
EQUIVARIANT ALGEBRAIC TOPOLOGY

JAY SHAH

Abstract. This paper develops the introductory theory of equivariant al-
gebraic topology. We first define G-CW complexes and prove some basic

homotopy-theoretic results - Whitehead’s theorem, cellular and CW approx-

imation, and the Freudenthal suspension theorem. We then define ordinary
(Bredon) homology and cohomology theories and give an application to Smith

theory. Our treatment of this material closely follows that of [3] and [4].
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1. G-CW complexes

One of the first difficulties encountered in equivariant algebraic topology lies in
formulating the correct definition of a G-CW complex. Two questions immediately
arise:

(1) Should the cells to be attached remain discs, or are more general spaces
needed?

(2) What type of intrinsic action should cells possess?

Clearly some modification to the usual definition is needed, as attaching regular
discs Dn equipped with trivial G-action only constructs spaces where points have
isotropy group G. To construct spaces whose points have a variety of isotropy
groups, it is natural to consider attaching discs crossed with different orbits G/H.
This slight generalization turns out to be sufficient for many situations, as defin-
ing G-CW complexes in this way will recover the usual theorems - Whitehead’s
theorem, cellular approximation, and CW approximation. For technical (point-set)
reasons subgroup for us will mean closed subgroup, and all spaces will be compactly
generated and weak Hausdorff.

Definition 1.1. A pair of G-spaces (X, A) is a relative G-CW complex if X is
the colimit of G-spaces Xn with inclusions in : Xn → Xn+1, such that X0 is the
disjoint union of A and orbits G/H, and Xn is obtained from Xn−1 by attaching
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equivariant n-cells G/H×Dn via G-maps G/H×Sn−1, as in the following pushout
diagram: ∐

�∈IG/H� × Sn−1 //
� _

��

Xn−1

��∐
�∈IG/H� ×Dn // Xn.

Here Dn and Sn−1 have the trivial G-action. Letting A = ∅, we specialize to a
G-CW complex X. A G-CW complex (Y , B) is a subcomplex of (X, A) if Y is
a G-subspace of X, B is a closed G-subspace of A, and Yn = Y ∩ Xn in the CW
decomposition.

Remark 1.2. Quotients of G-CW complexes behave as expected, but there is a slight
subtlety with respect to products that results from having to define a cell structure
on the product of two orbits G/H×G/K. Algebraically we have G/H×G/K ∼= G×
G/H×K. If G is a compact Lie group, then this isomorphism is a homeomorphism,
as the map f : G×G→ G/H×G/K defined by f(g, g′) = (gH, g′K) is proper and
continuous, hence a quotient map in the category of compactly generated spaces.
Thus the product of two G-CW complexes is a (G×G)-CW complex. In the special
case that G is discrete, the product of orbits is a disjoint union of orbits, so the
product of two G-CW complexes is a G-CW complex.

Remark 1.3. Observe that G-maps � : G/H × Sn → X correspond bijectively to
maps �′ : Sn → XH by letting �′(x) = �(H,x) or conversely �(gH, x) = g�′(x).
One can often reduce the equivariant theory to the non-equivariant case by means
of this observation.

The following discussion will illustrate some of the strengths and shortcomings of
our chosen definition. Let G be a discrete group. We seek conditions under which
an ordinary CW complex X equipped with an action by G can be exhibited as a
G-CW complex with the same skeleta. Such an action should at the least respect
the cell structure: if E is a n-cell of X, then for every g ∈ G, gE should again be a
n-cell of X. Also, since we only consider attaching discs with trivial G-action, we
must demand that the given action on a cell be trivial if that action sends the cell
into itself. Note that in practice this condition can often be satisfied by a repeated
subdivision of X. Any action that satisfies these two conditions is termed cellular.

Proposition 1.4. Let X be a CW complex with a cellular action of G. Then X is
a G-CW complex with the same skeleta.

Proof. G acting cellularly on X ensures that the ordinary n-skeleton Xn is a G-
subspace of X. It follows that X is the colimit in the category of G-spaces of the
Xn with inclusion maps in−1 : Xn−1 → Xn. The proof will be complete once we
verify that Xn is obtained from Xn−1 by attaching equivariant n-cells. To this end,
let I be the discrete set indexing the n-cells of X and let  : I ×Dn → Xn be the
associated map of n-cells into X which restricts to the attaching map on I ×Sn−1.
Since G acts cellularly on X it acts on I, and we may decompose I into a disjoint
union of orbits I�, � ∈ J . Since G is discrete, for each � we have a homeomorphism
I� ∼= G/H� for H� = {ℎ∣ℎi� = i�} the isotropy group of some i� ∈ I�. Define
G-maps �� : G/H� × Dn → Xn−1 by ��(gi�, x) = g (i�, x); note that we need
the triviality condition on a cellular action to ensure ℎ��(i�, x) = ��(i�, x). These
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maps restrict on G/H�×Sn−1 to give attaching G-maps �′�. It remains to be seen
that the following diagram is a pushout in the category of G-spaces:∐

�∈JG/H� × Sn−1 //
� _

��

Xn−1

��∐
�∈JG/H� ×Dn // Xn.

But this is clear by the universal property: Xn−1 and G/H� × Dn are identified
with closed G-subspaces of Xn, so we can glue together given G-maps Xn−1 → Y
and G/H� ×Dn → Y to obtain a map Xn → Y that makes the required diagram
commute. □

The converse to this proposition also holds; namely, given a G-CW complex we
can exhibit it as an ordinary CW complex.

Proposition 1.5. Let X be a G-CW complex and H a subgroup of G. Then X as
an H-space is an H-CW complex with the same skeleta.

Proof. G remains discrete, so as in the previous proposition any G-orbit G/K may
be decomposed into the disjoint union of H-orbits. The same proof then carries
through. □

Returning to the second condition of a cellular action (triviality on self maps of
cells), we observe that there are occasions where this condition is too restrictive.
Namely, if one has a cellular action on a triangulated manifold, then one would
want the dual cell decomposition to admit the same cellular action, without having
to perform an arbitrary subdivision. That this fails to hold in general implies
the general failure of Poincaré duality, and recovering this property is one of the
motivations behind defining the more general notion of a G-CW complex alluded
to earlier. For more details see [3], chapter X.

2. Basic homotopy theory

It is our aim in this section to establish equivariant analogues of some fundamen-
tal results in homotopy theory - Whitehead’s theorem, cellular and CW approxi-
mation, and the Freudenthal suspension theorem. We will use the notation [X,Y ]G
for homotopy classes of G-maps from X to Y , preferring to omit the subscript if
the group G is clear from context.

For us an ordinary pair (X,A) is n-connected if �0(A) → �0(X) is a surjection
and �i(X,A, a) = 0 for 1 ≤ i ≤ n and each a ∈ A, and a map f : X → Y is a
n-equivalence if (Mf , X) is n-connected. Remark 1.3 suggests how to translate the
notions of weak equivalence and dimension to the equivariant setting. Let � be a
function from conjugacy classes of subgroups of G to ℕ ∪ {∞}.

Definition 2.1. A map e : Y → Z is a �-equivalence if eH : Y H → ZH is a
�(H)-equivalence for all H. If � is ∞-valued on all H then e is a weak equivalence.
A relative G-CW complex X has dimension � if its cells of orbit type G/H all have
dimension ≤ �(H).

The proof of the usual homotopy extension and lifting property is typical of how
one proves equivariant theorems by recourse to established nonequivariant results.
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Theorem 2.2 (HELP). Let A be a subcomplex of a G-CW complex X of dimension
� and let e : Y → Z be a �-equivalence. Suppose given maps g : A→ Y , ℎ : A×I →
Z, and f : X → Z such that eg = ℎi1 and fi = ℎi0 in the following diagram:

A

i

��

i0 // A× I

��

ℎ||xx
xx

xx
xx

x
A

i1oo

g
~~}}

}}
}}

}}

i

��

Z Y
eoo

X

f
??~~~~~~~ i0 // X × I

ℎ̃

bbF
F

F
F

F

X.
i1oo

g̃
``A

A
A

A

Then there exist maps g̃ and ℎ̃ that make the diagram commute.

Proof. We construct g̃ and ℎ̃ by first inducting on the dimension of skeleta and then
working cell by cell. Thus we may suppose X is obtained from A by attaching a cell
G/H ×Dn. Letting (X,A) = (G/H ×Dn, G/H ×Sn−1), we see that the assertion
is equivalent to a corresponding nonequivariant statement with e : Y H → ZH and
(X,A) = (Dn, Sn−1); our hypotheses are such that we can apply ordinary HELP
[2]. □

Theorem 2.3 (Whitehead). Let e : Y → Z be a �-equivalence and X be a G-CW
complex. Then e∗ : [X,Y ] → [X,Z] is a bijection if X has dimension less than �
and a surjection if X has dimension �.

Proof. For surjectivity, consider the pair (X, ∅). Given f a map in [X,Z], the lift
g̃ given by HELP is the desired element of [X,Y ]. For injectivity, consider the pair
(X × I,X × ∂I); note that as I has the trivial action, X × I is a G-CW complex
of one dimension higher. Given e∗� and e∗�

′ G-homotopic maps from X to Z, let
f be the homotopy, g be � and �′, and ℎ be given by ℎ(x, s, t) = f(x, s). Then �
and �′ are G-homotopic via g̃. □

Corollary 2.4. If e : Y → Z is a �-equivalence between G-CW complexes of
dimension less than �, then e is a G-homotopy equivalence. In particular, a weak
equivalence of G-CW complexes is a G-homotopy equivalence.

Proof. The assertion is a formal (category-theoretic) consequence of the bijection
established by Whitehead’s theorem. □

A map f between G-CW complexes (X,A) and (Y,B) is cellular if f(Xn) ⊂ Yn
for all n. We have the following cellular approximation result.

Theorem 2.5 (Cellular Approximation). Let (X,A) and (Y,B) be relative G-CW
complexes, (X ′, A′) be a subcomplex of (X,A), and f : (X,A)→ (Y,B) be a G-map
whose restriction to (X ′, A′) is cellular. Then f is G-homotopic rel X ′ ∪ A to a
cellular G-map g : (X,A)→ (Y,B).

Recall the idea of the proof in the nonequivariant setting (as given for example
in [2]): one proceeds inductively over skeleta, supposing given a cellular map g :
Xn → Yn and a homotopy ℎn : Xn×I → Yn such that (ℎn)0 = f ∣Xn , and extending
this to a cellular map and homotopy one dimension higher. The extension problem
is solved by an application of HELP once one establishes the n-connectivity of the
pair (X,Xn). The analogous condition in the equivariant context is n-connectivity



EQUIVARIANT ALGEBRAIC TOPOLOGY 5

of (XH , XH
n ) for all n and subgroups H of G. This will be proven as Lemma 2.7.

Assuming the lemma, the theorem follows as in the nonequivariant case; for the
sake of completion we recapitulate the proof.

Proof. To start the induction, note that 0-connectivity of (XH , XH
0 ) implies the

existence of a G-homotopy ℎ0 : X0 × I → Y rel X ′ ∪ A from f ∣X0
to a map

g0 : X0 → Y0. Now suppose given gn : Xn → Yn and ℎn : Xn × I → Y a G-
homotopy rel X ′ ∪A from f ∣Xn to gn. For an attaching map � : G/H × Sn → Xn

of a cell �̃ : G/H ×Dn+1 → X, we have the following diagram:

G/H × Sn

��

i0 // G/H × Sn × I

��

ℎn∘(�×id)

xxqqqqqqqqqqqq
G/H × Sni1oo

gn∘�xxqqqqqqqqqq

��

Y Yn+1
eoo

G/H ×Dn+1

f∘�̃
99sssssssssss
i0 // G/H ×Dn+1 × I

ℎn+1

ffM M M M M M

G/H ×Dn+1.
i1oo

gn+1

ffM
M

M
M

M

Here e : Yn+1 → Y is the natural inclusion, which by assumption is a (n + 1)-
equivalence, so an application of HELP gives the indicated maps. Considering
all such attaching maps of (n + 1)-cells yields the desired maps ℎn+1 and gn+1,
completing the induction. □

It remains to prove the stated connectivity result. This is an application of
homotopy excision, the statement of which we first record (as given in [5], pp.
133).

Theorem 2.6 (Blakers-Massey). Let X be the union of open subspaces A and B
with non-empty intersection C = A ∩B. Suppose that

�i(A,C, ∗) = 0, 0 < i < m, m ≥ 1

�i(B,C, ∗) = 0, 0 < i < n, n ≥ 1

for each basepoint ∗ ∈ C. Then the inclusion (B,C) → (X,A) induces a injection
on �i for 1 ≤ i < m+ n− 2 and a surjection on �i for 1 ≤ i ≤ m+ n− 2.

In particular, if (B,C) is n-connected and (X,A) is 0-connected, then (X,A) is
n-connected.

Lemma 2.7. For each G-CW complex X and subgroup H of G, the pair (XH , XH
n )

is n-connected.

Proof. It suffices to show that (XH
n+1, X

H
n ) is n-connected for all n; this clearly

implies (XH
n+k, X

H
n ) is n-connected for all k ≥ 1, and compactness of the sphere

allows us to pass to the colimit XH . We have the following pushout diagram:

∐
�∈I G/H

H
� × Sn //

��

XH
n

��∐
�∈I G/H

H
� ×Dn+1 // XH

n+1.
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The left inclusion is an n-equivalence since Sn → Dn+1 is an n-equivalence and
�i commutes with products. By excision, (XH

n+1, X
H
n ) is n-connected for n ≥ 1.

To check 0-connectivity of (XH , XH
0 ), note that any point of XH

1 lies in some
G/KH × D1, and thus is connected via a path to some point in G/KH × S0 ⊂
XH

0 . □

Corollary 2.8. Let X and Y be G-CW complexes. Then any G-map f : X → Y
is homotopic to a cellular map, and any two homotopic cellular maps are cellularly
homotopic.

Proof. The first statement is clear. For the second, given such a homotopy ℎ :
X × I → Y which is cellular on the subcomplex X × ∂I, cellular approximation
yields the desired cellular homotopy. □

Now that cellular approximation is in hand we may prove CW approximation.

Theorem 2.9 (CW Approximation). For any G-space X, there is a G-CW complex
ΓX and a weak equivalence  : ΓX → X. For a G-map f : X → Y and a CW
approximation ′ : ΓY → Y , there is a G-map Γf : ΓX → ΓY , unique up to G-
homotopy, such that ′ ∘Γf ⋍ f ∘. In particular, ΓX is unique up to G-homotopy
equivalence.

Proof. We shall obtain ΓX as the colimit of a sequence of G-CW complexes Yi, i ≥
0, and  will be induced by maps i : Yi → X such that i+1∣Yi = i. In imitation
of the proof of ordinary CW approximation, 0 will be surjective on all homotopy
groups, and the kernels of maps between successively higher homotopy groups will
be killed off by explicitly attaching those homotopies to the G-CW complex. We
choose representative maps f : Sn → XH for each element of �n(XH , x) and
construct Y0 as the disjoint union of spaces G/H × Sn indexed by the maps f .
Then 0 is defined on each component of Y0 by its index f . Inductively, suppose
we have Yn and n such that the induced map on �i(Y

H
n , y) is surjective for all i

and bijective for i < n. Choose representative maps (f, g) for each pair of elements
of �n(Y Hn , y) that have equal image under (n)∗; by cellular approximation we
may suppose the images of f and g lie in the n-skeleton of Yn. Construct Yn+1

by attaching G/H+ ∧ Sn ∧ I+ along each (f, g), and define n+1 on the new cells
using a homotopy from (n)∗(f) to (n)∗(g). Note that G/H+ ∧ Sn ∧ I+ is indeed
a G-CW complex as collapsing the line through the basepoint forms a quotient
complex. It follows Yn+1 is a G-CW complex which contains Yn as a subcomplex.
Clearly n+1 still induces a surjection on all homotopy groups, and as we have not
modified the n-skeleton when passing to Yn+1, n+1 still induces a bijection up to
dimension n − 1. By construction, n+1 also induces a bijection in dimension n,
and the induction is complete. Since �n commutes with colimits, passage to the
colimit gives a weak equivalence  : ΓX → X. The second statement is a corollary
of Whitehead’s theorem (Theorem 2.3). □

We conclude this section with a result whose proof is not quite as immediate -
an equivariant version of the Freudenthal suspension theorem. Here all spaces in
sight are based. The classical statement reads as follows (as given in [3], pp. 116).

Theorem 2.10. Let Y be an n-connected space, n ≥ 1, and let X be a finite
CW complex. Then the suspension map Σ : [X,Y ] → [ΣX,ΣY ] is surjective if
dim X ≤ 2n+ 1 and bijective if dim X ≤ 2n.
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In providing an equivariant generalization of this theorem, it is appropriate to
consider spheres with a variety of G-actions. Let G be a compact Lie group and let
V be a finite-dimensional real representation of G. As a space V = ℝn, and the G-
action on V is specified by a map of Lie groups � : G→ O(V ). Let SV = V ∪ {∞}
be the one-point compactification of V with basepoint∞, on which the G-action is
trivial. Note that we recover Sn from the trivial n-dimensional representation of G.
For a based G-space X, define ΣVX = X ∧ SV and ΩVX = [SV , X]. Here ΩVX
has G-action (g ⋅f)(x) = gf(g−1x). We have the adjunction [ΣVX,Y ] ∼= [X,ΩV Y ].
This gives the following commutative diagram:

[X,Y ]
ΣV

//

�∗ &&MMMMMMMMMM [ΣVX,ΣV Y ]

∼=
��

[X,ΩV ΣV Y ].

Here � is the unit of the adjunction. Whitehead’s theorem then reduces the
problem of when ΣV is an isomorphism to a question about the connectivity of the
map �. Let c(X) denote the connectivity of a space X, where c(X) = −1 if X is
not path-connected.

Theorem 2.11 (Freudenthal Suspension). The map � : Y → ΩV ΣV Y is a �-
equivalence if � satisfies the following two conditions:

(1) �(H) ≤ 2c(Y H) + 1 for all subgroups H with dim V H > 0.
(2) �(H) ≤ c(Y K) for all pairs of subgroups K ⊂ H with dim V K > dim V H .

Proof. Consider the following diagram,

�n(Y H)
(�H)∗

//

∼=
��

�n((ΩV ΣV Y )H)

∼=
��

[Sn, Y ]H �∗
//

ΣV
''OOOOOOOOOOOO [Sn,ΩV ΣV Y ]H

∼=
��

[Sn+V ,ΣV Y ]H .

We see that �H is a �(H)-equivalence if ΣV is bijective for n < �(H) and
surjective as well for n = �(H). The following diagram indicates how to reduce this
problem to one where the classical Freudenthal suspension theorem can be applied:

[Sn, Y ]H
ΣV

//

R1
∼=

��

[Sn+V ,ΣV Y ]H

R2

��
[Sn, Y H ]

ΣV H

// [Sn+V H

,ΣV
H

Y H ].

Here R1 and R2 are the restrictions toH-fixed point sets. Our hypothesis �(H) ≤
2c(Y H) + 1 implies that ΣV

H

is a �(H)-equivalence by the classical Freudenthal
suspension theorem. To lift this result to ΣV it suffices to show that R2 is injective
for n ≤ �(H). Thus suppose that g : Sn+V → ΣV Y is a H-map such that R2(g) =
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0. Let i : Sn+V H → Sn+V be the inclusion and Ci the mapping cone. Then a
nullhomotopy of R2(g) gives a map ℎ : Ci → ΣV Y , where ℎ = g on the base. To
obtain a nullhomotopy of g we want to extend ℎ to the cone CSn+V . Recall the
following fact from obstruction theory ([5], pp. 205):

∙ Given a map ℎ : A→ Y and a space X obtained from A by attaching cells
along maps ��, there exists an extension ℎ̃ : X → Y of ℎ iff the maps ℎ��
are nullhomotopic.

CSn+V is obtained from Ci by attaching cells of the form H/K ×Dm+1, K ⊂ H,
dim V K > dim V H , m ≤ n+dim V K (accounting for the other orbit types in Sn+V ).
By hypothesis, n ≤ �(H) ≤ c(Y K), so �m((ΣV Y )K) = 0 for m ≤ n+ dim V K . By

the fact, we have the desired extension ℎ̃ : CSn+V → ΣV Y . □

Note that the second condition is indeed necessary. For example, let G = ℤ/2,
n ≥ 3, and V be the real one-dimensional sign representation of G. One has the
following computation ([3], pp. 119):

[Sn, Sn] = ℤ [Sn+V , Sn+V ] = ℤ2

[Sn+V ,Σn+VG+] = ℤ2 [Sn+2V ,Σn+2VG+] = ℤ.

Dropping the second condition from the theorem would require the maps ΣV :
[Sn, Sn] → [Sn+V , Sn+V ] and ΣV : [Sn+V ,Σn+VG+] → [Sn+2V ,Σn+2VG+] to be
isomorphisms, a contradiction.

3. Ordinary homology and cohomology

We begin with the equivariant Eilenberg-Steenrod axioms for a homology theory
on G-CW pairs. Since orbits are thought of as points in the definition of a G-CW
complex, we see that the dimension axiom should be expanded to now specify initial
values on all orbits G/H (for instance, this is necessary if our homology theory is
to be unique). We thus must conceive of homology taking coefficients in some sort
of generalized abelian group. Let G denote the category of orbit G-spaces with G-
maps between them, and let ℎG denote the associated homotopy category. Define
a covariant coefficient system N to be a functor from ℎG to Ab and a contravariant
coefficient system M to be a functor from ℎGop to Ab.

Definition 3.1. Let N be a covariant coefficient system. An ordinary, or Bredon,
equivariant homology theory with coefficients inN consists of functorsHG

n (X,A;N)
for each integer n from the homotopy category of G-CW pairs to the category of
abelian groups together with natural transformations ∂ : HG

n (X,A;N)→ HG
n−1(A;N),

which satisfy the following axioms. Here HG
n (X;N) is shorthand for HG

n (X, ∅;N).

∙ Dimension: For each orbit space G/H, HG
0 (G/H;N) = N(G/H) and

HG
n (G/H;N) = 0 for all other integers.

∙ Exactness: The following sequence is exact:

... −→ HG
n (A;N) −→ HG

n (X;N) −→ HG
n (X,A;N)

∂−→ HG
n−1(A;N) −→ ....

∙ Excision: If X is the union of subcomplexes A and B, then the inclu-
sion (A,A ∩ B) → (X,B) induces an isomorphism HG

∗ (A,A ∩ B;N) ∼=
HG
∗ (X,B;N).
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∙ Additivity: If (X,A) is the disjoint union of a set of pairs (Xi, Ai), then the
inclusions (Xi, Ai) → (X,A) induce an isomorphism

∑
iH

G
∗ (Xi, Ai;N) ∼=

HG
∗ (X,A;N).

Axioms for cohomology are dual; the notation is H∗G(X,A;M), where M is a
contravariant coefficient system. Given a homology theory on G-CW pairs we ob-
tain uniquely a homology theory on pairs of G-spaces by mandating in addition
that a weak equivalence between spaces induce an isomorphism on homology; we
have the expected results on CW approximation of pairs and excisive triads allow-
ing us to define HG

∗ (X,A;N) = HG
∗ (ΓX,ΓA;N).

We turn towards the construction of cellular homology and cohomology. Let X
be a G-CW complex. One naturally obtains a functor from ℎGop to ℎTop, the
homotopy category of topological spaces, by sending G/H to XH . Then given
a G-map f : G/H → G/K, f(eH) = gK, we have a map F : XK → XH de-
fined by F (x) = gx. In general we define Hn(X) to be the composition of this
functor with Hn. Hn(X,Y ) is defined similarly. Now define a chain complex of
contravariant coefficient systems Cn(X) = Hn(Xn, Xn−1;ℤ). The boundary map
d : Cn(X) → Cn−1(X) is given objectwise by the connecting homomorphism of

the triple (XH
n , X

H
n−1, X

H
n−2). A similar construction works for the reduced chain

complex C̃∗(X).

In analogy to the classical construction of homology we wish to tensor this chain
complex on the right by a coefficient system. The correct notion of a tensor prod-
uct of coefficient systems (or of categories in general) is that of a coend. Given
a contravariant coefficient system M and covariant N , define the Abelian group
M ⊗ N to be

∑
M(G/H) ⊗ N(G/H)/ ≈, where (f∗m,n) ≈ (m, f∗n) for a map

f : G/H → G/K and elements m ∈ M(G/K) and n ∈ N(G/H). Note that this
construction yields the familiar adjunction Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)),
where A is contravariant, C is covariant, and B is a ”ℤ − ℤ bimodule” functor
ℎG ×ℎGop → Ab. Recovering this property suggests that we indeed have the right
generalization of tensor product. Now define the chain complex of abelian groups
CGn (X;N) = Cn(X) ⊗ N with boundary map ∂ = d ⊗ 1. The homology of this
chain complex is HG

∗ (X;N).

To define cohomology with coefficients in a contravariant coefficient system M ,
define the cochain complex CnG(X;M) = Hom(Cn(X),M) with coboundary map
� = Hom(d, id). Note Hom(M ′,M) forms an abelian group, with addition defined
objectwise, so we have a cochain complex of abelian groups. The cohomology of
this cochain complex is H∗G(X;M).

It remains to verify the axioms. For simplicity we refer only to cohomology.
Let the relative chain complex C∗(X,A) equal C̃∗(X/A). That cohomology is a
functor on the homotopy category of G-CW pairs, with homotopic maps inducing
an isomorphism on cohomology, follows from the objectwise construction in terms
of nonequivariant homology. The exactness axiom will follow once we show that
C∗(X) is a projective object in the abelian category of coefficient systems - that
is, Hom(C∗(X),−) preserves exact sequences. The additivity and excision axioms
of nonequivariant cohomology imply that the chain complex C∗(X) is a direct sum
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of coefficient systems of the form H̃n(G/K+ ∧ Sn) ∼= H0(G/K). Let F denote the
free abelian group functor on sets. We have H0(G/K)(G/H) = F [G/H,G/K]G.
A Yoneda lemma-style argument then shows Hom(H0(G/K),M) ∼= M(G/K) via
the assignment � 7→ �(1G/K). Similarly H0(G/K)⊗N ∼= N(G/K) (every element
of the sum is equivalent to one in H0(G/K)(G/K) ⊗ N(G/K)). This gives the
dimension and exactness axioms. Additivity and excision are clear, so we have
indeed constructed an equivariant cohomology theory. Finally, note that uniqueness
of cohomology follows much as it does in the nonequivariant case, the key point
being still the axiomatic determination of the cohomology of the wedge Xn/Xn−1.

4. Smith theory

We apply Bredon cohomology to prove a classical result of P. A. Smith relating
the cohomology of a space with that of its fixed points. All coefficient systems will
be contravariant. Let G be a finite p-group and let X be a finite dimensional G-CW
complex such that H∗(X;Fp) is a finite dimensional vector space. Unless otherwise
specified, cohomology will be taken to have coefficients in Fp.

Theorem 4.1. If X is a mod p cohomology n-sphere, then XG is empty or is a
mod p cohomology m-sphere for some m ≤ n. If p is odd, then n−m is even and
XG is non-empty if n is even.

Proof. Note that by induction on the order of G we may as well suppose that
G = ℤp, since XG = (XH)G/H for H a non-trivial normal subgroup of G. Let
FX = X/XG. Define coefficient systems L, M , and N so that on objects,

L(G) = Fp L(∗) = 0
M(G) = Fp[G] M(∗) = Fp
N(G) = 0 N(∗) = Fp.

Since an equivariant cohomology theory is uniquely specified by its value on
orbits, Hq

G(X;L) ∼= H̃q(FX/G), Hq
G(X;M) ∼= Hq(X), and Hq

G(X;N) ∼= Hq(XG).
Let I be the augmentation ideal of the group ring Fp[G]. We have short exact
sequences of coefficient systems

0 −→ I −→M −→ L⊕N −→ 0

and
0 −→ L −→M −→ I ⊕N −→ 0.

Here I is notation for the coefficient system whose value on G is I and whose
value on * is zero. Recall that exactness is defined objectwise. On *, exactness is
obvious. For exactness on G, note that 0 −→ I −→ Fp[G] −→ Fp −→ 0 is split
short exact: by definition I is the kernel of the augmentation map � : Fp[G] → Fp
given by summing the coefficients, and we have the map g : Fp → Fp[G] defined
by g(x) = xe, such that � ∘ g = id. By the exactness axiom of an equivariant
cohomology theory, we have long exact sequences

... −→ Hq
G(X; I) −→ Hq(X) −→ H̃q(FX/G)⊕Hq(XG) −→ Hq+1

G (X; I) −→ ...

and

... −→ H̃q(FX/G) −→ Hq(X) −→ Hq
G(X; I)⊕Hq(XG) −→ H̃q+1

G (FX/G) −→ ....
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The purpose behind deriving these long exact sequences is that they give in-
equalities on the cohomological dimensions of spaces involved. Let

aq = dim H̃q(FX/G), āq = dimHq
G(X; I), bq = dimHq(X), cq = dimHq(XG).

Then aq + cq ≤ bq + āq+1 and āq + cq ≤ bq + aq+1. These inequalities combine
to yield

aq + cq + cq+1 + ...+ cq+r ≤ bq + bq+1 + ...+ bq+r + ...+ aq+r+1.

Here r is even. Letting q = 0 we see
∑
cq ≤

∑
bq. In particular, in the setup of

the theorem
∑
bq = 2, so

∑
cq ≤ 2. Also, letting q = n+1 we see dimHi(XG) = 0

for i ≥ n+ 1. Now suppose we had the Euler characteristic formula

(4.2) �(X) = �(XG) + p(�(FX/G)− 1).

Then �(X) ≡ �(XG) mod p, so
∑
cq ∕= 1 and XG is nonempty or a mod p

cohomology m-sphere for m ≤ n. If p > 2, this congruence also implies n −m is
even and consequently that XG is nonempty if n is even, concluding the proof.

Let us now prove (4.2). We have the following short exact sequences of coefficient
systems:

0 −→ In+1 −→ In −→ L −→ 0, 1 ≤ n ≤ p− 1.

In is notation for the coefficient system whose value on G is In and whose value
on * is zero. Exactness at * is obvious. To see exactness at G, note that In is a
principal ideal generated by (�−e)n, where � is a generator of ℤp. The desired map
f : In → Fp is given by f((� − e)n) = � and extended by f((

∑
rigi)(� − e)n) =

(
∑
ri)� and f(x + y) = f(x) + f(y). This makes f a Fp-module homomorphism

with kernel In+1. From the various long exact sequences we have the equalities

�(X) = �(H∗G(X; I)) + �(FX/G)− 1 + �(XG)

and

�(H∗G(X; In)) = �(H∗G(X; In+1)) + �(FX/G)− 1.

Using that Ip−1 = L, inductively we get (4.2).
□

To conclude, we remark that with a bit more algebra one can actually prove
stronger inequalities than those given above; for details see [1].
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