LABELED CONFIGURATION SPACES AND GROUP
COMPLETIONS

KAZUHISA SHIMAKAWA

ABSTRACT. Given a pair of an partial abelian monoid M and a pointed space
X, let CM(R>, X) denote the configuration space of finite distinct points in R>
parametrized by the partial monoid X AM. In this note we will show that if M is
embedded in a topological abelian group and if we put £M = {a—b | a, b € M}
then the natural map CM(R*>, X) — C*M(R>, X) induced by the inclusion
M C +£M is a group completion. This generalizes the result of Caruso [1]
that the space of “positive and negative particles” in R*® parametrized by X is
weakly equivalent to QXX

1. INTRODUCTION

In [5] we assigned to any space Y and any partial abelian monoid M the con-
figuration space C™(Y') of finite subsets of Y with labels in M. As a set CM(Y)
consists of those pairs (S, o), where S is a finite subset of Y and ¢ is amap S — M.
But (5, 0) is identified with (S’,0’) when S C 5, 0/|S = 0, and o’(z) = 0if x & S.
It should be noted that the topology of C™(Y') depends not only on the topologies
of Y and M, but also on the partial monoid structure of M.

For any pointed space X let

CY(R>, X) = C*"M(R™).

Here X A M is regarded as a abelian partial monoid such that ;1 Aay, - -+, xx Aag
are summable if and only if z; = --- = x; and a4, -+, a; are summable in M,
and in such a case we have t Aay +---+x Aap =z A (a1 + -+ + ag).

Let EM(X) = QCM(R>*,XX), where XX is the reduced suspension of X. As
CM(R®>, X) is a continuous functor of X, there exists a natural map

CM(R>, X) — QCM"(R™,¥X) = BM(X).
The results of [5] imply the following.
(1) The map CM(R*>, X) — EM(X) is a group completion, that is, induces
an isomorphism of Pontrjagin ring
H,(CY(R*, X))[r~"] = H,(EM(X))

for any commutative coefficient ring, where 7 = moC™ (R>, X).
(2) The correspondence X +— m, EM (X)) defines a generalized homology theory
on the category of pointed spaces.
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Various homology theories arise in this way. For example, the stable homotopy
and the ordinary homology theories correspond, respectively, to the subsets {0, 1}
and N = {0,1,2,...} of the additive group of integers Z. (The former is a
consequence of the Barratt-Priddy-Quillen theorem and the latter is the Dold-
Thom theorem.) On the other hand, the connective K-homology theory arises
from Gr(R>), the Grassmannian of finite-dimensional subspaces of R*. Here
Gr(R™), consists of those tuples (V) such that V; and V; are perpendicular if
i # j,and ). ;Vjis defined to be the direct sum P, ; V;. (Compare [4].)

The aim of this note is to show that when M is embedded in a topological abelian
group then we can take C*M (R, X) as a group completion of CM (R, X), where
+M ={a—"b|a, b€ M}. More precisely, we will show

Theorem 1. Let M be an arbitrary subset of a topological abelian group such
that 0 € M. Then for any pointed space X the natural map CM(R>® X) —
CEM (R, X)) induced by the inclusion M C +M is a group completion.

This implies that there is a natural isomorphism of homology theories
T EM(X) = 1, OFM(R™, X).

In particular, let M = {0,1} C Z. Then CM(R>®, X) = C(R*®, X) is the
standard configuration space of finite subsets of R* parametrized by X. On the
other hand, C*M(R>, X) = C*(R*>, X) is the space of positive and negative
particles introduced by Mcduff [2]. Caruso has shown in [1] that C*(R>, X) is
weakly homotopy equivalent to QXX if X is locally equi-connected. By using
Theorem 1 this can be generalized, both in M and in X, as follows.

Theorem 2. Let M be a finite set of integers such that 0 € M. Suppose that M
contains at least one non-zero element and is stable under the involution n — —n.

Then CM(R>, X) is weakly homotopy equivalent to Q°X>°X for any pointed space
X.

To see this let d be the greatest common divisor of the positive members of M.
Then there are positive integers k£ and [ such that
+{0,d} C (£)*M C (£){0,d} C (£)""'M
holds, for we have (+)'{0,d} = {0, +d, ..., +ld}. By Theorem 1 we have
T CHOHR> X) = 1,0 M(R>, X).
We also have .
T CM(R>, X) = 7, CEM(R™, X)
because CM(R>, X) is a grouplike Hopf-space.

Thus CM(R>®, X) is weakly equivalent to CHO4(R>, X). But C1%(R>®, X)
is homeomorphic to the standard configuration space C(R>, X), hence its group
completion O (R>®, X) is weakly equivalent to Q%> X by the Barratt-Priddy-
Quillen theorem.

Corollary 3. If M 1is a finite set of integers containing at lease one non-zero
element then T, E (X)) is the stable homotopy of a pointed space X .
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2. PROOF OF THEOREM 1

In [5] we showed that there exist a C'W monoid D(X A M) and a weak equiv-
alence ®: D(X A M) — CM(R™, X) natural in X. Let us briefly recall the
definitions.

Let Q(M) be the topological category whose space of objects is the disjoint
union [] ., M”, and whose morphisms from (a;) € M” to (b;) € M7 are maps of
finite sets 0: {1,...,p} — {1,...,q} such that b; = Zie@*l(j) a; holds for 1 < j <
q. Let Q(M) denote the classifying space of Q(M), that is, the realization of the
nerve (k] — NpQ(M). Then Q(M) is a homotopy commutative monoid, because
Q(M) is a permutative category with respect to the operation

(a1,...,ap) - (by,...,by) = (a1,...,ap,b1,...,b,).

Given a pointed space X let D(X A M) = |S.Q(X A M)| be the realization of
the total singular complex of Q(X AM). Then D(X A M) inherits from Q(X A M)
a monoid structure with respect to which the weak equivalence

DX ANM)=|SQ(X ANM)| — QX AN M)

is a map of topological monoids. Note that D(X A M) is homeomorphic to the
realization of the diagonal simplicial set

Let us define ®: D(X A M) — CM(R>, X) to be the composite

D(X A M) = [NoQ(Su(X A M))| 5 [SuC¥M (R)] — CXM(R)

where @' is a weak equivalence constructed in [5, §4]. Since ® is a weak equivalence
of Hopf-spaces, Theorem 1 follows from

Proposition 4. The natural map D(X AN M) — D(X AN £M) induced by the
inclusion M C =M is a group completion.

The rest of the note is devoted to the proof of this proposition.

Given a map of topological monoids f: D — D’ let B(D,D’) denote the re-
alization of the category B(D, D’) whose space of objects is D’ and whose space
of morphisms is the product D x D', where (d,d') € D x D’ is regarded as a
morphism from d’' to f(d) - d'. Then there is a sequence of maps

D' = B(0,D') — B(D,D') — B(D,0) = BD

induced by the maps 0 — D and D’ — 0 respectively. Observe that BD is the
standard classifying space of the monoid D and B(D, D) is contractible when f
is the identity.

Let us consider the commutative diagram

DX AM) —— B(D(XAM),D(XAM)) —— BD(X AM)

(2.1) zJ/ lB(l,z’)

D(X A+M) —— B(D(X AM),D(X A+M)) —— BD(X A M)
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in which the upper and the lower sequences are associated with the identity and
the inclusion i: D(X A M) — D(X A £M), respectively.

Lemma 5. The natural map D(X N M) — QBD(X A M) is a group completion.

This follows from the fact that D(X A M) is a homotopy commutative, hence
admissible, monoid.

Lemma 6. The lower sequence in the diagram (2.1) is a homotopy fibration se-
quence with contractible total space.

Proposition 4 can be deduced from this, because D(X A M) — D(X A +M) is
equivalent to the group completion map D(X A M) — QBD(X A M) under the
equivalence D(X A +M) ~ QBD(X N M).

Proof of Lemma 6. Let us write D = D(X A M) and D' = D(X A £M). Since D
acts on D’ through homotopy equivalences, the diagram

D' —— B(D,D)

| !

0 —— B(D,0)

is homotopy cartesian by Proposition 1.6 of [3]. This implies that the lower se-
quence in the diagram (2.1) is a homotopy fibration sequence.

It remains to prove that B(D, D’) is contractible.

Notice that B(D, D’) is homeomorphic to the realization of the diagonal sim-
plicial set

where Dy, = N Q(Si(X A M)) and D; = N, Q(S(X AN£M)). Hence B(D, D’) is
a CW-complex whose 0-cells correspond to elements of Dy, 1-cells to pairs from
Dy x Dy, and so on. In particular, a pair consisting of (S — 6,S5) € D; and
(T"— . T) € D} determines a path in B(D, D’) joining dyT to d1(0..S - . T).

Let ||E| denote the thick realization of [k] — Ej. We shall show that the
natural map q: ||E|| — |E| = B(D, D’) is homotopic to the constant map. This
implies that B(D, D') is contractible, since ¢ is a homotopy equivalence. (See |3,
Appendix A].)

Let r: | E|| — [|D’']| the map induced by the functor B(D, D’) — D', which takes
a morphism (d, d’) to the identity of d - d’. Clearly the composite jr: ||E| — || F||
is homotopic to the identity. Hence ¢ is homotopic to the constant map if so is
oj: I\D'|| — B(D, D).

Let ||D'||,, denote the image of [[,., D x A* in ||D/||, and let qj,: ||D|, —
B(D, D") be the restriction of ¢j to |[D'||,,. We construct a null homotopy h,, of
qJn by successively extending h,,_; for all n > 0.

For every element a of =M choose a™ € M and a~ € —M such that a = a™ +a~
holds. If S = (z; A a;) € So(X N£M)P is an element of D = || D'||o then we put

Sy =(zjnal)e Dy, S_=(z;ANa;), S=(z; \—a;) € D
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Let [S] € B(D,D') denote the image of S under gjo. If we regard S, and
S_ as elements of D and D, respectively, via the degeneracy sy then the pair
(S,S_) € Dy x D} = E; determines a path in B(D, D’) joining [S_] to [Sy - S_].

On the other hand, the map V: {1,...,2p} — {1,...,p} such that V(j) =
V(p+j) =7 (1 <j<p) determines a path in D' C B(D, D') joining [S; - S_] to
[V.(Sy - S_)] = [S]. Hence we obtain a composite path in B(D, D’) joining [S_]
to [S], which we shall denote by the symbol

[S-] = [S]
Similarly, we have paths
[S-] = [07],

= [07]
induced by the sequence S_ — S_-S_ — V*(S_ S_) = 0P and the unique map
v:)—{1,...,p}, respectively

Now we have a path a(S): [ D, D') joining S to () induced by the chain

B(
[S] & [S-] = [07] < 0.
Thus the correspondence (S,t) — «(S)(t) defines a null homotopy of ¢jo,
ho: ||D'|lo x I — B(D,D").

We shall extend hg to a null homotopy over || D’||;. Let §: S — T be an element
of D}, where S € Si(X A+M)? and T' = 0.5 € S1(X AN £M)9, and let [f] be the
composite of the 1-cell I — ||D’||; corresponding to 6 with ¢j,: || D'||1 — B(D,D’).
Thus [6] is a path in B(D, D’) joining [dyS] to [d,T].

Then we have a diagram

[dT] —— [diT] L [diT- o) ., [09] PR

Al w d

[doS] —2 [doS - 09] X2 [doS_ - diT] —1s [07 - 09] —2— 0
22 | | H

0] v, [doS - 09] P [doS_ o - 07] ot (0701 —Z— 0

d
H l-uT 1-v l-uT
[d

S] =—— [doS] —— [doS_o] —— [07] —— 0

where ¢ and £° are induced by the arrows
S0 —V(@-1).(S-09)=T, 0°-07— V(0-1).(0”-0%) = 01
and 1 is the composite path

[d()S_ 0" d1T+] [d()S d1T+] [do(s : Som)] —
[di(V(0-1)(S - s0i Ty))] = [Vi(di T - diTy)] = [di T ] -
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One easily observes from (2.2) that there is a homotopy [0] ~ () which extends
the one already defined on J[0] = [dyS] U [diT]. Thus we can extend hy to a null
homotopy hy over ||D'||;.

We need to extend the construction above to || D'||,, for all n > 0. Suppose that
for every D € D; with k < n, there exists a null homotopy of the corresponding
k-cell [D]: A¥ — B(D, D') given by a chain of commutative diagrams

(2.3) [D] — [Dy] — [D_] — [0P] — 0
which is compatible with face operators.

Let D' = (5(0) & S(1) Lo S(n)) be an element of D;. Then the
diagram similar to (2.2), but dpS and d;T are replaced by
doD' = (doS(1) & - &= dyS(n)) € D.,_,
and d7S(0) respectively, yields a null homotopy of the n-cell [D’] which extends
the ones already defined on its faces [d;D’]. This implies that the null homotopy
can be extended over || D'||,, and hence completes the proof of the lemma. O
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