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§0. Introduction 

This note was based on the lectures given at the Daewoo Workshop on 
Differential Geometry held at Kwang Won University, Chunchon, Korea from 
13th till 17th July, 1992. 

The purpose of this note is to introduce along with the works by A. D. 
Alexandrov, Y. Burago, M. Gromov and Perelman [A], [BGP] the Geometry 
of Alexandrov spaces to non-specialists of Riemannian geometry including 
graduate students with minimum back ground on Riemannian geometry. An 
Alexandrov space is a complete and locally compact length space with cur
vature bounded below or above and introduced by A.D.Alexandrov. The 
Busemann G-spaces are special Alexandrov spaces admitting geodesic com
pleteness, where the notion of curvature bounded below or above are defined 
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by a similar (but different) manner. The most important problem discussed 
by these pioneers was if the differentiability assumption in Riemannian i t -
suits is really essential. This problem was one of the motivation of the fantas
tic book [B] by H.Busemann, and influenced to many geometers in 40-50th. 
decade who tried to prove Riemannian results under weaker differentiabil
ity assumptions. For instance, P.Hartman discussed geodesic parallel circles 
on C2-Riemannian manifolds of dimension two, S.B.Myers proved his fa
mous compactness theorem for complete C3-Riemannian manifolds whose 
curvature is bounded below by a positive constant, and V.A.Toponogov ex
tended the Myers compactness theorem to C2-Riemannian manifolds, using 
the most powerfull and important toohthe Toporiogov comparison theorem. 
Busemann extended the Cohn-Vossen theorem on the total curvature of com
plete open Riemannian 2-manifilds to the Busemann G-surfaces admitting 
total excess. Since 60th decade people discussed only C7oc-Riemannian man
ifolds and forgot this important problem, except perhaps A.D.Alexandrov 
and H.Busemann. This sleeping period lasted almost twenty years until a 
sudden break brought by M.Gromov. Inspired by a series of striking re
sults by Gromov, Alexandrov spaces got footlight because they are obtained 
as the Hausdorff hmits of complete Riemannian manifolds belonging to a 
certain class determined by geometry. An exciting recent work by Burago, 
Gromov and Perelman [BGP] is the most important one and contains many 
fruitful ideas. However it is not easy to read. The motivation of this note is 
to smooth their discussion in [BGP] and to make it understandable even for 
students. The discussion developed in sections 4, 5, 6, 7 and 9 of [BGP] is 
introduced here in sections 2, 3, 6, 7 and 8 with detailed proofs. The work 
of A. D. Alexandrov [A] is introduced in §§2,4. 

The organization of this note is stated as follows. In §1 we introduce length 
spaces and Hausdorff topology on a class of compact metric spaces. The Gro
mov precompactness theorem and convergence theorem are explained as the 
background of giving the motivation of this topic (compare [GLP], [F]). In §2 
Alexandrov spaces with curvature bounded below or above are introduced by 
using the same principle determined only by distance function. The notion 
of curvature bounded above was first introduced by A. D. Alexandrov [A] by 
using iZ/f-domain, which is different from ours. It turns out that they are 
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equivalent (see Theroem 4.7 in §4). In §3 angles are naturally introduced 
on Alexandrov spaces with curvature bounded below. This is based on the 
fact that geodesies on such an Alexandrov space do not have branch. In §4 
the notion of upper angles is defined for Alexandrov spaces with curvature 
bounded above. Examples of Alexandrov spaces with curvature bounded be
low or above are provided in §5. They all are obtained as the Hausdorff limits 
of Riemannian manifolds. The Toponogov comparison theorem is proved in 
§6. The idea of the proof of it is basically the same as the original one given 
by Toponogov. Some modifications are needed to adjust proof technique to 
Alexandrov space with curvature bounded below. A simpler than that in 
[BGP] will be exhibited here. The notion of strainers and strained points are 
introduced in §7, where we discuss the dimensions of Alexandrov spaces with 
curvature bounded below. In §8 we introduce the basic tools, such as tangent 
cones, the space of directions, cut locus and exponential map on Alexandrov 
spaces with curvature bounded below. 

I would like to express my thanks to Hyeong In Choi for his constant 
encouragement and to T.Shioya, M.Tanaka and T.Yamaguchi for reading 
the first draft of this note and for their criticisms, and also to Miss Chae 
Won Park for her nice typing skill. 

§1. Length Spaces 

A length space X is by definition a locally compact and complete metric 
space with the Menger convexity. The Menger convexity of X means that 
for distinct points x,y € X there exists a point z / t , y on X such that 
d(x, z) + d(z, y) = d(x, y), where d is the distance function. By iterating this 
procedure we finally obtain by completeness of AT a curve 7 : [0, d(x, y)] —• X 
joining x to y such that the length £(7) of 7 is d(x,y). Thus the Menger 
convexity is equivalent to state that there exists for every points x, y 6 X 
a curve 7 joining z to y whose length realizes d(x,y). We call such a 7 a 
geodesic. We also denote by zy a geodesic joining z to y. The Hausdorff 
limit of complete Riemannian manifolds is a length space, (see Lemma 1.2). 

We next define Hausdorff distance on the space of compact metric spaces 
(see [GLP]). For subsets A, B in a metric space Z we define 

dz
H(A,B) := inf{e > 0;B(A,e) D B, B(B,e) D A}, 
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where B(A, e) = {x 6 Z : d(x, A) < e} is an e-ball around A. For metric 
spaces X, Y and Z we define 

dH(X,Y) := •ml{dz
H{f{X),g{Y));f: X - Z 

and g := Y -* Z are isometric embeddings}. 

Here the infimum is taken over all metric spaces Z and all isometric embed
dings of X, Y into Z. It is easy to check that dH(X,Y) = dH(Y, X) > 0 
and dfi(X, Y) = 0 if and only if X is isometric to Y, and that the triangle 
inequality holds for dfj. Let X be the set of all isometry classes of compact 
metric spaces. Then (X, da) is a metric space. 

A subset Y C X is by definition an e-net iff B(Y,e) = \J B(y,e) = X. 

A subset Y C X is said to be e-discrete iff d(y1,y2) > e for every ft, j/2 G ^ 
with j/i ^ V2- Every bounded set £/ in a length space admits a maximal e-net 
for every e > 0 which is e-discrete. 

We now define the Lipshitz distance between metric spaces X and Y. Let 
dL(X,Y)be 

dL(X,Y):- ^ 

i n f / ; ^ y { | l o g s u P t l ^ / ^ / ^ ; : f f i ) ) | 

+ i w s u o M r . > ? r > » ? ? i \ 

-t-1 log sup n ^y2 dY(yi,vi) I/ 

co (if there is no homeomorphism 

/ : X -> Y Here the infimum is taken over all homeomorphisms between X and Y. The 
dL defines the metric of the set of all isometry classes of compact metric 
spaces. We see from definition that di(X, Y) = 0 if and only if X is isometric 
t o r . 

Proposition 1.1. Let {Xi} be a sequence of metric spaces converging to a 
metric space X with respect to the Hausdorff distance. For every e' > e > 
0 ana* for every e-net Af(e) in X there are e'-nets A/)(e') in Xi such that 
lim dLNi{e') = N{s)- Conversely, if sup{diampf,-), diam(X)\ < oo and if 
there exists for every e > 0 and for every e-net M{e) in X, an e-net M"i(e) in 
Xi such that lim dLNi{e) = -V(e), then lim dHXi = X. 

i-»oo i—.oo 
The proof is omitted here (see Proposition 3.5 in [GLP]). 
As a consequence of the above Proposition 1.1 we have the (see Proposition 

3.8 in [GLP]). 
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Lemma 1.2. If a sequence {Xi} of length spaces converges to a complete 

metric space X with respect to du then X is a length space. 

Proof. We only need to prove the Menger convexity of X. Let x,y € X be 

distinct points. For an arbitrary small positive e with d(x, y) ~%> e, there is 

a number t'(e) such that dn(Xi,X) < e for all i > «(e). There are isometric 

embeddings /,• : Xi —* Z{ and gi : X —* Z; for some metric space Z,- such 

that 

d^UiiXiUiiX)) < 2e. 

We then choose x,-,yj € .X, for t > t'(e) such that d//(/i(x,),y,(x)) < 2e 

and ^i/(/i(yi)>ff»(!/)) < 2e- If *« G lij/. is the midpoint of x,yj in Xi, then 

there is a point ze € X such that dZi(fi(zi),gi(ze)) < 2e. Therefore we 

have d(x,zt) = dz<(9i(x),gi(ze)) < dz(gi(x),fi(xi)) + dz(fi(xi),fi(zi)) + 

dZi(/,(*,), gi(ze)) < d(xit Zi) + 4e = \d{x{, R ) + 4e. 

Also we have 

«**,*) < ^ ( / . ( x . O . ^ W ) + «**'(*(*).*(»)) + **<*<»>,/«<*)) 

< <f(x, y) + 4e. 

Therefore, 

d (x ,z e )<-d(x ,y ) + 6£. 

Similarly <f(y, ze) < id(x, y) + 6e, and hence we find a point z = lim ze with 

d(x, z) = d(z, y) = \d{x, y). This proves Lemma 1.2. D 

The pointed HausdorfF convegence is discussed for noncompact length 

spaces. Let Xj and X be noncompact length spaces and Oj 6 Xj, o £ X be 

the base points. Then lim dB(Xj, Oj) = (X; o) means that for all sufficiently 
j—»oo 

large fixed r > 0 and for all ej > 0 with lime,- = 0, 

.lim dH(B(oj,r + ej), B(o,r)) = 0. 
J-'OO 
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A practical approach to the Hausdorff distance is stated as follows, (see [F]). 
A map / : Y —• Z between compact metric spaces Y and Z is called^an 
e-Hausiorff approximation map for e > 0 iff 

\dz(f(vi),Kyi)) -dY(yi,V2)\<£ for yi,y2 6 Y 

and 
B(f(Y),e) = Z. 

Here / is not reguired to be continuous. We then define 

dn(Y, Z) := inf ie > 0 : there exsit e-Hausdorff 

approximation maps / :Y -* Z and g : Z —*Y> 

Then dH satisfies that dH(Y,Z) = dH(Z,Y) > 0 and dH(Y,Z) = 0 if and 
only if Y is isometric to Z. Moreover dH(Y, Z} < 2{dH(Y, W) + dH(W, Z)} 
holds for all compact metric spaces. Then (X, da) gives a metrizable uniform 
structure. We may talk about the convergence with respect to da in X. 

Theorem 1.3. (The Gromov precompactness theorem). For given n > 2, 
K 6 R and D > 0 we consider the M(n, K, D) of all complete Riemannian 
n-manifolds where Ricci curvature is bounded below by (n — 1)« and whose 
diameter is bounded above by D. Then the closure of M(n,K,D) with 
respect to da in X is compact. 

We see that the Hausdorff limit of Riemannian manifolds belonging to 
M(n, K,D) is a length space. If the class is restricted then the Hausdorff 
limit of Riemannian manifolds becomes a Riemannian manifold, as stated 
(see [GLPJ, [GW], [Pe]), 

Theorem 1.4. (The Gromov convegence theorem). For given integer n > 2 
and K,D, V > 0 let M(n,n,D,V) C (X,dn) be the set of all complete 
Riemannian n-manifolds whose diameter is bounded above by D, volume 
bounded below by V and whose sectional curvature in absolute value is 
bounded a bove by n. Then every convergent sequence {Mi} in M(n, K, D, V) 
with respect to dn has a limit N which is a C°°-compact n-manifold with 
C1'"-Riemannian metric for 0 < a < 1. 

In view of the above theorems it is important for the study of curvature and 
topology of Riemannian manifolds to investigate the topology ofAlexandrov 
spaces. This also gives an important motivation for the study ofAlexandrov 
spaces. 
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FIGURE 2-1. 

§2. Alexandrov spaces 

Let X be a complete jpcally compact length sgace. For a tripple of points 
p, q, r £ X a geodesic triangle^(pgr) is by definition a tripple of geodesies 
joining these two points. We denote by Mm(k) the m-dimensional complete 
simply connected space of constant sectional curvature k. For a geodesic 
triangle A(pqr) in X we denote by A(pqf) a geodesic triangle sketched in 
M2(k) whose corresponding edges have equal lengths as A(pqr). If k > 0 
we always assume for a moment that the circumference of A(pqr) is less 
them 2n/y/k. This assumption in the case of positive lower curvature bound 
will be removed later in Theorem 6.2 by showing that every A(pgr) has its 
circumference not greater than 2ir/y/k if X has curvature bounded below by 
k>0. 

Definition 2.1. The definition of Curv(X) > k (Curv(A") < Jfc respectively). 
X is said to have curvature bounded below (above, respectively) by k (and 
hencefore this will be denoted by Curv(.X') > k (Curv(X) < k, respectively)) 
iff for every point x £ X there exists an open set Ux around x such that for 
every geodesic triangle A(pqr) whose edges are contained entirely in Uz the 
corresponding geodesic triangle A(pqf) sketched in M2(k) has the following 
property: For every point z 6 qr and for z € qr with d(q,z) = d{q,z) we 
have (see Figure 2-1) 

d(p,z) > d(p,z), (d(p,z) < d(p,z), respectively) 
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We denote by Lpqf the angle at q of A(pqr). For convenience we often 

write A(pqr) instead of A(pqf) and also Zpqr instead oi Apqf. 

We now discuss X with curvature bounded below. Let Curv(Jf) > Jfc. 

Let a : [0, a] —* X and 0 : [0,6] —• X be geodesies emanating from a point 

p = a (0) = /?(0) and A.t := A(a(s)pf3(t)) for 0 < 3 < a and 0 < t < b. Set 

q = a(a) and r = ^(6). Let 6k(s, t) be the angle at p of AMt := A(a(s)p/)(t)). 

Then the Alexandrov convexity property for angles at p is stated as follows. 

2,2. The local version of the Alexandrov convexity (concavity) 
property. 

For every x G X there exists an open set Uz around x such that for any 

geodesic triangle A{pqr) contained entirely in Vz having a and 0 the angle 

0k(s,t) is monotone non-increaing in the following sense (see Figure 2-2) 

0*(si,*i) > 0*($2,<2) for 0 < si < s2 < a, 0 < *! < t2 < b 

FIGURE 2-2. 

Notice that if a complete Riemannian manifold M has its sectional cur-

vaturelbunded below by k, then (the local version of) Alexandrov convexity 

property holds. 
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Proposition 2.3. Curv{X) > k holds if and only if the local version of 
Alexandrov convexity holds for every point p € X and for every geodesies 
a, 0 emanating from p. 

Proof. It is clear to show that Curv(X) > k implies the Alexandrov convexity-
property. Assume that the local version of Alexandrov convexity property 
holds. Let p € X and a,/? be geodesies emanating from p. It suffices to 
prove that if 0k(«r,f) > 9k(s2,t) for 0 < jsi < s2 < a, then <f(/9(t),a(si)) > 
d0(t),a(si)) for 6(si) € pa{s2) with d(a(si),p) = d(p,a(si)) = »1. 

Let S(p, s\) be the geodesic (smooth) circle in M2(k) around p with radius 
• j , and parametrized by angled € [0,27r]. By identifying 6 with the point 
w €&(p,s\) such that Z.wp,fi(t) = 6, we observe that 9 <-• d(J2(t),0) is 
strictly increasing in 0 6 (0,TT) (see Figure 2-3). 

FIGURE 2-3. 

If u 6 pa(s2) is the point of intersection with S(p,si), then d(/3(t),u) < 
d(J3(t),a(3i)) follows from the assumption that 0t(si,t) > 82{s2,t). H e r e w e 

use the property that 

(2-1) 0~d(6j(i)), 0e[O,7r] 

is strictly increasing, and 

(2-2) 0 >-* /.p0p(t) 

is strictly decreasing for t > s\. 
Thus the proof is complete. • 

Remark 2.1. It follows from definition that if kx > k2, then Curv(X) > fc^. 
implies Curv(Jf) >k2. > 
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FIGURE 2-4. 

Lemma 2.4. If Curv(X) > k, then any geodesic in X does not have a 
branch point. 

Proof. Suppose that there exists a branch point x of some geodesic, e.g., x 
belongs to an iterior point of geodesies pr and pq such that pr D pq = px 
and such that xr C pr, xq C pq and xrdxq = {x}. Choose points rj £ xr 
and 9i £ xq such that d(x, r\) = d(x, fj). Clearly, the corresponding triangle 
^(P?i r i ) ' s a nondegenerate isoceles triangle. If xi £ pf\ and £2 6 p^ffaie 
chosen such that <f(p,xi) = d(p,x) = d(p,x2), then rf(x!,X2) > 0 leads to a 
contradiction to the assumption Cxirv(X) > k. This proves Lemma 2.4. • 

We now discuss the case where X has curvature bounded above by k. It 
follows from Definition 2.1 that if A(pqr) C Ux and if q(s) £ pq and r(t) £ pr 
are chosen such that 

d(p,q(s)) = s £ [0,d(p,q)}, d(p,r(t)) = t £ [0,d(p,r)] 

and if q(s) £ pq and f(t) £ fp are chosen such that 

d(p,~q(s)) = s, d(p,?(t)) = t, 

then d(q(s),r(t)) < d(fts),r(t)) < dCq(s),~r(t)) ,(see Figure 2-4). 
A(pqr(t)) = A(p?f(r)), A(pqr) = A(pqf), A(pq(s)r(t)) = A(pq(s)f(t)) 
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Therefore if w*(a,i) is the angle at p of A(pq(a) r(ty, (e.g., w*(a,r) = 
Z.f(t)pq(s)), then u>*(s,r) is monotone non-decreasing in s and t, and hence 
the limit of Wjt(s, t) as a, t —• 0 exists. We define the upper angle 2 rpq as 
this limit in §4. However upper angles do not have nice properties because 
of the existence, of branch points on geodesies. The behavior of geodesies on 
an Alexandrov space with Curv(X) < k is quite different from the case of 
lower curvature bound. 

The monotone non-decreasing property of iut(s,i) in s and t is called the 
local version of the Alexandrov concavity property for pq and pr. We do not 
have the global version of the Alexandrov concavity property. The following 
Proposition is clear and its proof is omitted. 

Proposition 2.5. Curv(X) < k is equivalent to state that the local version 
of the Alexandrov concavity property holds for every point x 6 X and tor 
every geodesic xy and xz contained in Uz. 

Lemma 2.6. (The existence of fundamental length). If Curv(X) < k, then 
any points p,q £ Ux for some x € X are joined by a unique geodesic. In 
particular X does not admit sufficiently small geodesic biangles. 

Proof. Suppose a and /? are distinct geodesies joining p to q in Ux. Here p and 
q are chosen in 6-ball B(x,S) around x, where B(x,2S) is contained entirely 
in Ux- If r G /?, r' (E a are the midpoints of them, then a contradiction is 
derived. In fact the corresponding geodesic triangle A(pqr) is degenerate in 
M2(k), and hence d(r, r') < d(f,f') = 0. This proves Lemma 2.6. • 

Lemma 2.7. (The existence of strongly convex balls). Let Curv{X) < k. 
Let R > 0 be a positive constant (R < •K/2y/k, if k > 0) with the property 
that B(x, 2R) C Ux. Then B(x, R) is strongly convex in the sense that any 
points in B(x,R) can be joined by a unique geodesic lying in B(x,R). In 
particular, the distance function to x is convex in B(x, R). 

The convexity property of <f(x, •) on B(x, R) is a direct consequence of the 
Definition 2.1 of Curv(X) < k, because a continuous midconvex function is 
convex. The proof is omitted. 
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§3. Angles 

Throughout this section let X be an Alexandrov space with Curv(JT) > k 
for some A; 6 R. Fbr two geodesies a and /? emanating from a point p, 
the monotone property of the angle 6k(s, t) at p of the triangle A(pa(s)^(t)) 
corresponding to A(pa(j)/9(t)), for sufficiently small s, t implies the existence 
of the limit of 0*(s,t) as s,t —• 0. This makes it possible to define a natural 
angle at p between a and /?. ,. 

Definition 3.1. The angle Lqpr for q 6 a, r 6 P is defined by 

Z?pr:=^limo^(5,r) . • 

We observe from Definition 3.1 that 

* , * * » ) • » « * • • > - « » - { ( f t ^ P 2 ) • 

Moreover, 

(3-1) 2 * ~ ' \ ( l im *£$M$\ = foj * ( . , , ) . 

Remark. If r is an interior point of a geodesic pq, then Zprq = ?r. We shall 
prove in Lemma 3.5 that if a: 6 X\pq then Z xrp + Z axj = n. 

Making use of the property of angles as stated in the above Remark, we 
have the local version of the Toponogov comparison theorem. 

Theorem 3.1. (The local version of the Toponogov theorem). IfCurv(X) > 
k, and ifA(pqr) is sufficiently small, then 

Zpqr > Zpqr, Zqrp > 2qrp, Zrpq>2rpq. 

The proof of Theorem 3.1 is straightforward and omitted here. We also 
have an equivalent statement of Theorem 3.1 which is called hinge theorem. 
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Theorem 3.1'. (Hinge theorem). Let Curv(X) > k and a : [0,a] —• X, 

Q : [0,6] - • X be geodesies with a(0) = 0(0). If a* : [0,a] -» M\k), 

/?* : [0,b] -* M2(Jt) are geodesies with a*(0) = /?*(0) and Z(d*(0),/3*(0)) = 

Aa(a)pP(b), then 

d(a(s),p(t))<d(a'(3),p*(t)) 

f, -, I 
for all s€ [0, a] and t € [0,6]. 

In Riemannian geometry the local version of the Toponogov theorem is 

equivalent to the Alexandrov convexity property if the sectional curvature 

of a complete Riemannian manifold is bounded below by k. However, an 

angle between two geodesies in an Alexandrov space is not defined without 

curvature assumptions. Therefore Theorem 3.1 is not equivalent to the (local 

version of) Alexandrov convexity property. By,assuming the existence of 

angles with certain properties, we shall prove the 

Proposition 3.2. Assume that a length space X has the property that the 

angle Z pqr at q of qp and qr exists in such a way that if p is an interior 

point ofqr, then Z xpq + Z xpr = n holds for all x € X. Assume farther that 

for every x 6 X there exists an open set Ux around x such that if A(pqr) is 

contained entirely in Uz, then 

Lpqr > Zpqr, Z.qrp > Zqrp, Lrpq > Zrpq. 

Then for every point m S qr we have 

d(p,m)>d(p,th), 

where rh 6 qr is taken such that d(q,m) = d(q,m). 

Proof. Suppose that d(p, m) < d(p, m) holds for some point m € qr and for 

some A(pgr),(see Figure 3-1). 
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FIGURE 3-1. 

Apqr = A(pqf), Apmr m A(pmf), Apqm = A(pqm) 
It follows from what we have supppsed that m and m are contained in 

A(pqf), and hence (2-1) implies that Zpmq < Zpmq. Therefore the local 
version of the Toponogov theorem implies that Zpmq < Zpmq, and thus 
we have Zpmq > Zpmq. Similarly we have Zpmr > Zpmr from Apmr 
and A p r m . Summing up these two angles gives 

•K = Zpmr + Zpmq > Zpmr + Zpmq = n, 

a contradiction. This proves Proposition 3.2. • 

The angles of X with Curv(.X') > k has the following properties. 

Lemma 3.3. Let {pi},{?i}, {r,} be sequences of points in X such that 
limp, = p, timqt = q andlimr, = r and such that limp,g,- = pq, limp.r, = pr, 
lim fjTj = qr. Then we have 

Zqpr < lim iadZfiPfTi-
i—>oo 

Proof. For an arbitrary fixed e > 0 we choose a sufficiently small 6 > 0 such 
that if y € pq and z g p r satisfy 6 > d(p, y) =: 3, 6 > d(p,«) =: <, then 

**(*,*) <Z ? pr<0 f c ( s , * ) -M. 
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FIGURE 3-2. 

Since piqi and pjf,- both converge to pq and pr there exists a number ie such 
that if t > te, and if y< £ p.-j,- and Z{ G p,Tj are taken such that s = <J(p,-,yj), 
t = d(pi,Zi), then 

\9i(s,t)-8k(s,t)\<e for all s,t&{0,6). 

Here Ok(s,t) is the angle at p"j of A(p,g,z,). Therefore we get 

lim 6'k(s, t) = Z qipiu > 0k(s, t) > 0k(s, t) - £ > Z qpr - 2e. 

This concludes the proof since e > 0 is arbitrary. • 

Lemma 3.4. Let a, /?, 7 be geodesies emanating £x>m p £ X , and take a 
point a on a, b on /? and c on 7. Tien 

Z ape < Z ap6 + Z 6pc. 

Proof. From the definition of angles we see that they do not exceed 7r. Thus 
we only need to prove the case where Z ap6+Z 6pc < 7r. All geodesic triangles 
under consideration are sufficiently small and shrinking to a point p. In view 
of the equation (3-1) we may consider corresponding triangles sketcked on 
R2 . For a sufficiently small s > 0 we take a triangle A(pa(s)f(s)) on R2 

such that d(p, a(s)) = d(p, r(s)) = s and Za(s)p7(a) = Zap6+ Zbpc (see 
Figure 3-2). 
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Let fi{t) 6 6(5)7(5) be taken such that 

/.&{s)pp{t) = ^apb, ty(s)pp(t) = Ibpc. 

Notice that A(p 6(5)7(5)) forms a nondegenerate isosceles triangle because 
of Z apb + Z bpc < ir. 

Notice also that t/s is constant. Then 

and 

rf(5(s), p{t)) + d0(t), 7(5)) - d(a(s), 7(5)). 

We now denote by ft(5, tf, w) the angle of a geodesic triangle in M2(k) with 
edge lengths 5, t and u opposite to the edge of length u. Then 

limft(e5,er,eu) = ft(5,t,u) and 0o(es,et,eu) = 0o(s,t,u). 

With this notation we see 

Lapc= lim 0k(s, s,d(a(s),7(5))) = lim ft(1,1, J & & & 2 2 ) , 

and 

H m </K5),7(*)) $ . fe(MgLt4flik2@l 

_ <f(6(5),/?(*)) | <f(i(*),7(*)) 

_ <f(6(5), 7(5)) 
5 

Therefore we have 

Z a p C < f t ( l , l / ^ 5 ^ ^ ) = Z a p 6 + Z6Pc. 5 

This proves Lemma 3.4. • 
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Lemma 3.5. If r S X is an interior point of a geodesic pq and if x € X, 

xj*r, then 

/.prx + Lqrx = ir. 

Proof. It follows from Lemma 3.4 that Lprx + /.qrx > /prq = TT. Here 

/prq = ;r is trivial from the definition of angles. Thus we only need to show 

Z prx + / qrx < ir. 

For sufficiently small a > 0 we choose points p,, q, € pq and x, € rx such 
that d(r,pt) = d(r,qt) = d{r,x,) = s. Let A(p,q,x,) = A(p,qtxt). Let 
f 6 p,q, be the midpoint of ptq, and set A(p,rxj) = A(p,fx't), A(q,rx,) = 

A(q, fx") (see Figure 3-3). From assumption for curvature we see 

d(f,x.) < d(f,x',), d(f,x.) < d(f,x'i). 

M\k) 

i' i" 

FIGURE 3-3. 

By means of (2-1), d(q„x,) < d(q,,x't) and d(p„x,) < d(p,,x"). These 

inequalities mean that A(p,rx',) and A(q,fi") do not intersect at their 

interior points, and hence /ptfx\ + /q,fx" <»r holds for all sufficiently 

small s > 0. Therefore Zprx + Z qrx = lim(Zp, fx'f + Z q,fx") < n. This 

proves Lemma 3.5. • 
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FIGURE 3-4. 

Lemma 3.6. For three distinct geodesies pa, pb and pc we have 

Z apb + Z bpc + Z cpa < 2ir. 

Proof. Fix interior points 6' of pb and c' of pc and a, of pa with d(p,aa) = s 
for small s > 0, (see Figure 3-4). Then Lemma 3.4 implies that Z b'a,d < 
b'a,p + Z c'a,p and hence Z aa,b' + Z aa,c' + Z b'a.c1 < (Z aa,b' + Lb'a,p) 4-
(Z aa,d + Z c'a,p) = 2ir. The last equality is due to Lemma 3.5. 

Lemma 2.4 now implies that lim,_0 b'a, = b'p, lim,_^) c'a, = dp. £ — 
Apply Lemma 3.3 to {b'a,} and {c'a,} to obtain that 

liminf Laa,b' > Zap&' (= /.apb) 

lim inf Z aa,c' > Z ape' (= Z ape) 

U m i n f Z 6 ' a , c ' > Z 6 ' p c ' ( = ^ W - , 

•~,, <^ ; y 
This proves Lemma 3.6. D &• <• 

Consider the following property for a length space X. 

The Four Points Property. For every x 6 X there is an open set Uz around 
x such that if a, b, c, d G X and ab, be, cd, da, ac, bd C Ux then 

Zbac + lead + Zdab < 2ir. 
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A(pa:r) = A(p£'f ' ) , A(pzg) = A(px'g'), A(pqr) = A(pqf) 

FIGURE 3-5. 

lemma 3.7. Let X be a length space. Then Curv(X) > K is equivalent to 
the Four Points Property. 

Proof. Assume that X satisfies Curv(X) > K. Then the Alexandrov con
vexity property holds, and the local version of the Toponogov comparison 
theorem is valid. Therefore we have 

Zbac + Zcad+Zdab</1 bac + /.cad + Z. dab. 

Since the right hand side of the above inequality does not exceed 2x by 
Lemma 3.6, the Four Points Property is satisfied. 

Assume that the Four Points Property holds on X. Take an interior point 
x £ qr for a sufficiently small triangle A(pgr). From assumption it follows 
that 

Zpxq + Zpxr + 2 qxr < 2x. 

Since A(qxr) is degenerate, so is A(qxr) and thus we observe Zqxr = TT. 
The above inequality reduces to 

Zpxq-r Zpxr < tr. 
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Suppose that d(p,x) < d(p,£), for some x € qr and x e qr with d(q,x) = 

d(q,x), where A(pgr) = A(pqr). Let A(pxr) = A(px'f'), A(jpxq) = 

A(px'q') and f £ p i be chosen such that d(p,x) = d(p,£'), (see Figure 

3-5). Cosine rule implies 0 = coaZpxq + cospxr. From d(p,x') < d(p,x) 

it follows that cosZpx'q1 + cos /Lpi'f' < 0, and hence Zpxq + Zpxr = 

Zpx'q' + Lpx'f' > x, a contradiction. D 

Remark. In 2.7;[BGP] it is stated that a length space X has the property 

Curv(X) >k'\i and only if every point x € X has a neighborhood Ux with 

the property that if p, q, r,z 6 Ux are any points then they are embedded 

isometrically into M3(H') for some k' > k. Here the k' depends on the choice 

of four points in Ux, (for detail, see [ABN]). This property is not discussed 

here since it is not used in this note. 

§4. Upper Angles 

The work of A. D. Alexandrov [A] is introduced to define upper angles 

between geodesies on a length space. Throughout this section let Y be a 

length space and p, q, r € Y be distinct points. Geodesies emanating from p 

and joining to q and r are expressed by s •-» q(s), t i-f r(r) where a and t are 

arc length parameters. 

For an arbitrary fixed constant k let A(pq(s)r(t)) = A(j>,q(s)r(t)) be 

the triangle in M2(k) corresponding to A(pq(s)r(t)). Then the upper angle 

Z(pq,pr) at p of pq and pr is defined by 

Apq,pr) := ^lin^ sup 2?(s)pr(<). 

It follows from definition that 2(pq,pr) € [0, ir] and this angle is independent 

of k. With these notations we first prove the 
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Lemma 4.1. if we set 

cosZq(s)pr(t)=:S-d^r^+e, 

then, lim e = 0. 

Proof. By setting w := Zq(s)pr(t) and u := d(r(t),q(s)) we use the cosine 

rule for hyperbolic trigonometry to obtain 

cosh kt — cosh fcu cosh fct(cosh ks — 1) 
sinh ks • sinh kt sinh fcs • sinh kt 

Making use of cosh kt — cosh ku — 2 sinh afegl s m h t^t^"tl^ and 

coshfcs — 1 = 2 sinh2 *r, sinhfcs = 2 sinh ^ cosh ^ the above equations 

reduces to 

2 sinh ^ ^ - • sinh ^ ± 2 i s i n h £ . cosh Jb 
cosw = * H - . 

sinh fcs • sinh Art sinh ks • cosh 8 

Because of t —• 0 and 4 —• 0 the second term of the right hand side in 

the above equation tends to zero. Since |a — u| < t and |1 — *| = { —» 0, 

,. s i n h ^ i , J ,. 2 s i n h ^ p i s - u ^ t „ 
we get hm —. , — = 1 and hm —-*— = . Therefore if 

»—o sinhfcs «—o sinhfct t 
e := cosw — *?*, then lim e = 0. This proves Lemma 4.1. D 

*—o 

We now want to prove the 

Lemma 4.2. 

AM,!") = Um sup Zr(t)pq(s). 
<->° .€[o,rf(j,,,)] 

A basic inequality used in this section is: 

(4-1) s~s-<f(r (<) , 9 (s ) ) , se[0,d(pq)} 
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is monotone nondecreasing for each t € [0, d(p, r)]. 

Lemma 4.1 and (4-1) imply that 

(4-1)* Zr(t)pq(s) < Zr(t)pq(s'), 0 < ,' < t < d(p, q). 

Proof. In view of above discussion we observe that 

2(p9,pr) < Em \ sup Zr(t)pq{s) \ . 
«-° [»€[o,d(p,i)] ) 

For the proof of Z(pq,pr) > limt_o { 8UP*e[o,<*(p,j)] ^ r ( 0 w ( s ) f i W e choose 
for t > 0 and e(i) J. 0 an s(t) > 0 such that 

\Zr(t)pq(s(t)) - sup Zr(t)pq(s)\ < e(t). 
«eM(j>«)I 

If there exists a decreasing sequence {ti} I 0 such that Um diA = 0, then 

we have 

AP9,pr) = ilimjsupZr(r)pg(«) 

> .lim \Zr(t)pq(s(ti)) - e(tij\ 
I—•oo L J 

= Em \ sup Zr(t)pq(s) \ 

Therefore, we only consider the case where there exists a positive number 
a > 0 such that s(t) > a for all r > 0. It suffices to prove 

Avi^pr) > lim /.r{t)pq(s). 
<—o 

If * i—• s(i) is chosen so as to satisfy s(t) > 0, lim s(t) = 0 and lim —r-r = 0, 
' <—0 V ' «—0 S(t) 

then we may consider s(t) >a> s(t) for all small t > 0. Then (4-1) and the 
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cosine rule of plane trigonometry imply the existence of an e" = e"(t) > 0 
with lim e"(t) — 0 such that 

t—o v 

Zr(t)pq{s(t))<Zr(t)pq(s(t)) + e". 

By taking the limit of the above inequality, we have 

Em {sup 2r{t)pq(s)J < Em {2r(t)pg(s(f)) + e"(t)} 

< Z(pq,pr). 

This proves Lemma 4.3. • 

As a direct consequence of the above discussion we have the 

Corollary 4.4. With the same notations as in Lemma. 4.2 we have 

{i)<m2to,r)<te"**?,'ii)) 

£°o 
(2) For every fixed s G [0, d(p, q)] we have 

—d(q(s),r(t)) >cosZ(pq,pr). 
at «=o 

(3) If x is an interior point of pq and ify ^ x, then Zpxy + Zqxy > x. 
(4) If pa, pb and pc are geodesies emanating from p, then 

2 apb + Z bpc > Z ape. 

Proof. The proofs of (1), (2) are clear from the discussion in the proof of 
the previous Lemma, and omitted. To prove (3) we choose sufficiently small 
s,t > 0 such that p, =: p(s) £ px, q, =: q(s) G qx, yt =: y(t) G xy as in 
Figure 3-3. For a fixed s > 0 we have from (1) 

y . 7 ^ y 2s-{d(p(s),y(t)) + d(q(s),y(t))} ^ n cos Zpxy + cos Z qxy < hm < 0. 
t—o t 
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For the proof of (4) we take a(s) € pa, 6(t) G pb, c(u) 6 pc such that 
d(p,a(s)) = s, d(p,b(t)) = t, <f(p,c(u)) = u, and corresponding points 
in M2(k) so as to satisfy A(pa(s)b(t)) m A(pa(s)S(t)), A(p6(t)c(u)) = 
A(p6(t)£(u)). Then 

2 apb + 2 6pc = lim sup Z 5(«) p 6(t) •+• lim sup Z 6(i) p c(u). 

If t is chosen so as to satisfy S(t) € a(s)c\u), then 

2 ap6 + 2 6pc > lim sup Z a(s)p c(u). 

If A(pa(s)c(u)) = A(pa(s)c(t*)), then d(a(s), c(u)) > d(a(s), c(u)) implies 
that 

lim supZ5(a)pc(u) > lim sup Z a(*)p c(u) = 2apc. 

This proves Corollary 4.4. • 

Lemma 4.5. For a nondegeneraie geodesic triangle A(pqr) in X we have 

jtZr(t)pq(s) 

^A^Ti tfJk<0 

> cos Zpg(s)r( t)- cos Zpq(s)r{t) I "" ' if Jfc = 0 

smZ(p?(s)r(t)) • 
-77- if A: > 0 

sin v * * 
Proo/. Let A(pq(s)r(t)) be the corresponding. triangle to A(pq(s)r(t)) 
sketched in M\K), where K = -Jfc2 < 0, K = Jfc2 > 0 or K = 0. Let 
5 ,^ ,7 be upper angles at p, g(s), r(<) between pq(s) and pr(r), ?(s)p and 
q(s)r(t), r(t)q(s) and r(t)p respectively and aK,0K,'1K the corresponding 
angles of A(pg(s)r(r)) in M\K). Set • = z(s,t) = d(q(s),r(t)). 

Then these angles are functions on s and t and we assert 

g g j r ^ C M g - C M f r t . (if AT < 0) 
9s sin/?*- sinhta 

cos ff — cos /?y 1 
sin^K s 

cosyff — cos pi Jfc 
sin/?*, sinfcs 

( i f j r - o ) 

(if A" > 0) 
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For the proof of assertion we may set z = ks, y = kt, z = kz. The 
hyperbolic cosine rule implies 

coshz = coshz -coshy — sinhz • sinhy -cosa^. 

The monotone property of z implies that z = z(s, t) is difFerentiable almost 
all s and t values. Thus 

sinhz • — = sinhz • coshy — coshz • sinhy • cosajf 
ox 

+ sinh z • sinh y • sink a # • - 5 — 
ox 

makes sense for almost all s and t. 
The second term on the right hand side of the above equation can be 
, , , coshz-coshy— coshz , . 

replaced by — , and hence 
sinhz 

dz . , . , , coshz(coshz coshy — coshz) 
•g- • smhz = sinhz • coshy r-t 
ox sinhz 

-(- sinh z • sinh y • sin <*K • -g— 
ox 

Using again the cosine rule, 

cosh y = cosh z • cosh z — sinh z • sinh z • cos fa 

and substituting this into the right hand side, 
dz . , sinh z • sinh z • cos fa . , . , . dajc 
•5- -sinhz = — hsmhz -sinhy -s ina^ • - 5 — . 
ox sinh z ox 

The sine rule implies that 

sinhy • sinajr = sinhz • sin/?K, 

and hence 

| ^ = cos fa + sinh z • sin fa • ^ ftt&fl 

From Corollary 4.4, (2) we have 

dz ^ a 
- > c o s / ? . 

Therefore by rewriting z = ks, 

dotK ._ cos 3 — cos 3K k 
ds sra/?K sinfca' 

This proves Lemma 4.5. D 
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Lemma 4.6. For a non-degenerate geodesic triangle A(pqr) and for every 
e > 0 there exists a constant a = a(e, K, A) such that if 

Zpq(s)r(t) - Zpq(s)r(t) > e, 

then there exists an s' G (0, s) such that 

Zq(s)pr(t) - Zq(s')pr(t) > a log -J. 
• *• 

Proof. Setting 0K •*= Zpq{s)r(t) and @ := 2pq(s)r(t) we see from Lemma 
4.5 that 

cos/5 -COS/3K ^ cos(/?y —e) — cos0K 
sin (3K smpK 

= sin e — (1 — cos e) cot /?#. 

From /?# > £ follows — cot fig > — cot e, and hence 

:— > sine — (1 — coselcote = t a n - . 
sinfo- v ' 2 

Therefore we get 

and in particular we find a constant 6 > 0 such that 

ks 
. , , > 6 for all a € [0, d(p, q)], mem ks 

and hence 

We conclude the proof by 

/

• j 

a • —(log$)ds = a(logs - logs'). 

D 
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Theorem 4.7. For every geodesic triangle A(pqr) let A(pqr) be the cor
responding triangle sketched in M2(K) (for K = — fc2,0 or k2). Let a := 
a(s,t), J3(s,t), l(s,t) be upper angles of A(pq(s)r(t)) at p,q(s),r(t) and 
<XK(s,t), /9K(«,*), 7K(*I*) *fle corresponding angles of A(p,q(s)r(t)). If 

v := lub{a{s,t) + 0(3,t)+j(s,t) - (aK(s,t) + /3K(s,t) + 7 K ( M ) ) 

:0<s<d(p,q), 0<t<d(p,r)}, 

then 

a(s,t)-aK(s,t)<u for all (s,t) € [0,d(p,q)] X [0,d(p,r)]. 

Proof. If A(pqr) is degenerate, then the conclusion is obvious. We may 
assume that A(pqr) is nondegenerate. Suppose the conclusion is false. Then 
there are t > 0 s > 0, and e > 0 such that 

a(s,t)-aK(s,t)>v + 2e. 

By assumption we have 

{pK{s, t) - ${s, t)) + (7*(a, t) - 7(3, <)) > a(s, t) - aK(s, t) - v > 2e, 

and hence either 
pK(s,t)-P(s,t)>e 

or else 
7K(s,t)-y(s,t)>£. 

Lemma 4.6 and 7K(S, t) — 7(3, t) > £ imply the existence of a constant a > 0 
and t' e (0,t) such that 

aK(s,t) - aK(.«,t') > a l o g - > 0, 

/ * -
and similarly from fli(s,t) — /?(«,<) > e implies the existence of a constant 
a > 0 and s' € (0, s) such that 

«ff(^t) ~ <xK(s',t) > alog —. 
8 
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BytakiBg-thf m^nn wJ—, we find an a' 6 (0, a) and t' € (0, r) such that 

(4-2) <**-(*, f) - <**(*', t') > a log ̂  > 0. 

Thus we see 

a(s', t') - aic(s', t') > a(s, t) - aK(s, t)>u + 2e. 

The triangle A(pq(s')r(t')) plays the same role as A(pq(s)r(t)), and the above 
argument shows the existence of t" € (0, t') and s" € (0, s') such that 

(4-3) a(s", t") - aK(3", t") >u + 2e 

and such that 

(4-4) aK(s, t) - aK(s",t") > alog ~ y . 

In view of (4-1)* there exists a positive constant C > 0 which is the lower 
bound of all the product s"t" with the properties (4-3) and (4-4). Then there 
exists a sequence of pairs (sn, tn) of positive numbers such that lim sntn = 

n—»oo 
C, and {s„}, {t„} are decreasing and satisfy (4-3) and (4-4). By setting 
S m lim an and i = lim f „ we see from continuity of logarismic function 
that (s,i) satisfies (4-3) and (4-4). The above argument shows the existence 
of S1 < s and P < i such that (J*, F) fulfills (4-3) and (4-4), a contradiction 
to the choice of C > sT. This proves Theorem 4.7. • 

Alexandrov defined in [A: §3] the notion of curvature of a length space Y 
bounded above by k as follows. 

Definition 4.8. The curvature of Y is bounded above by k iff at each point 
y 6 Y there exists a convex neighborhood Ut in such a way that if A(pqr) is 
contained entirely in Uw, then 

Zqpr + Zpqr + Zqrp - (Zqpr + Zpqr + Zqrp) < 0 

(If k > 0 then the circumference of every geodesic triangle is assumed to be 
less than 27c/y/k). 
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A(pqr) = A(pqf), A(pr*) = A(pf'S'), A(pg4) = A(pgS') 

FIGURE 4-1. 

We now want to show that a length space Y satisfying Definition 4-8 is 
equivalent to Y satisfying the Alexandrov concavity property. The Alexan
drov concavity property implies Definition 4.8 because the function a^s, t) 
is monotone nondecreasing and Zqpr = Ok(d(pq),d(pr)) > Zqpr. Assum
ing Definition 4.8 for Y, Theorem 4.7 yields Zqpr < Zqpr, Zpqr < Zqpr 
and Zqrp < Zqrp. H follows from Corollary 4.4-(3) that if x 6 qr, then 
A(pqx) = A(pqx') and A(pxr) = A(pi ' f ' ) has the property that (see Fig
ure 4-1) 

x < Zpxr + Zpxq < Lpi' f + Z.px' q, 

and hence we have 
d(p, x) < d(p, x) 

for x e qr with d(x,q) = d(x,q). 

Remark. It turns out that we only need to take the limit in the definition of 
upper angle for an Alexandrov space with curvature bunded above, as stated 

Z qpr = lim Zq(s)pr(t). 

In fact the monotone property of a*(s,i) for s € (0,<f(p,g)], t € (0,d(p,r)] 
has been established by showing the equivalence of Definition 4.8 and the 
Alexandrov concavity property. 
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For a sufficiently small geodesic triangle A = A(pqr) in Y and for a 
constant k we denote by A* a geodesic triangle in M2(k) correspondingjo 
A, and by <r(A*) the area of A* C M^Jfc). We denote the angles by 

a:-Zqpr, fi : = Zpqr, j : = 2qrp 

ak : = Zqpr, 0k : = Zpqr, 7* : = Zrqp. 

Let Sk(A) •*= a + 0 + 7 — (ak + Pk + 7*)- With there notations an equivalent 
condition for Y to have curvature bounded above is stated as follows. 

Theorem 4.9. For a length space Y, the following (a) and (b) are equiva
lent. 

(a) CurMX) < K. 
(b) For every point y 6 Y there exists a strongly convex neighborhood Uy 

around y in such a way that for every sequence {Av} of geodesic triangles in 
Uy shrinking to a point p€Ut 

hm sup ; '? < K. 

Remark. From definition we observe ^o(A) — Sk(A) = ctk + 0k + 7* — 7r, and 
hence from the Gauss-Bonnet theorem we have 

K-<r(Ak) = 60(A)-Sk(A). 

Proof of (a) =*• (b). From definition 3.1 it follows that 6k(A) < 0 for all 
AcUt, and hence 

K-a(Ak)>60(A). 

Therefore, by setting Aj := o-(A°)/a(Ak) we have 

K - a(Af) ~ Aj ' o-(A)) • 
Clearly lim Aj = 1, and (b) is derived. 
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FIGURE 4-2. 

Proof of (b) =>• (a). For an arbitrary fixed small positive number e and for 
an arbitrary small A C Ut, the condition (b) implies 

*o(A)<(Ar + e)<r(A°). 

Thus we have 

(K + e)<r(A°) . (JT + €). <r(A*+') • ^ g ^ 

= M A ^ ^ ( A ^ j -

Notice that if K + e > 0, then (r(A°) < a(AK+t) and if tf + e < 0, then 
(T(A°) > aCA^-1-'), and hence 

a + 0 + 7 - w = 60(A) < (K + e)<r(A°) 

< (if + e)(r(AK+e) = Qk + /3k+>yk-ir. 

This proves Theorem 4.9. D 

The following result is due to Alexandrov [A]. 

Theorem 4.10. Let Curv(Y) < k. If a geodesic triangle A(pqr) contained 
in U^ for some point y € Y has the property that one of the upper angles, 
say Zqpr at p, is equal to Zqpr, then there exists a unique smooth tktally 
geodesic surface S in Y of constant curvature k which is bounded by A(pqr). 

Proof. It follows from assumption that if x 6 qr and x 6 q? are taken such 
that d(q,x) = d(q, x), then d(p,x) = d(p,x). In view of Corollary 4.4, (3) 
we have Zpxq = Lpxq and Zpxr = Zp, x f, and by letting x —> q, x —* r we 
observe Zpqr = Zpqr and Zprq = Zprq. 
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If z 6 pq and z € pq are taken such that d(p, z) = d(pz), then d(r, z) m 
d(f,z) and fz intersects pi at a unique point w (see Figure 4-2). If w £ px 
is a point with d(p, w) = <f(pu>), then <f(r, «5) = c?(f u>) and d(z, w) = d(f, w) 
follows from the fact that A(prw) = A(pf w) and A(pzw) m A(pzw) having 
the same corresponding edge angles at p and p. Therefore d(r, w) + d(w, z) = 
d(r,z) and hence u? 6 rz. This fact means that if a : [0,d(q,r)] -* X 
and $ : [Q,pq\ -* X are the edges with a(0) m j3(0) = q, a(d(q,r)) = r, 
/?(^(P)?)) = Pi foea. a natural maps / : [0,d(p,q)] x [0,d(q,r)] -+ X and 
/ : [0,d(p,q)] x [0,d(q,r)\ -* A(pqf) is defined as follows. To each (u,v) 6 
[0,d(p,q)] x [0,<f(5,r)] a point f(u,v) (respectively, /(«,«)) is asigned as the 
intersection of geodesies pa(u) D r/3(v) (respectively, pa(u)nf y3(t>)), where a 
and fi are the edges of A(pqf) corresponding to a and ft. The two geodesies 
pa(u) and qP(v) (respectively, pa(u) and qfi(v)) divide A (respectiely, A) 
into four small geodesic triangles, all these corresponding triangles have the 
properties that all the corresponding edge lengths and angles are the same. 
Therefore we see that E := / o f~l • A -+ X is an isometric embedding. 
This map is totally geodesic in the sense that any two points on E(A) are 
joined by a unique geodesic which is contained entirely in E(A). This proves 
Theorem 4.8. D 

Remark. The proof of Theorem 4.10 is valid for Alexandrov spaces with 
curvature bounded below. In this case the Alexandrov concarity property 
is replaced by the Alexandriv convexity and the property of complementary 
angles in Corollary 4.4 (3) is replaced by Lemma 3.5. A careful treatment 
is needed because the fundamental length does not exist. This property is 
proved in Lemma 6.4 and used for the proof of the lemma on narrow triangles. 

§5. Examples 

We shall exhibit examples of Alexandrov spaces with curvature bounded 
below and above. 

5-1. First of all Alexandrov sapces with curvatue bounded below are giyne 
as follows. 
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(1) Every complete Riemannian manifolds whose sectional curvature is 

bounded below are Alexandrov spaces of curvature bounded below. 

(2) Every convex body in R n + 1 has its boundary X with inner distance 

induced from R n + 1 is an Alexandrov space whose curvature is bounded below 

by 0, but not bounded above at vertices. We denote it by 

0 < Curv(X) < +oo. 

(3) The double of unit balls Bn{\) Uafl-(i) Bn(l) = X joined along with 

their common boundary unit sphere Sn~l C R" with inner distance induced 

from R n is an Alexandrov space with 

0 < Curv(X) < +oo. 

(4) For a length space X with diameter d(X) < ir the cone K{X) generated 

by X with vertex at o 6 K(X) is defined as follows. 

K(X) := {(x,t);x £ X,t > 0, (x,0) = ofor all x G X}. 

The distance p of K(X) is introduced by 

P((xi,ti),(x2,t2)) := y/t\+4-2^2 cosd(x,y). 

It is not difficult to check the triangle inequality for points on K(X). There 

is a natural embedding <p : X -* K(X) such that <p(x) := (x, 1) for x € X. If 

(p\<p(X))* is the interior metric on X induced through p, then d = (p\<p(x))*. 

In fact, if x,y € X then (p\<p(X))*(x,y) m y/2 - 2cosd(x,y) = 2 s i n % ^ . 

Therefore we have 

lim ( d g p ^ g ) . ! , 
<*(*,»)—o d(x,y) 
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FIGURE 5-1. 

Theorem 5.1. (Theorem 3.7 in [BGP]). Let X be a length space with 
d(X) < w. Then K(X) is a length space. Moreover the following (a) and (b) 
are equivalent. 

(a) K(X) has curvature bonnded below by 0, 
(b) X has curvature bounded below by 1. 

Proof. For the proof of K(X) being a length space it suffices to show that 
K(X) satisfies the Menger convexity. Let « = (x,s), v = (y,t) be points 
on K(X) such that x, y € X and s, t > 0. Let z be in interior point of a 
geodesic xy in X and w 6 K(X) with W = (z, /) be taken in such a way 
that if A(o*u*t>*) is a plane triangle with d(o*,u*) = s, d(o*,vm) = t and 
Z.u"o*v* = d(x,y) and if to* £ ukv* is taken such that Zu*o*io* m d(x,z), 
then / := d(o*, to*). From the definition of distance on K{X) we see p(u, w) = 
<f(u*,u>*), p(v,w) = d(v',w*) and p(u, v) = <f(u*,u*), and hence w e K(X) 
satisfies p(u, w) + p(w, v) = p(u, v). 

The above discussion means that for every x, y £ X and for every geodesic 
xy the set {w = (z,t) : z € xy, t > 0} is isometric to the plane sector whose 
vertex angle is d(x, y). 

Finally we take u = (x, s), v = (y, t), to = (z, I) € K(X) and corresponding 
points um,v*,w* 6 R3 with the origin o* such that d(o*,u*) = s, d(o*,v*) = 
t, d(o*,w*) = I and /.v'o'v" = d(x,y), Zu'o'w* = <*(*,*), ZvVto* = 
d(y,z), (see, Figure 5-1). 
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Let I 6 S2(l)no*u*, y := SP^Do'v*, J = S2(l)no*w*. Then A(xyz) = 
A(xyz). If p = (m,h) € vw is an arbitrary point, then m S yz and we 
find corresponding point p* = (m, h) to p on v*u;* with d(v*,p*) = d(v,p). 
Therefore Cwrv(K(X)) > 0 implies p{u,p) > d(u*,p*), and in particular 
d(x,m) > d(x,rh) means that Curv(A') > 1. This proves (a) = > (b). The 
converse is now clear. This proves Theorem 5.1. 

(5) the cone .fiT(RPn-1) generated by the real projective (n — l)-space 
of constant curvature 1 is obtained as the pointed HausdorfF limit of the 
following sequence of Riemannian (n + l)-manifolds. Consider R n + 1 = R x 
R n 9 (r, x) and let ge = R n + 1 - • R n + 1 for every e > 0 be a fixed point free 
isometry such that ge(t, x) = (t + e, — x). Let (ge) be the group of isometries 
over R n + 1 generated by ge, and set Me := Rn+1/{gt). The pointed Hausdorff 
Umit of {Me}eio is the K(RPn~l) with base point at the origin o* of R n + 1 

and o 6 i£"(RPn_1) its vertex. 

lim (Me,o
m) = (K(KPn-1),o). 

e-»0 dB 

This cone has an essential singularity at o, appeared as the result of a col
lapsing phenomenon. 

(6) The spherical suspension. The spherical suspension S(X) of an Alexan-
drov space X with Curv(A') > 1 is obtained as follows. Let T,{X) := 
{(x,t);x eX, 0 < i < 7r,(x,0) = (y,0),(x,ir) = (y,= n) for all x,y G X}. 
Then p the distence function on S(A") is defined as the cosine rule of spherical 
trigonometry: 

cosp((xi,ti),(x2,t2)) =cost i -cos*2 +sint i -sin^ -cosrf(x,y). 

By using the same isometry group (gc) acting freely on R x 5 n _ 1 , we observe 
that if Ne := R x 5n-V(p e) then lime^0 da Ne = XXRP—1). D 

Remark 5.1. X = ^2(l)U2B(i) ^2(1) " *n example (3) does not have cur
vature bounded above. In fact suppose that therse exists a K > 0 such that 
Curv(JT) < K. Let p,q £ dB2(l) be taken such that d(p,q) < n/VF. There 
exist two distinct geodesies a\, a2 : [0, d(p, q)] —> X joining p to q with the 
angle ^ (a^a^) , , at p being equal to 2 sin - 1 ty . If m, = a,(<f(p,g)/2) for 
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t = 1,2, then d(mi,m2) > 0. If A(prr%iq) = A(prhiq) and if m2 is the 
midpoint of pq, then Curv(X) < K implies * 

0 < d(mi,m2) < d(rhi,rh2) = 0, 

a contradiction. 

5-2. We next show examples of Alexandrov spaces with curvature bounded 
above. 

(7) Every complete Riemannian manifold with sectional curvature bounded 
above is an Alexandrov space with curvature bounded above. 

(8) The complement X of a closed convex body in R" is an Alexandrov 
space with curvature bounded above by 0 but not bounded below. 

0 > Curv(A") > -co . 

(9) The double of the complement of Bn{\) C R n . Let X be such that 

X := {R n \ 5 n ( l )} [ J {RB\B»(1)}. 
0B"(1) 

Then 0 > Curv(X) > -oo. 

Remark 5.2. Let X - {R2\B2(1)}U8 B J ( 1 ){R2\B2(1)}. We then see from 
Figure 5-2 that 0 > Curv(JT). 

R2) 

FIGURE 5-2. 
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FIGURE 5-3. 

Suppose that Curv(X) > — k2 for some k > 0. Let A(rpg) be an isosceles 
triangle in X with p, q € dB2{\) and Zprq = 6 being sufficiently close to n/2 
such that pr and qr are tangent to the unit circle at p and q respectively. 
Then we get d(p, r) = d(q, r) = cot 6 and d(p, q) = IT — 29. If m 6 pq is the 
midpoint of the geodesic pq, then d(r, m) = cosecfl — 1. Setting h := d(f, m), 
where A(pgr) = A(pqf) and m € p? is the midpoint of p9 in M2(k2), we 
have 

, , , coshffc cot 6) 
co^kh = coshk^-ey 

Setting 1 := f — 0 > 0, the above equation is rewritten as 

, , , co8h(fctan<) 
coshfc/i = z-7—.—-, 

cosh kt 
and Curv(X) > — k2 means that ed(r, m) > d(f, rh) = h. Thus we have 

1 — cost 

cost 
>h. 

On the other hand, 

0 = coshkh-coshfct—cosh(fctant) < coshfcf —)• coshkt — cosh(ktant). 
cost 

However the last term is negative for sufficiently' small positive t, a contra
diction. 

(10) X = {R n \B n ( l )} U S""1 x [0,1] U {R n \S n ( l )} as in Figure 5-3 has 
curvature 

0 > Curv(A-) > -00. 
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Remark 5.S. As is seen is the above examples X with curvature bounded' 
above may allow its geodesies having branch points. Also X with curvatu^ 
bounded below may admit suppiciently small geodesic Wangles -

The following example (11) shows that the curvature property does n ~ 
preserve on the Hausdorif Umit of Riemannian manifolds. 

(11) For given e > 0 let M, be the surface obtained by gluing a ffa, 
cone wnh a flat forus * ( . ) x *<«) „ 8 U c h . ^ ^ ^ ^ "y J ^ J * 
from *<«) x *<«) and also from a flat cone whose center is at the vertexQ 
and that M. has negative Gaussian curvature in a neighborhood around the 
£/4-circle. 

Taking a base point o e Mt on the flat torus, we see that 

The Gaussian curvature of tf. is nonpositive but C has curvature bounded 
below by O. 

In the case of lower curvature bound we have the 

Theorem 5.2. (Grove-Petersen-Wu [GPW]). If {Mj} is a sequence of coxn-

piete ftemanm-an n-manifolds of sectional curvature uniformly bounded bc-

^ by ^ddiamiM^KD for a constant D>0, and if X is its Hausdo^ 
limit, then we have 

Curv(X) > k, 

and 

dimX < n . 

For the proof of dim X < n in Theorem 5.2 we need the notion of s t r a i n 
by which the dimension of an Alexandrov space with curvature bounded 
below fa well denned as a positive integer. This will be discussed in §7 M 
generally we can prove that if {^J, is a sequence of Alexandrov spaces . 
that Curv (^ ) > k, and if X is the Hausdorif limit of {*,}, then X is 
Alexandrov space with Curv(.Y) > k. 

.ore 
SUG3 

aa 
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Curv(X) = +00 at c o r a l s outside. Curv(X) = -oo at corners inside 

FlOVRE 5-4. 

A prismblock in R3 as Ln Figure 5-4 is an example of a length space whose 
curvature is neither bounded above uor below. 

AU examples as above are obtained as the Hausdorff limits of certain 
sequence of complete Riemaimian manifolds. A natural question arising from 
these examples is if every Alexandra- space with curvature bounded below 
(or above) can be obtained as the Hausdorff limit of a certain sequence of 
complete Riemannian manifolds. 

We next provide an example of a length space obtained as the Hausdorff 
limit of complete surfaces of nonposi t i^ curvature in R3, at some points on 
which curvature is not defined 

(12) Let ox = ' ( -1 ,0 ,0 ) and *, = « ( 1 ) 0 ,0) and Cu C2 be cones with 
vertices at ou o2 generated by half-lin^ passing throug o, and o, (see Figure 
5-5) 

Let X be the union of C, U • , « , Uc%. Clearly X is a length space obtained 
as the Hausdorff limit of complete surface of revolution aroung x-axis of non-
posmve curvature. Geodesies passing xhlough ^ ffid ^ ^ c o n t a i n i n g t h e s e 
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Proof. We only need to prove that linu_o(AAf;0) = K(M(oo);p);o*). Let 

v,v 6 K(M(oo),p). Then « = (*,«) and v = (y,b) for some x,y 6 %0 

and for a,b > 0. Let 7 6 x, <r € y. Then A(o7(A-1a)<7(A_1&)) for suf

ficiently small posiitve A sketched in R2 has an angle at 6 0(A -1a, A_16), 

and lim.x-.o 6(X~1a, A-16) = </«>(£, y) follows from the definition of the Tits 

metric. Thus we conclude the proof by 

lim dAW(T(A-1a),a(A-16)) =,p(u,t>). 
A—*0 

a 

A similar result can also be proved for a finitely connected complete open 

surfaces admiting total curvature (finite or infinite). The ideal boundary of 

such a surface is investigated in [Sy-2] and [Sy-2], by which we can prove 

the following: Let S be a finitely connected complete open surface with total 

curvature (finite or infinite). Then for an arbitrary fixed base point o 6 S, 

we have 

Kmdlt(\S;o) = K«S(«>),p),o*) 

Here o* is the vertex of the cone. 

§6. The Toponogov Comparison Theorem 

Throughout this section let X be an Alexandrov space with curvature 

bounded below by k. We want to prove the 

Theorem 6.1. (The Toponogov Comparison Theorem) For every geodesic 

triangle A = A(p^r) there exists a corresponding geodesic triangle A m 

A(pqr) in M2(k) such that 

/Lqpr > Zqpr, Lpqr > Zpqr, £qrp > Zqrp. 



! 
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Theorem 6.2. If k > 0, then every geodesic triangle in X has circumference 
not greater than. 2ir/y/k~. In particular, if there exists a geodesic triangle 
with circumference 2ir/y/k, then the diameter d(X) of X is equal to %/s/k. 
Moreover X is isometric to either the spherical suspension S(J^i) of some 
Alexandrov space X\ with Curv(X\) > k ifd(X) = n/y/k, or else the double 
suspension E^-Xj) of some Alexandrov space X2 with Cun^-Xj) > k if the 
geodesic triangle with length 2ir/\/k has all of angles equal to 9. 

The following lemma on limit angles plays an essential role for the proof 
of Theorem 6.1. We employ the original idea of Toponogov (see [T-l]) for 
the case of Alexandrov spaces. Therefore some modification is needed. We 
employ the property of geodesic biangles which states that if {aj, /?i}i=i,2,... is 
a sequence of geodesic biangles with common starting point p = c*j(0) = /?j(0) 
such that the limit of lengths of Q< converges to 0, then the limit of angles 
between aj and /?< at p tends to 0 as i —* 00 (see Lemma 8.5). <*=—***** £—~ «••#•». t 

Lemma 6.3. (Lemma on limit angles) Assume that Curv(X) > k. Let 7 be 
a geodesic with 7(0) = p and 7(a) = q. For a point r € X if <Tj is a geodesic 
from f(sj) to r for Sj G (0,a) with SJ | 0, then 

lim sup Zr7(5 j)g < Zrpq, 

where the right hand side in the above inequality means the angle at p be
tween 7 and any geodesic joining p to r. 

Proof. Suppose that the conclusion is false. Then there exists a sequence 
{o~j} of geodesies joining *f(sj) to r and a geodesic r joining p to r such that 
limj—oo Sj = 0 and such that 

a := lim Zr"f(si)q > Lrpq = Z(7,r) =: a. 
i—00 

Let a be the limit geodesic of {o~j} and fix a small positive t <S a — a. Then 
there exists a large number j(e) such that if j > j(e), then there is a point 
Xj 6 <jj with the property that 

Z Xjpy(sj) € (a - e, a + e). 
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In fact, we define I := {t 6 [0,d(r,y(sj))]; every geodesic pffj(t) has the 
property /^.<Tj(t)py(sj) < a - e}. Clearly 0 6 / and there is an interval, 
h • [0, tj) C I such that tj < </(r, <T(SJ)) and tj belongs to the boundary of J. 
Then there exists either a geodesic paj(tj) with Za(tj)pj(3j) 6 (a—e,a+e), 

or a geodesic Wangle (ctj,0j) with corners at p and aj(tj) whose angle at p 

is not less than 2e. Suppose that there is a sequence of geodesic Wangles 
(aj,Pj)}j such that a,(0) = fi0) = p and «*,•(/,•) = 0/(fy) = <r,-(*;-) and 
such that the angle at p is not less than 2c, where lj = d(jp,ffj(tj)). Because 
{<rj(tj)}j converges to p we see lim lj = 0. This contradicts to Lemma 
8.5 in §8. Choose a point yj G r and Zj 6 <Tj such that (see Figure 6-1) 
<*(P> Xj) = <*(p, y>) = d(xjt Zj). 

FIGURE 6-1. 

From triangle inequality we see 

d(p, Xj) + d(xj, r) > d(p, r) = d(p, yj) + d(yj,r), 

and hence 

d(xj,r)>d(yj,r) 

Similarly we get 

d(r,yj) + d(Vj,y(sj)) > d(r,7(SJ)) = d(r,Xj) + d(xj,i(sj)). 
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Since Up contains the points XJ, yj,t(sj) for all j > j(e), 

<*(*>> 7(*i)) = d(y;.7(«;)) + 0{esj) 

and 

d(p, zj) = 2d(p,Xj) • sin ^ + 0(esj), H, .-. *>*j * j 

where i/>j := Z.pxjj(sj) tends to 5 — a since limcry = a and the geodesic 
triangles {A(pxjj(sj))}, converge to a plane triangle with angles a, n — a 
and a — a. Summing up above computations we see /•_ ^ 

<»•,») -4»-»*i)+0(«*i)-

Finally we see 

<*(p,r) < d(p, *;) + <*(*;, r) 

= <KP, Zj) + <*(*;> r) ~ d(xj,Zj) 

= <*(P, *j) + <*(r> Vi) ~ H*h*i) + ° ( " i ) 

= <*(p> *j) + <*(pr) ~ <%>,?) ~ d(xj, ZJ) + 0{esj) 

= d(p, r) - 2d(p, x,-)(l - sin ^ ) + 0(esj). 

This is a contradiction for large j . O 

A geodesic triangle A(pqr) is called a narrow triangle iff 

p g u p r c ( J tf.n | J tf, 
*€p» »€j>r 

is satisfied. The lemma on narrow triangles (see Lemma 6.5) plays an essen
tial role for the proof of Theorem 6.1 and the proof of it is different from the 
Riemannian case. For the moment we assume Lemma 6.5 and see how to 
proceed the proof of Theorem 6.1. 

The proof of Theorem 6.1 by assuming Lemma 6.5.. 
Let A(pqr) be a geodesic triangle with edges a, 0 and 7 in X. If k > 0, 

then we assume that the circumference of A is less than 2ir/y/^. We prove 
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X) 

?'+! 

"<-T 

FIGURE 6-2. 

Z rpq > Z rpq. Let 7 : [0, d(pq)] —• X be the edge joining p = 7(0) to 

5 = 7(d(p, q)). Choose a sufficiently fine partition 0 = 90 < s\ < . . . , < a/v = 

<f(P> ?) °f [0) ̂ (P> 9)] >n SUCQ a way t n a t f° r every »' = 0, • • • , N — 1 there is a 

narrow triangle A,- = A(7(3,)7(s,+1)r) with edges j\[si,si+1], a, := ryfa) 

and Pi := rj(si+i) (see Figure 6-2). Here a< for every «' = 0 , . . . , N — 1 is 

chosen as the limit of ry(s) as s J. s,-, and therefore lemma 6.3 implies that 

Z(^i_j,7)|7(,.) > Z(a,-, 7)!^,,). In particular ao may be different from a. 

Because Lemma 6.3 implies Z rpq — Z(a, j)\p > Z(<*o, y)\p, we need to prove 

^{oco,t)\p>^rpq. 

By setting j(si) = ?,- (p = go, q = <?jv) we see from the lemma on narrow 

triangle, 

^rqiQi+i > Zrqtqi+i, /Lrqi+iqi > Zrg.+ij,-. 

The sum of angles at g, of A,_i and A, does not exceed ir. The points 

r,q~i-i,q~i and ji+i form a convex quadrangle, if they are placed in such a 

way that A,-_j and A,- do not overlap and they have the common edge rg,-, 

(see Figure 6-3). 
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FIGURE 6-3. 

Therefore if A(r«j_ifi+i) = A(f &_ift+i), then Zrfc.iff+i > Ifqi-iqi 
> Z f j i - j ^ + x and similarly, Zrjj+ij i- j > Z f ^ f i ^ - i . By iterating this 
procedure we have 

£rpq > Z(a0 ,T)IP > Zrq0qi > Urq0q2 >•••> Zrpq. 

This completes the proof of Theorem 6.1. • 

We see from the above discussion that if A(rpy(s)) = A(f p'y(s)), then I 
s i-> Zrpy(s) is monotone non-increasing in s 6 [Q,d(p,q)]. Therefore the 
Alexandrov convexity property holds for any two geodesies in X emanating 
from a common point. 

For the proof of the lemma on narrow triangles we need Lemma 6.4 which 
deals with the critical case where the angles of a narrow triangle A are equal 
to those of the corresponding triangle A. 

Lemma 6.4. Let a : [0, a] -+ X and ft : [0, b] -> X be geodesies with 

a(0) = /?(0) = p such that 

a([0,a])U/?([0,6])C ( J VM4f\ [j Um. 
»€(0,a] <e[0,l] 
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Assume that there are s0 € (0,a) and to € (0,6), and a geodesic a(so)0(to) 
such that 

(1) the Alexandrov convexity property holds for all angles ofA(pa(s)/3(t)) 
forse[0,s0),te[0,t0]. 

(2) Zp/?(<0)«(*)) = ZpP(t0)a(s0). 

Then there exists a totally geodesic smooth surface of constant curvature 
k bounded by the geodesic triangle A(pa(so)0(to)). 

Proof. 

M2(k) 

<*(so)*£. 

* ( * o ) ^ W 

FIGURE 6-4. 

Let 7 : [0,c] —• X be the edge of A(pa(so )/?(*<>)) such that the angle 
beween 7 and /? at /3(t0) = 7(0) is equal to 2p/3(to)a(so). For each u e [0,c] 
we see from (1) that 

d(p,7(«)) = d(p,7(«)) 

and also for each v € [0,<o]> 

d(a(So),0(v)) = d(&(3O)J(v)), 

and therefore we have 

1 
<f(7(ti),/?(t,)) = <f(7(u),/?(f)), for all («,») 6 [0,c] x [0,r0]. . 
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First of all we assert that Z pa(s0)f3(t0) = 2pa(ao)/9(MandZa(so)p£(*o) 
= 2a(s0)pP(to)- Because A(p/9(t0)7(u)) and A(p7(u)a(s0)) have all angles 
not less than the corresponding angles, «• = Zp7(u)/?(fo) + Zp7(u)a(so) > 
2p7(u)/?(t0) + Zpy(u)a(s0) = ir implies that for all u G (0,c) and for all 
py(u) = r . 

Zp7(u)^(r0) = 2p7(u)/?(to), Zp7(u)a(*0) = 2p7(u)a0»o). 
Since lim T« = a I [0, so], this proves 

U-+C 
Zpa(s0)/?(<o) = 2pa(s0)/?(to). 

The same discussion leads to Z. a(s0)p{i{t0) = 2a(s0)pP(to). 
The above fact implies that for every u G (0,c) and for every v G (0,t0) 

the angles of A(£(ro)7(u)/?(t>)) are the same as the corresponding angles. 
Secondly, we prove that for an arbitrary fixed u £ (0, c) and for a fixed 

geodesic T« : [0,/«] -» X with r«(0) = p, r . ( / . ) = 7(11), /„ = <f(p,7(u)), 
there exists for each v G (0, to) a unique geodesic <rv = [0,m„j —• X with 
<r„(0) = /?(«), »»("»,,) = a(a0)> mB = d(a(s0), /?(«•)) such that <rv meets r , at 
a unique point. In fact, if av = [0,mv] —» M2(k) is a geodesic corresponding 
to <TV, then av meets f„ at a unique point, say, fn(z) = av{w). 

It follows from what is discussed in the last paragraph and from the 
Alexandrov convexity property for the angle at p of A(p7(u)/?(i0)) we have 

and similarly from A(py(u)a(so)), 

d(a(s0),Tu(z)) = d(a(s0),Tu(z)), 

and also 
d(p(v),a(8Q)) = d0(v),a(so)). 

This proves the second assertion. 
Finally let av for each v G [0,t0] be the geodesic joining /3(v) to a(s0) such 

that a„ intersects r„ at a point ru(z) = av(w). Set 

T* := {x G (rv([0,d(a(s0)J(v))]);v G [0,io]} 

where Ot9 = 7. By the same manner as in the proof of Theorem 4.8 we obtain 
an isometric embedding of A into X which is smooth and totally geodesic. 
This proves Lemma 6.4. • 

Remark. Under the assumptions in Lemma 6.4 we know that for every 3 6 
[0, «o] and t G [0,ro] the number of geodesies joining /?(<) to a(s) is equal 
to that of geodesies joining /?(to) to a(s0), and is equal to that of totally 
geodesic smooth surfaces of constant curvature k bounded by a([0,so]) and 
/3([0, t0]). Every geodesic a(s)/?(<) lies on some Tu. 
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Lemma 6.5. (Lemma on narrow triangles) Let a : [0,a] -» X and f) ; 

[0,6] ~» X be geodesic s with a(0) = /?(0) = p, <x(a) = q, f)(b) = r such that 

A(pqr) forms a nondegenerate geodesic triangle and such that 

a([0,a])U^([0,6])c ( J Ua(t) 0 ( J Um. 
.6(0,0] <6[0,i] 

Then the Toponogov conparison theorem holds for every geodesic triangle 

A(pa(s)P(t)) and for all s G [0, a], t G [0, 6]. 

Proof. For sufficiently small positive s and t we have A(pa(s)/?(r)) C Up. Let 

s* 6 [0,a] and r* 6 [0,6] be denned as follows: For every s G [0,s*) and for 

every t G [0,t*), the Toponogov comparison theorem holds for A(pa(s)j3(t)) 

and o(s*)/3(r*) C U<*(f) H #£(«•)• Definition 2.1 ensures that s* and t* exist 

with a* > 0, t* > 0. Let £ be the least upper bound for the sum s* +1* of 

such pairs (s*,tm). We only need to prove 

L m a + b. 

Suppose that L < a + b. Then there is a pair (s*,t*) such that L = s*+t*. 

Without loss of generality we may assume that 

a* < a. 

There exists for a sufficiently small e > 0 some numbers s' and t' near s* 

and r* such that for every s G [«*,s* + e], 

<*W0(Octf„ ( , .)n [/,(,,). 

By means of the choice of s* and t* we see that A(pa(s)P(t*)) for every 

s G (s*, s* + e] does not have angles greater or equal to the corresponding 

ones, and hence we have from A(/?(r*)a($*)a(s)) C Ua(,>) D Ug(t>), 

(6-1) lpp{t')a{s) < Zp/?(r>(a) . 
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Taking the limit of 2p/9(<*)a(s) as s J. s*, we see £ pP(f)a(s*) < 2pP(f)a(s*). 
The opposite inequality is guaranteed by the choice of 3*,t*, and hence for 
every geodesic a(s*)fi(t*) we have 

Zp/?(<>(**) = 2P/?(*>o>*). 

Thus Lemma 6.4 implies that A(pa(a*)/3(t*)) for every geodesic a(s*)j3(t*) 
has all angles equal to the corresponding angles of A(pa($*)/?(<*)) and that 
there exists a smooth totally geodesic surface of constant curvature k bounded 
by a([0,3*]), /?([0,t*]) and a(s*)/3(t*). It should be noted that there is no 
such a geodesic a(s*)^(f) that satisfies Zp/?(<*)a(s*) > ZpP{t*)a{s*). The 
existence of such a geodesic violates the choice of s* and <*. 

Setting q* := a(a* + e), we find a number «i € (0,3*) with the property 
that the angle comparison holds for every geodesic triangle A(/3(t*)a(s)q*) 
for all s G (si,s* + e). In fact, A(a(s*)q*£(t*)) C #„(,<) implies that 
A(a(s)q*P(t*)) is also contained in £/<»(»') for all 3 < 3* sufficiently close 
to s*. Thus the angle comparison holds for such A(a(s)q*/3(t*)). The in
equality (6-1) implies that if sj is the infimun of such s 6 (0, s*) that satisfies 
the angle comparison for A(a(s)q*fl(t*)), then s* > 0. 

Because sj > 0 every geodesic triangle A(a(s2)q*fl(tm)) for 32 < s* being 
taken sufficiently close to a* has the property that the angle comparison does 
not hold for this triangle. The previous discussion then implies that every 
geodesic /?(t*)a(.s*) has the property that 

Z/?(*>(3l)g* = 2 / ? ( < > K ) 9 * 

ZaK)/3( t») 9 ' = 2 a K ) W ) 9 * 

and that there exists a smooth totally geodesic surface T* of constant curva
ture Jfc bounded by A(/3(f)a(sl)q*). Because Zpa(aJ)/3(t*) = 2pa(sJ)/?(t*) 
the T* can be extended to a smooth totally geodesic surface of constant cur
vature ifc bounded by a([0,a* + e]), /?([0,<*]) and J*j3(t*). This fact means 
that Lp${t*)q* = 2p/?(t*)g*, a contradiction to (6-1) for s = s* + 1 . This 
proves Lemma 6.5. D 

The Alexandrov convexity and hinge theorem holds for all A, and stated 
as follows. This is a direct consequence of Theorem 6.1 and the proof is 
omitted. 
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Theorem 6.6. Let a : [0,a] -* X and f3 : [0,6] -+ X be geodesies with 

a(0) = 0(0) = p. IfOk(s,t) for s e [0,a] and t £ [0,6] is the angle at f 

of the triangle A(pa(s)0(t)), then <?*(s, t) is monotone non-increasing. In 

particular if&,/3 are geodesies on M2(k) with the same starting point and 

the same lengths asa,0 and have the same angle £(&,$) = Z(a,/9)|p, then 

d(a(s),0(t))<d(a(s)J(t)) 

for all se [0, a] and < e [0,6]. 

Proof of Theorem 6.t. First of all we prove that if k > 0, then d(X) < ir/y/k. 

Suppose that d(X) > ff/vT. Then there are points p, q G X with d(p, q) > 

%/y/k. Let m 6 pq be the midpoint of a geodesic pq and take a point x near 

m such that x £ pq and A(pmx) and A(qmx) have circumfence less than 

2ir/Vk. Then, the hinge theorem 6.6 implies that if p, rh, q are on a great 

circle and if £ € M2(k) is taken such that d(m,x) m d(m,x), Lprhx = 

Lpmx and Lqrhx m Z.qmx, then d(p,x) > d(p,x) and d(q,x) > d(q,x). It 

is clear that on M2(k), we have d(p, x)+d(q, x) < d(p, rh)+d(q, rh) (see Figure 

6-5). Thus d(p,q) > d(p,x)+d(q,x) > d(p,x)+d(q,x), a contradiction. 

rh 

• P 

FIGURE 6-5. 
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We next prove that if p, q 6 X are chosen such that 

d(p,q) = d(X), 

then q is uniquely determined for p. In fact, suppose qi £ X satisfies q\ £ q 
and d(p,qi) = d(p,q) = d{X). By taking the midpoint m of qqi and choosing 
a constant ki 6 (0, k) such that the circumference of A(pqq\) is less than (but 
sufficiently close to) 2ir/y/k~\ we see that the corresponding geodesic triangle 
A(pqqi) sketched on M2(ki) has the property that if m is the midpoint of 
qqi, then d(p, m) > d(p, q). Theorem 6.6 then implies that d(p, m) > d(p, rti). 
This is ridiculons. 

Now, we prove that A(pgr) for every p, q and r in X has circumference 
not greater than2«"/V*. We have already established that each edge has 
length not greater than ir/y/k. Suppose that the circumference L of A(pqr) 
is greater than 2n/y/k. There is an interior point m of qr such that d(p, q) + 
d(q, m) = d(p, r) + d(r, m) = L/2. Choosing a constant fci 6 (0, k) as in the 
last paragraph, we observe that 

d(p,m) > L/2 > n/y/k, 

which is a contradiction. 
Finally, if the circumference of a triangle is 2n/vk, then the above argu

ment implies that d(X) = ir/y/k. Let p, q G X be such that 

d(p,q) = n/Vk. 

For every point r 6 -X\{p, q} we have d(p, r) + d(fcq) = n/y/k and hence 
there exists a unique geodesic joining p to q and passing through r. Let 

E := {x € X : d(p,x) = d(q,x)}. 

If x,y £ E satisfy d(x,y) < n/2\/k, then xy is contained entirely in E 
and moreover Zpxy = Lqxy — Zpyx = Lqyx = »r/2. Therefore Lemma 
6.4 implies the existence of a totally geodesic smooth surface of constant 
curvature k bounded by two geodesies joining p to q and passing through x 
and y. This means that X is isometric to the spherical suspension 52(-A') of 
E, where E is a totally geodesic Alexandrov subspace with CUTV(JB) > k. 
If d(E) = x/\/fc, then E is isometric to a spherical suspension. This proves 
Theorem 6.2. D 

The Toponogov splitting theorem holds for Alexandrov spaces with cur
vature bounded below by 0. A similar discussion is seen in Theorem 5.8 in 
[GP]. 



54 KATSUHIRO SHIOHAMA 

Theorem 6.7. (The Toponogov spUtting theorem.) If Curv(X) > 0 and 
if X admits a straight line 7 : R —• X, then X is isometric to the metric 
product Xi x R, where X\ is an Aiexandrov space with Curv(Xi) > 0. 

A Busemain function Fa : X -* R for a ray a : [0,00) —• X is used for 
the proof of Theorem 6.7. Let 

Fv(x):=]imjt-d(cr(t),x)]. 

Since t — d(a(t), x) is monotone non-increasing in t > 0 and bounded above 
by d(<r(0), x), F„(x) is well defined. The Aiexandrov convexity property then 
implies that F„ is midconvex in the following sense. If a : [0, /] —• X is any 
geodesic, then F„ o <r(a) + F* o a(t) > 2F„ 0 a(f(s + t)) for all s,t G [0,/]. 
Since a continuous midcenvex function is convex, so is F„, e.g., Fv is convex 
along every geodesic in X. 

Proof of Theorem 6.7. Fix an arbitrary point p 6 J£\7(R) and choose the 
arclength parameter of 7 so as to satisfy that d(p,7(0)) = d(p,j(R)). If 
F+ := Fy[o,oo) and -f- : = -^VK-OCO]) then triangle inequality implies that 
F+(p) + F-(p) < 0. On the other hand Theorem 6.1 for A(p7(0)7(*)) and 
A(p7(0)7(-*)) implies that (by letting t - • 00), F+(p) = F-(p) = 0. Namely 
we have F+ + F- = 0, and hence there exists a unique straight line 7 , : 
R —> X passing through p along which both F+ o j p and F_ o fp are linear. 
In particular 7, and 7 make the same angle j with P7(0) at p and 7(0) 
respectively. A slight modification of Lemma 6.4, then implies the existence 
of a flat totally geodesic strip bounded fp and 7. This fact means that a lenel 
set F+J({0}) is isometric to all the other level sets of F+. Since F+l({t}) for 
every t € R is totally geodesic, we see that J£i := F+1({0}) is an Aiexandrov 
space with Curv(.X'i) > 0. This proves Theorem 6.7. • 

§7. Strainers and Dimension 

Throughout this section let X bean Aiexandrov space with Curv(.X') > k. 
The purpose of this section is to prove that there exists an open dense set in 
X each point of which has an open set homeomorphic to an open set in R" 
for some positive integer n < 00. Thus the dimension of X is defined here. 
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Definition 7-1. A point p e X by definition an (n, £)-strained point for a 
sufficiently small 6 iff there exist n pairs of points (a,-, &;)"_! 6 M\{p) such 
that for all :, j = 1 , . . . , n with t ^ j , 

2 aipbi > 7T — 6, 2 atpoj > — — 6 

2aupbj > --6,2.bipbj > - - 6 . 

We also say that such an (a,, 6j)JLx is an (n,5)-strainer at p. 

The original idea of strainers will go back to the proof of a differentiable 
sphere theorem (see [OSY]) which states that if a complete Riemannian n-
manifold M has its sectional curvature KM > 1 and if dn(Af, 5n(l)) is suffi
ciently close to 0, then M is diffeomorphic to Sn . In fact Sn( l ) has a global 
(n + l,0)-strainer each pair a*,b* of which is obtained as the intersection 
of S n ( l ) with the t-th coordinate axis. Hausdorff closeness between M and 
5"(1) then implies that M has a global (n +1,6)-strainer, each pair at, bi of 
which is the image of a*, 6* under a Hausdorff approximation map. Then the 
map $ : M -* R n + 1 denned by $(x) := (cos<f(ai,x),...,cos<i(an+1z)) can 
be approximated by a smooth regular map whose image is C1-close to S"(l) 
in R n + 1 . Applying this idea in a small neighborhood around a strained point 
p G X, a bilipschitz homeomorphism between such a neighborhood and an 
open set in R n will be established. 

It should be remarked that for an (n, 6)-strainer («(;,&;) at p we observe 
from Theorem 6.1 nd Lemma 3.6 that 

(7-1) - - 6 < 2atpaj < Zaipaj < 2ir - Zatpbj - Zajpbj < -+26 

Also the set of all (n, 6)-strained points is open in X. By means of the 
Alexandrov convexity property we see that if (•{, &i)?=i is an (n, 6)-strainer 
at p and if a[ G pai, b't G pbi, then so is (a'j, &<)"_!. We can therefore choose 
an (n, 6)-strainer at p as close to p as desired. 

Also notice that n-pairs of points (a;, 6j)?=x la an ( n ' ^)-strainer at p, if 
and only if for all t, j = l , , . . , n with i ) i j 

( /Laiph >x-6, Zaipbj > f - 6 
{~' {tbipb^Z-6, Z a i P a i > f - « . 

In fact, if (ai,6j)"=1 satisfies the above inequalities then by choosing a{ G 
paj, b't G p&i sufficiently close to p, we observe that |Zajp6j — Za^p&jl and 
|Z Oipbj — 2 ajpftjl, e.t.c, are sufficiently close to zero, and (aj, &'j)"=1 satisfies 
the definition of an (n, 6)-strainer. The converse is clear from Theorem 6.1. 
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Definition 7.2. Let Y and Z be metric spaces and U CY an. open set. A 
map <p : U —* Z is by definition an e-open for an e > 0 iff for any I E P * 
and for any z € Z such that if {w G Y; dy(x, w) < jdz(tp(x), z)} C U then 
there exists a point y G U such that <p(y) = z and such that dy(x, y) < 
$dz(<p(x),z). 

An e-open map <p : U -» Z is open. In fact for any open set V C U and 
for any fixed point x G V there exists an r > 0 such that B(x, r) C # . We 
only need to show that B(tp(x), er) c <fi(V). If z G 5(y?(x), er), then there is 
a point y G # such that <p(y) = z and such that dy(x, y) < i<fc(y>(x), 2) < r. 
This proves B(<p(x),er) C ¥>(V). 

If (p : U —• Z is a continuous and 1 — 1 e-open map, then <p : U -+ 
<fi(V) is a homeomorphism. Moreover y>-1 is locally Lipschitz with Lipschitz 
constant e - 1 . For the proof of <p~x being locally Lipschitz homeomorphism 
with Lipschitz constant e _ 1 , we set rp := d(p, y\C/') for every p€U (i£U = Y 
then r,, := 00). For a fixed r G (0, rp) we set Vi := <p(B(p, r))nB(<p(p), § (rp -
r)) and V* := ^_ 1(Vi) = J3(p,r) D v?_1(B(v?(p), f (rp - r)). We prove that 
p - 1 | v , is Lipschitz continuous with Lipschitz constant e - 1 . Let x,y E V. 
Then {z 6 Y;dY(x,z) < \dz{V{x), <p(y))} C {z G r ;dy(x ,*) < r , - r} 
follows from ^ ( ^ ( x ) , ^ ^ ) ) < <f(Vi) < e(rp — r), and the right hand side of 
the above implication is contained in B(x, rp — r) C B(B(p, r ) , rp — r) = 
B(p,rp)cU. Thus 

d y ( v , - » , V , - ' ( z ) ) 1 
7-; : < - for all w, z 6 V\. 
dz(w,z) e 

Theorem 7.3. Up G X is an (n, £)-strained point with a strainer (a,, 6.) j l i 
for £ < l/2n, then there exists an open set U around p. Further a map 
<p : U - R" denned by ?( ? ) := «« i , f ) , . . . , 4 (« .» f ) ) G R" is an i ^ -
open map. Moreover, ifU does not admit any (n + 1 , T(6))-strained point for 
T(S) with lim r(S) = 0, then there is an open set V C U around p on which 
tp is a bilipschitz homeomorphism. 

The following lemma 7.4 is used for the proof of the second statement in 
Theorem 7.3. 
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Lemma 7.4. Let Curv(X) > 0 and a,b,c,d € X be points such that (see 
Figure 7-2) for sufficiently small positive numbers e and £i, 

d(b,d) < e-min{d(a,6),d(c,6)}, Zabc > ir — ei 

d(a,b)-d(b,c) | 

d(a,c)' > £ ' 

Then there is a constant r(e) := ^/e+4e such that Z abd—2. abd, Z adb—Z adb, 
Z eta — Z eta and Z cdb — Z cdfc are all bounded above by r(e) + 2ei. 

Proof of Lemma 7.4- FVom assumption we may assume that Zbad < 
2sinZbad < 2 j ^ < 2e, and similarly, Zbcd<2e. 

d 

FIGURE 7-1. 

From A(aM) and A(cM) we see 

(7-3) ZaM + Zad6 + Z c M + Z c d 6 > 2 i r - 4 e . 

We now assert that Z adc > ir — y/e —1\. In fact 

. - d(a,6)2-fd(6,C)2-d(g,c)2 

COS(TT - ei) > cos Z a6c = -^ ' \ ' v '-. 
2d{a,b) • d(b,c) 

From assumption \d(a, b) — d(a,d)\ < d(b,d) < e -'d(a, b) follows 

(1 - e)d(a, 6) < d(a, d) < (1 + e)d(a, b) 

and similarly 
(1 - e)d(c, b) < d(c, d) < (1 + e)d(c, b). 
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Therefore above three inequalities reduce to 

_ c o s £ l > (l-e\*td(a,d?+d(c,d)>-d(a,c? 
1 \l+ej I 2d(a,d)-d(c,d) 

**£ e(l + -)\. 
d(a,d)-d{c,d) K 2J) 

From assumption we have «y> - « - * and hence 
d(a,d)d(c,d) 

Lade > ir — yfe — e\. 

Theorem 6.1 then implies together with Lemma 3.6 that A abd — Zabd is 
bounded above by Labd + Ladb + Lcbd + Lcdb-(Zabd + Zadb + Zcbd + 
Zcdb) < {2ir -Labc) + (2ir - Lade) - (2TT - 4e) < (ir + et) + (TT + y/e + 
tl) - (2ir - 4e) m y/e + 4e + 2et = r(e) + 2e. Thus the proof of Lemma 7.4 
is complete. D 

Corollary to Lemma 7.4. In addition to the assumption as in Lemma 7.4 
if \d(a, b) - d(a, d)\ < e • d(b, d) and ifx € bd, then 

min{Z axb, Z axd, Z cxb, Z cxd] > — - r(e) — 3c i. 

Proof. The additional assumption means that A(abd) is sufficiently close to 
an isosceles triangle, and hence there is a Ti(e) with lim ri(e) = 0 such that 
2abd < f + n(s). Hence we get from Lemma 7.4 2 abx < Zabx = Zabd < 

2 abd 4- (r(e) + 2t\) < j + r2(e) + 2ei. All the other angles are estimated by 
a similar manner. This proves Corollary to Lemma 7.4. • 

Proof of Theorem 7.S. The norm of R n is defined as ||a:|| := £,"=1 |x,| for 
every x = ( x i , . . . , xn). We first assert that (p is (1— 2n£)-open with respect to 
the above norm. Take a point q £ X sufficiently close to p and set z := <p(q). 
For any point z € R taken sufficiently close to z, we prove that there is a 
point q € X such that tp(q) = z and d(q, q) < rrfejl*—*!• The q is obtained 
as the limit of a sequence {$/}, which we now want to construct. Since all 
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t i - l 

i i - i 

•t 

•<• 

FIGURE 7-2. 

points under consideration are taken sufficiently close to p, we may sketch all ) 

the corresponding geodesic triangles in R2 . Set qi := q and assume that qj-\ 

is well denned. Then qj is denned as follows: First, choose an a = 1 , . . . , n 

such that \d(aa,qj-i) — za\ = max{|d(a/j,gj_i) — r\ i fi m l , . . . , n } . Let LJ 

qj G aaqj-i U 9i-i&a be chosen such that d(qj,aa) = za. We may assume 

gj G qj-iba, since the other case is easier. The Alexandrov convexity implies vM . 

that 2aaqj-\qj > 2aaqj-iba > % — 6, and hence d(aa,qj-i) < d(aa,qj).J/ 

Thus |d(«.,f^_i) - z a | = <i(««,ff) - <*(an,9i-i) ^ « f e - l » f t ) ' cosJ (see 

Figure 7.2) / 

From (7-1) we have ^ — 6 < Zgyg^-xaj < Zqj9j_iai < £ + 26 for every 

t ^ a. The cosine rule for plane triangles then implies that for i ^ a, 

„ J 

<gj .gi - l ) 
^ ^ a??** „ \ {<*(«Mi-0 + 2d(«M«7i-i) • | cos2a i g i _ i g i | } . 

«(a«i9i) + d ( a i )9 i - i ) l J 

Since — sin26 < cosZ(aiqj-iqj) < sinS, the right hand side of the above 

inequality is bounded above by 

<*(gj.gj-i)2 + 2d(a«»gj-i) • d(qj, qj-i) • sin25 
<*(ai,g;-i)+ <*(<»<, g,) 

<26-d(qj-Uqj). 
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H e r e
n

w e n o t i c e d(li,9j-i) < S by the choice of z, and hence 
2a(<jj,<7y_i) 

<*K?;- i ) + <*(a,,?i) * L T h e r e f o r e w h a v e for every i ^ a , 

(7-4) |<f(a.-,9>)-z'| 
< M(a<,9i) - <*(ai,?;-i)| + K « I I « M ) ~ **l 
< 2Sd(qi,qj_1) + Ma^qj^) - «*j 

2* . 
" ^ o l ? 1 ^ 0 ' ^ - 1 ) " *"l + M«i.<7;-i) - z% 

By setting A,- := \\(p(qj) - >|, we have from the choice of a that A,- = 
£ . * a M(ai>?i) ~ z'\, and also 

26 
Xi - c ^ 7 ( n _ 1 > W « « « M ) - **l + A>-, - K « » « - i ) - «*}• / 

Therefore, we have from 6 < ^- that 

> { « » * - 2 6 ( 1 , - 1 ) } ^ , ^ ) v 

> ( l - 2 n * ) % i ) 9 y _ 1 ) . < / <=£<r ^ 

On the other hand, from the choice of a it follows that 

n 
A i - i = X ) l<*K«;-i) - **| < n|<f(fla,9i-i) - *"|. 

t=l 

Using above two inequalities we get 

costf n 

Here we used the assumption costf > $ > c o s i > 1 - £ , and hence 
^T7 < r f i < "• ^ i " 8 means that i * ^ ^ 
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bi
l l 

FIGURE 7-3. 

Therefore {Xj} is a strictly decreasing sequence and has a limit. To show 
t 

that {qj} is a Cauchy sequence we compute d(qk,qt) < T J d(g;-_i,jj) < 
i=*+i 

E Aj-i — Aj _ Ajt+i — \( 
l-2n6 1 - 2n6 

a=t+l 
that (p(q) = z. This proves the open property of tp. 

The local Lipschitz constant of ip~x is oftained by 

. Therefore {qj} has a limit, say, q € X such 

P - 2 | | " | |z-z|| 

l - 2 n 6 | | 5 -z | i l - 2 n « ' 

and hence 
< » - m » " ( « ) ) 

Clearly y> is continuous. For the proof of the final statement we only 
need to show that ip is 1-1 if there is no (n + 1,4^-strained point in some 
neighborhood around p. Let V C X be a neighborhood around p such that 
every point in V is a strained point with a strainer (aj, 6t)"=1 and such that 

d(V) < min{d(p, aO, d(p, bt); i = 1 , . . . , n}. 

Suppose that (^V is not 1-1. Then there are points x,y € V, x ^ y such 
that (see Figure 7-3) 

d(di,x) = d(ai,y), t = l , . . . , n . 
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Then, Corollary to Lemma 7.4 implies that there is a T(6) with lim T(S) = 

0 such that if z 6 xy is the midpoint oixy, then all the angles 2 ajzx, Z,a{zyr 

2 6,zx, 2 bizy are bounded below by ir/2 - r(S) for all t = 1 , . . . , n. Setting 
an + 1 := x and 6n+i = y, we see that (OJ, ft,)"^1 is an (n + 1 , r(6))-strainer at 
z G V, a contradiction. This proves Theorem 7.3. D 

A point x 6 X is said to be a manifold point iff there exists an open set 
around x which is bilipschitz homeomorphic to an open set in R n . As is seen 
in the proof of Theorem 7.3 we can construct an (n, 5)-strainer at a point p' 
sufficiently close to any given point p € X. Thus we have proved the 

Corollary to Theorem 7.3. The set of all manifold points on X forms an 
open and dense set in X. 

We now want to discuss the topological dimension of X. We consider a 
normal space Y. The covering dimension dim Y of a normal space Y is defined 
as follows. We say that dim Y < n if and only if for every finite open cover 
G\, • - • ,G,ofY there exists a refinement Hi,-- ,H, with |J*=i Hi =Y such 
that Hi C Gi for i = l,...,s and such that f|"=i2#i; = <l> f° r every subclass 
{Hij } of n + 2 members of Hi, • • • , H,. We say that dim Y = n if and only 
if dim Y < n and dim Y < n — 1 does not hold. 

The large (respectively, small) inductive dimension IndK (respectively, 
indF) of Y is denned as follows. Indy = —1 (respectively, indK = —1) if 
and only if y = <f>. Suppose that Indy < n—1 (respectively, indY < n—1) has 
been defined for a normal space Y. Then Ind Y < n (respectively, ind Y < n) 
if and only if for every closed set F C Y and for every open set G C Y 
with F C G there exists an open set H C Y such that F C H C G and 
lnd(H\H) < n — 1 (respectively, for every y 6 Y and for every open set 
G CY with y EG there exists an open set H C Y such that x G H C G and 
ind(lj\.ff) < n — 1). It is well known that these dimensions are all topological 
invariants. 

If Y is metric, then dim Y = Ind Y is due to Katetov and Morita. If Y 
is separable metric, then ind Y m Ind Y (see [HW]). Moreover we have the 
countable sum theorems for separable metric spaces as follows (see [E]). If 
a separable metric space Y is expressed as a countable sum of closed sets 
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Fi, • • •, and if dimFj < n for all i = 1,2, • • • , then dim V < n. Similarly, if 
oo 

Y = M Ui for open sets U\,• • • , and if dimtf,- < n for all i = 1,2,• • • , then 
dimy~< n. 

Now our length space X satisfies the second countability axiom since it is 
locally compact metric, and it is separable. Therefore we have 

dimX = IndX = indX. 

It is not easy to deal with the large and small inductive dimensions of X, 
because the treatment of the boundary of an open set H is complicated. We 
only deal with the covering dimension. We want to prove that 

dim A = dim// A 

for every bounded open or closed set A C X, where dim// A is the Hausdorff 
dimension of A. Notice that the HausdorfF dimension is not a topological 
invariant. The existence of a strained point in A with an (n, 6)-strainer 
implies that dim// A > n. In order to establish dim A = dim// A = n by 
assuming the existence of an (n, 6)-strainer in A, the following notion of a 
strained number at a point is needed. 

Definition 7.5. A nonnegative integer n is by definition the strained num
ber at p € X iff for every S > 0 and for every neighborhood U of p there exists 
an (n, 6)-strained point in U and U does not contain any (n + l,6)-strained 
point. The strained number at p is by definition oo iff there is no such n. 

We now introduce the rongh volume and rough dimension of a bounded 
set A in a metric space Y. Let $e(-A) for e > 0 be the set of all converings 
of A such that 

* t (A) := {{B;};tf(B0 < e, A C UBi). 

The a-dimensional Hausdorff volume of A is given as 
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and the Hausdorff dimension of A as 

dimff A := inf{a > 0; H.(A) = 0} = sup{a > 0; Ha(A) m oo} 
Clearly W.(UJ4J) < JJj W«(-A,) and Wa defines an outer measure. We then 
see that Ha(A) > 0 implies dim^A > 0, and,dim H 4 > a implies that 
W«(A) = +oo, W«(J4) < oo implies that dimn A < a and finally dimH(A) < 
a implies Wa(.A) = 0. Similarly the rough a-dimensional volume VT,(A) of A 
is defined by 

where PA^C) is the maximal (finite) number of e-discrete points contained 
in A. We then see from the definition that if 0 < VTt (A) < -f-oo, then 
Vrh(A) = 0 for all b > a and VU(A) = oo for all c < a. Therefore there 
exists for A a change-over point ao such that Vr.(A) = oo for all a < a0 and 
Vrt(A) = 0 for all b > ao. The rough dimension dimr A of A is defined by 
dimryl := inf {a > 0;Vr.(A) = 0} = sup{a > 0;Vr.(A) = oo}. It is easy 
to check that:(l) Vr,(A) > 0 implies dimrvl > a, (2) dimrA > a implies 
Vrt(A) = oo, (3) Vr.(A) < oo implies dimrA < a, dimrA < a implies 
Vr. (A) = 0, and A C B implies dimr A < dimr B. 

Lemma 7.6. Let X be an Alexandrov space with Curv(X) > k. Then 
Vr.(A) > £rria(A) for every a > 0 and for every bounded set A C X. In 
particular, we have dimr A > dim# A. 

Proof. Let {xj£?j be the maximal system of e-discrete points in A. Then 
{B(xi,e)}fz^ is a covering of A and belongs to $2«(A). Thus 0x(e) > 
/ m S ? r#{Bi},*nd hence 

Vr.(yi) = limsupea&i(e) 

>limsup inf e'-SfBA 

> lim inf TpABi)*. 
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D 

Remark. (1) We denote by XX the scaling of X by A > 0. Then Vr. (A; Ad) = 
X" • Vr.(A;d) and also W«(A,Ad) = A* • H*{A). Both dimH and dimr are 
invariant under the scaling of metric. 

Remark. (2) If a map / : Y —* Z is Lipschitz on a bounded set A C Y, 
then dim/f /(-A) £ dim// A and dimr /(A) < dimr A. In particular if / is a 
bilipschitz homeomorphism then 

dimH(/(A)) = dimn A, dimr /(A) = dimr A. 

In fact, we may consider, by taking a suitable scaling of Y, that / is a 
contracting map. Then, /?/(,t)(e) < PA(S) implies Vr4(/(A)) < Vr.(A), and 
hence dimP/(A) < dim rA. If {£,} e $e(A), then {/(£<)} 6 $e(/(A)) 
implies W„(/(A)) < Htt(A). The rest of the proof is now clear. 

Lemma 7.7. Let X be an Aiexandrov space with Curv(X) > k. If u, t t £ X 
and U,V C X are open sets around u and v whose diameters are bounded, 
then 

dimr [7 = dimr V. 

Proof. From Corollary to Theorem 7.3 and Lemma 7.6 we see that dimP V > 
0. For a fixed a e (0,dimr V) we have Vr.(V) — lime_0 supea/Jv(e) = +oo, 
and hence we find for any c > 0 a decreasing positiv sequence {ei\ tending 
to 0 such that for all t, 

el • Pv(£i) > c-
Choose an ej-discrete points {ci,...,Cfi{} in V such that JVj = /V(£i)-
Choose an R > 0 such that B := B(U,R) C U and set D :'= sup{d(u,x) : 
xGV} 

For each j = 1,...,Ni we take a point bj € UCJ n B such that d(u, 6y) = 
§d(u, CJ), (see Figure 7-4). The Aiexandrov convexity property then applies 
to A(ucjCjt) to obtain a constant K = K(k,D,R) such that 

<*(M*) > ^K-d{Cj,ck), j,k = l,...,Ni. 

This means that (by setting e\ := - ^ • e<) 

(e'i)0ft/(e<) > Const(iZ, D, k) • e? • jV,- > Const • c. 

Therefore Vr.(!7) = oo since c is arbitrary large and hence dimr U > dimr V 
is proved. The opposite inequality is obtained by the symmetric property of 
the discussion. • 
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Problem. Let X be an Alexandrov space with Curv(Jf) > Jt. Assume that 
the covering dimension of X is n < oo. Then is it true that the strained-
number is n on an open dense set of XI 

§8. Fundamental Tools 

In this section let A" be an n-dimensional (2 < n < oo) Alexandrov space 
with curvature bounded below by k. We discuss the space of directions at 
a point on X, the tangent cone K(%2 ) at p, the cut locus C(p) to p and 
the exponential map expj, : Dp —* X, where Dp C K(%2P) *s a s e t which is 
star-shaped with respect to the vertex o of K(£•)• The boundary of Xn is 
also discussed. 

8.1 The existence of angles of geodesies emanating from a point p makes 
it possible to define an equivalence relation among all geodesies emanating 
from p. Two geodesies px and py are said to be equivalent iff Z xpy = 0. We 
denote by px «• py iff Z xpy = 0. Namely, px ~ py iff one is contained in the 
other (for, geodesies have no branch points). Let £ \ , := {pq; q 6 X\{p}}/ ~. 
The angles Z define the metric of £ ' . Let £ _ be the completion of ( £ _ , Z), 
and K(^2p) the cone with vertex at o generated by ( J L , Z). The K(£,p) 
equipped with the distance defined in Example (4) in §5 is a length space, 
where the diameter of £ ) , is not greater than n, (see Corollary 8.6). 

Notice that if M is a Riemannian manifold then the tangent space TpM 
to M at a point p is obtained as the pointed Hausdorff limit of the scaling 
of metric. Namely we have 

(TpM;0)= lim (XM;p). 
A—»oo dg 

Therefore the £ corresponds to the unit hypersphere Sp(l) C TPM centered 
at the origin 0 of TPM, and the K($2p) to the tangent space to M at p. The 
{ ( A M ; P ) } A converges uniformly on every metric ball around p. The uniform 
convergence with respect to the pointed Hausdorff distance is guaranteed by 
the compactness of Sp(l). 

We want to prove that ( £ , Z) is a compact Alexandrov space of dimen
sion n — 1 with curvature bounded below by 1, and that K{^ ) has curvature 
bounded below by 0. The compaptness of J2P

 ia crucial to prove that the 
pointed Hausdorff limit of the scaling of metric of X is isometric to K(J2 »)> 

lim (AX;p) = (#(£„);<>). 
A—»oo 
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FIGURE 8-1. 

Theorem 8.1. If dimX = n < oo and if Curv(X) > k, then £ p for every 
point p G X is compact. 

It suffices for the proof of Theorem 8.1 to show that £)1 i8 precompact, e.g., 
that J^' admits finite e-net and e-discrete sets for all e > 0. The following 
Lemmas 8.2 and 8.3 are needed for the proof of the precompactness of T!p. 

Lemma 8.2. Let {pai}i=i,...,n be a finite number of geodesies emanating 
from p. Then there exists for any fixed 6 > 0 a neighborhood U around p 
such that for every q G pai n U and for every r G paj fl U we have 

6 > Lqpr — Zqpr, Lpqv — Zpgr, £rpq — Zrpq. 

Proof. We only need to prove the case where k = 2. Setting a := ai and 
6 := a2 we choose an R > 0 such that /La'pb' — Za'pb1 < S/2 hold for 
all a' £ pa n B(p, R) and 6' G pb ("1 B(p, f l ) v We then choose an Ri with 
0 < iZi < 6.R such that for any points ax € pa n B(p, Hi), &i G pb l"l BfeJ?i) I 
and for 62 G pb with d(p, 62) = -R, we have 

2 aip&i — 2 aip&z, 2 ai&2&i — 2 ai&2P < 6/2. 

We then apply the Gauss-Bonnet theorem to the triangles A^p&i) , r 

A(a1626i) and A(aip&2) := A(pai62) to get, (see Figure 8-1) I 
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( f « i p 6 1 - 2 a l P i 2 ) + ( 2 < ; i 6 2 6 1 -2a 1 6 2 p) ; - , 
- U p a 1 5 2 - 2 p a 1 6 1 - 2 6 1 a 1 5 2 ) + ( T _ 2 p 6 i a i _ 2 a i i l M . ' V '<*k 

^ i t z z r i ! p 7 e r t r , s e e t h a t * t h e ^ — 
we observe « 2 2 7 - ^ 2 ^ ^ T ! * ^ + < « * 
of the above equality t L * f l J ' 1 T * **" * t h e l e f t h a n d «**» c^uauty, which is less than 6 Becan<» nf •»,„ „ 
discussion we also have / ™ A > t 7 symmetry of the 

nave Z p ^ i , _ Z p M i < fc T h i g ^ ^ ^ ^ ^ ^ 
Lemma 8.3. Fix an n > i P 
/or every £ > o t W L i . v " ^ J ? " " " m ™th * < ™ < n and 

and/or <," < N" ' * T " * ^ ^ s * « * * • - d e, for 1 < ,- < m -J ^ n with the properties that " 

(8-1), 
[•it &.)J^i is an (m, ^-strainer at p 

^>P«i>%-6,2cjpbi>Z-6 
UcW>£f°r*Ui = l,...,mandallj,j> = h...jN. 

near p admits an (n + 1 9/n - • l '"" h e n a p o m t ^ € pc 

contradiction to dim J - f " ^ C ° n S I S t i l l g ° f " " * "« P' C' T h i s • • 

with the required p r o o e S ^ I Z ^ ^ ^ " = * « • + ! . « ) with the required prooertl^xW , l m + M ) ~**-*(m+l 

(M I/MY \ ' ' «•* 

Points p . U r L ^ i n ^ S ' ; ^ L * * T * « « * * " > " 
such that they satisfy (8-1) for 7 J'M^T ! ^ i = ^ " ^ = * ( m ' e > 

(m+l,2*)-strainer. Sett ng« - S l ^ * """* t 0 ^ ^ -"ng am + 1 ._ c „ M d 6 m + i . = p ^ o b g e r v e ^ ^ ^^ ^ 



AN INTRODUCTION TO THE GEOMETRY OF ALEXANDROV SPACES 71 

am+i&m+i is taken near 6m+it then the points p',a,-,6i, for t = l , . . . , m + 1 
has the properties that p := p' is an (m + l,25(m,e))-strained point with 
strainer (ctj, &j)t=i ,m+i- By the assumption of induction on m + 1 , X does 
not admit points p,aj,6j,Cj satisfying (8-l)m+i. Thus, if we set 

A := #{j : 2am+ipcj > - - 3«(m,e),2bm+1pcj > - - 35(m,e)}, 

C := { j ; 2 ftm+ipcj- < - - 36(m, e)}, 

then A + B + C = 7V(m,e) - 1 and A < N(m + l ,e) follows from inductive 
assumption on m + 1. It follows from the choice of N(m, e) that B + C > 
JV(m,e) — ZN(m + 1, f). Without loss of generality we may assume B > 
C. Then B > §(JV(m,e) - 3N{m + 1, f)) > 1000 • N{m + 1, §) • 6{m,e). 
By setting y>y := £am+\pcj for j = 1 , . . . , JV(m,e) — 1 we find a subset 
J C {l,2,...,N(m,e) - 1} such that # J > JV(m + l , f ) and such that 
\<Pj — <Pj'\ < ^5cT^ f° r "H i»i ' € ^- Because yj > 2am+ipcj and <f(p,am+i) 
and d(p, c,) are sufficiently small, we see \<pj —ipy \ < S(m, e), and in particular 
#0"; Vi < f ~ S(m,e)} >B> 1000 • JV(m + 1, f) • S(m,e)-1. By dividing 
[0, y — 6(m,e)] into 1000 • 6(m,e) - 1 subintervals with equal lengths, we find 
a subinterval J which contains at least N(m+1,1) members of ipy,, and the 
length of I is less than 6/100. We now fix a point px G pam+i sufficiently 
close to p and choose a point Cj G pcj for each j G J in such a way that 
d(p,Cj)cos<pj = d(p,px) (see Figure 8-2). 

By means of Lemma 8.3 we see that 

2am + ipiCj > - - 6{m + 1 , - ) 

2 bm+lpcj > - - 6{m + 1, - ) 

for all j G J. 

We finally assert that the points pi, a*, 6,-, c ; for t = 1 , . . . , m + 1 and for 
j £ J satisfy (8-l)m+i (and a contradiction will be derived). 

Clearly (aj, ^i)?!*1 is an (m + l,6(m + 1, |))-strairer at p\. 
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FIGURE 8-2. 

We next show that 2.Cjp\Cj> > e/2. Because Cj £ Picy, cy € pcj> and 
Z Cjpcji > e by what we have supposed and because \<pj — <py \ < 6/100 it 
follows from the continuity of angles that 2cjpiCj> > I . 

We finally show that ZaipiCj > f - 8(m + 1, | ) for all t* = l , . . . , m 
and for all j 6 J. In view of the Corollary to Lemma 7.4 we only need to 
prove that \d(pi,<n) — d[cj,a,)\ <. d{p\,Cj) for all i = l , . . . , m and for all 
j G J . It follows from (8-l)m that f - 26 < latppx < f + 4* and f - 28 < 
Zatpcj < j + 48. Therefore we have |<f(a,,p) — <f(a,,pi)| < 48 • d(p,p\) 
and \d(aitp) - <f(c,-,a,)| < 46 • d(p,Cj), and hence |<f(pi,a.) - d(cj,ai)\ < 
M(Pi,a.) - d(p,ai)\ + |d(a,-,p) - d(cj,a,)| < 4S(d(p,Pl) + d(p,cj)). 

On the other hand \d(p,pi) • tan<pj — d(pi,£j)\ = 0(62) and \d(p,£j) • 
sin <fij—d(pi, Sj)\ = 0(£2) follows from the corresponding triangles on M2(k). 
Therefore tf(p,pi)+d(p, CJ) > d(pj, c,-){cot ^j+cosec^}—0(£2) and cot y>j + 
cosecy>7- < ». Since £ = 6(m,e) is chosen as in (a), we have 

l<*(Pi>o.) - d{cj,ai)\ < d(pucj) 
6£(m,e) Jt_ 86(m + 1, f) 

<<*(Pl»C|)' 1000 

This proves the final requirement for (8-l)m+i, and a contradiction is de
rived. D 
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Proof of Theorem 8.1. For every point p € X and for every e > 0 let $(p,e) 

be the maximal system of e-nets which is e-discrete in J2p . By virtue of 

Lemma 8.3 for m = 0, we see that the number of elements in $(p, e) does 

not exceed N(n,e) < +co. This proves the precompactness of £ , and the 

proof of Theorem 8.1 is complete. • 

Lemma 8.4. If £ \ is isometric to S n _ 1( l ) , then p € X is a manifold point 

ofX. 

Proof. Since £ is isometric to S n - 1 ( l ) , there exists an (n,0)-strainer 

(aiA-)"=i °* S p s u c n t h a t d(a«>b0 = T and d(ai,bj), d(aj,a,), d(bi,bj) = 

7r/2 for all t , j = 1,...,n, t ^ j . The density property of £ 1 in 52p then 

implies that there exists for any 6 > 0 an (r», 5)-strainer (a'j,6'i)"_1 of 53p 

such that 

4 4 , 1 0 > * - * , d(a;,a;.),d(«;,6^),d(6;,6;) > | - i 

for all i,j = 1 , . . . ,n, t ^ j . Therefore p is a strained point with an (n, £)-

strainer generated by {a\, 6J)"=1. This proves Lemma 8.4. • 

8-2. We now define the exponential map and cut locus at a point p 6 X. 

Let Dp C K(£,) =: Kp be defined by 

Dp := {(a, t) G if,,; there exists a geodesic px such that px belongs to the 

equivalence class of a and such that t = d(p,x)}. Clearly, Dp is star-shaped 

with respect to the vertex o of Kp. The exponential map expp at p is defined 

as follows. expp : Dp —» X, expp(a,t) := exppta = x. Recall that ]£p is 

identified with (£,p, 1) C Kp. 

Next we define the cut locus C(p) to p by C(p) := {x 6 X; there exists a 

geodesic px which is not properly contained in any other geodesic emanating 

from p}, and also Cp C Kp by Cr := exp;\C(p)). Clearly Cp = dDp 

and expp \(Dp\Cp) is a homeomorphism between Dp\Cp and J*f\C(p), and 

exp"1 : X -* Dp is multivalued. 
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Theorem 8.5. Let p € X be a fixed point. The pointed Hausdorff limit of 

the scaling (XX;p) ofXis isometric to (Kp;o); 

lim da(\X;p) = (Kp;o). 

Proof. For an arbitrary fixed R > 0 we denote by B{R) C Kp the iZ-ball 

centered at o and B\(R) C \X the iZ-ball of XX centered at p. Thus 

B\(R) coincides with A^iZ-ball in X centered at p. We only need to prove 

that lim i„B\(R) m B(R). In view of Proposition 1.1 we construct for 
A-»oo 

every e-discrete net M(e) in B an (e + c(A))-discrete net M\(e + c(A)) in 

B\(R) such that lim itM\(* + c(A)) = M(e). Here c(A) > 0 converges 
A—*oo 

to 0 as A - • oo. From compactness of £ we see that ^/"(e) is a finite 

set, say M(e) = {tci,...,u>N}, where wt = (&,t,) for & € J ^ and t; € 

[0,JR]. Since £ * is dense in £) there is a large number A(e) such that there 

exists for all A > X(e) an (e - c(A))-discrete net {w^,...,w^} in XDP n 

B(i?) such that u>,A = (# ,* , ) , tf 6 EJ, and />(u>.-,u>A) < c(A) for all • = 

1 , . . . , N. Because every geodesic triangle A(expJ) X~1t^,p,expp X~ltj£f) 

is small we have (Ad(expp A
_1*j£A,expp A

-1t,£;
A)-/>(u>,A,u>*)| < c(A) for all 

i,j = 1,...,N. Therefore by setting zA := exp A-1r,-fA € B\(R) we see 

that MiX* ~ C(A)) : = W i • • • >*&} i s ^ (£ ~ c(A))-discrete (e + c(A))-net of 

B\(R) such that lim ^-A/^e - ((A)) = M(e). This proves Theorem 8.5. • 
A-oo j 

Corollary 8.6. The tangent cone Kp at each point p g X has curvature 

Curv(Kp) > 0. If dim X > 2, then Curv(?2P) > 1-

Proof. Because XX has curvature bounded below by A-2Jfc, its pointed Haus

dorff limit has curvature bounded below by 0. The rest follows from Theorem 

5.1, where we agree that X with dimension 0 has Curv(.X') > k and also 1-

dimensional X has Curv(.X') > k (in case of ifc > 0 the length of X is not 

longer than 2n/y/k). 
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Corollary 8.7. Let p 6 X. Then 

dimKp = dimX and dimY^ = dimX - 1. 

Proof. Fix an R > 0. The hinge theorem 3.1' implies that if p* is a point on 
Mn(k) and if B*(B) C Mn(fc) is an fl-ball around p*, then 

expp. o(expx |AD P n B(R))-1 : BX{R) -+ B'(B) 

is an expanding map, and hence dim B\(R) < dim B*{R) = n. If (£<, iji)i™ 
is a (dimB(.R),6)-stramer at a point z 6 B(B), then Lemma 1.2 and The
orem 8.5 imply that there exists a X(6) ^> 1, such that B\{R) admits a 
point zx 6 BA(B) and (dimB(B),26>strainer (tf ,»?*)*i™B(R) at zA such 
that Urn dl(^,Vi') m (fiiW) ^ d lim z* = z. Thus the strained number 

A—»oo A—»oo 
at zx for every A > X(6) is not less than dimB(H), and hence dimBx(B) > 
dimB(B). Since the dimension is invariant under homothety, this proves 
dimX = dim AX = dim Kp. The rest is now clear. 

The following Lemma 8.8 is used for the proof of the Lemma on limit 
angles 6.3. Notice that discussion throughout this section is local in nature. 

Lemma 8.8. Let (a;, /3j)«=i,2,... D e a sequence of geodesic Wangles such that 
p = a<(0) = ft(0), q{ = <*<(£<) = ft(4), tt = d(p,qi). If lim i, = 0 and if ft, 
is the angle at p between e*j and ft, then lim supflj = 0. 

Proof. Let Xj := l^X, i = 1,2,.... Then we have lim dH(Xi;p) = {Kp;o). 
i—»oo 

IfexpJ,: t"iXDp -* Xi is the exponential map at p of Xj, then a j(t) = exp|,t&, 
/?,(*) = expj,ii7i for 0 < t < 1, where fa »7« G 52p is the tangential directions 
to ai,/?j respectively. It follows from assumption that otj(l) = ft(l) = 9t 
for all t = 1,2,.. . , . If £ and rj are the limits of {&} and {r^} (by taking a 
subsequence if necessary) then £ = n. This proves Lemma 8.8. • 

In Riemannian case the injectivity radius of the exponential map of a 
complete Riemannian manifold is positive at each point on it. However, as 
is seen in the Example 5-B(3), this property does not hold at points on the 
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boundary of a disk, because such a point is a vertex of geodesic biangles of 
arbitrary small lengths. Notice that the cut locus distance to p 6 X is not 
necessarity continuous in the tangential directions of geodesies emanating 
from p. The limit of cut points to p is not necessarily a cut point to p, 
because the regularity of the exponential map is not guaranteed. X may 
admit a sequence of geodesic biangles with a conver at p € X with arbitrary 
small angles at p, while their lengths do not converge to 0. 

8-3. The boundary and interior points of X is now discussed. A point on a 
manifold M is an interior point iff there exists a neighborhood homeomorphic 
to an open set in a Euclidean space. However a point p G X may not have 
any neighborhood homeomorphic to an open set in R n . For instance, the 
vertex of a cone generated by TLPn is such a point. In view of J \ being 
an Alexandres space with Curv( JV) > 1 and with dim JV = n — 1, we can 
define an interior (and a boundary) point of X by induction. Let p 6 X and 
P\ an arbitrary point on J£_. Then the space £ of tangential directions at 
Pi to YLp is an (r» — 2)-dimensional Alexandrov space with Curv(53 ) > 1. 
If Pn-2 is an arbitrary point of J L B, then dim^3»„_, — 1- Because one-
dimensional Alexandrov space is either a circle or a segment, we say that 
p 6 X is an interior point iff £ \ is a circle for any choice of points 
Pi ^ £P>P2 € 2j,,» • • • »P»-2 € £ ,„_,- Also a point p € X is by definition 
a boundary point of X iff £ is a segment for some choice of points 
Pi e £ „ . - - - , P n - 2 € £ , „ _ , . 

We conclude this section by introducing a recent result due to Plaut [P-l]. 

Theorem 8.9. (Plaut;[P]). X is isometric to the standard unit n-sphere if 
Curv(X) > 1 and if X admits a giobaJ(n + l,0)-strainer(ai,6,)|L1 such that 
d(ai,bi) = ir and <f(a,-,fy), d(cti,aj), d(bt,bj) > x/2. 

Proof. It follows from Theorem 6.2 that X is isometric to the spherical sus
pension ]£(£a) of the equidistance set E\ := {x € X;d(ai,x) m d(bi,x)} 
and Ei is a totally geodesic (n — l)-dimensional Alexandrov subspace with 
C u r v ^ i ) > 1. Since E\ admits a global (n, 0)-strainver (aj,6,-)j>2 Ei is 
isometric to £ ( £ 2 ) , where Ei := {x € Ei;d(a2,x) = <f(62,x)} = {x € 
X;d(at,x) = d(bi,x);i = 1,2,}. Thus we conclude the proof by induc
tion. D 
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