|}^G(S^V \wedge X_+)$$

tom Dieck's homotopical equivariant bordism:

$$\mathbf{MO}_n^G(X) = \operatorname{colim}_V \mathbf{mO}_{n+|V|}^G(S^V \wedge X_+)$$

Summary

Open questions:

- Does mO^G_{*}(-) describe any geometric G-bordism theory? We need to twist induction by the tangent representation...
- Are there generalizations to equivariant bordism theories with more structure (mSO^G_{*}, mSpin^G_{*}, mU^G_{*},...)? Induction needs extra structure on G/H ...

Summary:

- The global stable homotopy category is the home of all equivariant phenomena with 'maximal symmetry'
- Orthogonal spectra and global equivalences provide a convenient model
- The global perspective reveals the difference between geometric bordism and equivariant Thom spectra

Reference: S. Schwede, *Global homotopy theory* www.math.uni-bonn.de/people/schwede/global.pdf

Preview

Preview to Part II:

A global description of mO (analogues for mSO, mU, ...):

- mO = hocolim_m mO_(m), where
 mO_(m) is a specific global refinement of Σ^mMT(m)
- exact triangles in the global stable homotopy category:

 $S^{m-1} \wedge B_{\mathsf{gl}} \mathcal{O}(m) \longrightarrow \mathsf{mO}_{(m-1)} \longrightarrow \mathsf{mO}_{(m)} \longrightarrow S^m \wedge B_{\mathsf{gl}} \mathcal{O}(m)$

► Universal property: **mO** is obtained from S

by inductively coning off the classes

$$\mathrm{Tr}_{O(m-1)}^{O(m)}(d_{O(m-1),\mathbb{R}^{m-1}})$$

• This generalizes : $Tr^{O(1)}_{\{e\}}(1) = 0$

