[S<o1%)

OUTLINE OF A MATHEMATICAL
THEORY OF COMPUTATION

by

Dana Scott
Princeton University

The motivation for trying to formulate
a mathematical theory of computation is to
give mathematical semantics for high-level
computer languages. The word "mathemati=-
cal" is to be contrasted in this context
with some such term as "operational."
Thus the mathematical meaning of a proce-
dure ought to be the fupction from elements
of the data type of the input variables to
elements of the data type of the output,
On the other hand, the operational meaning
will generally provide a of the
whole history of the computation followlng
the sequencing stipulated in the stated
procedure definitlon and will invelve an
expllicit finitary choive of representations
of data =-- eventually in something close
to bit patterns, The point is that, math-
ematically speaking, functions are inde~
pendent of their means of computation and
hence are "simpler" than the explicitly
generated, step-by-step evolved sequences
of operations on representations, In give
ing precise definitions of operational
semantics there are always to be made more
or less arbitrary choices of schemes for
cataloging partial results and the links
between phases of the ealeulation (cf, the
formal definitions of such languages as
PL/I and ALGOL 68), and to a great extent
these choices are irrelevant for a true
"understanding" of a program. Mathematical
semantics tries to aveid these irrelevan-~
clies and should be more suitable to a
study of such proklems as the eguivalence
of programs.

It is all very well to aim for a more
"abstract" and a "cleaner" approach to
semantics, but if the plan is to be any
good, the operational aspects cannot be
completely ignored. The reason is obvious:
in the end the program still must be run
on a machine -- a machine which does not
possess the benefit of "abstract" human
understanding, a machine that must operate
with finite configurations., Therefore, a
mathematical semantics, which will repre-
sent the first major segment of the com-
plete, rigourous definition of a program-
ming language, must lead naturally to an
operational simulation of the abstract
entities, which -- if done properly --
will establish the practicality of the

169

language, and which is necessary for a full
presentation.

Thinking only of functions for the
moment, it is clear that a mathematically
defined function can be known to be com=-
putable without its being guite obvious
how to compute the function in a practical
gense ~- just as it is possible to know
that an infinite serles is convergent with-
out having a elear ldea of its sum, Even
though the abstract definition of the func-
tion is sufficlent to determine it, we can~
not really say that the function is known
untll the algorithm is revealed, (Even
then our knowledge is somewhat "indirect"
or "potential," but never mind.) The con-
clusion is, then, that an adequate theory
of computation must not only provide the
abstractions (what is computable) but also
their "physical" realizations (how to
compute them.)

What 1s new in the present theory is
exactly these abstractions; whereas the
means of realization, the techniques of
implementation, have been known for some
time, as the many, highly complex compilers
that are presently in operation demonstrate,
Of course, new concepts may require (or
suggest) new methede of implementation,
but that remains to be seen. However,
notice this essential point: unlesse there
is a prior, generally accepted mathemati-
cal definition of a language at hand, who
is to say whether a proposed implementation
is correct? Now it is often suggested that
the meaning of the language resides in one
particular compiler for it. But that idea
is wrong: the "same" language can have
many "different" compilers., The person
who wrote one of these compilers obviously
had a (hopefully) clear understanding of
the language to guide him, and it is the
purpose of mathematical semantics to make
this understanding "visible." This visi-
bility is to be achieved by abstracting
the central ideas into mathematical enti-
ties, which can then be "manipulated" in
the familiar mathematical manner. Even if
the compiler-oriented approach (even com-
piled to run on an "abstract" machine)
were transparent -- which it is not --=

there would still be interest in bringing
out the abstractions to connect the theory
with standard mathematical practice,

Having this obviously desirable mathe-
matical theory seems to require some new
structural notions, some new insights into
the nature of data types and the functions
(mappings) that are to be allowed f£rom one
to another. Moreover, it soon becomes
celear in thinking about "higher-type" pro-
gramming concepts (e.g. procedures) that
spaces of functions must also be consider-
ed as forming data types., Since a function
(say, mapping integers to integers) is
generally in itself an infinite object, it
also becomes necessary to introduce some
idea of finite approximation -=- just as we
do in a sense for real numbers. On top of
this there are already operationally "de-
fined" concepts of function which seem to
have no mathematical counterparts, In
particular it is not unknown in program-
ming languages to allow unrestricted pro=
cedures which can take any procedures as
arguments and whieh can very well produce
unrestricted procedures as values, Speak-
ing mathematically this is tantamount to
allowing a function that is to be well
defined on all allowable functions as argu-
ments -- a kind of super-functional == and
which ls even applicable to itself as an
argument, To date no mathematical theory
of functions has ever been able to supply
conveniently such a free-wheeling notion
of function =- except at the expense of
inconsistency., The main mathematical
novelty of the present study is the crea-
tion of the proper mathematical theory of
funetions which accomplishes these aims
(consistently!) and which can be used as
the basis for the metamathematical project
of providing the "correct" approach to
semantics,

It should be stressed at once that the
problem of self-application arises in ways
more crucial to the interpretation of pro-
gramuning languages than in the contempla-
tion of the (to some, impractical) unre-
stricted procedures. The problem concerns
the related questions of keeping track of

side effects and of the storage of commands.

In the first place, what is a store?
Physically, we have several remarkable
answers, but mathematically it comes down
to being simply an assignment (a function)
which connects gontents to locations,
Speaking more precisely, the (current)
state of the store, call it g, is mathe-

matically a functiong
g: L — V

which assigns to each location LEL (the
set of all locations) its (current) con-
tents o(L)E€V (the set of all allowable
values). Let ¥ be the set of all states,
What is a side effect? Obviously a change
of state, What 1s a command? A reguest
for a side effect; more mathematically, a
command 1s a functien

Yy L=> T

which transforms (ocld)
states,

states to (new)

Question: can a command be stored?
Answer: well, we do 1t operationally all
the time. Question: is that mathemati-
cally justified? Let's see, Suppose ¢ is
the current state of the store, and suppose
LEL is a location at which a command is

stored. Then g(4) is a command; that is,
gl{d): T—> T
Hence, o¢(4) (o) 12 well defined, Or ils it?

This is just an ineignificant step away
from the self-application problem p(p) for
"unrestricted" procedures p, and it ie just
as hard to justify mathematically. Of
course, in the operational approach we do
not store the command iteelf as a function
but rather a "code word" or "piece of text"
that stands for the command in an unambigu=-
ous way. But to carry out the formal
description of how this works == especially
for compound commands depending on para-
meters -- involves us in most of the nasty
questions of programming language seman-
ties and is not really a satisfactory con-
ceptual way out.

Getting down to particulars, we must
ask: what exactly is a data type? To
gimplify matters, we can identify a data
type with the set D of all objects of that
type. But this is in itself too simple:
the objects are structured and bear cer-
tain relations to one another, so the type
is something more than a set, Now this
structuring must not be confused with the
idea of data structures (lists, trees,
graphs, etc.); these will come in later.
The kind of structure being discussed here
is much more primitive and more general
and has to do with the basic sense of
approximation. Suppose x, Yy €D are two
elements of the data type, then the idea is
not immediately to think of them as being
completely separate entities just because

170

they may be different. Instead y, say,
may be a better version of what x is try-
ing to approximate. In fact, let us write
the relationship

XY

to mean intuitively that y is gonsistent
with x and is (possibly) more accurate
than ¥x. This intuitively understood rela-
tionship exists on most data types natural-
ly, and if part of the thesis of this
paper that a data type should always be
provided with such a relationship. This
may require some adjustment of thought to
accommodate certain standard ideas, but it
seoms worth the offort to unify the treat-
ment of various types.

g0 let us agree for the sake of argu-
ment that types D are structured by rela=
tions = (at least). What can we say ab-
stractly about such a relationship? With
reference to the intuitive understanding,
it is eclear that we want to assume that =
is reflexive, transitive, and antisym-
metric., We can make this into an axiom:

AXIOM 1.

A data type is partially
ordered set.

That may not seem like much (partially
ordered sets are so very general), but it
ie slight progress, The next hit of pro-
greas should concorn mapplngs .

suppose D and D' are two data types
(with appropriate partial orderings = and
£='). sSuppose f: D=»D' 18 a reasonable
mapping of the elements of the one into
the other. Should there be anything to
gay in general about propertiees of map-
pings? Well, suppose X, ¥ €D and X =¥
Tf f were a function defined by a program
in any of the usual ways, it would be
sensitive to the accuracy of its arguments

(inputs) in a special way: the more accu-
rate the input, the more accurate the out-
put, In symbols:

x =y implies £ (x)&='f (v):

in other words, with respect to the partial
orderings £ is monotonic. We make this an
axiom also:

AXIOM 2. Mappings between data types

are monotonic.

Note that such a condition easily general-
izes to functions of several variables,
even variables of mixed types.

In numerical computation Axiom 2 is

sometimes denied, but this is a confusion
about the use of the word accuracy. It is
true that we know some clever asymptotic
algorithms which give better answers when
the accuracy is cruder, but they should be
considered as functions of two variables:
the usual input data together with a para-
meter indicating the degree of accuracy--
or maybe better the number of "terms" to

be selected from the "expansion." It can
certainly happen that taking more terms
just ruins the already good approximation,
but note that the input and the number of
terms are already supposed known perfectly,
The notion of accuracy we are trying to
capture with the g relation is something
else and does not depend on thils presuppo-
sition. Maybe it would be better to talk W
about information; thus x = y means that
x and y want to approximate the same entity
but y gives more information about it. 4
This means we have to allow "incomplete"
entities, like x, containing only "partial®
information., (The way to do this in numer-
ical ecalculation is called interval analy-
gis, but we do not have the space here to
be more specific.,) Allowing for partial-
ity of arguments and values has the good
effect that our functions become partial
too; for even if the arguments are perfect,
the values may only be partial. This is
necessary in considering algorithmically
dofined functions, since for some combina=-
tions of arguments it may happen that the
algorithm does not "converge.," As a conse-
guence of this point of view, then, there
can be no numerical function of the kind
allowed by Axlom 2 which maps a “partial"
real number to an integexr exponent repre-
senting the degree of accuracy. But this
is not a drawback, ae can be seen when one
examines the detalls of the method: there
are sufficiently many monotonic functions.

The theory based on Axioms 1 and 2
would be too abstract, though it is not
vacuous. We need to be more specific
about the behavior of approximations for
the applications we leave in mind. Thus
suppose an infinite sequence of approxima-
tions is such that

. o
X E e =X E K

then it seems reasonable to suppose that

el S e

the x, are tending to a limit. cCcall the
limit y, and we write
(=]
Y=|_l xn.v
n=o

171

because in the sense of the partial order-
ing = the limit is naturally taken to be
the least upper bound (l.u.b.). If we
imagine the successive terms of the se-
gquence as glving us more and more informa-
tion, then the limit represents a kind of
"union" of the separate contributions. In
fact, for mathematical simplicity, we
assume that every subset of the data type
has a least upper bound, whieh ammounts
Lo

A data type is a complete
lattice under its partial
ordering.

AXIOM 3.

In particular, as is well known, the ex-
istence of arbitrary least upper bounds

implies the existence of greatest lower

bounds (g.l.b.), which is why we say we

have a complete lattice.

This last assumption reguires some
explanation, In case %, y€D, it may be
that they are either approximations to
the same "perfect" entity or not, in which
case they are somehow "inconsistent" with
one another. In any case we are assuming
they have a l.u.,b. or join x W y €D, Even
worse, we assume that the whole of D has
a l.u.b,, which we callT&ED. This T is
the "top" of the lattice, the "largest"
alement in the partial orderingt=. It im
not to be considered as a "perfect" ele-

ment, but rather as an "over-determined"
element, Hence, we can regard the equa-
tion

xuUuy =T

as meaning intuitively that x and y are
inconsistent, This is to be distinguished
from the much weaker relationship of being
incomparable, which is simply: xq;y and

ng}m

The l.u.b. of the empty subset of our

data type D is an element L € D. This is
the "bottom" of the lattice, the "smallest”
element in the partial ordering. It may

be regarded as the most "under-determined"
element. The l.u.b. of the set of all
lower bounds of a subset XcD, is the
g.1.b.[1X €D. For x, y€D, we have the
meet xNy =[]{x,vy] € D. We can intuitive-
ly read the eguation

xny =L

as meaning that x and y are unconnected, in
the sense that there is no "overlap" of
information between them.

Having supposed that the data type
permits "limits," we have to reexamine our
view of functions., If a function is com-
putable in some intuitive sense, then
getting out a "finite" amount of informa-
tion about one of ite values ought to
require putting in only a "finlte" amount
of Information about the argument. Now
our notion of "information" is gualitative
rather than guantitative; but it is still
possible to express this fundamental re-
striction on the funttions we are willing
to consider: namely, the functions ought
to preserve limits,

AXIOM 4.

Mappings between data types
are continuous.

In full generality we can say this in a
precise way in terms of directed sets. A
subset X D is directed if every finite
subset of X has at least one upper bound
in the sense of L= in X. (Note: a
directed set is nonempty.) A Ffunction

f: D=—»D' ls econtinuous Liff for all
directed subsets X< D we have:

£ (L)x) = Ll (£(x): %€ x)

In calculating l.u.b.'s, it is only the
l.u.b. of a directed set that ought to be
called a limit. There are many examples
to show that it would be gquite unreasonable
to require functions to preserve arbitrary
l.u.b.'s. Furthermore there is absolutely
no reason to suppose that the functions
ought to preserve g,l.b,'s: one cannot
expect any "smoothness" while decreasing
information. Note that the notion of con-
tinuity easlly extends to accommodate
functions of several variables; indeed it
turns out that for a function to be con-.
tinuous in several variables jointly it is
sufficient that it be continuous in each
of its variables separately.

So much for the broad outlines of the
theory. It still is too abstract, however,
because even though certain essential
properties of computable functions have
been isolated, the possibility of "physical®
realization has not yet been assumed in any
form. This we must do. The problem is to
restrict attention exactly those data types
where the elements can be approximated by
“finite configurations" representable in
machines, thereby also making more precise
the concept of a "finite amount of informa-
tiem.

The solution to this problem is to
take a topological approach; in any case

172

our previous mention of limits and con-
tinuity ought to have suggested that there
are some topological ldeas in the back-
ground, Indeed, any data type D satlsfy-
ing Axioms 1 and 3 can be regarded as a
topological space. To define a topology
on a set one needs to say which subsets
are open., In the case of the data type D,
there are two conditions to be satisfied
for a subset UZS D to be open:

{Ul) whenever x € U and XYy, then
y € U and
(U,) whenever X« D is directed

and X EU, then X NU # ¢.

It is easy to check that D becomes a
topological space in this way, and that
f: D—>D' is continuous in the limit
preserving sense iff it is continuous in
the topological sense., In the case

X, YE€ D, we write

x =y

to mean that y belongs to the topological
interior of the upper section determined

by x; that is, the set
('€ D: x=x')

The relationship is not as ilrreflexive as
it looks, for there are isolated elements
x of certain data types such that x -{ x.
We also write

X Y
to mean that the g.l.b., of the topological
interior of upper section determined by x
ise=y. Thus the three relationships:

XY, X4 Y,

are successively weaker,

and xSy

Taking the hint from topological
spaces like the real numbers (which topo-
logically are a bit different from our
data-type spaces), we consider the possi-
bility of having a dense subset of the
gspace in terms of which all the other ele-
ments can be found as limits, We call
such a subset a basis. The proper defini-
tion seems to be the following: a subset
EC D is a basis iff it satisfies these
two conditions:

(E,) whenever e, e'€ E,
e L] e' € E; and
) for all x€ D we have
| (e€ E: e< x} .

The existence of a basis has several
consequences; for example, the meet opera-

then

(B,

173

X Ny is continuous if a basis exists, and
not necessarily continuous otherwise,

Conditions (E,) and (E) are still not
quite enough to make data types "physical,"
We need the stronger assumptilon:

AXIOM 5., A data type has an gffec-

tively given basis.

That is to say the set E must be "known."
Given e, e' € E, we have to know how to
dacide which of the relationships:

e<e', e=x e',

are true and which are false. This cer-
tainly is going to require that the set E
is at most countably infinite, and probably
that we have an effective enumeration

ez e'

E = {eo,el,ez,...,en,...}

in terms of which the above operations and
relationships are recursive, To make the
data type really physical we would need
everything to be highly computable but we
do not have to go into that here:; the
intuitive idea of an effectively given
basis can be left a blt vague because in
particular examples it will be clear what
1ls going on. Note that as a consequence
of Axiom 5 the topologies of data types
are separable because not only is there a
countable dense subset (the basis), but
the sets

e < x)

for e € E form a countable basis for the
topology of D,

(% € D:

The most important consequence of the
assumption of an effectively given basis
is the possibility of belng able to define
what it means for an element to be comput-
able, Suppose x€ D and E is the basis,
Then (relative to this basis) x is comput-
able iff there is an effectively given
subsequence.

yian) € B

[e'o,e'l,e‘z,...,e'n o

such that e‘n =o' for each n, and

n+l
o«
Li e' .

In other words, we must be able to give
effectively better and better approxima-
tions to x which converge to x in the limit,
This is an essential notion; because, for
one thing, it may very well be the case
that the data type D has uncountably many

elements, while there can be only count-
ably many computable elements. Noté that
there will be in general many sequences
converging to an element %, so that just
knowing that x is computable does not mean
that the "best" way to compute it is also
known,

This completes the discussion of the
foundations of the subject. Someone may
want to point out that Axiom 3 implies
Axiom 1 and Axiom 4 implies Axiom 2 -- but
the axiloms are given in the order in which
the ideas naturally occur, It can all be
sald very quickly in summary: data types
are complete lattices with effectively
given bases and all allowable mappings are
to be econtinuous, We must now look into
the construction of useful data types sat-
isfying the axioms, remembering that the
lattice structure is only the most primi-
tive structure on a data type, and the
"interesting" strueture is supplied by
various kinds of continuous functions
gpecial to the type.

In the first place all finite
lattices satisfy the axioms, and for them
continuity plays no role, Of course
finlte structures are sufficlent for "prac-
tical" applications, but many concepts
more easily find thelr expression with
raference to infinite structures, In the
case of our lattices there are the two
numerical data types N and R for the inte-
gers and the reals. BAs a lattice N has
for elements 0,1,2,...,n,... (these ele-
ments are pairwise incomparable under =)
plus the two elements L and T , respec-
tively above and below all the others., (A
picture would help.) In this case the
whole lattice is its own basis. For R the
elements are closed intervals [x, x] of
ordinary real numbers (x < X) plus two
elements L and T . The partial ordering
between the intervals is defined thus:

[x,%] = [y,¥] iff x <y < y < X

The "perfect" reals are the one-point
intervals [x,%] with x = %. The "approxi-
mate" reals have x < X. The basis consists
of the intervals with rational end points
plus the element L . There is a very close

connection between the continuous functions
on the lattice R and the ordinary theory
of continuocus point functions. In both
lattices the usual arithmetic operations
are represented by continuous functions
and it is especially interesting to con-
sider division in R,

Suppose D and D' are two given data

types. There are three particularly im-
portant constructs:

(b x '), (D+D'), (D—> D

for obtaining new, "structured" data types
from the given ones. The (cartesian)
product D X D' has as elements palrs (x,x')
where X €D and x' €p', and for which we
define;

(x,x") = (y,y') Lff x = y and x' ="' y'.

The sum is defined as a "disjoint" union
of D and D', except that we identify | =1"
and adjoin a new T" above all the other

elements., (Again, a sketch of a lattice
diagram will help.) The function space
(D ==»D') has as elements all the contine

uous mappings from D into D' for which we
define:

f =g iff £ (x)

What one must check is how the effectively
glven bhases for D and D' determine the
basis for the construct., This is easy for
productsg and suma but somewhat more trouble
for function spaces,

—' g (x) for all x€D,

Sums and products can be obviously
generalized to more terms and factors,
even infinitely many. For example, D" can
be taken as the set of all n-tuples of
elements of D partially ordered in the
obvious co-ordinate-wise fashlon. We can
then set

1

pr =% +p 42w . D™ .

which represents the data type of all
finite lists of elements of the given D.
Similarly one can go on to lists of liete
of lists of If this were done in
the right way, it would seem reasonable
that a lattice D” would be obtained such
that

(==} 4]
D =D+ (D)¥*,

that is to say, each element of Dm is
either an element of the given D or is a
list of other elements of D”. This sounds
very much like the usual kind of recursive
definition of lists; but one must take care
as the following argument shows,

It is a well-known theorem that every
continuous (even: monotonie) function map-
ping a complete lattice into itself has a
fixed point. Applying this remark to the
supposed D” above, we note that for given
a €D, the expression (a,x) defines a con-
tinuous function of D% into itself. Con-
sider a fixed point:

174

X = (a,x).
Thus x is a list whose first term is a
and whose second term is , . . .? The
sacond term is the list x itself! Thus X

ig a kind of infinite list:

).

That does not sguare with our usual ideas
about data types of lists, but is it bad?
The answer is no. For it can be shown
that the data type D” does in fact exist;
it contains all the ordinary finite lists
as well as many quite interesting and use-
ful limits of sequences of finite lists.
one might say that D” gives us the topo-
logical completion of the space of finite
lists, and the various limit points need
not be used if one doves not eare to take
advantage of them.

x = (a, (a, (a, ...

The process of "completing" spaces
ies a very general one, and the full impli-
cations of the method are not yet clear,

A second example of the ldea concerns
function spaces, Let D be given, and set
Dy =D and

D

n+l o (Dn = Drﬁ'

are (aselsection of) the
"higher-type" spaces of functions of func-
tions of functions of It turns out
that there is a natural way of isomorphic-
ally embedding each D, successively into
the next space Dj,]. These embeddings
make it possible to pass to a limit space
Dw which contains the originally give D
and is such that

n = (Dw

w

The spaces D

n Dm)

Strictly speaking this surprising equation
must be taken with a grain of salt: it is
only true "up to isomorphism" which is
good enough for our purposes.) This space
provides the solution to the self-applica-
tion problem, because each element of D
can be regarded as a (continuous!) func-
tion on Dy into D,. And conversely, every
continuous function can be represented
faithfully by an element. Technically
speaking what we have here is the first
known, “"mathematically" defined model of
the so-called A-calculus of Curry-Church,

The reader should take notice of
the fact that our abstractly presented
theory of computable elements of lattices
with effectively given bases applies to
these function spaces. 8o we know what
computable functions are, Even better we

175

"know" what are the computable elements of
the space D, of functions of "infinite"
type. Clearly the calculus of operators
which can be used to generate computable
functions is going to be interesting, and
this brings us back to semantics for pro-
gramming languages, Indeed the natural
way to define computable functions is
within the context of a suitable prgram-
ming language, The A~caleculus itself is
a programming language: it is the pure
language of "unrestricted" procedures,

It is only one of many possible languages.

In conclusion we can sketch the so-
lution to the "storage-of-commands" prob-
lem mentioned in the beginning of this
paper. Let L be the location space
(finite or, if you like, take L = N, so
that the locations are indexed by the
integers.) The space V of values is to
be constructed by the limiting methods
alluded to above. Supposing it is already
constructed, the space ¥ of ptates of the
store is defined hy:

L= (L—>V)
The space I' of commands is defined by:
r=(— I)
The space P of procedures ~-- with one
parameter and with side effects -~ ls
defined hy:
P= (V—> (Z— V X £)),

that is, a procedure is a function, which
given flrst a value of lts argument and
next given a state of the store, then
produces a "computed" value together with
the necessary change of the state of the
store, Now what can those values be?
Well, they might be numbers (in N or in R),
or they might be locations, or they might
be lists, or they might be commands, or
they might be procedures. (Even to take
care of such an array of possible types
of values we would need a fairly involved
programming language.) We are thus led
to write:

V= N+ R+ L+ V¥ +T + P,

If one substitutes the definitions of L,

T, and P into this equation, one obtains
only a slightly more complicated "defini-
tion" than those that we had for D” and De.
Such a space V does exist mathematically,
and it provides the values for expressions
of a programming language of the type that
we have understood previously in the
"operational" way. We should now begin to

B e

L T L

- &

try to understand these languages math-
ematically, since we have all the tools
necessary to do so,

ACKNOWLEDGMENTS, The idea of using
monotonie functions in recursion theory
the author learned from Richard Platek
(Ph.D, Thesis, Stanford, 1965). The
notion of continuity comes from papers of
Lacombe, Nerode, Kleene and Kreisel and
was used by Platek, but the theory has not
been very much developed. The thought
that there would be connection with pro-
gramming languages occurred to the author
in the course of joint work on program
schemata with J. W. de Bakker in Amsterdam
during the Spring and Summer of 1969. The
idea of abstract lattices with bases 1g
new and generalizes considerably the spe-
clal structures employed by the above
authors, The plan of finding a mathema-
tical semantics for programming languages
has been pursued for some time by Christo-
pher Strachey, and it is due mainly to his
stimulation and encouragement during the
fall term in Oxford, 1969, that the author
was able to make a coherent theory out of
these diverse ideas. Technical papers on
the A-calculus and on lattices with bases
will be published scon along with joint
work with Strachey on semantice for various
languages.

176

SESEST

