Chern-Simons theory, Knot polynomials \& Quivers

By
 Vivek Kumar Singh

Based on : arXiv:1504.00364(JKTR), arXiv:1504.00371(JHEP), arXiv:1601.04199 (J.Phys.A), arXiv:1702.06316 (JHEP),arXiv:1805.03916(Annales Henri Poincaré(2019)), arXiv:2007.12532(Journal of Geometry and Physics), arXiv:2302.xxxx.. (P. Ramadevi, Satoshi Nawata, Andrei Mironov, Alexei Morozov, Andrey Morozov, Alexei Sleptsov and S.Dhara)

Quantum Colloquium Talk at NYUAD
of the talk

- Introduction
- Chern-Simons Theory
- Mutant Knots and Weaving knots
- Knot-Quiver Correspondence
- Summary and Discussion

Introduction

What is Knot and Link ?

Introduction

What is Knot and Link ?

Introduction

What is Knot and Link ?

Link

Periodic table of Knots

Figure: Classification of knots

Classification of Knots

Classification Problem

Can we distinguish knots ?

Type-1
\longleftrightarrow

Type-II

Classification of Knots

Classification Problem

Can we distinguish knots ?

Type-III

Reidmeister Move

Figure: algebraic quantity associated with each knot Image source: Google

Skein relation and Knot invariants

Jones Polynomial (1984) : J[K; q]

$$
\begin{aligned}
& \text { (+) } \\
& \text { (-) } \\
& \mathrm{J}[\mathrm{O}]=1 \\
& \text { (0) }
\end{aligned}
$$

Examples:-

Topoisomerase(enzyme)
(1):

(0)
(2):

$=-q^{1 / 2}\left(q^{2}+1\right)$
(3):

$=q^{2}$

Examples: $\left(5_{1}, 10_{132}\right),\left(88,10_{129}\right),\left(10_{25}, 10_{56}\right),\left(10_{22}, 10_{35}\right),\left(1_{41}, 10_{94}\right)$ etc.
HOMFLY-PT Polynomial : $\mathbf{H}\left[K ; A=\mathbf{q}^{\wedge}(N / 2), q\right]$
Examples: $\left(5_{1}, 10_{132}\right),\left(88,10_{129}\right),\left(10_{25}, 10_{56}\right),\left(10_{22}, 10_{35}\right),\left(10_{40}, 10_{103}\right)$ etc.

Need Further Improvement !!!!!

Connection to Physics

Chern-Simons Theory

- Chern-Simons action $S_{C S}[A]$ on S^{3} (metric independent)

$$
S_{C S}[A]=\frac{k}{4 \pi} \int_{S^{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

k is the coupling constant, A 's are the gauge connections.

Chern-Simons Theory

- Chern-Simons action $S_{C S}[A]$ on S^{3} (metric independent)

$$
S_{C S}[A]=\frac{k}{4 \pi} \int_{S^{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

k is the coupling constant, A 's are the gauge connections.

Chern-Simons Theory

Wilson loop operator

$$
W_{\underline{R}}[K]=\operatorname{Tr}_{\mathrm{R}} \exp \oint_{K} d x^{u} A_{\mu}^{a} \underline{T_{\underline{R}}^{a}}
$$

$T_{R}^{a}=$ Generators for representation R of $S U(N)$

Knot invariant

Chern-Simons Theory

[Witten '89]

	$\mathrm{R}=\square \quad$ (fundamental)	Higher rank representation
SU(2)	Jones Polynomial	Colored Jones
SU(N)	HOMFLY-PT Polynomial	Colored HOMFLY-PT

$$
J(\otimes, q)=q+q^{3}-q^{4}
$$

Variables: $q=e^{\frac{2 \pi i}{k+N}}, \quad a=q^{N}$

Chern-Simons Invariants

Towards the solving classification problems of knot

Method for computation of knot invariants

Direct Method to compute knot Invariant

The skein relation is too tedious for calculating higher crossing knots.

with wilson lines ending on p-punctured S^{2} boundary

Examples

4_{1}

63

52

76

6_{1}

77

62

Direct Method to compute knot Invariant

The skein relation is too tedious for calculating higher crossing knots. Witten's work (1989):

Knot classification

 pretzel link

(b) $\mathbf{8}_{18}$ knot

Figure: Classification of knot/link (a) arborescent (b) non- arborescent

Fusion matrix and braiding eigenvalue for point conformal block

$$
\begin{aligned}
& \lambda_{R_{1}, R_{2} ; t}^{(+)}=\left\{R_{1}, R_{2}, t\right\}^{+} q^{\left(C_{R_{1}}+C_{R_{2}}-C_{t} / 2\right)} \\
& \lambda_{R_{1}, \bar{R}_{2} ; t}^{(-)}=\left\{R_{1}, \bar{R}_{2}, t\right\}^{-} q^{\left(-C_{t}\right) / 2}
\end{aligned}
$$

[Moore,Seiberg '89]
where C_{R} denotes the quadratic Casimir of a representation R and intermediate states obey the fusion rule, i.e. $t \in\left(R_{1} \otimes R_{2}\right) \cap\left(\bar{R}_{3} \otimes \bar{R}_{4}\right)$ and $s \in\left(R_{2} \otimes R_{3}\right) \cap\left(\bar{R}_{1} \otimes \bar{R}_{4}\right)$

Fusion matrix

The quantum algebra $U_{q}(S U(2))$

$$
\left[J_{z}, J_{ \pm}\right]= \pm J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=\frac{q^{\frac{J_{z}}{2}}-q^{-\frac{J_{z}}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}} \equiv\left[J_{z}\right]
$$

Representation: $|j, m\rangle$

$$
J_{ \pm}|j, m\rangle=\sqrt{[j \mp m][j \pm m+1]}|j, m \pm 1\rangle \quad J_{z}|j, m\rangle=[m]|j, m\rangle
$$

$$
T_{j_{1}} \otimes T_{j_{2}} \otimes T_{j_{3}}
$$

$$
\left(T_{j_{1}} \otimes T_{j_{2}}\right) \otimes T_{j_{3}}=T_{j_{1}} \otimes\left(T_{j_{2}} \otimes T_{j_{3}}\right)
$$

$$
\begin{aligned}
& \left|\left(j_{1}, j_{2}\right) j_{12}, j_{3} ; j, m\right\rangle=\sum_{j_{23} a} a_{j_{12} j_{23}}\left[\begin{array}{cc}
j_{1} & j_{2} \\
j_{3} & j
\end{array}\right]\left|j_{1},\left(j_{2}, j_{3}\right) j_{23} ; j, m\right\rangle \\
& \text { SU(2) quantum Racah coefficient }
\end{aligned}
$$

States

Example:- Figure Eight Knot

$$
J\left[\otimes_{\hbar}^{2}\right]=\left\langle U\left(\sigma_{2}\right)^{2}\left(b_{1}\right)^{-1}\left(b_{2}\right)^{+1} \mid 0\right\rangle
$$

4, Knot

$J[1][S U(N)]=1+A^{\wedge}(-2)+A^{\wedge} 2-q^{\wedge}(-2)-q^{\wedge} 2$
$J[2]\left[S U[N]=3+q^{\wedge}(-6)-1 /\left(A^{\wedge} 2^{*} q^{\wedge} 6\right)-q^{\wedge}(-4)+\right.$ $1 /\left(A^{\wedge} 4^{*} q^{\wedge} 4\right)-1 /\left(A^{\wedge} 2^{*} q^{\wedge} 4\right)+1 /\left(A^{\wedge} 2^{*} q^{\wedge} 2\right)-A^{\wedge} 2 / q^{\wedge} 2$ $-q^{\wedge} 2 / A^{\wedge} 2+A^{\wedge} 2^{\star} q^{\wedge} 2-q^{\wedge} 4-A^{\wedge} 2^{*} q^{\wedge} 4+A^{\wedge} 4^{*} q^{\wedge} 4+$ $q^{\wedge} 6-A^{\wedge} 2^{*} q^{\wedge} 6$
$J[1][S O(N)):=\left(-A+A^{\wedge} 3+q-2 A^{\wedge} 2 q+A^{\wedge} 4 q+2 A q^{\wedge} 2\right.$
$-2 A^{\wedge} 3 q^{\wedge} 2-q^{\wedge} 3+3 A^{\wedge} 2 q^{\wedge} 3-A^{\wedge} 4 q^{\wedge} 3-2 A q^{\wedge} 4+$
$2 A^{\wedge} 3 q^{\wedge} 4+q^{\wedge} 5-2 A^{\wedge} 2 q^{\wedge} 5+A^{\wedge} 4 q^{\wedge} 5+A q^{\wedge} 6-$ $\left.A^{\wedge} 3 q^{\wedge} 6\right)\left(A^{\wedge} 2 q^{\wedge} 3\right)$

Can Chern-Simon Knot invariants solve classiff cation problem?

- Mutant knots:

What is mutation ??

Can Chern-Simon Knot invariants solve classifi

 cation problem ?- Mutant knots:

What is mutation ??

Can well-known polynomials like Jones, Homfly-PT, Kauffman polynomials distinguish?

Can Chern-Simon Knot invariants solve classifi

 cation problem ?- Mutant knots:

What is mutation ??

Can well-known polynomials like Jones, Homfly-PT, Kauffman polynomials distinguish ? NO!!!

Can Chern-Simons Knot invariant detect mutz tion?

- In arXiv:hep-th/9412084(1994), the results shows that mutation can not be studied in CS theory. Note that the explanation does not deal with the multiplicity issue properly.
- On the other hand (1996), Morton and Cromwell have shown that
\square-colored HOMFLY-PT polynomials can directly evaluating the difference of invariants of their satellites. Moreover, the reason is explained in the view point of the cabling method by M. Ochiai and J. Murakami.
- In fact, any symmetric or anti-symmetric rep. of $\operatorname{SU}(\mathrm{N})$ can not distinct (Identity operation).

Can Chern-Simons Knot invariant detect mutz tion?

- In arXiv:hep-th/9412084(1994), the results shows that mutation can not be studied in CS theory. Note that the explanation does not deal with the multiplicity issue properly.
- On the other hand (1996), Morton and Cromwell have shown that
\square-colored HOMFLY-PT polynomials can directly evaluating the difference of invariants of their satellites. Moreover, the reason is explained in the view point of the cabling method by M. Ochiai and J. Murakami.
- In fact, any symmetric or anti-symmetric rep. of $\operatorname{SU}(\mathrm{N})$ can not distinct (Identity operation). Can CS theory detect mutation?

Can Chern-Simons Knot invariant detect muta tion?

- In arXiv:hep-th/9412084(1994), the results shows that mutation can not be studied in CS theory. Note that the explanation does not deal with the multiplicity issue properly.
- On the other hand (1996), Morton and Cromwell have shown that
\square-colored HOMFLY-PT polynomials can directly evaluating the difference of invariants of their satellites. Moreover, the reason is explained in the view point of the cabling method by M. Ochiai and J. Murakami.
- In fact, any symmetric or anti-symmetric rep. of $\operatorname{SU}(\mathrm{N})$ can not distinct (Identity operation). Can CS theory detect mutation? YES!! (Nawata, P.Ramadevi, V. K.Singh (JKTR, 2017))
Crucial input: multiplicity (denoted by red color)

$$
\begin{aligned}
\square \otimes \bar{\square}= & (0 ; 0)_{0} \oplus(1 ; 1)_{0} \oplus(1 ; 1)_{1} \oplus(2 ; 2)_{0} \oplus\left(2 ; 1^{2}\right)_{0} \\
& \oplus\left(1^{2} ; 2\right)_{0} \oplus\left(1^{2} ; 1^{2}\right)_{0} \oplus(21 ; 21)_{0},
\end{aligned}
$$

The two types of Wigner 6j has been recently determined for \square (Gu,

4- point conformal block basis

Now, the states in the four-point conformal blocks involve multiplicity

Multi-boundary state

(a) two boundaries

(b) three
boundaries

Figure: three-manifolds with boundaries

$$
\begin{aligned}
\mid 2 \text {-bdry }\rangle{ }^{(a)}= & \sum_{t, r_{1} r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{1} r_{2}}^{(1)}(\ldots)\right\rangle_{1}\left|\phi_{t, r_{2} r_{1}}^{(1)}(\ldots)\right\rangle_{2} \\
\mid 3 \text {-bdry }\rangle^{(b)}= & \sum_{\substack{t, r_{1}, r_{2}, r_{3}}} \frac{\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left\{R, \bar{R}, \bar{t}, r_{3}\right\}}{\sqrt{\operatorname{dim}_{q} t}} \cdot\left|\phi_{t, r_{1} r_{2}}^{(1)}(\ldots)\right\rangle_{1} \\
& \left|\phi_{t r_{1}}^{(1)}(\ldots)\right\rangle_{2} \mid \phi_{t}^{(1)}\left(r_{r_{1}}(\ldots)\right\rangle_{3},
\end{aligned}
$$

Multi-boundary state

Furthermore, it is straightforward to extrapolate it to multi-boundary states as

$$
\mid \text { n-bdry }\rangle=\sum_{t, r_{1}, \ldots, r_{n}} \frac{\prod_{i=1}^{n}\left\{R, \bar{R}, \overline{,}, r_{i}\right\}}{\left(\sqrt{\operatorname{dim}_{q} t}\right)^{n-2}} \bigotimes_{i=1}^{n}\left|\phi_{t,, r_{i} r_{i+1}}^{(1)}(\ldots)\right\rangle_{\mathbf{i}} .
$$

M_{y} mutation operation on two -tangle

$$
\begin{aligned}
|\mathbf{7}\rangle & =\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right) b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right)|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{2}, r_{1}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle
\end{aligned}
$$

Note that $\left\{R, \bar{R}, \bar{t}, r_{1}\right\}$ indicated by signs ± 1 hence the amplitude of mutant tangle are related by sign when $\mathrm{r} 1 \neq \mathrm{r} 2$.

Example :- Kinoshita-Terasaka knot and Conway knot

The F and G tangle for Kinoshita-Terasaka knot can be redrawn as follows:

Kinoshita-Terasaka knot and Conway knot

It is easy to see that

$$
\begin{aligned}
& P_{\square}\left(K_{K T} ; a, q\right)-P_{\square}\left(K_{C} ; a, q\right)=a^{-5} q^{-18}(a-1)\left(a-q^{2}\right)\left(a q^{2}-1\right)\left(a-q^{3}\right)^{2} \\
& \left(a q^{3}-1\right)^{2}(q-1)^{2}\left(q^{3}-1\right)^{2}\left(q^{6}-q^{5}+q^{4}-q^{3}+q^{2}-q+1\right)^{2}
\end{aligned}
$$

so that the $S U(2)$ and $S U(3)$ quantum invariants cannot distinguish this mutant pair. The difference becomes apparent for $N>3$ and especially, at $N=4$, it factorizes as

$$
J_{\square}^{(4)}\left(K_{K T} ; q\right)-J_{\square}^{(4)}\left(K_{C} ; q\right)=-q^{-30}(1-q)^{6}\left(1+q^{2}\right)\left(1-q^{3}\right)^{2}
$$

$\left(1-q^{6}\right)\left(1-q^{14}\right)^{2}$, which is consistent with the result obtained by Ochiai with the computer software "Knot Theory By Computer" programmed based on the cabling method(Murakami (2000)).

Discussion

- This method is computationally efficient and it takes less than 15 minutes with a current desktop computer for the computation.
- More mutant pair discuss in arXiv:1601.04199(J.Phys. A 50 (2017)), arXiv:2007.12532(Journal of Geometry and Physics, 159(2021),)
- advanced new results of knot invariants-> knotebook.org website(DST-RFBR, P-162 funded ongoing project).
- Knot invariants:- useful to verify integrality structures predicted by $\mathrm{U}(\mathrm{N})$ and SO topological string duality conjectures (arXiv:1702.06316(JHEP08 (2017) 139)) and multi-boundary entanglement(arXiv:1711.06474(JHEP(2018)), arXiv:1906.11489(JHEP(2019),theory, arXiv:2007.07033(JHEP (2020)).

Computation Methods for non-arborescent kn

- For $\mathrm{m}=3$ strand and each strand carrying representation R, parameterized by a sequence of integers ($a_{1}, b_{1}, a_{2}, b_{2}$)

- colored HOMFLY-PT using quantum \mathcal{R} matrices will be

$$
H_{R}=\operatorname{Tr}\left\{(\mathcal{R} \otimes \mathcal{I})^{a_{1}}(\mathcal{I} \otimes \mathcal{R})^{b_{1}}(\mathcal{R} \otimes \mathcal{I})^{a_{2}}(\mathcal{I} \otimes \mathcal{R})^{b_{2}}\right\}
$$

- Instead of working in tensor space $R^{\otimes 3}$, it is simpler to work using the irreducible representation

Examples

$$
\begin{aligned}
H_{[1]}= & \sum_{[111][21][3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[211]}\right)^{\left.b_{2}\right\}} S_{[211]}^{*}\right.
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

Examples

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]}^{[21]} \mathcal{R}_{121]} U^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}\right.
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.

Examples

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]}^{[21]} \mathcal{R}_{1}^{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.
- U_{Q} is non-trivial when paths to obtain Q from $R^{\otimes 3}$ is two or more.

Examples

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]}^{[21]} \mathcal{R}_{1}^{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.
- U_{Q} is non-trivial when paths to obtain Q from $R^{\otimes 3}$ is two or more.
- Highest weight method is one method which enables determining these U matrices.

Colored HOMFLY-PT for links carrens symmetric Representations arXiv:1805.03916(Ann. Henri Poincare (2019))
 The braid word $\beta \in B_{3}$ for a link

There exist U matrix which relate two equivalent basis

$$
\left|\left(\left(\left[r_{1}\right] \otimes\left[r_{2}\right]\right)_{X_{\alpha}} \otimes\left[r_{3}\right]\right)_{Q_{\nu}}\right\rangle \xrightarrow{U}\left|\left(\left[r_{1}\right] \otimes\left(\left[r_{2}\right] \otimes\left[r_{3}\right]\right)_{Y_{\beta}}\right)_{Q_{\nu}}\right\rangle
$$

Conjecture :

$$
U\left[\begin{array}{cc}
{\left[r_{1}\right]} & {\left[r_{2}\right]} \\
{\left[r_{3}\right]} & \frac{\left[\ell_{\nu}, m_{\nu}, n_{\nu}\right]}{}
\end{array}\right]=U_{U_{q}\left(s_{2}\right)}\left[\begin{array}{cc}
\left(r_{1}-n_{\nu}\right) / 2 & \left(r_{2}-n_{\nu}\right) / 2 \\
\left(r_{3}-n_{\nu}\right) / 2 & \left(\ell_{\nu}-m_{\nu}\right) / 2
\end{array}\right]
$$

Example L7a3 Link

$$
\begin{aligned}
\frac{H_{\left[r_{1}\right],\left[r_{2}\right]}^{L 7733}}{S_{\left[r_{1}\right]} \cdot S_{\left[r_{2}\right]}^{*}}=T_{\left[r_{2}\right]}(q, A) & +\sum_{k=1}^{\min \left(r_{1}, r_{2}\right)} \frac{\left[r_{1}\right]!\left[r_{2}\right]!}{\left[r_{1}-k\right]!\left[r_{2}-k\right]!} \frac{\{q\}^{3 k}}{A^{3 r_{2}}} \frac{D_{-1}}{D_{r_{2}-1}} \times \\
& \times \frac{\prod_{n=1}^{k} D_{r_{1}+n-1} \prod_{m=0}^{r_{2}-k-1} D_{2 k+m}}{\prod_{i=0}^{r_{2}-k-1} D_{k+i-1}} \cdot G_{k, r_{2}}(q, A),
\end{aligned}
$$

- The procedure is straightforward for $m=4$ or more strands but will involve new unitary matrices.

Weaving knot $W(p, n)$

Weaving knot obtained from closure of three-strand braid whose braid word is

$$
\left(\sigma_{1} \sigma_{2}^{-1} \sigma_{3}^{1} \ldots \sigma_{p-1}^{x}\right)^{n}
$$

where $x=1(-1)$ if p is even(odd). As example $p=3$

Weaving knot $W(p, n)$

They attracted interest because it was conjectured that they possess maximum volume among all other knots of same crossing number. Exploring on this conjecture towards the volume, Champanerkar, Kofman and Purcell proved the following theorem.

Theorem (Theorem 1.1)

If $p \geq 3$ and $n \geq 7$, then

$$
\begin{equation*}
v_{\mathrm{oct}}(p-2) n\left(1-\frac{(2 \pi)^{2}}{n^{2}}\right)^{3 / 2} \leq \operatorname{vol}(W(p, n))<\left(v_{\mathrm{oct}}(p-3)+4 v_{\mathrm{tet}}\right) n . \tag{2}
\end{equation*}
$$

Here $v_{\text {oct }}$ and $v_{\text {tet }}$ denote the volumes of the ideal octahedron and ideal tetrahedron respectively.

weaving knot $W(p, n)$

The authors refer to these bounds as asymptotically sharp because their ratio approaches 1 , as p and n tend to infinity. Since the crossing number of $W(p, n)$ is known to be $(p-1) n$, the volume bounds in the theorem imply

$$
\lim _{p, n \rightarrow \infty} \frac{\operatorname{vol}(W(p, n))}{c(W(p, n))}=v_{\mathrm{oct}} \approx 3.66
$$

Their study raises the general question of examining the asymptotic behaviour of other invariants of weaving knots.

Example $W(3, n)$

- In work of Mishra and R. Staffeldt(arXiv:1704.03982) attempted recursive method of relating the HOMFLY-PT of $W(3, n)$.
- Myself with Mishra, and Staffeldt, we have computed a closed formula for Jone's, Alexander, and Khovanov polynomials(arXiv:2302.XXXX to appear).
The Jones polynomial $\mathcal{J}^{W(3, n)}(t)$ of $W(3, n)$ is given by
$\mathcal{J}^{\mathcal{W}(3, n)}(t)=\sum_{k=-n}^{n}(-1)^{k} j[n,|k|] t^{k}$, where, $j[n, k]=\left(-\delta_{(n-1, n-|k|)}+T[n, k]\right.$

$$
T[n, k]=n \sum_{i=0}^{\frac{(n-k)}{2}} \frac{1}{n-i}\binom{n-i}{k+i}\binom{n-k-i-1}{i}
$$

This gives us a neat description of Lucas number $L_{2 n}$ as

$$
L_{2 n}=\sum_{k=-n}^{n} \mid T[n,|k|],
$$

Summary and Open problems

- We have explicitly worked out $r=2$ and $r=3$ colors for hybrid weaving knot $W_{3}(m, n)$ in the paper (arXiv:2103.10228) JHEP 06 (2021) 063 and Quasi-alternating knots arXiv:2202.09169(Nucl.Phys.B 980 (2022)).
- Quantum \mathcal{R}-matrices approach for higher colors is straightforward but no closed form expression
- closed form for r-colored HOMFLY-PT for hyperbolic weaving knots W(p,n)
- Will help to address volume conjecture?

KNOT-QUIVER Correspondence

Any knot one can assign a quiver, more precisely, defined as

$$
\begin{equation*}
P_{r}(A, q)=\sum_{d_{1}+\ldots+d_{m}=r}(-1)^{\sum \gamma_{i} d_{i}} \frac{q^{\sum \sum_{i, j} C_{i, j} d_{i} d_{j}}(q ; q)_{r}}{\prod_{i=1}^{m}(q ; q)_{d_{i}}} q^{\sum \alpha_{i} d_{i}} A^{\sum \beta_{i} d_{i}} . \tag{3}
\end{equation*}
$$

Here, $C_{i, j}$ is quiver charge matrix.
Example: [r] colored super polynomial for trefoil (3_{1}):

$$
\begin{gathered}
\left.P_{[r]}(a, q, t)=\frac{a^{2 r}}{q^{2 r}} \Sigma \sum_{k=0}^{r}\right] q^{2 k(r+1)} t^{2 k}\left[\prod_{i=1}^{k}\left(1+a^{2} q^{2(i-2)} t\right)\right] \\
P_{[1]}(a, q, t)=t^{0} \frac{a^{2}}{q^{2}}+a^{2} q^{2} t^{2}+q^{4} t^{3}
\end{gathered}
$$

Quiver representation C:

$$
C^{3_{1}}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Knot-Quiver Correspondence for double twist

 knotarXiv:2302.XXXX to appear

$$
J_{r}(K(p,-m) ; q)=\sum_{d_{1}, d_{2} \ldots d_{4 m p+1}}(-1)^{\sum_{i} \gamma_{i} d_{i}} \frac{\left(q^{2} ; q^{2}\right)_{r}}{\prod_{i=1}^{4 m p+1}\left(q^{2} ; q^{2}\right)_{d_{i}}} q^{\sum c^{K(p, m)} d_{i} d_{j}+\beta_{i} d_{i}}
$$

The quiver charge matrix for an arbitrary p, m, takes the form
$C^{K(-m, p)}=\left[\begin{array}{c|c|c|c|c|c|c|c}F_{0} & F_{1} & \tilde{F}_{1} & & \cdots & & F_{p} & \tilde{F}_{p} \\ \hline F_{1}^{l} & U_{1} & R_{1} & \tilde{R}_{1} & \cdots & & R_{1} & \tilde{R}_{1} \\ \hline \tilde{F}_{1}^{T} & R_{1}^{T} & \tilde{U}_{1} & T_{1} & \tilde{T}_{1} & \cdots & T_{1} & \tilde{T}_{1} \\ \hline \tilde{F}_{1}^{T} & \tilde{R}_{1}^{T} & T_{1} & U_{2} & \tilde{R}_{2} & \cdots & R_{2} & \tilde{R}_{2} \\ \hline \vdots & \vdots & \ddots & \vdots & \cdots & & \vdots & \vdots \\ \hline F_{i}^{l} & R_{1}^{I} & \cdots & U_{i} & \cdots & & R_{i} & \tilde{R}_{p} \\ \hline \tilde{F}_{i}^{T} & \tilde{R}_{1}^{T} & \cdots & R_{i}^{T} & \tilde{U}_{i} & \cdots & T_{i} & \tilde{T}_{i} \\ \hline \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\ \hline F_{p}^{T} & R_{1}^{T} & T_{1}^{T} & R_{2}^{T} & & \cdots & U_{p} & R_{p} \\ \hline \tilde{F}_{p}^{l} & \tilde{R}_{1}^{l} & \tilde{T}_{1}^{I} & \tilde{R}_{2}^{l} & & \cdots & R_{p}^{I} & \tilde{U}_{p}\end{array}\right]$

Future directions

