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The goal of this paper is to prove the Atiyah-Jänich Theorem which links two fundamental
areas of mathematics: functional analysis and algebraic topology. This paper will be divided
into two parts: in the first part we will give the necessary analytic background culminating
with the statement of The Atiyah-Jänich Theorem; in the second part we will prove this
theorem and then give an application to homotopy theory.

1 Analytic Background

The central concepts in this section are the notions of Fredholm operators and the index of
Fredholm operators. Before delving into rigorous mathematics, we begin with some moti-
vating remarks inspired from [3].

A fundamental problem in mathematics is to solve equations of the form Tf = g, where T
is a linear map, g is a known quantity and f is an unkown quantity. For example, suppose
r ∈ Cn is a vector and A ∈Mn(C) is a matrix. In linear algebra, one is interested in solving
the equation Ax = r. More generally, if T : V → W is a linear map between vector spaces
and w ∈ W , the problem is then to solve the equation Tv = w. A slightly more interesting
example comes from the theory of differential equations:

Example 1.1 (The Heat Equation). Let U ⊆ Rn be an open subset and let ∆ = ∂2

∂x21
+ · · ·+

∂2

∂x2n
be the Laplacian. Let I ⊆ R be an interval. A function f : Rn × I → R is said to be a

solution of the heat equation if:
∂f

∂t
= ∆f.

Hence, the heat equation reduces to solving the equation(
∆− ∂

∂t

)
f = 0.

In general, many differential equations can be written in the form Tf = g, where T is a
suitable differential operator.

When we are given an equation of the form Tf = g, we may ask the following two questions:
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• Does there exist a solution to this equation ? (Existence)

• How unique is the solution to this equation ? (Uniqueness)

It turns out that in general answering these questions in isolation is difficult. However,
there is a quantity called the index, that gives us information about both the existence and
uniqueness of the solution simaltaneously. We now give a very rough template for defining
an index in practice.

As before, suppose we are interested in solving the equation Tf = g. In this situation, there
will often be a number M measuring the existence of solutions to this equation and a number
N measuring the uniqueness of solutions to this equation. We then define the index of T to
be

ind T := N −M.

Ideally, we would like to be able to compute M and N separately. However, in practice this
turns out to be quite difficult. On the other hand, while the index gives us less information
than the numbers M and N , computing the index is often easier. We now give a simple
example of the above.

Let V and W be finite dimensional vector spaces and let T : V → W be a linear map. Given
a fixed w ∈ W , suppose we want to solve Tv = w for v ∈ V . Then asking about existence
of solutions to Tv = w is tantamount to asking about the surjectivity of T . A number that
measures the surjectivity of T is dim(coker T ). Similarly, asking about the uniqueness of
solutions to Tv = w is tantamount to asking about the injectivity of T and a number that
measures the injectivity of T is dim(ker T ). Thus, following the template above, we are led
to define

ind T := dim(ker T )− dim(coker T ).

However, note that we have the following proposition:

Proposition 1.2. Let T : V → W be a linear map between finite dimensional vector spaces.
Then

ind T = dim V − dim W

Proof. Note that

ind T = dim(ker T )− dim(coker T )

= dim(ker T ) + dim(im T )− dim(W )

= dim V − dim W (by the rank-nullity theorem).

Thus, the index of T doesn’t depend on T ; it just depends on the dimensions of V and W . To
get more interesting results, we are naturally led to instead considering infinite dimensional
vector spaces and we thus enter the realm of functional analysis. We begin by recalling the
most studied object in this branch of mathematics: the notion of a Hilbert space.
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Definition 1.3 (Hilbert space). A C-vector space V is called an inner product space if it is
equipped with a map 〈·, ·〉 : V × V → C such that for all x, y ∈ V and c ∈ C

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• 〈cx, y〉 = c〈x, y〉

• 〈x, y〉 = 〈x, y〉

• 〈x, x〉 > 0 for all x 6= 0.

Note that an inner product gives rise to a norm by defining ||x|| =
√
〈x, x〉 and this norm

gives rise to a metric by defining d(x, y) = ||x − y||. A inner product space H which is
complete with respect to the metric induced by the inner product is called a Hilbert space.

For instance, the Euclidean space Cn equipped with the inner product

〈(x1, . . . , xn), (y1, . . . , yn)〉 := x1y1 + · · ·+ xnyn

is a Hilbert space.

Definition 1.4. A Hilbert space H is called separable if it has a countable orthonormal
basis.

Example 1.5 (l2-space). The space l2 := {(xn)∞n=1 : xn ∈ C,
∑∞

i=1 |xn|2 < ∞} equipped
with the inner product

〈(x1, x2, · · · ), (y1, y2, · · · )〉 :=
∞∑
i=1

xiyi

is a separable Hilbert space. The unit vectors ei := (0, 0, · · · , 1, 0, 0, · · · ) form a countable
orthonormal basis.

A standard but surprising result from functional analysis is the following:

Theorem 1.6. Any two infinite dimensional separable Hilbert spaces are isometrically iso-
morphic.

For the rest of this paper, we fix an infinite dimensional separable Hilbert space H and by
the above theorem, we may assume that H = l2. An operator T : H → H is called bounded
if there exists a C ∈ R>0 such that sup||x||=1 ||T (x)|| ≤ C. It is a fact from functional
analysis that an operator is bounded if and only if it is continuous. The space of all bounded
operators on H is denoted by B.

Definition 1.7 (Fredholm operators). A operator T ∈ B is called a Fredholm operator if
ker T and coker T are finite dimensional vector spaces. Let F denote the set of all Fredholm
operators on H.

We are now equipped to define the notion of an index in the infinite-dimensional situation.
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Definition 1.8 (Fredholm index). If T ∈ F is a Fredholm operator, the integer

ind T := dim (ker T )− dim (coker T ) ∈ Z

is called the index of T .

Example 1.9 (Backward and Forward shifting operators). Consider the backward shifting
operator

T : H → H, (x1, x2, x3, . . .) 7→ (x2, x3, x4, . . .)

Then dim (ker T ) = 1 and dim (coker T ) = 0 and so ind (T ) = 1 − 0 = 1. Instead now
consider the foward shifting operator

T ′ : H → H, (x1, x2, x3, . . .) 7→ (0, x1, x2, x3, . . .).

Then dim (ker T ′) = 0 and dim (coker T ′) = 1 and so ind (T ′) = 0− 1 = −1.

Proposition 1.10. The index map F → Z given by T 7→ ind T is surjective.

Proof. For any k ∈ N, we can generalize the previous example to consider Fredholm operators
which shift backward k times and Fredholm operators which shift forward k times; these
operators have index k and −k respectively.

Proposition 1.11 (Algebraic Properties of Fredholm operators). Let T : H → H and
T ′ : H → H be Fredholm operators.

• We have that T ′ ◦ T is Fredholm and

ind (T ′ ◦ T ) = ind T + ind T ′

• Recall that the adjoint T ∗ : H → H is the unique map that satisfies 〈Tx, y〉 = 〈x, T ∗y〉
for all x, y ∈ H.

Then T ∗ is Fredholm and
ind T ∗ = −ind T.

Proof. The idea of the proof is to use the Snake Lemma; for more details see
[4, Lemma 2.1.6] .

We now proceed to explore the topological properties of Fredholm operators. Note that B
becomes a metric space under the operator norm: ||T || = sup||x||=1 ||T (x)|| and thus F also
inherits the same metric space space structure.

Lemma 1.12. If T ∈ B× is invertible, then B× contains an open ball around around T of
radius 1

||T || . In particular, the set of invertible elements B× is open in B.

Proof. See [2, Proposition 2.11].
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Theorem 1.13. The index map F → Z given by T 7→ ind T is continuous, where Z is
equipped with the discrete topology.

Proof. Let T ∈ F . Let J : (ker T )⊥ → H denote the inclusion map. Since coker J ∼= ker T ,
we have that

ind J = dim ker J − dim coker J = 0− dim ker T = −dim ker T.

Let Q : H → im T be the projection map. Since ker Q ∼= coker T , we have that

ind Q = dim ker J − dim coker J = dim coker T − 0 = dim coker T.

Thus,
ind QTJ = ind Q+ ind T + ind J = 0. (1)

Now, by basic functional analysis we have that QTJ : (ker T )⊥ → im T is invertible. Let
ε := 1/||(QTJ)−1|| and pick T ′ ∈ F such that ||T − T ′|| < ε

||Q||·||J || . It thus follows that

||QTJ −QT ′J || = ||Q(T − T ′)J || ≤ ||Q|| · ||T − T ′|| · ||J || < ε.

Hence, Lemma 1.12 give us that QT ′J is invertible and so

ind QT ′J = ind Q+ ind T ′ + ind J = 0. (2)

Comparing equations (1) and (2) yields that ind T = ind T ′. Hence, the index map is locally
constant and therefore continuous.

An immediate consequence of this theorem is that the index is constant on the path-
connected components of F .
In fact, the converse is also true: any two Fredholm operators having equal index are in the
same path-connected component (see [2, Theorem 3.18] for more details). Thus,

Theorem 1.14. The Fredholm index induces a bijection:

{path-connected components of F} → Z.

Proof. The remarks before the theorem imply that the map is well-defined and injective and
we have already seen in Proposition 1.10 that this map is surjective.

We now try to interpret Theorem 1.14 from a topological point of view. Firstly, we note
that K(pt) = Z. Next, if X is a topological space, let [X,F ] denote the homotopy classes
of maps X → F . Then

[pt,F ] ∼= {path-connected components of F}
. Hence, from this point of view, we can write Theorem 1.14 as

[pt,F ] ∼= K(pt).

The Atiyah-Jänich Theorem is far reaching generalization of this fact:

Theorem 1.15. If X is any compact Hausdorff topological space, then then there is an index
map

ind: [X,F ]→ K(X)

and this map is an isomorphism of monoids (hence groups).
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2 The connection with K-theory

In this section, our goal will be to prove the Atiyah-Jänich Theorem. As a first step, we will
need to construct an index map [X,F ]→ K(X). For each T : X → F , write Tx := T (x) i.e.
for each x ∈ X, Tx is linear map H → H. A natural idea is to form⊔

x∈X

ker Tx &
⊔
x∈X

coker Tx

and define the index map[⊔
x∈X

ker Tx

]
−

[⊔
x∈X

coker Tx

]
∈ K(X).

However, this construction will not give us a vector bundle as the following example shows.

Example 2.1 (Dimension Jumping). For instance, let X = [−1, 1] and H = C and suppose
for each x ∈ X we have a linear operator

Tx : H → H, h 7→ x · h.

Then {
dim ker Tx = 1 if x = 0

dim ker Tx = 0 if x 6= 0

and {
dim coker Tx = 1 if x = 0

dim coker Tx = 0 if x 6= 0

The solution to avoid this problem is to add dimensions avoid the jump. Before giving the
construction of this solution, we explain the basic idea. Suppose T : H → H is a Fredholm
operator. Then ker T ∼= Cd. Define a new Fredholm operator

T̃ : H = ker T ⊕ (ker T )⊥ → Cd ⊕H.

Note that ker T̃ is trivial and

cokerT̃ ∼=
Cd ⊕H

Cd ⊕ im T
∼= coker T.

Thus,
ind T = d− dim coker T = d− coker T̃

and also note that ind T = d+ind T̃ . In other words, we took a Fredholm operator and added
some extra dimensions to the codomain to get a new injective Fredholm operator. Moreover,
we can recover the index of the Fredholm operator from the new Fredholm operator.
Now suppose T : X → F is family of Fredholm operators. We will create a new family of
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injective operators T̃ : X → F by adding extra dimensions to the codomain. By compactness
of X, we will do this by adding only a finite number of dimensions. It will turn out that by
forcing the kernel to be trivial, the family of cokernels of T̃ becomes a vector bundle. As
before, we can recover the index of T from T̃ and our generalized index map will be of the
form

[X × Cd]− [coker T̃ ].

We now proceed to make the above ideas precise by proving the following two lemmas.
Firstly, as a notational remark, we mention that B(H1, H2) will denote the set of bounded
linear operators between two Hilbert spaces H1 and H2.

Lemma 2.2. Let T ∈ F and let V be a closed subspace of finite codimension such that
V ∩ ker T = {0}. Then H/T (V ) is finite dimensionsal, T (V ) is closed in H and H/T (V ) is
isomorphic to a subspace W of H.

There exists an open neighbourhood U of B such that for all S ∈ U ,

1. V ∩ ker S = 0.

2. S(V ) is closed in H.

3. The subspace W ⊆ H projects isomorphically onto H/S(V ).

4.
⋃
S∈U H/S(V ) topologized as a quotient space of U ×H is a trivial vector bundle over

U .

Proof. Note that H/V and coker T are finite dimensional by assumption and that T induces
a surjective map H/V → T (H)/T (V ). Thus, T (H)/T (V ) is finite dimensional as well. Thus,
from the exact sequence

0→ T (H)/T (V )→ H/T (V )→ coker T → 0

we conclude that H/T (V ) is finite dimensional as well. It is a fact from functional analysis
that Fredholm operators map closed subspaces to closed subspaces (see [1, page 154]) and
hence T (V ) is closed. Thus, H = T (V ) ⊕ T (V )⊥ and setting W := T (V )⊥ shows that
H/T (V ) ∼= W is isomorphic to a subspace of H.

For each S ∈ B, define a continuous linear operator

φS : V ⊕W → H

by φS(v, w) := S(v) + w. We thus get a map

φ : B → B(V ⊕W,H), S 7→ φS.

Since φT is an isomorphism and since isomorphisms in B(V ⊕W,H) form an open set by
Lemma 1.12, there is a neighbourhood U of T in B such that φS is an isomorphism for all
S ∈ U . It is now straighforward to check that conditions 1-4 in the lemma are satisfied.
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Lemma 2.3. Let X be a compact topological space and T : X → F be a continuous map.
Then there exists a closed subspace V ⊆ H of finite codimension so that:

(i) V ∩ ker Tx = {0} for any x ∈ X
(ii) The family of vector spaces

⋃
x∈X H/Tx(V ), toplogized as a quotient space of X ×H, is

a vector bundle over X.

Proof. For each x ∈ X, take Vx = (ker Tx)
⊥. Then Tx maps Vx isomorphically onto Tx(H).

By Lemma 2.2, there exists a neighbourhood Ux of Tx in B such that for each S ∈ Ux,
Vx ∩ ker S = {0}. Let Ux = T−1(Ux ∩ F). Thus, if y ∈ Ux, then Vx ∩ ker Ty = {0}. Since X
is compact, we can choose a finite covering Ux1 , Ux2 , . . . , Uxk of X. Hence, by construction,

V :=
⋂k
j=1 Vxj satisfies (i). By Lemma 2.2, we have that

⋃
yH/Ty(V ) is locally trivial when

y varies in a neighbourhood of x and so (ii) holds.

The vector bundle
⋃
x∈X H/Tx(V ) appearing in Lemma 2.3 will be denoted by H/T (V ).

Definition 2.4 (Index). The index of a continuous family T : X → F is defined by

ind T = [H/V ]− [H/T (V )] ∈ K(X),

where V is chosen as in the previous lemma and H/V denotes the trivial bundle of X×H/V .

Example 2.5. Let X = pt. Then T is a single Fredholm operator H → H. We can choose
V = (ker T )⊥. Then H/V is the trivial bundle with fiber ker T and H/T (V ) is the trivial
bundle with fiber coker T . Thus, ind T = [ker T ]− [coker T ] and if we identify K(pt) ∼= Z,
then we recover our previous concept of an index.

Remark 2.6. The definition of the index is independent of the choice of V satisfying con-
dition (i) in Lemma 2.3. If W is another choice, note that V ∩W is also a choice and so
we may assume that W ⊆ V . Then we have the following short exact sequence of vector
bundles

0→ V/W → H/W → H/V → 0

and
0→ V/W → H/T (W )→ H/T (V ).

Thus, [H/T (V )] − [H/T (W )] = −[V/W ] = [H/V ] − [H/W ] which translates to [H/V ] −
[H/T (V )] = [H/W ] − [H/T (W )] showing that the definition of the index does not depend
on the choice of V .

Lemma 2.7. If f : X ′ → X and T : X → F are continuous, then

f ∗(ind T ) = ind (T ◦ f).

Proof. Note that if V ∩ ker Tx = {0} for all x ∈ X, then V ∩ ker Tf(x′) = {0} for all x′ ∈ X ′.
Hence, a choice of the subspace V ⊆ H is also a choice for T ◦ f . Thus,

f ∗(ind T ) = f ∗([H/V ]− [H/T (V )]) = [f ∗(H/V )]− [f ∗(H/T (V ))]

= [H/V ]− [H/(T ◦ f)(V )] = ind (T ◦ f).
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Proposition 2.8. If S, T : X → F(H) are homotopic, then ind S = ind T . Hence, the map

index: [X,F ]→ K(X)

is well-defined.

Proof. Since S and T are homotopic, there exists a homotopy F : X × [0, 1]→ F such that
F ◦ i0 = S and F ◦ i1 = T , where for j ∈ {0, 1} we define ij : X → X × I by ij(x) = (x, j).
Since i∗0 = i∗1 in K-theory, we conclude that

ind S = ind (F ◦ i0) = i∗0(ind (F )) = i∗1(ind (F )) = ind (F ◦ i1) = ind T.

Note that we can equip [X,F ] with the structure of a monoid. Namely, given T, S ∈ [X,F ],
we can define the composition S ◦ T : X → F , via STx = Sx ◦ Tx, where the latter ◦
denotes composition of Fredholm operators on H. The identity of the monoid is given by
the constant map X → F defined via x 7→ {id}.

Proposition 2.9. The map
ind: [X,F ]→ K(X)

is a homomorphism of monoids.

Proof. Firstly, we note that the constant map X → F defined via x 7→ {id} gets mapped
to the trivial bundle. Next, we take T, S ∈ [X,F ] and let V,W ⊆ H be choices of closed
subspaces for T and S respectively. Note that H = W ⊕ W⊥ and let π : H → W and
π⊥ : H → W⊥ be orthogonal projections. Then for each t ∈ [0, 1], Id − tπ⊥ : H → H is a
Fredholm operator. Then the homotopy h : X× [0, 1]→ F given by h(x, t) = (Id− tπ⊥)◦Tx
shows that T and π ◦ T are homotopic. We may therefore assume that Tx(H) ⊆ W . In
particular, Tx(V ) ⊆ W for all x ∈ X which implies that V ∩ker (Sx◦Tx) ⊆ V ∩ker (Tx) = {0}.
Hence, V is a choice of a closed subspace for ST . Now note that we have the following short
exact sequences of vector bundles:

0→ W/T (V )→ H/T (V )→ H/W → 0

and
0→ W/T (V )→ H/ST (V )→ H/S(W )→ 0.

Thus,

ind ST = [H/V ]− [H/ST (V )]

= [H/V ]− [W/T (V )]− [H/S(W )]

= [H/V ]− [H/T (V )] + [H/W ]− [H/S(W )]

= ind T + ind S.
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Theorem 2.10 (The Atiyah Jänich Theorem). If X is a compact Hausdorff topological
space, then the homomorphism:

ind: [X,F ]→ K(X)

is an isomorphism.

Proof. We first begin with surjectivity. Pick an arbitrary element [E] − [Ck], where E is a
vector bundle over X and Ck denotes the trivial vector bundle X ×Ck. We have seen in the
seminar that we can find a vector bundle E ′ over X such that E ⊕ E ′ is the trivial vector
bundle X ×CN for some N . For each x ∈ X, let πx be the projection CN = Ex⊕E ′x → Ex.

Note that CN ⊗H is a Hilbert space whose elements are finite sums
∑m

j=1 cj⊗vj for cj ∈ CN

and vj ∈ H. If f1, . . . , fN is an orthonormal basis for CN and {e1, e2, . . .} is an orthonormal
basis for H, then {fi ⊗ ej} is an orthonormal basis for CN ⊗H, where the inner product is
given by 〈fi⊗ ej, fr ⊗ es〉 = 〈fi, fr〉 · 〈ej, es〉. Note that CN ⊗H and H are isomorphic, since
both are separable infinite dimensional Hilbert spaces.

Let n < N be the rank of E and let f1, . . . , fn be the basis of Ex. Recall that we have defined
the denote the backward shift operator Sk with index k. Note that S0 is the identity, S1 is
surjective and ker S1 is generated by e1. Define a map PE : X → F(CN ⊗H) ∼= F by

PE(x) = πx ⊗ S1 + (id− πx)⊗ S0.

If c =
∑N

i=1 λifi with λi ∈ C, and v ∈ H, then

(πx ⊗ S1)(c⊗ v) = f1 ⊗ λ1S1(v) + · · ·+ fn ⊗ λnS1(v)

and
((id− πx)⊗ S0)(c⊗ v) = fn+1 ⊗ λn+1v + · · ·+ fN ⊗ λNv.

Since S1 is surjective and {fi⊗ ej} is a basis for CN ⊗H, this shows that PE(x) is surjective.
Note also by construction (and since ker S1 is generated by e1), we have that ker PE(x) is
generated by {f1 ⊗ e1, . . . , fn ⊗ e1} and hence is isomorphic to Ex. Thus, ind PE = [E].
Let Qk : X → F be the constant map Qk(x) = Fk, where Fk is the k-shift forward operator
with index 0− k = −k. Thus,

ind Qk = −[Ck].

. Thus,
ind (PE ◦Qk) = ind PE + ind Qk = [E]− [Ck].

Hence, ind is surjective as desired.

To prove injectivity, we will make use of the following fact: If A → B is a surjective
homomorphism of monoids with trivial kernel, and if further B is a group, then it is injective.
Hence, it suffices to show that the kernel of ind is trivial. Thus, we want to show that if
T ∈ [X,F ] satisfies ind T = 0, then T is homotopic to the constant map X → F defined
via x 7→ {id}. We now use Kuiper’s theorem which states that if F× denotes the set of
invertible Fredholm operators, then [X,F×] is a singleton. Hence, it suffices to show that if
T ∈ [X,F ] satisfies ind T = 0, then T is homotopic to a map T ′ : X → F×.
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Now ind T = 0 implies that [H/V ]−[H/T (V )] = 0, where V ⊆ H is a closed subspace of finite
codimension as required in the definition of the index. We can choose a trivial bundle Ck such
that H/V ⊕ Ck ∼= H/T (V ) ⊕ Ck. Choose a closed subspace W of V such that V/W ∼= Ck;
then H/V ⊕ Ck ∼= H/W and H/T (V ) ⊕ Ck ∼= H/T (W ) as vector bundles. We thus get an
isomorphism α : H/W → H/T (W ). Again, using the fact that Fredholm operators map
closed subspaces to closed subspaces (see [1, page 154]), we conclude that Tx(W ) is closed
and so H = Tx(W ) ⊕ Tx(W )⊥. We thus have a continuous map β : H/T (W ) → H that
maps each fiber H/Tx(W ) isomorphically onto Tx(W )⊥. Thus, β ◦ α : H/W → H gives a
continuous map T ′ : X → B(H/W,H) that maps each fiber H/W at x onto Tx(W )⊥. Since
V ∩ ker Tx = 0 and W ⊆ V , Tx maps W isomorphically onto Tx(W ). Thus, T ′x ⊕ Tx : H =
H/W ⊕W → Tx(W )⊥ ⊕ TX(W ) = H is an isomorphism.
We thus get a continuous map T ′ ⊕ T : X → F× defined by x 7→ T ′x ⊕ Tx. The homotopy
G : X × I → F defined by G(x, t) := (tT ′x) ⊕ Tx shows that T and T ′ ⊕ T are homotopic
as desired (It is a fact from functional analysis that if f is Fredholm operator and g is
finite rank operator, then f ⊕ g is also Fredholm; hence the above homotopy is indeed well-
defined). Hence, the index map is injective. This completes the proof of the Atiyah-Jänich
Theorem.

As an immediate consequence of the the Atiyah-Jänich Theorem is the following:

Corollary 2.11. The monoid [X,F ] is in fact a group and the map ind is a group isomor-
phism.

To demonstrate the power of the Atiyah-Jänich theorem, we end this paper with the following
application.

Theorem 2.12 (Homotopy groups of Fredholm operators). We have that

πn(F) =

{
Z if n even

0 if n odd

Proof. Take X = Sn in Atiyah-Jänich theorem to get [Sn,F ] ∼= K(Sn). Hence, by Bott-
Periodicity

[Sn,F ] =

{
Z⊕ Z if n even

Z if n odd.

Since elements in the n-th homotopy group consist of based maps from Sn to F and since
{connected components of F} ∼= Z,

πn(F) =

{
Z if n even

0 if n odd
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