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Abstract

Vacuum instability, leading to pair creation or annihilation of charged particles,

is one of the most interesting physical quantities in particle physics. Among various

kinds of particle creation process, quark antiquark pair creation is particularly

interesting. Quarks and gluons are described by quantum chromodynamics(QCD),

which has a strong gauge coupling constant at low energy, popularly known as the

asymptotic freedom. In QCD, perturbation is not a good approximation at low

energy, thus it is essential to evaluate non-perturbative e↵ects. To calculate QCD

vacuum decay rates, we need to calculate non-perturbative e↵ects about the QCD

vacuum.

In 1951, Schwinger obtained a creation rate of an electron positron pair by

evaluating an imaginary part of an e↵ective Lagrangian of electromagnetism, after

integrating out the electron positron fields. We expect that, in a similar manner,

a creation rate of a quark antiquark pair is obtained by computing an imaginary

part of an e↵ective Lagrangian of QCD coupled to external electromagnetism. The

Lagrangian includes quark fields, gluon fields and the electromagnetic fields as the

external fields. The obstacle for the calculation for the quark case is that the

gauge coupling of QCD is so strong that we have to evaluate quark antiquark

1-loop Feynman diagrams at all orders in gluon interaction, so any diagramatic

calculations do not help at low energy. For this problem, recently developed notion

known as a gauge/gravity duality, or equivalently AdS/CFT correspondence, can

be applied, since the duality indeed enables us to calculate a strong coupling limit

of quantum field theories.

In 1997, Maldacena conjectured that N = 4 supersymmetric Yang-Mills theory

is equivalent to type IIB superstring theory on AdS5⇥S5. In particular, the large Nc

limit and the strong coupling limit of the N = 4 supersymmetric Yang-Mills theory

is conjectured to be equivalent to classical type IIB supergravity on AdS5⇥S5. The

limits are a large Nc limit and a large ’t Hooft coupling limit, � ⌘ g2Nc � 1. Non-

perturbative quantum quantities of the large Nc strongly coupled gauge theory are

derived from the classical gravity. However, how to calculate the creation rate of

the quark antiquark have not been established yet in the AdS/CFT. In this doctor

thesis, we study the vacuum instability in large Nc strongly coupled gauge theories.

Recently, research on the vacuum instability in strongly coupled gauge theories

by the AdS/CFT have started. Semeno↵ and Zarembo derived the creation rate of

the quark antiquark pair from a classical minimal surface of an open string world-
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sheet with the AdS/CFT. With a di↵erent method, Hashimoto and Oka derived

the creation rate of the quark antiquark pair from the imaginary part of a probe

D-brane action in electric fields.

In our paper [arXiv:1403.6336 [hep-th]], by using the AdS/CFT, we obtained

the creation rate of the quark antiquark pair in electromagnetic fields in the N = 4

SU(Nc) supersymmetric Yang-Mills theory with N = 2 hypermulitiplets in the

fundamental representation. By using the Hashimoto-Oka conjecture, we evaluated

the imaginary part of the D7-brane DBI action in not only constant electric fields

but also constant magnetic fields. We found that the creation rate of the massless

quark antiquark diverges at zero temperature, while it becomes finite if we introduce

a nonzero temperature. In the case of massive quarks, the creation rate of the quark

antiquark in the N = 2 SQCD was found to coincide with the creation rate of the

hypermultiplets in the N = 2 supersymmetric QED, in the massless limit.

In our paper [arXiv:1412.4254 [hep-th]], we worked on the decay rate in the

Sakai-Sugimoto model. We evaluated the imaginary part of the D8-brane DBI

action in the constant electromagnetic fields. We obtained the creation rate of the

massless quark antiquark is non-zero at zero temperature, and also found a critical

electric field in the confining phase of the strongly coupled large Nc gauge theory.

The imaginary part of the D8-brane DBI action increases according to the increase

of a magnetic field parallel to an electric field. On the other hand, the imaginary

part decreases when we increase the magnetic field perpendicular to an electric

field. We found that a critical electric field exists to have an imaginary part for the

DBI action, and its value is identical to a QCD string tension between the quark

and antiquark.

In our paper [arXiv:1504.07836 [hep-th]], we found that the energy distribution

of the meson at highly excited modes is subject to a power law under a constant

electric field or in a nonzero temperature. In general, any energy distribution is

expected to obey a Maxwell-Boltzmann distribution. However, in our analysis

using the AdS/CFT correspondence, at a critical electric field, we found that the

energy distribution of the mesons at high excited modes is proportional to a power

of the meson mass. The power is found to be equal to �4 in the case of the gravity

dual of the D3-D5 brane system.

In this doctor thesis, we explain the contents explained above, with reviews on

related subjects.

3



Contents

1 Introduction 2

2 The review of AdS/CFT correspondence 7

2.1 AdS space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Maldacena’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The relation between a temperature and a black hole metric . . . 11

2.2.2 The low energy e↵ective theory on the D3-branes . . . . . . . . . 12

2.2.3 The symmetries of gauge and gravity . . . . . . . . . . . . . . . . 13

2.2.4 The region of corresponding to gauge and gravity . . . . . . . . . 14

2.3 GKP-Witten relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Massive scalar field case . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Adding flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Pair creations of quark-antiquark 19

3.1 The review of the electron-positron pair creations . . . . . . . . . . . . . 19

3.2 Quark antiquark 1-loop Feynman diagram in large N QCD . . . . . . . . 23

3.2.1 ’t Hooft’s idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The massless quark antiquark pair creation in N = 2 SQCD . . . . . . . 27

3.3.1 Hashimoto-Oka’s conjecture . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 The D7-brane DBI action in electromagnetic fields at a finite tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Imaginary part of Lagrangian in SQCD . . . . . . . . . . . . . . . 34

3.4 The massive quark antiquark pair creation in N = 2 SQCD . . . . . . . . 36

3.4.1 Critical electric field . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Vacuum decay rate in the small mass limit . . . . . . . . . . . . . 39

3.4.3 Coincidence with N = 2 supersymmetric QED . . . . . . . . . . . 40

3.5 The quark-antiquark pair creation in confining large N gauge theory . . . 41

3.5.1 Review of the Sakai-Sugimoto model . . . . . . . . . . . . . . . . 41

3.5.2 Euler-Heisenberg Lagrangian of the Sakai-Sugimoto model . . . . 43

3.5.3 Imaginary part of the e↵ective action in Sakai-Sugimoto model . . 46

3.6 Pair creation of quark antiquark in deformed D4-D8 brane system . . . . 51

3.6.1 Euler-Heisenberg Lagrangian of deformed Sakai-Sugimoto model . 51

1



3.6.2 Imaginary part of the e↵ective action in deformed Sakai-Sugimoto

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Turbulent meson condensation 54

4.1 Brief introduction for turbulent meson condensation . . . . . . . . . . . . 54

4.2 Review of the N = 2 supersymmertic defect gauge theory in AdS/CFT . 55

4.3 Turbulence with an electric field . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Turbulence at a finite temperature . . . . . . . . . . . . . . . . . . . . . 60

4.5 Universal turbulence and a conjecture . . . . . . . . . . . . . . . . . . . . 63

5 Conclusion 67

A Euler-Heisenberg Lagrangian in QED 69

1 Introduction

In particle physics, creation of a particle antiparticle pair by vacuum decay is an im-

portant notion. Schwinger e↵ect is one of the most interesting phenomena in particle

physics. The phenomenon describes a pair creation of charged particles under an exter-

nal field such as a strong electromagnetic field. Schwinger obtained the creation rate of

an electron positron pair by evaluating the imaginary part of an e↵ective Lagrangian of

electromagnetism, after integrating out the electron positron fields [1, 2]. This rate � is

derived as � ⇠ exp (�⇡m2
e/eE) whose exponent has a negative power for the gauge cou-

pling e. Thus, the Schwinger e↵ect is a non-perturbative e↵ect. Here, me is the electron

mass and E is a constant electric field. A critical electric field is Ecr ⇠ m2
ec

3/e~, and
the strength is about 1018 [V/m]. The phenomena occurs e↵ectively only under a strong

electromagnetic field.

Recently, we have seen advance in research on hadron physics of a strong electromag-

netic field in both theoretical and experimental aspects. At the heavy ion collision in

RHIC and LHC, it is expected that a strong magnetic field is generated by a collision of

charged particles accelerated at about the speed of light. Another related topic is neutron

stars and magnetors which carry a strong electromagnetic field. In such a strong electro-

magnetic field, it may be possible to create a pair charged particles. For example, we may

think of a quark antiquark pair creation as well as the electron positron pair. Quarks
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and gluons are described by quantum chromodynamics(QCD), which has a strong gauge

coupling constant at low energy, popularly known as the asymptotic freedom. Thus, we

cannot observe a single quark because quarks have a confining force. However, we expect

that a quark antiquark pair creation occurs if a quark and an antiquark are separated

by an electromagnetic field stronger than the confining force. In QCD, perturbation is

not a good approximation at low energy, thus it is essential to evaluate non-perturbative

e↵ects. To calculate the creation rate of the quark antiquark pair, we need to calcu-

late non-perturbative e↵ects about the QCD vacuum. Recently developed notion known

as a gauge/gravity duality, or equivalently AdS/CFT correspondence, can be applied,

since the duality indeed enables us to calculate a strong coupling limit of quantum field

theories [8–10].

The AdS/CFT correspondence states that the N = 4 supersymmetric Yang-Mills

theory is equivalent to type IIB superstring theory on AdS5 ⇥S5. In particular, the large

Nc limit and the strong coupling limit of the N = 4 supersymmetric Yang-Mills theory is

conjectured to be equivalent to classical type IIB supergravity on AdS5 ⇥ S5. The limits

are a large Nc limit and a large ’t Hooft coupling limit, � ⌘ g2Nc � 1. Non-perturbative

quantum quantities of the large Nc strongly coupled gauge theory are derived from the

classical gravity. It is not understood well how to calculate the creation rate of the

quark antiquark in the AdS/CFT correspondence. In this thesis, We study the vacuum

instability in the large Nc strongly coupled gauge theories.

The Schwinger e↵ects have recently been studied by using the AdS/CFT correspon-

dence. Within the AdS/CFT framework, the creation rate of the quark antiquark

pair in the strongly coupled N = 4 supersymmetric Yang-Mills theory was obtained

in [19,20]. Based on [19,20], the holographic Schwinger e↵ect were calculated in various

systems [21–28]. On the other hand, K. Hashimoto and T. Oka obtained the vacuum

decay rate, which can be identified as the creation rate of quark-antiquark pairs, in

N = 2 supersymmetric QCD(SQCD) by using a di↵erent method [16] in AdS/CFT

correspondence: the imaginary part of the probe D-brane action.1 The D3-D7 brane

1The method based on [19,20] is a single instanton process for the creation of a pair and is valid for

the electric field E smaller than the critical electric field, while the method in [16] is for E stronger than

or comparable to the critical electric field. Both are basically a disc partition function in string theory,

but evaluated in di↵erent regimes. The former is a semi-classical large disc, while the latter is a small

disc giving the Dirac-Born-Infeld action. The boundary of the disc corresponds to the world line of the
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system corresponds to N = 4 supersymmetric SU(Nc) Yang-Mills theory accompanied

by an N = 2 hypermultiplet in the fundamental representation of the SU(Nc) gauge

group [12]. They obtained the creation rate of the quarks and antiquarks in the N = 2

SQCD under a constant electric field by evaluating the imaginary part of the D7-brane

action. In [17], we evaluated the imaginary part of the D7-brane action including not

only a constant electric field but also a constant magnetic field and obtained the creation

rate of the quark antiquark in the N = 2 SQCD.

In [18], we study the quark antiquark pair creation in non-supersymmetric QCD at

large Nc at strong coupling, and the imaginary part of a D8-brane action in a constant

electromagnetic field. The holographic models are the Sakai-Sugimoto model [14] and its

deformed version [15].

As another topic of a vacuum instability, we are interested in a phase transition

between a confining phase and a deconfining phase in strongly coupled gauge theories.

At the phase transition, the energy distribution of meson at highly excited modes was

found to obey a power-law, as studied K. Hashimoto, S. Kinoshita, K. Murata and

T. Oka in [65, 67]. They named the phenomena a turbulent meson condensation. They

speculated that the origin of the turbulence would be related to an AdS instability studied

in [30]- [64]. The AdS instability was found under a perturbation in the time-depend

system of Einstein-massless scalar theory. The authors of [65, 67] are interested in the

universality of the AdS instability. Within the AdS/CFT correspondence, we can study

a possible universality of the turbulent meson condensation. In [67], we explain that the

turbulence power is universal, irrespective of how the transition is driven, by numerically

calculating the power in various static brane setups at criticality. We also find that the

power depends only on the cone-dimension of the probe D-brane.

The present doctor thesis is motivated by the following.

• The understanding of the vacuum instability in the large Nc strongly coupled gauge

theories with the AdS/CFT correspondence

• The analysis about the vacuum instability induced by electromagnetic fields

• The universality of the turbulent meson condensation

created quark pair. A small E means a large disc , i.e. a larger separation of the created quark pair.
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Firstly, although many papers about the AdS/CFT correspondence have been pub-

lished, we haven’t established the AdS/CFT dictionary about the vacuum instability such

as the Schwinger e↵ects. It is important to calculate the imaginary part of the e↵ective

action to evaluate the vacuum instability. The calculation of the imaginary part of the

e↵ective action in the gravity side gives us new idea about the vacuum instability from

the AdS/CFT correspondence.

Secondly, many interesting results of the experiments about a strong magnetic field

have recently been reported as we explained in the second paragraph. It is important to

obtain the creation rate of the quark antiquark in not only an electric field but also a

magnetic field. This is because there are some phenomena which depend on the direction

of the electric fields and magnetic fields in high energy physics and condensed matter

physics. For example, the quantum Hall e↵ect occurs under a magnetic field which

is not parallel to but perpendicular to an electric field. In this paper, we discuss the

relationship between the vacuum instability and the directions of the electromagnetic

fields in the AdS/CFT framework.

Thirdly, according to [65, 67], the meson’s energy distribution at high excited modes

obeys a turbulent power law in a D3-D7 brane system, which can be evaluated by a

displacement of the probe D7-brane by an electric field. In particular, the shape of the

D7-brane have a cusp. We are interested in the universality of the turbulent meson

condensation in some other brane systems. In particular, it is worth examining the

relation between the probe D-brane’s cusp and the value of power about a meson’s mass.

In the present doctor thesis, we summarize the electromagnetic instability and the

universal turbulent meson. The content is based on the following three papers which

have already been published.

1) K. Hashimoto, T. Oka and A. Sonoda, “Magnetic instability in AdS/CFT: Schwinger

e↵ect and Euler-Heisenberg Lagrangian of supersymmetric QCD,” JHEP 1406, 085

(2014) [arXiv:1403.6336 [hep-th]] [17].

2) K. Hashimoto, T. Oka and A. Sonoda, “Electromagnetic instability in holographic

QCD,” JHEP 1506, 001 (2015) [arXiv:1412.4254 [hep-th]] [18].

3) K. Hashimoto, M. Nishida and A. Sonoda, “Universal Turbulence on Branes in

Holography,” JHEP 1508, 135 (2015) [arXiv:1504.07836 [hep-th]] [67].
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We discussed the quark antiquark pair creation in the N = 2 largeN SQCD. The creation

rate of the quark antiquark pair is derived from the DBI action with the AdS/CFT

correspondence in [17]. We derived the creation rate of the quark antiquark in a confining

phase from the imaginary part of the DBI action with a Sakai-Sugimoto model in [18].

We found that the energy distribution of the mesons at high excited modes is a turbulent

power law in the N = 2 SQCD by using the AdS/CFT correspondence [67]. The results

of the present doctor thesis are summarized as follows.

• We obtained the creation rate of the massless quark antiquark pair in the N = 2

large N SQCD by evaluating the imaginary part of the DBI action in constant

electromagnetic fields with the AdS/CFT correspondence. At zero temperature,

an infrared divergence appears in the creation rate of the quark antiquark. We

compared the the creation rate of the massless quark antiquark with the well-

known results of QED. The massless quark antiquark divergence is similar to the

results of the QED.

• We evaluated the creation rate of the massive quark antiquark pair in N = 2

large N SQCD. This result is compared with the imaginary parts of the Euler-

Heisenberg Lagrangian of N = 2 supersymmetric QED(SQED) which has 2Nc

scalar fields and Nc spinor fields. The creation rate of the massive quark antiquark

is found to coincide with the creation rate of the massless quark antiquark at a

finite temperature if we replace the quark mass with the temperature.

• The creation rate of the massless quark antiquark in a confining phase is obtained

by the D8-brane DBI action in the Sakai-Sugimoto model. We found that the

creation rate of the massless quark antiquark at zero temperature is finite, which

is di↵erent from the result of the N = 2 SQCD. The imaginary part of the D8-

brane DBI action increases when we increase the magnetic field parallel to a fixed

electric field. On the other hand, the imaginary part decreases when we increase the

magnetic field perpendicular to the electric field. The critical electric field to have

a non-zero imaginary part for the DBI action coincides with a QCD string tension

between the quark and antiquark. The result was already mentioned in [23, 26] in

a similar context.

• We found turbulent meson condensation in a D3-D5 brane system in the manner
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similar to [65, 66]. The energy distribution of the highly excited meson modes is

proportional to the power �4 of the meson mass in the D3-D5 brane system. At

a finite temperature without a constant electric field, the power again found to be

�4.

The organization of the doctor thesis is as follows. In section 2, we review the Ad-

S/CFT correspondence [74]. We discuss various coordinates of the AdS space. Next,

Maldacena’s conjecture is explained in the idea of the AdS/CFT correspondence. Gub-

ser, Klevanov, Polyakov and Witten introduced GKP-Witten prescription which is the

external field-operator correspondence. Also, we introduce flavor to D3-branes to con-

sider N = 2 SQCD according to Karch and Katz [12]. In section 3, we consider the

main topic, the quark antiquark pair creation. First, we derive the creation rate of an

electron positron pair in external fields by evaluating the imaginary part of the Euler-

Heisenberg Lagrangian which is the e↵ective Lagrangian in QED. We introduce ’t Hooft’s

idea, planar diagram and indicate that the quark antiquark 1-loop diagram becomes a

disk amplitude in a strong coupling limit. With the Hashimoto-Oka’s conjecture, we

evaluate the imaginary part of the DBI action in constant electromagnetic fields. Also,

the creation rate of the quark antiquark pair in a confining gauge theory is obtained by

evaluating the imaginary part of the D8-brane DBI action in the Sakai-Sugimoto model.

Then, we find that the critical electric field corresponds to the QCD string tension. In

section 4, we consider the fluctuation of the probe D5-brane when we introduce a con-

stant electric field or a temperature. Then, we find that the turbulent power law is �4

in the D3-D5 brane system when the shape of the probe D5-brane has a cusp by the

external fields. This power of the turbulent power law depends only on a cone-dimension

of the probe D-brane. In the last section, we summarize the doctor thesis.

2 The review of AdS/CFT correspondence

The goal which we would like to achieve is to introduce the AdS/CFT framework in order

to obtain the creation of the quark antiquark pair in the electromagnetic fields. Since

the quarks are strongly coupled to the gluons in QCD, the perturbation is not a good

approximation. Recently, the AdS/CFT correspondence has been developed as a way

to evaluate physical quantities in the strongly coupled gauge theory can be evaluated.
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Maldacena suggested that strongly coupled gauge theories are related with gravity. Ac-

cording to the Maldacena’s conjecture, GKP-Witten prescription gives us how concretely

to calculate the physical quantities with an external field-operator correspondence. Also,

we consider not only pure gauge theories but also including flavors. We need to introduce

the flavors to gauge theories in order to examine the quark antiquark pair creation. If we

add the flavor branes to the D3-branes, the N = 4 supersymmetric Yang-Mills theory be-

comes N = 2 supersymmetric QCD which includes gauge fields, Dirac fields and complex

scalar fields. The theory is not a conformal field theory. But the Maldacena’s conjecture

is consistent in a probe limit. In next section, we will discuss the quark antiquark pair

creation with the AdS/CFT framework.

2.1 AdS space

We review the AdS space. The (p+1)-dimensional Anti-de sitter space(AdSp+2) is de-

scribed by

X2
0 +X2

p+2 �
p+1
X

i=1

X2
i = R2. (2.1)

The flat metric of (p+3)-dimensional space is

ds2 = �dX2
0 � dX2

p+2 +
p+1
X

i=1

dX2
i . (2.2)

Here, R is an AdS radius. This hyperbolic space clearly has SO(2, p+1) symmetry. The

SO(2, p+1) symmetry becomes a strong evidence for the AdS/CFT correspondence. We

define new coordinates of the AdS space.

• Global coordinate

We take a new coordinate as

X0 = R cosh ⇢ cos ⌧, Xp+2 = R cosh ⇢ sin ⌧, Xi = R sinh ⇢⌦i , (2.3)

where i = 1, · · · , p+ 1 and
P

i ⌦
2
i = 1. Substituting (2.3) to (2.2), the metric is

ds2 = R2(� cosh2 ⇢d⌧ 2 + d⇢2 + sinh2 ⇢d⌦2
p+1). (2.4)
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Here, the regions of ⌧, ⇢ are 0  ⌧ < 2⇡, 0  ⇢ < 1 respectively. In the neighbor-

hood of ⇢ = 0, the above metric is

ds2 ' R2(�d⌧ 2 + d⇢2 + ⇢2d⌦2
p+1). (2.5)

The hyperbolic space is topologically S1 ⇥ Rp+1. This coordinate has a closed

timeline curve in order to be periodicity for ⌧ . We should take universal cover,

�1 < ⌧ < 1 since the causality is unbroken.

• Conformal coordinate

We define sinh ⇢ as tan ✓ ⌘ sinh ⇢. (2.3) is obtained by

ds2 =
R2

cos2 ✓
(�d⌧ 2 + d✓2 + sin2 ✓d⌦2

p+1). (2.6)

The region of ✓ is 0  ✓ < 2⇡. ✓ = ⇡/2 corresponds to the AdS boundary. If

we rescale the metric, ds0 2 = cos2 ✓ds2/R2, then we obtain ds0 2 = �d⌧ 2 + d✓2 +

sin2 ✓d⌦2
p+1. In ✓ = ⇡/2, the AdS boundary is Sp+1.

• Poincare coordinate

Let us introduce a Poincare coordinate. We define the light-cone coordinate as

u ⌘ X0 � Xp+1

R2
,

v ⌘ X0 +Xp+1

R2
.

The parameters of u, t, ~x (~x 2 Rp) are introduced in the Poincare coordinate.

t, xi (i = 1, · · · , p) are defined by

xi ⌘ X i

Ru
,

t ⌘ Xp+2

Ru
.

Also, with (2.1), we obtain

R4uv +R2u2(t2 � ~x2) = R2.

From the above expressions, we vanish the parameter v and derive the following,

X0 =
1

2u
(1 + u2(R2 + ~x2 � t2)),

X i = Ruxi, Xp+2 = Rut, (2.7)

Xp+1 =
1

2u
(1 � u2(R2 � ~x2 + t2)).
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In this case, the metric becomes

ds2 = R2

✓

du2

u2
+ u2(�dt2 + d~x2)

◆

. (2.8)

u is changed to z which is defined by z ⌘ 1/u. We obtain

ds2 =
R2

z2
�

dz2 � dt2 + d~x2
�

. (2.9)

The Poincare coordinate has two di↵erent Poincare charts [75]. In z > 0, the

Poincare coordinate has the half hyperbolic surface, X0 > Xp+1 in the AdS space.

On the other hands, the Poincare coordinate in z < 0 has the half hyperbolic

surface, X0 < Xp+1 in the AdS space. We only cover the half AdS space with the

Poincare coordinate(we usually cheese z > 0).

In this subsection, we explained the various coordinates. Note that we treat the

Poincare coordinate because the coordinate doesn’t cover the all AdS space. But, if

we consider the Euclidean time with Wick rotation, we have no problem because the

hyperbolic surface becomes topologically the ball which has a boundary. In the next

subsection, we explain a Maldacena’s conjecture.

2.2 Maldacena’s conjecture

In [8], Maldacena conjectured that N = 4 supersymmetric Yang-Mills theory is equivalent

to type IIB superstring theory on AdS5 ⇥ S5. Recently, we have calculated the physical

quantities in the strongly coupled gauge theories with the Maldacena’s conjecture. The

AdS/CFT correspondence gives us the non-perturbative e↵ects in the strongly coupled

theories.

Let us consider the type IIB superstring theory on the 10-dimensional Minkowski

space-time. The type IIB theory has three kinds of Ramond-Ramond fields(R-R fields)

such as R-R 0-form field, 2-form field and 4-form field(C0, C2 and C4). These fields are

coupled to D1-branes, D3-branes and D5-branes respectively.

We prepare the N D3-branes. The D3-branes localize on the position of x4 = x5 =

· · · = x9 = 0. Then, the D3-branes solution is given by

ds2 = H(r)�1/2dx2
|| +H(r)1/2(dr2 + r2d⌦2

5). (2.10)
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Here, dx|| is the direction parallel to the D3-branes. x|| is defined as x|| = (�t, x1, x2, x3).

d⌦2
5 is the metric of S5. r is the radius of the unit sphere. The function H(r) is defined

by

H(r) = 1 +
4⇡gsN↵02

r4
. (2.11)

gs is a string coupling. ↵0 is defined as ↵0 ⌘ l2s , where ls is string length.

The parameter u is defined by u ⌘ r/↵0. We take the following limit,

u : fixed, ↵0 ! 0 . (2.12)

This limit is called near horizon limit [8]. The metric of the D3-branes changes to the

AdS5 ⇥ S5 metric as

ds2 = ↵0


u2

p
4⇡gsN

dx2
|| +

p

4⇡gsN
du2

u2
+
p

4⇡gsNd⌦2
5

�

. (2.13)

Compared with (2.8) in which we put p = 3, the first term and second term in (2.13)

become the AdS5 metric. Also, the AdS radius and the S5 radius are same as R2 =

↵0p4⇡gsN .

2.2.1 The relation between a temperature and a black hole metric

A gauge theory at a temperature is concerned with the black hole in the AdS/CFT

framework. A temperature corresponds to the horizon of the black hole. We use Wick

rotation in order to consider the finite temperature gauge theory such as Matsubara

formalism. The Euclidean black hole metric is described by

ds2 = +f(r)d⌧ 2 +
dr2

f(r)
+ · · · . (2.14)

Expending the function f(r) around r = r0, we obtain

ds2 ' (r � r0)f
0(r0)d⌧

2 +
dr2

(r � r0)f 0(r0)
. (2.15)

Here, r0 is the horizon of the black hole. f(r) is satisfied with f(r0) = 0. If we define ⇢

as ⇢ ⌘ 2
p

(r � r0)/f 0(r0), we obtain

ds2 ' d⇢2 + ⇢2d

✓

f 0(r0)

2
⌧

◆2

. (2.16)
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This metric is the sphere which has the radius ⇢ and the angle f 0(r0)⌧/2. The metric

has the periodic boundary condition, f 0(r0)⌧/2 ⇠ f 0(r0)⌧/2 + 2⇡. In the Matsubara

formalism, the imaginary time has the periodicity for �, where � is defined by � = 1/T .

Here, we put Boltzmann constant kB = 1. T is a temperature. Thus, the relation between

the temperature and the horizon of the black hole is

T =
f 0(r0)

4⇡
. (2.17)

For example, when we change (2.13) to the Euclidean black hole metric, we obtain

f(r) =
r2

↵0p4⇡gsN

✓

1 � r40
r4

◆

, (2.18)

where u = r/↵0. Thus, the relation becomes T = r0/⇡R2. The zero temperature limit

coincides with vanishing the horizon, r0 ! 0

2.2.2 The low energy e↵ective theory on the D3-branes

The low energy e↵ective theory on the D3-branes is N = 4 supersymmetric Yang-Miils

theory. This theory has the 16 number of the supercharges and a superconformal field

theory because the 1-loop beta function is zero. In the N = 4 supersymmetric Yang-

Miils theory, the field contents are gauge field Aµ, 6 real scalar fields �i (i = 1, · · · , 6), 4
positive chiral Weyl fermions �AL and 4 negative chiral Weyl fermions �RA (A = 1, · · · , 4).
These fields are derived from the Dirac-Born-Infeld action(DBI action) such as the D3-

brane e↵ective action. For simplicity, we only consider the boson part of a D3-brane

action.

We consider the background is flat and put gMN = ⌘MN and e� = gs. Here, � is a

dilaton and gs is a string coupling. The D3-brane DBI action is given by

S = �TD3

Z

d4�
q

�det(G↵�[X] + 2⇡↵0F↵�), (2.19)

where the D3-brane tension is TD3 = 1/(2⇡)3l4sgs. The D3-brane flat spreads to the 0123-

direction. we fix the target space coordinate X↵ as X↵ = �↵ (↵ = 0, 1, · · · , 3) when the

D3-brane moves to the perpendicular to the D3-brane in infinitesimal. Thus, we obtain

G↵�[X] = ⌘↵� + @↵X
i@�X

i, (2.20)
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where i = 4, 5, · · · , 9. Substituting the metric to (2.19), when we take a decoupling limit

↵0 ! 0, we derive

S =
1

g2YM

Z

d4�

✓

�1

2
@µ�

i@µ�i � 1

4
Fµ⌫F

µ⌫

◆

, (2.21)

from the redefinition of X i ⌘ 2⇡↵0�. g2YM is a 4-dimensional Yang-Mills coupling. The

relation between the Yang-Mills coupling and the string coupling is

g2YM = 2⇡gs. (2.22)

The O(l�4
s ) term diverges in taking ↵0 ! 0, but we neglect the term because of the con-

stant term. Similarly, we also discuss the fermionic terms in the N = 4 supersymmetric

Yang-Mills theory. In the case of the gauge theory, the gauge group is Abelian U(1)

because we consider a D3-brane. In order to enhance U(N) non-Abelian gauge theories,

we prepare the N number of the D3-branes and should introduce Chan-Paton factors.

The n degrees of freedom for the fundamental strings coupled to the D3-branes at the

endpoints, � = 0 have n = 1, 2, · · · , N . On the other hands, The n̄ degrees of freedom

at � = ⇡ have n̄ = 1̄, 2̄, · · · , N̄ . Here, we consider the oriented fundamental strings.

Thus, the fundamental strings have the N2 degrees of freedom. The degrees of freedom

correspond to the degrees of freedom of U(N) gauge group.

2.2.3 The symmetries of gauge and gravity

In this part, we discuss the symmetries in the N = 4 supersymmetric Yang-Mills theory

and the AdS5 ⇥ S5 superstring theory. We have no the proof about the Maldacena’s

conjecture yet. But, almost superstring theory physicists have believed in the conjecture

because the symmetries of the gauge theory side correspond to that of the gravity side.

It is important to coincide with the symmetries of the two theories which have a duality

such as the gauge/gravity dual, in order to regard the duality as consistent.

In the gravity side, we find that the D3-brane solution changes to the AdS5 ⇥ S5

metric when we take the near horizon limit. The AdS5 metric has a SO(2, 4) symmetry

from the review of the AdS space. Since S5 has the symmetry of a SO(6) rotation group,

the AdS5 ⇥ S5 has SO(2, 4) ⇥ SO(6).

On the other hands, the gauge theory has a Poincare symmetry, a scale symmetry

and a R-symmetry associated with the supersymmetry. In general, Dp-branes(p  8)
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make the Poincare symmetry SO(1, 9) broken to

SO(1, p) ⇥ SO(9 � p) ⇢ SO(1, 9). (2.23)

Thus, the Poincare symmetry in the 10-dimension is SO(1, 3) ⇥ SO(6) in p = 3. The

SO(6) symmetry is the rotation symmetry in the 456789-directions to which the D3-

branes is the perpendicular while the SO(1, 3) symmetry is the Lorentz symmetry in the

0123-directions. But, Polchinski mentioned that the SO(1, 3) symmetry is enhanced to

a SO(2, 4) symmetry by the scale invariance in the N = 4 supersymmetric Yang-Mills

theory [11].

The gauge fields AM (M = 0, 1, · · · , 9) on the D9-branes are reduced to the gauge

fields Aµ (µ = 0, 1 · · · , 3) and the six real scaler fields �i (i = 1, 2, · · · , 6) on the D3-

branes. The scalar fields have the global symmetry of SU(4) ' SO(6). This symmetry

is the R-symmetry. The Majorana-Weyl spinor � in the 10-dimension is reduced to the

four positive chiral Weyl fermions �AL (A = 1, 2, · · · , 4) and the four negative chiral Weyl

fermions �RA on the D3-branes. These spinors are the spinor representations of SO(6).

Therefore, the N = 4 supersymmetric Yang-Mills theory has the SU(2, 4) ⇥ SO(6)

symmetry, which corresponds to the symmetry of AdS5 ⇥ S5 superstring theory. We

have the strong evidence for the consistency of the AdS/CFT correspondence.

2.2.4 The region of corresponding to gauge and gravity

The Maldacena’s conjecture is mentioned to the equivalence between the N = 4 super-

symmetric Yang-Mills theory and the AdS5⇥S5 superstring theory. In the previous part,

we obtained the justification of the gauge/gravity dual from the symmetries. Next, we

discuss the coupling region between the gauge theory and the gravity.

It is di�cult to compete the stringy and quantum e↵ects in the superstring theory.

But we neglect the e↵ects when we consider the following limits.

• R � ls (use a supergravity and neglect the high excited modes of the string.)

• R � lp (treat a classical supergravity.)

Here, R is the AdS radius. ls and lp are a string length and Plank length respectively.

The first condition means that the stringy e↵ects are neglected. The limit corresponds

to g2YMN � 1 in the gauge theory side because the string coupling gs is g2YM = 2⇡gs. We
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define ’t Hooft coupling � as g2YMN ⌘ �. The second condition corresponds to a Large N

limit such as N ! 1 in the gauge theory side because the Planck length is lp = g1/4s ls.

We take N ! 1, fixing the large ’t Hooft coupling. These limits obtain the following

relation,

Large N strongly coupled U(N) gauge theory = AdS5 ⇥ S5 classical supergravity.

The AdS/CFT correspondence means that the strongly coupled gauge theory is equiv-

alent to the classical supergravity in the limits. In the next subsection, we discuss the

quark antiquark pair creation in the strongly coupled large N gauge theory.

2.3 GKP-Witten relation

The AdS/CFT correspondence claims that N = 4 supersymmetric Yang-Mills theory

is equivalent to the AdS5 ⇥ S5 superstring theory. There is a expression of concrete

correspondence called GKP-Witten relation [9, 10]. Maldacena didn’t give us the con-

crete relation though he claimed the correspondence between the gauge and the gravity.

Gubser, Klebanov, Polyakov and Witten gave

ZAdS[�|bdy = �0(x)] = he�
R
ddx O(x)�

0

(x)iCFT. (2.24)

GKP-Witten relation is defined by Euclidean metric. In N ! 1, � � 1, the left hand

side corresponds to the on-shell classical gravity action for the AdS background. �0(x) is

a field in the AdS boundary and corresponds to a source field in the gauge theory side.

O(x) is an operator for the source field. The source field corresponds to the operator one

to one. We can obtain the correlation functions for the operator O(x) by the generating

function about �0(x) when we solve the the equation of motion about �(x) and give the

initial condition as �|bdy = �0(x) in the gravity side. For example, the relationships

between a source and an operator are given by the following.

A source An operator

gravity metric gµ⌫ stress tensor T µ⌫

Maxwell theory gauge field Aµ current jµ

In the case of the quark antiquark pair creation, we should make the vacuum instability

by an electromagnetic field. We derive the current between the quark and antiquark from
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the e↵ective action in the gravity by using the AdS/CFT correspondence. The vacuum

instability occurs by putting the current on zero.

2.3.1 Massive scalar field case

Let us consider the example of the massive scalar field case by using the GKP-Witten

prescription. In d+ 1-dimensional gravity, the massive scalar action is given by

I(�) =
1

2

Z

AdSd+1

dd+1x
p
g [gµ⌫@µ�@⌫�+m2�2]. (2.25)

Here, g = detgµ⌫ (µ, ⌫ = 0, 1, · · · , d + 1). We use the Poincare coordinate of the AdS

background (2.9), where is Wick rotated as the following,

ds2 =
R2

z2
[dz2 + ⌘mndxmdxn]. (2.26)

Here, m,n = 1, 2, · · · , d and ⌘mn = daig(+, · · · ,+). Then, the equation of motion

becomes

[⇤ � m2]�(z,x) = 0, (2.27)

where ⇤ is the d’Alembertian of the metric. We set the boundary condition as,

lim
z!0

�(z,x) = �0(x). (2.28)

To solve the equation of motion, it is convenient to use a Green function K(z,x). The

Green function is satisfied with

[⇤ � m2]K(z,x) = 0, lim
z!0

K(z,x) = �(x). (2.29)

Thus, the solution is given by

�(z,x) =

Z

ddx0K(z,x � x

0)�0(x
0). (2.30)

We reduce to evaluate the Green function K(z,x).

Let us consider a Green function eK(z,x) in the case of the source at infinity. Since

the function eK(z,x) has a translational invariance at the boundary z = 0, we describe
eK(z,x) = eK(z). Then, the equation of motion to which the Poincare coordinate (2.26)

is substituted is described by
✓

zd+1 @

@z
z1�d @

@z
� m2R2

◆

eK(z) = 0. (2.31)
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When we put eK(z) = z� in order to solve the equation, the characteristic equation for

the di↵erential equation is

�(� � 1) + (1 � d)� � m2R2 = 0. (2.32)

If we regard two solutions as � = �± (�+ � ��), we obtain

�± =
d ±

p
d2 + 4m2R2

2
. (2.33)

We obtain K̃(z) = cz�+ since � = �+ is satisfied with limz!0 K̃(z) = 0. From now, we

define �+ as �.

The AdS metric has the inversion which is a symmetry such as,

x ! x

z2 + x

2
, z ! z

z2 + x

2
. (2.34)

By using this transformation, we move the source from the infinity point to the origin.

Then, the Green function K(z,x) is derived by

K(z,x) = c

✓

z

z2 + x

2

◆�

. (2.35)

Next, let us check this Green function by being a delta function at z ! 0. In

x 6= 0, the Green function becomes the delta function such as limz!0 K(z,x) = 0.

Also, the integral �(z) =
R

ddxK(z,x) is �(z) = �d���(�z) by the scale transformation

such as z ! �z, x ! �x. Thus, the Green function K(z,x) is the delta function

in x ! 0 limit if we take � = 1/z. The Green function K(z,x) has the relation as

limz!0 K(z,x) = zd���(x) in x ! 0 limit. Therefore, the boundary condition for

�(z,x) becomes

lim
z!0

�(z,x) = zd���0(x). (2.36)

Substituting the solution of �(z,x) to I(�), we derive the following,

I(�) =
c�

2

Z

ddxddx0 1

(x � x

0)2�
�0(x)�0(x

0), (2.37)

from the total derivative term. Here, c is constant. It is determined by the normalization

between the gauge theory and gravity. From the on-shell action, � is the conformal

dimension of the operator O(x) for the gauge theory.

17



2.4 Adding flavors

In this subsection, we explain the D3-D7 brane construction introduced by Karch-Katz

[12]. The Nc D-branes describe N = 4 supersymmetric Yang-Mills theory in the low

energy limit ↵0 ! 0. When we introduce flavors, we need to add the degree of free-

dom about the flavors. Then, we introduce D7-branes to the D3-brane system. If we

add the D7-branes, the N = 4 supersymmetric Yang-Mills theory is broken to N = 2

supersymmetric theory which includes the hypermultiplets such as Dirac spinor fields

and complex scalar fields. When we introduce the Nf D7-branes, the oriented funda-

mental strings have the degree of freedom, (Nc,Nf)(N̄c, N̄f) which is coupled to the Nc

D3-branes with the Nf D7-branes. These are the degree of freedom about flavor symme-

tries and gauge symmetries for the quarks and antiquarks belonging to the fundamental

representations respectively.

According to the Maldacena’s conjecture, the solution of the AdS5 ⇥ S5 supergravity

is derived from the D3-branes solution which imposes the near horizon limit. Since the

AdS/CFT correspondence is important for the correspondence of the symmetries between

the AdS5 ⇥S5 metric and the supersymmetries in the gauge theory. We assume that the

solution of the Nc D3-branes don’t receive the backreaction of the Nf D7-branes. Then,

we impose the limit of Nf ⌧ Nc. It is called a probe limit.

The D7-branes are probe branes in the D3-D7 brane construction. We consider the

following brane construction about the D3-D7 brane system,

0 1 2 3 4 5 6 7 8 9

D3
p p p p

D7
p p p p p p p p

The check marks represent Neumann boundary conditions. The D3-branes stretch to

the 0123-directions, and the D7-branes stretch to the 01234567-directions. Also, the the

D3-branes and the D7-branes separate to the 89-directions.

We review the N = 2 supersymmetric QCD Lagrangian about the Karch-Katz model

[68]. The model consists of the N = 4 supersymmetric Yang-Mills theory with the N = 2

hypermultiplets with the fundamental representation of the SU(Nc) gauge group. With
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N = 1 superspace formalism, the Lagrangian is described by

L = Im



⌧

Z

d4✓
⇣

tr(�̄Ie
V�Ie

�V ) +Q†
re

VQr + Q̃†
re

�V Q̃r
⌘

�

+Im



⌧

Z

d2✓ (tr(W↵W↵) +W ) + c.c.

�

, (2.38)

where the superpotential W becomes

W = tr("IJK�I�J�K) + Q̃r(mq + �3)Q
r. (2.39)

⌧ is the complex gauge coupling. The N = 4 vector multiplet consists of the N = 1

vector multiplet W↵ and the three N = 1 chiral superfields �1,�2 and �3. The N =

2 hypermultiplets can be written down in the N = 1 chiral multiplets Qr, Q̃r (r =

1, 2, · · ·Nf ). The component fields of the N = 4 vector multiplet are the gauge field, the

four Weyl spinor fields and the six real scalar fields with the adjoint representation of the

SU(Nc) gauge group. The component fields of the N = 2 hypermultiplets are the two

Weyl spinor fields and the two complex scalar fields with the fundamental representation

of the SU(Nc) gauge group.

We discuss the quark antiquark pair creation about the N = 4 supersymmetric Yang-

Mills theory with the flavors by using the Karch-Katz model in the next section.

3 Pair creations of quark-antiquark

In this section, we consider the quark antiquary pair creation in a constant electromag-

netic field by using the AdS/CFT correspondence. Firstly, we review the electron positron

pair creation by evaluating the imaginary part of the Euler-Heisenberg Lagrangian which

is the e↵ective Lagrangian in QED. Secondly, the quark antiquark 1-loop diagram is as-

sociated with a disk amplitude by introducing ’t Hooft’s idea. Thirdly, we derive the

creation rate of the quark antiquark pair from the imaginary part of the DBI action with

the AdS/CFT correspondence. Then, we obtain the creation rates in the N = 2 SQCD,

the Sakai-Sugimoto model and the deformed Sakai-Sugimoto model.

3.1 The review of the electron-positron pair creations

Let us review the electron positron pair creation in quantum electrodynamics(QED).

The vacuum polarization occurs in the QED vacuum. Photon creates a virtual electron
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positron pair and the photon is created by the annihilation of the electron positron pair.

But, the vacuum instability is caused by a strong electric field as an external field. Then,

the on-shell electron positron pairs are created. The phenomena is called Schwinger

e↵ects.

We consider the electron positron pair creation in a constant electric field as a easy

example. Since the rest mass of an electron and a positron are respectively mec2, we

need the energy more than 2mec2 in order to create an electron positron pair. If we

introduce the strong electric field, the electron and the positron receive a Coulomb force

for the opposite direction respectively. The total potential energy is profit for the electron

positron pair to be created rather than for the electron and the positron to be separated

more than x distance. In the distance between the electron and the positron, the potential

energy by the electric field is �eEx. Thus, the total potential energy is

V (x) = 2mec
2 � eEx, (3.1)

when we neglect the Coulomb potential between the electron and the positron. If the

total potential energy V (x) is zero, then the distance is x = xcr = 2mec2/eE. In general,

the virtual electron and positron are created and annihilated repeatedly in the vacuum.

But, the electron positron pair are created rather than being annihilated in the distance

more than xcr between the electron and the positron. Then, the creation rate of the

electron positron pair is

�WKB ⇠ exp

✓

�m2
ec

4

e~E

◆

, (3.2)

by using WKB approximation. Since the electric coupling constant appears in the denom-

inator of (3.2), the Schwinger e↵ects indicate non-perturbative behaviors. The creation

rate is excluded when E < m2
ec

4/e~. Then, the critical electric field becomes

Ecr =
m2

ec
4

e~ ⇠ 1016 [V/cm], (3.3)

where Ecr is the critical electric field.

Schwinger e↵ects are the phenomenon which the vacuum instability causes by an

external field. We consider the QED e↵ective action without the dynamical gauge field.

The e↵ective Lagrangian is given by

LQED
e↵ (Aex

µ ) = � i

Vol

Z

D ̄D exp



i

Z

d4x ̄(i /D � m) 

�

, (3.4)
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where /D ⌘ �µDµ = �µ(@µ + ieAex
µ ) and Aex

µ is an external field. In order to obtain the

creation rate of the electron positron, we need to evaluate the e↵ective action. We review

the Euler-Heisenberg Lagrangian in the appendix according as Itzykson-Zuber [76].

It is important to consider the transition amplitude of the QED vacuum since the

Schwinger e↵ects are caused by the vacuum instability. The path integral of (3.4) in-

dicates the transition amplitude of the vacuum A. The vacuum decay rate is obtained

by

dP

dt
= ��P, (3.5)

where P is the vacuum to vacuum transition probability by the external field. P is

obtained by P = |A|2. � is the vacuum decay rate. The relation between the vacuum

decay rate and the e↵ective Lagrangian is the following,

� =

Z

d3x 2ImLQED
e↵ (Aex

µ ). (3.6)

The vacuum decay rate is derived from the imaginary part of the e↵ective Lagrangian.

From now, we calculate the imaginary part of the e↵ective Lagrangian.

Let us derive the creation rate of the electron positron pair from the Euler-Heisenberg

Lagrangian which is the 1-loop electron positron e↵ective Lagrangian. Euler, Heisenberg

and Schwinger are evaluated by the 1-loop e↵ective Lagrangian in the spinor QED [1] [2]

as the following,

LQED
e↵ =

E

2 � B

2

2
+

1

8⇡2

Z 1

0

ds

s
e�is(m2�i✏)



e2ab
cosh(eas) cos(ebs)

sinh(eas) sin(ebs)
� 1

s2

�

, (3.7)

where a and b are defined as a2 � b2 ⌘ E

2 � B

2, ab ⌘ E · B. E and B are respectively

constant electric fields and constant magnetic fields. The s-integral is a proper time

integral for the electron. The exponential includes i✏-prescription to coverage of the

integral in s ! 1. The e↵ective Lagrangian is called Euler-Heisenberg Lagrangian. We

can obtain the creation rate of the electron positron pair by evaluating the imaginary

part of the Lagrangian. When we only consider the constant electric field A3(x) = �Et

in the z-direction, the Euler-Heisenberg Lagrangian is

LQED
e↵ =

1

2
E2 +

1

8⇡2

Z 1

0

ds

s2
e�is(m2�i✏)



eE coth(eEs) � 1

s

�

. (3.8)
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We explain the convergence of the integral at s = 0. In s ! 0, the integral coverages

because Im(e�ism2

) = � sin(sm2) ' �sm2 and the order in the above bracket is O(s).

Thus, the integral has no pole at s = 0. We consider the residual internal which expends

the integral of (3.8) to complex integral. The first term of the integrand has sn = i⇡n/eE,

where n is a natural number. The region of the integral extends from (0,1) to (�1,1)

and is taken as the integral path of the below semicircle. When we consider the residual

integral at sn = i⇡n/eE, (n = 1, 2, · · · ) poles, the imaginary part of the Lagrangian is

ImLQED
e↵ =

(eE)2

8⇡3

1
X

n=1

1

n2
exp

✓

�⇡m
2
e

|eE|n
◆

. (3.9)

In the bosonic case, Weisskipf calculated the creation rate of the charged scalar fields as

the following,

ImLscalarQED
e↵ =

(eE)2

16⇡3

1
X

n=1

(�1)n+1

n2
exp

✓

�⇡m
2

|eE|n
◆

, (3.10)

in a scalar QED [3]. The factor which is common to the bosonic and fermionic cases

is exp(�⇡m2/|eE|). This factor indicates a non-perturbative e↵ect. Now, we assume

that the more than 2-loop Feynman diagrams such as the internal lines of the photon are

neglected because the external electromagnetic fields are much larger than the dynamical

electromagnetic fields.

The electron positron pair creation relates to a quantum tunneling through potential

barrier in Fig.1. The electron has the bound state when the electron has a Coulomb po-

tential. If this potential is added to a Coulomb force �eEx, then the quantum tunneling

for the electron occurs by changing from the tiny lines to the fat lines in Fig.1. For the

binding energy �V0, the creation rate of the electron positron is proportional to

exp

"

�2

Z V
0

/|eE|

0

dx
p

2m(V0 � |eE|x)
#

= exp

✓

�4

3

p

2mV0
V0

|eE|

◆

, (3.11)

by using the WKP approximation. The binding energy is |V0| = 2me because the mass

gap between the electron and the positron is 2me. Thus, the creation rate is proportional

to exp(�const. m2
e/|eE|). The results of the WKB approximation coincide with the case

of the instant on number n = 1 in (3.9) except overall factor.

In the QED, we obtain the Euler-Heisenberg Lagrangian which is the 1-loop e↵ective

Lagrangian. Similarly, the creation rates of the charged particles can be derived from
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x

Potential energy

�eEx

/ � e

|x|

�V0

V0

|e|E

Figure 1: The potential energy is the potential of the electron in an electric field. The

dot lines means the Coulomb potential / �e/|x|. On the other hands, the linear line

means the energy of the electron which receive the Coulomb force from the electric field

as an external field. The bold line corresponds to the combination with the Coulomb

potential and the the energy of the electron by the electric field.

the 1-loop e↵ective Lagrangian in electromagnetic fields except the QED. In QCD, we

consider the quark antiquark pair creation in electromagnetic fields. But, we must eval-

uate the gluons loop e↵ects because the gluon’s coupling is strong. In next subsection,

we introduce ’t Hooft’s idea.

3.2 Quark antiquark 1-loop Feynman diagram in large N QCD

In this subsection, we discuss the 1-loop quark antiquark diagram in quantum chromo-

dynamics instead of the electron positron pair creation. The source term as an external

field is U(1) electromagnetic fields. The di↵erence between the electron positron pair

and the quark antiquark is for the quark antiquark to be coupled with gluons. Since the

gluon coupling is strong, we must consider the all loop orders of the gluons and cannot

use a perturbation. Then we introduce ’t Hooft’s idea and consider the large N gauge

theory. The ’t Hooft’s idea is related to the AdS/CFT correspondence.

The Lagrangian which adds external U(1) gauge fields to the QCD Lagrangian is
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given by

L = LQCD � i ̄e/Aex , (3.12)

where,

LQCD = �1

4
F a
µ⌫F

aµ⌫ +  ̄(i /D � mq) . (3.13)

Here, /D is defined by /D ⌘ �µDµ. Dµ is Dµ = @µ� igAa
µ. A

a
µ is the gluon fields. Aex

µ is the

U(1) gauge fields as external fields.  is a quark field and mq is a quark mass. Also, F a
µ⌫

is field strength for the gluon fields and is defined as F a
µ⌫ = @µAa

⌫ � @⌫Aa
µ + gfabcAb

µA
c
⌫ .

The 1-loop e↵ective action in the QCD is given by

LQCD
e↵ (Aex

µ ) = � i

Vol
ln

Z

D ̄D DAa
µ exp



i

Z

d4xL
�

, (3.14)

where Vol is 4-dimensional space-time volume.

In the QCD, the gluons are coupled to the 1-loop quark antiquark diagram. In

particular, the Euler-Heisenberg Lagrangian receives the higher loop corrections for the

gluons and is not good approximation for the perturbation since the QCD is a strongly

coupled gauge theory. We introduce the ’t Hooft’s idea. When we consider the large N

limit, planar diagrams are dominant in the Feynman diagrams.

3.2.1 ’t Hooft’s idea

’t Hooft introduced new Feynman diagrams which are called planar diagram [77]. The

planar diagrams mean that we can describe the Feynman diagrams of the quarks and the

gluons on the surface. If we take the large N limit, we find that the planar diagrams are

dominant in the Feynman diagrams. Also, the large N strongly coupled gauge theory

is compatible with the AdS/CFT correspondence. The physical quantities of the gauge

theory is derived from the classical gravity more easily. Here, we introduce 1/N expanding

according as the ’t Hooft’s discussion.

We review the ’t Hooft’s idea according to the Coleman’s textbook [80]. We intro-

duce the new indices for the SU(N) gauge fields since the non-Abelian gauge fields are

matrices. The gauge fields Aa
µb are traceless Hermitian matrices. Then we obtain the

condition as the following,

Aa
µb = Ab†

µa, Aa
µa = 0. (3.15)
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Thus, the field strength is

F a
µ⌫b = @µA

a
⌫b � @⌫A

a
µb + i[Aµ, A⌫ ]

a
b. (3.16)

When we introduce the quark fields, quarks are the fundamental representation of the

SU(N) gauge group and have the index of the vector. Thus, the Lagrangian in the

SU(N) gauge theory is given by

L =
N

g2



�1

4
F a
µ⌫bF

µ⌫b
a +  ̄a(i@µ + Aa

µb)�
µ a � mq ̄a 

a

�

, (3.17)

where the Lagrangian doesn’t include the U(1) gauge fields as external fields. mq is the

quark mass. We determine that the gauge coupling is N/g2 as the coupling of the quark

and the gluons is unit. The propagator for the Dirac fields  a becomes

 a(x) ̄b(y) = �abS(x � y). (3.18)

S(x� y) is the propagator for the single Dirac field. The propagator for the gluon fields

Aa
µb is

Aa
µb(x)A

c
⌫d(y) =

✓

�ad�
c
b � 1

N
�ab�

c
d

◆

Dµ⌫(x � y). (3.19)

Dµ⌫(x�y) is the propagator for the single gauge field. The second term in (3.19) becomes

traceless condition.

Next, we introduce the new Feynman diagrams according as the ’t Hooft’s idea. The

number of the lines is determined by the number of the indices of the fields. The fermion

field  a has a line and the gauge field Aa
µb has two lines. Thus, the Dirac field coupled

to the gauge field, the 3 point vertices and the 4 point vertices for the gauge fields

are described in the di↵erent terms of the original Feynman diagrams. In particular,

the loop diagrams are classified as the diagrams described on the surface or not. The

former diagrams called planar diagrams, on the other hands, the latter diagrams called

non-planar diagrams. It is important to treat the planar diagrams in the AdS/CFT

correspondence.

Let us introduce the following rule before classifying the Feynman diagrams.

1) The propagators contribute the �/N2 factors.

2) The vertices contribute the N2/� factors.

25



Planar diagram Non-planar diagram

Figure 2: The left figure is a planar diagram, while the right figure is a non-planar dia-

gram. The left figure has five vertices, eight propagators and five loops, (V,E,F)=(5,8,5).

On the other hands, the right figure has four vertices, six propagators and one loop,

(V,E,F)=(4,6,1).

3) The loop diagrams contribute the N factors.

Here, � is a ’t Hooft coupling which is defined as � = g2N . For example, we see Fig.2.

The left hand planar diagram has the five vertices, the eight propagators and the five

loops. Thus, the planar diagram in Fig.2 is

(The order of �, N) =

✓

N2

�

◆5✓ �

N2

◆8

N5 = �3N�1 (3.20)

In general, the order of N in the planar diagrams is N�1. The power of � is large as

the propagators increase. On the other hands, the right hand non-planar diagram has

the four vertices, the six propagators and the one loop. Thus, the non-planar diagram in

Fig. is

(The order of �, N) =

✓

N2

�

◆4✓ �

N2

◆6

N1 = �2N�3. (3.21)

In general, the order of N in the non-planar diagram described on the surface of the torus

is N�3. The higher non-planar diagrams of 1/N expand can be described on the torus

which has many genus. Thus, the planar and the non-planar diagrams are evaluated by

26



the following polynomial about �, N ,

( The diagram ) / g0(�)
1

N
+ g1(�)

1

N3
+ g2(�)

1

N5
+ · · · . (3.22)

The planar diagram is contributed dominantly when we take the large N limit.

The 1/N expend method is not the summation of the Feynman diagrams for the

gauge coupling expend such as the perturbation but the summation for the degree of

freedom about the gauge group. It doesn’t mean a perturbation. The method makes

non-perturbative e↵ects evaluated.

3.3 The massless quark antiquark pair creation in N = 2 SQCD

In the previous subsection, we found that the planar diagram is dominant in the large N

limit. In this subsection, the quark antiquark 1-loop amplitude becomes disk amplitude

when we consider the strong coupling limit � � 1. According to Hashimoto-Oka’s con-

jecture, we derive the creation rate of the quark antiquark from evaluating the imaginary

part of the DBI action in electromagnetic fields.

3.3.1 Hashimoto-Oka’s conjecture

We discuss the relation between the Euler-Heisenberg Lagrangian in the N = 2 SQCD

and the DBI action in the electromagnetic fields according as the Hashimoto-Oka’s con-

jecture [16]. Since QCD is the strongly coupled gauge theory, the vacuum amplitude for

the quark antiquark pair creation contributes to the higher corrections for the gluons. We

found that the planar diagram only contributes to the quark antiquark 1-loop diagrams

with the ’t Hooft’s idea in the previous section. In this part, we discuss the quark anti-

quark 1-loop planar diagrams in the strong coupling limit � � 1. The quark antiquark

1-loop planar diagram coincides with the disk amplitude such as Fig.3 in the strong cou-

pling limit. The disk amplitude means that the fundamental open string propagates on

the worldsheet in the string theory. It is well-known to derive the DBI action from the

low energy e↵ective action of the partition function for the open string in the flat target

space background. The open string means the QCD string coupled to a quark and an

antiquark in the QCD picture. Thus, according to the AdS/CFT correspondence, the

Euler-Heisenberg Lagrangian in the N = 2 large N supersymmetric gauge theory with
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disk amplitudegluon’s higher loops

� � 1

q
quark antiquark

q̄

Figure 3: In � � 1, the 1-loop quark-antiquark diagram which has the gluon’s higher

loops corresponds to the disk amplitude. In QCD’s picture, the disk regards the quark-

antiquark pair as propagating on the worldsheet.

flavors indicates the following relation in � � 1,

Euler-Heisenberg Lagramgian in N = 2 SQCD = DBI action

in electromagnetic fields. (3.23)

Therefore, we need to evaluate the imaginary part of the DBI action in the electromag-

netic fields in order to calculate the creation rate of the quark antiquark pair.

The vacuum instability corresponds to having the imaginary part of the DBI action.

We consider the following condition in order to be vacuum unstable.

• We set j = 0 which is the current in the gauge theory from the gravity.

• We consider no fluctuation of the probe D-brane by the electromagnetic fields.

We assume that the above conditions indicate that the QCD vacuum is unstable.

Firstly, let us consider the example for the first condition. The positive charged

particles and the negative charged particles cause the dielectric polarization by electric

fields as external fields in the dielectric. Then, the current flows from the positive charged

particles to the negative charged particles. This means that the stable system becomes

unstable by the electric fields and the current flows in order to be stable for the system.
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Thus, we examine that the current is zero when we introduce the electric fields, in order to

know the quantities of the dielectric being unstable. Similarly, let us consider the QCD

vacuum instability by the electromagnetic fields. If we introduce the electromagnetic

fields to the vacuum, then the vacuum is unstable and the quark antiquark pair creation

is caused by obtaining the energy for creating the quark antiquark pair. In fact, we can

derive the current between the quark and the antiquark from the DBI action to which

the D7 brane induced metric is substituted by using the GKP-Witten relation. When we

consider the electric field in x-direction, the current j has the relation such as j / @zAx,

where Ax is U(1) gauge field in the gravity side. The current is substituted to the DBI

action. In j = 0, the DBI action can have the imaginary part. On the other hands, the

imaginary part of the DBI action is excluded in j 6= 0. That is, the unstable vacuum

becomes stable because the current flows.

Secondly, the probe D-brane has the fluctuation fields when we introduce the the

electromagnetic fields to the probe D-brane. Now, we consider the D3-D7 brane system in

the subsection 2.4. The probe D7-brane fluctuates in the 89-directions. The background

geometry is

ds2 =
u2

R2
⌘µ⌫dx

µdx⌫ +
R2

u2
[d⇢2 + ⇢2d⌦2

3 + dw2 + dw̄2], (3.24)

from (2.8). The first term is 4-dimensional space-time. ⌘µ⌫ is Minkowski metric which is

defined as ⌘µ⌫ = diag(�1, 1, 1, 1). u is the parameter in the AdS direction. ⇢ is the radius

of the 3-sphere and R is the AdS radius. w and w̄ are the coordinate of the 89-directions

respectively. u, ⇢, w and w̄ are associated with u2 = ⇢2 + w2 + w̄2. Since the w, w̄ have

the rotation symmetry, we fix w̄ and consider the fluctuation of w. Thus, the induced

metric on the D7-brane is given by

ds2 =
u2

R2
⌘µ⌫dx

µdx⌫ +
R2

u2
[{(@⇢w)2 + 1}d⇢2 + ⇢2d⌦2

3]. (3.25)

We consider the fluctuation of the probe D7-brane when we introduce the D7-brane to

U(1) gauge theory as F01. Substituting the induced metric (3.25) to the D7-brane DBI

action, the classical equation of motion is obtained by

@⇢

2

4

⇢3@⇢w
q

1 � (2⇡↵0)2R4F 2

01

(⇢2+w2)2
p

(@⇢w)2 + 1

3

5� 2⇢3(2⇡↵0)2R4F 2
01w
p

(@⇢w)2 + 1

(⇢2 + w2)3
q

1 � (2⇡↵0)2R4F 2

01

(⇢2+w2)2

= 0. (3.26)
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The solution w depends on ⇢ such as w = w(⇢). In F01 = 0, w is a constant solution.

According to the AdS/CFT dictionary, the constant coincides with a quark mass. In

general, w doesn’t become a constant solution because the D7-brane has the fluctuation

by an external field. But, we are interested in vacuum instability when we add an external

field to the stable vacuum without the external field. Therefore, we treat w = const. when

we examine the QCD vacuum instability by the electromagnetic fields.

3.3.2 The D7-brane DBI action in electromagnetic fields at a finite temper-

ature

In this part, we evaluate the Euler-Heisenberg Lagrangian including constant electro-

magnetic fields in N = 2 large N QCD according as [17]. It is di�cult to evaluate the

Schwinger e↵ects in the strongly coupled QCD in order to be contribution of the gluon’s

loops. We calculate the creation rate of the quark antiquark pair in the N = 2 SQCD

with the gauge/gravity dual. In this part, we compute the Euler-Heisenberg Lagrangian

in the case of the quark antiquark massless.

Let us consider the supersymmetric gauge theory on the boundary of an AdS space,

which is N = 4 supersymmetric Yang-Mills theory with a N = 2 hypermultiplet with

SU(Nc) gauge group. The configuration of D-branes realizing the gauge theory is a

D3-D7 brane system [12]. Taking a gravity dual, we use an AdS black hole metric as

a background metric, in order to see the relation between the rate of quark antiquark

creation and a temperature. The probe D7-brane in the AdS space has been well-studied

to look at an electric conductivity, that is, an electric current determined by the external

electric field [12, 70, 79]. The e↵ective action (the D7-brane action in the AdS) is put to

be real to determine the conductivity. Here on the other hand, we are interested in the

instability caused by the external electromagnetic field, so the current j is put to zero

(or takes some arbitrary value), giving an imaginary part in the e↵ective action: this is

how we obtain the Euler-Heisenberg Lagrangian [16].

The relation between a temperature and the AdS black hole is given by (2.14). Here,

the function of f(r) is f(r) = r2(1 � r40/r
4). r0 is the horizon of the AdS black hole.

Also, the AdS radius R relates to the QCD coupling gQCD, the color Nc and ↵0 as (2.13).

Thus, we obtain

r0 = ⇡T, R4 = 2g2QCDNc↵
02, (3.27)
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where ↵0 is defined by ↵0 = l2s . As r ⌘ 1/z, the AdS black hole metric is the following

for (2.9),

ds2 =
R2

z2

"

�
✓

1 � z4

z4H

◆

dt2 +

✓

1 � z4

z4H

◆�1

dz2 + d~x2

#

+R2d⌦2
5, (3.28)

where the coordinate z is the AdS radial direction, and z = 0 corresponds to the boundary

of the AdS space, and z = zH is the horizon of the black hole. d~x2 is defined by

d~x2 = dx2
1 + dx2

2 + dx2
3. These parameters are given by the following relations between

that of the gauge side and that of the gravity side:

zH =
1

⇡T
, R4 = 2�↵02, (3.29)

where � ⌘ Ncg2QCD is a ’t Hooft coupling of the SQCD.

In the D3-D7 system, the D7-brane has the degree of freedom of the quark in the

fundamental representation of the color SU(Nc) gauge group by coupling to the D3-

branes. Going to the gravity dual, the action in the gravity side is a D7-brane action in

the AdS space. The D7-brane action is the following:

SD7 = �µ7

Z

dtd3~xdzd3⌦3

p

�det [P [g]ab + 2⇡↵0Fab], (3.30)

where the factor µ7 is the D7-brane tension, given by µ7 ⌘ 1/((2⇡)7gs↵04). We need not

consider the scalar fields on the D7-brane, since we are working for the massless SQCD.

The Euler-Heisenberg e↵ective action is defined by

L = �i lnhe�i
R
Aext

µ jµi0, (3.31)

which is a function of the external electric and magnetic fields represented by Aext
µ . jµ

is the U(1) current operator corresponding to the baryon charge, and the expectation

value h i0 is taken with respect to the “false vacuum”, i.e., the vacuum without the field

which is now unstable. If the expectation value in (3.31) was taken with the true vacuum,

the standard AdS/CFT dictionary [9, 10] states that the e↵ective action is given by the

D7-brane action evaluated with the reality condition for the action [12, 68, 79] and with

the solution of the equation of motion. In ref. [16], Hashimoto and Oka proposed that the

e↵ective action (3.31) is given as the D7-brane action evaluated with the false-vacuum

solution, i.e., the solution of the equation of motion without the electromagnetic fields.
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Substituting the AdS black hole metric for the D7-brane action, the e↵ective action

becomes

L = �2⇡2µ7

Z

dz
R8

z5
p

⇠, (3.32)

where d⌦-integral is Vol(S3) = 2⇡2. The string coupling constant gs is related to the

gauge coupling constant of SQCD as 2⇡gs = g2QCD. Without losing generality, we can

choose the direction of the electromagnetic fields. Using the rotation symmetry, we fix the

electric field to the x1 direction. The magnetic fields are generic in x1, x2, x3 directions.

Then the ⇠ in the action is defined by the following:

⇠ ⌘ 1 � (2⇡↵0)2z4

R4

⇥

F 2
0z + F 2

01h(z)
�1 � F 2

1zh(z) � F 2
12 � F 2

23 � F 2
13

⇤

�(2⇡↵0)4z8

R8
[F 2

23{F 2
01h(z)

�1 � F 2
1zh(z)} + F 2

0z

�

F 2
12 + F 2

23 + F 2
13

 

]. (3.33)

The function h(z) is defined as h(z) = 1 � z4/z4H .

Consider rewriting the e↵ective Lagrangian (3.33) in order to see the dependence

on the charge density d and the current j. We derive the equations of motion from this

action. Since we are interested in homogeneous phases, we simply put @i = 0 (i = 1, 2, 3).

Then the equations of motion are the following:

@z



F0z

z
p
⇠
+

(2⇡↵0)2z3

R4
p
⇠

F0z(F
2
12 + F 2

23 + F 2
13)

�

= 0, (3.34)

@0



F0z

z
p
⇠
+

(2⇡↵0)2z3

R4
p
⇠

F0z(F
2
12 + F 2

23 + F 2
13)

�

= 0, (3.35)

@0



F01

z
p
⇠
h(z)�1+

(2⇡↵0)2z3

R4
p
⇠

F01F
2
23h(z)

�1

�

+@z



F1z

z
p
⇠
h(z) +

(2⇡↵0)2z3

R4
p
⇠

F1zF
2
23h(z)

�

= 0.

(3.36)

In particular, the equations of motions in the case of time-independent field configurations

are

@z



F0z

z
p
⇠
+

(2⇡↵0)2z3

R4
p
⇠

F0z(F
2
12 + F 2

23 + F 2
13)

�

= 0, (3.37)

@z



F1z

z
p
⇠
h(z) +

(2⇡↵0)2z3

R4
p
⇠

F1zF
2
23h(z)

�

= 0. (3.38)
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Next let us evaluate the charge density d and the current j in the gauge side. Using

the dictionary of the AdS/CFT correspondence, they are respectively

d =
2⇡↵0F0z

z
p
⇠

+
(2⇡↵0)3z3

R4
p
⇠

F0z(F
2
12 + F 2

23 + F 2
13), (3.39)

j =
2⇡↵0F1z

z
p
⇠

h(z) +
(2⇡↵0)3z3

R4
p
⇠

F1zF
2
23h(z). (3.40)

The solutions can be explicitly written as

A0 = µ �
Z z

0

dz
zR4d

p
⇠

2⇡↵0R4 + (2⇡↵0)3z4(F 2
12 + F 2

23 + F 2
13)

, (3.41)

A1 = E1t �
Z z

0

dz
zR4j

p
⇠

2⇡↵0R4h(z) + (2⇡↵0)3z4F 2
23h(z)

, (3.42)

Az = 0. (3.43)

Here, µ is a constant and E1 is a constant electric field. These charge density and current

are substituted into ⇠, to find

⇠ =
1 � (2⇡↵0)2z4

R4

(E2
1h(z)

�1 � ~B2) � (2⇡↵0)4z8

R8

(E1B1)2h(z)�1

1 + z6d2

R4

⇣
1+

(2⇡↵0
)

2z4 ~B2

R4

⌘ � z6j2h(z)�1

R4

✓
1+

(2⇡↵0
)

2z4B2

1

R4

◆
, (3.44)

where F12 ⌘ B3, F23 ⌘ B1, F31 ⌘ B2 are constant magnetic fields. Using this ⇠, the

e↵ective Lagrangian with the constant electromagnetic fields is as follows:

L = �2⇡2µ7

Z zH

0

dz
R8

z5

v

u

u

u

t

1 � (2⇡↵0)2z4

R4

(E2
1h(z)

�1 � ~B2) � (2⇡↵0)4z8

R8

(E1B1)2h(z)�1

1 + z6d2

R4

⇣
1+

(2⇡↵0
)

2z4 ~B2

R4

⌘ � z6j2h(z)�1

R4

✓
1+

(2⇡↵0
)

2z4B2

1

R4

◆
.

(3.45)

When j = 0, the solution corresponds to the false vacuum, and (3.45) gives the Euler-

Heisenberg e↵ective action. This is our result from the AdS/CFT correspondence, and

the basis for the following analyses. The imaginary part of the e↵ective action gives half

the inverse life time of the false vacuum.

When j = 0, using the spatial rotation symmetry, we can recover the full ~E and ~B

dependence. The Euler-Heisenberg Lagrangian for a generic constant electromagnetic
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field, at a finite temperature is

L = �2⇡2µ7

Z zH

0

dz
R8

z5

v

u

u

u

t

1 + �(z) ~B2 � �(z)
h(z)

~E2 � �(z)2

h(z)

⇣

~E · ~B
⌘2

1 + z2

(2⇡↵0)2
�(z)

1+�(z) ~B2

d2
(3.46)

and �(z) ⌘ (2⇡↵0)2z4/R4. In particular, for the vanishing density d = 0, the Euler-

Heisenberg Lagrangian is simplified as

L = �2⇡2µ7

Z zH

0

dz
R8

z5

s

1 + �(z) ~B2 � �(z)

h(z)
~E2 � �(z)2

h(z)

⇣

~E · ~B
⌘2

(3.47)

In the language of the massless N = 2 SQCD, this Euler-Heisenberg Lagrangian (at

a finite temperature and with d = j = 0) is written as

L = �Nc�

23⇡4

Z 1/(⇡T )

0

dz

z5

s

1 + �(z) ~B2 � �(z)

h(z)
~E2 � �(z)2

h(z)

⇣

~E · ~B
⌘2

(3.48)

where �(z) = (2⇡2/�)z4 and h(z) = 1 � (⇡T )4z4.

3.3.3 Imaginary part of Lagrangian in SQCD

We evaluate the imaginary part of the e↵ective Lagrangian, and study the vacuum in-

stability against not only the electric field but also the magnetic field in [17]. First, the

imaginary part at zero temperature T = 0 and zero quark density diverges: The vacuum

is not protected by a gap and thus extremely unstable. In a finite temperature case,

the divergence is suppressed. In fact, assuming that the temperature provides a thermal

mass for the quarks, the divergence of the imaginary part coincides with the result of

a massive SQCD, and further with a supersymmetric QED, as we shall see in the next

section.

In the previous subsection, we obtained the e↵ective Lagrangian (3.45) with not only

the constant electric field but also the constant magnetic field in the massless system.

For simplicity, consider the case when the magnetic field is parallel to the electric field

(E1 and B1 are nonzero). Then the e↵ective Lagrangian is given by

L = �2⇡2µ7

Z zH

0

dz
R8

z5

r

1 � (2⇡↵0)2z4

R4
(E2

1h(z)
�1 � B2

1) � (2⇡↵0)4z8

R8
(E1B1)2h(z)�1.

(3.49)
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We evaluate the imaginary part of the e↵ective Lagrangian to derive the rate of the quark

antiquark creation.

Consider the zero-temperature case, i.e., zH ! 1. Then the function h(z) approaches

unity. The z-integral of the imaginary part of the e↵ective Lagrangian is dominated

by the third term in the square root of the Lagrangian. Thus, this z-integral has a

logarithmic divergence. Thus, in the presence of the magnetic field in addition to the

electric field, the vacuum decay rate diverges for massless SQCD at strong coupling

and at zero temperature. This is in sharp contrast with the zero magnetic field case

in which ImL = Nc

32⇡E
2 is obtained [16]. In free Dirac systems, it is known that the

divergence of the Euler-Heisenberg e↵ective Lagrangian depends on dimensionality. In

the pure electric field case (no magnetic field), for spatial dimension larger than two, the

decay rate is finite, while for a (1+1)-dimensional system a divergence takes place. Our

finding can be understood as an e↵ective dimension reduction by the magnetic field. In

a finite magnetic field, Landau levels are formed and the dispersion becomes flat in the

two directions perpendicular to the field. Starting from three spatial dimensions, the

magnetic field reduces the e↵ective dimension to one. This may explain the divergence

we obtain, although, it is unclear if the argument holds for a strongly interacting model.

In a finite temperature system, the divergence of the decay rate is suppressed. In

order to evaluate the imaginary part of e↵ective Lagrangian, we change the variable z of

this integral to y defined by y ⌘ z/zH ,

L = �2⇡2µ7(2⇡↵
0)2R4�

Z 1

0

dy

y5

s

1 � y4

�
(E2

1(1 � y4)�1 � B2
1) � y8

�2
(E1B1)2(1 � y4)�1 ,

(3.50)

where � is defined as � ⌘ R4/(2⇡↵0)2z4H . As mentioned above, we found that the

imaginary part of the Lagrangian diverges in the limit T ! 0. In order to see the

dependence on � in the square root, we further change the variable y to Y ⌘ �� 1

4y,

L = �2⇡2µ7(2⇡↵
0)2R4

Z �� 1

4

0

dY

p

1 � (�+ E2
1 � B2

1)Y
4 � �B2

1Y
8 � (E1B1)2Y 8

Y 5
p

1 � �Y 4
.

(3.51)

Let us look for the value of Y at which the integrand turns from real to imaginary. Since

� is small, we can ignore O(�) term in the numerator, to find the value as Y = 1/
p
E1.
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So the imaginary part of L is from the integral over the region 1/
p
E1 < Y < �� 1

4 . At the

integration, the forth term in the square root of the numerator in the integrand becomes

dominant for small �, hence the imaginary part of the Lagrangian is approximately given

by

Im L ⇠ 2⇡2µ7(2⇡↵
0)2R4(E1B1)

Z �� 1

4

1/
p
E

1

dY

Y
p

1 � �Y 4
. (3.52)

Performing the integral for small � leads to

Im L ⇠ Nc

4⇡2
E1B1log

1

T
, (3.53)

where we find a logarithmic dependence on the temperature.

Let us evaluate the imaginary part of the Euler-Heisenberg Lagrangian for a generic

constant electromagnetic field in a temperature. For small T , we obtain the following

dominant term in the divergence,

Im LT 6=0 =
Nc

4⇡2

�

�

�

~E · ~B
�

�

�

log
b(E,B)

T
+ O(T 0) , (3.54)

where the constant b is defined as

b(E,B) ⌘
"

1

2

 

~E2 � ~B2 +

r

⇣

~E2 � ~B2
⌘2

+ 4
⇣

~E · ~B
⌘2
!#1/4

. (3.55)

In addition, in a finite density system, we find a density dependence (d 6= 0 but at T = 0),

Im Ld 6=0 =
Nc

4⇡2

�

�

�

~E · ~B
�

�

�

log
1

d
+ · · · . (3.56)

This logarithmic dependence is quite similar to the finite temperature case (3.54). In fact,

we see in the following that this form is quite common and has a physical interpretation,

see (3.71).

3.4 The massive quark antiquark pair creation in N = 2 SQCD

In this section, we evaluate the Euler-Heisenberg Lagrangian for the strongly coupled

N = 2 SQCD with a quark mass in constant electromagnetic fields. In zero temperature,

the creation rate of the massive quark antiquark pair is finite unlike the case of the

massless quark antiquark pair. The leading term coincides with that of a weakly coupled

supersymmetric QED.
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3.4.1 Critical electric field

In this section, for simplicity, we consider T = 0 and d = 0. First, let us take a D7-brane

configuration of the SQCD with vanishing electromagnetic fields. The induced metric on

the D7-brane is [12]

ds2 =
R2

z2
h̃(z) (dxµ)2 +

R2

z2h̃(z)

�

dz2 + d⌦2
3

�

, (3.57)

where µ = 0, 1, 2, 3 and d⌦2
3 is the metric of a unit 3-sphere, and

h̃(z) ⌘ 1 +
z2⌘2

R2
. (3.58)

The constant ⌘ specifies the location of the D7-brane, which is physically related to the

quark mass by

⌘

2⇡↵0 = mq . (3.59)

Turning on the constant electromagnetic fields on the D7-brane, we obtain the Euler-

Heisenberg Lagrangian for the strongly coupled N = 2 SQCD

L = �2⇡2µ7

Z 1

0

dz
R8

z5
p

⇠ (3.60)

with

⇠ ⌘ 1 + �(z)h̃(z)�2
⇣

~B2 � ~E2
⌘

� �(z)2h̃(z)�4
⇣

~E · ~B
⌘2

. (3.61)

The ~B = 0 result agrees with [16], and when ⌘ = 0, it reproduces our massless SQCD

result (3.47) at T = 0.

We can evaluate the critical electric field above which the e↵ective Lagrangian acquires

an imaginary part. Solving ⇠ = 0 for z results in and equation

h̃(z)2 = �(z)b4 (3.62)

where the constant b(E,B) is defined in (3.55). This equation is simplified as

1 =

✓

2⇡↵0

R2
b2 � ⌘2

R4

◆

z2 . (3.63)

In order for this to have a solution, we need

b(E,B) >
⌘p

2⇡↵0R
=

✓

2⇡2

�

◆1/4

mq . (3.64)
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Figure 4: A plot of the critical electric field Ecr as a function of the magnetic field B//

and B?, for nonzero mq. We find that the magnetic field makes the critical electric field

larger.

This is the condition for having an imaginary part in the Euler-Heisenberg Lagrangian, a

signal for vacuum instability. Without the magnetic field ( ~B = 0), this condition (3.64)

reduces to the critical electric field found in [16],

| ~E| >
✓

2⇡2

�

◆1/2

m2
q . (3.65)

Let us study magnetic field dependence of the critical electric field. The critical electric

field Ecr is a solution of the equation

b(Ecr, B) =

✓

2⇡2

�

◆1/4

mq . (3.66)

Decomposing the magnetic field to two components B// and B? (parallel / perpendicular

to the electric field), we can plot the value of the critical electric field as a function of

the magnetic field B// and B?, see Fig. 4. We find that the magnetic field does not

lower the critical electric field. In fact, the critical electric field is minimized when the

perpendicular magnetic field B? vanishes, and the minimized value is equal to the critical

electric field in the absence of the magnetic field (3.65). In the zero magnetic field case,

the critical field coincides with the confining force [16]. This is natural because the

vacuum instability takes place when the quark-antiquarks are pulled apart with a force
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stronger than the confining force. It is strange that the critical field has a B? dependence

because the gluons mediating the confinement force is not a↵ected by the magnetic field.

We leave this puzzle for future consideration.

3.4.2 Vacuum decay rate in the small mass limit

When the quark mass is finite, the vacuum decay rate, i.e., the imaginary part of the

e↵ective action, is non-diverging, even above the critical field. Here, we evaluate the

small mass asymptotic behavior of the vacuum decay rate. As shown in the previous

section, the divergence of the decay rate originates from the integral at large z. With

non-zero mass represented by the parameter ⌘ 6= 0, the function h̃(z) has the following z

dependence (z⇤ ⌘ R2/⌘)

h̃(z) ⇠
(

1 (z ⌧ z⇤),
⌘2

R4

z2 (z � z⇤).
(3.67)

This alters the divergent behavior of the integral: For z � z⇤, the integrand of the

e↵ective Lagrangian behaves as

R8

z5
p

⇠ ⇠ z�5, (3.68)

whose integral is convergent. The leading behavior of the imaginar part is given by

Im L ⇠ 2⇡2µ7

Z z⇤

z
0

dz
R8

z5
(2⇡↵0)2

R4
z4
�

�

�

~E · ~B
�

�

�

, (3.69)

where the massless limit corresponds to z⇤ ! 1. The lower bound of the integral z0 is

determined by the condition that the Lagrangian becomes imaginary, and is the solution

of equation (3.63)

z0 ⌘
✓

2⇡↵0

R2
b2 � ⌘2

R4

◆�1/2

. (3.70)

The divergence appears when z0 ⌧ z⇤, and the leading term is given by (3.69) which is

evaluated as

Im L=
Nc

4⇡2

�

�

�

~E · ~B
�

�

�

log
z⇤
z0

+ · · ·

=
Nc

4⇡2

�

�

�

~E · ~B
�

�

�

log
b(E,B)

mq
+ higher in

mq

b(E,B)
. (3.71)
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Interestingly, this divergence coincides with (3.54) if we replace the temperature T with

the quark mass mq. The linear relation between the temperature and the quark mass

is commonly found in thermal field theories at weak coupling, and our strongly coupled

results are consistent with that. We shall see later that our asymptotic behavior (3.71),

agrees with a weak coupling calculation of N = 2 supersymmetric QED.

3.4.3 Coincidence with N = 2 supersymmetric QED

In this part, we compare the Euler-Heisenberg Lagrangian of SQCD with the one-loop

result of N = 2 supersymmetric QED. A priori, we expect no relation between them

because our SQCD is with self-interacting gluons and is evaluated at strong coupling

through the AdS/CFT correspondence, while the SQED is a weak coupling and photons

are not interacting with each other at the one-loop level. However, unexpectedly, we

find several coincidences: First is the small electric field asymptotic of the vacuum decay

rate, and the second is the leading nonlinear electromagnetic response coe�cients. This

agreement may be attributed to the supersymmetries. It is known via AdS/CFT corre-

spondence that in SQCD the gluon has a Coulombic potential, that is presumably why

we find the agreement in the following. So, in one aspect, our report here should serve as

a consistency check of our calculation of the imaginary D-brane action in the AdS/CFT

correspondence.

First, let us check the divergence in the imaginary part. The one-loop QED [78] has

the following expression for the e↵ective Lagrangian when ~E is parallel to ~B;

Im Lscalar =
EB

8⇡2

1
X

l=1

(�1)l+1

l

exp[�⇡lm2/E]

2 sinh(⇡lB/E)
, (3.72)

Im Lspinor =
EB

8⇡2

1
X

l=1

1

l
exp[�⇡lm2/E] coth(⇡lB/E) . (3.73)

Here Lscalar denotes scalar QED (the charged particle is a scalar bosonic field) and Lspinor

is for the ordinary QED. To have N = 2 supersymmetry, we need 2Nc scalars and Nc

spinors, and thus

Im LN=2 SQED =Nc (Im Lspinor + 2 Im Lscalar)

=
NcEB

8⇡2

1
X

l=1

1

l
exp[�⇡lm2/E]

cosh(⇡lB/E) + (�1)l+1

sinh(⇡lB/E)
. (3.74)
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Let us consider a limit of electron mass m going to zero. In the expression above, the

factor exp[�⇡lm2/E] serves as a cut-o↵ of the summation over l. Therefore we can

approximate it as

Im LN=2 SQED ⇠ NcEB

8⇡2

E/⇡m2

X

l=1

1

l

cosh(⇡lB/E) + (�1)l+1

sinh(⇡lB/E)
. (3.75)

The divergence is due to cosh / sinh ⇠ 1 for large l, so, for large E/m2 we can further

approximate it as2

Im LN=2 SQED ⇠ NcEB

8⇡2

E/⇡m2

X

l=1

1

l
⇠ NcEB

8⇡2
log

E

⇡m2

⇠ Nc

4⇡2
EB log

p
E

m
. (3.76)

We find that this SQED result is in agreement with our SQCD result (3.71).

3.5 The quark-antiquark pair creation in confining large N gauge

theory

In this subsection, we study a quark antiquark pair creation in the confining phase [18].

The Sakai-Sugimoto model is the D-brane construction of the D4-D8 brane which has the

SU(Nf )L ⇥ SU(Nf )R chiral symmetry and the confining phase [14]. We will obtain the

creation rate of the quark antiquark in the confining non-supersymmetric gauge theory

by evaluating the imaginary part of the D8-brane action with a constant electromagnetic

field. Also, the critical electric field is obtained by a threshold at which the D8-brane

action acquires a non-vanishing imaginary part.

3.5.1 Review of the Sakai-Sugimoto model

The D-brane contruction of the Sakai-Sugimoto model is with D4- and D8-branes. The

D4-D8 brane constriction is given by the following.

2 In literature, this expression for the dominant imaginary part in QED (non-supersymmetric) can

be found in [5, 6].
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0 1 2 3 (4) 5 6 7 8 9

D4
p p p p p

D8
p p p p p p p p p

anti-D8
p p p p p p p p p

A spatial coordinate x4 of the spatial world-volume directions is compactified on S1

with an anti-periodic boundary conditions for the fermions. The Nf D8-branes intersect

x4 = 0 with the D4-branes. Similarly, the Nc anti-D8-branes put parallel at x4 = ⇡R.

Here, the R is the radius of S1. We consider a flavor Nf = 1 for simplicity in this paper.3

The D4-branes metric is

ds2D4 =

✓

u

RD4

◆3/2

(�dt2 + �ijdx
idxj + f(u)(dx4)2) +

✓

RD4

u

◆3/2✓ du2

f(u)
+ u2d⌦2

4

◆

.

(3.77)

The dilaton, the field strength of the Ramond-Ramond field, the function f(u) and the

AdS radius are defined as follows,

e� = gs

✓

u

RD4

◆3/4

, F4 ⌘ dC3 =
2⇡Nc

V4

✏4, f(u) ⌘ 1 � u3
KK

u3
, R3

D4 ⌘ ⇡gsNcl
3
s , (3.78)

where gs is a string coupling and Nc is the number of colors gauge group. String length is

ls and is related to ↵0 as l2s = ↵0. The coordinate u is the holographic radial direction, and

u = 1 corresponds to the boundary of the bulk space. The coordinate u is defined for

the region uKK  u  1. V4 is the volume of the unit four sphere S4. ✏4 is the volume

form of the S4. In order to avoid a possible singularity at u = uKK , the coordinate u is

follows a periodic boundary condition as follows,

x4 ⇠ x4 + �x4, �x4 ⌘ 4⇡

3

R3/2
D4

u1/2
KK

= 2⇡R. (3.79)

The Kaluza-Klein mass parameter is defined as follows,

MKK ⌘ 2⇡

�x4
=

3

2

u1/2
KK

R3/2
D4

. (3.80)

3Since we consider the Nf = 1 D8-brane, the system does not have any charged mesons (which would

have been created if they are lighter).
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The gauge coupling gYM at the cuto↵ scale MKK in the 4-dimensional Yang-Mills theory

is derived as g2YM = (2⇡)2gsls/�x4 from the D4-brane action compactified on S1. Thus,

the AdS/CFT dictionary which is the relationship between the parameters RD4, uKK , gs

in the gravity side and the parameters MKK , gYMNc in the gauge side is the following,

R3
D4 =

1

2

�l2s
MKK

, uKK =
2

9
�MKK l

2
s , gs =

1

2⇡

�

MKKNcls
, (3.81)

where a ’t Hooft coupling � is defined as � ⌘ g2YMNc.

Next, we consider a D8-brane embedded in the D4-brane background. The D8-brane

and the anti-D8-brane are inserted respectively to x4 = 0 and x4 = ⇡R. Under this

boundary condition, the equation of motion requires dx4/du = 0 which means that the

coordinate x4 of the D8-brane and anti-D8-brane is constant. Then, the induced metric

on the D8-brane is

ds2D8 =

✓

u

RD4

◆3/2

(�dt2 + �ijdx
idxj) +

✓

RD4

u

◆3/2✓ du2

f(u)
+ u2d⌦2

4

◆

. (3.82)

The D8-brane action is represented by

SD8 = SDBI
D8 + SCS

D8. (3.83)

The SDBI
D8 is the D8-brane Dirac-Born-Infeld(DBI) action and the SCS

D8 is the D8-brane

Chern-Simons term. We do not consider the Chern-Simons term in this paper.

3.5.2 Euler-Heisenberg Lagrangian of the Sakai-Sugimoto model

We shall calculate the Euler-Heisenberg Lagrangian. It is simply the DBI action with a

constant electromagnetic field. We substitute the D8-brane background and a constant

electromagnetic field to the DBI action. The constant electromagnetic field on the S4 is

zero. We turn on only the electric field on the x1 direction without losing generality due

the spacial rotational symmetry. The magnetic fields are introduced in x1, x2, x3 direc-

tions. The DBI action in the D8-brane background including a constant electromagnetic

field is given by

SDBI
D8 = �T8

Z

d4xdud⌦4e
��
p

�det(P [g]ab + 2⇡↵0Fab), (3.84)
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where T8 is a D8-brane tension and defined as T8 = 1/(2⇡)8l9s . Substituting the D8-brane

background and the constant electromagnetic field to the D8-brane action, the e↵ective

Lagrangian is obtained by

L = �8⇡2

3
T8

Z 1

uKK

du e�� u4

p

f(u)

✓

RD4

u

◆3/4
p

⇠, (3.85)

where the d⌦4 integral is Vol(S4)=8⇡2/3. Here ⇠ is defined by

⇠ ⌘ 1 � (2⇡↵0)2R3
D4

u3



F 2
01 � F 2

12 � F 2
23 � F 2

13 + f(u)
u3

R3
D4

(F 2
0u � F 2

1u)

�

� (2⇡↵0)4R6
D4

u6



F 2
01F

2
23 + f(u)

u3

R3
D4

{F 2
0u(F

2
12 + F 2

23 + F 2
13) � F 2

1uF
2
23}
�

. (3.86)

Next, we derive the equations of motion from the DBI action. We put @i = 0, (i =

1, 2, 3) because we are interested in homogeneous phases. The equations of motion are

given by 4

(2⇡↵0)28⇡2T8

3gs
@u

2

4

(RD4/u)3/2u4
p

f(u)F0u

⇣

1 +
(2⇡↵0)2R3

D4

u3

⌘

(F 2
12 + F 2

23 + F 2
13)

p
⇠

3

5 = 0,

(3.87)

(2⇡↵0)28⇡2T8

3gs
@0

2

4

(RD4/u)3/2u4
p

f(u)F0u

⇣

1 +
(2⇡↵0)2R3

D4

u3

⌘

(F 2
12 + F 2

23 + F 2
13)

p
⇠

3

5 = 0,

(3.88)

4When both the electric and the magnetic fields are nonzero, the Chern-Simons term comes into the

equations of motion. Since the Chern-Simons term is of the form ⇠ AuEB, the equations of motion for

Au acquire a new term, @0Au ⇠ EB. This is nothing but the chiral anomaly. The field Au grows in

time for a constant E and B. We ignore this anomaly e↵ect for simplicity, and interpret our outcome

as the physical values measured at t = 0 at which Au vanishes as an initial condition.
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(2⇡↵0)28⇡2T8

3gs
@0

2

4

(RD4/u)9/2u4F01

⇣

1 +
(2⇡↵0)2R3

D4

u3

F 2
23

⌘

p

⇠f(u)

3

5+

(2⇡↵0)28⇡2T8

3gs
@u

2

4

(RD4/u)3/2u4
p

f(u)F1u

⇣

1 +
(2⇡↵0)2R3

D4

u3

F 2
23

⌘

p
⇠

3

5 = 0. (3.89)

In particular, the equations of motion for static configurations are derived as

(2⇡↵0)28⇡2T8

3gs
@u

2

4

(RD4/u)3/2u4
p

f(u)F0u

⇣

1 +
(2⇡↵0)2R3

D4

u3

⌘

(F 2
12 + F 2

23 + F 2
13)

p
⇠

3

5 = 0,

(3.90)

(2⇡↵0)28⇡2T8

3gs
@u

2

4

(RD4/u)3/2u4
p

f(u)F1u

⇣

1 +
(2⇡↵0)2R3

D4

u3

F 2
23

⌘

p
⇠

3

5 = 0. (3.91)

By using the equations of motion, we can derive the charge density d and the current

density j respectively as,

d ⌘ (2⇡↵0)28⇡2T8

3gs

(RD4/u)3/2u4
p

f(u)F0u

⇣

1 +
(2⇡↵0)2R3

D4

u3

⌘

(F 2
12 + F 2

23 + F 2
13)

p
⇠

, (3.92)

j ⌘ (2⇡↵0)28⇡2T8

3gs

(RD4/u)3/2u4
p

f(u)F1u

⇣

1 +
(2⇡↵0)2R3

D4

u3

F 2
23

⌘

p
⇠

. (3.93)

In this paper, we are not interested in the charge density and the current as we are

looking at the vacuum instability. So we put F0u = 0 and F1u = 0 consistently.

Therefore, the D8-brane Lagrangian is derived as

L = �8⇡2T8

3gs

Z 1

uKK

du
u4(RD4/u)3/2
q

1 � u3

KK

u3

r

1 � (2⇡↵0)2R3
D4

u3

h

E2
1 � ~B2

i

� (2⇡↵0)4R6
D4

u6
E2

1B
2
1 ,

(3.94)

where we define the constant electric field as F01 ⌘ E1 and the constant magnetic fields

as F12 ⌘ B3, F23 ⌘ B1, F13 ⌘ B2, ~B2 ⌘ B2
1 + B2

2 + B2
3 . We change the variable u in

this integral to a new coordinate y defined by u = uKK/y. By using the dictionary
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of the AdS/CFT correspondence, we reach the non-supersymmetric Euler-Heisenberg

Lagrangian at large Nc,

L = �M4
KK�

3Nc

2 · 38⇡5

Z 1

0

dy

r

1 � 36⇡2

4M4

KK�2

y3(E2
1 � ~B2) �

⇣

36⇡2

4M4

KK�2

⌘2

y6E2
1B

2
1

y9/2
p

1 � y3
. (3.95)

3.5.3 Imaginary part of the e↵ective action in Sakai-Sugimoto model

In the previous part, we obtained the Euler-Heisenberg Lagrangian (3.94). Let us evaluate

the imaginary part from the e↵ective Lagrangian.

We look at the region of the u where the imaginary part of the Euler-Heisenberg

Lagrangian (3.94) appears: the square root of the numerator in the integrand of (3.94)

needs less than zero,

1 � (2⇡↵0)2R3
D4

u3

h

E2
1 � ~B2

i

� (2⇡↵0)4R6
D4

u6
E2

1B
2
1 < 0. (3.96)

Note that the region of the original integral in (3.94) is from uKK to 1. The condition

for the variable u such that the imaginary part of the Euler-Heisenberg Lagrangian is

nonzero is given by

uKK  u 


(2⇡↵0)2R3
D4

2

⇢

E2
1 � ~B2 +

q

(E2
1 � ~B2)2 + 4E2

1B
2
1

��1/3

. (3.97)

Thus, the imaginary part of the e↵ective Lagrangian is obtained as

ImL =
8⇡2T8

3gs

Z u⇤

uKK

du
u4(RD4/u)3/2
q

1 � u3

KK

u3

r

(2⇡↵0)4R6
D4

u6
E2

1B
2
1 +

(2⇡↵0)2R3
D4

u3

h

E2
1 � ~B2

i

� 1,

(3.98)

where the u⇤ is defined by

u⇤ ⌘


(2⇡↵0)2R3
D4

2

⇢

E2
1 � ~B2 +

q

(E2
1 � ~B2)2 + 4E2

1B
2
1

��1/3

. (3.99)

The region of the integral is shown in Fig.5.

In terms of the integral variable y, the imaginary part is

ImL =
Nc�3M4

KK

2 · 38⇡5

Z 1

y⇤

dy

r

⇣

36⇡2

4�2M2

KK

⌘2

y6E2
1B

2
1 +

36⇡2

4�2M2

KK
y3
h

E2
1 � ~B2

i

� 1

y9/2
p

1 � y3
, (3.100)
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Figure 5: When the region of u is uKK  u  u⇤, the Euler-Heisenberg Lagrangian has

an imaginary part. It means that the pair creation of the quark antiquark occurs by the

vacuum instability.

where y⇤ is defined by

y⇤ ⌘


36⇡2

23�2M4
KK

⇢

E2
1 � ~B2 +

q

(E2
1 � ~B2)2 + 4E2

1B
2
1

���1/3

. (3.101)

Let us examine whether or not this creation rate of the quark antiquark diverges. We

evaluate (3.5.3) by the neighborhood of uKK . When we expand u = uKK + ✏ (✏ ⌧ uKK),

the creation rate of the quark antiquark is

ImL ' 8⇡2T8R
3/2
D4

3gs
F (uKK)

Z u⇤�uKK

0

d✏
1

p

(uKK + ✏)3 � u3
KK

' 8⇡2T8R
3/2
D4F (uKK)

3
p
3gsuKK

Z u⇤�uKK

0

d✏
1p
✏
= (finite), (3.102)

where the function F (u) is defined by

F (u) ⌘ u4

r

(2⇡↵0)4R6
D4

u6
E2

1B
2
1 +

(2⇡↵0)2R3
D4

u3

h

E2
1 � ~B2

i

� 1. (3.103)

In the case of ✏ ⌧ uKK , we may approximate F (uKK + ✏) ' F (uKK) since it is not

divergent. So, the creation rate does not diverge in the Sakai-Sugimoto model. Obviously,

this is due to the confining scale uKK .
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We evaluate the critical electric field to break the vacuum by the creation of the

quark antiquark. We derive the critical electric field from the condition that the e↵ective

Lagrangian starts to have the imaginary part. That is, from (3.97) we obtain

uKK 


(2⇡↵0)2R3
D4

2

⇢

E2
1� ~B2 +

q

(E2
1� ~B2)2+4E2

1B
2
1

��1/3

. (3.104)

Thus, the critical electric field Ecr is

Ecr =

2

4

u3
KK

(2⇡↵0)2R3
D4

·

n

u3

KK

(2⇡↵0)2R3

D4

+ ~B2
o

n

u3

KK

(2⇡↵0)2R3

D4

+B2
1

o

3

5

1/2

. (3.105)

As we can see from (3.105), for B2 = B3 = 0, the critical electric field is Ecr =

[u3
KK/(2⇡↵

0)2R3
D4]

1/2 and does not depend on B1. By using the dictionary of the Ad-

S/CFT correspondence, the critical electric field is obtained as

Ecr =
2

27⇡
�M2

KK

"

4
36⇡2

�2M4
KK + ~B2

4
36⇡2

�2M4
KK +B2

1

#1/2

. (3.106)

The QCD string tension of the Sakai-Sugimoto model is (2/27)�M2
KK. It coincides with

the critical electric field in B2, B3 = 0. 5

Let us evaluate the imaginary part of the Lagrangian (3.100). For a given electric field,

the magnetic field can be decomposed into the parallel component and the perpendicular

component. For numerical simplicity, we choose to measure the electric and magnetic

fields in the unit of 2�M2
KK/(3

3⇡) and denote those rescaled electromagnetic fields as Ẽ

and B̃. Our result (3.100) is written as

ImL =
Nc�3M4

KK

2 · 38⇡5

Z 1

y⇤

dy

r

y6Ẽ2B̃2
// + y3

⇣

Ẽ2 � B̃2
? � B̃2

//

⌘

� 1

y9/2
p

1 � y3
. (3.107)

This can be numerically evaluated, and the result is shown in Fig.6. For a fixed electric

field, we plot ImL as a function of the parallel magnetic field B// and the perpendicular

magnetic field B?.

5Note that we do not calculate the time-dependent process from the confining phase to the decon-

fining phase. We just evaluate the vacuum instability at the confined phase when we introduce the

electromagnetic field. We follow the story in [16] and [18].
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Figure 6: The plot of the imaginary part of the Lagrangian for a fixed E, as a function of

the magnetic field B// parallel to the electric field, and the magnetic field B? perpendicular

to the electric field. For a large |B//|, the imaginary part disappears. We took Ẽ = 10 in

this figure.

We find that the imaginary part ImL has a very di↵erent dependence on these parallel

/ perpendicular components of the magnetic field. When the magnetic field is parallel to

the electric field, the imaginary part of the Lagrangian increases as the parallel magnetic

field increases. On the other hand, when the magnetic field is perpendicular to the

electric field, the situation is completely di↵erent. The evaluated imaginary part of the

Lagrangian decreases when the perpendicular magnetic field increases. So, we conclude

that the instability of the system is enhanced with the parallel magnetic field while is

suppressed with the perpendicular magnetic field.

The creation rate of the quark antiquark pair is expected to increase with the parallel

magnetic field because the magnetic field makes the (1+3)-dimensional system reduce

e↵ectively to a (1+1)-dimensional system by a Landau-level quantization. Our result is

similar to [17] in SQCD.

Let us look more about the electric field dependence. For a parallel magnetic field,

(3.107) is written as

ImLpara. B =
Nc�3M4

KK

2 · 38⇡5

Z 1

Ẽ�2/3

dy

q

(y3Ẽ2 � 1)(y3B̃2
// + 1)

y9/2
p

1 � y3
. (3.108)
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Figure 7: The plot of the imaginary part of the Lagrangian. Left: The case with

a magnetic field parallel to the electric field. Right: The case with a magnetic field

perpendicular to the electric field.

For a perpendicular magnetic field, it is written as

ImLperp. B =
Nc�3M4

KK

2 · 38⇡5

Z 1

(Ẽ2�B̃2

?)�1/3

dy

q

y3(Ẽ2 � B̃2
?) + 1

y9/2
p

1 � y3
. (3.109)

The evaluation of our imaginary part of the Lagrangian (3.108) (3.109) is summarized in

Fig.7.

If we look at only the critical value of the electric field as a function of the magnetic

field, it shows a magnetic catalysis — the critical electric field only increases once one

turns on the magnetic field. The imaginary part of the Lagrangian for the perpendicular

magnetic field also follows the magnetic catalysis. However, the imaginary part of the

Lagrangian increases for the parallel magnetic field, which can be interpreted as an inverse

magnetic catalysis. In sum, the behavior of the instability of the system depends on the

direction of the magnetic field relative to the electric field.

In the next subsection, we evaluate the imaginary part of the D8-brane action in the

deformed Sakai-Sugimoto background.
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3.6 Pair creation of quark antiquark in deformed D4-D8 brane

system

In this subsection, in the deformed Sakai-Sugimoto model [15], we derive the creation rate

of the quark antiquark pair from the imaginary part of the D-brane action with a constant

electromagnetic field. We follow a procedure described in the previous subsection.

3.6.1 Euler-Heisenberg Lagrangian of deformed Sakai-Sugimoto model

In the Sakai-Sugimoto model, the D8-brane and the anti-D8-brane are inserted at the

antipodal points of the compactified S1, x4 = 0 and x4 = ⇡R. However, generically x4

coordinate for the inserted D-branes can depend on the coordinate u, and becomes a

function of u. Accordingly, the region of u in which the D8-brane hangs down changes

from [uKK ,1) to [u0,1). The D4-brane background is given by (3.77). The coordinate

x4 of the anti-D8-brane is a function of u and moves in a sub-region of 0 < x4(u) <

⇡R (uKK < u < 1). When x4 = ⇡R (u = uKK), the model corresponds to the Sakai-

Sugimoto model in the previous section. For generic x4(u), the induced metric on the

D8-brane is given by

ds2D8 =

✓

u

RD4

◆3/2

(�dt2 + �ijdx
idxj) +

✓

u

RD4

◆3/2 du2

h(u)
+

✓

RD4

u

◆3/2

u2d⌦2
4, (3.110)

where the region of u is u0  u < 1 (uKK < u0 < 1) and the function of h(u) is defined

by

h(u) ⌘
"

f(u)

✓

dx4(u)

du

◆2

+

✓

RD4

u

◆3 1

f(u)

#�1

. (3.111)

Let us consider the D8-brane action including a constant electromagnetic field in the

deformed Sakai-Sugimoto model. Substituting the induced metric on the D8-brane to

(3.84), we obtain the following,

L = �8⇡2

3
T8

Z 1

u
0

du
u4

p

h(u)

✓

u

RD4

◆3/4

e��
p

⇠, (3.112)

where the function of ⇠ is defined by

⇠ ⌘ 1 � (2⇡↵0)2R3
D4

u3

⇥

F 2
01 � F 2

12 � F 2
23 � F 2
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1u)
⇤

� (2⇡↵0)4R6
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⇥

F 2
01F

2
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0u(F
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1uF
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. (3.113)
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Figure 8: The Euler-Heisenberg Lagrangian has an imaginary part in u0  u  u⇤.

Since the function of x4 depends on u coordinate, the below region of the integral changes

from uKK to u0.

After a massage of the equations, we obtain

L = �8⇡2T8

3gs

Z 1

u
0

du
u4

p

h(u)

r

1 � (2⇡↵0)2R3
D4

u3

h

E2
1 � ~B2

i

� (2⇡↵0)4R6
D4

u6
E2

1B
2
1 , (3.114)

where the electromagnetic fields are defined by F01 ⌘ E1, F12 ⌘ B3, F23 ⌘ B1, F13 ⌘ B2

and ~B2 ⌘ B2
1 +B2

2 +B2
3 .

3.6.2 Imaginary part of the e↵ective action in deformed Sakai-Sugimoto

model

In the previous part, the D8-brane action in the deformed Sakai-Sugimoto model was

obtained as (3.114). In this subsection, we derive the creation rate of the massless quark

antiquark from the imaginary part of the D8-brane action in a constant electromagnetic

field.

From (3.114), we examine the case when the imaginary part of the e↵ective Lagrangian

appears. Since the function of h(u) is positive, we should find a region of u such that

the square root in the numerator of the integrand has an imaginary part. Although the

coordinate of x4 depends on u in the deformed Sakai-Sugimoto model, the dependence on

u in the function of x4 has no relation with the imaginary part of the e↵ective Lagrangian.

So, we may follow the same logic as given in the previous subsection. The condition that
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this e↵ective Lagrangian has an imaginary part is the same as (3.96). The integration

region of u which gives an imaginary part is

u0  u <
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E2
1 � ~B2 +

q

(E2
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��1/3

. (3.115)

The imaginary part of the e↵ective Lagrangian is evaluated as

ImL =
8⇡2T8

3gs

Z u⇤

u
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u4

p
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i
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where u⇤ is defined by (3.99). The integral region of u is shown in Fig. 8

Next, we evaluate the critical electric field. The critical electric field is derived from

the condition that the imaginary part of the e↵ective Lagrangian starts to grow. From

(3.115), we obtain

u0 


(2⇡↵0)2R3

2

⇢

E2
1 � ~B2 +

q

(E2
1 � ~B2)2 + 4E2

1B
2
1

��1/3

. (3.117)

The critical electric field Ecr is obtained by the following,

Ecr =

2

4

u3
0

(2⇡↵0)2R3
·

n

u3

0

(2⇡↵0)2R3

+ ~B2
o

n
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0

(2⇡↵0)2R3

+B2
1

o

3

5

1/2

. (3.118)

This critical electric field is of the same form as that for the critical electric field in the

Sakai-Sugimoto model, if we change from uKK to u0 on (3.105). When B2, B3 = 0, the

critical electric field is Ecr = [u3
0/(2⇡↵

0)2R3]1/2, which is the independent of B1 as in the

case of the Sakai-Sugimoto model.

In the summary of the section, According to the Hashimoto-Oka’s conjecture, the

Euler-Heisenberg Lagrangian in the strongly coupled large N gauge theory corresponds

to the DBI action in the electromagnetic fields. We obtain the creation of the quark

antiquark pair in the constant electromagnetic fields from imaginary part of the DBI

action in the N = 2 large N QCD, the Sakai-Sugimoto model and the deformed Sakai-

Sugimoto model. The creation rate of the quark antiquark pair depends on the direction

of the magnetic fields against the direction of the electric field. It indicates the magnetic

catalysis which means that the increase of the creation rate depends on the increase of

the magnetic fields in the electric field fixed.
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4 Turbulent meson condensation

In this section, we analyze the turbulent behavior of the mesons at excited states in D3-

D5 brane system by using the AdS/CFT correspondence before the Schwinger e↵ects.

The purpose is to find (1) whether we find the power-law behavior, and (2) whether the

power is universal.

4.1 Brief introduction for turbulent meson condensation

Mesons are made from the bound state of the quark and the antiquark. If we intro-

duce an electric field to the mesons, then the quark antiquark pair creation occurs. We

are interested in the phase transition between the meson and the quark antiquark pair

creation. The phenomena is well-known to be a meson melting.

Recently, K. Hashimoto, S. Kinoshita, K. Murata and T. Oka found that the energy

distribution of the meson at the high excited modes is a power law such as

"n / (!n)
�5, (4.1)

where "n is the energy distribution of the meson at the n-th excited modes and !n is the

meson mass at the n-th excited modes by using the AdS/CFT correspondence. In general,

the meson energy distribution is suppressed by the exponential as the Maxwell-Boltzmann

distribution. But, they found that the energy distribution of the meson conforms to the

power law. The phenomena is called turbulent meson condensation. It means that

they expect that the turbulent meson comes from AdS instability. The AdS instability

conjecture by Bizon and Rostworowski [29] has attracted much attention on intrinsic

turbulent nature of AdS spacetime. The importance of addressing the stability question

of generic AdS spacetimes is obvious from the viewpoint of the renowned AdS/CFT

correspondence. The issue of the AdS instability brings about various fruitful discussions

on a possible universality of the instability (see for example [30]- [64]), while partially

relies on details of numerical simulations.

In general, the turbulence relates to a power law in the phase transition. It is impor-

tant to be the universality about the power law. It is worth examining the universality

of the turbulent meson condensation. In [65, 66], they obtained the energy distribution

of the meson at the high excited modes in the D3-D7 brane system. We are interested
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in the other brane configuration. In this section, we evaluate the energy distribution of

the meson in a D3-D5 brane system.

4.2 Review of the N = 2 supersymmertic defect gauge theory

in AdS/CFT

In this subsection, we review the derivation [72] of the spectrum of “mesons” from the

fluctuation of a probe D5-brane at zero temperature and with no background electric

field, by using the AdS/CFT correspondence. We are interested in the following D3-D5

brane configuration:

0 1 2 3 4 5 6 7 8 9

D3
p p p p

D5
p p p p p p

The brane configuration preserves N = 2 supersymmetries in total. The flavor probe

D5-brane extends along the directions x0, x1, x2, x4, x5, x6, so it shares only x0, x1, x2

directions with the gauge Nc D3-branes. Thus, the gluon N = 4 multiplets live in

the (3+1) dimensional spacetime while the quark hypermultiplets (and resultantly the

mesons as their bound states) live only in a (2+1) dimensional domain wall, which is a

defect.

It is known that meson states can be analyzed holographically by the D3-D5 brane

system. The scalar meson field corresponds to a fluctuation of the probe D5-brane along

the directions x7, x8, x9, due to the AdS/CFT correspondence. For the fluctuation, the

Laplace equation is classically solved by a Gauss hypergeometoric function [72], as we

will see below.

The AdS5 ⇥ S5 background metric is

ds2 =
r2

R2
⌘µ⌫dx

µdx⌫ +
R2

r2
[d⇢2 + ⇢2d⌦2

2 + d!2
4 + d!2

5 + d!2
6]. (4.2)

The 5-sphere together with the AdS radial direction r is decided into a combination of

⇢ and 2-sphere ⌦2 and the remaining three directions x7, x8, x9 which are parametrized

by !4,!5,!6. So the relation among these parameters is r2 = ⇢2 + !2
4 + !2

5 + !2
6. Since

(!4,!5,!6) has a rotation symmetry, we may fix !5 = !6 = 0 for simplicity.
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The D5-brane action is a Dirac-Born-Infeld(DBI) action given by

SDBI = �⌧5
Z

d6⇠ e��
p

�det(P [g]ab + 2⇡l2sFab), (4.3)

where ⌧5 is the D5-brane tension and is defined by ⌧5 = 1/(2⇡)5gsl6s . gs is the string

coupling. � is the dilation field which is set to zero as the background.

The scalar mesons are eigen modes which are liberalized solutions for fluctuations

of !4(xi, ⇢) of the D5-brane DBI action to which the background metric is substituted.

Denoting the index i running i = 0, 1, 2 as the D5-brane does not extend along the

direction x3, we impose a boundary condition at the AdS boundary as

!4(x
i, ⇢ = 1) = R2m, (4.4)

where m is related to the quark mass mq as mq = (�/2⇡2)1/2m due to the AdS/CFT

dictionary. A static classical solution of the DBI equation of motion is

!4(x
i, ⇢) = R2m. (4.5)

The solution roughly measures the distance between the D3-branes and the D5-brane.

Next, we consider the fluctuation � around the static solution R2m, defined by � ⌘
R�2!4 � m. We assume for simplicity that � is independent of the coordinates x1 and

x2. The action for � obtained by just expanding (4.3) to the quadratic order is

S =

Z

d3x

Z 1

0

d⇢
⇢2R2m

2(⇢2 +R4m2)2



(@t�)
2 � (⇢2 +R4m2)2

R4
(@⇢�)

2

�

+ O(�3), (4.6)

where the irrelevant overall factor is neglected. From (4.6), we derive the equation of

motion as


@2

@t2
� (⇢2 +R4m2)2

⇢2R2m

@

@⇢

⇢2m

R2

@

@⇢

�

� = 0, (4.7)

Its normalizable solution is

� =
1
X

n=0

Re [Cn exp[i⌦nt]En(⇢)] , (4.8)

The basis functions are given by

En(⇢) ⌘ 4(n+ 1)p
⇡

✓

R4m2

⇢2 +R4m2

◆n+ 1

2

F

✓

�n,�1/2 � n, 3/2;� ⇢2

R4m2

◆

, (4.9)
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where F is the Gaussian hypergeometric function. The mass of the level n resonance

meson is

⌦n ⌘ 2
p

(1/2 + n) (3/2 + n)m. (4.10)

For our later purpose we define the inner product in the ⇢-space as

(F,G) ⌘
Z 1

0

d⇢
⇢2R2m

(⇢2 +R4m2)2
F (⇢)G(⇢), (4.11)

under which we have the orthonormality condition

(En, Em) = �nm. (4.12)

Using the basis (4.9), we expand the fluctuation of the scalar field as

� =
1
X

n=0

cn(t)En(⇢), (4.13)

then with this we can define the linearlized meson energy at level n,

"n ⌘ 1

2
(ċ2n + ⌦2

nc
2
n). (4.14)

The linearlized total energy is given by the formula (??). All of these are analogous to

what we have used in the case of the D3-D7 brane system in Sec. 2.

4.3 Turbulence with an electric field

We are ready for studying the turbulent meson behavior. The turbulence should show

up in the meson energy distribution which is defined as (4.14). Note that the energy

spectrum (4.14) is defined with no background electric field. Once the electric field is

turned on, the meson spectrum changes compared to that with no electric field, since the

probe D5-brane is a↵ected by the electric field. It is well-known that the shape of the

probe D-brane is deformed by the electric field [70]. We are interested in how the shape

of the D5-brane changes and how the meson spectrum is a↵ected accordingly.

To look at how the D5-brane shape is deformed, we solve the equation of motion

from the DBI action (4.3). AdS5 ⇥ S5 background is given by (4.2). From a simple

57



consideration of rotational symmetry, we can put !5,= !6 = 0 while !4 depends on the

radial direction ⇢ as w4 = L(⇢). Then, the induced metric on the D5-brane is given by

ds2 =
r2

R2
(�dt2 + �ijdx

idxj) +
R2

r2
[{1 + (@⇢L)

2}d⇢2 + ⇢2d⌦2
2], (4.15)

where i, j = 1, 2. Then we turn on a constant electromagnetic field. In (2+1) dimensions,

Lorentz transformation can bring us to a frame on which only F01 component is nonzero.

Denoting E ⌘ F01, we obtain the action with the electric field as6

SDBI = �4⇡⌧5

Z

d3x

Z 1

0

d⇢ ⇢2
q

1 + (@⇢L)2

s

1 � R4(2⇡l2s)
2E2

(⇢2 + L2)2
, (4.16)

The equation of motion is obtained with a redefinition E ⌘ 2⇡l2sE as

@⇢

2

4

⇢2@⇢L
q

1 � R4E2

(⇢2+L2)2

p

1 + (@⇢L)2

3

5� 2R4E2⇢2L
p

1 + (@⇢L)2

(⇢2 + L2)3
q

1 � R4E2

(⇢2+L2)2

= 0. (4.17)

We solve this equation numerically to obtain the shape of the probe D5-brane for a given

value of E . The results of the numerical calculations, with R = 1 and m = 1, are shown

in Fig. 9. the shape of the D5-brane changes and the D5-brane has a cusp as the static

electric field increases. With various chosen background electric field E , the D5-brane

changes its shape, and we find a conical D5-brane. It is the critical embedding, for which

we expect the turbulent behavior of mesons.

Basically, as in the case of the D7-brane probe, for small E the D5-brane is at the

Minkowski embedding (which has a smooth shape), while for a large enough E the D5-

brane is at a black hole embedding where the induced metric on the D5-brane has an

e↵ective horizon. The critical embedding is in between those embeddings, and the D5-

brane has a cone at the tip. The value of E with which the D5-brane can be in the critical

embedding is called Ecr, and in Fig. 9 we plot various curves for various E/Ecr.7

6 The Chern-Simons terms in the D-brane e↵ective actions does not contribute in our analysis. For

D4-D8 setup, they may contribute. See a discussion in [18].
7Note again that the location of the tip of the D5-brane is not a monotonic function of E/Ecr. In

some region of the value of E/Ecr, the D5-brane profile is found to be not unique. A fractal-like structure

emerges, as in the case of the D3-D7 system.
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Figure 9: The shape of the D5-brane in the AdS background. Each curve corresponds,

from top to bottom, to E/Ecr = 0.9, 0.99, 1, 1.017, 1 respectively. The D5-brane can have

a cusp at ⇢ = 0 for E = Ecr(' 0.437) (the red curve).

From these numerical shape of the D5-branes in Fig. 9, we can calculate the meson

energy spectrum, through the definitions given in the previous subsection. As the shape of

the D5-brane changes by varying E/Ecr, the decomposed meson energy spectrum changes.

Our result for the energy distribution "n is presented in Fig. 10.

The energy distribution Fig. 10 shows that the critical embedding (the red dots) is

distinctively di↵erent from other Minkowski embeddings. The red dots can be linearly

fit as

"n / (⌦n)
�3.97 (4.18)

which is a power law. This is nothing but a weak turbulence, and is very similar to

what we has been known in [65, 66] and what we found in the previous section. For the

other Minkowski embeddings, there is a significant reduction of energy for higher excited

mesons (large n region). So, the power law appears only at the critical embedding. The

cusp of the D5-brane seems to be responsible for the power law of the meson energy

distribution. We can conclude that the weak turbulence of the excited mesons is caused

by the cusp of the D5-brane, which is realized and accompanied with the phase transition.
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Figure 10: The power law of the n-th meson mass including a static electric field. The

vertical axis is the logarithm plots of the n-th meson energy divided by the lowest meson

energy. The transverse axis describes the logarithm plots of the n-th meson mass.

4.4 Turbulence at a finite temperature

In this subsection, we consider the energy spectrum of the highly excited meson states

in a finite temperature D3-D5 system in the absence of the electric field, to study the

universality of the power law (4.18). The basis of the analysis was given in [73] as we

have reviewed. In the previous subsection, we studied the turbulent meson spectrum in

the electric field. When the probe D5-brane has a cusp, the meson energy distribution

obeys a power law: "n / (⌦n)�3.97. It is of interest if the power law is universal or not.

So, here we introduce a temperature to the AdS background, and examine the power

law.

In AdS/CFT correspondence, the temperature is introduced by replacing the back-

ground AdS geometry (4.2) by an AdS black hole metric,

ds2 =
r2

R2
[�f(r)dt2 + d~x2] +

R2

r2



dr2

f(r)
+ r2d⌦2

5

�

, (4.19)

where d~x2 ⌘ dx2
1 + dx2

2 + dx2
3, and the function of f(r) is defined by f(r) ⌘ 1 � (rH/r)4.

The location of the black hole horizon rH is related to the temperature as T = rH/⇡R2

due to the AdS/CFT dictionary. Using a new coordinate 2u2 = r2 +
p

r4 � r4H, the AdS
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black hole metric is written as

ds2 =
u2

R2



�f(u)2

f̃(u)
dt2 + f̃(u)d~x2

�

+
R2

u2

⇥

dv2 + v2d⌦2
2 + d!̃2

4 + d!̃2
5 + d!̃2

6

⇤

, (4.20)

where

f(u) ⌘ 1 � r4H
4u4

, f̃(u) ⌘ 1 +
r4H
4u4

. (4.21)

The radial coordinates u and v parameterize the radii of S5 and S2 respectively, and

they are related as u2 = v2 + !̃2
4 + !̃2

5 + !̃2
6. As before, using the rotational symmetry, we

can restrict ourselves to !̃5 = !̃6 = 0 and !̃4 ⌘ L̃(v). Then, the induced metric on the

D5-brane is given by

ds2 =
u2

R2



�f(u)2

f̃(u)
dt2 + f̃(u)d~x2

�

+
R2

u2

h

{1 + (@vL̃)
2}dv2 + v2d⌦2

2

i

. (4.22)

Next, we determine the shape L̃(v) of the probe D5-brane in this finite temperature

system. The 1-flavor DBI action is defined by (4.3). By using the induced metric (4.22),

the DBI action becomes

SDBI = �4⇡⌧5

Z

d3x

Z 1

0

dv v2
✓

1 � r4H
4(v2 + L̃2)2

◆

s

1 +
r4H

4(v2 + L̃2)2

q

1 + (@vL̃)2.

(4.23)

The Euler-Lagrange equation of the D5-brane is obtained as

@v

2

6

4

v2@vL̃
⇣

4(v2 + L̃2)2 � r4H

⌘

q

4(v2 + L̃2)2 + r4H

(v2 + L̃2)3
q

1 + (@vL̃)2

3

7

5

(4.24)

�
2r4Hv

2L̃
⇣

4(v2 + L̃2)2 + 3r4H

⌘

q

1 + (@vL̃)2

(v2 + L̃2)4
q

4(v2 + L̃2)2 + r4H

= 0.

We numerically calculate classical solutions L̃(v) of the equation of motion. We chose

the convention R = 1 and m = 1 which is the same as before. The theory has only

two scales, the quark mass and the temperature. So the theory is determined only by

the ratio of those. For fixed m = 1, we vary rH and obtain various D5-brane shapes, as

shown in Fig. 11.
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Figure 11: The shape of the D5-brane in the AdS black hole background. Each curve

is with rH/rcr = 0.9, 0.99, 1, 1.01, 1 respectively from top to bottom. The D5-brane of the

red curve has a cusp at ⇢ = 0, which we call a critical embedding, for rH = rcr(' 0.443).

The other curves are Minkowski embeddings.

As the temperature changes, the amount of the gravity which the D5-brane feels

changes, since the location of the horizon approaches the D5-brane. The red curve in

Fig. 11 has a cusp of the D5-brane, and shows that the D5-brane is at the critical

embedding.

We expect that a turbulent behavior of meson excited states causes the cusp of the

D5-brane at rH/rcr = 1 shown by the red curve in Fig. 11. So let us present the results

of the meson energy spectrum for the higher excitation modes: see Fig.12. As expected,

the red dots which are the energy distribution of meson excitations corresponding to the

cusp D5-brane (the red curve in Fig. 11) has a linear behavior. A linear fit of the red

dots shows

"n / (⌦n)
�3.95. (4.25)

Again, we have found that the critical embedding of the D5-brane shows a turbulent

behavior of mesons. For other curves with the Minkowski embedding, we have no power

law: the energy deposit at the higher meson resonance decreases rapidly for large n. So

the weak turbulence, the power law behavior, is unique to the critical embedding of the

D5-brane.

In conclusion, the turbulent behavior of the higher excited modes of mesons is ob-

served when the shape of D5-brane has a cusp in the static electric field or at the finite
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Figure 12: The power law of the energy distribution "n for the n-th meson resonance,

in the finite temperature system. The vertical axis is the logarithm of the n-th meson

energy "n divided by the lowest meson energy "0. The horizontal axis is for the logarithm

of the n-th meson mass ⌦n. The colors of the dots correspond to that of the curves in

the previous figure.

temperature. The meson energy distribution obeys the power law as a function of the

meson mass, ↵ ' �3.97 or � ' �3.95 in the static electric field or at the finite temper-

ature system, respectively. Since these powers are quite close to �4, we conclude that

the turbulent behavior is a universal phenomenon irrespective of how the transition is

made. We expect that the exact power may be "n / (⌦n)�4, which may be confirmed

with numerical simulations with higher accuracy.

4.5 Universal turbulence and a conjecture

In the previous subsections, we found that the power associated with the level distribution

"n of the energy density for the meson level n has an integer power:

"n / (mn)
↵ , (4.26)

where ↵ = �5 for the D3/D7 system (treated in section 2) and ↵ = �4 for the D3/D5

system (treated in section 3). Furthermore, the power in each case is found to be uni-

versal. The power does not change even though the external field to produce the phase

transition is modified — the temperature and the magnetic field.

63



Therefore, it seems that the power ↵ depends only on the dimensionality of the brane

cone, and it does not depend on how the phase transition is driven. It is natural to make

a generic conjecture on the power ↵: The energy distribution for level n at the conical

brane configuration for the phase transition is given by the power law as in (4.26), and

the power is determined as

↵ = �(dcone + 1) (4.27)

where dcone is the dimension of the cone. For the case of the D3/D7 (D3/D5) system,

dcone = 4 (dcone = 3).

In this paper, we presented evidence for this conjecture for various situations associ-

ated with the D3/D7 and the D3/D5 holographic models, with various external fields,

and all are consistent with the above conjecture.

To strengthen the plausibility of the conjecture, in the following part of this section we

provide simple examples of decomposition of a conic brane configuration in flat space by

eigen modes of harmonic functions. The examples are 1-dimensional and 2-dimensional

cones, for simplicity. Both nontrivially can be worked out and are consistent with the

conjectured relation (4.27).

Ex. 1-dimensional cone

Let us consider a one-dimensional cone in a flat space and calculate the power ↵

when it is expanded in eigen modes. The one-dimensional cone is simply written

as

L(⇢) = 1 � 2

⇡
|⇢| (4.28)

which is defined on an interval �⇡/2 < ⇢ < ⇡/2, at whose boundary the height

function L(⇢) is put to zero. We expand this cone by harmonic functions in one-

dimensional flat space, i.e. Fourier modes. The eigen basis satisfying the Dirichlet

boundary condition at the boundaries of the interval is

en(⇢) =

r

2

⇡
cos ((2n+ 1)⇢) (4.29)

where n = 0, 1, 2, · · · specifies the level of the modes. The magnitude of the eigen-

value of the Laplacian @2⇢ is just m2
n = (2n + 1)2. The expansion is easily done
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as

L(⇢) =
1
X

n=0

cnen(⇢) where cn ⌘ 25/2

⇡3/2

1

(2n+ 1)2
. (4.30)

So the meson energy for each level n is

"n ⌘ 1

2
m2

nc
2
n =

24

⇡3

1

(2n+ 1)2
(4.31)

So, for large n, we obtain the power

"n ⇠ n↵ , ↵ = �2 . (4.32)

From this simple example, we find that the possible power in the meson melting

transition, if occurs in holography, would have ↵ = �2, if the cone of the probe

brane is just one-dimensional.

Ex. 2-dimensional cone

Let us proceed to an example in 2 dimensions, to support our conjecture. The

example is again a cone in a flat space. Let us consider a 2-dimensional cone

L(⇢) = 1 � ⇢ (4.33)

where ⇢ ⌘
p

(x1)2 + (x2)2, and we consider 0  ⇢  1. The boundary ⇢ = 1 is

a circle, and we impose a Dirichlet boundary condition for harmonic functions on

the disk. The harmonic functions in 2 dimensions are Bessel functions J⌫(r),


d2

dr2
+

1

r

d

dr
+

✓

1 � ⌫2

r2

◆�

J⌫(r) = 0 . (4.34)

The subscript ⌫ corresponds to the angular mode, so our cone configuration should

be expanded only with ⌫ = 0. The Dirichlet boundary condition says en(⇢ = 1) = 0,

therefore, in terms of the Bessel functions, we have

en(⇢) =

p
2

|J 0
0(rn)|

J0(rn⇢) (4.35)

where rn(n = 0, 1, 2, 3, · · · ) label zeros of the Bessel function J0(r). The normal-

ization is already fixed by using the following formula
Z 1

0

⇢ (J0(rn⇢))
2 d⇢ =

1

2
(J 0

0(rn))
2 . (4.36)
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The eigenvalue of the eigen mode function en(⇢) is r2n, thus the “meson mass” of

level n is mn = rn.

The expansion of the cone (4.33) is given by

L(⇢) =
1
X

n=0

cnen(⇢), cn ⌘
Z 1

0

⇢(1 � ⇢)en(⇢) . (4.37)

We are interested in only the large n behavior, so we use the following expression

for the large n asymptotic expansion of the Bessel functions,

J0(r) =

r

2

⇡r

✓

cos(r � ⇡/4) +
1

8r
sin(r � ⇡/4) + O(1/r2)

◆

. (4.38)

The zeros of this function at large n are given by

rn ⇠ 4n+ 3

4
⇡ +

1

(8n+ 6)⇡
(n � 1) (4.39)

So, at the leading order in the large n expansion, we have

en(⇢) ⇠
r

2

⇢
cos

✓

(4n+ 3)⇡

4
⇢� ⇡

4

◆

. (4.40)

Substituting this into (4.37), we obtain the large n behavior of the coe�cient cn,

cn =
3
p
2

4⇡2
n�5/2 + O(n�3) . (4.41)

The meson condensation cn is found to scale as ⇠ n�5/2. Therefore the energy

distribution is obtained as

"n =
1

2
m2

nc
2
n ⇠ 9

16⇡2
n�3 , (4.42)

which shows the power

↵ = �3 (4.43)

for the case of the 2-dimensional cone in a flat space.

These simple examples are consistent with our conjecture (4.27), so it is expected

that the brane turbulence (4.26) with the power (4.27) is universal, not only in AdS-like

geometries but also in a box of flat geometries.

In summary, if we introduce the constant electric field or a temperature to the D5-

brane, the shape of the D5-brane has the cusp by the external fields. Then, we obtain

the energy distribution of the meson at the high excited modes which is the turbulent

power law, "n / (!)�4. It means that this power of the turbulent power law depends on

a cone-dimension of the probe D-brane from some examples.
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5 Conclusion

The electromagnetic instability was examined by the imaginary part of the DBI action

in the electromagnetic fields. We obtained the creation rate of the quark antiquark pair

in the large Nc N = 2 supersymmeric QCD and the large Nc strongly coupled gauge

theories in a confining phase.

Before the Schwinger e↵ects occurs, there are mesons which are bound states of the

quark and the antiquark. We found that the energy distribution of the meson at the high

excited modes obeys the turbulent power law in the D3-D5 brane system. The turbulent

power is �4. We found that the power depends only on the cone-dimension of the probe

D-brane.

The results of the doctor thesis are summarized as follows.

• We obtained the creation rate of the massless quark antiquark pair in the N = 2

large N SQCD by evaluating the imaginary part of the DBI action in constant

electromagnetic fields with the AdS/CFT correspondence. At zero temperature,

an infrared divergence appears in the creation rate of the quark antiquark. We

compared the the creation rate of the massless quark antiquark with the well-

known results of QED. The massless quark antiquark divergence is similar to the

results of the QED.

• We evaluated the creation rate of the massive quark antiquark pair in N = 2

large N SQCD. This result is compared with the imaginary parts of the Euler-

Heisenberg Lagrangian of N = 2 supersymmetric QED(SQED) which has 2Nc

scalar fields and Nc spinor fields. The creation rate of the massive quark antiquark

is found to coincide with the creation rate of the massless quark antiquark at a

finite temperature if we replace the quark mass with the temperature.

• The creation rate of the massless quark antiquark in a confining phase is obtained

by the D8-brane DBI action in the Sakai-Sugimoto model. We found that the

creation rate of the massless quark antiquark at zero temperature is finite, which

is di↵erent from the result of the N = 2 SQCD. The imaginary part of the D8-

brane DBI action increases when we increase the magnetic field parallel to a fixed

electric field. On the other hand, the imaginary part decreases when we increase the

magnetic field perpendicular to the electric field. The critical electric field to have
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a non-zero imaginary part for the DBI action coincides with a QCD string tension

between the quark and antiquark. The result was already mentioned in [23, 26] in

a similar context.

• We found turbulent meson condensation in a D3-D5 brane system in the manner

similar to [65, 66]. The energy distribution of the highly excited meson modes is

proportional to the power �4 of the meson mass in the D3-D5 brane system. At

a finite temperature without a constant electric field, the power again found to be

�4.

There are several issues concerning the vacuum instability with the AdS/CFT cor-

respondence. The vacuum instability in the AdS/CFT correspondence is derived from

the evaluation of the imaginary part of the DBI action. For that, we assumed that the

Euler-Heisenberg Lagrangian in the N = 2 large Nc SQCD coincides with the D-brane

DBI action in the electromagnetic fields. In particular, there remains ambiguity about

the correctness of the Hashimoto-Oka’s conjecture . The conjecture was obtained by the

relationship between the quark antiquark 1-loop diagram in the strongly coupled large N

gauge theory and the disk amplitude. The disk amplitude means that the fundamental

openstring moves on the worldsheets. In the low energy limit, the partition function

of the open string is the DBI action in the flat target space. We need to discuss the

relationship between the Euler-Heisenberg Lagrangian in the strongly coupled large N

gauge theory and the DBI action in the electromagnetic fields.

We considered the imaginary part of the 1-flavor DBI actions in the strongly coupled

gauge theory. It is important to calculate the creation rate of the quark-antiquark pairs

with multi-flavors. We haven’t known the non-abelian DBI action formalism. If we

can treat the non-abelian DBI action formalism, we consider the charged mesons pair

creations.
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A Euler-Heisenberg Lagrangian in QED

In this appendix, we derive the Euler-Heisenberg Lagrangian (3.8) in the QED from the

Itzykson-Zuber textbook [76]. Let us consider the Dirac equation with the external gauge

field Aµ(x) in order to obtain the creation rate of the electron positron pair. The Dirac

equation is given by

[i/@ � e/A(x) � m] (x) = 0, (A.1)

where /@ is defined as /@ ⌘ �µ@µ and m is a electron mass. The Lagrangian interaction

term for the gauge field becomes

Lint = �Hint = �e ̄in(x)�
µ in(x)Aµ(x). (A.2)

It is convenient to use the S-matrix with the time-evolution operator in order to consider

the vacuum amplitude for the interaction. The S-matrix is defined as the following,

S = T exp



�ie

Z

d4x  ̄in(x)�
µ in(x)Aµ(x)

�

, (A.3)

where T is the time-ordered product.

The vacuum amplitude inducing the interaction is

S0(A) = h0 in|S|0 ini

=
1
X

n=0

(�ie)n

n!

Z

dx1 · · · dxnh0|T
⇥

 ̄(x1)/A (x1) · · ·  ̄(xn)/A (xn)
⇤

, (A.4)

where ”in” is neglected. By using Wick theorem, we define the matrix as

C(↵k, xk;↵l, xl) = �ie
X

↵

h0|T
⇥

/A↵k,↵ ↵(xk) ̄↵l
(xl)
⇤

|0i. (A.5)

Thus, S0 can be described by

S0(A) =
1
X

n=0

1

n!

Z

dx1 · · · dxn

X

P

"P
X

↵
1

···↵n

C(↵1, x1;↵P
1

, xP
1

) · · ·C(↵n, xn;↵Pn , xPn).

(A.6)

"P is a sign function which needs to contract  with  ̄. The matrix C is redefined as

a bracket. Since the matrix C has the index of the spinor and the argument of the

space-time, we define the following,

C(↵, x; �, y) = hx,↵|⇧|y, �i. (A.7)
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Here, ⇧ is the operator which acts on the bracket. Substituting (A.7) to (A.6), S0(A)

becomes

S0(A) = Det(I � ⇧) = exp [Tr ln(I � ⇧)] . (A.8)

Det and Tr are the determinant and the trace for the spinor including the integral about

the continuous parameters respectively.

⇧ can be evaluated by the following,

⇧ =
e/A

/P � m+ i✏
. (A.9)

Thus, S0(A) is

S0(A) = exp

⇢

�Tr ln



( /P � m)
1

/P � e/A � m+ i✏

��

. (A.10)

Here, the one-body scattering operator T (A) is defined as

T (A) = e/A+ e/A
1

/P � m+ i✏
T (A) (A.11)

= e/A+ e/A
1

/P � m+ i✏
e/A+ e/A

1

/P � m+ i✏
e/A

1

/P � m+ i✏
e/A+ · · · .

The hermitian conjugate for the operator B which acts on the Hilbert space |x,↵i is

defined as

B̄ = �0B†�0. (A.12)

The hermitian conjugate for the operator T is

T̄ = e/A+ T̄ 1

/P � m � i✏
e/A, (A.13)

and the sign of i✏ changes. Thus, we obtain

e/A = T̄ � T̄ 1

/P � m � i✏
e/A. (A.14)

When we substitute the above equation to (A.12), the T (A) becomes

T (A) = T̄ (A)



1

/P � m+ i✏
� 1

/P � m � i✏

�

T (A) + T̄ (A), (A.15)
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That is,

T (A) � T̄ (A) = T̄ (A)



1

/P � m+ i✏
� 1

/P � m � i✏

�

T (A)

= T (A)



1

/P � m+ i✏
� 1

/P � m � i✏

�

T̄ (A)

= T̄ (A)



2⇡

i
( /P +m)�(P 2 � m2)

�

T (A). (A.16)

Here, the operator 2⇡( /P +m)�(P 2 �m2) is made from the positive energy state and the

negative energy state,

2⇡( /P +m)�(P 2 � m2) = ⇢(+) + ⇢(�), (A.17)

with

⇢(±) ⌘ 2⇡( /P +m)✓(±P 0)�(P 2 � m2). (A.18)

Now, we consider the following loop contraction about (A.6),

C(↵1, x1;↵2, x2)C(↵2, x2;↵3, x3) · · ·C(↵k, xk;↵1, x1). (A.19)

The retarded propagator propagates from a past to a future such as,

/P +m

(P + i✏)2 � m2
=

1

/P � m+ i/✏
. (A.20)

/✏ is the infinitesimal time-like 4-dimensional vector. In the loop contraction, the retarded

propagator is zero when the propagator propagates from the past to the future. Thus,

we obtain the following condition,

Det



I � e/A
1

/P � m+ i/✏

�

= 1. (A.21)

The retarded propagator becomes

1

/P � m+ i/✏
= (/P +m)



P

✓

1

P 2 � m2

◆

� i⇡"(P 0)�(P 2 � m2)

�

. (A.22)

Here, "(P 0) is the sign function and P means the principal integral. The di↵erence

between the Feynman propagator and the retarded propagator is

1

/P � m+ i✏
� 1

/P � m+ i/✏
= �i⇢(�). (A.23)
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By using (A.21) and (A.22), we obtain the following equation,

1 = Det



I � e/A
1

/P � m+ i✏

�

Det
⇥

I � iT (A)⇢(�)
⇤

. (A.24)

Since the first determinant corresponds to S0, we can derive the following equation from

(A.24),

[S0(A)]
�1 = Det

⇥

I � iT (A)⇢(�)
⇤

,

|S0(A)|�2 = exp
�

Tr ln
⇥

I � T (A)⇢(+)T̄ (A)⇢(�)
⇤ 

. (A.25)

The bracket in the exponential is defined as,

�(x) = trhx| ln
⇥

I � T (A)⇢(+)T̄ (A)⇢(�)
⇤

|xi. (A.26)

�(x) is the probability density of the electron positron pair. Thus, the relation between

S0 and �(x) is

|S0(A)|2 = exp



�
Z

d4x �(x)

�

. (A.27)

Let us evaluate the probability density of the the electron positron pair �(x). If we

remember (A.10), we obtain the following equation,

ln S0(A) = Tr ln

⇢

[ /P � e/A(X) � m+ i✏]
1

/P � m+ i✏

�

. (A.28)

Since the trace of the operator is invariant for the transposition, we take the charge

conjugation,

C�C�1 = ��Tµ , (A.29)

and (A.28) changes to the following,

ln S0(A) = Tr ln

⇢

[ /P � e/A(X) +m � i✏]
1

/P +m � i✏

�

. (A.30)

By using (A.28) and (A.30), we obtain

2 ln S0(A) = Tr ln

✓

�

[ /P � e/A(X)]2 � m2 + i✏
 1

P 2 � m2 + i✏

◆

. (A.31)
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Now, we introduce Schwinger parameter formula,

ln
a

b
= Re

Z 1

0

ds

s
(eis(b+i✏) � eis(a+i✏)). (A.32)

In order to be good to converge the integral, we use the i✏-prescription and the divergence

at s = 0 is neglected. Thus, we derive the following creation rate from the Schwinger

parameter formula,

�(x) = Re

Z 1

0

ds

s
e�is(m2�i✏)tr

⇣

hx| exp
�

is ( /P � e/A(x))2
 

|xi � hx|eisP 2 |xi
⌘

= Re

Z 1

0

ds

s
e�is(m2�i✏)

⇥ hx|
⇣

exp
n

is
h

(P � eA(x))2 +
e

2
�µ⌫F

µ⌫(x)
io

� eisP
2

⌘

|xi. (A.33)

If we consider the constant electromagnetic fields, the creation rate �(x) doesn’t depend

on x. To simplify this, we treat the constant purely electric field which is A3(x) =

�Et, (t = x0) in z-direction. Then,

tr eise�µ⌫Fµ⌫/2 = 4 cosh(seE). (A.34)

Also, with [X0, P0] = �i,

(P � eA)2 = P 2
0 � P

2
T (P

3 + eEX0)2

= e�iP 0P 3/eE
�

P 2
0 � P

2
T � e2E2(X0)2

 

eiP
0P 3/eE, (A.35)

where we use the Baker-Campbell-Hausdor↵ formula,

eABe�A = B + [A,B] +
1

2!
[A, [A,B]] + · · · . (A.36)

PT is the transverse momentum for the z-direction. When we integral the part of (A.33),

we obtain

trhx|eis[(P�eA)2+e�µ⌫Fµ⌫/2]|xi

= 4 cosh(seE)

Z

d3p

(2⇡)4
d!d!0 ei(!

0�!)(t+p3/eE)�isp2T h!|eis(P 2

0

�e2E2X2

0

)|!0i

=
2eE

(2⇡)2is
cosh(seE)

Z 1

�1
d! h!|eis(P 2

0

�e2E2X2

0

)|!i. (A.37)
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The integral in (A.37) means the integral of the trace for the time-evolution operator of

the harmonic oscillators. When we replace P0 ! P , X0 ! Q, 2ieE ! !0 and 1/2 ! m0

respectively, we obtain

Tr exp



is

✓

P 2

2m0

+
m0!2

0

2
Q2

◆�

=
1
X

n=0

exp



is

✓

n+
1

2

◆

!0

�

=
i

2 sin(s!0/2)
. (A.38)

Thus, the omega-integral is evaluated by
Z 1

�1
d! h!|eis(P 2

0

�e2E2X2

0

)|!i = 1

2 sinh(seE)
. (A.39)

Therefore, the creation rate of the electron positron pair becomes

� = � 1

(2⇡)2

Z 1

0

ds

s2



eE coth(seE) � 1

s

�

Re(ie�is(m2�i✏)). (A.40)

The 1/s term coincides with the case of e = 0 in (A.33). The convergence of the s-integral

is discussed by the Euler-Heisenberg Lagrangian in the subsection 3.1.

Next, let us derive the e↵ective Lagrangian called by the Euler-Heisenberg Lagrangian

from the creation rate of the electron positron pair. The Lagrangian which receives the

quantum corrections can be written as,

LQED
e↵ = L0 + �L,

L0 = �1

4
Fµ⌫F

µ⌫ =
1

2
(E2 � B

2), (A.41)

�L ⌘ �L[(E2 � B

2), (E · B)2].

�L means that the Lagrangian has the quantum correction. Since a Lagrangian is Lorentz

invariant, the Lagrangian depends onE

2�B

2 and (E ·B)2. The vacuum decay amplitude

and the quantum Lagrangian are associated with

h0|S|0i = S0(A) = exp



i

Z

d4x �L
�

. (A.42)

Thus, we derive the following relation between the creation rate of the electron positron

pair and the quantum Lagrangian from the above expression and (A.27),

� =

Z

d3x 2Im �L. (A.43)
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Therefore, the quantum Lagrangian in the constant electric field is evaluated by

�L(E) =
1

8⇡2

Z 1

0

ds

s2



eE coth(seE) � 1

s

�

e�is(m2�i✏) . (A.44)

The quantum Lagrangian coincides with the second term in (3.8). On the other hands,

in the case of the full electromagnetic fields, the quantum Euler-Heisenberg Lagrangian

is obtained by

�L =
1

8⇡2

Z 1

0

ds

s
e�ism2



e2ab
cosh(eas) cos(ebs)

sinh(eas) sin(ebs)
� 1

s2

�

, (A.45)

where a and b are defined as a2 � b2 ⌘ E

2 � B

2, ab ⌘ E · B. E and B are respectively

constant electric fields and constant magnetic fields. The quantum Lagrangian in the full

constant electromagnetic fields coincides with the second term in (3.7).

In the QED, we obtain the Euler-Heisenberg Lagrangian which is the 1-loop electron

positron pair e↵ective Lagrangian. The creation rate of the electron positron pair is

derived from the imaginary part of the Euler-Heisenberg Lagrangian.
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