LABELED CONFIGURATION SPACES AND GROUP COMPLETIONS

KAZUHISA SHIMAKAWA

Abstract

Given a pair of an partial abelian monoid M and a pointed space X, let $C^{M}\left(\mathbf{R}^{\infty}, X\right)$ denote the configuration space of finite distinct points in \mathbf{R}^{∞} parametrized by the partial monoid $X \wedge M$. In this note we will show that if M is embedded in a topological abelian group and if we put $\pm M=\{a-b \mid a, b \in M\}$ then the natural map $C^{M}\left(\mathbf{R}^{\infty}, X\right) \rightarrow C^{ \pm M}\left(\mathbf{R}^{\infty}, X\right)$ induced by the inclusion $M \subset \pm M$ is a group completion. This generalizes the result of Caruso [1] that the space of "positive and negative particles" in \mathbf{R}^{∞} parametrized by X is weakly equivalent to $\Omega^{\infty} \Sigma^{\infty} X$.

1. Introduction

In [5] we assigned to any space Y and any partial abelian monoid M the configuration space $C^{M}(Y)$ of finite subsets of Y with labels in M. As a set $C^{M}(Y)$ consists of those pairs (S, σ), where S is a finite subset of Y and σ is a map $S \rightarrow M$. But (S, σ) is identified with $\left(S^{\prime}, \sigma^{\prime}\right)$ when $S \subset S^{\prime}, \sigma^{\prime} \mid S=\sigma$, and $\sigma^{\prime}(x)=0$ if $x \notin S$. It should be noted that the topology of $C^{M}(Y)$ depends not only on the topologies of Y and M, but also on the partial monoid structure of M.

For any pointed space X let

$$
C^{M}\left(\mathbf{R}^{\infty}, X\right)=C^{X \wedge M}\left(\mathbf{R}^{\infty}\right)
$$

Here $X \wedge M$ is regarded as a abelian partial monoid such that $x_{1} \wedge a_{1}, \cdots, x_{k} \wedge a_{k}$ are summable if and only if $x_{1}=\cdots=x_{k}$ and a_{1}, \cdots, a_{k} are summable in M, and in such a case we have $x \wedge a_{1}+\cdots+x \wedge a_{k}=x \wedge\left(a_{1}+\cdots+a_{k}\right)$.

Let $E^{M}(X)=\Omega C^{M}\left(\mathbf{R}^{\infty}, \Sigma X\right)$, where ΣX is the reduced suspension of X. As $C^{M}\left(\mathbf{R}^{\infty}, X\right)$ is a continuous functor of X, there exists a natural map

$$
C^{M}\left(\mathbf{R}^{\infty}, X\right) \rightarrow \Omega C^{M}\left(\mathbf{R}^{\infty}, \Sigma X\right)=E^{M}(X)
$$

The results of [5] imply the following.
(1) The map $C^{M}\left(\mathbf{R}^{\infty}, X\right) \rightarrow E^{M}(X)$ is a group completion, that is, induces an isomorphism of Pontrjagin ring

$$
H_{\bullet}\left(C^{M}\left(\mathbf{R}^{\infty}, X\right)\right)\left[\pi^{-1}\right] \cong H_{\bullet}\left(E^{M}(X)\right)
$$

for any commutative coefficient ring, where $\pi=\pi_{0} C^{M}\left(\mathbf{R}^{\infty}, X\right)$.
(2) The correspondence $X \mapsto \pi \cdot E^{M}(X)$ defines a generalized homology theory on the category of pointed spaces.

Various homology theories arise in this way. For example, the stable homotopy and the ordinary homology theories correspond, respectively, to the subsets $\{0,1\}$ and $\mathbf{N}=\{0,1,2, \ldots\}$ of the additive group of integers \mathbf{Z}. (The former is a consequence of the Barratt-Priddy-Quillen theorem and the latter is the DoldThom theorem.) On the other hand, the connective K-homology theory arises from $\operatorname{Gr}\left(\mathbf{R}^{\infty}\right)$, the Grassmannian of finite-dimensional subspaces of \mathbf{R}^{∞}. Here $\operatorname{Gr}\left(\mathbf{R}^{\infty}\right)_{J}$ consists of those tuples $\left(V_{j}\right)$ such that V_{i} and V_{j} are perpendicular if $i \neq j$, and $\sum_{j \in J} V_{j}$ is defined to be the direct sum $\bigoplus_{j \in J} V_{j}$. (Compare [4].)

The aim of this note is to show that when M is embedded in a topological abelian group then we can take $C^{ \pm M}\left(\mathbf{R}^{\infty}, X\right)$ as a group completion of $C^{M}\left(\mathbf{R}^{\infty}, X\right)$, where $\pm M=\{a-b \mid a, b \in M\}$. More precisely, we will show
Theorem 1. Let M be an arbitrary subset of a topological abelian group such that $0 \in M$. Then for any pointed space X the natural map $C^{M}\left(\mathbf{R}^{\infty}, X\right) \rightarrow$ $C^{ \pm M}\left(\mathbf{R}^{\infty}, X\right)$ induced by the inclusion $M \subset \pm M$ is a group completion.

This implies that there is a natural isomorphism of homology theories

$$
\pi_{\bullet} E^{M}(X) \cong \pi_{\bullet} C^{ \pm M}\left(\mathbf{R}^{\infty}, X\right)
$$

In particular, let $M=\{0,1\} \subset \mathbf{Z}$. Then $C^{M}\left(\mathbf{R}^{\infty}, X\right)=C\left(\mathbf{R}^{\infty}, X\right)$ is the standard configuration space of finite subsets of \mathbf{R}^{∞} parametrized by X. On the other hand, $C^{ \pm M}\left(\mathbf{R}^{\infty}, X\right)=C^{ \pm}\left(\mathbf{R}^{\infty}, X\right)$ is the space of positive and negative particles introduced by Mcduff [2]. Caruso has shown in [1] that $C^{ \pm}\left(\mathbf{R}^{\infty}, X\right)$ is weakly homotopy equivalent to $\Omega^{\infty} \Sigma^{\infty} X$ if X is locally equi-connected. By using Theorem 1 this can be generalized, both in M and in X, as follows.
Theorem 2. Let M be a finite set of integers such that $0 \in M$. Suppose that M contains at least one non-zero element and is stable under the involution $n \mapsto-n$. Then $C^{M}\left(\mathbf{R}^{\infty}, X\right)$ is weakly homotopy equivalent to $\Omega^{\infty} \Sigma^{\infty} X$ for any pointed space X.

To see this let d be the greatest common divisor of the positive members of M. Then there are positive integers k and l such that

$$
\pm\{0, d\} \subset(\pm)^{k} M \subset(\pm)^{l}\{0, d\} \subset(\pm)^{k+l-1} M
$$

holds, for we have $(\pm)^{l}\{0, d\}=\{0, \pm d, \ldots, \pm l d\}$. By Theorem 1 we have

$$
\pi_{\bullet} C^{ \pm\{0, d\}}\left(\mathbf{R}^{\infty}, X\right) \cong \pi_{\bullet} C^{(\pm)^{k} M}\left(\mathbf{R}^{\infty}, X\right)
$$

We also have

$$
\pi_{\bullet} C^{M}\left(\mathbf{R}^{\infty}, X\right) \cong \pi_{\bullet} C^{(\pm)^{k} M}\left(\mathbf{R}^{\infty}, X\right)
$$

because $C^{M}\left(\mathbf{R}^{\infty}, X\right)$ is a grouplike Hopf-space.
Thus $C^{M}\left(\mathbf{R}^{\infty}, X\right)$ is weakly equivalent to $C^{ \pm\{0, d\}}\left(\mathbf{R}^{\infty}, X\right)$. But $C^{\{0, d\}}\left(\mathbf{R}^{\infty}, X\right)$ is homeomorphic to the standard configuration space $C\left(\mathbf{R}^{\infty}, X\right)$, hence its group completion $C^{ \pm\{0, d\}}\left(\mathbf{R}^{\infty}, X\right)$ is weakly equivalent to $\Omega^{\infty} \Sigma^{\infty} X$ by the Barratt-PriddyQuillen theorem.
Corollary 3. If M is a finite set of integers containing at lease one non-zero element then $\pi_{\bullet} E^{M}(X)$ is the stable homotopy of a pointed space X.

2. Proof of Theorem 1

In [5] we showed that there exist a $C W$ monoid $D(X \wedge M)$ and a weak equivalence $\Phi: D(X \wedge M) \rightarrow C^{M}\left(\mathbf{R}^{\infty}, X\right)$ natural in X. Let us briefly recall the definitions.

Let $\mathcal{Q}(M)$ be the topological category whose space of objects is the disjoint union $\coprod_{p \geq 0} M^{p}$, and whose morphisms from $\left(a_{i}\right) \in M^{p}$ to $\left(b_{j}\right) \in M^{q}$ are maps of finite sets $\theta:\{1, \ldots, p\} \rightarrow\{1, \ldots, q\}$ such that $b_{j}=\sum_{i \in \theta^{-1}(j)} a_{i}$ holds for $1 \leq j \leq$ q. Let $Q(M)$ denote the classifying space of $\mathcal{Q}(M)$, that is, the realization of the nerve $[k] \mapsto N_{k} \mathcal{Q}(M)$. Then $Q(M)$ is a homotopy commutative monoid, because $\mathcal{Q}(M)$ is a permutative category with respect to the operation

$$
\left(a_{1}, \ldots, a_{p}\right) \cdot\left(b_{1}, \ldots, b_{q}\right)=\left(a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}\right)
$$

Given a pointed space X let $D(X \wedge M)=|S \bullet Q(X \wedge M)|$ be the realization of the total singular complex of $Q(X \wedge M)$. Then $D(X \wedge M)$ inherits from $Q(X \wedge M)$ a monoid structure with respect to which the weak equivalence

$$
D(X \wedge M)=|S \bullet Q(X \wedge M)| \rightarrow Q(X \wedge M)
$$

is a map of topological monoids. Note that $D(X \wedge M)$ is homeomorphic to the realization of the diagonal simplicial set

$$
[k] \mapsto S_{k} N_{k} \mathcal{Q}(X \wedge M)=N_{k} \mathcal{Q}\left(S_{k}(X \wedge M)\right) .
$$

Let us define $\Phi: D(X \wedge M) \rightarrow C^{M}\left(\mathbf{R}^{\infty}, X\right)$ to be the composite

$$
D(X \wedge M)=\left|N_{\bullet} \mathcal{Q}\left(S_{\bullet}(X \wedge M)\right)\right| \xrightarrow{\Phi^{\prime}}\left|S_{\bullet} C^{X \wedge M}\left(\mathbf{R}^{\infty}\right)\right| \rightarrow C^{X \wedge M}\left(\mathbf{R}^{\infty}\right)
$$

where Φ^{\prime} is a weak equivalence constructed in $[5, \S 4]$. Since Φ is a weak equivalence of Hopf-spaces, Theorem 1 follows from
Proposition 4. The natural map $D(X \wedge M) \rightarrow D(X \wedge \pm M)$ induced by the inclusion $M \subset \pm M$ is a group completion.

The rest of the note is devoted to the proof of this proposition.
Given a map of topological monoids $f: D \rightarrow D^{\prime}$ let $B\left(D, D^{\prime}\right)$ denote the realization of the category $\mathcal{B}\left(D, D^{\prime}\right)$ whose space of objects is D^{\prime} and whose space of morphisms is the product $D \times D^{\prime}$, where $\left(d, d^{\prime}\right) \in D \times D^{\prime}$ is regarded as a morphism from d^{\prime} to $f(d) \cdot d^{\prime}$. Then there is a sequence of maps

$$
D^{\prime}=B\left(0, D^{\prime}\right) \rightarrow B\left(D, D^{\prime}\right) \rightarrow B(D, 0)=B D
$$

induced by the maps $0 \rightarrow D$ and $D^{\prime} \rightarrow 0$ respectively. Observe that $B D$ is the standard classifying space of the monoid D and $B(D, D)$ is contractible when f is the identity.

Let us consider the commutative diagram

in which the upper and the lower sequences are associated with the identity and the inclusion $i: D(X \wedge M) \rightarrow D(X \wedge \pm M)$, respectively.

Lemma 5. The natural map $D(X \wedge M) \rightarrow \Omega B D(X \wedge M)$ is a group completion.
This follows from the fact that $D(X \wedge M)$ is a homotopy commutative, hence admissible, monoid.

Lemma 6. The lower sequence in the diagram (2.1) is a homotopy fibration sequence with contractible total space.

Proposition 4 can be deduced from this, because $D(X \wedge M) \rightarrow D(X \wedge \pm M)$ is equivalent to the group completion map $D(X \wedge M) \rightarrow \Omega B D(X \wedge M)$ under the equivalence $D(X \wedge \pm M) \simeq \Omega B D(X \wedge M)$.

Proof of Lemma 6. Let us write $D=D(X \wedge M)$ and $D^{\prime}=D(X \wedge \pm M)$. Since D acts on D^{\prime} through homotopy equivalences, the diagram

is homotopy cartesian by Proposition 1.6 of [3]. This implies that the lower sequence in the diagram (2.1) is a homotopy fibration sequence.

It remains to prove that $B\left(D, D^{\prime}\right)$ is contractible.
Notice that $B\left(D, D^{\prime}\right)$ is homeomorphic to the realization of the diagonal simplicial set

$$
[k] \mapsto E_{k}=N_{k} \mathcal{B}\left(D_{k}, D_{k}^{\prime}\right) .
$$

where $D_{k}=N_{k} \mathcal{Q}\left(S_{k}(X \wedge M)\right)$ and $D_{k}^{\prime}=N_{k} \mathcal{Q}\left(S_{k}(X \wedge \pm M)\right)$. Hence $B\left(D, D^{\prime}\right)$ is a $C W$-complex whose 0 -cells correspond to elements of $D_{0}^{\prime}, 1$-cells to pairs from $D_{1} \times D_{1}^{\prime}$, and so on. In particular, a pair consisting of $\left(S \rightarrow \theta_{*} S\right) \in D_{1}$ and $\left(T \rightarrow \psi_{*} T\right) \in D_{1}^{\prime}$ determines a path in $B\left(D, D^{\prime}\right)$ joining $d_{0} T$ to $d_{1}\left(\theta_{*} S \cdot \psi_{*} T\right)$.

Let $\|E\|$ denote the thick realization of $[k] \mapsto E_{k}$. We shall show that the natural map $q:\|E\| \rightarrow|E|=B\left(D, D^{\prime}\right)$ is homotopic to the constant map. This implies that $B\left(D, D^{\prime}\right)$ is contractible, since q is a homotopy equivalence. (See $[3$, Appendix A].)

Let $r:\|E\| \rightarrow\left\|D^{\prime}\right\|$ the map induced by the functor $\mathcal{B}\left(D, D^{\prime}\right) \rightarrow D^{\prime}$, which takes a morphism $\left(d, d^{\prime}\right)$ to the identity of $d \cdot d^{\prime}$. Clearly the composite $j r:\|E\| \rightarrow\|E\|$ is homotopic to the identity. Hence q is homotopic to the constant map if so is $q j:\left\|D^{\prime}\right\| \rightarrow B\left(D, D^{\prime}\right)$.

Let $\left\|D^{\prime}\right\|_{n}$ denote the image of $\coprod_{k \leq n} D_{k}^{\prime} \times \Delta^{k}$ in $\left\|D^{\prime}\right\|$, and let $q j_{n}:\left\|D^{\prime}\right\|_{n} \rightarrow$ $B\left(D, D^{\prime}\right)$ be the restriction of $q j$ to $\left\|D^{\prime}\right\|_{n}$. We construct a null homotopy h_{n} of $q j_{n}$ by successively extending h_{n-1} for all $n \geq 0$.

For every element a of $\pm M$ choose $a^{+} \in M$ and $a^{-} \in-M$ such that $a=a^{+}+a^{-}$ holds. If $S=\left(x_{j} \wedge a_{j}\right) \in S_{0}(X \wedge \pm M)^{p}$ is an element of $D_{0}^{\prime}=\left\|D^{\prime}\right\|_{0}$ then we put

$$
S_{+}=\left(x_{j} \wedge a_{j}^{+}\right) \in D_{0}, \quad S_{-}=\left(x_{j} \wedge a_{j}^{-}\right), \bar{S}=\left(x_{j} \wedge-a_{j}\right) \in D_{0}^{\prime} .
$$

Let $[S] \in B\left(D, D^{\prime}\right)$ denote the image of S under $q j_{0}$. If we regard S_{+}and S_{-}as elements of D_{1} and D_{1}^{\prime}, respectively, via the degeneracy s_{0} then the pair $\left(S_{+}, S_{-}\right) \in D_{1} \times D_{1}^{\prime}=E_{1}$ determines a path in $B\left(D, D^{\prime}\right)$ joining $\left[S_{-}\right]$to $\left[S_{+} \cdot S_{-}\right]$.

On the other hand, the map $\nabla:\{1, \ldots, 2 p\} \rightarrow\{1, \ldots, p\}$ such that $\nabla(j)=$ $\nabla(p+j)=j(1 \leq j \leq p)$ determines a path in $D^{\prime} \subset B\left(D, D^{\prime}\right)$ joining $\left[S_{+} \cdot S_{-}\right]$to $\left[\nabla_{*}\left(S_{+} \cdot S_{-}\right)\right]=[S]$. Hence we obtain a composite path in $B\left(D, D^{\prime}\right)$ joining $\left[S_{-}\right]$ to $[S]$, which we shall denote by the symbol

$$
\left[S_{-}\right] \xrightarrow{\mu}[S]
$$

Similarly, we have paths

$$
\left[S_{-}\right] \xrightarrow{\gamma}\left[\mathbf{0}^{p}\right], \quad \emptyset \xrightarrow{\nu}\left[\mathbf{0}^{p}\right]
$$

induced by the sequence $S_{-} \rightarrow \overline{S_{-}} \cdot S_{-} \rightarrow \nabla_{*}\left(\overline{S_{-}} \cdot S_{-}\right)=\mathbf{0}^{p}$ and the unique map $\nu: \emptyset \rightarrow\{1, \ldots, p\}$, respectively.

Now we have a path $\alpha(S): I \rightarrow B\left(D, D^{\prime}\right)$ joining S to \emptyset induced by the chain

$$
[S] \stackrel{\mu}{\leftarrow}\left[S_{-}\right] \stackrel{\gamma}{\rightarrow}\left[\mathbf{0}^{p}\right] \stackrel{\nu}{\hookleftarrow} \emptyset .
$$

Thus the correspondence $(S, t) \mapsto \alpha(S)(t)$ defines a null homotopy of $q j_{0}$,

$$
h_{0}:\left\|D^{\prime}\right\|_{0} \times I \rightarrow B\left(D, D^{\prime}\right)
$$

We shall extend h_{0} to a null homotopy over $\left\|D^{\prime}\right\|_{1}$. Let $\theta: S \rightarrow T$ be an element of D_{1}^{\prime}, where $S \in S_{1}(X \wedge \pm M)^{p}$ and $T=\theta_{*} S \in S_{1}(X \wedge \pm M)^{q}$, and let [θ] be the composite of the 1-cell $I \rightarrow\left\|D^{\prime}\right\|_{1}$ corresponding to θ with $q j_{1}:\left\|D^{\prime}\right\|_{1} \rightarrow B\left(D, D^{\prime}\right)$. Thus $[\theta]$ is a path in $B\left(D, D^{\prime}\right)$ joining $\left[d_{0} S\right]$ to $\left[d_{1} T\right]$.

Then we have a diagram

where ξ and ξ^{0} are induced by the arrows

$$
S \cdot \mathbf{0}^{q} \rightarrow \nabla(\theta \cdot 1)_{*}\left(S \cdot \mathbf{0}^{q}\right)=T, \quad \mathbf{0}^{p} \cdot \mathbf{0}^{q} \rightarrow \nabla(\theta \cdot 1)_{*}\left(\mathbf{0}^{p} \cdot \mathbf{0}^{q}\right)=\mathbf{0}^{q}
$$

and ψ is the composite path

$$
\begin{aligned}
{\left[d_{0} S_{-, 0} \cdot \overline{d_{1} T_{+}}\right] \xrightarrow{\mu \cdot 1} } & {\left[d_{0} S \cdot \overline{d_{1} T_{+}}\right]=\left[d_{0}\left(S \cdot s_{0} \overline{d_{1} T_{+}}\right)\right] \rightarrow } \\
& {\left[d_{1}\left(\nabla(\theta \cdot 1)_{*}\left(S \cdot s_{0} \overline{d_{1} T_{+}}\right)\right)\right]=\left[\nabla_{*}\left(d_{1} T \cdot \overline{d_{1} T_{+}}\right)\right]=\left[d_{1} T_{-, 0}\right] }
\end{aligned}
$$

One easily observes from (2.2) that there is a homotopy $[\theta] \simeq \emptyset$ which extends the one already defined on $\partial[\theta]=\left[d_{0} S\right] \cup\left[d_{1} T\right]$. Thus we can extend h_{0} to a null homotopy h_{1} over $\left\|D^{\prime}\right\|_{1}$.

We need to extend the construction above to $\left\|D^{\prime}\right\|_{n}$ for all $n \geq 0$. Suppose that for every $\mathcal{D} \in D_{k}^{\prime}$ with $k<n$, there exists a null homotopy of the corresponding k-cell $[\mathcal{D}]: \Delta^{k} \rightarrow B\left(D, D^{\prime}\right)$ given by a chain of commutative diagrams

$$
\begin{equation*}
[\mathcal{D}] \rightarrow\left[\mathcal{D}_{0}\right] \leftarrow\left[\mathcal{D}_{-}\right] \rightarrow\left[0^{\mathcal{D}}\right] \leftarrow \emptyset \tag{2.3}
\end{equation*}
$$

which is compatible with face operators.
Let $\mathcal{D}^{\prime}=\left(S(0) \stackrel{\theta_{1}}{\leftarrow} S(1) \stackrel{\theta_{2}}{\leftarrow} \cdots \stackrel{\theta_{n}}{\leftarrow} S(n)\right)$ be an element of D_{n}^{\prime}. Then the diagram similar to (2.2), but $d_{0} S$ and $d_{1} T$ are replaced by

$$
d_{0} \mathcal{D}^{\prime}=\left(d_{0} S(1) \stackrel{\theta_{2}}{\leftarrow} \cdots \stackrel{\theta_{n}}{\leftarrow} d_{0} S(n)\right) \in D_{n-1}^{\prime}
$$

and $d_{1}^{n} S(0)$ respectively, yields a null homotopy of the n-cell [$\left.\mathcal{D}^{\prime}\right]$ which extends the ones already defined on its faces $\left[d_{i} \mathcal{D}^{\prime}\right]$. This implies that the null homotopy can be extended over $\left\|D^{\prime}\right\|_{n}$, and hence completes the proof of the lemma.

References

[1] J. Caruso, A simpler approximation to $Q X$, Trans. Amer. Math. Soc. 265 (1981), 163-167.
[2] D. Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91107.
[3] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
[4] \qquad , K-homology theory and algebraic K-theory, K-Theory and Operator Algebras (A. Dold and B. Eckmann, eds.), Lecture Notes in Math., vol. 575, Springer-Verlag, 1977, pp. 113-127.
[5] K. Shimakawa, Configuration spaces with partially summable labels and homology theories, Math. J. Okayama Univ. 43 (2001), 43-72.

Department of Mathematics, Okayama University, Okayama 700, Japan
E-mail address: kazu@math.okayama-u.ac.jp

