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Introduction

In this paper I shall prove the eguivariant analogues of
some well-known results in homotepy theory. The proofs are
almost the same as tHe non-equivariant ones, EPt sgme care is
needed in selecting arguments whiech can be gereralized.

Let G be a finite group.

If Vv is a finite dimensional real G-module let Sv be the
sphere formed by compactifying ¥. We take = as the base-point
in 8Y. The infinite symmetric product sp®(sY) is a G-space
which should be an "eguivariant Eilembarg-Maclane space". That
can be formulated in the following way, where ﬂv X denotes the
G-space of base-point-preserving maps fram SV to a pointed

G-space X.

Theorem (A) (a). There is an equivariant hometepy equivalence
Z o+ g¥osp”(sY)
providing the fixed submodule vE 1g non-zera.
{b). There is an equivariant homotopy equivalence
sE¥ (W) + @Y spT(sVeW)
S 3
providing W- # 0.
The second theorem concerns the configuration space
C{V) of V. 'This is the G-space formed hy the unordered finite
subsets of V. There i6 a well-known map ©(v) -~ aY&Y (of [77).
One can define an embedding EE : C(V) =+ C{V) which adds to a
configuration a given econfiguration [ "nmedr dinfinity". Lét us

take £ to consist ©f one representative of each orbit that occurs



in v - {0}, and define €, (V) to be the limit of the segquence

C{v) é; civ) él c(v) é; Fre Fi !
There is a corresponding map a_ : oY . nvsv compatible

g
str

with C(V}) =+ @ and a corresponding limit (HVSV)W. We have

Thecrem (B). There is a G-homology-equivalence

.

e vy = Vs .

Here a G+homology-equivalence means a G-map which induces
a homology equivalence of the spaces of fixed points of every
subgroup of G.

In theorem (B) we do not assume that VG # 0, s0 there is
no "addition" defined in 0'5Y, and it is not clear that the
connected components have the same homotopy type. But if
VG # 0 then clearly a‘Z 3 HVSV i ﬂvsv is an eguivalence, and
(QVSV)°u can be replaced hy 2VYsY 1n the theorem.

1f v® # 0 the connected compenents of Cm(V)G form the

free abelian group Av on the set of orbit types which occur in

V. So theorem (B) implies

Cnrollarx [8T; & Ig = Av

This is well-known (at least when V is large and AV is
the Burnside ring of G). But the present method provides a new
and in many ways simpler proof. The two known proocfs depend
either (L81, [6], [2]) on eguivariant transversality or [111
are by induction over orbit types.

But the present argument gives somewhat more. For the

fixed-point set ¢, (V)% is a product 1 Ep Wl ® = €,V /Gh,
H B

where VH is the part of V where the isotropy group is cenjugate

to H, and H runs through the conjugacy classes of subgroups

of G. Abelianizing the fundamental group gommutes with products,
s0 Theorem B gives one a product decomposition of (QVSV:G.

That is not altogether surprising, for if one arranges the

conjugacy classes of subgroups in non-decreasing order

L= Hgp Hyp wove o B = 8
then there is a tower of fibrations *
VLV, G V..V v oy
(R"sY) = Map,(s7;58%) - Map, ((87) “: (8%) "))
! W
H , H .
> omap (187 % s h o L+ mapg sy S 5N)5) .
",

L

Our result is that the tower is an iterated product:

corollary 2.  (2'8")% = 1 mapg(vi ; sY) .
H
This is known when V =+ &, In fact then VH/G = BWH,
; lim . n
where WH = NH/H, and CmﬂVH/GJ & T OB, =, BWH ; whose
Quillenization is " s¥(BWy u(point). (c£. [81).

Apart from theorems (A) and (B) this papers discusses
"equivariant delooping" more generally, and shows How an equivariant
Spectrum can be associated to an "eguivariant I'-space" in the
sense of [9]. The essential point is to produce a functor which
takes G-cofibrationsto G-fibrations. In §4 I have explained
rather sketchily how this can be done starting with a T-space:
in fact the non-equivariant discussion in the form given in
[121 applies directly.

In conclusion I should point ocut that neither Theorem (A)
nor Theorem (B) is true if G is not finite. For example, suppose
that G is the circle and V is R> with G acting by rotation

about an axis. Then there is a G-cofibration sequence



gL+ B - SZEanDint).

and so for any G-space X a fibration sequence

?x o+ W€ o+ neS.

Taking ¥ = 5" thisshows that (2¥s¥)% = =z » n2s?,

contradicting Theorem (B); and taking X = SPm(Sv) ocne finds

G 1

that X% = se™(s) = s!, so tmat oV sp®(s¥) = & x 5t

T

‘

contradicting Theorem (A).

B
]
S
&
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§1 Preliminary remarks about G-homotopy-theory

1f X, ¥ and 7 are G-spaces with base-points a seguence

of base-points preserving G-maps
£
X =+ ¥ g Z

is called a G-fibration-seguence if there is given a null-homotopy

of the composite gf, and the induced map from X to the homotopic
fibre of g at 0 is a G-homotopy-equivalence. (All base-points
will written as 0.)

The homotopic fibre F(g,0) of g at 0 is the fibre-product
i 2 Puz, where PDZ is the space of paths in Z beginning at 0.
The fixed points F(g,U)H of any subgroup H of G can be identified
with F(gH,O). Let us recall the theorem of [3]. It asserts that
a G-map P + 0Q is a G-homotopy-equivalence if and only if
the induced maps of fixed point sets PH + QH are homotopy
equivalences for all subgroups H of G, providing that P and Q
are G-ANR's. Forming the homotopic fibre does not take one out

of the claess of G-ANR's, so we can deduce

Proposition {1.1y Providing X, Y and Z are G-ANR's a seguence
X = X =+ Z

is a G-fibration sequence if and only if the fixed-point seguence
Hou v . o

is a fibration sequence for all subgroups H of G.

More generally, a homotopy commutative diagram

where the homotopy making the diagram commute is given, is



called G-homotopy-cartesian if the induced map from X' to the
homotopic fibre product of X and Y' over Y is a G-homotopy
eguivalence. The homotepic fibre-product is X * v By ® v 2 S
where PY is the space of free paths in ¥. For the same reascn
as before we can assert that if the spaces concerned are
G-ANR's a diagram is G-homctopy-cartesian if and only if each
of its fized-peint diagrams is homotopy cartesian.

.

Now suppose that one has a simplicial object A = [Ak}kza
in the cateqorylof G=-spaces. It has a realization as a G-space.
Here I shall use the join realization, described in [91, but T
shall dencte it by |A|. It has the property that if the spaces
A, of A are G-ANR's then so is |A]l. Tt alsc has the property

that IAIH = |AH| for all subgroups H of G.

From this point on I shall assume that all the G-spaces

given are G-ANR's. The non-equivariant version of the following

propesition is proved in [9], and the eguivariant one follows

at once.

Proposition (1.2) If A' -+ A is a map of G-simplicial-spaces

such that
*
o @ '
B 4
m
+ * ¥
¢
Ak * Am
is G-homotopy-cartesian for each simplicial operatiecn 6 : [ml -+
then i
T
* +
Ay 7 |nj

is G-homotopy-cartesian.

k1,



In particular suppose that X is a G-space with a
composition law which is sufficiently assocjative for a
classifying space BX to be defined. (I.e. suppose that there

k

is a simplicial G-space [Xk) with X o= X and % = X for all

k = 0.) Then we have
Proposition {1.3) For such an X the natural map ¥ - 0BX
from X to its "group-completions” is a G-homotepy-equivalence
providing that uu[xH] is a group for all subgroups H of G.

It seems reasonable to say that a G-map X =+ Y is a
G-homology-equivalence if the induced map xH * YH is a
homology eguivalence for each H. That is partly justified by

the following obvious remark.

Proposition (1.4) A G-map X -+ Y is a G-homology-equivalence

if and only if the induced map
[X; PTG + (¥ P]G
is an iscmorphism for every group-like G-space P.

Here a group-like G-space P means a G-space with a
compasition law P x P -+ P which makes ﬂO(PHJ inte a group for
all subgroups H of G.

The ygroup-completion theorem of [5] implies the following
eguivariant extension. Suppose that X is a G-space with a
compasition law and a classifying space BX, and that

(a) WO(XH} is in the centre of the Pontrjagin ring
HJXH] for all subgroups H of G, °

(b) WD(XG) is a finitely generated monoid, and

{c) HO(XG) + WO(XH) ig ecofinal for all H, in the sense
that for any £ « no(xH) there exists n ¢ nn(xH} such that L + n

comes from ﬂﬂle).

Then one can choose x in xG so that its component is
cofinal in nU[XGJ, and can form the telescope X from the

seguence

Proposition (1.5) 1In the preceding situation there is a

G-homology-equivalence X - :‘aBX1
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§2 Infinite symmetric products

In this section I shall prove Theorem A, but I shall
consider a slightly more general situation.
Suppose that F is a functor from pointed compact G-spaces
to G-spaces with the properties
Pl : if X isequivariantly triangulable then F(X) is a G-ANR,
and q
P2 : if ¥ + ¥ is a G-cofibration and ¥ is a G-connected then
FlY) =+ Fi{x) =+ B/
is a G-fibration sequence.

Here G-connected means that YH is connected for every

subgroup H of G

Proposition (2.1) The functor F = sp” satisfies conditions
Pl and P2.

I shall postpone the proof of this for the moment.

Let V be a real G-module.

1f M is a compact G-stable subset of V let M_ be the open
c-neighbourhood of M in V. Let U_ be the open ball in V with
centre 0 and radius . There is a G-map M x UE -+ Mt defined
by (x,y) - x+y. By adjunction this defines a G-map
Moo Mapofmz § Ut), when * denotes one-point compactification,
and Mapu denotes the G-space of base-point-preserving maps.

By functoriality, and identifying U‘; with 57, we get
Mo+ mapy(ED) ; EisY))
e
and then by adjunction 2 base-point-preserving G-map

Fty > mapM; F(sV)).



Proposition (2.2) If M is the unit sphere in V (and ¢ = 1) then

the last map is a G-homotopy-eguivalence.

Remark The proposition is actually true for any compact
G-subset M providing M is an equivariant deformation retract of

ME. It is essentially the assertion that M and M: are eguivariantly

S—-dual.

ngEE‘ Choose an eguivariant triangulation D; the sphere M.
M is covered by the open stars of the simplexes of the triangulation.
This is a colléction {Cm] of contractible cpen sets of M, closed
under intersection, and permuted by G. One can suppose that
each set CQL either coincides with or is disjoint from its translates
by elements of G.

Suppcse that £ is small compared with the mesh of the
triangulation., Let 7 : Ma + M be the radial projection. TFor
any subset X of M let &= "t (x), and ¥=x- (M-X) _ . Then we

have & map
A Vv
rixt) o+ mapX ; msYy.

We shall prove that this 1s a G-homotopy-equivalence whenever

X is an G-stable union ¢, of some of the C . The proof is

by induction on the cargizal of T. If T is a single orbit under

G then % is 2 unton of coples of V indexed by T, so P{X%) is a
corresponding product of copies of F(V+3, i.e. F(§+) = Map(T; F(S% H
But clearly Map(T; F(Sv)) = Map(g; F(SV)), so the result heolds

in this case. -

Proposition (2.3) 1If %) and X, are two G-stable unions of sets

Cyr and X = 2, 0 ¥y Kyp = % 0 Xy, then
A
FEY o+ PR
+ +
A Ay
PR - piY)



is G-homotopy-carteslan.

~N [5d ~ s
Proof: Observe that xI = #7x - 2pT, se that there is a

G-¢oflbration seguence

A A A
®-xpt - X - X5
Similarly
~ ~ Ag Ay
(K = Xyp)7 * Fp ¢ Fpp

ig a G-cofibration seguence. But ﬁz = i12 =% = ?1 , and the
ccmpactificatiéns of these spaces, being suspensions, are
G-connected. So the vertical maps in the diagram have the same
homotopy fibre by (2.1), and that proves (2.3).
Proposition {2.3) implies proposition (2.2) by induction,
for the corresponding sguare of mapping-spaces
vap (% B(8V))  +  Map(iy: Fes')
¥ +
map(dy s Fs¥)) »  map(lys B8V
is cbviously G-homotopy-cartesian.
We shall now deduce Theorem (A) from (2.2)%
Let D_ denote that closed disk of radius r in V and S/
its boundary sphere. Then in (2.2) we have M= 8 and
M: is Dn/(Dh u Sx), where % = 14¢ and § = 1-g£. There is a

commutative diagram
v
FD,/8,) +  Map(D;; FI(& 1]
v +

P(D,/D, v ;) + Map(sy; F(s'))

in which the bottom map is the eguivalence of (2.2}, and the
top map is trivially an eguivalence. The right hand map is a

fibration with fibre RVF(SU). From the cefibration éequence



=]
S

L - ->
I3 & (Du u S}L) / 8y Dy /8y D:\/(Du u sl)

we could conclude that the homotopy fibre of the left-hand map
was #(s®), and hence that F(s%) = @¥r(s¥), if we knew that
F took all cofibration sequences ro fibration seguences. But in

any case the cofibre of Dy/S, =+ D,/{D, u 5,) is ', and

DA/SA = SV is G-connected (as we are assuming VG # 0), so

the left-hand homotopy fibre is QF(SIJ. 1f 7= 5p” then

r(sly = Sl, and so 0F(5Y) = Z . ‘This proves the first

part of Theorem A. For the second part one considers the functor
F defined by F(X) = SPm(x A Sw). This does take all cofibrations
G

to fibrations if W~ # 0, for then X A s¥ 4s always G-connected.

Proof of (2.1)
Property Pl presents no difficulty, for if X is triangulable

then so is SPw(x), and it is then certainly a G-ANR. As to P2,

it is enough to show that
s E - st I osp® M

is a fibration sequence for each subgroup H of G. As each

fibre of the second map is precisely homeomorphic to SP“(Y)H

it suffices to show that the map is a quasi-fibration. This can
be dene by the original argument of Dold-Thom [1].

We filter the hase B = 527 (x/¥)" by closed subspaces

B = B = B

0 1 2 5 eee & By,

- n H =1 _ = _ o o H
where Bn = §P (X/Y)" . We have u (Bn Bn_l) = (Bn Bn—l} x SB (¥ .

But Bn—l is a deformation retract of a neighbourhoed U in En -

and the retraction is covered by a corresponding deformation

retraction of 1 1(U) into n_l(Bn_]J. (In fact both retractions

€an be induced by a retraction of a neighbourhood of Y in X into Y.)
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Using the results of [11 {cf. [4] {3.3)) it suffices to show

1(U) > ﬂ-](Bn_l) maps each fibre h% a homotopy eguivalence.

that 7
But on any fibre the retraction can be identified with a trans-
latien in the topological monoid SPW(Y)H. This is homotopic

te the identity, for SPE(Y)H is connected because YH' is connected
for every subgroup H' of H.

A rather different alternative proof of (2.1) will be

given in §4.

= 14 =

53 Configuration spaces

In this section I shall prove theorem (B) of the introductlon.
As in [4] we introduce relative configuration spaces:
if ¥ is a manifold with boundary and ¥ is a closed subset of X
let C(X,Y) denote the guotient space of C(X}, the space of finite
subsets S of X, by the equivalence relation which identifies 8
and 8' if 8 n (X-¥) = 8" n (X~¥). The analogu? of (2.1) which

we need is

Proposition (3.1) 1If ¥ is a compact manifold with boundary
conatined in X, and of the same dimension as X, and 2 is a

closed subset of ¥, then
c(y,z) =+ CIiX,z) = C(X,¥)

is a G-fibration sequence providing C(3%, 2 n 3¥) is G-connected.
The proof of this is the same as that of (2.1). We filter

the base B = c(x,¥)" by (8}, where B, = {5 « cix, v carda(s) = ni.

Over each layer B_ - B, the map C(X,¥)" = cx, v s a
product with fibre C(Y,Z)H . The desired deformation retractions
can be induced by an isotopy of the ddentity map of X which
shrinks Y into its own interior. Although C(¥,2Z) is not a
monoid one can still define a map C(Y,2) + C(¥,2Z) corresponding
to adding configuration at the boundary of ¥ - i.e. the space
C(8Y, Z n3¥) "acts on" C(Y,E). The effect of the retractions on
the fibres ¢(v,2)" is given By "adding” elements of C(3¥, Z nav)";
so we have a guasifibration providing €(3Y, % 3Y) is G-cennected.
It is not guite true that C(X,¥) depends only on X/Y, so
one cannot say that C transforms cofibrations to fibrations.
But we do have an excision property: 4if U is an open set of X
contained in ¥ then C(X-U, ¥Y-U) = C(X,¥). Reviewing the proof

of (2.2) we find that it holds when the functor ¥ is replaced



by € in the obvious way. The only point needing care is to

see that - in the notation of (2.3) - we havp fibration seguences
A n A A
C(DA—xl, Dx-x) + €Dy, Dy=X) + C(Dy, DA"xl)
and
~ ~ A ~
ClBy=% 5, D =Xy) v CiDyr Dy=Ry) =+ CUDy, Dy=%,5)
replacing the seguences

FURRDT - PR - FED :

and
Ao 4 oy A+
FUE,~X 07+ FG) + PG, .
But (3.1) applies to these, for, for example,
A A . ~ - ” ~ A

C(B(Dk-xl), (DA-X) n a(DA-xl)) = C(axi, (8X) n raxln),

which is of the form C(Y x I, ¥ x i). and is therefore G-connected.

Thus we have
Proposition (3.2) C(D,, SA u Du) B Map (8,7 C(D_, 8.0},
where » = 1+c and u = l-¢g,

The following result is almost ebvious.

Proposition (3.3} C(p_, §) = §' .
For S"r & DE/SE , and there is an inclusion DEXSE - CEDE, SF_).

But the multiplicative moncid {% ¢ R: A = 1] acts on CEDF, 5.)

by radial expansion, and for any £ in C(DE, Sc) one has

LEe DE/S£ for large i. If ¢, = {CCC(DE, Bclz XEe DE/’SE]

then D _/S_ 1is a deformation retract of €,. But U €, = C(D_, 5_),
e Py a1 b 4 £

50 K);_/E.E is also a deformation retract of C(D_,SE) -
If % 2 p 2> 0 are real numbers let us write AM for the

half-open annulus DA - Dll in V. The configuraticn space of an

annulue can be thought of ag an H-space under juxtaposition.



=]
S
S

To make this more precise we define

i,y = U c{a )
= L

thought of as a subspace of C(V) * R. The obvious composition
(o] j 3
(B, * Clag ) = C(AI,AL) makes C(A,) intoc a monoid. Choosing
E e C(Ay) representing a cofinal component we define C_(A) as
the limit of the embeddings
£ 1 £ 2
cia,) oo ¥ ool 4oL

(In other words we stabilize on the outside edge of the annulus.

We shall prove

Proposition (3.4) {a) BC{A}) = C(DA, SA ] Du}.
{b) There is a G-homotopy-eguivalence CW(A} + fBC(AL) .

The theorem we want to prove follows from this. By

analogy with C{a,) let us define C(D,) = U C(Dl) w@ (WY % M.
Azl

This admits an action of the monoid C(A,), induced by

€,) * C(Ay,) » €lby ). The space C,{V) of the introduction

can be identified with C_{B), the limit of
% *
cm,) F ooy oL

Now combining {3.4) and (3.2) gives a G-hamology=-eguivalence.
C(A) -~ @Map(5y; V) = Map(p,/(8, v D ); sV). But
aVsV =

MapntDA/SA: SV) fits into a G-fibration seguence
Mapg (D, A5, v BJi; SV) » Mapg(D,/8,; 8V) - Map(p; SV).

We can compare this with the G-homology-fibration sequence

€ (my =+ c (D) = €y, §

L

which arises as the limit of the seguences
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Clag,) = €(By) + €Dy, 8,) .

(The last seguence is not a hometopy fibration. Each fibre is
a copy of C(Alk) but when one filters the base in the usual
way the attaching maps of the fibres when one passes from one
layer +to the next are given by adding a configuration on the
inside of the annulus. Left translations in the moncid C(A,)
are not homology eguivalences. But after stab}lizaticn the
fibres are CW(AJ. The attaching maps are given by the left
action of C(A,) on Cm(A), and are homology equivalences. T
shall retrun te this point below.)

The maps we use to compare the seguences arises from

the commutative diagram

Cla ;) + Mapgpy /U8y v Dy )i C)
s 4

cib,) = Mapg(D,, /5, . ¢ ©)
4 4

Cip,, 5;) =+ Map(Dl_E: cy

where C = C(D_, BEJ, by stabilizing.

It remains to prove {(3.4). Assertion (b) is just the
group-completion theorem (1.5). Unfortunately it is not clear
that the Pontrijagin ring H,[CtA')H) is commutative. But all that
we need {cf. [51) is that the loecalization H, (C(a,) ™) [n" 17,
where 7 = ﬂD[C(A*)H), can be formed by right fractions, i.e.
that when one forms the 1limit H, (C_(A)) of

Bu(elay)) ¥ oaueg oLl

where £ generates 7, using the right action of w, the left
action of 7 on the limit is by automorphisms. This is the
same as the assertion above that when C_(A) is formed by stabilizing

on the outside of the annulus the operation of adding a configuration



on the inside of the annulus is a G-homology-eguivalence.

It is true because the homoclogy of the n-particle configuration
1

space Cn(A)H becomes independent of n when n is large. (In

fact ¢ (m = 1 e (a/M), as we saw in the introduction, and
3 K<H

the stability of ordinary configuration spaces is proved in [41.)
Turning to (3.4)(a), the monoid C(A,) acts on C{D,, Dp),

where 0 < p < 1, so one can form a space C(D*,‘DH)I/C(A*).

(cf. [10]. Here I am using the notation X//M for the space
written XM in [5].) This has a praojection to BCI(A,), which is
a G-homotopy-equivalence because C(D,, Du) is contractible.

Now consider

Cih,) + €O D) = €D, 8

il 1

u Du]

This is not a fibration sequence, for although each fibre is
homeomorphic to C(A,) the attaching maps when one passes from
one layer of the base to the next are not equivalences.

The moneid C(A,) acts on the seguence fibre wise, so one can

form

g v DJ) .

CiB,)//CMAL) = CiDy,D ) //CIA,) = CDy, 8
Now all the fibres are contractible, so the attaching maps
are necessarily equivalences, and we have C(D,, D.r)//C(A*)

= €Dy, 8 v D). That complete the proof.

§4 TI-spaces with G-action

In [97 I defined a category I whose objects are the
natural numbers 0, 1, 2, ... . It is eguivalent to the dual
of the categery ;f Elnzte pointed sets. A T-space is a
contravariant functor A : I - (spaces) such that the natural

map Afn) = A(l) * ... * A(l) {induced by the n obvious maps

(1

+ n in T) is a homotopy equivalence for eath n.

Clearly there is an eguivariant generalization of this
concept, cbtaiAed by replacing spaces by G-spaces, and requiring
Aln) = A(_]_}n to be a G-homotopy—equivalenca.(") There are many
ab:ious exa;ples, analogous to those of [97.

1f A is a G-T-space, and X is a G-space with base-point
one can construct a G-space ¥ @ A, Tt is not hard to show

that if each space A(n) is a G-ANR and each degeneracy map

Afn - 1) =+ A(n) is a cofibration then the functor X — X @® A

has the property Pl of £2, i,e. it takes G-triangulable spaces
to G-ANR's., But in default of interesting applications I shall
not prove that here. The property P2 is more interesting.

We have

Preposition (4.1) If ¥ = X is a G-fibration then the sequence
Y@A - X®A = (X/Y) @A

is a G-fibration seguence providing Y is G-connected.
1f the T-space A is the natural numbers IN then -

X @h = SP (%), so this provides an alternative proof of (2.1).

Proof of (4.1) (For more details of this argument eof [12].)

Bearing in mind the Puppe seguence ¥ —+ X -+ XuCY =~ B5Y
¥ > .
s G moart B owloput h At ww e st n hace L i W T i e

AlSY —> Map (s a(y)) & b = G =hoiolopy - s vafine dor eadd
Findi G-sd S,
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we shall prove first that there is a G-fibration seguence
XehA + (XuCY) @A -+ (BY) @ A& .
We chserve that X U'CY¥ and SY are the realizations of

simplicial spaces

-

X‘_XVEEKVYVY

P

and
(point) ty%vvxi:' 2

respectively. (Both simplicial spaces are completely degenerate

above degree 1.) The map XuCY + SY is induced by the




11

2]

3]

4]

51

61

71

18]

£81

10]

111

12]

Prom (4.1) we can deduce the following result asserting
that a G-l-space gives use to an eguivariant spectrum by exactly

the argument by which Thedrem A was obtained from (2.1].

Proposition (4.3) f{al There is a G-homotopy-equivalence

Hea + 'O an

whenever V and W are real G-niodules such that HQ # 0.
.

{b) 1If Alllis group-like in the sense of

a) =s%@a = 2'ts¥eaar  for allw.

{z] 1If R(l} satisfies the econditions (b}

and (¢) preceding (1.5) there is a G-homology-eguivalence

a1, + ATis 8 a).
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