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COMPLETIONS

KAZUHISA SHIMAKAWA

Abstract. Given a pair of an partial abelian monoid M and a pointed space
X, let CM (R∞, X) denote the configuration space of finite distinct points in R∞

parametrized by the partial monoid X∧M . In this note we will show that if M is
embedded in a topological abelian group and if we put ±M = {a−b | a, b ∈M}
then the natural map CM (R∞, X) → C±M (R∞, X) induced by the inclusion
M ⊂ ±M is a group completion. This generalizes the result of Caruso [1]
that the space of “positive and negative particles” in R∞ parametrized by X is
weakly equivalent to Ω∞Σ∞X.

1. Introduction

In [5] we assigned to any space Y and any partial abelian monoid M the con-
figuration space CM(Y ) of finite subsets of Y with labels in M . As a set CM(Y )
consists of those pairs (S, σ), where S is a finite subset of Y and σ is a map S →M .
But (S, σ) is identified with (S ′, σ′) when S ⊂ S ′, σ′|S = σ, and σ′(x) = 0 if x 6∈ S.
It should be noted that the topology of CM(Y ) depends not only on the topologies
of Y and M , but also on the partial monoid structure of M .

For any pointed space X let

CM(R∞, X) = CX∧M(R∞).

Here X ∧M is regarded as a abelian partial monoid such that x1∧a1, · · · , xk ∧ak
are summable if and only if x1 = · · · = xk and a1, · · · , ak are summable in M ,
and in such a case we have x ∧ a1 + · · ·+ x ∧ ak = x ∧ (a1 + · · ·+ ak).

Let EM(X) = ΩCM(R∞,ΣX), where ΣX is the reduced suspension of X. As
CM(R∞, X) is a continuous functor of X, there exists a natural map

CM(R∞, X)→ ΩCM(R∞,ΣX) = EM(X).

The results of [5] imply the following.

(1) The map CM(R∞, X) → EM(X) is a group completion, that is, induces
an isomorphism of Pontrjagin ring

H•(C
M(R∞, X))[π−1] ∼= H•(E

M(X))

for any commutative coefficient ring, where π = π0C
M(R∞, X).

(2) The correspondence X 7→ π•E
M(X) defines a generalized homology theory

on the category of pointed spaces.

Date: September 20, 2004.
2000 Mathematics Subject Classification. 55N20, 55P47, 55R80.

1



2 KAZUHISA SHIMAKAWA

Various homology theories arise in this way. For example, the stable homotopy
and the ordinary homology theories correspond, respectively, to the subsets {0, 1}
and N = {0, 1, 2, . . . } of the additive group of integers Z. (The former is a
consequence of the Barratt-Priddy-Quillen theorem and the latter is the Dold-
Thom theorem.) On the other hand, the connective K-homology theory arises
from Gr(R∞), the Grassmannian of finite-dimensional subspaces of R∞. Here
Gr(R∞)J consists of those tuples (Vj) such that Vi and Vj are perpendicular if
i 6= j, and

∑
j∈J Vj is defined to be the direct sum

⊕
j∈J Vj. (Compare [4].)

The aim of this note is to show that whenM is embedded in a topological abelian
group then we can take C±M(R∞, X) as a group completion of CM(R∞, X), where
±M = {a− b | a, b ∈M}. More precisely, we will show

Theorem 1. Let M be an arbitrary subset of a topological abelian group such
that 0 ∈ M . Then for any pointed space X the natural map CM(R∞, X) →
C±M(R∞, X) induced by the inclusion M ⊂ ±M is a group completion.

This implies that there is a natural isomorphism of homology theories

π•E
M(X) ∼= π•C

±M(R∞, X).

In particular, let M = {0, 1} ⊂ Z. Then CM(R∞, X) = C(R∞, X) is the
standard configuration space of finite subsets of R∞ parametrized by X. On the
other hand, C±M(R∞, X) = C±(R∞, X) is the space of positive and negative
particles introduced by Mcduff [2]. Caruso has shown in [1] that C±(R∞, X) is
weakly homotopy equivalent to Ω∞Σ∞X if X is locally equi-connected. By using
Theorem 1 this can be generalized, both in M and in X, as follows.

Theorem 2. Let M be a finite set of integers such that 0 ∈ M . Suppose that M
contains at least one non-zero element and is stable under the involution n 7→ −n.
Then CM(R∞, X) is weakly homotopy equivalent to Ω∞Σ∞X for any pointed space
X.

To see this let d be the greatest common divisor of the positive members of M .
Then there are positive integers k and l such that

±{0, d} ⊂ (±)kM ⊂ (±)l{0, d} ⊂ (±)k+l−1M

holds, for we have (±)l{0, d} = {0,±d, . . . ,±ld}. By Theorem 1 we have

π•C
±{0,d}(R∞, X) ∼= π•C

(±)kM(R∞, X).

We also have
π•C

M(R∞, X) ∼= π•C
(±)kM(R∞, X)

because CM(R∞, X) is a grouplike Hopf-space.
Thus CM(R∞, X) is weakly equivalent to C±{0,d}(R∞, X). But C{0,d}(R∞, X)

is homeomorphic to the standard configuration space C(R∞, X), hence its group
completion C±{0,d}(R∞, X) is weakly equivalent to Ω∞Σ∞X by the Barratt-Priddy-
Quillen theorem.

Corollary 3. If M is a finite set of integers containing at lease one non-zero
element then π•E

M(X) is the stable homotopy of a pointed space X.
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2. Proof of Theorem 1

In [5] we showed that there exist a CW monoid D(X ∧M) and a weak equiv-
alence Φ: D(X ∧ M) → CM(R∞, X) natural in X. Let us briefly recall the
definitions.

Let Q(M) be the topological category whose space of objects is the disjoint
union

∐
p≥0M

p, and whose morphisms from (ai) ∈ Mp to (bj) ∈ M q are maps of

finite sets θ : {1, . . . , p} → {1, . . . , q} such that bj =
∑

i∈θ−1(j) ai holds for 1 ≤ j ≤
q. Let Q(M) denote the classifying space of Q(M), that is, the realization of the
nerve [k] 7→ NkQ(M). Then Q(M) is a homotopy commutative monoid, because
Q(M) is a permutative category with respect to the operation

(a1, . . . , ap) · (b1, . . . , bq) = (a1, . . . , ap, b1, . . . , bq).

Given a pointed space X let D(X ∧M) = |S•Q(X ∧M)| be the realization of
the total singular complex of Q(X∧M). Then D(X∧M) inherits from Q(X∧M)
a monoid structure with respect to which the weak equivalence

D(X ∧M) = |S•Q(X ∧M)| → Q(X ∧M)

is a map of topological monoids. Note that D(X ∧M) is homeomorphic to the
realization of the diagonal simplicial set

[k] 7→ SkNkQ(X ∧M) = NkQ(Sk(X ∧M)).

Let us define Φ: D(X ∧M)→ CM(R∞, X) to be the composite

D(X ∧M) = |N•Q(S•(X ∧M))| Φ′
−→ |S•CX∧M(R∞)| → CX∧M(R∞)

where Φ′ is a weak equivalence constructed in [5, §4]. Since Φ is a weak equivalence
of Hopf-spaces, Theorem 1 follows from

Proposition 4. The natural map D(X ∧ M) → D(X ∧ ±M) induced by the
inclusion M ⊂ ±M is a group completion.

The rest of the note is devoted to the proof of this proposition.
Given a map of topological monoids f : D → D′ let B(D,D′) denote the re-

alization of the category B(D,D′) whose space of objects is D′ and whose space
of morphisms is the product D × D′, where (d, d′) ∈ D × D′ is regarded as a
morphism from d′ to f(d) · d′. Then there is a sequence of maps

D′ = B(0, D′)→ B(D,D′)→ B(D, 0) = BD

induced by the maps 0 → D and D′ → 0 respectively. Observe that BD is the
standard classifying space of the monoid D and B(D,D) is contractible when f
is the identity.

Let us consider the commutative diagram

(2.1)

D(X ∧M) −−−→ B(D(X ∧M), D(X ∧M)) −−−→ BD(X ∧M)

i

y yB(1,i)

∥∥∥
D(X ∧ ±M) −−−→ B(D(X ∧M), D(X ∧ ±M)) −−−→ BD(X ∧M)
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in which the upper and the lower sequences are associated with the identity and
the inclusion i : D(X ∧M)→ D(X ∧ ±M), respectively.

Lemma 5. The natural map D(X ∧M)→ ΩBD(X ∧M) is a group completion.

This follows from the fact that D(X ∧M) is a homotopy commutative, hence
admissible, monoid.

Lemma 6. The lower sequence in the diagram (2.1) is a homotopy fibration se-
quence with contractible total space.

Proposition 4 can be deduced from this, because D(X ∧M)→ D(X ∧ ±M) is
equivalent to the group completion map D(X ∧M) → ΩBD(X ∧M) under the
equivalence D(X ∧ ±M) ' ΩBD(X ∧M).

Proof of Lemma 6. Let us write D = D(X ∧M) and D′ = D(X ∧±M). Since D
acts on D′ through homotopy equivalences, the diagram

D′ −−−→ B(D,D′)y y
0 −−−→ B(D, 0)

is homotopy cartesian by Proposition 1.6 of [3]. This implies that the lower se-
quence in the diagram (2.1) is a homotopy fibration sequence.

It remains to prove that B(D,D′) is contractible.
Notice that B(D,D′) is homeomorphic to the realization of the diagonal sim-

plicial set

[k] 7→ Ek = NkB(Dk, D
′
k) .

where Dk = NkQ(Sk(X ∧M)) and D′
k = NkQ(Sk(X ∧ ±M)). Hence B(D,D′) is

a CW -complex whose 0-cells correspond to elements of D′
0, 1-cells to pairs from

D1 × D′
1, and so on. In particular, a pair consisting of (S → θ∗S) ∈ D1 and

(T → ψ∗T ) ∈ D′
1 determines a path in B(D,D′) joining d0T to d1(θ∗S · ψ∗T ).

Let ‖E‖ denote the thick realization of [k] 7→ Ek. We shall show that the
natural map q : ‖E‖ → |E| = B(D,D′) is homotopic to the constant map. This
implies that B(D,D′) is contractible, since q is a homotopy equivalence. (See [3,
Appendix A].)

Let r : ‖E‖ → ‖D′‖ the map induced by the functor B(D,D′)→ D′, which takes
a morphism (d, d′) to the identity of d · d′. Clearly the composite jr : ‖E‖ → ‖E‖
is homotopic to the identity. Hence q is homotopic to the constant map if so is
qj : ‖D′‖ → B(D,D′).

Let ‖D′‖n denote the image of
∐

k≤nD
′
k × ∆k in ‖D′‖, and let qjn : ‖D′‖n →

B(D,D′) be the restriction of qj to ‖D′‖n. We construct a null homotopy hn of
qjn by successively extending hn−1 for all n ≥ 0.

For every element a of ±M choose a+ ∈M and a− ∈ −M such that a = a++a−

holds. If S = (xj ∧ aj) ∈ S0(X ∧ ±M)p is an element of D′
0 = ‖D′‖0 then we put

S+ = (xj ∧ a+
j ) ∈ D0, S− = (xj ∧ a−j ), S = (xj ∧ −aj) ∈ D′

0.
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Let [S] ∈ B(D,D′) denote the image of S under qj0. If we regard S+ and
S− as elements of D1 and D′

1, respectively, via the degeneracy s0 then the pair
(S+, S−) ∈ D1×D′

1 = E1 determines a path in B(D,D′) joining [S−] to [S+ · S−].
On the other hand, the map ∇ : {1, . . . , 2p} → {1, . . . , p} such that ∇(j) =
∇(p+ j) = j (1 ≤ j ≤ p) determines a path in D′ ⊂ B(D,D′) joining [S+ · S−] to
[∇∗(S+ · S−)] = [S]. Hence we obtain a composite path in B(D,D′) joining [S−]
to [S], which we shall denote by the symbol

[S−]
µ−→ [S]

Similarly, we have paths

[S−]
γ−→ [0p], ∅ ν−→ [0p]

induced by the sequence S− → S− · S− → ∇∗(S− · S−) = 0p and the unique map
ν : ∅ → {1, . . . , p}, respectively.

Now we have a path α(S) : I → B(D,D′) joining S to ∅ induced by the chain

[S]
µ←− [S−]

γ−→ [0p]
ν←− ∅ .

Thus the correspondence (S, t) 7→ α(S)(t) defines a null homotopy of qj0,

h0 : ‖D′‖0 × I → B(D,D′) .

We shall extend h0 to a null homotopy over ‖D′‖1. Let θ : S → T be an element
of D′

1, where S ∈ S1(X ∧ ±M)p and T = θ∗S ∈ S1(X ∧ ±M)q, and let [θ] be the
composite of the 1-cell I → ‖D′‖1 corresponding to θ with qj1 : ‖D′‖1 → B(D,D′).
Thus [θ] is a path in B(D,D′) joining [d0S] to [d1T ].

Then we have a diagram

(2.2)

[d1T ] [d1T ]
µ←−−− [d1T−,0]

γ−−−→ [0q]
ν←−−− ∅

[θ]

x ξ

x ψ

x ξ0

x ∥∥∥
[d0S]

1·ν−−−→ [d0S · 0q]
µ·γ←−−− [d0S−,0 · d1T+]

γ·γ−−−→ [0p · 0q] ν←−−− ∅∥∥∥ ∥∥∥ 1·γ
y ∥∥∥ ∥∥∥

[d0S]
1·ν−−−→ [d0S · 0q]

µ·1←−−− [d0S−,0 · 0q]
γ·1−−−→ [0p · 0q] ν←−−− ∅∥∥∥ 1·ν

x 1·ν
x 1·ν

x ∥∥∥
[d0S] [d0S]

µ←−−− [d0S−,0]
γ−−−→ [0p]

ν←−−− ∅

where ξ and ξ0 are induced by the arrows

S · 0q → ∇(θ · 1)∗(S · 0q) = T, 0p · 0q → ∇(θ · 1)∗(0
p · 0q) = 0q

and ψ is the composite path

[d0S−,0 · d1T+]
µ·1−→ [d0S · d1T+] = [d0(S · s0d1T+)]→

[d1(∇(θ · 1)∗(S · s0d1T+))] = [∇∗(d1T · d1T+)] = [d1T−,0] .
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One easily observes from (2.2) that there is a homotopy [θ] ' ∅ which extends
the one already defined on ∂[θ] = [d0S] ∪ [d1T ]. Thus we can extend h0 to a null
homotopy h1 over ‖D′‖1.

We need to extend the construction above to ‖D′‖n for all n ≥ 0. Suppose that
for every D ∈ D′

k with k < n, there exists a null homotopy of the corresponding
k-cell [D] : ∆k → B(D,D′) given by a chain of commutative diagrams

(2.3) [D]→ [D0]← [D−]→ [0D]← ∅
which is compatible with face operators.

Let D′ = (S(0)
θ1←− S(1)

θ2←− · · · θn←− S(n)) be an element of D′
n. Then the

diagram similar to (2.2), but d0S and d1T are replaced by

d0D′ = (d0S(1)
θ2←− · · · θn←− d0S(n)) ∈ D′

n−1

and dn1S(0) respectively, yields a null homotopy of the n-cell [D′] which extends
the ones already defined on its faces [diD′]. This implies that the null homotopy
can be extended over ‖D′‖n, and hence completes the proof of the lemma. �
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