Graeme Segal

Introduction

In this paper I shall prove the equivariant analogues of some well-known results in homotopy theory. The proofs are almost the same as the non-equivariant ones, but some care is needed in selecting arguments which can be generalized.

Let G be a finite group.

If V is a finite dimensional real G-module let S^V be the sphere formed by compactifying V. We take ∞ as the base-point in S^V . The infinite symmetric product $SP^\infty(S^V)$ is a G-space which should be an "equivariant Eilenberg-Maclane space". That can be formulated in the following way, where Ω^V X denotes the G-space of base-point-preserving maps from S^V to a pointed G-space X.

Theorem (A) (a). There is an equivariant homotopy equivalence

$$\mathbb{Z} \rightarrow \Omega^{V} \operatorname{SP}^{\infty}(S^{V})$$

providing the fixed submodule $\boldsymbol{V}^{\boldsymbol{G}}$ is non-zero.

(b). There is an equivariant homotopy equivalence

$$SP^{\infty}(W) + \Omega^{V} SP^{\infty}(S^{V \oplus W})$$

providing $W^G \neq 0$.

The second theorem concerns the configuration space C(V) of V. This is the G-space formed by the unordered finite subsets of V. There is a well-known map C(V) + $\Omega^{V}S^{V}$ (of [7]). One can define an embedding a_{ξ} : C(V) + C(V) which adds to a configuration a given configuration ξ "near infinity". Let us take ξ to consist of one representative of each orbit that occurs

in V - {0}, and define $C_{_{00}}(V)$ to be the limit of the sequence

There is a corresponding map $a_{\xi}: \Omega^V S^V + \Omega^V S^V$ compatible with $C(V) \to \Omega^V S^V$, and a corresponding limit $(\Omega^V S^V)_{\infty}$. We have

Theorem (B). There is a G-homology-equivalence

$$C_{\infty}(V) \rightarrow (\Omega^{V} S^{V})_{\infty}$$
.

Here a G+homology-equivalence means a G-map which induces a homology equivalence of the spaces of fixed points of every subgroup of G.

In theorem (B) we do not assume that $v^G \neq 0$, so there is no "addition" defined in $\Omega^V S^V$, and it is not clear that the connected components have the same homotopy type. But if $v^G \neq 0$ then clearly $a_\xi: \Omega^V S^V \to \Omega^V S^V$ is an equivalence, and $(\Omega^V S^V)_\infty$ can be replaced by $\Omega^V S^V$ in the theorem.

If $V^G \neq 0$ the connected compenents of $C_\infty(V)^G$ form the free abelian group A_V on the set of orbit types which occur in V. So theorem (B) implies

$$\begin{array}{cccc} \underline{\text{Corollary}} & & [s^V; s^V]_G & \stackrel{\sim}{=} & \mathtt{A}_V & . \end{array}$$

This is well-known (at least when V is large and $\rm A_{V}$ is the Burnside ring of G). But the present method provides a new and in many ways simpler proof. The two known proofs depend either ([8], [6], [2]) on equivariant transversality or [11] are by induction over orbit types.

But the present argument gives somewhat more. For the fixed-point set $C_\infty(V)^G$ is a product $\prod\limits_H C_\infty(V_H)^G = \prod\limits_H C_\infty(V_H/G)$, where V_H is the part of V where the isotropy group is conjugate

3 -

to H, and H runs through the conjugacy classes of subgroups of G. Abelianizing the fundamental group commutes with products, so Theorem B gives one a product decomposition of $(n^{\nabla}s^{\nabla})^{G}$. That is not altogether surprising, for if one arranges the conjugacy classes of subgroups in non-decreasing order

$$1 = H_0$$
, H_1 , ..., $H_m = G$

then there is a tower of fibrations

$$\begin{split} (\boldsymbol{\Omega}^{V}\boldsymbol{S}^{V})^{G} &= \text{Map}_{\boldsymbol{G}}(\boldsymbol{S}^{V}; \boldsymbol{S}^{V}) & + & \text{Map}_{\boldsymbol{N}_{\boldsymbol{M}_{\boldsymbol{i}}}}((\boldsymbol{S}^{V})^{H_{\boldsymbol{1}}}; \ (\boldsymbol{S}^{V})^{H_{\boldsymbol{1}}})) \\ & + & \text{Map}_{\boldsymbol{N}_{\boldsymbol{M}_{\boldsymbol{i}}}}((\boldsymbol{S}^{V})^{H_{\boldsymbol{2}}}; \ (\boldsymbol{S}^{V})^{H_{\boldsymbol{2}}}) & + & \dots & + & \text{Map}_{\boldsymbol{G}}((\boldsymbol{S}^{V})^{G}; \ (\boldsymbol{S}^{V})^{G}) \end{split}.$$

Our result is that the tower is an iterated product:

Corollary 2.
$$(\Omega^V S^V)^G \simeq \prod_H Map_G(V_H^+; S^V)$$
.

This is known when V + ∞ . In fact then $V_H/G \simeq BW_H$, where $W_H = N_H/H$, and $C_\infty(V_H/G) \simeq \lim_n E \lesssim_n \times S_n BW_H^n$, whose Quillenization is Ω^∞ $S^\infty(BW_H \text{ L (point)})$. (cf. [8]).

Apart from theorems (A) and (B) this papers discusses

"equivariant delooping" more generally, and shows how an equivariant
spectrum can be associated to an "equivariant \(\Gamma\)-space" in the

sense of [9]. The essential point is to produce a functor which
takes G-cofibrations to G-fibrations. In \(\Gamma\)4 I have explained

rather sketchily how this can be done starting with a \(\Gamma\)-space:
in fact the non-equivariant discussion in the form given in

[12] applies directly.

In conclusion I should point out that neither Theorem (A) nor Theorem (B) is true if G is not finite. For example, suppose that G is the circle and V is \mathbb{R}^3 with G acting by rotation about an axis. Then there is a G-cofibration sequence

 $S^1 + S^V + S^2(G \perp point),$

and so for any G-space X a fibration sequence

$$\Omega^2 X \rightarrow (\Omega^V X)^G \rightarrow \Omega(X^G)$$
.

Taking X = S^V this shows that $(\Omega^V S^V)^G = \mathbb{Z} \times \Omega^2 S^3$, contradicting Theorem (B); and taking X = SP $^{\infty}(S^V)$ one finds that $X^G = SP^{\infty}(S^1) = S^1$, so that $\Omega^V SP^{\infty}(S^V) = \mathbb{Z} \times S^1$, contradicting Theorem (A).

more

91 Preliminary remarks about G-homotopy-theory

If X, Y and Z are G-spaces with base-points a sequence of base-points preserving G-maps

$$x \quad \stackrel{f}{\twoheadrightarrow} \quad y \quad \stackrel{g}{\twoheadrightarrow} \quad z$$

is called a <u>G-fibration-sequence</u> if there is given a null-homotopy of the composite gf, and the induced map from X to the homotopic fibre of g at 0 is a G-homotopy-equivalence. (All base-points will written as 0.)

The homotopic fibre F(g,0) of g at 0 is the fibre-product $Y \times_Z P_0 Z$, where $P_0 Z$ is the space of paths in Z beginning at 0. The fixed points $F(g,0)^H$ of any subgroup H of G can be identified with $F(g^H,0)$. Let us recall the theorem of [3]. It asserts that a G-map P + Q is a G-homotopy-equivalence if and only if the induced maps of fixed point sets $P^H \to Q^H$ are homotopy equivalences for all subgroups H of G, providing that P and Q are G-ANR's. Forming the homotopic fibre does not take one out of the class of G-ANR's, so we can deduce

Proposition (1.1) Providing X, Y and Z are G-ANR's a sequence

is a G-fibration sequence if and only if the fixed-point sequence

$$x^H \rightarrow y^H \rightarrow z^H$$

is a fibration sequence for all subgroups H of G.

More generally, a homotopy commutative diagram

where the homotopy making the diagram commute is given, is

- 6 -

called G-homotopy-cartesian if the induced map from X' to the homotopic fibre product of X and Y' over Y is a G-homotopy equivalence. The homotopic fibre-product is X \times $_{Y}$ PY \times $_{Y}$ Y', where PY is the space of free paths in Y. For the same reason as before we can assert that if the spaces concerned are G-ANR's a diagram is G-homotopy-cartesian if and only if each of its fixed-point diagrams is homotopy cartesian.

Now suppose that one has a simplicial object A = $\{A_k^{}\}_{k\geq 0}$ in the category of G-spaces. It has a realization as a G-space. Here I shall use the <u>join</u> realization, described in [9], but I shall denote it by |A|. It has the property that if the spaces A_k of A are G-ANR's then so is |A|. It also has the property that $|A|^H = |A^H|$ for all subgroups H of G.

From this point on I shall assume that all the G-spaces given are G-ANR's. The non-equivariant version of the following proposition is proved in [9], and the equivariant one follows at once.

Proposition (1.2) If A' + A is a map of G-simplicial-spaces

is G-homotopy-cartesian for each simplicial operation $\theta:[m] \to \lceil k \rceil,$ then

$$\begin{array}{ccc} A_0' & \rightarrow & |A'| \\ + & & + \\ A_0 & \rightarrow & |A| \end{array}$$

is G-homotopy-cartesian.

In particular suppose that X is a G-space with a composition law which is sufficiently associative for a classifying space BX to be defined. (I.e. suppose that there is a simplicial G-space $\{X_k\}$ with $X_1=X$ and $X_k=X_1^k$ for all

<u>Proposition (1.3)</u> Por such an X the natural map X \rightarrow ΩBX from X to its "group-completions" is a G-homotopy-equivalence providing that $\pi_0(X^H)$ is a group for all subgroups H of G.

It seems reasonable to say that a G-map $X \to Y$ is a G-homology-equivalence if the induced map $X^H \to Y^H$ is a homology equivalence for each H. That is partly justified by the following obvious remark.

Proposition (1.4) A G-map X \rightarrow Y is a G-homology-equivalence if and only if the induced map

 $k \ge 0.$) Then we have

is an isomorphism for every group-like G-space P.

Here a group-like G-space P means a G-space with a composition law P \times P \rightarrow P which makes $\pi_0\left(P^H\right)$ into a group for all subgroups H of G.

The group-completion theorem of [5] implies the following equivariant extension. Suppose that X is a G-space with a composition law and a classifying space BX, and that

- (a) $\pi_0(\chi^H)$ is in the centre of the Pontrjagin ring ${\rm H}_{\bullet}(\chi^H)$ for all subgroups H of G,
 - (b) $\pi_0^{}\left(x^G\right)$ is a finitely generated monoid, and
- (c) $\pi_0(x^G) \to \pi_0(x^H)$ is cofinal for all H, in the sense that for any $\xi \in \pi_0(x^H)$ there exists $\eta \in \pi_0(x^H)$ such that $\xi + \eta$ comes from $\pi_0(x^G)$.

8 -

Then one can choose x in X^G so that its component is cofinal in $\pi_0^-(X^G)$, and can form the telescope X_∞ from the sequence

<u>Proposition (1.5)</u> In the preceding situation there is a G-homology-equivalence X_∞ \to $\Omega B X_1$

52 Infinite symmetric products

In this section I shall prove Theorem A, but I shall consider a slightly more general situation.

Suppose that F is a functor from pointed compact G-spaces to G-spaces with the properties

Pl : if X is equivariantly triangulable then F(X) is a G-ANR,

P2 : if Y \rightarrow X is a G-cofibration and Y is a G-connected then $F(Y) \rightarrow F(X) \rightarrow F(X/Y)$

is a G-fibration sequence.

Here $\underline{\text{G-connected}}$ means that \textbf{Y}^{H} is connected for every subgroup H of G

I shall postpone the proof of this for the moment. Let V be a real G-module.

If M is a compact G-stable subset of V let M_{ϵ} be the open ϵ -neighbourhood of M in V. Let U_{ϵ} be the open ball in V with centre 0 and radius ϵ . There is a G-map M x U_{ϵ} + M_{ϵ} defined by (x,y) + x+y. By adjunction this defines a G-map M + $\mathrm{Map}_0(M_{\epsilon}^+;U_{\epsilon}^+)$, when $^+$ denotes one-point compactification, and Map_0 denotes the G-space of base-point-preserving maps. By functoriality, and identifying U_{ϵ}^+ with s^V , we get

$$M + Map_0(F(M_E^+); F(S^V))$$
,

and then by adjunction a base-point-preserving G-map

$$F(M_c^+) \rightarrow Map(M; F(S^{\overline{V}})).$$

<u>Proposition (2.2)</u> If M is the unit sphere in V (and ϵ \leq 1) then the last map is a G-homotopy-equivalence.

 $\begin{array}{lll} \underline{Remark} & \text{The proposition is actually true for any compact} \\ G\text{-subset M providing M is an equivariant deformation retract of} \\ \text{M}_{\epsilon}. & \text{It is essentially the assertion that M and M}_{\epsilon}^{+} \text{ are equivariantly S-dual.} \end{array}$

<u>Proof:</u> Choose an equivariant triangulation of the sphere M. M is covered by the open stars of the simplexes of the triangulation. This is a collection $\{C_{\alpha}\}$ of contractible open sets of M, closed under intersection, and permuted by G. One can suppose that each set C_{α} either coincides with or is disjoint from its translates by elements of G.

Suppose that ϵ is small compared with the mesh of the triangulation. Let π : M_{ϵ} + M be the radial projection. For any subset X of M let \hat{X} = $\pi^{-1}(X)$, and $\overset{\checkmark}{X}$ = X - $(M-X)_{\epsilon}$. Then we have a map

$$F(X^+)$$
 + Map $(X^{\vee}; F(S^{\vee}))$.

We shall prove that this is a G-homotopy-equivalence whenever X is an G-stable union $\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c}$

Proposition (2.3) If X_1 and X_2 are two G-stable unions of sets C_α , and $X=X_1$ u X_2 , $X_{12}=X_1$ n X_2 , then

$$F(\hat{X}^{+}) \rightarrow F(\hat{X}_{2}^{+})$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(\hat{X}_{1}^{+}) \rightarrow F(\hat{X}_{12}^{+})$$

is G-homotopy-cartesian.

<u>Proof:</u> Observe that $\hat{x}_1^+ = \hat{x}^+/(\hat{x} - \hat{x}_1)^+$, so that there is a G-cofibration sequence

$$(\hat{x} - \hat{x}_1)^+ \rightarrow \hat{x}^+ \rightarrow \hat{x}_1^+$$
.

Similarly

$$(\hat{x}_2 - \hat{x}_{12})^+ \rightarrow \hat{x}_2^+ \rightarrow \hat{x}_{12}^+$$

is a G-cofibration sequence. But $\hat{x}_2 - \hat{x}_{12} = \hat{x} - \hat{x}_1$, and the compactifications of these spaces, being suspensions, are G-connected. So the vertical maps in the diagram have the same homotopy fibre by (2.1), and that proves (2.3).

Proposition (2.3) implies Proposition (2.2) by induction, for the corresponding square of mapping-spaces

$$\begin{split} \text{Map}(\breve{\mathbf{X}}; \ \text{F}(\mathbf{S}^{\breve{\mathbf{V}}})) & \rightarrow & \text{Map}(\breve{\mathbf{X}}_{2}; \ \text{F}(\mathbf{S}^{\breve{\mathbf{V}}})) \\ & \downarrow & & + \\ \text{Map}(\breve{\mathbf{X}}_{1}; \ \text{F}(\mathbf{S}^{\breve{\mathbf{V}}})) & \rightarrow & \text{Map}(\breve{\mathbf{X}}_{12}; \ \text{F}(\mathbf{S}^{\breve{\mathbf{V}}})) \end{split}$$

is obviously G-homotopy-cartesian.

We shall now deduce Theorem (A) from (2.2).

Let D_r denote that closed disk of radius r in V and S_r its boundary sphere. Then in (2.2) we have M = S_1 , and M_ϵ^+ is $D_\lambda/\left(D_\mu^-\cup S_\lambda\right)$, where λ = 1+ ϵ and μ = 1- ϵ . There is a commutative diagram

in which the bottom map is the equivalence of (2.2), and the top map is trivially an equivalence. The right hand map is a fibration with fibre $\Omega^V F(S^V)$. From the cofibration sequence

$$s^0 = (D_u \cup s_\lambda) / s_\lambda + D_\lambda/s_\lambda + D_\lambda/(D_\mu \cup s_\lambda)$$

we could conclude that the homotopy fibre of the left-hand map was $F(s^0)$, and hence that $F(s^0)=\Omega^VF(s^V)$, if we knew that F took all cofibration sequences ro fibration sequences. But in any case the cofibre of $D_{\lambda}/S_{\lambda}\to D_{\lambda}/(D_{\mu}\cup S_{\lambda})$ is S^1 , and $D_{\lambda}/S_{\lambda}\ \cong\ S^V \text{ is G-connected (as we are assuming $V^G\neq 0$), so the left-hand homotopy fibre is <math display="inline">\Omega F(S^1)$. If $F\in SP^\infty$ then $F(S^1)=S^1, \text{ and so }\Omega F(S^1)=Z\!\!Z \text{ . This proves the first part of Theorem A. For the second part one considers the functor F defined by $F(X)=SP^\infty(X\wedge S^W)$. This does take all cofibrations to fibrations if $W^G\neq 0$, for then $X\wedge S^W$ is always G-connected.}$

Proof of (2.1)

more

Property P1 presents no difficulty, for if X is triangulable then so is $SP^\infty(X)$, and it is then certainly a G-ANR. As to P2, it is enough to show that

$$SP^{\infty}(Y)^{H} \rightarrow SP^{\infty}(X)^{H} \stackrel{\mathbb{I}}{\rightarrow} SP^{\infty}(X/Y)^{H}$$

is a fibration sequence for each subgroup H of G. As each fibre of the second map is precisely homeomorphic to $SP^\infty(Y)^H$ it suffices to show that the map is a quasi-fibration. This can be done by the original argument of Dold-Thom [1].

We filter the base $B = SP^{\infty}(X/Y)^{H}$ by closed subspaces

$$B_0 \in B_1 \in B_2 \in \dots \in B$$
,

where ${\bf B}_n={\rm SP}^n({\bf X/Y})^H.$ We have $\pi^{-1}({\bf B}_n-{\bf B}_{n-1})=({\bf B}_n-{\bf B}_{n-1})\times {\rm SP}^\infty({\bf Y})^H.$ But ${\bf B}_{n-1}$ is a deformation retract of a neighbourhood U in ${\bf B}_n$, and the retraction is covered by a corresponding deformation retraction of $\pi^{-1}({\bf U})$ into $\pi^{-1}({\bf B}_{n-1})$. (In fact both retractions can be induced by a retraction of a neighbourhood of Y in X into Y.)

- 13 -

Using the results of [1] (cf. [4] (3.3)) it suffices to show that $\pi^{-1}(U) \to \pi^{-1}(B_{n-1})$ maps each fibre by a homotopy equivalence. But on any fibre the retraction can be identified with a translation in the topological monoid $SP^{\infty}(Y)^H$. This is homotopic to the identity, for $SP^{\infty}(Y)^H$ is connected because Y^H is connected for every subgroup H' of H.

A rather different alternative proof of (2.1) will be given in §4.

- 14 -

§3 Configuration spaces

In this section I shall prove theorem $_{|}(B)$ of the introduction. As in [4] we introduce relative configuration spaces: if X is a manifold with boundary and Y is a closed subset of X let C(X,Y) denote the quotient space of C(X), the space of finite subsets S of X, by the equivalence relation which identifies S and S' if S \cap (X-Y) = S' \cap (X-Y). The analogue of (2.1) which

<u>Proposition (3.1)</u> If Y is a compact manifold with boundary conatined in X, and of the same dimension as X, and Z is a closed subset of Y, then

$$C(Y,Z) \rightarrow C(X,Z) \rightarrow C(X,Y)$$

is a G-fibration sequence providing C(3Y, Z n 3Y) is G-connected.

The proof of this is the same as that of (2.1). We filter the base B = C(X,Y)^H by {B_n}, where B_n = {S \in C(X,Y)^H : card(S) \le n}. Over each layer B_n - B_{n-1} the map $C(X,Y)^H + C(X,Y)^H$ is a product with fibre $C(Y,Z)^H$. The desired deformation retractions can be induced by an isotopy of the identity map of X which shrinks Y into its own interior. Although C(Y,Z) is not a monoid one can still define a map C(Y,Z) + C(Y,Z) corresponding to adding configuration at the boundary of Y - i.e. the space $C(\partial Y, Z \cap \partial Y)$ "acts on" C(Y,Z). The effect of the retractions on the fibres $C(Y,Z)^H$ is given by "adding" elements of $C(\partial Y, Z \cap \partial Y)^H$; so we have a quasifibration providing $C(\partial Y, Z \cap \partial Y)$ is G-connected.

It is not quite true that C(X,Y) depends only on X/Y, so one cannot say that C transforms cofibrations to fibrations. But we do have an excision property: if U is an open set of X contained in Y then C(X-U, Y-U) = C(X,Y). Reviewing the proof of (2.2) we find that it holds when the functor F is replaced

by C in the obvious way. The only point needing care is to see that — in the notation of (2.3) — we have fibration sequences

$$C(D_{\lambda}-\hat{x}_{1}, D_{\lambda}-\hat{x}) + C(D_{\lambda}, D_{\lambda}-\hat{x}) + C(D_{\lambda}, D_{\lambda}-\hat{x}_{1})$$

and

$$\texttt{C} \; (\texttt{D}_{\lambda} - \hat{\texttt{X}}_{12}, \; \texttt{D}_{\lambda} - \hat{\texttt{X}}_{2}) \; \; \rightarrow \; \; \texttt{C} \; (\texttt{D}_{\lambda}, \; \texttt{D}_{\lambda} - \hat{\texttt{X}}_{2}) \; \; + \; \; \texttt{C} \; (\texttt{D}_{\lambda}, \; \texttt{D}_{\lambda} - \hat{\texttt{X}}_{12})$$

replacing the sequences

 $F((\hat{x}-\hat{x}_1)^+) \rightarrow F(\hat{x}^+) \rightarrow F(\hat{x}_1^+)$

and

$$F((\hat{x}_2 - \hat{x}_{12})^+) \rightarrow F(\hat{x}_2^+) \rightarrow F(\hat{x}_{12}^+)$$
.

But (3.1) applies to these, for, for example,

$$\mathtt{C}\left(\Im\left(\mathtt{D}_{\lambda}-\widehat{\mathbf{x}}_{1}\right),\;\left(\mathtt{D}_{\lambda}-\widehat{\mathbf{x}}\right)\;\;\mathsf{n}\;\;\Im\left(\mathtt{D}_{\lambda}-\widehat{\mathbf{x}}_{1}\right)\right)\;=\;\mathtt{C}\left(\Im\widehat{\mathbf{x}}_{1},\;\left(\Im\widehat{\mathbf{x}}\right)\;\mathsf{n}\;\left(\Im\widehat{\mathbf{x}}_{1}\right)\right),$$

which is of the form C(Y \times I, Y \times \hat{I}), and is therefore G-connected. Thus we have

where λ = 1+ ε and μ = 1- ε .

The following result is almost obvious.

Proposition (3.3) $C(D_F, S_F) = S^{\nabla}$.

For $S^V = D_{\epsilon}/S_{\epsilon}$, and there is an inclusion $D_{\epsilon}/S_{\epsilon} \rightarrow C(D_{\epsilon}, S_{\epsilon})$.

But the multiplicative monoid $\{\lambda \in \mathbb{R} \colon \lambda \geq 1\}$ acts on $C(D_{_{\rm F}},\ S_{_{\rm E}})$

by radial expansion, and for any ξ in $C(D_{_{\mathcal{E}}},\ S_{_{\mathcal{E}}})$ one has

 $\lambda \,\, \xi \,\, \epsilon \,\, D_{\varepsilon}/S_{\varepsilon} \,\, \, \text{for large} \,\, \lambda \,. \quad \text{If} \,\, C_{\lambda} \, = \,\, \{ \, \xi \,\, \epsilon \,\, C \, (D_{\varepsilon} \,, \,\, S_{\varepsilon}) \, \colon \,\, \lambda \,\, \xi \,\, \epsilon \,\, D_{\varepsilon}/S_{\varepsilon} \, \}$

then $D_{\varepsilon}/S_{\varepsilon}$ is a deformation retract of C_{λ} . But $U_{\lambda S_{1}} C_{\lambda} = C(D_{\varepsilon}, S_{\varepsilon})$,

so $\mathbf{D}_{\varepsilon}/\mathbf{S}_{\varepsilon}$ is also a deformation retract of $\mathbf{C}\left(\mathbf{D}_{\varepsilon},\mathbf{S}_{\varepsilon}\right)$.

If λ \geq μ \geq 0 are real numbers let us write $A_{\mu\lambda}$ for the half-open annulus D_{λ} - D_{μ} in V. The configuration space of an annulus can be thought of as an H-space under juxtaposition.

To make this more precise we define

$$C(A_{\star}) = \bigcup_{\lambda \geq 1} C(A_{1\lambda})$$
,

thought of as a subspace of C(V) \times R. The obvious composition $C(A_{1\lambda}) \times C(A_{1\nu}) + C(A_{1,\lambda\mu})$ makes $C(A_{\star})$ into a monoid. Choosing $\xi \in C(A_{\star})$ representing a cofinal component we define $C_{\infty}(A)$ as the limit of the embeddings

$$C(A_{+}) \stackrel{\times \xi}{\hookrightarrow} C(A_{+}) \stackrel{\times \xi}{\hookrightarrow} C(A_{+}) \stackrel{\xi}{\smile} \dots$$

(In other words we stabilize on the $\underline{\text{outside}}$ edge of the annulus.) We shall prove

Proposition (3.4) (a) BC(A_{\star}) = C(D_{λ} , S_{λ} o D_{μ}).

(b) There is a G-homotopy-equivalence $C_{\infty}(A) \rightarrow \Omega BC(A_{\star})$.

The theorem we want to prove follows from this. By analogy with $C(A_\star)$ let us define $C(D_\star)=U$ $C(D_\lambda)\subset C(V)\times\mathbb{R}.$ This admits an action of the monoid $C(A_\star)$, induced by $C(D_\lambda)\times C(A_{1\mu}) \to C(D_{\lambda\mu})\,.$ The space $C_\infty(V)$ of the introduction can be identified with $C_\infty(D)$, the limit of

Now combining (3.4) and (3.2) gives a G-homology-equivalence. $c_{\infty}(A) \rightarrow \Omega \text{Map}(S_1; \ S^{V}) = \text{Map}_{0}(D_{\lambda}/(S_{\lambda} \cup D_{\mu}); \ S^{V}) \,. \quad \text{But}$ $\Omega^{V} S^{V} = \text{Map}_{0}(D_{\lambda}/S_{\lambda}; \ S^{V}) \,\, \text{fits into a G-fibration sequence}$

$$\mathtt{Map}_{0}(\mathtt{D}_{\lambda}/\!\!(\mathtt{S}_{\lambda} \ \cup \ \mathtt{D}_{1}))\;;\; \mathtt{S}^{V}) \ \rightarrow \ \mathtt{Map}_{0}(\mathtt{D}_{\lambda}/\mathtt{S}_{\lambda};\; \mathtt{S}^{V}) \ \rightarrow \ \mathtt{Map}(\mathtt{D}_{\mu};\; \mathtt{S}^{V})\;.$$

We can compare this with the G-homology-fibration sequence

$$C_{\infty}(A) \rightarrow C_{\infty}(D) \rightarrow C(D_{1}, S_{1})$$

which arises as the limit of the sequences

more

- 17 -

$$C(A_{1\lambda}) \rightarrow C(D_{\lambda}) + C(D_{1}, S_{1})$$
.

(The last sequence is not a homotopy fibration. Each fibre is a copy of $C(A_{1\lambda})$ but when one filters the base in the usual way the attaching maps of the fibres when one passes from one layer to the next are given by adding a configuration on the inside of the annulus. Left translations in the monoid $C(A_{\star})$ are not homology equivalences. But after stabilization the fibres are $C_{\infty}(A)$. The attaching maps are given by the left action of $C(A_{\star})$, on $C_{\infty}(A)$, and are homology equivalences. I shall retrun to this point below.)

The maps we use to compare the sequences arises from the commutative diagram $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right)$

where $C = C(D_c, S_c)$, by stabilizing.

It remains to prove (3.4). Assertion (b) is just the group-completion theorem (1.5). Unfortunately it is not clear that the Pontrjagin ring $H_{\star}(C(A_{\star})^H)$ is commutative. But all that we need (cf. [5]) is that the localization $H_{\star}(C(A_{\star})^H)[\pi^{-1}]$, where $\pi=\pi_0(C(A_{\star})^H)$, can be formed by right fractions, i.e.

that when one forms the limit $\mathrm{H}_{\bigstar}\left(\mathrm{C}_{\infty}\left(\mathrm{A}\right)\right)$ of

$$H_{\star}(C(A_{\star})) \stackrel{5}{\sim} H_{\star}(C(A_{\star})) \stackrel{5}{\sim} \dots$$

where ξ generates π , using the <u>right</u> action of π , the <u>left</u> action of π on the limit is by automorphisms. This is the same as the assertion above that when $C_{\omega}(A)$ is formed by stabilizing on the outside of the annulus the operation of adding a configuration

on the inside of the annulus is a G-homology-equivalence. It is true because the homology of the n-particle configuration space $c_n(A)^H$ becomes independent of n when n is large. (In fact $c_n(A)^H = \prod\limits_{K \leq H} c_n(A_K/H)$, as we saw in the introduction, and the stability of ordinary configuration spaces is proved in [4].)

Turning to (3.4)(a), the monoid $C(A_\star)$ acts on $C(D_\star, D_\mu)$, where $0 < \mu < 1$, so one can form a space $C(D_\star, D_\mu)//C(A_\star)$. (cf. [10]. Here I am using the notation X//M for the space written X_M in [5].) This has a projection to $BC(A_\star)$, which is a G-homotopy-equivalence because $C(D_\star, D_\mu)$ is contractible. Now consider

$$C(A_{\star}) + C(D_{\star}, D_{u}) + C(D_{1}, S_{1} \cup D_{u})$$
.

This is not a fibration sequence, for although each fibre is homeomorphic to $C(A_{\star})$ the attaching maps when one passes from one layer of the base to the next are not equivalences. The monoid $C(A_{\star})$ acts on the sequence fibre wise, so one can form

 $C(D_{\star})//C(A_{\star}) \ + \ C(D_{\star},D_{\mu})//C(A_{\star}) \ + \ C(D_{1},\ S_{1} \cup D_{\mu}) \ .$ Now all the fibres are contractible, so the attaching maps are necessarily equivalences, and we have $C(D_{\star},\ D_{\mu})//C(A_{\star}) = C(D_{1},\ S_{1} \cup D_{\mu})$. That complete the proof.

- 19 -

§4 I-spaces with G-action

In [9] I defined a category Γ whose objects are the natural numbers $\underline{0}$, $\underline{1}$, $\underline{2}$, \ldots . It is equivalent to the dual of the category of finite pointed sets. A Γ -space is a contravariant functor $A:\Gamma\to (\text{spaces})$ such that the natural map $A(\underline{n})\to A(\underline{1})\times\ldots\times A(\underline{1})$ (induced by the n obvious maps $\underline{1}\to\underline{n}$ in Γ) is a homotopy equivalence for each n.

Clearly there is an equivariant generalization of this concept, obtained by replacing spaces by G-spaces, and requiring $A(\underline{n}) \to A(\underline{1})^n$ to be a G-homotopy-equivalence. There are many obvious examples, analogous to those of [9].

If A is a G-T-space, and X is a G-space with base-point one can construct a G-space X \otimes A. It is not hard to show that if each space A(\underline{n}) is a G-ANR and each degeneracy map $A(\underline{n}-\underline{1}) + A(\underline{n}) \text{ is a cofibration then the functor X} \mapsto X \otimes A$ has the property PI of §2, i.e. it takes G-triangulable spaces to G-ANR's. But in default of interesting applications I shall not prove that here. The property P2 is more interesting. We have

Proposition (4.1) If Y \rightarrow X is a G-fibration then the sequence

$$Y \otimes A \rightarrow X \otimes A \rightarrow (X/Y) \otimes A$$

is a G-fibration sequence providing Y is G-connected.

If the Γ -space A is the natural numbers N then . X \otimes A = SP $^{\infty}$ (X), so this provides an alternative proof of (2.1).

 $\frac{\text{Proof of (4.1)}}{\text{Bearing in mind the Puppe sequence Y + X } \rightarrow \text{X} \cup \text{CY } \rightarrow \text{SY}}$

(*) G must be allowed to act on the set n here, i.e. we require A(S) → Map(S; A(1)) to be a G-homotopy-equivalence for each finite G-set S.

<u>more</u>		

- 20 -

we shall prove first that there is a G-fibration sequence

X & A + (X U CY) & A + (SY) & A.

We observe that $X \cup CY \;\;$ and SY are the realizations of simplicial spaces

respectively. (Both simplicial spaces are completely degenerate above degree 1.) The map X \cup CY $\,\,$ + SY is induced by the

Prom (4.1) we can deduce the following result asserting that a G-F-space gives use to an equivariant spectrum by exactly the argument by which Theorem A was obtained from (2.1).

Proposition (4.3) (a) There is a G-homotopy-equivalence

$$S^{W} \otimes A \rightarrow \mathbb{R}^{V} (S^{V \oplus W} \otimes A)$$

whenever V and W are real G-modules such that $W^G \neq 0$.

(b) If $A(\underline{1})$ is group-like in the sense of

%1 then $A(\underline{1}) = S^0 \otimes A \ \simeq \ \Omega^V(S^V \otimes A) \quad \text{ for all } V.$

(c) If $A(\underline{1})$ satisfies the conditions (b)

and (c) preceding (1.5) there is a G-homology-equivalence

$$A(\underline{1})_{\infty} \rightarrow \Pi^{V}(S^{V} \otimes A)$$
.

- 22 -

1] A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math., 67 (1958), 239-281.

References

- 2] H. Hauschild, Allgemeine Lage und äquivariante Homotopie: Math. 2., 143 (1975), 155-164.
- 3] I.M. James and G.B. Segal, On equivariant homotopy type. Topology, <u>17</u> (1978).
- 4] D. McDuff, Configuration spaces of positive and negative particles. Topology, 14 (1975), 91-107.
- 5] D. McDuff and G. Segal, Homology fibrations and the "groupcompletion" theorem. Inventiones math., 31 (1976), 279-284.
- 6] J.J. O'Connor, Equivariant stable homotopy theory. Thesis, Oxford, 1975.
- [7] G.B. Segal, Configuration spaces and iterated loop-spaces. Inventiones math., 21 (1973), 213-221.
- [8] G.B. Segal, Equivariant stable homotopy theory. Proc. International Congress of Mathematicians, Nice 1970, Vol. 2, 59-63.
- [9] G.B. Segal, Categories and cohomology theories. Topology, $\underline{13}$ (1974), 293-312.
- 10] G.B. Segal, Classifying spaces related to foliations. Topology, to appear.
- 11] T. tom Dieck, The Burnside ring of a compact Lie group I. Math. Ann., $\underline{215}$ (1975), 235-250.
- 12] R. Woolfson, Hyper-P-spaces and hyperspectra. Quarterly J. Math., to appear.

St. Catherine's College, Oxford.