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1 Introduction

Orbifolds lie at the intersection of many different areas of mathematics, including algebraic

and differential geometry, topology, algebra and string theory. Orbifolds were first intro-

duced into topology and differential geometry by Satake [6], who called them V-manifolds.

Satake described them as topological spaces generalizing smooth manifolds and generalized

concepts such as de Rham cohomology and the Gauss-Bonnet theorem to orbifolds.

In the late 1970s, orbifolds were use by Thurston in his geometrization program for

three-manifolds. It was Thurston who changed the name from V-manifold to orbifold. In

1985, with the work of Dixon, Harvey, Vafa and Witten on conformal field theory [7], the

interest on orbifolds dramatically increased, due to their role in string theory, even though

orbifolds were already very important objects in mathematics.

As Thurston mentions in [1, p. 297], it is often more effective to study the quotient

manifold of a group acting freely and properly discontinuously on a space rather than to

limit one’s image to the group action alone. In the same spirit, it is often more effective

to study the quotient spaces of groups acting properly discontinuously, but not necessarily

freely, on a topological space rather than to limit one’s image to the action alone. Since a way

to construct orbifolds is by taking the quotient of a manifold by some properly discontinuous

group action, as we will see in the next sections, the study of orbifolds often simplify the

analysis of more complicated structures, such as three-manifolds, for example.

From the ideas discussed in the paragraph above, we can think of orbifolds as a space

with isolated singularities, that is, a space that looks like a quotient manifold of a group

acting on a space, together with some additional information about the action of the group

on points where the action is not free. For instance, if I consider the quotient space of the

disk D2 by the action of the group of rotations of order 3 around the center of the disk, our

orbifold would be the quotient space together with information telling me that the group of

rotations acts as the cyclic group of order 3 at the origin.

In this paper, we introduce the basics of the topology of orbifolds, talk about their

fundamental groups and state an orbifold version of van Kampen’s theorem. With this

machinery, we show that PSL2(Z) is isomorphic to the free product of a cyclic group of

order two and another of order three.
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2 Transformation Groups

Throughout this paper, all topological groups are assumed to be Hausdorff.

Definition 2.1. An action of a topological group G on a space X is a continuous map

G×X → X, denoted by (g, x) 7→ gx, so that g(hx) = (gh)x and that 1x = x.

Given x ∈ X, we define the group Gx = {g ∈ G | gx = x} as the isotropy subgroup of

x. The isotropy subgroup Gx of any point x is a closed subgroup of G. The action is said

to be free if Gx = {1}, for all x ∈ X. The set G(x) = {gx ∈ X | g ∈ G} is the orbit of x.

The action is said to be transitive if G(x) = X.

Given x ∈ X, the natural map λ : G/Gx → G(x) defined by gGX 7→ gx is a continuous

bijection. The orbit space X/G is the set of orbits in X endowed with the quotient topology

(with respect to the natural map X → X/G, which we will call the orbit map).

Let X be Hausdorff, on which G acts continuously and transitively. If we fix a point

x ∈ X, then for any U ⊂ X, we have that λ−1(U) = π({g ∈ G | gx ∈ U}), where π : G →
G/Gx is the projection map. This equality implies that λ−1(U) is open if U is open, which

implies that λ is continuous. But λ is not necessarily a homeomorphism. However, if G

and X are locally compact and if G has a countable basis of open sets then this map λ is a

homeomorphism, see [3, p. 2]. Therefore, we can state the following theorem:

Theorem 2.2. The map λ : G/Gx → X is a homeomorphism if both G and X are locally

compact and if G has a countable basis of open sets.

If Γ is a discrete group and X is a Hausdorff space such that Γ acts on X, this action is

said to be properly discontinuous, if given two points x, y ∈ X, there are open neighborhoods

U of x and V of y for which (γU) ∩ V = ∅ for only finitely many γ ∈ Γ.

3 Orbifolds

3.1 Definition of Orbifolds

Definition 3.1. An n-dimensional orbifold chart on a topological space X is a 3-tuple
˜(U,G, π), where

• Ũ is open in Rn,

• ˜G is a finite group of homeomorphisms of U,

• ˜π : U → X is a map defined by π = π ◦ ˜ ˜p, where p : U
˜

→ U/G is the orbit map and

π : U/G → ˜X is a map that induces a homeomorphism of U/G onto an open subset

U ⊂ X.

˜ ˜An embedding λ : (U1, G1, π1)→ (U2, G2, π2) between two charts is a smooth embedding
˜ ˜λ : U1 → U2 such that π2 ◦ λ = π1.

˜ ˜For i = 1, 2, let (Ui, Gi, πi) be two orbifold charts on X such that Ui = πi(Ui), and

x is a point in U1 ∩ U2. We say that these charts are compatible if there exists an open
˜neighborhood V ⊂ U ∩ ˜

1 U2 of x and a chart (V ,H, φ) with φ(V ) = V such that there are
˜ ˜two embeddings λi : (V ,H, φ)→ (Ui, Gi, πi).
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Definition 3.2. An n-dimensional orbifold atlas on X is a collection U = { ˜(Uα, Gα, πα)}α∈I
of compatible n-dimensional orbifold charts which cover X.

Definition 3.3. An orbifold O of dimension n consists of a paracompact Hausdorff space

X together with an n-dimensional orbifold atlas of chartsO U .O

Example 3.4. A manifold is an orbifold where each Gα is the trivial group, so that we get

Ũα homeomorphic to Uα.

Definition 3.5. Let O1 = (X
1
,U

1
) and O2 = (X

2
,U

2
) be two orbifolds. A mapO O O O

f : X
1
→ X

2
is a smooth map between orbifolds if for any point x areO ∈ X there chartsO

˜ ˜ ˜ ˜(U1, G1, π1) around x and (U2, G2, π2) around f(x) such that f maps π1(U1) into π2(U2)
˜ ˜ ˜ ˜and can be lifted to a smooth map f : U1 → U2 such that π2f = fπ1.

To be able to state van Kampen’s theorem in the orbifold version, we also need to define

a suborbifold. Therefore, we make the following definition:

Definition 3.6. A suborbifold O1 of an orbifold O is a subspace X
1
⊂ X together withO O

an embedding ι : XO1
↪→ X .O

3.2 Quotient Orbifolds

Proposition 3.7. If M is a manifold and G is a group acting properly discontinuously on

M, then M/G has the structure of an orbifold.

Proof. For any point x ∈M/G, choose x̃ ∈M projecting to x. Let Ix be the isotropy group
˜of x̃ (Ix depends of course on the particular choice of x̃). There is a neighborhood Ux of x̃

invariant by Ix and disjoint from its translates by elements of G not in Ix. The projection
˜of Ux = Ux/Ix is a homeomorphism. To obtain a suitable cover of M/G, augment some

cover {Ux} by adjoining finite intersections. Whenever Ux1
∩ . . . Uxk

=
˜ ˜

∩ ∅, this means that

some set of translates g1Ux1
∩ . . .∩ gkUxk

has a corresponding non-empty intersection. This

intersection may be taken to be

U
︷ ˜
x1
∩ . . . ∩ Uxk

with associated group g1Ix1
g−11 ∩ . . . ∩ g

1
kIxk

g

︸︸
k
− acting

︷
on it.

Observation. From now on, we are going to use the notation [M/G] to mean M/G as an

orbifold.

Note that each point x in an orbifold O has an associated group Gx, which is well defined
˜up to conjugation: in a local coordinate system, U = U/G, Gx is the isotropy group of any

˜point in U corresponding to x.

The set

Σ =O {x ∈ X | Gx = {1}}

is the singular locus of O.

Example 3.8. Consider the action of Z2 on R3 by reflection in the y−z plane. The quotient

space R3/Z2 is the half-space x ≥ 0, which we will denote by F . Physically, one may imagine

a mirror placed on the y− z wall of F , as shown below. This quotient space has an orbifold

structure where each point z on the boundary of F has a neighborhood homeomorphic to
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the quotient of a neighborhood U ⊂ R3 of z modulo Z2. If z is a point of F not on the

boundary, then there exists a neighborhood U ⊂ R3 on which Z2 acts freely. Therefore, this

neighborhood is canonically homeomorphic to itself.

Example 3.9. One example which shows how orbifolds appear in algebraic geometry is

given by the Kummer surface, which is defined by the action of Z2 on T4 defined by

σ(eit1 , eit2 , eit3 , eit4) = (e�it1 , e�it2 , e�it3 , e�it4)

where σ corresponds to the matrix �I. The orbifold [T4/Z2] has sixteen isolated singular

points. You can see it in the picture below.
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3.3 Fundamental Groups of Orbifolds

When M in Proposition 3.7 is simply connected, then M plays the role of universal covering

space and G plays the role of the fundamental group of [M/G]. To formalize this, we will

now define the notion of a covering orbifold.

Definition 3.10. A covering orbifold of an orbifold O ˜is an orbifold O with a projection

p : X ˜ → X between the underlying spaces, such that the following conditions hold:O O

• each point x ∈ ˜ ˜X has a neighborhood U = π(U) (where (U,G, π) is a chart ofO O),
˜for which each component Vi of p−1(U) is homeomorphic to U/Gi, where Gi is some

subgroup of G,

• ˜if ψi : U/Gi → ˜ ˜Vi is the homeomorphism above, πi : U → U/Gi is the quotient map

and ψi = ψi ◦ πi, we must have π = p ◦ ψi.

Observation. The underlying space X ˜ is not generally a covering space of X .O O

Proposition 3.11 ([1] p. 305). Any orbifold O ˜has a universal cover O with a projection
˜p : O → O. In other words, if x ∈ XO − Σ is a base point forO O, then

Õ →p O

is a connected covering orbifold with base point x̃ which projects to x, such that for any

other covering orbifold

O′ p
′

→ O

with base point x′ ˜, such that p′(x′) = x, there is a lifting q : O → O′ of p to a covering map

of O′.

˜The universal cover O of an orbifold O is automatically a normal cover ([5, p. 70, 71]):

for any preimage of x̃ of the base point x there is a deck transformation taking x̃ to x.

Definition 3.12. The fundamental group of an orbifold O is the group of deck transforma-
˜tions of the universal cover O.

This definition justifies the remark in the beginning of this section.

Example 3.13. Consider the action of Z3 on the complex plane C by rotations of order 3

around the origin. The quotient space is given by

C/Z3 ≈ {z ∈ C | z = |z|eiθ, 0 ≤ θ < 2π/3}.

Since the complex plane is a simply connected manifold and Z3 acts properly discontinuously

on C, we have that C/Z3 has the structure of an orbifold and C, together with the quotient

map, is a universal cover. By Proposition 1.40 in [5, p. 72], Z3 is the group of deck

transformations of this covering space and therefore we have that πorb
1 ([C/Z3]) = Z3.

The fundamental groups of orbifolds can be computed in much the same ways as the fun-

damental groups of manifolds [1, p. 307]. In particular, we have a version of van Kampen’s

theorem for orbifolds, as stated below:
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Theorem 3.14 (van Kampen for orbifolds). If O,O1 and O2 are orbifolds such that O =

O1 ∪ O2, where O1 ∩ O2 is path connected, then:

πorb
1 (O) ≈ πorb

1 (O1) ∗ orb
πorb π
1 (O1∩O2) 1 (O2).

Corollary 3.15. If O,O1 and O2 are orbifolds such that O = O1 ∪ O2, where 1 2 is

path connected, and if O is a simply connected manifold, then πorb orb

O ∩ O
2 1 (O) ≈ π1 (O1).

In particular, the corollary above states that if we have an orbifold O whose underlying

space is simply connected and which has only one singular point x, then the fundamental

group of O is the isotropy group of x.

4 Projective Special Linear Group

The projective special linear group PSL(2,Z) is the quotient of SL(2,Z) by its center {I,−I},
with group operation being multiplication of matrices. The projective special linear group

is isomorphic to the modular group Γ, that is, the group of linear fractional transformations

of the upper half of the complex plane (we will call the upper half plane H from now on)

which have the form
az + b

z 7→
cz + d

where a, b, c, and d are integers such that ad − bc = 1. The group operation is function

composition.

az + b
Let us now consider the action of SL(2,R) on H defined by σz =

cz + d

where σ =

(
a b

)
is an element of SL(2,R) and z .

c d
∈ H This action is transitive, since for(

1 1

a 2 ba 2

a > 0, 1 i
0 a 2

)
sends to ai+ b.−

Let Gi be the isotropy group of i ∈ H. It is easy to see that Gi = SO(2). Therefore,

by Theorem 2.2, H is homeomorphic to SL(2,R)/Gi = SL(2,R)/SO(2) through the map

λ : SL(2,R)/SO(2)→ H defined by λ(γ) = γi.

Since H is homeomorphic to SL(2,R)/SO(2), and since PSL(2,Z) is a discrete subgroup

of SL(2,R), we have that PSL(2,Z) acts properly discontinuously on H, due to Proposition

1.6 in [3, p. 3].

Now that we know that PSL(2,Z) acts properly discontinuously on H, we will find the

fundamental domain for H/PSL(2,Z).

Definition 4.1. For any discrete subgroup G of SL(2,R), we call F a fundamental domain

for H/G if F satisfies the following conditions:

(i) F is a connected subset of H

(ii) no two points of F are equivalent under G

(iii) every point of H is equivalent to some point of the closure of F under G

6
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Proposition 4.2. A fundamental domain F for H/PSL(2,Z) is given by:

1 1
F = {w ∈ C | − < Re(w) < ,

2 2
|w| > 1}.

a b
Proof. Let z ∈ H and σ =

(
(2

c

)
∈ PSL ,Z). Then

d

az + b az + b cz + d (ad bc)Im(z) Im(z)
Im(σz) = Im( ) = Im( ) =

−
= .

cz + d cz + d
·
cz + d |cz + d|2 |cz + d|2

Since {cz+d | (c, d) ∈ Z2} is a lattice in C, we have that min(|cz+d|) exists, for (c, d) = (0, 0).

Thus, for a given z, this implies that max {Im(σz) exists.
σ∈PSL(2,Z)

}

0 1
Let γ = . If we have σ such that Im(σz) is maximum, and if we set w = σz =−1 0

x+ iy, where

(
x, y

)
∈ R, then

y
Im(γσ(z)) = Im(−1/w) = y w 1

|w|2
≤ ⇒ | | ≥

Thus, if τ =

(
1 1

)
, then Im(τkσ(z)) = Im(σ(z)) for every k Z

1
∈ , which implies that

0

|τkσ(z)| ≥ 1. By a suitable choice of k, z is equivalent to a point of the region

1 1{w ∈ C | −
2
≤ Re(w) ≤ ,

2
|w| ≥ 1}.

This region is the gray region shown below with its boundary. Denote by F the interior

of the set above.

6

Now, to show that this F is a fundamental domain for PSL(2,Z), we only need to show

that no two points in F are equivalent under the action of PSL(2,Z). We will prove this by

contradiction.
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a b
Let z and z′ be distinct points of F. Suppose that there exists a σ = in PSL(2,Z)

c d

such that z′ = σz. We can assume that Im(z) Im(

)
≤ z′) = Im(z)/

(
|cz + d|2. Then, we have

that

|c| · Im(z) = |c · Im(z) + 0| ≤ |c · Im(z) + c · Re(z) + d| ≤ |cz + d| ≤ 1 (∗)

If c = 0, then a = d = ±1, hence z′ = z ± b, which is impossible. Therefore, we must√
have c = 0. Because z ∈ F, we must have Im(z) > 3 , which together with (2 ∗), implies

√
3 2|c| · ≤ |c| · Im(z) c

2
≤ 1⇒ |c| ≤ √

3
⇒ | | = 1

Then, from (∗), we obtain |z + d| ≤ 1. But if z ∈ F and |d| ≥ 1, we have |z + d| > 1.

Therefore, we must have d = 0. But this implies that |z| ≤ 1, which contradicts the fact

that z ∈ F.

Since the transformation z 7→ z−1 takes any element z ∈ {w ∈ H | Re(w) = 1 ,2 |w| ≥ 1}
to an element z′ ∈ {w ∈ H | Re(w) = − 1 , |w| ≥ 1} and since the transformation z2 7→ − 1

z

takes any element u ∈ {w ∈ H | 0 ≤ Re(w) ≤ 1 ,2 |w| = 1} to an element u′ ∈ {w ∈ H | − 1
2 ≤

Re(w) ≤ 0, |w| = 1} we have that the set

1 1
F ′ = F ∪ {w ∈ H | − ≤ Re(w) ≤ 0, |w| = 1} ∪ {w ∈ H | Re(w) =

2
− ,

2
|w| ≥ 1}

is a set of representatives for H modulo PSL(2,Z).

5 Application: Proof That PSL(2,Z) ≈ C2 ∗ C3

Theorem 5.1. The map

h : Z/2 ∗ Z/3→ PSL(2,Z)

0 1 1 1
which takes 1Z/2

(
−7→

)
and 1Z/3 7→

(
−

)
is an isomorphism.−1 0 1 0

Proof. In Section 4, we saw that PSL(2,Z) acts properly discontinuously on H. Hence, by

Proposition 3.7, we have that H/PSL(2,Z) has the structure of an orbifold. Because H is

simply connected, PSL(2,Z) is the fundamental group of the orbifold [H/PSL(2,Z)], as we

remarked in the beginning of Section 3.3.

Hence, to prove our claim, we only need to find the fundamental group of the orbifold

[H/PSL(2,Z)].

From the previous section, we have that the underlying space of [H/PSL(2,Z)] can be

represented by the set F ′, inheriting the quotient topology. Since the set of singular points

of F ′ is ΣF ′ = {i, e2πi/3}, [3, p. 14, 15] if we take the suborbifolds of F ′ defined by the

subspaces
1 1

F1 = {z ∈ F ′ | Re(z) < − } ∪ {z ∈ F ′
4

| Re(z) >
4
}

and
1 1

F2 = {z ∈ F ′ | − < Re(z) <
3 3

},

6
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inheriting the subspace topology, by applying the van Kampen theorem version for orbifolds

on F ′, F1 and F2, we obtain that

πorb
1 (F ′) = πorb

1 (F1) ∗ orb
πorb(F1 F2) π1 (F2). (
1 ∩ ∗∗)

The underlying space of F1 ∩ F2 is defined by the subspace

1 1 1 1{z ∈ F ′ | − < Re(z) < − } ∪ {z ∈ F ′ <
3

| Re(z) <
4 4 3

}

inheriting( the) subspace topology. If z = a + ib is an element of H such that |z| = 1 and
0 1

γ = , then γz = −1/z = −z = −a + ib. Hence, we obtain that {z ∈ F ′ | − 1 <−1 0 3

Re(z) < − 1 , |z| = 1} is (canonically) equivalent to {z F4 ∈ ′ | 1 < Re(z) < 1 , z = 1 via4 3 | | }
the map z 7→ −1/z. Therefore, we have that F1 ∩ F2 is a connected orbifold. Since every

point in F1 ∩ F2 has a trivial isotropic group, we have that F1 ∩ F2 is a manifold. Because

F orb
1 ∩ F2 is contractible, we get that π1 (F1 ∩ F2) is the trivial group. Hence, (∗∗) becomes

πorb orb orb
1 (F ′) = π1 (F1) ∗ π1 (F2). (∗ ∗ ∗)

The orbifold F1 has only one element whose isotropy group is nontrivial, namely w =

e2πi/3
1 1

. Its isotropy group Γw is the cyclic group generated by σ =
− −

. Because
1 0

σ3 = I, we have that Γw = C3. Since XF1
is contractible and since F

( )
1 has only one singular

point, by Corollary 3.13 we have that πorb
1 (F1) ≈ C3.

The isotropy group of i ∈ F2 is a cyclic group of order 2. Since i is the only singular

point of F2, by a similar argument we have that πorb
1 (F2) ≈ C2.

Therefore, (∗ ∗ ∗) gives us the desired result.

9
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