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Two-dimensional conformal field theories and modular functors 

Graeme Segal 

§1. The definition of a field theory 

A two-dimensional conformal field theory comprises a great 

deal of data. The essential part is 

(i) a Hilbert space H of states, and 

(ii) an operator Uy : H >» H for each Riemann surface I 

whose boundary consists of two circles. 
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Here 1X should be thought of as a two-dimensional Euclidean 

"space-time" interpolating between two one-dimensional "spaces" Sy 

and S,, each being a circle. H should be imagined as con- 

sisting of wave-functions Y defined on some space of "classical 

fields" which are functions on the circle. Schematically the 

operator Us. can be written 

(Us¥) (v,) = K (Yo, Y)¥ (YI DY, , (1.1) 

where 

Ko (Yn,Y,) = e Spy (1.2) 2071 ) ) 
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Here S 1s some conformally invariant action defined for classical 

fields yy on YX, and the integral is over all fields y whose 

boundary values on S| and S, are vy, and Y,; oe 

The operators Uy form a semigroup in the sense that when 

two surfaces I and I' are sewn end-to-end 
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we have 

Ug © Us = AUg 50 (1.3) 

for some complex number J . 

A field theory comprises more data than this, but not much 

more. For each surface I with p incoming and gq outgoing 

boundary circles 
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the theory gives us an operator 

Ug : HR ... 8 H-> HB ... 8 H (1.4) 
<p ~q = 

which again is described schematically by the formulae (1.1) and (1.2).
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These operators satisfy rules analogous to (1.3) which are 

easily imagined. When all the Us are given the field theory 

is completely described. 

§2. Chiral factorization 

The simplestexample of a conformally invariant action is 

S(y) = % lay ||? = % d vy A *dy , (2.1) 

)X 

where y 1s a real-valued function on I. This leads to the 

classical field equation 

3%y ay 5 - 5 = 0 
(2.2) 

ot dX 

in Minkowski space, or, in the Euclidean version we are adopting, 

X: 
cl =o. (2.2a) 
92902 

It is well known that any solution of (2.2) is the sum of left- 

and right-moving parts: 

y(t,x) = y_ (x+t) + yp (x-t) , (2.3) 

or, in the Euclidean version, 

v(z,2) = vy, (2) + y_(2) . (2.3a) 

It is natural to ask whether the state space H of the corres- 

ponding field theory can be factorized. 

H=H" 2 HR | 

The answer is no, for fairly elementary reasons. Even classically 

the decomposition (2.3) is not quite unique, as Yr, and YR
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are determined only up to the addition of a constant. Worse still, 

if vy is periodic in x with period 2m then Yi, need not be 

periodic : the formula for Yi, at any time is 

* 9 
yp (x) = H{y (x) + | (y)dyl} (2.4) 

0 
2m. 

and this is periodic only if the total mamentum p = ydx is 
0 

zero. Thus if X is the space of solutions of (2.2), and 

x; = x3 is the space of maps ¥Y : R >» IR which satisfy 

y(6+27m) = v (6) + %p , 

then instead of a simple product decomposition X = xT X xR we 

have 

x =|) «Ex x} JR , 
P P 

Pp 

which in the quantum theory should lead to a decomposition of the 

form 

H = HE o HR 
P Pp 

P 

In fact we are interested in the case when y takes its values 

not in IR but in a circle R/UWR of length 2%. Then p is 

quantized in units of p71, and is defined only modulo 2. 

If 2° is a rational number this means there are only finitely 

many possibilities for p, and we expect a finite sum 

=D Wt o HR . (2.5) 
pel P Pp 

If H splits in this way the next question is whether the 

operator Us. associated to a surface LL can be written 

L R 
= U 9 . Us 2 2,p © VL,p
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Once again one must expect the answer to be no, for even in the 

classical case a solution of (2.2a), i.e. a harmonic function, 

cannot usually be written as the sum of a holomorphic and an 

antiholomorphic function on a surface If which has non-trivial 

cohomology. In fact there is an exact sequence 

0 » H0(Z;@) + Hol(Z) ® Hol(Z) - Harm(Ir) - HY (Z;C) > 0 , 

where f ¢ Harm (ZX) maps to the class of the closed 1-form *df. 

(Notice that if *df = dg then 

f = %¥(£ + ig) + 1(f - ig) , 

where f * ig are holomorphic and antiholomorphic.) 

Investigating the examples carefully one finds that for each 

surface I and each p,q ¢e I there are natural finite dimensional 

L R L L 
vector spaces V and V of operators H_ > H B L,Pq Z,pq P pq 
(resp. HR > HE) such that 

Pp d 

(a) U belongs to a. ve 2 VD and J L,pq = 'I,pq ’ 
Pq 

(b) the vy pq are closed under composition in the sense that 
4 

L L L 

Vit,ar ° Vi,pq © Viuz',pr 

when two surfaces I, I' are sewn together. (Similarly, of course, 

for vi.) 

To axiomatize the chiral fragments into which a conformal 

field theory breaks up one is led to introduce the concept of a 

modular functor, to which the remainder of this talk is devoted.
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§3. Modular functors 

We start with a finite set I of labels, containing a 

distinguished label called 1. There is an operation of 

"conjugation" o » a on I such that 1 =1 . 

A modular functor based on I is a rule which associates 

a finite dimensional vector space Vs. a to each Riemann surface 
’ 

Z2 with boundary, where each boundary component of I 1s equipped 

with a parametrization and also a label from I. (Here 

o = (Gy peeesap) is a multi-index, where a, € I is the label 

of the ha boundary circle.) The spaces Vs q are required to 
‘ [4 

have the following four properties. 

(3.1) \' = V RV p 
LA LyrOp 4 a, LyrQy Ly r0s 

where A 2, denotes the disjoint union. 

(3.2) If I is obtained from £ by identifying two boundary 

circles S, and S, (using their parametrizations) then 

VE, T © Vs, gaa 
Qo 

where the sum is over all labellings Bao of 3dr which agree 

with the labelling B8 of 9% and give conjugate labels o,0 

to S, and S, . 

(3.3) Vb a = IC if ao =1 

0 if ao #1 , 

where D is the standard disc. 

(3.4) Vs o depends holomorphically on ZX, in the sense that 
/ 

if {Z.} is a holomorphic family of surfaces parametrized by 

t ¢ T then {Vv oy) is a holomorphic vector bundle on T. 
od
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Let us point out three immediate consequences of these 

axioms. 

(3.5) If two surfaces I and I' are sewn end-to-end then 

there is a "canposition" map 

Vz,aB ® Vir, py 7 VLurt ay 

(3.6) If I is an annulus then Ve. 0g = 0 if PB # a, and 
4 

dim (Vs ag) = 1 . 

(3.7) If I is a torus then Ve = @[11]. More precisely, for 

each way of cutting I so as to obtain an annulus we have a 

decomposition of Vs as a sum of one-dimensional spaces, one for 

each label. 

A modular functor is a simultaneous generalization of two 

different concepts, 

(i) a central extension of Diff (st), and 

(ii) a coherent family of projective representations of the 

braid groups and mapping class groups. 

I shall return to the first aspect in this next section. The 

second aspect depends on the following basic theorem about modular 

functors. 

Theorem (3.8). If {z+ yu is a holomorphic family of surfaces 

there 1s a canonical flat projective connection in the vector 

bundle Vs Lo? on M. 

Here a projective connection means a rule which associates 

an isomorphism 

Pp, YL a > YL ,
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defined up to an arbitrary scalar multiple, to each smooth path 

p from m to m' in M. The connection is flat if p, does 

not change when p is deformed smoothly leaving its ends fixed. 

Examples 

(i) Let M be the upper half-plane in (. Consider the family 

of tori 

I. = C/(Z + TZ) 

for tT € M. Because M is simply connected the projective 

connection identifies all the Vs canonically as projective 
T 

spaces. On the other hand PSL, (Z) acts on M, and for each 

g ¢ PSL, (Zz) we have an isamorphism ZL = Lot and hence an iso- 

morphism Ve. = Vigt: So PSL, (2) acts projectively on Vr 

(ii) For some small number € let M be the subspace of eX 

consisting of all (z;,...,z,) such that |[z,| <1 -¢€ and 

[25-2] > 2e. The fundamental group of M is the coloured 

braid group CBr, on k strings. For each m ¢€ M let Lo 

be the surface got by removing k open discs of radius € with 

centres ZyreeorZy fron the closed unit disc D. Then for «uy 

modular functor and any labels Cy renee sO the group CBr, acts 

projectively on Vs 5° Furthermore, the surface Lo does not 
’ 

depend on the order of the z;+ SO if Ay T eee = Oy the braid 

group Br, acts on Via . 

In his talk in this volume Witten has pointed out a remarkable 

consequence of the basic theorem (3.8). 

Corollary (3.9) For any modular functor the projective space 

of Vs is naturally associated to the smooth surface I without 

any choice of a complex structure on it.
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Proof: The space J, of complex structures on I (not identi- 

fying structures which are related by diffeomorphisms of IZ) is 

contractible, so, just as in example (i) above, we can apply (3.8) 

to the family {Vv } parametrized by m e€ Js . 

We can, however , be a little more precise. We shall see 

in the next section that a modular functor has a central charge 

c € R. If c¢c = 0 there is a flat connection, and not just a 

projective connection, in the bundle {vs }, and so the vector 

space Vi depends only on LI. Now the simplest modular functor 

is the determinant line Det.., which needs no labelling set. 

Its central charge is 1. For any modular functor the vector 

space 

v = V R (Det I yR(=¢) 
)) m 

is therefore independent of the complex structure on IL. It 

does, however, depend on the choice of the non-integral power of 

the determinant line bundle on the contractible space Js. To 

choose the power it is enough to choose a universal covering 

space P. of the total space 

P. -Utpet, - {0}) . . 
m m 

The space Po is functorially associated to IL, and has the 

homotopy type of a circle. Thus v, is nearly, but not quite, 

functorially associated to I. If ¢ : Jp + Ly is a diffeo- 

morphism, then to get an isomorphism Vi, "Vy we must choose 

a map ¢, : FL, > °t, covering the map hk : PL, + fL, induced 

by ¢. For a given ¢ the choices of ¢, differ by integers, 

and so a central extension of Diff(Z) by Z acts naturally 

on Vs o
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Witten's striking discovery is that v., which arose in 

the study of two-dimensional conformal field theories, is in 

fact the state space of what he calls a topological field theory 

in three dimensions. 

§4, The semigroup of annuli 

Let A denote the set of isomorphism classes of Riemann 

surfaces which are topologically annuli, and are equipped with 

parametrizations of their boundaries. The set A is a semi- 

group under the operation of sewing. 

Very roughly speaking, an element A of A is got by 

exponentiating an inward-pointing vector field defined along 

Va SEAN 

=. - a 
— ig 

\ 

Nm 
such vector fields form a cone in the complexification of the 

Lie algebra of Diff (st). The group Diff (st) does not 

possess a complexification, but the semigroup A plays the role 

of a subsemigroup of the non-existent complexification. The 

relation between Diff(Sl) and A is the same as that between 

the unitary group U, and the contraction semigroup 

cit (@) = {a € GL_(a@) : |All < 1} 
n n 

contained in its complexification. Like GL_“' (@) the semigroup 

A is a bounded complex domain, and Diff (st) is part of its
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boundary. The "positive energy" representations of Diff (st) 

are characterized as those that are boundary values of holomorphic 

representations of A. 

We can now explain the sense in which a modular functor 

generalizes the notion of a central extension of Diff (sl). 

Indeed for each label a € I a modular functor defines a central 

extension A of A by ¢* : an element of A, is a pair 

(A,A), with A € A and )X e€ Va . Composition is defined 

using (3.5) above. On the boundary of A the extension A 

gives rise to a central extension of Diff (st), which in turn 

determines A completely. 

Let us recall that a central extension of Diff (sl) is 

determined by a pair (c,h), where c¢c €R is called the 

central charge and h € R/Z the spin. 

85. The proof of the basic theorem 

The idea of the proof of theorem (3.8) can be explained 

quite simply. For simplicity let us consider the case of a 

family {x } of surfaces for which 3% consists of a single 

circle. Let I be the closed surface got by sewing a disc 

on to dL . It is a basic fact about the complex structures 

on a surface that when m' is sufficiently near m the surface 

Lo can be holomorphically embedded in r . We can therefore 

find annuli A and A' such that 

2 UA = Lo u A' . 

SO
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Vr B Va = I, Q Va . 

Because dim Va = dim Va = 1 this gives us an identification 

of Vs. and Vs | up to a scalar factor, and hence a projective 

connection in the family {vs }. 

To see that the connection is both well-defined and flat it 

is best to consider the universal case, when the parameter space 

M is the space of all camplex structures on the given smooth 

surface LIL. (Here two structures are identified if they are 

related by a diffeomorphism of I which is the identity on 9X.) 

What the preceding argument really gives us is a projective 

action of the Lie algebra V = Vect (Sh) on the total space of 

the bundle tv, } which covers the natural action of V on M. 

(V acts on M by reparametrizing 92.) The fact that nearby 

surfaces differ by annuli translates into the fact that the tangent 

space to M at m is Vect (S')/Vect (I), where Vect (2) 

denotes the holomorphic vector fields on Lo (which move Lo 

inside ol without changing the structure). The action of 

Vecty (ST) defines a connection in the bundle {vy } because 

Vect (2) acts trivially on Vs. (In fact the algebra Vect (2 ) 

has no non-trivial finite dimensional projective representations.) 

The connection is automatically flat because it comes from a Lie 

algebra action of vect (st) . 

86. Verlinde's algebra 

Verlinde has introduced a very elegant way of encoding the 

dimensions of the spaces Vs for any modular functor V. 

Let P be a disc with two holes, i.e. with three boundary 

circles. For any lables a,B,yYy € I let ny By = dim Vp 5By .
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Then we can define a multiplication on the free abelian group 

Z[ I] on the set of labels by the formula 

[al.[B] = Z n [yl . 
vel aBy 

This clearly makes Z[I] into a commutative ring. 

Because any surface 2X can be cut into copies of P, 

(together perhaps with discs and annuli) a knowledge of the 

algebra Z{I] enables one to calculate the dimension of Vs. a 

in all cases. 

§7. Representations of loop groups and modular functors 

The basic examples of modular functors arise from representa- 

tions of loop groups. Let us recall the main points of the 

representation theory. 

If G 1s a simple complex Lie group (i.e. the complexifica- 

tion of a simple compact group) then the group LG of smooth 

loops in G has an important class of representations called 

positive energy representations. These are realized on vector 

spaces E on which there is an energy operator H : E -> E 

satisfying 

d 
J U = 1 [LH , U ] ° 
do Y Yq 

Here C, denotes the action of yy ¢€¢ LG on E, and Yq is 

"vy rotated by a", i.e. Y, (9) = y(6-a). The operator H 

has positive integral eigenvalues, and each eigenspace 

E, = {E ¢ E : HE = k&} 

is finite dimensional .
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The positive energy representations are projective : they 

are actually representations of a canonical central extension 

LG of LG by Cc”. An element of u of the central subgroup 

¢” acts on E by multiplication by uk , where k is a 

positive integer called the level of the representation. 

The representation E is completely determined by its 

level Kk and its lowest energy part Eq which is a representa- 

tion of G and is irreducible if E is irreducible. In fact 

E can be reconstructed from E, in the following way. Let 

Gn denote the group of holomorphic maps from the disc D to G. 

Then Gy is a subgroup of LG over which the extension LG 

is canonically split: 

G, = ¢ x Gy ; 

and the map 

E > Hol? (LG;E,) (7.1) 
D 

is a quasi-isomorphism. Here the right-hand side denotes the 

holomorphic maps £f : LG + Eq which satisfy £(yn 1) = nf(y) 

for n e Gy ;, where Gy, = @" x Gh acts on Eq by 

(2,6) .& = 256 (0)E . 

The map (7.1) takes § e€ E to Ler where Ee (¥) = pr(v&) , 

and pr : E -» Eq is the projection. A quasi-isomorphism 

means an injective LG-equivariant map with dense image. 

We can now describe the basic modular functor. There are 

only a finite number of irreducible representations E of IG 

of a given level Kk. Let us denote them by (E"} 1 . (They 

correspond to the irreducible representations E, of G whose 

highest weights A satisfy Ix ]1° < 2k.)
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If I 1s a Riemann surface with m boundary circles, let 

Gs. denote the group of holomorphic maps f + G. Such maps are 

determined by their boundary values, so Gs. is a subgroup of 

(Lc)™ . If we label the jth boundary circle with a representa- 

Qo. 
tion E 1 then Gy. acts projectively on 

Qo. o] 
E*=eglo ...02E™. 

The induced projective multiplier, however, turns out to be 

trivial, so it makes sense to define Ve oq aS the part of ha 

which is fixed under Gy . 

Theorem (7.2). (Z,0) = Ve 5 is a modular functor. 
[4 

The essential property to check is the sewing axiom (3.2). 

This depends on a version of the Peter-Weyl theorem which holds 

for loop groups. 

Recall that for a group such as G the Peter-Weyl theorem 

is the quasi-isomorphism 

D Vev + Hol(G) , (7.3) 

where Hol (G) denotes the holomorphic functions on G, V runs 

through the irreducible representations of G, and the map 

assigns to v, ® v, the matrix element g** <v, ,gv,> . The 

map (7.3) is compatible with the left and right actions of G. 

For a loop group LG with its central extension LG the 

corresponding assertion is that there is a quasi-isomorphism 

a EX  E* = Hol, (IG) , (7.4) 
Qo. 

where Hol, (LG) denotes the holomorphic functions f£ : LG > C 

such that ff (uy) = aE (y) for u e TC" , and the sum is over the
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irreducible representations of level k. The meaning of the 

"quasi-isomorphism" is clarified by observing that both sides 

of (7.4) are bigraded, and finite dimensional in each bidegree, 

and the quasi-isomor phism is an isomorphism in each bidegree. 

Returning to the sewing property (3.2), suppose that the 

surface », with non-empty boundary labelled by a multi-index 

B, is formed by sewing together the edges S, and S, of I. 

Then G.. acts transitively on LG by 

(9,7) 1 JY)» 9, Y 95 

where g, = g|s, . The isotropy group of 1 e€ LG is clearly 

GY, so LG = G./G¥ = Gy /G¥ . Then 

Gy 

By L 
Vv = E Vg g = (EV) ) 

~ G 
= Hol (LG; EP) 2 

~ G 
= {Hol (LG) ® EP} * 

G 
- {0 E%pE® p EP} Z 

Q 

= Vv - ° 

© zs Baa 

This argument is not quite complete, for the spaces 

Hol, (LG;EP) . Hol, (16) @ EF - © E* » E* @ EP 
o 

are quasi-isomorphic but not isomorphic. One must show that 

their G*-invariant subspaces (which are finite dimensional) are 

actually isomorphic. 
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