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1 Introduction

As the title of this chapter suggests, there are aspects of ‘spaces’ mirrored by
things called ‘∞-groupoids’. There are also such ∞-groupoids that arise in
‘nature’ from other contexts. This raises a whole lot of questions. Some of these
are obvious, for example: What ‘aspects’? What on earth are ∞-groupoids?
What job do they do? What sort of ‘spaces’ are we considering? These questions
are, formally, easy to answer, but leave deeper, harder questions still to be
considered. Informally, the initial vague idea is that an infinity groupoid model
of a space should generalise the classical idea of a fundamental group or groupoid
of a space that you may have met from algebraic topology textbooks, working
not just with paths, but with higher dimensional analogues, ‘paths between
paths’, ‘paths between those things’ and so on, all being considered up to some
appropriate idea of homotopy or deformation. What it should do is, thus, to
generalise the sort of things that the fundamental groupoid is good at doing,
such as classifying covering spaces and other types of bundle-like objects1. That
being said, how to generalise those properties is not always obvious and their
formalisation can be tricky.

To continue with our questions, what is the conceptual advantage of working
with things such as ∞-groupoids, –, whatever they might be (and there is more
than one answer to that question)? Very importantly, what are the intuitions
underpinning this formalisation? What are the limitations of the formalisation?
How do these objects fit into the general scheme of things, say, from the per-
spective of algebraic topology? How ‘practical’ is it to try to ‘calculate’ with
such models of spaces? If we model ‘spaces’ by ∞-groupoids, do we gain some
new insights on the spaces? Turning that around, the opposite question is: how
good are ‘spaces’, themselves, as models for the perhaps naive notions of ∞-
groupoid that arise in other areas of mathematics? Is the spatial intuition, thus
being invoked, a good one to use or is it too constraining or, alternatively, too
wide?

We will attempt to answer some of these. To answer them all fully would
take a lot more space. We will attempt to do this by looking back at the
developments that led to the perception that there was a link between spatial
phenomena of a more-or-less geometric nature and something that would be
eventually called ‘an ∞-groupoid’ and which can be thought of as being more
algebraic or ‘categorical’ in its inspiration rather than inherently ‘geometric’.
We will go right back to the beginnings of the use of algebraic tools to study
topology so as to look, very briefly, at some of the ways that Poincaré, and
some of those who came after him, looked at the fundamental groupoid of a
space. (Here, thankfully, we can keep things quite brief as the detailed historical
analysis of how the algebraic structure of paths in a space was first encoded, has
been initiated by Krömer, [41]. That article also contains some very relevant
passages quoted from Poincaré, and others.)

1We will be looking at precisely that very shortly as there are several types of property that
we will be seeking to generalise. This will also serve as an aide mémoire on the fundamental
group(oid) construction.
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Right from the origins of the fundamental group(oid), the link with cov-
ering spaces was recognised as one of the important aspects, and that will be
seen also in the motivation for the idea behind an ∞-groupoid approach to
analogous higher order structures. We will briefly mention this with respect to
Grothendieck’s approach to the fundamental group in SGA1, [33]. That will
lead us, naturally, to the letters from Alexander Grothendieck to Larry Breen,
[27–29], of which, for us, the first is probably the most central for our pur-
poses here, and also to the subsequent ‘letter to Quillen’, [30], in which a strong
relationship between spaces and ∞-groupoids is more explicitly mentioned.

Before that, we will need to give some indication of what ∞-groupoids are,
as there are several possible manifestations of the notion. (We will look at only
two of them in any detail.)

In another thread of the chapter, we will try to show how J. H. C. White-
head’s ‘combinatorial homotopy’ or ‘algebraic homotopy’ fits into this theme.
One of the test problems he considered was to model polyhedra by algebraic
data. Here dimension is crucial, yet within the corresponding area of ∞-
groupoid theory, this geometric aspect is less evident.2 In such applications,
it would seem that the combinatorial approach, via simplicial complexes and
their combinatorial (Whitehead) homotopy theory, may be more directly useful
than the fully ∞-groupoid one.

As the area is a huge one, we will tend to give brief descriptions rather than
detailed definitions, directing the reader to the original literature where needs
be.

2 The beginnings: recollections of Poincaré’s fun-
damental groupoid.

The fundamental group of a space was introduced by Poincaré in 1895, [56].
At this point in time, the ‘spaces’ concerned arose as Riemann surfaces and
thus naturally came with the insights and problems of analytic continuation
of functions, integration along paths and over regions bounded by paths or
collections of paths. As noted by Sarkaria, [62] (in I. M. James’ History of
Topology, [37], Chapter 6), Poincaré gave four approaches to the fundamental
group(oid) of such a space, M ; see also Krömer, [41]. These were, in modern
terminology:

(i) as the group of deck transformations of covering spaces over M , thus im-
plicitly involving a form of ‘multiple valued function’,

(ii) as the holonomy group of what would now be called an integrable connec-
tion on a vector bundle,3

(iii) as the set of homotopy classes of loops at a base point (or, more generally,
of paths) in M , and finally

(iv) on any such space, M , obtained from a polytope or simplicial complex, as
a group given by explicit generators and relations.

2but see Ara and Maltsiniotis, [2].
3We will not be following up on this approach here.
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Here we will initially be looking at the third of these, but will also need to con-
sider the covering space approach and that using combinatorial group theoretic
methods, corresponding, usually, to some simplicial or CW-complex structure
and thus, more or less, to triangulations4.

2.1 Homotopy classes of paths

Although this subsection will consist of well known standard material, in order
to increase the accessibility of the account, it will be useful to recall and comment
on some of the basic definitions and terminology relating to homotopy and the
fundamental group(oid). This will also draw attention to certain aspects of
this basic theory that we will need, but that are perhaps understressed in the
standard accounts.

• Given a space, X, a path in X is a continuous map, α : I → X, where
I = [0, 1]. The path has source, α(0), and target, α(1).

• Given two continuous maps, f0, f1 : X → Y , a homotopy between them is
a continuous map, h : X×I → Y , such that, for all x ∈ X, h(x, 0) = f0(x)
and h(x, 1) = f1(x). The two maps are said to be homotopic if there is a
homotopy between them and then are said ‘to be in the same homotopy
class’. We write h : f0 ' f1 in this case.

Intuitions: With two homotopic maps, the interpretation is that each can
be deformed continuously to the other. For instance, in the case of X being
just a single point, each function from X to Y gives a point in Y and vice
versa. A homotopy between two such maps gives a path ‘deforming’ one point
in Y to the other. If X is a unit interval, then the two maps will just be
paths and the homotopy deforms one into the other. An important case in this
situation is when the paths share the same source, and also the same target:
x0 = f0(0) = f1(0) and x1 = f0(1) = f1(1), then the homotopy may fix end
points,

f0

f1x0

x1

h↘'

so that the map h(0,−) is constant at f0(0) and h(1,−) is constant at f0(1).
By a path class, we will mean a fixed end point homotopy class of paths.

• Two spaces, X and Y , have the same homotopy type if there are continuous
maps, f : X → Y , and g : Y → X, such that there are homotopies,
gf ' idX , and fg ' idY . We also say X and Y are homotopy equivalent
and that f is a homotopy equivalence between them. When we refer to

4This latter situation relates strongly to certain constructions within theoretical physics as
well as raising the question as to whether, in our discussion, ‘spaces’ should be just ‘topological
spaces’ or should they come with additional structure such as that of a simplicial or CW-
complex, or that of a manifold, etc. We will meet this several times later on and will give a
more detailed account then.
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a homotopy type, we thus mean a maximal family of ‘spaces’ all of which
are homotopically equivalent to each other.

Intuitions: The idea is that if two spaces are homeomorphic (i.e., are essen-
tially ‘the same’) then they will be homotopically equivalent. Often, however,
the aim is to decide if two spaces are essentially different, and so should have
different properties, behaviour etc., and, for that, one tries to find ‘quantities’
that are invariant under homeomorphism to test if the two spaces are, or are
not, ‘the same’. It is much easier to find invariants of homotopy type however,
and if X and Y can be shown to differ on some homotopy invariant quantity,
then, as they can then not be of the same homotopy type, they must also not be
homeomorphic. Equally importantly, that same basic methodology often can
be adapted to show whether some mapping has, or has not, some particular
property. To do this, one searches for ‘algebraic’ invariants of homotopy types,
. . . , but we are getting ahead of ourselves here!

To return to describing Poincaré’s constructions:

• The paths in X can be composed (concatenated) in more-or-less the same
way as when integrating along paths in Rn. A fairly obvious formula
for this corresponds to concatenation (which defines the composite on an
interval of length 2) followed by ‘rescaling’. This gives:
If α, β : I → X are two paths such that α(1) = β(0), then α · β : I → X
is defined by

α · β(t) =

{
α(2t) 0 ≤ t ≤ 1

2
β(2t− 1) 1

2 ≤ t ≤ 1

Although this is the ‘obvious’ composition, corresponding to the subdivi-
sion, {[0, 1

2 ], [ 1
2 , 1]} of [0, 1], it is not ‘God given’. There are a whole lot

of others that could have been used. For any subdivision {[0, r], [r, 1]} of
[0, 1], we could have scaled α to fit on the first subinterval and scaled and
shifted β to fit on the second one, before concatenating. All these com-
posites would give homotopic paths however. (Even that does not exhaust
the possible compositions, as we could have scaled non-linearly.)

• The composition we have chosen to give is not associative. If γ : I → X is
such that γ(0) = β(1), we can form both (α ·β) ·γ and α · (β ·γ), but they
are clearly not equal. They are however homotopic5. In fact, the usual
homotopy given in texts just slides the ‘middle’ subinterval, [ 1

4 ,
1
2 ], on

which β is used, along to the corresponding position, [ 1
2 ,

3
4 ], rescaling the

other two subintervals accordingly. This means that it takes place within
the ‘track’ of the composite, i.e., the image of the composite function
within X. It is, thus, very ‘thin’ in the sense that whilst most homotopies
can be thought of as ‘sweeping out an area’ within the space, here what
is happening is more like a continuous reparametrisation of the function
from one using the subdivision of [0, 1] given by {[0, 1

4 ], [ 1
4 ,

1
2 ], [ 1

2 , 1]}, to one
using {[0, 1

2 ], [ 1
2 ,

3
4 ], [ 3

4 , 1]}. We will return to ideas of thinness somewhat
later.

5 ... and this is where things start being interesting, as it is a natural occurrence of ‘weak’
structure rather than ‘strict’.
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• If we use the notation [α] for the class of a path, α, in X under fixed end
point homotopies, then the set of such classes has an algebraic structure
given by a partially defined composition, [α] · [β] := [α ·β], defined just on
those pairs ([α], [β]) such that α(1) = β(0) - which is, of course, why we
used fixed end point homotopies rather than ‘free’ homotopies in defining
the path classes, [α]. The algebraic structure we have here is a groupoid,
i.e., a (small) category in which every morphism is invertible. It is the
fundamental groupoid6, Π1X, of X. That this all works is standard, but
any reader who has not seen it spelt out in some detail should consult
standard texts or look at Krömer’s article that was mentioned earlier
for a historical viewpoint. (It is of interest that the groupoid version is
explicitly given by Schreier in 1927 and then later by Reidemeister, but
then was not used for some time; see Krömer, [41], again. Their work is
an early example of a structure, that could be considered algebraically,
being thought of as a space.)

That completes a description of Poincaré’s path based definition, except to
note that he actually defines the fundamental group and not the more general,
and more natural7, groupoid version. For this ‘fundamental group’, one needs to
choose a ‘base-point ’, x0 ∈ X and then the fundamental group, π1(X,x0), of the
pointed space, (X,x0), is the vertex group of Π1X at x0, that is, Π1X(x0, x0),
so is the group of path classes of loops in X, based at x0.

2.2 Covering spaces

If we now assume that X is ‘sufficiently locally nice8’, we can pass to another
of Poincaré’s definitions; (again we will only sketch the theory and more briefly
than above, leaving more ‘for the reader to check’). We will assume the space,
X, is connected and will choose a base-point, x0, in X. Furthermore, let p :
X̃ → X be a universal covering space for X. In other words, p is a local
homeomorphism, so given any y ∈ X̃, if we look near enough to y, that is in
a small enough neighbourhood of it, p behaves as a homeomorphism, mapping
that neighbourhood to a neighbourhood of p(y), and, moreover, a universality
condition holds (that we will skate over; see standard algebraic topology texts
for this, also for conditions on X for such a universal cover to exist, and, once
again, Krömer, [41], for a historical perspective). This p will have a unique
path lifting property: if we have a path, α, in X and pick a point, x ∈ X̃, such

6The objects of Π1X are the points of X; the morphisms are the path classes, so that,
between two points, x0 and x1, in X, the set Π1X(x0, x1) = {[α] | α(1) = x0, α(1) = x1}.
Composition is given as above and is associative; identities are given by the classes of constant
paths at the points of X, and the inverse of [α] is [α(r)], where α(r)(t) = α(1− t), the path,
α traversed in the opposite direction.

7Recall that a monoid can be thought of as a category with a single object, and in the
same way a group can be thought of as a groupoid again having just a single object. If G
is a group, the corresponding groupoid, G, has one object, denoted ∗, for the moment, and,
G(∗, ∗) is the group G with composition in G being just the multiplication in G. Note: we will
not, in fact, use a different notation for a group and the corresponding one-object-groupoid
in the main text.

8... meaning that small enough neighbourhoods of each point are ‘homotopically trivial’,
so, intuitively, nothing ‘interesting’ is happening at the very small scale!
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that p(x) = α(0), then α lifts uniquely to a path, α̃, in X̃, so that pα̃ = α and
α̃(0) = x.

Using this, one shows that the category of covering spaces of X is equivalent
to the category of π1(X,x0)-sets, that is sets with an action of π1(X,x0) on
them:

Fibre : Cov/X
'−→ π1(X,x0)−Sets,

where Fibre(q : Y → X) will be the set, q−1(x0), with the action of π1(X,x0)
given by lifting paths9. This is almost Poincaré’s deck transformation ‘definition’
of π1(X,x0). (A deck transformation is simply an automorphism of a covering
space, hence is compatible with the covering map.) Deck transformations of the
universal cover of X give a group that is isomorphic to π1(X,x0). To see why,
we note that Fibre sends the universal cover to the set of elements of π1(X,x0)
with the action of that same group given by multiplication. Any automorphism
of the universal cover goes via the equivalence, Fibre, to an automorphism of
that π1(X,x0)-set, and that gives an element of π1(X,x0).

Comment: The above correspondence works for any ‘nice topological space’,
but its importance for us is, also, that it acted as a key starting point for the
definition by Grothendieck of the fundamental group of a scheme, the main
algebraic geometric version of ‘space’. This, in turn, used the exciting insight
that this is a version of the fundamental theorem of Galois theory relating
extension fields with actions of a Galois group; see SGA1, [33], for the basic
source, and Douady and Douady, [24], for a neat treatment, but then there is
an enormous literature on this theory as you would expect. Because of that
link, it is useful to think of the above correspondence as being part of some
more encompassing ‘Galois-Poincaré theory’. The use of a topos, π1(X)−Sets,
or SetsΠ1(X), to model aspects of the topological properties of X is, perhaps, to
be noted for use elsewhere10.

2.3 Complexes as ‘presentations’ of spaces and of groupoids

For the above theory, all that was needed was that X was a ‘sufficiently nice’
topological space. For the final approach to the fundamental group that we
will look at, Poincaré assumed, in addition, that the space was specified as a
‘complex’ of some sort. When using ‘path classes’, one has to face the initially
very large number of paths that there are in the ‘usual’ spaces that are con-
sidered. Although the ideas that Poincaré used were later extended and made
much more exact, the intuitive ideas remain clear in what he introduced. These
ideas were somewhat later applied by Schreier, Neilsen and others to problems
in group theory. This illustrates well the somewhat symbiotic relationship be-
tween spaces and algebra, which relates to the main theme of this chapter. The
initial development was topological and allowed one to encode spatial infor-
mation in an algebraic form. The work in (combinatorial) group theory first
encoded algebraic structure in combinatorial, and then in spatial, form, where

9This easily generalises to non-connected spaces. Replace π1(X,x0) by Π1(X) and
π1(X,x0)−Sets by the category, SetsΠ1(X), of functors from Π1(X) to Sets. This also
frees up the construction from needing to choose a base-point, x0.

10An action of a group, G, on a set, S, is often called a representation of the group, as it
represents the elements of the group as permutations of S. This also leads on to the subject
of representation theory and the various categorical approaches to that subject area.
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methods derived from algebraic topology could be applied to give new insights
and results.

To start with, the ‘complexes’ that we will need are simplicial complexes,
a notion which we will recall below. Later we will need simplicial sets, CW-
complexes and various variants of such. We will not give fully formal definitions
of these as they are readily available elsewhere, but the intuition for the simpli-
cial setting is that of a triangulation of the space being studied11. Note, however,
that each of these is an instance of a (topological) space plus instructions on
how it was built, so is not just a space.

Simplicial complexes come in two flavours, one ‘abstract’ or combinatorial,
the other ‘geometric’, or, perhaps in better terminology, ‘spatial’. Abstractly, a
simplicial complex, K, is specified by a set, V (K), of ‘vertices’ and a set, S(K),
of ‘simplices’, which are non-empty finite subsets of vertices. Not every finite
subset need be in S(K), but all singletons, {v}, v ∈ V (K), are considered to be
simplices of K, and, very importantly, if a set of vertices gives a simplex, σ, of
K, then all its non-empty subsets are also to be in S(K). These subsets give
the faces of σ.

As a simple example, suppose V (K) = {0, 1, 2, 3, 4}, whilst S(K) consists
of {0, 1, 2}, {2, 3}, {3, 4} and all the non-empty subsets of these. We draw this
schematically as:

3

4

10

2

The simplex, {0, 1, 2}, is a ‘2-simplex’, and is pictured as being 2-dimensional.
In general, an n-simplex of a K is a subset in S(K) with n + 1 elements. We
will write Kn for the set of n-simplices. Note that with the above example, Kn

is empty for n ≥ 3, and that any graph / network corresponds to a simplicial
complex with no simplices in dimensions 2 or larger.

That gives a brief outline of the abstract form of the notion of simplicial
complex. We can use such a specification as a plan for building a space, roughly
as follows12. For each n ≥ 0, we have a space, ∆n, which is an n-simplex13.
The idea is now to take, for each n, and each n-simplex, σ, in K, a copy, K(σ),
of ∆n, then if τ is an (n − 1)-simplex in K, which is a face of σ, we identify
K(τ) with the corresponding face of K(σ). Doing this for all the simplices gives
a space, the geometric realisation of K, but this description suffers from being

11Think ‘wire frame’ image!
12This can be done in various equivalent ways, but we will just look at one which generalises

easily to simplicial sets.
13The space, ∆n, is given, for example, by

{x = (x0, ..., xn) ∈ Rn+1
∣∣ n∑

0

xi = 1; all xi ≥ 0}.
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too informal14. Of course, for our example we need five ∆0s, also five ∆1s, i.e.,
geometric segments, and one ∆2, and the resulting space, clearly, looks like we
have pictured it! We think of the combinatorial gadget, K, as ‘presenting’ the
space given by its ‘geometric realisation’. Not all spaces can be represented in
this way. Those that can are sometimes called ‘polyhedra’.

We will return to this below, but now need to give how to go from such a
‘presentation’ of a space to a presentation of its fundamental groupoid.

Let K be a simplicial complex (and our notation will not distinguish between
the combinatorial object and the corresponding space). If we restrict attention
to the vertices and the 1-simplices of K, we obtain a graph, K1, which forms
the 1-skeleton15 of K. For our simple example, this has the same set of vertices,
but S(K1) does not contain {0, 1, 2}, so the picture / space is:

3

4

10

2

in which there is now a hole, where, in our previous diagram, there was the
2-simplex corresponding to {0, 1, 2}.

Going back to the general abstract case, we can form the free groupoid,
F (K1), on this graph. This has the vertices of K as its objects and between
two such vertices, morphisms are reduced edge-paths between them. (An edge
path is just a list of edges or their inverses in the graph, which are ‘composable’
so the target of each is the source of the next. We omit the detailed construction
of this free groupoid as it is relatively well known and can easily be found in
the literature. We note that it is important to choose a direction on each
edge in K1 and we will need a notation for such a directed edge. We will
write 〈v, v′〉 for the edge with source, v, and target, v′. We will usually do
more than just ordering the edges, rather we will pick a total order on V (K)
and then write 〈v0, . . . , vn〉 for an n-simplex, {v0, . . . , vn} ∈ S(K), in which
v0 < v1 < . . . < vn

16. Returning to the groupoid, we now form the quotient of
F (K1) by relations that come from the 2-simplices of K:

14Discussion of formal definitions of the geometric realisation of a simplicial complex can
be found in many books on algebraic topology.

15This is not just the set of edges, but also involves the information on two ends of each
edge.

16This gives a unique ‘ordered simplex’ representing each element of S(K). It has the
additional benefit of allowing us to talk of the k-th face, dk(σ), of a simplex, σ, just by
deleting vk from the simplex, thus in our example, if we take the obvious order on the vertices,
d1〈0, 1, 2〉 = 〈0, 2〉, and so on, but note that if we change the total order, this will change the
way the faces turn out. If we had ordered the vertices, {3 < 2 < 0 < 4 < 1}, then although
{0, 1, 2} still would be a simplex, now written 〈2, 0, 1〉, we would have d1〈2, 0, 1〉 = 〈2, 1〉.
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For each 2-simplex, 〈v0, v1, v2〉, in K, which we picture as

v1

  
v0

>>

// v2

we form the relation

〈v0, v1〉 · 〈v1, v2〉 · 〈v0, v2〉−1 = idv0 .

If we write R(K) for the set of such relations, then the groupoid, Πcomb
1 (K),

with presentation, 〈K1 : R(K)〉, is the combinatorial version of the fundamental
groupoid of K. It will be isomorphic to the full subgroupoid of Π1(K) formed
by the objects corresponding to vertices of the complex, K, and therefore is
equivalent, as a groupoid, to Π1(K), but with far fewer objects. (To see, geo-
metrically, why it is equivalent to Π1(K), first note that in Π1(K), any object
is a point of K, so is in some simplex of K, and hence can be joined to a vertex
of K by a path. We thus have that every such object is isomorphic to one in
Πcomb

1 (K). Next given any path in K between two vertices, it will be homo-
topic17 to one whose image is within the 1-skeleton of K, and which can be
represented by an edge-path, thus by a morphism in Πcomb

1 (K). Finally any
homotopy between paths can be replaced18, up to a second level homotopy, i.e..
a homotopy between homotopies, by one within the ‘2-skeleton’ of K, that is
the subcomplex given just by the 0-, 1- and 2-simplices of K. What this implies
is that homotopy can be mirrored, algebraically, by ‘moves across 2-simplices’
and thus by the rewriting process associated to the presentation that we gave.)
Restricting attention to a single vertex, v0, the vertex group of Πcomb

1 (K) at
v0 is isomorphic to π1(K, v0), and gives us Poincaré’s combinatorial form of his
fundamental group.

This process shows some inadequacies in the simple combinatorial language
given to us by simplicial complexes, at least when we want to build an alge-
braic object from it. For example, in the above description, we wrote idv0 for
the identity element at the vertex v0, that is, the empty edge-path starting at
v0. In the simplicial complex, K, we do not have an edge 〈v0, v0〉. One way
to get around this is to relax the condition v0 < v1 < . . . < vn for this or-
dered set of vertices to be a simplex, replacing < by ≤, thus allowing a vertex
label to be repeated. For instance, if we take our example and order the ver-
tices in the obvious way, then, as well as the 1-simplices, 〈0, 1〉, etc., we would
have ‘degenerate’ 1-simplices, such as 〈2, 2〉, and degenerate 2-simplices, such as
〈2, 2, 3〉 and 〈2, 3, 3〉. We would have simplices in all (positive) dimensions, as a
string with n copies of 2, followed by m copies of 3, would give us a degenerate
(n + m − 1)-simplex. The rule for defining the faces of a simplex would still
apply, so d0〈2, 2, 3〉 = 〈2, 3〉 = d1〈2, 2, 3〉, whilst d2〈2, 2, 3〉 = 〈2, 2〉, a degenerate
1-simplex, so an ‘identity edge’ at 2.

17To visualise this, think of a path in our example, going from 1 to 2, perhaps wander-
ing around within the 2-simplex given by 0, 1, and 2. It could be pushed out (and thus
‘homotoped’) to the 1-skeleton, and this could be done in several different ways.

18The key to all this is a simplicial approximation theorem, which can be found in most
books on basic algebraic topology.
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Let us write Kn for the set of all n-simplices, now including the degenerate
ones as well19. We now not only have the face operators, dk : Kn → Kn−1,
k = 0, . . . , n, but also some degeneracy operators, which, in the usual notation,
are denoted si : Kn → Kn+1, where, for instance,

s1〈v0, v1, . . . , vn〉 = 〈v0, v1, v1, . . . , vn〉,

so repeats the vertex label in position 1, whilst

s0〈v0, v1, . . . , vn〉 = 〈v0, v0, v1, . . . , vn〉,

and so on. In our calculation of the faces of 〈2, 2, 3〉, which is, of course, s0〈2, 3〉,
we verified that, at least in this case, d0s0 = d1s0, but, of course, that is true
in general as deleting either copy of a repeated label gets you the same result.
Similar reasoning gives other such ‘simplicial identities’20 such as: if i < j, then
didj = dj−1di.

We need to abstract from this example. We here have a structure consisting
of a family, {Kn}n≥0, of sets, plus face and degeneracy operations which satisfy
the simplicial identities. Such a structure, in general, is called a simplicial set21

and is the second of our ways of ‘presenting a space’. Simplicial complexes with
a total order on their set of vertices gives just one example of such things, but
there are other important examples that do not come from simplicial complexes.
We will consider two such.

Example 1: Nerves of small categories. In the above, we could have
used any partial order on V (K) for which each simplex of each dimension was
ordered. We did not really need a total order for the construction to work
although that is the simplest type to work with. More generally, if we have a
partially ordered set, X = (X,≤), then we can form a simplicial set, Ner(X ),
by taking its set of n-simplices to consist of all sequences, x0 ≤ x1 ≤ . . . ≤ xn,
and with face and degeneracy operators much as in the simplicial complex case
we looked at before. A particular case which is very useful is [n] = {0, 1, . . . , n}
with the usual order. The simplicial set, Ner[n], is the standard model for the
n-simplex, as is evident if you look at low values of n. This is usually written
∆[n].

The definition of Ner(X ) is a special case of the nerve of a (small) category22.
If C is an arbitrary small category, we can define a simplicial set, Ner(C), by
taking its set of n-simplices to consist of all composable sequences of n-arrows
in C, that is of form:

σ = (x0
c1−→ x1

c2−→ . . .
cn−1−−−→ xn−1

cn−→ xn).

The set of 0-simplices is simply the set of objects of C. For the face and de-
generacy operators, we will leave the details for the reader to search for in the

19so, slightly more formally, the basic set up of V (K) and S(K) is still the same, but now
σ = 〈v0, . . . , vn〉 stands for a set, after deleting any repetitions, {v0, . . . vn} in S(K), with
v0 ≤ v1 ≤ . . . ≤ vn, and Kn is the set of all such σ.

20We will not give the usual complete list of these simplicial identities here, but refer the
reader to the standard texts on simplicial sets and related homotopy theory. As useful if
slightly old, brief introduction to this theory is to be found in Curtis’s survey, [23].

21The category of simplicial sets will be denoted S.
22Remember that any partially ordered set can be considered as a category with X being

the set of objects and there being a single morphism from x to y if and only if x ≤ y.
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literature, but will rather look at the faces of a typical 2-simplex:

σ := (x0
c1−→ x1

c2−→ x2),

or, sometimes, more conveniently, in the opposite order and for a general n,
(cn, . . . , c2, c1), recording just the morphisms23, and which we draw as a triangle:

x1

c2

!!
x0

c1
==

c2c1
// x2

(and the reversal of order, above, allows this to avoid a reversal here to get to
c2c1). From this perspective, there is a clear idea of what the faces should be:
d0(σ) = (c2), the face opposite the vertex, 0; d2(σ) = (c1), the face opposite
vertex 2; and d1(σ) = (c2c1), so given by the composition24 of the two arrows,
and giving the face opposite vertex 1. The degeneracies insert identity maps in
a fairly obvious way.

We can give another brief equivalent description ofNer(C). We letNer(C)n =
Cat([n], C), which is easily seen to be the same as before, but in different lan-
guage. The face and degeneracy maps are derived from functors / order pre-
serving maps between the various [n].

Example 2: The singular complex functor. We can use the same idea
as above to obtain a simplicial set associated to a topological space, X. This is
the classical singular complex, Sing(X), of X. We use the topological simplices,
∆n, that we have met earlier. There are face inclusions, δk : ∆n−1 → ∆n, for
0 ≤ k ≤ n, and some squashing maps, σi : ∆n+1 → ∆n, here given in footnote25.
These induce face maps,

di : Sing(X)n → Sing(X)n−1, 0 ≤ i ≤ n,

and degeneracy maps,

si : Sing(X)n → Sing(X)n+1, 0 ≤ i ≤ n.

Remarks: (i) The singular complex construction is one of the key examples
for our ‘narrative’ about ∞-groupoids and spaces. It is one of the main candi-
dates for something worth calling an ∞-groupoid, and, most importantly, it is
easy to construct from a space. We still have a way to go before giving a better
idea of what an ∞-groupoid is, but we will be revisiting Sing(X) several times
later on.

This singular complex construction is one of several used to encode the
results of ‘probing’ a space by nice ‘test objects’. These test objects, in this

23The reason for the change in order in the symbol will be clear in a short while.
24A very important observation here is that the algebraically defined composition in C cor-

responds to the ‘geometric’ process of filling the (up-side down) V -shaped diagram consisting
of the given two arrows. This V -shaped diagram is usually called a (2, 1)-horn. It looks like
the 1-dimensional skeleton of a 2-simplex with the d1-face omitted.

25The face inclusion δk, sends (x0, . . . , xn−1) to (x0, . . . , 0, . . . , xn−1), putting a 0 in the
kth position. The squashing map, σi, adds xi and xi+1 together before placing the result in
the ith position then shifting each of the subsequent entries one place to the left.
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case the topological simplices, ∆n, are ‘spaces’ that are well understood, both
in themselves individually and also in their relationship between each other26.

(ii) We note that the notion of geometric realisation that we sketched for
simplicial complexes, extends to one for simplicial sets, for which see any of the
standard texts on simplicial homotopy theory. The geometric realisation of a
simplicial set is an example of a type of space called a CW-complex 27.

(iii) We can also extend the idea of an n-skeleton from simplicial complexes
to simplicial sets, but the construction is a little bit more subtle. Given an n
and a simplicial set, K, we can form its n-skeleton, skn(K), by throwing away
the non-degenerate simplices in dimensions greater than n. There will still be
simplices in those higher dimensions, but, if σ ∈ skn(K)m ⊆ Km for m > n,
then there will be an n-simplex, τ ∈ K, and a sequence of degeneracy operators
whose composite sends τ to σ.

(iv) We met in the footnote to the previous page the idea of a (2, 1)-horn.
This generalises to an (n, k)-horn in a simplicial set, K, for 0 ≤ k ≤ n. The
(2, 1)-horn that we considered consisted of two 1-simplices that fitted together as
if they formed all but one of the faces of a 2-simplex. (In the case, K = Ner(C)
that we looked at, there was a 2-simplex there ‘filling the horn’, but it is easy
to see if we just had a simplicial set coming from a simplicial complex, for
instance, the ‘horn’ might not have such a ‘filler’.) A (n, k)-horn in K consists
of a collection, x = (x0, . . . , xk−1,−, xk+1, . . . , xn), of (n − 1)-simplices of K
that fit together like all but the k-th face of a n-simplex. An n-simplex, x ∈ Kn

‘fills’ the horn if for j 6= k, djx = xj . The k-horn of a topological n-simplex,
∆n, is defined in the analogous way as are the k-horns in ∆[n]. In each case one
takes the (n− 1)-skeleton and then removes the kth-face. We will write Λ[k, n]
for the corresponding simplicial subset of ∆[n] and note that x can be thought
of as a simplicial morphism from Λ[k, n] to K.

In the singular complex, Sing(X), of a space, X, all horns have fillers since
a topological n-simplex can easily be shown to retract onto any of its horns; see
any introduction to simplicial sets for more discussion. (This means not only
that there is a filler, but such fillers are ‘thin’ in the same intuitive sense as we
mentioned earlier.) Those simplicial sets which satisfy the property of having
fillers for all horns are called Kan complexes and will be very important later
in our discussion. The nerve of a category is a Kan complex if, and only if, the
category is a groupoid28.

(v) An important related idea is that of simplicial object in a category, C.
For the case of C being the category of sets, the simplicial objects are just the

26We could have based the discussion on other categories of test objects, for instance, n-
cubes or n-globes, of more generally multiprisms, that is, products of topological simplices,
∆n. Each has nice properties but we will more or less restrict attention to the simplices
partially for historical, and expositional reasons, but also because that theory is the most
developed one.

27 A CW-complex is built up from a discrete set of ‘vertices’ by progressively attaching
n-dimensional cells to lower dimensional parts of the space, so we get a filtered space X0 ⊆
X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆ X where X0 is a discrete space, and, for each n, Xn is obtained from
Xn−1 by ‘gluing’ in some n-discs.

28In the nerve of an arbitrary category, all (n, k)-horns for 0 < k < n, (the so-called ‘inner
horns’), have fillers given by the composition in the category, but the (n, 0)- and (n, n)-horns,
the ‘outer horns’, may not have fillers in general. Simplicial sets satisfying the weaker condition
that all ‘inner horns’ have fillers were originally called ‘weak Kan complexes’, but now the
term quasi-category is perhaps more often used. They are also one of the models for a class
of ∞-category,..., but that is getting ahead of ourselves for the moment.
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simplicial sets, of course, but taking C to be the category of groups, or Abelian
groups, will give simplicial groups29, and simplicial Abelian groups30.

3 Whitehead’s algebraic and combinatorial ho-
motopy

On a seemingly tangential note, we will now consider the more general question
of modelling homotopy types with algebraic data. We will see that this general
idea lies in the background of our central theme, the point being that the idea of
∞-groupoids is ‘algebraic’ in some sense, at least in some of the interpretations
of the term. This also asks when a term such as ‘algebraically given data’ can
reasonably be thought of in spatial terms, as, for instance, group presentations
can lead to spaces. Here we will very briefly set the scene for a fuller presentation
of some of the ideas, but before that more detailed treatment, we will have to do
some more groundwork introducing notions in the next section that illustrate
the ideas here more fully and giving sketches of definitions, etc.

In his 1950 ICM address, J. H. C. Whitehead summarised his vision of what
he called Algebraic Homotopy :

The ultimate aim of algebraic homotopy is to construct a purely al-
gebraic theory, which is equivalent to homotopy theory in the same
sort of way that ‘analytic’ is equivalent to ‘pure’ projective geometry.

J. H. C. Whitehead, [70], (quoted in Baues, [4])

A statement of the aims of ‘algebraic homotopy’ might thus include the following
homotopy classification problems (from the same source, J. H. C. Whitehead,
[70]):

Classify the homotopy types of polyhedra, X, Y , . . . , by algebraic
data.
Compute the set of homotopy classes of maps, [X,Y ], in terms of
the classifying data for X, Y .

This nicely sets up the idea of modelling (nice) spaces by ‘algebra’, ..., but
does not make precise what ‘algebraic data’ is to mean. In fact, when modelling
spaces by algebraic data, there is nearly always a balance to be struck. More
finely structured models are better for classifying the spaces and morphisms,
but often the more structure there is, the harder it is to handle it all.31 One
question is thus what does an analysis of this set of problems look like in the
context of the putative comparison:

spaces ↔ ∞-groupoids
and another query, again inspired by Whitehead’s own list of problems, would

29... in which each Kn is a group, and each face and degeneracy maps is a group homomor-
phism.

30These latter objects form a category equivalent to that of chain complexes of Abelian
groups, by the Dold-Kan theorem. This uses the Moore complex which is intersection of all
the kernels of the face maps, dk, k > 0, giving a chain complex from a simplicial Abelian
group. This is closely related to the way we get from 2-groupoids to crossed modules (see
footnote on page 24), and will be briefly examined in section 5.3.

31This is very well discussed in the early sections of Baues, [5].

14



be: if we have a finite dimensional space, say a k-dimensional CW, or simplicial,
complex, how might that finite dimensionality be reflected in any associated∞-
groupoid?

As we said, detailed algebraic invariants become harder to ‘calculate’ the
more ‘detailed’ they are! The exact sense of ‘calculate’ here is quite hard to
pin down! Some of the meanings of ‘detailed’ are easier to explore and we will
endeavour to do so. The overall aim is to find algebraic models for homotopy
types in the above sense and in particular, here, to come up with a notion of
∞-groupoid which will fit into this Whitehead programme as a suitable form
of ‘algebraic data’. As a step in that direction we will look at various types of
‘algebraic data’ and explore their connection with this setting.

Clearly, from today’s perspective, the assignment of ‘algebraic data’ to ‘spaces’
that Whitehead was proposing has to be functorial32. From that viewpoint, the
overall aim of Whitehead’s Algebraic Homotopy programme is to find natural
algebraic models for homotopy types in such a way that the resulting ‘functor’
is as close to an equivalence of categories as possible. Any functorial homo-
topy invariant, F : Top → AlgebraicData, will, however, determine a class of
morphisms between spaces that become isomorphisms on application of F . By
assumption, this class will contain that of homotopy equivalences, but may be
much bigger. Controlling such a class for a given modelling functor F is where
the more structured notions of homotopy theory come in.

4 Higher homotopy groups, weak homotopy types,
truncation and connectedness

As an example of a type of algebraic data that is typical for Whitehead’s setting,
but one that is very ‘minimal’, in some sense, we could take a set, to represent
the set of arcwise connected components of the space, plus, for each element in
that set, an N-indexed family of groups, and loosely take F (X) = {πn(X,x0) |
x0 ∈ X,n ∈ N, n ≥ 0}. The corresponding class of morphisms will be that of
weak homotopy equivalences (often just called ‘weak equivalences’).

4.1 Higher homotopy groups, and weak homotopy types

To make sense of this, and it has several bits of terminology and notation
that we have not yet formally met, we first need to set out the main ideas
on the higher homotopy groups, πn(X,x0), of a pointed space, (X,x0). We
first recall that one of the definitions of the fundamental group of a pointed
topological space was as homotopy classes of loops at the base point. We can
think of a loop as being a map from the circle, S1, to X, and, as we want
the loop ‘at the base point’, x0, of X, we make S1 into a pointed space by
realising it as {x = (x, y) ∈ R2 | ||x|| = 1}, and then choosing 1 = (1, 0) as
its base point. A loop at the base point of X is then a continuous function,
γ : S1 → X, satisfying γ(1) = x0. The fundamental group, π1(X,x0), is
thus [(S1, 1), (X,x0)], i.e., the set of pointed homotopy classes of pointed maps
from the pointed circle to the pointed space, (X,x0), and as, intuitively, this
corresponds to studying 1-dimensional holes in X, it is natural to consider the

32 . . . and he was one of the first to adopt an overtly categorical view of such situations.
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n-sphere, Sn = {x ∈ Rn+1 | ||x|| = 1|}, based at 1 = (1, 0, . . . , 0) and to
look at πn(X,x0) := [(Sn, 1), (X,x0)], in an attempt to capture something of
the behaviour of the n-dimensional holes in X. This set has a natural group
structure if n > 0 and that structure is Abelian if n > 1. The resulting group
is called the nth homotopy group of the pointed space, (X,x0). Of course, if
f : X → Y is a continuous map, then there is an induced group homomorphism,

πn(f) : πn(X,x0)→ πn(Y, f(x0)).

If X is connected, then πn(X,x0) does not really depend on x0. If we choose
a path from x0 to some other point x1, then there is an induced isomorphism
from πn(X,x0) to πn(X,x1), which depends only on the homotopy class of
the path. In fact, in this way we get a functor, πn(X), from the fundamental
groupoid, Π1(X), to the category of groups (if n > 0) sending the point x,
thought of as an object of Π1(X), to πn(X,x). Note that, as well as the case
n = 1 corresponding to the fundamental group of (X,x0), the case n = 0 gives
the pointed set of connected components of (X,x0), since S0 is the two point
discrete space, {−1, 1}.

Returning, now, to weak homotopy equivalences, these are central to a lot of
what follows so we will give a slightly more formal definition:

A continuous map, f : X → Y , between topological spaces is said to be
a weak equivalence if f induces a bijection, π0(f) : π0(X) → π0(Y ), between
the sets of arcwise connected components of the two spaces, and also, for each
x0 ∈ X and each n ≥ 1, the induced homomorphism, πn(f) : πn(X,x0) →
πn(Y, f(x0)), is an isomorphism of groups.

Two spaces are said to have the same weak homotopy type if there is a zig-zag
of maps between them, all of which maps being weak equivalences.33

The loose interpretation is that, if there is a weak equivalence between X and
Y , then the set of invariants, πn, cannot tell the two spaces, X and Y , apart. We
note that any homotopy equivalence is a weak homotopy equivalence. In fact,
if we restrict to CW-complexes, then weak equivalences are exactly homotopy
equivalences, by a famous result of J. H. C. Whitehead, but, in general, there are
pairs of topological spaces that are weakly equivalent without being homotopy
equivalent34.

Given any space, X, we can form Sing(X) and then take its geometric
realisation. The two constructions are adjoint functors and there is a natural
map, |Sing(X)| → X, which is a weak homotopy equivalence35. As |Sing(X)| is
a CW-space, we have any space is weakly equivalent to a CW-space; see below.

33We can form a new category from our category of spaces by ‘formally inverting’ the weak
equivalences to form the corresponding homotopy category. Two spaces have the same weak
homotopy type if they are isomorphic in that homotopy category.

34The space known as the Warsaw circle has the same weak homotopy type as the discrete
space with two elements, but not the same homotopy type. The study of the algebraic
topology of such more general spaces is known as ‘shape theory’ and that term is also applied,
by generalisation, to handle toposes; see the various relevant entries in the nLab, [54].

35Strong homotopy equivalence, although useful, does not so readily lead to simply defined,
good algebraic invariants. General spaces, i.e. ones that are not ‘locally nice’ need additional
machinery for any effective study. This does relate both to methods of topos theory and
of non-commutative geometry, but will not concern us in this chapter where we will almost
always be restricting to CW-spaces.
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Note that spaces with the extra ‘combinatorial’ information of being a CW-
complex36 make for a fairly well behaved setting, however even with such CW-
complexes, and weak equivalences, this does not completely give the answer
to Whitehead’s idea of Algebraic Homotopy, since we do not know that there
might not be two spaces, X and Y , with an isomorphism, θ : F (X)→ F (Y ), yet
there would be no continuous map, f : X → Y , which satisfies F (f) = θ. This
is Whitehead’s realisation problem and we will discuss it in slightly more detail
later on. One has to realise both spaces and morphisms37. This is important
for our main theme, as it asks whether the algebra accurately models homotopy
aspects of the spatial structure!

Given any specific topological situation, the amount of information encoded
in the weak homotopy type may be ‘unnecessary’ or ‘unnatural’ for the appli-
cation that is in mind, or it may be impractical to calculate it38, so it is quite
natural to work with a subset of the possible dimensions, thus looking at the
homotopy groups, say from 1 up to some given n, or, alternatively, from some
integer n onwards to infinity, or over some other suitable range of values, say a
segment, [n, n + k], from n to n + k for some integers n and k39. With regard
to the original query of modelling ‘spaces’ by ‘∞-groupoids’, these classes of
weak homotopy types ‘should’ correspond to restricted classes of ∞-groupoids’,
hopefully ones that help one understand the general picture better as well as
shedding light on the specific situation.

We will look at several such situations in a bit more detail. In each case, the
corresponding F will be different and hence the notion of ‘equivalence’ being
used will change. First, in subsection 4.2, we concentrate on the homotopy
groups, πk, for k ∈ [n,∞), and, in fact, will look at spaces that only have non-
trivial homotopy groups in that range. The following subsection to that will look
at the complementary setting, i.e., where the only non-trivial homotopy groups
are concentrated in the range, [1, n], and then will look at one or two classical
situations in which there is some information giving the homotopy groups in all
dimensions but not enough to determine the homotopy type. In each case there
is a suitable choice of functor F , leading to a corresponding class of spaces.

4.2 n-connectedness

As was said above, when studying ‘spaces’ as (weak) homotopy types40, one
of the evident simplifications to make about the spaces is that some of that
structure is trivial. This assumption can then be the starting point for attempts
to decompose a given (general) homotopy type somehow into a part for which
the assumption holds plus ‘the rest’. To a minor extent, we can already see this
idea in our restriction to considering arcwise connected spaces. For any space,

36. . . , or rather a CW-space, so the existence of a CW-complex structure on the space is
required, but no choice of that structure is specified.

37... and perhaps homotopies between morphisms, and higher homotopies between them,
...

38e.g. even for spheres, it is not known how to work out a general formula for the homotopy
groups or to what extent there is one.

39We will not follow up on these ‘segments’ here, but the interested reader can find some
useful results in [38], which also puts this into the context of this chapter.

40via the information encoded in their homotopy groups
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X, we can form π0(X) as a quotient of X, so getting q : X → π0(X), and,
trivially, each fibre of q is arcwise connected as it is a component of X.

There are higher forms of connectedness which can be used to get more
useful and interesting instances of this sort of idea.

A space, X, is n-connected if πk(X) is trivial for k = 0, 1, . . . , n.

What this means is that in an n-connected space, if we have any continuous
map, f : Sk → X, for 0 ≤ k ≤ n, then as f must be homotopic to a constant
map (at the unmentioned basepoint), we can extend f over the (k + 1)-disc,
Dk+1, in the sense that the (k+ 1)-disc, Dk+1 = {x ∈ Rk+1 | ||x|| ≤ 1}, has the
k-sphere as its boundary, and there will be a map, g : Dk+1 → X, that restricts
to f on the subspace Sk.

For n = 0, we retrieve the original idea, as this is just saying that X is
arcwise connected, since if we have any two points x−1, x1 ∈ X, then we define
a continuous map, x : S0 → X, by setting x(−1) = x−1 and x(1) = x1. If X
is 0-connected, then this x extends to y : D1 → X, that is, as D1 ∼= [0, 1], to
an arc joining x−1, and x1 ∈ X, and conversely, thus ‘0-connected’ = ‘arcwise
connected’41.

For n = 1, ‘1-connectedness’ is the same as what is often called ‘simple
connectedness’. It interprets as saying that any loop in X extends to a map of
the disc, D2. This notion is very important since, as we noted earlier, π1(X) acts
on all the πn(X), n ≥ 2, in fact making them into π1(X)-modules. If X is simply
connected, π1(X) is trivial, so the πn(X) are ‘merely’ Abelian groups, and so
are much easier to classify and use. Simple connectedness connects up with
universal covers as, if X has a universal cover, X̃, then the space, X̃, is simply
connected42. More than this is true, in fact. If p : Y → X is any connected
covering space of X, and Y is simply connected, then Y is a universal covering
space for X.

This type of example is the n = 1 case of a much more general phenomenon
that is quite central to our overall story, but, once again, needs expanding
a little first. Recall (from page 7) that a covering space, Y → X, has nice
lifting properties. Generalising these is the notion of a fibration; see footnote43

for the definition. In a fibration, if b ∈ B, the fibre over b is the subspace,
Fb := p−1(b)44.

41To make the exposition slightly easier, we will usually assume in what follows that the
spaces considered are arcwise connected, so will not need to mention the information on π0.

42The fundamental group of X is ‘still around’ in this covering space as it acts on X̃ with
X being the quotient space of ‘orbits’. This is, of course, another of the classical Poincaré
viewpoints.

43There are several versions, but roughly, a map p : E → B is a fibration if, for any CW
complex, X and subcomplex, A ⊂ X, and for any commutative diagram

A

i

��

u // E

p

��
X

f

>>

v
// B

there is a map, f , which ‘lifts’ v to E, (so pf = v) and extends u from A to X, (so fi = u).
44It is important to remember that changing b along a path makes the fibre change, so that,

18



Examples: a) A covering space is a fibration and its fibres will be discrete
spaces.

b) Given any pointed space, X = (X,x0), the set, P (X), of all paths, α :
[0, 1]→ X, which start at x0, so α(0) = x0, can be given a natural topology so
that the map, p : P (X) → X, given by p(α) = α(1), is a fibration, called the
path fibration of X, and the fibre at x0 is the space, Ω(X), of loops at the base
point of X. (It is usual to write Ω(X), for simplicity.)

c) The third example is rather a way of making more examples than one
itself. If p : E → B is a fibration and f : X → B a continuous map, then in the
pullback square:

f∗(E) //

f∗(p)

��

E

p

��
X

f
// B

f∗(p) : f∗(E)→ X is a fibration.

Using these we can shed more light on one version of higher dimensional
analogues of covering spaces. Given any CW-space, X, and any n > 0, we can
construct a space, X(n), containing X as a (closed) subcomplex, and such that
(i) for all k, 0 ≤ k ≤ n, the induced homomorphism from πk(X) to πk(X(n))
is an isomorphism45 and (ii) πk(X(n)) is trivial for k > n46 Now take the
path fibration, P (X(n)) → X(n), and restrict it to X by pulling back along
X → X(n). The resulting fibration will be written X〈n〉 → X, and it is easy to
show that X〈n〉 is n-connected. Its other higher homotopy groups are the same
as those of X.

If we go back to the case n = 1 and assume that X is connected, then
X(1) will have just one non-trivial homotopy group, π1(X(1)) ∼= π1(X), and
πk(X〈1〉) = 1 if k = 1 and is isomorphic to πk(X) for k > 1. In other words,
X〈1〉 → X is like the universal cover, and, in fact, its fibre is homotopically
equivalent to the underlying set of π1(X).

Often X〈n〉 → X is called the n-connected cover of X, but it is not a covering
space, although it has many properties that are analogous to those of classical
covering spaces, so perhaps a little care has to be taken with the terminology47.

4.3 n-truncation

We now turn to the type of morphism exemplified by X → X(n) above. This
mapping kills off any information encoded in the homotopy groups of X above

omitting the details, there is a ‘homotopy’ action of the fundamental groupoid of the base, B,
on the set of fibres. In particular, π1(B, b) acts on πk(Fb) for all k > 0. The homotopy groups
of a fibre, the total space and the base of a fibration are linked by a long exact sequence; see,
for instance, Hatcher, [35], p. 376.

45We will meet such maps shortly and in more detail.
46 ..., such spaces are said to be n-coconnected in some of the classical literature, but are

also called n-truncated.
47The above construction is quite tricky to make into a functorial one as it involves con-

structing X(n), which usually involves choices, but the corresponding problem for simplicial
sets has a neat functorial solution using the idea of a coskeleton, that can be found in standard
texts on simplicial homotopy.
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level n. It truncates the homotopy type at dimension n.
Adapting the definition and terminology of weak equivalences, we say a

continuous map, f : X → Y , is a homotopy n-equivalence (or simply an n-
equivalence) if it induces an isomorphism, πk(f) : πk(X) → πk(Y ) for k =
1, . . . , n. Two spaces, X and Y , are said to have the same n-type if there is a
zigzag of n-equivalences joining them. By this we mean that there is a diagram
of form:

X = X(0) → X(1) ← . . .← X(2k) = Y

with all the maps n-equivalences.48

As we mentioned in the previous section, for any space X, we can build
another space, which we denoted X(n), together with an n-equivalence, X →
X(n), such that πk(X(n)) = 0 for k > n49. For this sort of space, it can be very
much easier to understand what the ‘spaces as∞-groupoids’ paradigm looks like,
whilst our previous discussion indicates that there are ways of ‘decomposing’ a
general CW-space, X, into an n-connected piece and an n-type, via a fibration.
These ideas, in the main, were already present in Whitehead’s conception of
Algebraic Homotopy and do not, initially, seem that connected to the ideas of
higher category theory. Turning to the models for homotopy n-types, however,
we will start to see the beginnings of a link with ∞-groupoids via various types
of higher dimensional groupoid encoding more information on a homotopy type,
and, to aid this, we will explore n-types and their algebraic models in a bit more
detail.

4.3.1 1-types and groupoids:

For n = 1, the only non-trivial homotopy group would be π1(X). A 1-type thus
corresponds to an isomorphism class of groups. This is not quite all however.
The spaces we are looking at are connected, so if we choose any base point, we
will get the fundamental group of that pointed space, and if we change base
point, we will get an isomorphic fundamental group. The isomorphism between
them will be given by a path from one base point to the other, and different
paths will usually give different isomorphisms. Because of this, it is better to use
the fundamental groupoid of the space, Π1(X), even if the space is connected.

For any group (or groupoid), G, we can find a space, a classifying space, BG,
with that group as its fundamental group and no other non-trivial homotopy
groups, so a group(oid) yields a 1-type, modelling algebra by topology50; see, for
instance, the treatment by Baues in [6], page 18. This illustrates an important
aspect / theme of this general program: to extract algebra from a space and to
build a space from algebraic data.

Looking back, we can see a vague idea emerging when going from the case
n = 0 to n = 1. In forming π0(X), we put an equivalence relation on X, relating
two points if there is a path joining them. It is thus the existence of a path that

48A weak equivalence is an n-equivalence for all n, so we can think of any n-type as being
made up of lots of weak homotopy types. Each of these will consist of spaces with the same
homotopy groups up to the nth one but after that they will, in general, be different.

49Such a space with vanishing homotopy groups above the nth one is itself often called a
homotopy n-type, although strictly speaking from the definition that we have given that is an
abuse of terminology.

50The classifying space of a groupoid is most usually taken to the geometric realisation of
the nerve of that groupoid, but can also be constructed starting from a presentation of the
group(oid).
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counts at this stage, not the actual paths. In forming Π1(X), the paths joining
the points are promoted to being of value in themselves. They become more
‘centre stage’. We do not just consider two points of X equivalent because a
path exists, rather we seriously look at all the paths between them51 and ask
when those paths are, themselves, to be thought of as being ‘equivalent’ by some
‘higher path of paths’, i.e., by the existence of a homotopy.

In general, an equivalence relation encodes a (special type of) groupoid,
but general groupoids encode more information ‘stored’ in their vertex groups,
telling us about the ‘automorphisms’ of the object at which one is looking52. Of
course, in an equivalence relation thought of as a groupoid, those vertex groups
are trivial.

We can probe that ‘vague idea’ a bit more. What would be the result if we
took the equivalences between paths seriously as well, more-or-less considering
them as ‘reasons’ that two paths are equivalent and thus would be ‘identified’
in the fundamental groupoid? We can find this sort of idea in algebra to some
extent. In the theory of groups, it is not equivalence relations on a group,
G, that are useful, but rather congruences. These have compatibility with the
multiplication built in. They are ‘internal’ equivalences within the category
of groups and, of course, can be usefully handled by looking at the subgroup
of G consisting of those elements which are ‘congruent’ to the identity. In
that way, the congruence is encoded by a normal subgroup. Our ‘vague idea’
about ‘reasons between reasons’ and also of replacing ‘equivalence relations’ by
‘groupoids’, so as to encode non-trivial automorphisms of objects, suggests that
it is natural to extend ‘internal equivalence relations’ to ‘internal groupoids’, ....,
but note that this is quite natural when coming from the situation with paths
and is not just some abstract generalisation for the sake of it.

That ‘natural’ progression was not quite the way that the theory developed
in the 1940s and 1950s. The reason would seem to be that the notion of groupoid
was not that obviously useful for researchers having a good working knowledge
of group theory. Groupoids had been introduced by Brandt in 1926, but his
use was in other areas of algebra than those adjacent to topology. Schreier
did make explicit use of them in topology in 1927 and Reidemeister included
the construction of the fundamental groupoid in his book of 1932, but they
were still not considered that useful by other topologists. The interaction of
the fundamental group(oid) concept and spatial aspects of combinatorial group
theory, as developed by Reidemeister for applications in knot theory53 seems to
have been central to that work. (This is explored by Krömer in the already cited
paper, [41].) This work in combinatorial group theory mirrored, in an algebraic
context, ideas that were emerging54 in homotopy theory which directly related
to the idea of calculating homotopy groups from combinatorial models of a
space. These advances, however, used the ‘normal subgroup’ side of the picture
rather than the ‘congruence’ one.

51... perhaps thinking of the paths as the different ‘reasons’ that the points are to be
‘equivalent’.

52This idea of a groupoid is thus very useful in classifying situations in which objects have
important local symmetries. Often it is useful to replace a quotienting operation by the
formation of a groupoid for this reason.

53Many early invariants of knots were derived from homotopical invariants of the comple-
ment of the knot, via group presentations of its fundamental group, such as those developed
by Dehn and Wirtinger.

54e.g., Whitehead’s paper, [67], of 1941.
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4.3.2 2-types, crossed modules and 2-group(oid)s:

The developments that led to an understanding of models for 2-types came from
three closely related areas: combinatorial group theory, homotopy theory itself
and group cohomology. (We will not go into the third here, other than to say it
relates to the homotopy theory of the classifying space of a group.) The first two
of these correspond to ideas that were already there in Poincaré’s approaches to
the fundamental group that we mentioned earlier. We will explore a little the
path that led from the case of ‘1-types / groups’ to ‘2-types / crossed modules
and 2-group(oid)s’ as this shows the start of a shift of focus towards groupoid
methods and then to ‘higher dimensional groupoids’. The historical develop-
ment of the ‘new’ concepts of crossed modules and 2-groupoids starting from
more ‘classical’ notions shows clearly the beginnings of the progression from a
low dimensional notion of ‘space’ encoding simple relationships between ‘points’
to one encompassing many dimensional relationships, i.e., higher categories and
groupoids.

The nearest of these ideas to the further development of the ‘vague idea’
comes from Reidemeister, and later Peiffer55, working on ‘identities among rela-
tions’ of presentations of groups. Given a group, G, it is often usual and useful
to label the elements by some alphabet of generators, and then to say which
‘words’ in the symbols of the alphabet correspond to the same element of the
group. In more usual terms, one gives a presentation, P = 〈X : R〉, of G, where
X is a set of generators, often thought of as a subset56 of G, and R, a subset57

of the free group, F (X), on X. The elements of R are often called ‘relators’ or
‘relations58’. Reidemeister started looking at ‘identities among relations’ in the
following sense. There is a morphism, ϕ : F (X)→ G, given by evaluating each
generator as an element of the group and the kernel of ϕ is the normal closure
of R, so as was said above, the elements of Kerϕ are ‘consequences’ of R, and
thus are words made up of conjugates of relators and their inverses. To study
these, we could form a free group on symbols for these conjugates and then see
if there were relations between them, that is, ‘relations between the relations’.
That sounds like our ‘vague idea’ coming near the surface again, and it is. It is
also has a topological aspect to which we turn next.

We will first need another classical definition, namely that of the relative
homotopy groups of a (pointed) pair of spaces. We postpone a more detailed
description of these to an Appendix (starting on page 31) to this section, but
for the moment it suffices to say they give homotopy groups for pairs of base-
pointed spaces, (X,A), together with natural homomorphisms linking them with
the homotopy groups of X and A; for a full treatment see Hatcher, [35], p. 343,
or many other texts on homotopy theory.

In 1941, Whitehead examined a problem that is clearly related to the idea
of specifying a space, or building it, by iteratively attaching cells to ‘lower
dimensional’ parts as in a simplicial or CW-complex. He asked what would

55This research would seem to have been done early in the 1940s, but publication was
delayed until 1949; see [61] and [55].

56..., but that can sometimes be inconvenient,
57The congruence on F (X) which identifies words, i.e., elements of F (X), if they represent

the same element of G, corresponds to the normal subgroup of F (X) generated by the elements
of R and all their conjugates. The words in the elements of R and their conjugates are called
‘consequences’ of R. The ‘relators’ in R thus help us to understand the congruence.

58 ... although that latter term is a bit confusing in our context.
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happen to the invariants, and in particular the homotopy groups, if extra cells
were added to such a complex. The key set-up is thus a space, A, to which one
attaches (‘glues on’) some cells to get a new space, X. Knowing information on
the homotopy groups of A, and how the new cells were attached, what can be
said about the homotopy type of X and the corresponding invariants? Before
discussing the structure that he revealed, let us see why this is related to the
question of identities among relations.

Suppose P = 〈Y : R〉 is a presentation of a group, G, then we can form
a CW-complex, K(P), having a single vertex, with 1-skeleton consisting of a
collection of pointed loops or circles, one for each generator (and indexed by the
set, Y ), all attached at their base points to that single vertex. (This will make
up our space A, in this case.) The fundamental group of A is a free group59 on
the set Y . Each relation, r ∈ R, corresponds to (the homotopy class of) some
map fr : S1 → A, and we use fr to attach a 2-cell to A. Doing this for all r
gives us a 2-dimensional complex, K(P), which is the X in our statement of
the general problem that Whitehead considered. (This is the start of a process
that can lead to a small complex having the homotopy type of the classifying
space60, BG, of G.) The relative homotopy group, π2(X,A), and the boundary
map, ∂ : π2(X,A) → π1(A), encode interesting and useful information about
the presentation and the group, G. The kernel of ∂ is isomorphic to π2(X), and
can be interpreted in the case of K(P) as the G-module of identities amongst
the relations of the presentation.

Whitehead’s 1941 paper examined the general case and, in the situation, as
here, of attaching 2-dimensional discs to a complex A, he identified the structure
of the algebraic object, (π2(X,A), π1(A), ∂), encoding the way the cells were
attached61. This algebraic structure was what is called a crossed module62.
Just as replacing an equivalence relation by a groupoid encoded more of the
spatial structure of paths in a space, so replacing a congruence in the form of a
normal subgroup by a crossed module, continues that ‘vague idea’ corresponding
to replacing the ‘congruence’, thought of as an internal ‘equivalence relation’ by
an internal ‘groupoid’ and, yes, crossed modules do correspond to a form of
‘2-groupoid’, as we will see.

In 1949 - 50, Mac Lane and Whitehead, [49], combined these ideas with
some from group cohomology to show that 2-types corresponded to these crossed
modules63. We will give the definition and some basic, but important, examples,
but will not develop the theory here.

Definition: A crossed module, (C,G, δ), consists of groups, C and G, with
a (left) action of G on C, written (g, c) → gc for g ∈ G, c ∈ C, and a group
homomorphism, δ : C → G, satisfying the following conditions:

(1) for all c ∈ C and g ∈ G, δ(gc) = gδ(c)g−1,

59The elements of π1(A) are homotopy classes of paths that go around the loops, and a
word in Y can be used to encode the order in which this happens.

60The data needed to build such a small complex and thus to encode the homotopy type
of BG may be finite, even when the group G is infinite. This is important for understanding
properties of G.

61In [67], Whitehead considers and solves the problem for the case of general n-dimensional
discs, but, for the immediate story here, the n = 2 case is the most important.

62The term seems first to have been used by Whitehead about that time.
63Warning: the definition of n-types has changed since that date, so their ‘3-types’ are now

usually called ‘2-types’.
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and
(2) for all c1, c2 ∈ C, δ(c2)c1 = c2c1c

−1
2 .64

Examples65: (i) Suppose that δ is just the inclusion of a subgroup of G, and
that the action of G on that subgroup is by conjugation, then to say (C,G, ∂)
is a crossed module just says that C is a normal subgroup of G, thus a normal
subgroup yields a crossed module. (As we suggested above, a crossed module
is, from this viewpoint, a generalisation of a normal subgroup in which we ditch
the requirement of ‘being a subgroup’ !)

(ii) At the other extreme, if δ is the trivial homomorphism, then C will be
Abelian and is just a G-module.

4.3.3 2-groupoids, crossed modules and the Mac Lane-Whitehead
theorem.

Much later than the Mac Lane - Whitehead result on 2-types, some time about
1965, Verdier noticed that crossed modules corresponded to what would now
be called ‘2-groupoids’, that is, 2-categories66 in which every 1-arrow and ev-
ery 2-arrow is invertible. Crossed modules of groups, as we have defined them
above, correspond to 2-groups, that is 2-groupoids with exactly one object. This
relationship was rediscovered by Brown and Spencer in 1972, see the introduc-
tion to [12], and a closely related result appeared, at about the same time, in
the thesis, [63], of Grothendieck’s student, Hoàng Xuân Śınh. Her result, and
Verdier’s original one, relate to non-Abelian cohomology and the representation
of cohomology classes, and this theme comes in later in some of Grothendieck’s
letters to Breen.

The method of going from crossed modules to 2-groups is quite simple. It
is a simple extension of the way one replaces a congruence on a group by a
normal subgroup, without loosing information. Here it will be relegated to the
footnotes67, so as not to interrupt the main flow of ideas. It does depend on

64There is a fairly obvious many object / non-connected version of this.
65We direct the reader to the literature for more examples and the development of the

elementary theory of crossed modules. These can be found in the book, [11], and in numerous
other sources, both surveys and original articles.

66We will look at 2-categories and 2-groupoids in a bit more detail very shortly in section 4.5.
Here we only need the idea that 2-categories are like categories, but with objects, morphisms(=
1-arrows) between them and, in addition, 2-arrows between (parallel) 1-arrows.

67Given a crossed module, C = (C,G, δ), (of groups), the corresponding 2-category, denoted
X (C) here, has a single object, which we will denote ∗, the set of 1-arrows from ∗ to itself is the
set of elements of G, with composition being its multiplication, the set of 2-arrows is the set
of pairs (c, g), but with horizontal composition given by the multiplication of the semi-direct
product group, C o G. The 1-source of a 2-arrow (c, g) is g, whilst its 1-target will be δc.g.
This makes it look a bit like:

∗

g

��

δc.g

??�� (c,g) ∗ .

(That this picture looks like two paths / loops and a homotopy between them is, of course,
more than coincidental!)

Coming back from 2-group(oid)s to crossed modules is now easy. You look at the 1-arrows
as the bottom group of the crossed module, and then the top group will be the group of
2-arrows with source the identity element of the group of 1-arrows. (That looks hopeful for a
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having some idea of what a 2-category is, but is otherwise quite simple. We will
discuss various simple ideas about 2-categories and related structures slightly
later, see section 4.5.

The result of Mac Lane and Whitehead thus says that 2-types correspond to
2-groupoids. There is, however, a ‘but’. The classification of crossed modules /
2-groupoids that it needs is not that of ‘up to isomorphism’, rather it uses an
algebraic form of homotopy equivalence, adapted for crossed modules. In fact,
an even better way to think of it is that the category of 2-types should have
a 2-category structure as should that of crossed modules, in which the 2-cells
encode the homotopies.

We can use the relative homotopy groups that we met earlier to give the
explicit functor from simplicial (or CW-) complexes to crossed modules, and
which is the basis for the Mac Lane - Whitehead result. We assume that K
is a simplicial or CW-complex and in our relative crossed module of a pair
(X,A), we take A to be K(1), the 1-skeleton of K, and so get a crossed mod-
ule, (π2(K,K(1)), π1(K(1)), ∂), from the complex. This looks very good as an
invariant of the CW-space, K, until one realises that it depends on the speci-
fied combinatorial structure of the complex and thus on the ‘triangulation’ or
‘cellular decomposition’ of the space, rather than just on the topological struc-
ture of the ‘space’, K. It is an analogue of Poincaré’s combinatorial defini-
tion of the fundamental group, but does depend more on the combinatorial
structure. A subdivision of the (simplicial) complex structure will give another
non-isomorphic crossed module. What Mac Lane and Whitehead do in [49]
is to analyse how such a combinatorial change is reflected by a ‘combinatorial
homotopy’ of crossed modules68.

Crossed modules are, thus, the ‘slimmed down’ encoding of a 2-group(oid),
and we have associated a 2-groupoid to a (CW-) space, albeit by choosing a
CW-structure on it.

4.3.4 n-types for n ≥ 3

The story of ‘modelling’ n-types was really only continued in the 1980s by
Loday, [46], (see also Bullejos, Cegarra, and Duskin, [13] and my own, [58]).
Loday introduced generalisations of crossed modules and 2-groupoids valid ‘for
all n’. His models were strict n-fold groupoids, a slightly different form of
‘multiple groupoid’ than we will be considering, but still an indication of that
somewhat elusive link between spaces and ∞-groupoids. Loday was able to use
‘strict’ objects because his models are very ‘spread out’69. We have not the

generalisation to higher dimensions!)
68Note the date and title of Whitehead’s two papers, [68, 69]. He envisaged, as part of

algebraic homotopy, a ‘combinatorial homotopy’ which would extend ideas and methods of
combinatorial group theory to higher dimensions. The introductions to these papers contain
important reflections on homotopy types, and algebraic models for them.

69For instance, for 3-types, the structure corresponding to the extra data required for en-
coding ‘weak’ 3-groupoids, for instance, is given by his h-maps which are derived from com-
mutators in the group structures.

Two ‘criticisms’ of Loday’s models are that (i) from the point of view of ‘spaces’, their
interpretation is, perhaps, less intuitive than one initially might hope for, and (ii) it is not
clear if there is a way of adapting the theory to handle the case of n = ∞. (This may be
just a question of looking at the structures in the ‘right way’, but that ‘right way’ is not yet
obvious.)
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space here to describe Loday’s construction in more detail, although it leads to
some interesting points relevant to our themes70.

We should also mention Conduché’s notion of 2-crossed module; see Con-
duché, [17], and the closely related notion of quadratic module, due to Baues,
[5], but will not give details as that would require some bcakground that we
have not assumed. Both provide models of connected 3-types.

4.4 Beyond 2-types towards infinity groupoids, from a
classical/strict viewpoint

From our point of view, the Mac Lane - Whitehead result shows 2-types and
2-group(oid)s are closely linked. Whitehead’s Combinatorial Homotopy papers,
[68, 69], also talked of algebraic models that provide (usually incomplete) infor-
mation in all dimensions. Surprisingly enough these also have an interpretation
in terms of ∞-groupoids, but we will take a slightly leisurely approach using
Whitehead’s classical homotopy theoretic machinery rather than going directly
to the ∞-groupoid model71.

The use of the relative homotopy groups by Mac Lane and Whitehead, and
the resulting crossed module used to model a 2-type, fits into another sequence
of models which link into a classical construction due to Blakers, (1948), and
which was developed further by Whitehead (1949) and then by Brown and
Higgins, Baues and others72 from the 1970s onwards.

As a first step towards them, we look at the chains on the universal cover
of a CW-complex. This was one of the classical tools used by Whitehead in his
key papers. This allows us to state a result that illustrates some of Whitehead’s
ideas simply and clearly.

First a little background, we mentioned the universal covering space, X̃, of
a (nice) space, X. If X has a CW-complex structure, then the local homeomor-
phism property of covering maps allows one to obtain a CW-complex structure
on X̃ for which the covering map, p : X̃ → X, is a cellular map.

Any CW-complex, X, gives rise to a complex, C(X), of ‘cellular chains’,
(see Hatcher, [35]), and, for the universal cover, X̃, the action of π1(X) on that
space transfers to the chain complex, C(X̃), of chains on the universal cover,
giving it the structure of a chain complex of modules over π1(X), that we will
again use shortly. (We will denote the homology of this complex by H∗(X̃).)

To show the relevance of this for our ‘quest’ for algebra mirroring homotopy,
we note the following theorem of Whitehead:

70There is a topological interpretation of the construction that Loday uses and which pro-
vides an interesting insight on the whole question of what ‘spaces’ are. Loday does not work
with a pair, (X,A), of spaces as such, rather he converts the inclusion A ↪→ X into a fibration,
A→ X, with A being the space of paths in X that start in A.

Given any (pointed) fibration p : E → B, with fibre F = p−1(b0), it is not hard to see that
there is an action of π1(E) on π1(F ), and that the inclusion inc : F ↪→ E induces a morphism,
π1(inc) : π1(F ) → π1(E), which satisfies the crossed module axioms. Better than that, on
converting this to the corresponding 2-groupoid, you get that there is a structure of a weak
2-groupoid on the pullback of E with itself (over B). (This seems to have been first noticed
by Deligne, see Friedlander’s paper, [26].)

Loday’s general construction takes a (fibrant) (n+ 1)-cube of fibrations and constructs an
n-fold groupoid from it.

71Note that this is algebraic topology from the end of the 1940s, but is not that well known.
72For more detail on the history of this, see [11], p. 255, note 96. These models, which are

called crossed complexes, are equivalent to a special class of ∞-groupoids.
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A map, f : X → Y , of (pointed connected) CW-complexes is a homotopy
equivalence if, and only if, the induced homomorphisms, π1(f) : π1(X)→ π1(Y )
and Hn(f̃) : Hn(X̃)→ Hn(Ỹ ), for all n ≥ 2, are isomorphisms.

We thus have not only do the homotopy groups constitute a system of al-
gebraic invariants sufficiently powerful to characterise the homotopy type of a
CW-space, but so does the combination of π1 and the homology of the uni-
versal covering space. Importantly, however, this does not mean that it solves
all the basic problems of ‘algebraic homotopy’. We could have isomorphisms,
φn : πn(X) → πn(Y ), of all the homotopy groups of two spaces, or of the ho-
mology of their universal covers, but would not know if there was an f : X → Y
realising these φn.

On the other hand, the question about how dimension of a complex might
be reflected in the models is here very easy to resolve. If X is a CW-complex
of dimension k, then so is X̃, and as the generators of C(X̃) in dimension n are
the n-cells, we immediately have that C(X̃) is trivial in dimensions greater than
k. Whitehead used this in his two papers on Combinatorial Homotopy, [68, 69],
to show that the cellular chain complex of the universal covering does act as an
‘algebraic equivalent’ of a 3-dimensional polyhedron, so here the algebra does
reflect a lot of the geometry of the space.73

The compatibility conditions that would be needed between the input data74

must thus be part of the key to understanding the structure of homotopy types.
Baues, in [6], calls the problem of finding necessary and sufficient conditions
for this, the realisation problem of Whitehead. For any system of algebraic
invariants, there will be a similar realisation problem75. In an attempt to study
these, Whitehead introduced another algebraic model, which is nowadays called
a crossed complex. These crossed complexes are equivalent to a special class of
∞-groupoids in the same way that crossed modules are an equivalent algebraic
model to 2-groupoids. We will merely give the idea of the definition, referring
to [11] for much fuller information.

A crossed complex is a chain complex of groups (or groupoids), (Cn, ∂),
where Cn is defined for n > 0,

. . . Cn
∂−→ Cn−1

∂−→ . . .
∂−→ C3

∂−→ C2
∂−→ C1,

in which there is an action of C1 on all the terms, with ∂ respecting that action,
(C2, C1, ∂) is a crossed module and, for n ≥ 3, Cn is Abelian, and, in fact, is a
C1/∂C2-module.

This ‘model’ will therefore have something of a crossed module / 2-type in it
and, as that crossed module has ‘fundamental group’ C1/∂C2, it has something
of the ‘chains on the universal cover’ model that we saw just now. It is a natural
abstraction from the following motivating example in which the two parts fit
exactly as required.

73It is an interesting question to see the explicit relationship between these results and
models of such spaces by ∞-groupoids. (Perhaps this is known, but I cannot recall seeing
such a study.)

74in the above case, the φn and the actions,
75The problem is discussed in detail in that source, so we will not repeat here what is said

there.
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Example: Let K be a CW-complex and, for each n, let K(n) denote its
n-skeleton76. We set, for n ≥ 2, Cn = πn(K(n),K(n−1), x0) and, when n = 1,
we just take C1 to be the fundamental group of K(1). The boundary ∂ will be
the composite,

πn(K(n),K(n−1), x0)→ πn−1(K(n−1), x0)→ πn−1(K(n−1),K(n−2), x0).

As we have indicated earlier, π1(K(1), x0) will act on all the higher relative
homotopy groups77 in the complex, and this gives a crossed complex.

This still seems very far from ∞-groupoids. (Historically we are still in the
late 1940s or early 1950s!) The category of crossed complexes (over groupoids)
is, however, equivalent to a category of strict78 ∞-groupoids, [10]79. We can
think of these ‘∞-groupoids’ as having not only objects and arrows, which will
have ‘inverses’, as with an ordinary groupoid, but also having invertible 2-arrows
/ 2-cells joining the (1-)arrows, invertible 3-arrows joining certain pairs of 2-
arrows, and so on. Once again our ‘vague idea’ is coming into evidence.

We cannot give the detailed description of the equivalence between these ob-
jects and crossed complexes here, but note that if we have a strict ∞-groupoid,
H, then the module of n-cells in the associated crossed complex is the group of
those n-cells of H, whose (n−1)-source is an (n−1)-fold identity. This thus gen-
eralises the way we mentioned of getting from a 2-group to a crossed module80.
Note that these strict ∞-groupoids do not answer the general Whitehead’s ‘al-
gebraic homotopy’ problem however. The point is well made in the book by
Brown, Higgins and Sivera, [11], (‘Why crossed complexes?’ page xxvii). Quot-
ing that source:

Crossed complexes give a kind of linear model of homotopy types
which includes all 2-types. Thus although they are not the most gen-
eral model by any means (they do not contain quadratic information
such as Whitehead products), this simplicity makes them easier to
handle and to relate to classical tools. The new methods and re-
sults obtained for crossed complexes can be used as a model for more
complicated situations.

It is this very ‘linearity’ which means crossed complexes do not trap the whole
of the information on the homotopy type. It also means that they correspond
to a strict ∞-groupoid and not the fully general type of ∞-groupoids. For
the relevance of this to Whitehead’s realisation problem, this means that just
as the chains on the universal cover do not capture the whole of the 2-type
structure, although the fundamental crossed complex captures the 2-type, it
does not capture the 3-type. Going further, Baues, [5], defines a ‘quadratic’

76For simplicity, we will assume that K is ‘reduced’, so is connected and, in fact, K(0)

consists of just one point, x0. This means we can limit ourselves to groups rather than
groupoids, which, although more natural, do require a bit more ‘setting up’ if they are to be
handled well.

77Recall these are looked at in more detail in the Appendix to this section
78The meaning of strict should become apparent shortly.
79This was discovered by Brown and Higgins in their study of higher dimensional analogues

of van Kampen’s theorem; see [11] for a full treatment and discussion of that theorem.
80or from a congruence to the corresponding normal subgroup.
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model (quadratic complexes), but whilst it captures the 3-type, . . . , and so
on81.

4.5 From ‘2- ’ heading to ‘infinity’, from Grothendieck’s
viewpoint.

To jump from the fundamental group and covering spaces, or from crossed
complexes, all the way to

spaces ↔ ∞-groupoids
seems a very high step to jump. The next stage in understanding that link, both
historically and conceptually, is via various intermediate stages that indicate
that there is something to jump to! As a first small step, we need to gain some
idea about infinity categories and groupoids in the sense needed later. In so
doing, we will also encounter some other useful ideas.

The ∞-groupoids that we will be meeting later will not usually be ‘strict’,
i.e., they will be infinite dimensional analogues of bicategories, with all arrows in
all dimensions being ‘weakly invertible’ so we should first glance at bicategories
as being the simplest such ‘weak’ context. (We will only give a sketch as usual,
leaving the reader to follow up links to the literature. Introductions can be
found in Leinster, [44], and Lack, [42], for instance.)

A (strict) 2-category, A, is a category enriched over the category of small
categories, so each ‘hom’ A(x, y) is a small category and the composition,

A(x, y)× A(y, z)→ A(x, z),

is a functor. Composition is associative, so given objects, w, x, y, z, the square
of functors,

A(w, x)× A(x, y)× A(y, z) //

��

A(w, x)× A(x, z)

��
A(w, y)× A(y, z) // A(w, z),

is commutative; similarly for the identities. We have already seen some 2-
groupoids above, and they are, of course, the corresponding structures in which
the A(x, y) are groupoids and also there is an inversion operation from each
A(x, y) to the corresponding A(y, x) satisfying some hopefully obvious axioms.

In a bicategory82, B, although the basic structure looks the same, the cor-
responding diagrams are only required to commute up to specified natural iso-
morphisms. An important special case is that in which B has just one object.
Such bicategories correspond to the monoidal categories that are wide-spread
in algebraic contexts83.

It is fairly easy to define the notion of a strict ∞-category, generalising that
of strict 2-categories, and thus to define strict ∞-groupoids as being a special

81What is not always that clear is how the extra structure at each stage corresponds to
adding in ‘weakness’ into a notion of ∞-groupoid, bit by bit.

82Note that the terminology is perhaps slowly changing from that used initially in this area
and, as these bicategories are seen as being more natural and significant than the strict form,
the term ‘bicategory’ is now often replaced by ‘2-category’ with the older meaning of that
latter term corresponding to ‘strict 2-category’.

83As was mentioned earlier, a category with one object is essentially just a monoid. A
bicategory, B, with just one object, ∗, will have a category, B(∗, ∗), forming the endomorphisms
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class of such. Such strict ∞-groupoids correspond to crossed complexes84. We
will need the weak form of ∞-category, and that, in some sense, is much harder
to ‘get right’. There are, perhaps, two main problems here: (i) how ‘weak’
should this be? Do we just weaken things like associativity, and the need for
composition to be a functor, or do we also weaken composition to being ‘exis-
tence of a composite’ up to higher homotopies? and (ii) do we base things on
globes, simplices, cubes or what?

We must now look to the 1970s when Grothendieck exchanged a series of
letters, [27–29], with Larry Breen. In these he sketched out a theory of objects
that he called ‘n-stacks’ and of the possible analogue of the Galois-Poincaré
theory, (see [33]), in higher dimensions. We will return to that later, but, for
the moment, we will just note that this series of letters resurfaced in February
1983, being mentioned in the ‘letter to Quillen’, which formed the first six pages
of Grothendieck’s epic manuscript ‘Pursuing Stacks’, [32]85.

To set the scene for that, Ronnie Brown had just sent Grothendieck some of
the preprints produced in Bangor, in which ideas on (strict) infinity groupoid
models (thus crossed complexes) for some aspects of homotopy types were dis-
cussed. Grothendieck wrote to Quillen:

At first sight, it seemed to me that the Bangor group had indeed
come to work out (quite independently) one basic intuition of the
program I had envisaged in those letters to Larry Breen – namely
the study of n-truncated homotopy types (of semi-simplicial sets, or
of topological spaces) was essentially equivalent to the study of so-
called n-groupoids (where n is a natural integer). This is expected
to be achieved by associating to any space (say) X its ‘fundamental
n-groupoid’ Πn(X), generalizing the familiar Poincaré fundamental
groupoid for n = 1. The obvious idea is that 0-objects of Πn(X)
should be points of X, 1-objects should be ‘homotopies’ or paths be-
tween points, 2-objects should be homotopies between 1-objects, etc.
This Πn(X) should embody the n-truncated homotopy type of X in
much the same way as for n = 1 the usual fundamental groupoid
embodies the 1-truncated homotopy type. For two spaces X, Y , the
set of homotopy classes of maps X → Y (more correctly, for general
X, Y , the maps of X into Y , in the homotopy category) should cor-
respond to n-equivalence classes of n-functors from Πn(X) to Πn(Y )
–, etc. There are very strong suggestions for a nice formalism includ-
ing a notion of geometric realization of an n-groupoid, which should
imply that any n-groupoid is n-equivalent to a Πn(X). Moreover

of ∗ and then a functor
B(∗, ∗)× B(∗, ∗)→ B(∗, ∗),

which is then the tensor product, ⊗, of the corresponding monoidal category. This argument
can be reversed, so any monoidal category can be thought of as a single object bicategory.
The monoidal category is strict exactly when the bicategory, B, is a 2-category.

84The process of passing from a strict ∞-groupoid to a crossed complex is a natural gen-
eralisation of the one we sketched earlier for 2-groupoids. One takes kernels of the source
maps.

85It is worth remarking that, both here and later, Grothendieck refers to some ideas coming
from algebraic geometry and non-Abelian cohomology, but our use of these texts will not
require any real knowledge of that area. It just feels strange to cut up the quotation in an
attempt to make a text without such mentions.
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when the notion of n-groupoid (or more generally of an n-category)
is relativised over an arbitrary topos to the notion of an n-gerbe (or
more generally, an n-stack) these become the natural ‘coefficients’
for a formalism of non-commutative cohomological algebra, in the
spirit of Giraud’s thesis.

Later in the letter, he noted that these n-categories would have non-assoc-
iative compositions including ‘whiskerings’ (as they are now called) of all types,
but that the non-associativity would be up to a cell in the next higher dimension.
This is one of the points of the idea of ‘weak’ as against ‘strict’ in these n-
categories and groupoids. The composition would be associative ‘up to higher
cells’, just as path composition is associative up to specified homotopies; see
page 5. Likewise he points out that n-objects would be invertible up to an
(n+ 1)-object.

4.6 Appendix: more technical comments.

We will pick up the main ‘narrative’ in the next full section, but before that
will collect up, here, a few longer comments that may provide some more detail
or insight into things that we have been looking at, but which can safely be
skipped or skimmed on a first reading.

(a) Relative homotopy groups: We will give this in general as it can be
useful later on, even though, for our main use, it was only the case n = 2 that
is required86.

The nth homotopy group of a pointed space, (X,x0), can be defined in
another way from that we used above. In this alternative definition, it consists
of homotopy classes of maps of pairs, f : (In, ∂In)→ (X, {x0}), the homotopies
being through maps of the same form. In other words, the maps, f , send the
n-cube, In, to X in such a way as to send its boundary, ∂In, to the single point
x0, and the homotopies used must deform the way the interior is mapped whilst
not changing the behaviour on the boundary.

For the relative homotopy groups of a pair, (X,A), with A ⊆ X, and a
basepoint x0 ∈ A, we again use the n-cube, In, and think of it as I × In−1. Let
Jn−1 = {1} × In−1 ∪ I × ∂In−1, so consisting of all the faces of In except (the
interior of) {0} × In−1, then πn(X,A, x0) is defined to be the set of homotopy
classes of maps, f : (In, ∂In, Jn−1) → (X,A, {x0}) with homotopies being
through maps of the same form87.

Restricting such a map to {0}×In−1, we get an element of πn−1(A, x0), and
this assignment gives a homomorphism,

∂ : πn(X,A, x0)→ πn−1(A, x0).

The above groups ‘depend on the choice of base point’ in the same way as
we saw earlier. This means that, for a given n and a choice of basepoint, x0,
the groups, πn(X,A, x0), do not depend on x0 if A is pathwise connected, and

86Again, this will be a sketch, and for fuller details, the reader should ‘consult the literature’.
Fuller expositions can be found, for instance, in Hatcher’s book, [35], p. 343, and, especially
relevantly for us, in the book by Brown, Higgins and Sivera, [11], p. 35.

87We thus have all-but-one of the faces of the n-cube are sent to the base-point, whilst the
last face is sent into A. We will see a similar situation later when looking at simplicial groups.
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there is an action of the fundamental groupoid of A on the family of groups,
(πn(X,A, x0) | x0 ∈ A), which can contain valuable information.

(b) From chain complexes to crossed complexes: We have met, above, the
fundamental crossed complex of a CW-complex. Another type of crossed com-
plex comes from chain complexes of modules over a group G. Suppose G is a
group and (M, δ) is a (positively graded) chain complex of left G-modules. We
can form a crossed complex by taking C1 = M1oG, and Cn = Mn for n ≥ 2. We
then take all the ‘boundary’ maps, ∂ to be δ, except for ∂ : M2 →M1oG, which
sends m to (∂m, 1G). Finally we make (m, g) ∈ C1 act on higher dimensions
using just the action of g.

This construction, in fact, gives a functor from the category consisting of
such pairs, (G,M), to the category, CrsComp, of crossed complexes. This
functor has a left adjoint.

An especially important instance of this is when we apply that adjoint to
the fundamental crossed complex of a CW-complex. X. This gives a chain
complex of π1(X)-modules, which is isomorphic to the complex of chains on
the universal cover of X. There is, thus, a direct functorial construction going
from the fundamental crossed complex, π(X), of a CW-complex, X, to this
crossed complex88. Applying this, the crossed complex of a CW-complex must
be at least as good at distinguishing spaces and homotopy equivalences as is the
cellular homology of the universal covering because we can functorially derive
the latter from the former.

(c) What kind of homotopy types are completely captured by crossed com-
plexes? This is a very natural question to ask. Each time we find a ‘model’
such as these, we have two related questions. The first is: how good a model is
it? The other is: what kind of homotopy types are captured by the models, that
is, are completely modelled by a model of that type? That the two questions
are related is clear if we look at 1-types. The model of a 1-type is given by a
group. Two spaces cannot be distinguished by their ‘models’ if they have the
same fundamental group, so one might say the model is not that good (but in
fact it is still very useful!). A space is completely modelled by its fundamental
group if, and only if, all its other homotopy groups are trivial, but any space
has the same 1-type as a space whose higher homotopy groups, πk, for k > 1,
are trivial89, which shows how the two answers are connected.

That is quite easy and can, with a bit of work, be extended without much
change to 2-types, and even general n-types. A bit more work is needed to de-
scribe the homotopy types that correspond to crossed complexes. It is relatively
easy to show that there is a classifying space construction for crossed complexes
and that there is a continuous map, K → Bπ(K), from a complex, K to the
classifying space of its fundamental crossed complex. The question is thus of
determining when this map is a weak equivalence. We know that a homotopy
type leads to a crossed complex. What we hope for is to be able to say what
properties a homotopy type has if this encoding in terms of crossed complexes
is enough to give all the possible information, i.e., that the crossed complex
‘characterises’ the homotopy type.

There are higher order ‘pairings’ or ‘actions’ within the homotopy groups of a
space given by the Whitehead products, for which see Hatcher, [35], for example.

88This construction relates to certain well known notions (Fox derivative, Reidemeister-Fox
Jacobian of a presentation) from combinatorial group theory.

89X has the same 1-type as the classifying space of π1(X).
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It is not too difficult to see that the classifying space of a crossed complex
must have vanishing Whitehead products, but there are spaces which do have
vanishing Whitehead products yet require more structure than that encoded
in a crossed complex, in order to completely model their weak homotopy type.
The key to answering the problem lies elsewhere, within Whitehead’s theory90.

In [68], Whitehead introduces the notion of a Jm-complex as follows:
Let K be a (connected) CW-complex (with a 0-cell chosen as basepoint

for all the homotopy groups concerned). Let ρn := πn(K(n),K(n−1)) be the nth

relative homotopy group of the n-skeleton of K, relative to the (n−1)-skeleton91.
There is a natural homomorphism,

jn : πn(K(n))→ ρn.

Definition: The complex, K, is said to be a Jm-complex if jn is a monomor-
phism92 for each n = 2, . . . ,m. The complex is said to be a J-complex if it is a
Jm-complex for all m > 2.

He introduced the notation Γn(K) for the kernel of jn, so K is a Jm-complex
if Γn(K) is trivial for all n = 2, . . . ,m and is a J-complex is Γn(K) is trivial for
all n ≥ 2.

Theorem 1 Let K be a connected CW-complex. The natural morphism,

K → Bπ(K),

is a weak equivalence if, and only if, K is a J-complex. �

This result explicitly gives a characterisation of those homotopy types repre-
sentable by crossed complexes. It has appeared in several places in the liter-
ature, e.g. in [15], Corollary 2.2.7, or more recently, in [11], but these have
usually been slightly submerged in a mass of other results and so are not that
well known. Carrasco and Cegarra’s proof uses simplicial groups and is thus
quite algebraic93.

90... but he did not, in fact, prove the characterisation needed for our question.
91N.B. This is the nth-group, π(K)n, of the fundamental (reduced) crossed complex of the

space, K, filtered by skeleta that was mentioned above.
92Whitehead actually uses the term ‘isomorphism into’ rather than ‘monomorphism’.
93There is an important slightly technical point of interest here, relating to the fact that,

from a crossed complex, one can build a strict ∞-groupoid by a construction generalising
the way one constructs a 2-groupoid from a crossed module. We thus do get some infinity
groupoids using the relative homotopy groups and classical constructions from Whitehead’s
1950s papers, but they are strict and correspond to J-complexes. A question is: how does one
relate the J-complex condition explicitly to that categorical ‘strictness’? In low dimensions,
weak versions of ∞-groupoids are well known, and relatively well understood, and some of
them model, for instance, 3-types: see Joyal’s letter to Grothendieck, [38]. How does the
‘weakness’ of these models, expressed in purely categorical terms, explicitly correspond to the
non-vanishing of Whitehead’s Γ functors?
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5 Simplicial sets, higher combinatorics and ∞-
groupoids

We have given quite a lot of historical background in the earlier sections on the
lowest level ‘classical’ viewpoint. For the most part, that left us in the first half
of the 20th century. We have mentioned, above, quite a few ideas that arose
from work by Whitehead, in the 1940s and 50s94. Later on, these gave various
algebraic structures equivalent to some forms of (strict) ∞-groupoid.

5.1 Kan complexes and ∞-groupoids

Grothendieck’s sketch, which we saw earlier, is reminiscent of the construction
of the singular complex of a space. The difference being that it was based on
a globular intuition whilst the latter was simplicial, corresponding to the two
sides of Grothendieck’s ‘yoga’ from letters, [27–29], to Larry Breen, that will be
revisited shortly. I mentioned this idea in a letter, [57], to Grothendieck in June
1983. Explicitly I said “I believe, in fact, the ultimate in non-strict or lax ∞-
groupoid structures is already essentially well known (even well loved) although
not by that name. The objects to which I am referring are Kan complexes,
[...]. Here composition is not even strictly defined – given α, β ∈ X1, X a Kan
complex, one forms a composite by filling the horn,

β

��

α

??

in any way whatsoever. Two such fillers are homotopic, associativity is only
defined up to homotopy and so on.’

Grothendieck’s reply, a couple of weeks later, [31], raised several objections.
He felt, amongst other things, that composition should be defined as a function,
and that there should be just two boundary maps from each dimension giving
the source and target of each n-object. (This then led on to a discussion of ‘test
categories’ that will not be explored here, but does relate to the problem of the
choice of ‘test objects’ that we looked at earlier, page 12 and also below.)

These objections are at the same time serious and not that difficult to
counter, at least in part. (i) Firstly, the fact that ‘filling’ is not defined as
a function could be met by making it one! We could then make composition
‘algebraic’, adding enough formal composites into the Kan complex, then 2-
simplices between the formal composite and the corresponding horn, and so on.
One way of making this idea explicit has been done by Thomas Nikolaus, [53].
He has introduced a form of Kan complex with given fillers, which he calls al-
gebraic Kan complexes. There is also another way of doing this which links in
with more classical constructions of simplicial homotopy, namely by generating
composites freely in a certain sense, using a construction of Dwyer and Kan,
in such a way as to be able to compare ‘formal composites’ with ‘geometric
composites’. We will look at this in the next section.

94These ideas have been developed a lot further by Brown and Higgins, and also by Baues
in the work cited in the bibliography.
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(ii) The second objection is partially handled by exploring Grothendieck’s
sketched construction in detail, as is done by Georges Maltsiniotis in [50, 51]
and by Dimitri Ara, [1]95. This approach uses n-globes as the test objects.

This raises the interesting question of which test objects should one use; cf.
here page 12. Grothendieck preferred n-globes in some form. The difficulty
is that although n-globes correspond to the intuition most neatly and to the
occurrences of low dimensional versions in homological algebra and algebraic
geometry, the idea of (weak) composition is much more difficult to handle for
them. The use of n-cubes has a lot to recommend it (see the discussion in
[11]) especially for composition, but the resulting theory of cubical sets is less
well known and less well developed, so needs some development work to get to
where we are going. In both cases one would also like nicely behaved globular
or cubical nerves of categories, whilst in that context the simplicial case seems
to be very neat as we will see in the coming pages.

Picking up the point about composition, another reason for claiming a strong
link between Kan complexes and ∞-groupoids is the neat observation, usually
attributed to Grothendieck himself and that we made earlier, that the nerve of a
small category is a Kan complex if, and only if, the category is a groupoid. The
simplicial filling properties of the nerve do correspond precisely to the algebraic
structure of the composition in the category. The clearest and simplest example
of this is that, given a (2, 1)-horn, then the filler of that horn is the sequence
formed by that pair of arrows, viewed as a 2-simplex of Ner(C) and the missing
1-dimensional face is the composite of that pair. There is a unique filler for the
horn, and this uniqueness is unusual (and significant). The related property,
often known as the Segal condition, is also important, but will not be discussed
here96.

All this suggests that we could decide to take ‘Kan complex’ to be the idea
of ‘∞-groupoid’ that we would work with. In that case, the process of the pas-
sage from spaces to ∞-groupoids would just be the classical singular complex
functor, whilst the functor going in the other direction would be the geometric
realisation. Certainly this gives an equivalence of homotopy categories and, even
better, that equivalence is given by an equivalence of the homotopy theoretic
structure, interpreting that in the sense of Quillen’s theory of model categories,
either in its original form (from [60]) or in almost any of the refinements and
variants made since his initial idea. This however is not the whole picture. It
would not advance the study very much if that was all. The missing perspectives
include the objections that Grothendieck raised and the result of the interac-
tion of Grothendieck’s ideas and those of Whitehead’s algebraic / combinatorial
homotopy. Examining this brings up the ‘Homotopy Hypothesis’ (that we will
often call ‘the (HH)’), that, in the case of Kan complexes, is a classical theorem
of Milnor. This ‘hypothesis’ is really not one, but rather is a test for any puta-
tive definition of ∞-groupoid together with assorted ‘baggage’ of homotopies,
and of higher homotopy structure, including fibrations, cofibrations and other
similar concepts. The test is that there should be, at very least, an equivalence
of homotopy categories between that of some category of ‘spaces’ and that of that
notion of ∞-groupoid being ‘tested’ and this takes us right back to the questions

95More generally, useful references for higher category theory include [16] and [45].
96Segal ‘spaces’, which involve an abstraction of this condition, are another important model

for ∞-categories and groupoids.
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with which we started.
If a candidate notion of ∞-groupoid is to be tested against the (HH), then

it must be able to model the various (relevant) structures of the category of
‘spaces’. A key example of such structure would be the idea of fibrations, and if
that works, then to translate some of the ideas of covering space, n-connected
covering, etc. that we met earlier, to that ∞-groupoidal setting. The simplest
context in which to try out this extra structural test is, of course, that of Kan
complexes, and there everything works well97. There is a simple notion of
(Kan) fibration, p : E → B; see the footnote below98. For the case B = ∆[0],
p is the unique map to that object99, and is a Kan fibration exactly if E is
a Kan complex100. If B is connected, and the fibre of p over any vertex of
B is discrete101, then p is the simplicial set analogue of a covering space. In
general, if p is a Kan fibration, its fibres are Kan complexes (and so a Kan
fibration is ‘fibred in ∞-groupoids’ if you are using Kan complexes as models
for ∞-groupoids)102.

5.2 Simplicially enriched categories and groupoids

(We will tacitly assume a bit more basic knowledge of simplicial objects in this
section.) We next need to go towards understanding the Dwyer-Kan construc-
tion that we mentioned above. This takes a simplicial set and gives a simplicially
enriched groupoid. To understand those objects it will not only help to meet
simplicially enriched categories, but to see how these ideas fill in some of the
blanks in a simplicially based version of Grothendieck’s idea.

In the picture that we sketched above, there is a lot more structure around,
namely that which we have loosely termed the ‘assorted ‘baggage’ of homotopies
and of higher homotopy structure’. For instance, the category of spaces can be
‘enriched’ over the category of simplicial sets. It has a structure that merits
being called that of an ∞-category, as we will see shortly. Grothendieck’s sug-
gestion, implied by his comments in his letters to Larry Breen, was that any
sensible category of ∞-groupoids should have an ∞-category structure and the

97This is a good point to remember that the best known meaning of ‘works well’ in this
context, involves the idea of a Quillen model category structure in one of its forms. As we
said earlier, for this we merely direct the reader to the extensive literature on that theory.

98Similarly defined to the topological notion, a morphism, p : E → B, of simplicial sets is a
Kan fibration if in any commutative square of the form

Λ[k, n]

i

��

u // E

p

��
∆[n]

f

<<

v
// B

there exists a (dotted) arrow, as shown, so for any n-simplex, v, in B and a (n, k)-horn in
E, which maps down to the correspond (n, k)-horn of v, the horn in E can be filled to an
n-simplex mapping down to v.

99as ∆[0] is the terminal object of S,
100In the language of model category theory, this says that the Kan complexes are the fibrant

objects in the category, S, of simplicial sets. In general, with a good notion of fibration, a
fibrant object is one where the unique morphism from the object to the terminal object is a
fibration.
101i.e., is a constant simplicial set,
102Given a lot more space, we could have described the fibrations in both cubical and globular
∞-groupoid models. In each case, the models correspond to the ‘fibrant objects.
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hypothetical correspondence
spaces ↔ ∞-groupoids

should be an equivalence of ∞-categories, in an appropriate sense. His sketch
left a lot of ideas at the ‘intuitive’ level, i.e., the theory seems to need certain
ideas so as to work well and, moreover, coming from the examples, the intuitions
behind those ideas, about homotopies and higher homotopies, would seem to
fit, but that still left a lot of detailed exploration, checking, etc., to be done.

Let us give a few more details. If our category of spaces has function space
objects103, then we can take their singular complexes to get simplicial sets of
morphisms from X to Y . In fact, even if the particular category of spaces
being considered does not have nice function spaces, we can still form up this
simplicial set of maps by defining Spaces(X,Y ) to be the simplicial set having
Spaces(X ×∆n, Y ) as its set of n-simplices104. There are ‘composition maps’,

Spaces(X,Y )× Spaces(Y,Z)→ Spaces(X,Z),

and a little routine checking shows that this gives Spaces the structure of a
simplicially enriched category, a term often abbreviated to S-category105.

Remarks: (i) There are lots of other examples of S-categories in the areas
we have been discussing. The category, S, itself is an S-category with ‘function
spaces’, S(K,L), given by S(K,L)n = S(K ×∆[n], L). Other examples include
the category of simplicial Abelian groups, that of chain complexes of modules
over a commutative ring, that of simplicial groups, and so on. All these are
‘large’ S-categories. There are small ones as well. Any simplicial monoid is
essentially a small S-category with a single object, and conversely, for any S-
category, A, and any object x, the simplicial set, A(x, x), of endomorphisms of
x is a simplicial monoid.

Another class of examples come from 2-categories. If A is a (strict) 2-
category, then we can define a corresponding S-category, A, by taking A(x, y) :=
Ner(A(x, y)) with the induced face and degeneracy maps. As any crossed mod-
ule, C, gives a 2-group(oid), X (C), it also gives a small S-category, NerX (C),
which is, in fact, an S-groupoid. For that S-groupoid, as its set of objects con-
sists just of the single object, ∗, of C, we have that NerX (C) is a simplicial

103so if we have X and Y , we also have a space, Y X , of continuous functions from X to Y
and there are nice isomorphisms such as Spaces(X × Y, Z) ∼= Spaces(X,ZY ).
104N.B. This is isomorphic to the singular complex of Y X if that latter space exists, but

this definition does not depend on the existence of that function space. There is a very slight
condition on the category of spaces that is needed. The category of spaces being used must
contain X ×∆n for all X and all n ≥ 0.
105An S-category, A, is a category enriched over the category of simplicial sets, so each ‘hom’
A(x, y) is a simplicial set and the composition,

A(x, y)× A(y, z)→ A(x, z),

is a simplicial map. Composition is associative, so given w, x, y, z, the square of simplicial
maps,

A(w, x)× A(x, y)× A(y, z) //

��

A(w, x)× A(x, z)

��
A(w, y)× A(y, z) // A(w, z),

is commutative; similarly for the identities, which are zero simplices in the various A(x, x).
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group106. Any simplicial group likewise gives a crossed module107.
(ii) In the S-category structure on the category of spaces, each simplicial

function space, Spaces(X,Y ), is a Kan complex108. Such ‘Kan enriched’ cate-
gories include the category of Kan complexes itself. If Kan complexes are taken
to be a possible model for ∞-groupoids, then these Kan enriched categories are
also enriched over ∞-groupoids, and would form a particular class of the struc-
tures that would warrant being called∞-categories. In such an∞-category, any
k-arrow for k > 1 will be invertible. Of course, Grothendieck’s criticisms would
still apply to these and perhaps one needs something a bit more ‘algebraic’.

The criticisms by Grothendieck of the idea of using Kan complexes as a model
for ∞-groupoids included that, for that model, composition is not determined
uniquely. It used a filler of a horn and that filler need not be unique, hence, for
instance, a composable pair of 1-arrows might have a whole lot of ‘composites’.
Of course, that does mirror the topological context, but, in that setting, there
is a reasonably natural choice of a filler. We have already mentioned one way
to get around this namely by choosing one ‘formal’ filler for each horn in a
Kan complex, K. Another way would be to freely combine simplices in a horn
in some way to give a formal composite which, then, could be linked to the
‘composites defined by the Kan condition’ via some homotopies. This vague
idea is somewhat of an analogue, in all dimensions, of the way in which Poincaré
formed the edge-path groupoid of a simplicial complex. There109 one formed
a free groupoid on the 1-skeleton and then used the 2-simplices to link the
formal composite of two faces of the 2-simplex to the generator in the third
face. Technically the ‘all dimensions’ version of this is quite difficult to do and
the formulae that result110 are not ‘self evident’. The result, however, is an
S-groupoid, G(K), which does work well. This construction is due to Dwyer
and Kan in [25], (but beware of some silly typographic errors in that source, and
look for the details elsewhere). Writing S−Grpd for the category of S-groupoids,
the Dwyer-Kan functor, G : S → S−Grpd, has a right adjoint, W , and, for any
S-groupoid, G, its ‘classifying space, WG, is a Kan complex111. If we think of a
groupoid as an S-groupoid which is simplicially trivial in a fairly obvious sense,
then its classifying space, as a simplicially enriched groupoid, is the same as the
classifying space given by its nerve as a groupoid. As the adjoint pair, G a W ,
induces an equivalence of homotopy categories between that of S and that of

106There are several simple ways to write down this simplicial group in terms of the data of
C, which can be found in the literature, but will not be explored here. The ways back from
simplicial groups to crossed modules using the Moore complex construction is also very neat.
107Simplicial groups represent all connected homotopy types, and the purely algebraic way

from a simplicial group to the corresponding crossed module is an algebraic form of the Mac
Lane - Whitehead model for the 2-type of a general (CW-)space.
108The proof of this follows the same route as that of proving that each Sing(X) is a Kan

complex. One uses that the horns of topological n-simplices are retracts of the simplex.
109cf. page 10
110One takes K0 as the set of objects and then considers each n + 1-simplex, σ, as being

an n-dimensional edge going from the zeroth to the first vertex of σ. This gives a graph and
one then takes the free groupoid on that graph to be G(K)n. There is then a way to define
induced face and degeneracy maps.
111If we think of this Kan complex as an ∞-groupoid, we can analyse the composition

algebraically. To see why, at least in the case of a simplicial group, G, note that the underlying
simplicial set of a simplicial group is a Kan complex and there are algorithms giving fillers for
horns. These, in turn, give algorithmic fillers for the ‘classifying space’, WG, with a complete
analysis of possible choices being feasible!
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S−Grpd, we could have taken S-groupoids as our choice for ∞-groupoids.
These simplicial models are much more ‘algebraic’ than the simple Kan

complex ones. Restricting to connected homotopy types, and thus to simpli-
cial groups, we can gain some additional insight into the models of the special
kinds of homotopy types that we mentioned earlier, e.g. those corresponding to
strict infinity groupoids. They are related to special algebraic and combinatorial
properties of the corresponding simplicial groups112.

Here is a good point to mention the role simplicial groups play in the theory
of simplicial fibrations, fibre bundles and related ideas in the theory of simplicial
homotopy as it connects up not only with the adjunction, G a W , but with
another of Poincaré’s ways of considering the fundamental group. We saw how
he considered it as a group of deck transformation of the universal covering of
the space. In other words, he looked at the group of automorphisms of the
object X̃ → X in the ‘slice category’ of spaces over X. When we are working in
an S-enriched category, A, the automorphisms of an object, y, naturally form a
simplicial group, aut(y), and if we have a specified map, p : y → x in A, then the
automorphisms of y over x form a simplicial subgroup of aut(y), generalising
the group of deck transformations of a covering. This suggests that some, at
least, of the rôle of ‘π1(X) as automorphisms of X̃ → X’ might be transferred
to the automorphisms of the fibrations that generalise the universal cover, and
this is the case113.

Another related link between simplicial groups and fibred things comes about
in the adjunction, G a W . This gives, for any (reduced) simplicial set, K, a
unit morphism, ηK : K → WGK. The next ingredient that we need is that for
a simplicial group114, G, its classifying space, WG, comes with a natural Kan
fibration, pG : WG→WG, whose fibre is the underlying simplicial set, U(G), of
G, and whose simplicial group of automorphisms will be isomorphic to G. Now
any morphism f : K → WG will induce a fibration over K by pullback of pG
along it. This induced fibration will have fibre U(G)115. We direct the reader to
the literature for more on this. (A fairly brief treatment can be found in Curtis,
[23].)

Some examples of this are of note for our earlier theme of factorising a
homotopy type into simpler bits. If G is a group, when we can construct a
constant simplicial group, K(G, 0), with K(G, 0)n = G for all n and all face
and degeneracy maps the identity isomorphism on G. Taking G = π1(K), there
is a natural map, K → K(G, 0), related to the unit we mentioned above116. If we
pull pG along this, we get the universal (simplicial) cover of K. More generally,
we could also use the unit composed with other quotients of G(K) and pullback

112A word of caution here is needed. The transition from simplicial sets to S-groupoids
involves a shift in the usual dimension of simplices, so a 1-simplex in K becomes a zero simplex
in one of the ‘hom-sets’ of G(K). Because of this for a connected K, πn(K) ∼= πn−1(G(K)),
which initially can lead to some confusion. The same goes for ‘n-type’.
113Of particular interest would be the n-connected cover of a homotopy type considered as a

fibration X〈n〉 → X in the simplicial category, Spaces, or in the analogous simplicial setting.
114We asked for K to be reduced ensure that the GK was a simplicial group, and so could

apply this fact to it. This is mostly for the sake of the exposition.
115and is technically a principal G-fibration or G-torsor, and any such fibration will corre-

spond to some f .
116As π1(K) = π0(G(K)), there is a quotient map G → K(π1(K), 0), now apply W to that

and compose with the unit ηK .
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pG(K) along that. In each case one is approximating to the information on the
homotopy type of K, by means of a truncation or similar. Note that if we start
with K being a Kan complex then this can be interpreted as being a series of
operations on ∞-groupoids.

This rich structure suggests the extent that the classical Kan complex /
Kan fibration set-up gives a useful first example of a situation satisfying the
expectations of the (HH). It also sets up a family of results and sub-theories
that operate as a model for how any good general abstract theory will look.

5.3 Chain complexes, globular and simplicial models

(Here we will look at globular models and how they relate via chain complexes
to simplicial ones.)

Chain complexes (of Abelian groups) form very simple models of a class of
homotopy types117. As mentioned earlier, they correspond to simplicial Abelian
groups. We also mentioned that strict ∞-groupoids corresponded to crossed
complexes, and that such objects are also chain complexes, but with not all
the groups involved being Abelian, and there being some extra structure in the
shape of some well behaved actions, etc. The functor from strict ∞-groupoids
to crossed complexes extends that from 2-group(oid)s to crossed modules, and
the idea there is very simple. Given a 2-group(oid), G, you take those 2-arrows,
x, which have their 1-source at an identity, so they look like

s0(x)

ids0(x)

$$

t1(x)

::�� x t0(x) .

where s0(x) is the object that is the source of x, similarly t0(x) is its target118.
In a strict∞-groupoid, G, based on a globular model, each n-arrow, x, would

have sources, sk(x), and targets, tk(x), in all lower dimensions119. The group
in the nth-dimension of the corresponding crossed complex consists of those
n-arrows, x, such that sn−1(x) = idsn−2(x), that is, the source trivial n-arrows.

If one goes to the more general form of ∞-groupoid, again in a globular
form, then one can again consider the source trivial n-arrows in each dimension
(but they may not form a group). The result will look somewhat like a chain
complex as the target map will provide a boundary operator120.

If one chooses Kan complexes as the model for ∞-groupoids, then handling
the analogous construction seems hard as there is little or no algebra to help,

117... and also correspond to a fairly simple class of (strict) ∞-groupoids.
118so x ∈ G(s0(x), t0(x)), whilst s1(x), (resp t1(x)) denotes the 1-arrow that is the source

(resp. target) of x within the groupoid G(s0(x), t0(x)). In our particular situation, s1(x) =
ids0(x), so s0(x) = t0(x) and x actually is a vertex 2-loop of the 2-groupoid.
119Think of x as being a n-globe, with boundary consisting of two (n − 1)-dimensional

hemispheres, sn−1(x) and tn−1(x), which are thus in Gn−1, meeting ‘at the equator’ in two
(n− 2)-dimensional hemispheres, sn−2(x) and tn−2(x), and so on.
120Chain complex models for these∞-groupoidal structures have the advantage of the many

years of experience in handling chain complexes in algebraic topology and homological algebra,
although those latter chain complexes are usually of Abelian groups, which is not the case
here. Some of the algebraic information encoded in them is thus easily accessible, although
other parts of the structure may be less so.
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but if we work with a S-groupoid, not only does it work much better, after a
bit of ‘simplicial adjustment’, but relates to known structures that we have seen
already.

For ease of exposition, we will assume that the S-groupoid is ‘reduced’, i.e.,
has a single object, which makes it essentially just a simplicial group. Suppose
therefore that G is a simplicial group. We want, in some sense, to look at the
group of ‘source-trivial’ n-simplices, but there is no clear sense of a single source
for an n-simplex, at least for n ≥ 2. Of course, if g ∈ G1, it is thought of as
an arrow and the source will be d1g, so the group of source trivial 1-simplices is
simply Ker d1, but what about higher dimensions? One way to see a solution to
this is to take an idea from the construction of the relative homotopy groups of
a CW-complex, K, as used when constructing its fundamental crossed complex,
π(K). That construction used πn(K(n),K(n−1), x0), so the elements can be
represented by cellular singular n-cubes in K, all but one of whose faces is at
the base-point. We adapt that to a simplicial group context and look at, for each
n, the subgroup, NGn, of Gn consisting of those g ∈ Gn having all but their d0-
face at the identity. In other words, NGn =

⋂n
k=1Ker dk. This subgroup forms

the n-dimensional part of a chain complex as the remaining face, d0, restricts
to give a ‘boundary’ morphism, ∂n : NGn → NGn−1. It is easily checked that
∂n−1∂n is the trivial morphism as d0d0 = d0d1 is a consequence of the simplicial
identities that encode how face maps and degeneracy maps interact. Those
simplicial identities also easily show that the image of ∂n is a normal subgroup
of NGn−1, so NG is not just a chain complex of possibly non-Abelian groups, it
has the extra property that boundaries form normal subgroups, and that means
that we can form the homology, H∗(NG), of such a complex, even though we
are in a non-Abelian setting121. The complex, (NG, ∂), is well known from
simplicial homotopy theory. It is often called the Moore complex as many of
its properties were developed by John Moore in his seminar, [52], in the late
1950s. This complex relates to very many of the invariants of homotopy types
represented by the simplicial group, G. As the form of G is sufficiently general
to represent any connected homotopy type, and it is evidently a form of ∞-
groupoid, the way in which the more classical invariants of a homotopy type
depend algebraically on the Moore complex of G provides some more intuitive
interpretation of the model and of the way that well known homotopy invariants
of a homotopy type correspond to properties of an ∞-groupoid.

5.4 Appendix: Some Moore complex properties

To help in this process, we will look at how properties of (NG, ∂) relate to
structures that we have already met here.

(i) If G is a simplicial group, the homotopy groups of the underlying simpli-
cial set of G are isomorphic to the homology groups of (NG, ∂). If G = G(K)
for a (reduced) simplicial set K, then πk(K) = πk−1(G) = Hk−1(NG, ∂). (In
particular we note the shift in dimension so that, for instance, π0G is a group.)
We thus have the homotopy groups of the connected homotopy type represented
by K are very simply related to the Moore complex of G(K), and hence to the

121Although we have seen this just in the simplicial group setting, this fact encodes facts
about ‘whiskering’ which is the general form of conjugation in ∞-groupoid models, so is an
expected feature.

41



‘source-trivial’ part of a ∞-groupoid model for the homotopy type122.
(ii) If G is a simplicial Abelian group, then NG is just a ‘standard’ chain

complex and it is relatively easy, given an arbitrary chain complex, C, to build a
simplicial Abelian group, whose Moore complex is isomorphic to C. This gives
the classical Dold-Kan theorem123.

(iii) If G is such that NGn = 1 for n ≥ 2, then, of course, all the higher
homotopy groups, πk(G), for k ≥ 1, will be trivial124. In this case, the only
non-trivial part of the Moore complex, ∂1 : NG1 → NG0, will be a crossed
module. For a general G, the 2-type model that it represents is given by the
crossed module,

∂ :
NG1

∂NG2
→ NG0.

(iv) If G is such that NGn = 1 for n ≥ 3, then the three remaining terms of
NG form what is called a 2-crossed module125. We mention this more technical
model because the corresponding (globular)∞-groupoid is a weak 3-groupoid in
which, in general, the interchange law fails to hold in the underlying 2-groupoid.
This can be seen in the 2-crossed module as the Peiffer identity does not, in
general, hold in the structure encoded by the bottom two terms126.

(v) As a final example, we will look at what stops a general Moore complex,
NG, from being a crossed complex, as this is the simplicial version of what stops
a general ∞-groupoid from being a strict ∞-groupoid127.

Let Dn be the subgroup of Gn generated by the degenerate elements128.
A Moore complex is a crossed complex if, and only if, for each n ≥ 2, NGn∩

Dn = 1.
Turning this around, with a bit more work it also provides a functor from

simplicial groups to crossed complexes, but we will not explore that here. It
also allows one to give a description of the property of ‘being a crossed complex’
in terms of ‘having a unique thin filler for each horn’; see Ashley, [3]129. Note
that, for comparison, in the nerve of a groupoid, there is a unique filler for each
horn.

122Of course, we should also look at the structure of homotopies through the eyes of this
process. That is more tricky, ... and more revealing, but cannot be handled here.
123For an arbitrary simplicial group, NG has considerably more structure than being merely

a chain complex of groups. (That structure is trivial in the Abelian case). That extra struc-
ture corresponds, in part, to the extra structure that an arbitrary homotopy type may have
(Whitehead products, actions, etc.), and so corresponds to the weak ∞-groupoid structure,
that is ‘weak’ as against ‘strict’. The analogue of the Dold-Kan theorem with regard to this
extra structure was given by Carrasco and Cegarra, [15].
124If G = G(K), we have to remember that π0(G) ∼= π1(K), and π1(G) ∼= π2(K), so there is

s shift in dimension and so, generally, if NGn = 1 for n ≥ 2, then G is a simplicial groupoid
model of a 2-type, and not of a 1-type as one might think.
125cf. Conduch́’s paper, [17], that was mentioned earlier.
126There is a pairing NG1 × NG1 → NG2, which ‘lifts’ the difference of the two sides of

the Peiffer rule, so making it a boundary of a higher element. The weakening thus replaces
an equality by a ‘reason’ why the two sides of the equation are to be thought equivalent.
The corresponding structure for higher values of n is related to the notion of hypercrossed
complex, found in Carrasco and Cegarra, [15].
127This is easily related to the simplicial group theoretic analogue of a J-complex, as men-

tioned on page 33.
128These elements are sometimes called ‘thin’ elements, in a sense that intuitively extends

our earlier use of ‘thin’ to describe certain homotopies.
129In some way, the ‘weakness’ of a simplicial group modelling a given connected homotopy

type, is related to the non-uniqueness of such thin fillers and the size of the various subgroups,
NGn ∩Dn, of the Moore complex terms.
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5.5 Higher dimensional combinatorial homotopy

Poincaré’s combinatorial approach to the fundamental group of a polytope de-
serves to be explored up to higher dimensions. Let us put this as follows:

Pick a notion of∞-groupoid, denoted Π∞(X) for a ‘space’ X. We will work
on the assumption here that Π∞(X) is the singular complex of X, as that is
a Kan complex and that we have been exploring the use of Kan complexes as
models of ∞-groupoids.

Suppose, now, that X is a polytope / simplicial complex (or more generally a
CW-complex, i.e., with explicit CW-structure). Can we use the extra structure
of a complex to produce an ∞-groupoid, P∞(X), presented in some sense by the
combinatorial structure, hopefully smaller than Π∞(X), and an ∞-equivalence

P∞(X)↔ Π∞(X)?

As usual we could rewrite this question with ∞ replaced by n.

This is almost Whitehead’s algebraic homotopy problem in disguise and a
start on it is made in his papers, [68, 69]. There has been a lot of progress on
it in the work that we have already mentioned by Brown and Higgins, see [11]
and of Baues, [5], but this work is using models that are not explicitly linked
to ∞-groupoids. There is a complication that the necessary weakness of the
∞-groupoids needs encoding in an economical way. It is not clear how to do
this with some of the models130 of ∞-groupoids. It would need a combinatorial
∞-groupoid theory to mirror combinatorial homotopy theory and to extend
combinatorial group theory.

There are other aspects of that overall combinatorial approach that are worth
mentioning. We have already pointed out the original link between combina-
torial group theory and Whitehead’s combinatorial homotopy. To some extent,
working with simplicial sets or S-groupoids can be thought of as an extension of
that link, but, although it is relatively easy to define ‘step-by-step’ constructions
of simplicial sets (or simplicial objects in algebraic categories) having desired
properties, this is not the usual method used. Likewise, if one has a naturally
occurring ∞-groupoid, the idea of working with a small ‘presentation’ of that
object, perhaps reflecting some geometry of how it occurs ‘in nature’, is not
one that has yet been explored to any great extent. Of course, 2-groups of
symmetries have occurred in work on various properties in non-Abelian coho-
mology, but there are relatively few studies of explicit presentations of such, as
yet, although the cohomology of 2-groups / crossed modules has begun to be
applied to problems in algebraic and differential geometry and related areas of
theoretical physics. We thus have less evidence of ‘2-groups as spaces’, at least
for that interpretation of our initial query. Crossed modules do yield interest-
ing ‘classifying spaces’, but the models used in their construction usually give
‘big’ presentations, having a lot of cells, and are often obtained from a nerve
construction followed by geometric realisation.

One block to constructing the ‘combinatorial homotopy’ of an algebraically
defined∞-groupoid is the second objection of Grothendieck that we mentioned.
Algebraically occurring n- or ∞-categories are often ‘globular’ rather than sim-
plicial. Likewise group presentations are more globular in their ‘feeling’, so what

130that we have not discussed here,
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is needed is more a globular, abstract combinatorial homotopy rather than a
simplicial one. In part, such a theory is given by the theory of computads
/ polygraphs introduced by Street, [64] for n = 2, and later by Burroni, [14].
These have wider application than merely presenting certain strict∞-groupoids
as they seem very useful for studying rewriting systems and for operads rather
than merely spaces and then questions of finite presentation131. They usually
are used to present strict ∞-categories, but skilled use allows some use of ex-
plicit ‘weakness’. Their usefulness and power comes, in part, from being able to
be analogues of ‘spaces’. They lead to a ‘folk’ homotopy structure, see Lafont,
Métayer, and Worytkiewicz, [43]. The ‘cofibrant’ objects are the free strict ∞-
categories on polygraphs, so are in close analogy to CW-spaces, which are the
cofibrant objects in one of the usual homotopy structures on the category of
topological spaces. We are not, here, able to explore that line of development
as much as it deserves.

5.6 ∞-categories?

We will briefly need to mention∞-categories in the next section. Grothendieck,
in his letters to Breen and to Quilllen to which we will be returning shortly,
seems to make the assumption that, not only would certain features of spaces
be modelled by n-groupoids, for any n including ∞, but that the right context
would be to have some sort of n-equivalence of some corresponding n-categories.
These n-categories, moreover, would be ‘weak’ rather than ‘strict’.

There are many different models for what are new usually called (∞, 1)-
categories132. These are the ∞-categories in which all 2-arrows are invertible
‘up to 3-arrows’, similarly 3-arrows are invertible ‘up to 4-arrows’ and so on.
They are, at present, the best understood class of ∞-categories. The different
models correspond in part to the models for ∞-groupoids that we have met133.

From the point of view that we have been exploring, the easiest potential
approach to explaining what∞-categories are is probably that via S-categories,
since we know that both the categories of spaces and of simplicial sets have S-
category structures. Of course, Grothendieck’s objection regarding simplicial as
against globular approaches still applies here, but if S-groupoids are acceptable
as ∞-groupoids, then probably S-categories should be considered as, at least,
a working alternative to a globular version – and the pre-existing extensive
theory of homotopy in some of the key examples gives them some advantages.
One caveat is that the really nice S-categories seem to have A(x, y) being a Kan
complex134.

(A bit of ‘terminology’ may help here in bridging between natural, intuitive
∞-category terms and their analogues for S-categories. If A is an S-category
which we are thinking of as an ∞-category, it is often useful to think of, and
to speak of, the 0-simplices in A(x, y) as being the (1−)morphisms / 1-arrows
of the infinity category from x to y, then this continues with the elements of
A(x, y)1 being the 2-arrows or even ‘homotopies’, the 2-simplices as 3-arrows or

131Some idea of this application can be found in the work of Guiraud and Malbos, cf. [34].
132A useful survey of (∞, 1)-categories is [8].
133 More generally an (∞, r)-category is one in which the n-cells are invertible ‘up to (n+1)-

cells’ for n > r, so in this terminology ∞-groupoids are (∞, 0)-categories.
134There is a Quillen model category structure on the catgory S−Cat, of (small) S-categories

in which these ‘locally Kan’ S-categories are exactly the fibrant objects; see Bergner, [7].
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‘homotopies between homotopies’, and, in general, of ‘higher homotopies’. This
terminology is in some ways not strictly accurate, but can be useful in helping
the intuition.)

If the A(x, y) are Kan complexes, then the homotopies in A will be ‘reversible
up to higher homotopies135’.

There are directly simplicial models of (∞, 1)-categories, namely the quasi-
categories, that were mentioned in footnote 28. These are very like Kan com-
plexes, but have a slightly, but significantly, weaker filling requirement on horns.
As the nerve of a category is a quasi-category, there is a fairly clear intuition as
to how to develop quasi-categorical analogues of many categorical properties.
This gives one the most developed versions of ∞-category theory136.

Globular approaches are also known, see Maltsiniotis, [51], and Ara’s thesis,
[1], but are to some extent less developed than the simplicial ones as that can
draw on the classical theory of simplicial homotopy, which can be an advantage.
There are also treatments that are ‘model independent’, i.e., they do not choose
between simplicial, globular, operadic, ..., etc. models, but look at the structures
from the point of view of Quillen model category theory.

6 Higher Galois theory and locally constant stacks.

When we started our discussion of spaces and groupoids, we mentioned three
of the ways that Poincaré had of thinking of the fundamental group(oid). The
first was as the algebraic structure of path classes in the space. The second
was related to deck transformations and, via SGA1, to Galois theory. The last
was a combinatorial group theoretic approach given a simplicial or CW-complex
structure on the space, which we briefly revisited in section 5.5. We saw how
Grothendieck’s ‘letter to Quillen’ in Pursuing Stacks sketched a higher dimen-
sional version of the path class idea, so what about deck transformations and
Poincaré-Galois theory. How does this interpret for a Kan complex / simplicial
model?

6.1 ‘Stacks’

We first need to explore briefly some notion of ‘stack’ and its relationship with
covering spaces. (Other related notions of stack as occur in geometric contexts
are discussed in other papers in this volume. A set of lectures giving a perspec-
tive linked to that taken here were given by Bertrand Toën, [65, 66], whilst there

135To see this, let α : f0 → f1 be in A(x, y)1, then you can use it to build horns:

f1
β

  
f0

α
>>

s0(f0)
// f0

f0
α

  
f1

γ >>

s0(f1)
// f1

in A(x, y), shown with ‘full’ arrows, which can be filled since A(x, y) is a Kan complex. This
gives left and right inverses ‘up to homotopy’ for α, namely β and γ. You then show using
higher horns that these are themselves homotopic, in a homotopy coherent variant of the
classic argument for inverses in a group.
136The initial idea is due to Boardman and Vogt, [9]; the simplicial version was developed

by Cordier, [18], and then with the author, [19–22], and this basic theory was then pushed
much further by Joyal, [40], and Lurie, [47, 48].
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are many other treatments available perhaps more optimised for applications of
stacks in other areas of mathematics.)

A covering space, q : Y → X, is equivalently a locally constant sheaf 137. A
reader who is ‘new’ to sheaves might initially think of them both as a contin-
uously varying family of ‘spaces’, namely the fibres of q, indexed by the points
of X, and also as a presheaf with nice gluing properties. A presheaf on X is
just a functor from the opposite of the partially ordered set of open sets of the
space, X, with inclusions as morphisms, to, in our case here, the category of
sets. Given q, as above, we get for each open set, U , in X, the set of maps,
s : U → Y , such that qs(x) = x for all x ∈ U . We will denote this F (U). For
any open V ⊂ U , such ‘local sections’, s, of course, restrict to local sections
on V , so we get a presheaf, F : Open(X)op → Sets. That would work for any
‘space over X’, f : X ′ → X, as local sections of f restrict to subsets giving a
presheaf on X. If one has an arbitrary presheaf, F : Open(X)op → Sets, on
X, it need not come from a space over X. Presheaves of local sections have a
special ‘gluing’ property generalising that met in elementary calculus.

If we have a presheaf, F , of local sections of some map, f : X ′ → X, then,
for open sets, U0, and U1, in X and U = U0 ∪ U1 and local sections si, i = 0, 1,
each over the corresponding Ui, if s0(x) = s1(x) for all x ∈ U0∩U1, then, clearly,
we can define a function s : U → X ′ by s(x) = s0(x) if x ∈ U0 and s(x) = s1(x)
if x ∈ U1, and this is a continuous section of f over U , because the two sets,
U0, and U1, are open. To state the obvious, it is the unique local section over
U that restricts to the given ones over the given two open sets.

This is the condition that the presheaf is a sheaf. It is also called the descent
condition.

The local homeomorphism aspect of covering spaces means that, for small
enough open sets, the restriction morphisms are, in fact, bijections, so the sets,
F (U), are ‘really all the same’ for small enough U , and F is, as we said, ‘locally
constant’. (Notice that F (X) can be empty, yet F (U) may be non empty for
many open sets, U . ‘Local sections’ may not be restrictions of ‘global’ ones, but
if a family of local sections is compatible over intersections of their domain, then
it can be built up into a local sections on the union of their domains.) We thus
have that covering spaces ‘are’ locally constant families of sets, and as sets ‘are’
homotopy 0-types, they are ‘locally constant families of homotopy 0-types’.

The idea of a sheaf as a special form of presheaf on a space generalises in a
useful way to general functors, F : Cop → Sets, and corresponds to giving an
abstract analogue of ‘open covering’, or, more exactly, of a ‘covering family of
maps’. This leads on to the idea of a Grothendieck topology explored, here, in
the chapter ‘Sheaves and functors of points’ by Michel Vaquié. Categories of
sheaves on such a ‘site’138 is called a (Grothendieck) topos.

It is easy to see how one can extend the idea of presheaves of sets to that
of presheaves of other objects. You just replace Sets by the category of ‘other
objects’. To define stacks, of n-stacks, ∞-stacks and so on, one approach is to
start with presheaves of, perhaps, categories, groupoids, n-groupoids or simpli-
cial sets, depending on what ‘flavour’ of stacky objects you need. We will not
give a detailed treatment as it would take too long, would be quite technical
and is not really necessary for the limited use we have for it. We will thus be a

137We will not give a detailed introduction to sheaf theory here, but direct the reader to
Michel Vaquié’s chapter on ‘Sheaves and functors of points’ in this volume.
138 ‘site’ = ‘category together with a Grothendieck topology’.
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bit ‘vague’ ! Perhaps the best way here is to take ‘prestacks’ to be presheaves of
(∞, 1)-categories on a site (which may be a topological space) or alternatively on
(∞, 1)-category objects internal to the corresponding topos139. We could also
replace the basic category by an S-category, or an ∞-category, if the potential
application merited that extra structure140. The second stage is then to find
a suitable (∞, 1)-categorical analogue of the gluing condition. Not surprisingly
that is often seen in terms of a notion of fibration with the ∞-stacks being the
fibrant objects. If a (basic) simplicial model is taken for (∞, 1)-categories, then
the resulting fibrant objects, when considered as presheaves, take values in the
subcategory consisting of Kan complexes141. The gluing condition then takes
the form of local elements combining up to a form of coherent homotopy with
higher homotopies linking the various levels. This leads to a simplicial set of
‘descent data’ (relative to a covering of an object) which is to be compared with
the given value of the presheaf on that object. As this is quite a bit more tech-
nically challenging than earlier sections, we will leave this deliberately vague142.
(For more precision, the reader may want to look at the nLab pages on stacks
descent and presheaves of simplicial sets, with subsequent following up of the
references given there.)

6.2 ... and their pursuit

This allows for a very useful generalisation, and leads us to a short quote from
the letter of Grothendieck to Larry Breen, dated 17 February 1975 (in a trans-
lation, [27], annotated for use here) on the ‘yoga of homotopy’, which led on to
the manuscript, ‘Pursuing Stacks’, [32]:

In other terms, the constructions on a topos143 X which one can make in
terms of (n−1)-stacks which are locally constant, depend only of its ‘n-truncated
pro-homotopy144 type’ and define it. In the case where X is locally homotopically
trivial in dim ≤ n and so defines an n-truncated ordinary homotopy type, one
can interpret these last as an n-groupoid Cn, defined up to n-equivalence. In
terms of these145.

The (n − 1)-stacks on X should be able to be identified with the n-functors
from the category Cn to the category ((n− 1)−Cat) of all (n− 1)-categories.

In the case n = 1, this is nothing other that the Poincaré theory of the
classification of coverings of X in terms of the ‘fundamental groupoid’ C of
X. By extension, Cn merits the name of fundamental n-groupoid of X, which
I propose to write Πn(X). Knowledge of this includes knowledge of the πi(X),
(0 ≤ i ≤ n and the Postnikoff invariants of all orders up to Hn+1(Πn−1(X), πn).

(17 February 1975)

139... in a sense that we leave you to work out or look up.
140We here are deviating from having simply a classical space on which things are happening.
141A detailed treatment of this would require the introduction of model category theory and

the discussion of the model category structures on categories of simplicial presheaves.
142but hope that some of the intuition gets through the vagueness!
143For more on the idea of a topos, see other chapters in this collection. We think of this

just as being the category of sheaves on a (topological) space or on a site. Remember that
Grothendieck was mainly interested in applications to problems in Algebraic Geometry.
144see below in the text.
145There were two earlier forms of the idea explored in the letter, but which are more

technically stated so will not be included here.
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We will stop the quotation there as it does contain the point that we will be
needing, but would also suggest that that letter and the following one, [28], of
17 July 1975, which continues some of the same themes, are well worth looking
at. The main point for us is that Grothendieck’s conception of an∞-groupoidal
model for ‘spaces’ includes not only the direct ‘equivalence’ between ‘spaces’
and some kind of weak∞-groupoid, but also continues and extends the covering
space formulation started by Poincaré and continued by Grothendieck himself
in SGA1. The idea is that if we have a locally constant (n − 1)-stack, then
the fibre over any point should be an (n− 1)-groupoid, and the automorphisms
of that fibre should give an n-groupoid. The stack would then correspond to
a morphism of n-groupoids from Πn(X) to that automorphism object, i.e., a
representation of Πn(X). Doing a small reality check on this possibility for low
values of n: for the case n = 1, a 0-groupoid is a set, and the automorphisms
of a set form a group, thus a 1-groupoid (with one object); for n = 2, a 1-
groupoid has an automorphism gadget that is a 2-groupoid, so that fits, and for
n = ∞, the automorphism gadget of a Kan complex (considered as model for
a ∞-groupoid) is a simplicial group, and that can also be considered to be an
∞-groupoid146.

We need, however, to give some extra ‘notes’ on various points in the quo-
tation. These by necessity are slightly more technical, but are only intended to
make the quotation slightly easier to approach for the more general reader.

(i) The idea of a pro-homotopy type is that of a set of interrelated approxima-
tions to a general homotopy type. Such things are needed, for instance, for han-
dling the more general objects found in algebraic geometry. Here Grothendieck
is slightly simplifying things, but when he talks of ‘locally homotopically trivial’,
that is the analogue of ‘locally contractible’, so then X looks a bit like a CW-
space and the ‘pro-homotopy type’ simplifies to being a ‘homotopy type’. This
is relevant for the question: What sort of spaces are we considering? For spaces
and concepts of spaces, (general topological spaces, schemes, toposes, etc.), that
are more general than CW-spaces, probing the ‘space’ even via ‘points’ (i.e. sin-
gular 0-simplices) is very problematic. There may be very few points and very
few singular simplices, hence the approach via paths and their generalisations
will not be adequate. The pro-homotopy type can lead to a pro-∞-groupoid, in
some sense, regardless of whether there are enough points or not.

(ii) An important point to note once again is that this sketch by Grothendieck
also needs a working theory of∞-categories, or rather of n-categories, n-functors,
‘categorical’ n-equivalences, etc., for all n including n = ∞. Such a theory ex-
isted for small values of n at the time the letter was written, but has involved
much effort to formulate it precisely147 for n =∞.

Given that we can restate Grothendieck’s idea as a form of Higher Poincaré-
Galois Theory, namely: there should be an ‘∞-equivalence’

locally constant stacks of ∞-groupoids on X ↔ representations of Π∞(X), the

146In fact the classical theory of twisted cartesian products in simplicial homotopy theory
can be thought of as being one simple form of the correspondence that Grothendieck is talking
about.
147References for this include Maltsiniotis, [51], Ara’s thesis, [1] and, for a simplicially based

theory using quasi-categories, Joyal, [39, 40], Lurie, [47, 48] and below, here. Hoyois, [36], has
now completed a detailed quasi-categorical attack on this aspect of Grothendieck’s ideas.
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fundamental ∞-groupoid of X.

Such a Galois theorem is, then, the ∞-version of a hierarchy of results for
n-groupoids, which looks as follows:

• representations of the fundamental 1-groupoid classify coverings;

• representations of the fundamental 2-groupoid classify locally constant 1-
stacks (in particular connected 1-stacks, usually called gerbes);

• . . . (for subsequent ns);

and then representations of the fundamental ∞-groupoid classify locally con-
stant ∞-stacks (in particular the higher gerbes as mentioned elsewhere in this
collection).

7 Concluding discussion

It seems a good idea to try to bring together some of the themes we have been
following in an attempt to answer some of the questions we started this chapter
with. The title of the chapter suggested that some aspects of ‘spaces’ could
be encoded by ∞-groupoids. We saw that probing a space firstly by paths
and then by higher dimensional analogues, allowed an algebraic / combinatorial
model of the space to be built. For both historical reasons and expositional
purposes, we looked in detail only at the structures encoded this way using the
simplices, ∆n, but we could have used n-globes or n-cubes148. So ‘what aspects?’
initially has to be limited to those features which are available via probing with
some test models. This works best with spaces that are sufficiently ‘locally
homotopically trivial’, and thus ‘spaces’ ends up being limited in meaning to
being ‘topological spaces’ and more often than not ‘CW-spaces’ as those are
constructible from the usual test objects. Luckily many spaces149 occurring in
geometric and theoretical physical contexts are CW-spaces, so this gives a large
degree of applicability to the resulting theory150. It also provides the simple
answer to ‘what spaces?’.

The relationship between (topological) spaces and ∞-groupoids is symbi-
otic. The aspects of a space that are coded up in its singular complex are
‘∞-groupoidal’ and as such provide a (classical) somewhat combinatorial model
for the space. Applying algebraic constructions allows one to mix the combina-
torial structure with suitable algebra and extract useful and usable information.
If no CW-structure is available then things are more tricky, but if there is one,
then useful information of an ∞-categorical nature can be obtained with much
smaller simpler models, but often at the expense of a loss of detailed structure.

148These two come with some advantages either from the intuitive viewpoint of by having
a simpler compositional structure. Simplices, however, lead to simplicial sets and their very
well understood homotopy theory makes them a natural first choice, at least at this point in
time.
149... but not all,
150‘Spaces’ by themselves are unable to handle some important situations. Sometimes objets

that one expects to be modelled by points of a space, have naturally symmetries, which does
not accord well with just a directly spatial model. Such things as these ‘orbifolds’ although
not ‘directly spatial’ do correspond to certain forms of stack, so fit into the overall∞-groupoid
model quite easily.
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Mixing Whitehead’s and Grothendieck’s viewpoints, ∞-groupoids are a good
first step to analysing more of the structure of a spatial homotopy type151.

In many parts of mathematics, there are naturally occurring objects that
look like∞-groupoids or one of their avatars such as crossed complexes, crossed
n-cubes, chain complexes, descending from the lofty heights of ‘∞-groupoidheim’
to live among us by strictifying or nullifying some of the structure from the gen-
eral case. Typically such structures arise because they enhance the notion of
‘identity’ (of sets) into that of ‘identification’152. By this we mean that when
there is some reason to ‘identify’ two situations in mathematics, it is often, nay
nearly always, beneficial to record the collection of ‘reasons’ for so doing; cf.
page 21 for some brief development of this idea153. This leads to a quite con-
structive form154 of mathematics. As this often gives a type of∞-groupoid, the
‘spaces as ∞-groupoids’ analogy can be turned around to provide a collection
of spatial insights and tools in many other settings in mathematics.

Is the spatial intuition, thus being invoked, a good one to use or is it too
constraining or, alternatively, too wide?

My own feeling on this is that only time will tell. Some of the ways of
thought involved seem quite difficult to handle in some instances. Even in the
theory of group presentations, it is fair to ask what the module of identities of a
presentation tells one about the group itself, yet that is, perhaps, still not clear.
Working out higher invariants of situations like that does tell one something,
but it is not always clear how to use that.
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the n-cat café about slogans in category theory. He mentioned that Errett Bishop defined a
set as follows: A set is defined by describing exactly what must be done in order to construct
an element of the set and what must be done in order to show that two elements are equal.
In other words, ‘equality’ as a structure needs to be taken seriously!

50

http://arxiv.org/abs/1503.02720
http://arxiv.org/abs/1503.02720


[7] J. E. Bergner, A model category structure on the category of simplicial
categories, Trans. Amer. Math. Soc, 359, (2007), 2043 – 2058.

[8] J. E. Bergner, 2010, A survey of (∞, 1)-categories, in Towards higher cat-
egories, volume 152 of The IMA Volumes in Mathematics and its Applica-
tions,, 69 – 83, Springer.

[9] J. M. Boardman and R. M. Vogt, 1973, Homotopy Invariant algebraic
structures on topological spaces, number 347 in Lecture Notes in Maths,
Springer-Verlag.

[10] R. Brown and P. J. Higgins, The Equivalence of ∞-groupoids and Crossed
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[41] R. Krömer, The set of paths in a space and its algebraic structure. A histori-
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