LABELED CONFIGURATION SPACES AND GROUP COMPLETIONS

KAZUHISA SHIMAKAWA

ABSTRACT. Given a pair of an partial abelian monoid M and a pointed space X, let $C^M(\mathbf{R}^\infty, X)$ denote the configuration space of finite distinct points in \mathbf{R}^∞ parametrized by the partial monoid $X \wedge M$. In this note we will show that if M is embedded in a topological abelian group and if we put $\pm M = \{a-b \mid a, b \in M\}$ then the natural map $C^M(\mathbf{R}^\infty, X) \to C^{\pm M}(\mathbf{R}^\infty, X)$ induced by the inclusion $M \subset \pm M$ is a group completion. This generalizes the result of Caruso [1] that the space of "positive and negative particles" in \mathbf{R}^∞ parametrized by X is weakly equivalent to $\Omega^\infty \Sigma^\infty X$.

1. INTRODUCTION

In [5] we assigned to any space Y and any partial abelian monoid M the configuration space $C^M(Y)$ of finite subsets of Y with labels in M. As a set $C^M(Y)$ consists of those pairs (S, σ) , where S is a finite subset of Y and σ is a map $S \to M$. But (S, σ) is identified with (S', σ') when $S \subset S', \sigma'|S = \sigma$, and $\sigma'(x) = 0$ if $x \notin S$. It should be noted that the topology of $C^M(Y)$ depends not only on the topologies of Y and M, but also on the partial monoid structure of M.

For any pointed space X let

$$C^M(\mathbf{R}^\infty, X) = C^{X \wedge M}(\mathbf{R}^\infty).$$

Here $X \wedge M$ is regarded as a abelian partial monoid such that $x_1 \wedge a_1, \dots, x_k \wedge a_k$ are summable if and only if $x_1 = \dots = x_k$ and a_1, \dots, a_k are summable in M, and in such a case we have $x \wedge a_1 + \dots + x \wedge a_k = x \wedge (a_1 + \dots + a_k)$.

Let $E^M(X) = \Omega C^M(\mathbf{R}^\infty, \Sigma X)$, where ΣX is the reduced suspension of X. As $C^M(\mathbf{R}^\infty, X)$ is a continuous functor of X, there exists a natural map

$$C^{M}(\mathbf{R}^{\infty}, X) \to \Omega C^{M}(\mathbf{R}^{\infty}, \Sigma X) = E^{M}(X).$$

The results of [5] imply the following.

(1) The map $C^M(\mathbf{R}^{\infty}, X) \to E^M(X)$ is a group completion, that is, induces an isomorphism of Pontrjagin ring

$$H_{\bullet}(C^M(\mathbf{R}^{\infty}, X))[\pi^{-1}] \cong H_{\bullet}(E^M(X))$$

for any commutative coefficient ring, where $\pi = \pi_0 C^M(\mathbf{R}^\infty, X)$.

(2) The correspondence $X \mapsto \pi_{\bullet} E^M(X)$ defines a generalized homology theory on the category of pointed spaces.

Date: September 20, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 55N20, 55P47, 55R80.

KAZUHISA SHIMAKAWA

Various homology theories arise in this way. For example, the stable homotopy and the ordinary homology theories correspond, respectively, to the subsets $\{0, 1\}$ and $\mathbf{N} = \{0, 1, 2, ...\}$ of the additive group of integers \mathbf{Z} . (The former is a consequence of the Barratt-Priddy-Quillen theorem and the latter is the Dold-Thom theorem.) On the other hand, the connective K-homology theory arises from $\operatorname{Gr}(\mathbf{R}^{\infty})_{J}$ consists of those tuples (V_{j}) such that V_{i} and V_{j} are perpendicular if $i \neq j$, and $\sum_{i \in J} V_{j}$ is defined to be the direct sum $\bigoplus_{i \in J} V_{j}$. (Compare [4].)

The aim of this note is to show that when M is embedded in a topological abelian group then we can take $C^{\pm M}(\mathbf{R}^{\infty}, X)$ as a group completion of $C^{M}(\mathbf{R}^{\infty}, X)$, where $\pm M = \{a - b \mid a, b \in M\}$. More precisely, we will show

Theorem 1. Let M be an arbitrary subset of a topological abelian group such that $0 \in M$. Then for any pointed space X the natural map $C^M(\mathbf{R}^{\infty}, X) \to C^{\pm M}(\mathbf{R}^{\infty}, X)$ induced by the inclusion $M \subset \pm M$ is a group completion.

This implies that there is a natural isomorphism of homology theories

$$\pi_{\bullet} E^M(X) \cong \pi_{\bullet} C^{\pm M}(\mathbf{R}^{\infty}, X).$$

In particular, let $M = \{0, 1\} \subset \mathbb{Z}$. Then $C^M(\mathbb{R}^\infty, X) = C(\mathbb{R}^\infty, X)$ is the standard configuration space of finite subsets of \mathbb{R}^∞ parametrized by X. On the other hand, $C^{\pm M}(\mathbb{R}^\infty, X) = C^{\pm}(\mathbb{R}^\infty, X)$ is the space of positive and negative particles introduced by Mcduff [2]. Caruso has shown in [1] that $C^{\pm}(\mathbb{R}^\infty, X)$ is weakly homotopy equivalent to $\Omega^\infty \Sigma^\infty X$ if X is locally equi-connected. By using Theorem 1 this can be generalized, both in M and in X, as follows.

Theorem 2. Let M be a finite set of integers such that $0 \in M$. Suppose that M contains at least one non-zero element and is stable under the involution $n \mapsto -n$. Then $C^M(\mathbf{R}^{\infty}, X)$ is weakly homotopy equivalent to $\Omega^{\infty} \Sigma^{\infty} X$ for any pointed space X.

To see this let d be the greatest common divisor of the positive members of M. Then there are positive integers k and l such that

$$\pm \{0, d\} \subset (\pm)^k M \subset (\pm)^l \{0, d\} \subset (\pm)^{k+l-1} M$$

holds, for we have $(\pm)^l \{0, d\} = \{0, \pm d, \dots, \pm ld\}$. By Theorem 1 we have

$$\pi_{\bullet}C^{\pm\{0,d\}}(\mathbf{R}^{\infty},X) \cong \pi_{\bullet}C^{(\pm)^{k}M}(\mathbf{R}^{\infty},X).$$

We also have

$$\pi_{\bullet}C^M(\mathbf{R}^{\infty}, X) \cong \pi_{\bullet}C^{(\pm)^k M}(\mathbf{R}^{\infty}, X)$$

because $C^M(\mathbf{R}^{\infty}, X)$ is a grouplike Hopf-space.

Thus $C^{M}(\mathbf{R}^{\infty}, X)$ is weakly equivalent to $C^{\pm\{0,d\}}(\mathbf{R}^{\infty}, X)$. But $C^{\{0,d\}}(\mathbf{R}^{\infty}, X)$ is homeomorphic to the standard configuration space $C(\mathbf{R}^{\infty}, X)$, hence its group completion $C^{\pm\{0,d\}}(\mathbf{R}^{\infty}, X)$ is weakly equivalent to $\Omega^{\infty}\Sigma^{\infty}X$ by the Barratt-Priddy-Quillen theorem.

Corollary 3. If M is a finite set of integers containing at lease one non-zero element then $\pi_{\bullet}E^{M}(X)$ is the stable homotopy of a pointed space X.

2. Proof of Theorem 1

In [5] we showed that there exist a CW monoid $D(X \wedge M)$ and a weak equivalence $\Phi: D(X \wedge M) \to C^M(\mathbf{R}^{\infty}, X)$ natural in X. Let us briefly recall the definitions.

Let $\mathcal{Q}(M)$ be the topological category whose space of objects is the disjoint union $\coprod_{p\geq 0} M^p$, and whose morphisms from $(a_i) \in M^p$ to $(b_j) \in M^q$ are maps of finite sets θ : $\{1, \ldots, p\} \to \{1, \ldots, q\}$ such that $b_j = \sum_{i \in \theta^{-1}(j)} a_i$ holds for $1 \leq j \leq q$. Let $\mathcal{Q}(M)$ denote the classifying space of $\mathcal{Q}(M)$, that is, the realization of the nerve $[k] \mapsto N_k \mathcal{Q}(M)$. Then $\mathcal{Q}(M)$ is a homotopy commutative monoid, because $\mathcal{Q}(M)$ is a permutative category with respect to the operation

$$(a_1,\ldots,a_p)\cdot(b_1,\ldots,b_q)=(a_1,\ldots,a_p,b_1,\ldots,b_q).$$

Given a pointed space X let $D(X \wedge M) = |S_{\bullet}Q(X \wedge M)|$ be the realization of the total singular complex of $Q(X \wedge M)$. Then $D(X \wedge M)$ inherits from $Q(X \wedge M)$ a monoid structure with respect to which the weak equivalence

$$D(X \wedge M) = |S_{\bullet}Q(X \wedge M)| \to Q(X \wedge M)$$

is a map of topological monoids. Note that $D(X \wedge M)$ is homeomorphic to the realization of the diagonal simplicial set

$$[k] \mapsto S_k N_k \mathcal{Q}(X \wedge M) = N_k \mathcal{Q}(S_k(X \wedge M)).$$

Let us define $\Phi: D(X \wedge M) \to C^M(\mathbf{R}^\infty, X)$ to be the composite

$$D(X \wedge M) = |N_{\bullet} \mathcal{Q}(S_{\bullet}(X \wedge M))| \xrightarrow{\Phi'} |S_{\bullet} C^{X \wedge M}(\mathbf{R}^{\infty})| \to C^{X \wedge M}(\mathbf{R}^{\infty})$$

where Φ' is a weak equivalence constructed in [5, §4]. Since Φ is a weak equivalence of Hopf-spaces, Theorem 1 follows from

Proposition 4. The natural map $D(X \wedge M) \rightarrow D(X \wedge \pm M)$ induced by the inclusion $M \subset \pm M$ is a group completion.

The rest of the note is devoted to the proof of this proposition.

Given a map of topological monoids $f: D \to D'$ let B(D, D') denote the realization of the category $\mathcal{B}(D, D')$ whose space of objects is D' and whose space of morphisms is the product $D \times D'$, where $(d, d') \in D \times D'$ is regarded as a morphism from d' to $f(d) \cdot d'$. Then there is a sequence of maps

$$D' = B(0, D') \rightarrow B(D, D') \rightarrow B(D, 0) = BD$$

induced by the maps $0 \to D$ and $D' \to 0$ respectively. Observe that BD is the standard classifying space of the monoid D and B(D, D) is contractible when f is the identity.

Let us consider the commutative diagram

KAZUHISA SHIMAKAWA

in which the upper and the lower sequences are associated with the identity and the inclusion $i: D(X \wedge M) \to D(X \wedge \pm M)$, respectively.

Lemma 5. The natural map $D(X \wedge M) \rightarrow \Omega BD(X \wedge M)$ is a group completion.

This follows from the fact that $D(X \wedge M)$ is a homotopy commutative, hence admissible, monoid.

Lemma 6. The lower sequence in the diagram (2.1) is a homotopy fibration sequence with contractible total space.

Proposition 4 can be deduced from this, because $D(X \wedge M) \to D(X \wedge \pm M)$ is equivalent to the group completion map $D(X \wedge M) \to \Omega B D(X \wedge M)$ under the equivalence $D(X \wedge \pm M) \simeq \Omega B D(X \wedge M)$.

Proof of Lemma 6. Let us write $D = D(X \wedge M)$ and $D' = D(X \wedge \pm M)$. Since D acts on D' through homotopy equivalences, the diagram

$$D' \longrightarrow B(D, D')$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow B(D, 0)$$

is homotopy cartesian by Proposition 1.6 of [3]. This implies that the lower sequence in the diagram (2.1) is a homotopy fibration sequence.

It remains to prove that B(D, D') is contractible.

Notice that B(D, D') is homeomorphic to the realization of the diagonal simplicial set

$$[k] \mapsto E_k = N_k \mathcal{B}(D_k, D'_k).$$

where $D_k = N_k \mathcal{Q}(S_k(X \wedge M))$ and $D'_k = N_k \mathcal{Q}(S_k(X \wedge \pm M))$. Hence B(D, D') is a *CW*-complex whose 0-cells correspond to elements of D'_0 , 1-cells to pairs from $D_1 \times D'_1$, and so on. In particular, a pair consisting of $(S \to \theta_* S) \in D_1$ and $(T \to \psi_* T) \in D'_1$ determines a path in B(D, D') joining $d_0 T$ to $d_1(\theta_* S \cdot \psi_* T)$.

Let ||E|| denote the thick realization of $[k] \mapsto E_k$. We shall show that the natural map $q: ||E|| \to |E| = B(D, D')$ is homotopic to the constant map. This implies that B(D, D') is contractible, since q is a homotopy equivalence. (See [3, Appendix A].)

Let $r: ||E|| \to ||D'||$ the map induced by the functor $\mathcal{B}(D, D') \to D'$, which takes a morphism (d, d') to the identity of $d \cdot d'$. Clearly the composite $jr: ||E|| \to ||E||$ is homotopic to the identity. Hence q is homotopic to the constant map if so is $qj: ||D'|| \to B(D, D')$.

Let $||D'||_n$ denote the image of $\coprod_{k \leq n} D'_k \times \Delta^k$ in ||D'||, and let $qj_n \colon ||D'||_n \to B(D, D')$ be the restriction of qj to $||D'||_n$. We construct a null homotopy h_n of qj_n by successively extending h_{n-1} for all $n \geq 0$.

For every element a of $\pm M$ choose $a^+ \in M$ and $a^- \in -M$ such that $a = a^+ + a^$ holds. If $S = (x_j \wedge a_j) \in S_0(X \wedge \pm M)^p$ is an element of $D'_0 = \|D'\|_0$ then we put

$$S_{+} = (x_j \wedge a_j^+) \in D_0, \quad S_{-} = (x_j \wedge a_j^-), \ \overline{S} = (x_j \wedge -a_j) \in D'_0.$$

4

Let $[S] \in B(D, D')$ denote the image of S under qj_0 . If we regard S_+ and S_- as elements of D_1 and D'_1 , respectively, via the degeneracy s_0 then the pair $(S_+, S_-) \in D_1 \times D'_1 = E_1$ determines a path in B(D, D') joining $[S_-]$ to $[S_+ \cdot S_-]$. On the other hand, the map $\nabla \colon \{1, \ldots, 2p\} \to \{1, \ldots, p\}$ such that $\nabla(j) = \nabla(p+j) = j$ $(1 \leq j \leq p)$ determines a path in $D' \subset B(D, D')$ joining $[S_+ \cdot S_-]$ to $[\nabla_*(S_+ \cdot S_-)] = [S]$. Hence we obtain a composite path in B(D, D') joining $[S_-]$ to [S], which we shall denote by the symbol

$$[S_{-}] \xrightarrow{\mu} [S]$$

Similarly, we have paths

$$[S_{-}] \xrightarrow{\gamma} [\mathbf{0}^{p}], \quad \emptyset \xrightarrow{\nu} [\mathbf{0}^{p}]$$

induced by the sequence $S_- \to \overline{S}_- \cdot S_- \to \nabla_*(\overline{S}_- \cdot S_-) = \mathbf{0}^p$ and the unique map $\nu : \emptyset \to \{1, \ldots, p\}$, respectively.

Now we have a path $\alpha(S): I \to B(D, D')$ joining S to \emptyset induced by the chain

$$[S] \xleftarrow{\mu} [S_{-}] \xrightarrow{\gamma} [\mathbf{0}^{p}] \xleftarrow{\nu} \emptyset.$$

Thus the correspondence $(S, t) \mapsto \alpha(S)(t)$ defines a null homotopy of qj_0 ,

$$h_0: ||D'||_0 \times I \to B(D, D').$$

We shall extend h_0 to a null homotopy over $||D'||_1$. Let $\theta: S \to T$ be an element of D'_1 , where $S \in S_1(X \wedge \pm M)^p$ and $T = \theta_*S \in S_1(X \wedge \pm M)^q$, and let $[\theta]$ be the composite of the 1-cell $I \to ||D'||_1$ corresponding to θ with $qj_1: ||D'||_1 \to B(D, D')$. Thus $[\theta]$ is a path in B(D, D') joining $[d_0S]$ to $[d_1T]$.

Then we have a diagram

$$\begin{bmatrix} d_{1}T \end{bmatrix} = \begin{bmatrix} d_{1}T \end{bmatrix} \xleftarrow{\mu} & \begin{bmatrix} d_{1}T_{-,0} \end{bmatrix} \xrightarrow{\gamma} & \begin{bmatrix} \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\nu} & \emptyset \\ \begin{bmatrix} \theta \end{bmatrix}^{\uparrow} & \xi^{\uparrow} & \psi^{\uparrow} & \xi^{0} \uparrow & \parallel \\ \begin{bmatrix} d_{0}S \end{bmatrix} \xrightarrow{1\cdot\nu} & \begin{bmatrix} d_{0}S \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\mu\cdot\gamma} & \begin{bmatrix} d_{0}S_{-,0} \cdot \overline{d_{1}T_{+}} \end{bmatrix} \xrightarrow{\gamma\cdot\gamma} & \begin{bmatrix} \mathbf{0}^{p} \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\nu} & \emptyset \\ \begin{bmatrix} d_{0}S \end{bmatrix} \xrightarrow{1\cdot\nu} & \begin{bmatrix} d_{0}S \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\mu\cdot1} & \begin{bmatrix} d_{0}S_{-,0} \cdot \mathbf{0}^{q} \end{bmatrix} \xrightarrow{\gamma\cdot1} & \begin{bmatrix} \mathbf{0}^{p} \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\nu} & \emptyset \\ \\ \begin{bmatrix} d_{0}S \end{bmatrix} \xrightarrow{1\cdot\nu} & \begin{bmatrix} d_{0}S \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\mu\cdot1} & \begin{bmatrix} d_{0}S_{-,0} \cdot \mathbf{0}^{q} \end{bmatrix} \xrightarrow{\gamma\cdot1} & \begin{bmatrix} \mathbf{0}^{p} \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\nu} & \emptyset \\ \\ \\ \begin{bmatrix} d_{0}S \end{bmatrix} \xrightarrow{1\cdot\nu} & \begin{bmatrix} d_{0}S \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\mu\cdot1} & \begin{bmatrix} d_{0}S_{-,0} \cdot \mathbf{0}^{q} \end{bmatrix} \xrightarrow{\gamma\cdot1} & \begin{bmatrix} \mathbf{0}^{p} \cdot \mathbf{0}^{q} \end{bmatrix} \xleftarrow{\nu} & \emptyset \\ \\ \\ \\ \\ \begin{bmatrix} d_{0}S \end{bmatrix} \xrightarrow{1\cdot\nu} & \begin{bmatrix} d_{0}S \end{bmatrix} \xleftarrow{\mu} & \begin{bmatrix} d_{0}S_{-,0} \end{bmatrix} \xrightarrow{\gamma} & \begin{bmatrix} \mathbf{0}^{p} \end{bmatrix} & \underbrace{\nu} & \emptyset \\ \end{bmatrix} \\ \\ \\ \end{bmatrix}$$

where ξ and ξ^0 are induced by the arrows

$$S \cdot \mathbf{0}^q \to \nabla(\theta \cdot 1)_* (S \cdot \mathbf{0}^q) = T, \quad \mathbf{0}^p \cdot \mathbf{0}^q \to \nabla(\theta \cdot 1)_* (\mathbf{0}^p \cdot \mathbf{0}^q) = \mathbf{0}^q$$

and ψ is the composite path

$$\begin{bmatrix} d_0 S_{-,0} \cdot \overline{d_1 T_+} \end{bmatrix} \xrightarrow{\mu \cdot 1} \begin{bmatrix} d_0 S \cdot \overline{d_1 T_+} \end{bmatrix} = \begin{bmatrix} d_0 (S \cdot s_0 \overline{d_1 T_+}) \end{bmatrix} \rightarrow \\ \begin{bmatrix} d_1 (\nabla (\theta \cdot 1)_* (S \cdot s_0 \overline{d_1 T_+})) \end{bmatrix} = \begin{bmatrix} \nabla_* (d_1 T \cdot \overline{d_1 T_+}) \end{bmatrix} = \begin{bmatrix} d_1 T_{-,0} \end{bmatrix}.$$

KAZUHISA SHIMAKAWA

One easily observes from (2.2) that there is a homotopy $[\theta] \simeq \emptyset$ which extends the one already defined on $\partial[\theta] = [d_0S] \cup [d_1T]$. Thus we can extend h_0 to a null homotopy h_1 over $||D'||_1$.

We need to extend the construction above to $||D'||_n$ for all $n \ge 0$. Suppose that for every $\mathcal{D} \in D'_k$ with k < n, there exists a null homotopy of the corresponding k-cell $[\mathcal{D}]: \Delta^k \to B(D, D')$ given by a chain of commutative diagrams

(2.3)
$$[\mathcal{D}] \to [\mathcal{D}_0] \leftarrow [\mathcal{D}_-] \to [\mathbf{0}^{\mathcal{D}}] \leftarrow \emptyset$$

which is compatible with face operators.

Let $\mathcal{D}' = (S(0) \stackrel{\theta_1}{\leftarrow} S(1) \stackrel{\theta_2}{\leftarrow} \cdots \stackrel{\theta_n}{\leftarrow} S(n))$ be an element of D'_n . Then the diagram similar to (2.2), but d_0S and d_1T are replaced by

$$d_0 \mathcal{D}' = (d_0 S(1) \xleftarrow{\theta_2} \cdots \xleftarrow{\theta_n} d_0 S(n)) \in D'_{n-1}$$

and $d_1^n S(0)$ respectively, yields a null homotopy of the *n*-cell $[\mathcal{D}']$ which extends the ones already defined on its faces $[d_i \mathcal{D}']$. This implies that the null homotopy can be extended over $||\mathcal{D}'||_n$, and hence completes the proof of the lemma. \Box

References

- [1] J. Caruso, A simpler approximation to QX, Trans. Amer. Math. Soc. 265 (1981), 163–167.
- [2] D. Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91– 107.
- [3] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
- [4] _____, K-homology theory and algebraic K-theory, K-Theory and Operator Algebras (A. Dold and B. Eckmann, eds.), Lecture Notes in Math., vol. 575, Springer-Verlag, 1977, pp. 113–127.
- [5] K. Shimakawa, Configuration spaces with partially summable labels and homology theories, Math. J. Okayama Univ. 43 (2001), 43–72.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY, OKAYAMA 700, JAPAN *E-mail address*: kazu@math.okayama-u.ac.jp