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Orbit method and quantization

A. A. Kirillov

G = Lie group (infinite-dimensional group, quan-
tum group ... )

Category of unitary representations of GG

Objects: continuous homomorphisms 7: G —
U(H) (H a Hilbert space)

Morphism (“intertwining operator”) from T4y
to T5: continuous linear A: H1 — Ho»

Hi—A H,

T1(g) T>(g)

Hi— A H,



Example. X = G-manifold with G-invariant mea-
sure u. Unitary representation on L2(X, u):
T(9)f(z) = f(g~1z). Map F: X; — X5 induces
intertwining map F*: L2(Xo5, us) — L2(X1, u1)
(if uo is absolutely continuous w.r.t. Fyuq).

T is indecomposable if T = T7 &T» for nonzero
T7 and T». T is irreducible if does not have
nontrivial invariant subspaces.

For unitary representation irreducible <— in-
decomposable.

“Unirrep” = unitary irreducible representation.



Main problems of representation theory

1. Describe unitary dual:

G = {unirreps of G}/equivalence.

2. Decompose any T into unirreps:

T(9) = [ Ty(9)duy):
Y

Special cases: for H < G closed (“little
group” ),

(a) for T € G decompose restriction Res% T.

(b) for S € H decompose induction Ind$; S.

3. Compute character of T € G.



Ad 2b: let S: H — U(H). Suppose G/H has G-
invariant measure u. Ind% S = L2-sections of
G xH 7. Obtained by taking space of functions
f: G — H satisfying f(gh—1) = S(h)f(g), and
completing w.r.t. inner product

(1 02) = [ (@), fa(@))pdp ().

G/H

Ad 3: let ¢ € C(G). Put
T(¢) = [ $(9)T(9)dyg.
G

With luck T(¢): H — H is of trace class and
o — TrT(¢) is a distribution on G, the charac-
ter of T.



Solutions proposed by orbit method

1. Let g = Lie algebra of G. Coadjoint repre-
sentation = (non-unitary) representation of G
on g*.

G = ¢g*/G, the space of coadjoint orbits

2. Let T» be unirrep corresponding to O €
g*/G. For H < G have projection pr: g* — h*.
T hen

Res% To = / m(0,0NTH for O € g*/G,

O'eh*/H
O'cprO

Ind% T,y = / m(0,0)T, for O € h*/H.

O'eg*/G
prOD>O’

Same m(0O,0") (Frobenius reciprocity).



3. For O € g*/G let xp = character of Tp.
Kirillov character formula: for £ € g

Vi© xolexp&) = [ 2704,

@
Fourier transform of d». (df = canonical mea-
sure on O, j = \/j;jr, Where j, , = derivative of
left resp. right Haar measure w.r.t. Lebesgue
measure.)

Theorem (Kirillov). Aboveis exactly right for
connected simply connected nilpotent groups

(where j(£) = 1).



Examples

G = R*. Then g*/G = g* = (R™)*. Unirrep
corresponding to A € (R™*)* is
T\(z) = 627Ti()\,:c) (H = C)

(Fourier analysis).

Heisenberg group: G = group of matrices

1 g1 93
g=10 1 g5
0O 0 1

Typical element of Lie algebra g is

0 &1 &3
=10 0 &
O 0 O

Basis:

p:

O oo
oo R
cNolNe)
K
|
O oo
cNolNe
O+ O
N
|
O oo
cNolNe
OO R



Note [p,q] = z, z generates centre of g.

Complete list of unirreps (Stone-von
Neumann)

For h £ 0: Ty: G — L?(R) is generated by

d
[ >ﬁd, qg+—txr, z+—1h,
X

e Tu(e®)f(x) = flz + th), Th(e)f(z) =
et f(z), Tp(e?) = €. Note [Thp, Thal = Tz
(uncertainty principle).

For a, B eR: S,5: G — C is generated by

pr+—ia, q+——10, z+—0.
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Description of g/G

Adjoint action:

0 &1 &3— 9281 + 9182
gé=gég =10 0 &2
O O 0

Adjoint orbits:

/51 2
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Description of g*/G

Identify g* with lower triangular matrices. Typ-
ical element is

O O O
J=1/1i 0 O
Jz f2 O

Pairing (f,§) = Trf§ = f1§1 + f262 + f3&s.
Coadjoint action:

g-f = lower triangular part of gfg~ ! =

0 0 0
= |f1+92f3 0 0
I3 Jo—91/3 O
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Coadjoint orbits:

/3

/fl J2

‘Two-dimensional orbits correspond to T}, zero-
dimensional orbits to S, 3
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“Explanation” for orbit method

Classical Quantum

Symplectic manifold (M, w) Hilbert space H = Q(M
(or PH)

Observable (function) f skew-adjoint operator
Q(f) on H

Poisson bracket {f, g} commutator [Q(f),Q(g

Hamiltonian flow of f 1-PS in U(H)

Dirac’'s “rules”: Q(¢) = ic (¢ constant), f —

Q(f) is linear, [Q(f1), Q(f2)] = hQ({f1, f2}).

le. f— h~1Q(f) is a Lie algebra homomor-
phism C°(M) — u(H).

So Lie algebra homomorphism g — C°(M)
gives rise to unitary representation of G on H.

Last “rule”: if G acts transitively, Q(M) is a
unirrep.
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Hamiltonian actions

(M,w) symplectic manifold on which G acts.
Action is Hamiltonian if there exists G-equivariant
map &: M — g*, called moment map or Hamil-
tonian, such that

d<¢7€> — L(gM)wa
where &, = vector field on M induced by ¢ € g.

If G connected, equivariance of & is equivalent
to: transpose map ¢: g — C°(M) defined by
d(&)(m) = P(m)(&) is homomorphism of Lie
algebras.

Triple (M, w,®) is a Hamiltonian G-manifold.

Notation: ®¢ = ¢(¢) = composite map M -2
g = R (¢&-component of $).

15



Examples

1. @ = any manifold w. G-action p: G —
Diff(Q). M = T*@Q with lifted action

5(9)(q,p) = (p(9)q, (g~ 1) *p),

where ¢ € Q, p € T;Q. w = —da, where
a(q,p)(v) = p(msv); ®™ = projection M — Q.
Moment map:

®4(q,p) = p(&Q).

2. Poisson structure on g*: for ¢, ¢ € C>®(g*),
fegr

(Here doy, dyy € g** = g.)
Leaves: orbits for coadjoint action. For coad-
joint orbit © moment map is inclusion © — g*.

16



Theorem (Kirillov—Kostant—Souriau). Let
(M,w,P) be homogeneous Hamiltonian G-manifold.
Then ®: M — g* is local symplectomorphism
onto its image. Hence, if G compact, ¢ is
global symplectomorphism.

Sketch proof. M homogeneous = image of &
is single orbit in g*, and therefore a symplectic
manifold.

$ equivariant = P is Poisson map. Conclu-
sion: ¢ preserves symplectic form.

If G compact all coadjoint orbits are simply
connected. L]
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Prequantization

First attempt: Q(M) = L2(M, 1), where pu =
w™/n!, Liouville volume element on M. For f
function on M put

Q(f) =h=;

skew-symmetric operator on L? (=; = Hamil-
tonian vector field of f).

Wrong: Q(c) = 0! Second try:

Q(f) =h=;—if.

But then [Q(f1),Q(f2)] = -+ = h? Zp,+2ilf3 #
hQ(f3), where fz3 ={f1, f2}.

(Sign convention: {f,g} = w(=f,=g) = —=¢(9).)
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Third attempt: suppose w = —da. Put

Q) =hZ;+i(a(Zy) - f).
Works! But: depends on «; and what if w

not exact? Note: first two terms are covariant
differentation w.r.t. connection one-form «a/h.

Definition (Kostant-Souriau). M is prequan-
tizable if there exists a Hermitian line bundle L

(prequantum bundle) with connection V such

that curvature is w/h.

Prequantum Hilbert space is L?-sections of L,
and operator associated to f € C°(M) is
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Example

M = Rzn, w = deka/\dyk, L = R2" x C,
a = — > rzrdy,. Inner product:

(o, ) = / oz, y)Y(z,y) d dy.
RQn
=z, = —0/0y;, and =, = 0/0z}, SO
0

0

Q(yg) = ﬁa— — 1Yk
T

Snag: prequantization is too big. For n = 2
get L2(R?). R? is homogeneous space under
Heisenberg group, but L2(R2?) is not unirrep
for this group.
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Polarizations

Polarization on M = integrable Lagrangian sub-
bundle of TCM, i.e. subbundle P ¢ T®M s.t.
P is Lagrangian in T¢M for all m, and vec-
tor fields tangent to P are closed under Lie
bracket.

P is totally real if P = P. P is complex if
PNP=0.

Frobenius: real polarization = Lagrangian fo-
liation of M

Newlander-Nirenberg: complex polarization =
complex structure J on M s.t. P is spanned
by 0/9z; in holomorphic coordinates z;.

P is Kdhler if it is complex and w(-,J-) is a
Riemannian metric.
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Section s of L is polarized if Vzs = 0 for all v
tangent to P.

Definition. Q(M) = L2 polarized sections of
L.

Problems
1. Existence of polarizations.
2. Q(f) acts on Q(M) only if = preserves P.

3. Polarized sections are constant along (real)
leaves of P. Square-integrability?!

4. M compact, P complex but not Kahler =
there are no polarized sections.

5. Q(M) independent of P?
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Coadjoint orbits

O = coadjoint orbit through f € g*. Assume
G simply connected, (O,w) prequantizable. G-
action on O lifts to L. Infinitesimally,

¢ = lift of &p 4+ 27dluy,

where ¢ € g, v; = generator of scalar Sl-action
on L.

G-invariant polarization P of O is determined
by p D g(}:, inverse image of P; under g& —
T}CO.

P integrable <= p subalgebra.

P Lagrangian <= f|p, = O (i.e. flp is in-
finitesimal character) and 2dim¢gp = dimp G+
dimRGf.
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P real <= p = p§ for po C g. Let Py =
group generated by exppg. Assume f: pg — R
exponentiates to character Sy: Py — S1: then

Q(M) =1IndB, Sy.

If P complex, Q(M) is holomorphically induced
representation.

Example

G compact (and simply connected). Let T =
maximal torus, t’_‘l_ positive Weyl chamber,
f € tj_. Then O = Gf integral <= f in
integral lattice.

All invariant polarizations are complex and are
determined by parabolic subalgebras p D g% In

fact, © = G/G; =2 GY/P, where P = expp.

Q(©) = holomorphic sections of G* x” S
= unirrep with highest weight f.
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Character formula:

Vi(©) xolexpg) = [ 2 qp,

@
where
. . €<a’€>/2 — e_<047€>/2
\/E B Ozl;[O <Oé, > .
§=20
(a, f)

dimQ(0O) = vol(O) = H

a>O <a7 p>7
where p = 1/2 sum of positive roots. Compare
Weyl dimension formula:

dim Q(0) = H (o, f + p)

(p-shift).
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Index theorem in symplectic geometry

Recall table:

Classical Quantum

Symplectic manifold (M, w) Hilbert space H = Q(M
(or PH)

Observable (function) f skew-adjoint operator
Q(f) on H

Poisson bracket {f, g} commutator [Q(f),Q(g

Hamiltonian flow of f 1-PS in U(H)

Continuation:

Hamiltonian G-action on M unitary representation
on Q(M)

Moment polytope A(M) highest weights of
irreducible components

Symplectic cross-section highest-weight spaces

dL(t)
Symplectic quotients iIsotypical components
$=1(0)/G Hom(Q(0),Q(M))"
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Lemma. kerd®,, = Tn(Gm)¥, where Gm =
G-orbit through m.

imdd, =g, where gm = {¢: (£);)m = 0}.

Hence: if f € g* is regular value of ¥, G acts
locally freely on ®~1(f).

Theorem (Meyer, Marsden-Weinstein). If f
is regular value of &, null-foliation of w|¢_1(f)

is equal to G-orbits of Gg-action. Hence the

quotient My = ®~1(f)/Gy = ®~1(0y)/G is a

symplectic orbifold.

Conjecture (Guillemin-Sternberg, “[Q,R] = 0").
Q(Mp) = Q(M)“.

(This implies Q(M») = Hom(Q(0O), Q(M))E.)
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Proved by Guillemin-Sternberg in Kahler case
using geometric invariant theory.

In compact case can make life easier by chang-
ing definition of Q(M): regard prequantum
bundle L as element of Kp(M). Let w: M — o
be map to a point. Define

QM) = m([L]),

regarded as element of K(e) = Rep(G) (rep-
resentation ring).

Disadvantages: works only for compact M and
G; dimension can be negative; no natural inner
product.

Advantages: by and large satisfies Dirac’s rules;
don’'t need polarization; can be computed by
Atiyah-Segal-Singer Equivariant Index Theo-
rem.
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Definition of ms«: choose G-invariant compat-
ible almost complex structure J. Splitting of
de Rham complex QP = @4 =, Q.

Dolbeault operator 8 is (0, 1)-part of d. 82 # 0
unless J integrable. With coefficients in L:

O, =014+ 19V: Q%L) - QT
Dolbeault-Dirac operator:
g, = 9, + d5: QUVeN(L) — QPedd.
Pushforward of L:

Q(M) = m«([L]) = kerdy, — cokerdy,

a virtual G-representation.

RR(M, L), the equivariant index of M, is the
character of Q(M). Note RR(M, L)(0) = index{y..

RR(M, L)% is by definition [~ RR(M,L)(g)dg,
the multiplicity of 0 in Q(M).

29



Theorem (Meinrenken, Guillemin, Vergne, ...

It O regular value of &,

RR(M, L)Y = RR(Mg, Lo).

(See [S] for attributions.)
Outline of proof for G = S [DGMW]

Two ingredients:

Proposition. If0 & ®(M), then RR(M, L)% =
O. If O is minimum or maximum of &, then
RR(M, L)Y = RR(My, Lg).

Theorem (gluing formula).

RR(Mc<o, L<g) + RR(M>q, L>g) =
= RR(M, L) + RR(Mqo, Lo).

(Cf. gluing formula for topological Euler char-
acteristic.)
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Here (Mgo,wgo, Cbgo), (Mzo,wzo, Cbzo) are Hamil-
tonian G-manifolds (orbifolds) such that

Po(M<g) = (M) NRco,
P>0(M>p) = P(M) N Ry,

and CDQ(l)(O) and CD;(l)(O) are symplectomorphic
to My.

By Proposition,

RR(M<g, L<p)” = RR(M>q, L>0)” = RR(Mo, Lo).

Hence, taking G-invariants on both sides in
gluing formula

2 RR(Mp, Lg) = RR(M, L)% 4+ RR(Mp, Lo).
Q.E.D.
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Proposition and gluing formula follow from equiv-
ariant index theorem.

Definition of M<o and Ms>q: symplectic cut-
ting (Lerman). Roughly, M>gq is obtained by
taking @~ 1([0, o0)) and collapsing Sl-orbits on
boundary ®~1(0). So Msg = union of Mg
and Mo. -

M>q
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Consider diagonal action of St on M xC, which
has moment map ®(m,z) = ®(m)—3|z|°. Here
C = is complex line w. standard cirle action
and symplectic structure. Symplectic cut is
symplectic quotient at O,

MZO = (M X C)//Sl

(“/" means symplectic quotient at 0.)

Embedding &~ 1(0) — ®~1(0) defined by m —
(m,0) descends to symplectic embedding Mgy —
Mzo.

Msg = ®71((0,00)) also embeds symplecti-
cally into M>q: define Msg — ®~1(0) by send-

ing m to (m, \/2 CD(m)).
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