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Abstract

This thesis is an investigation into the theory of model categories with applications in the founda-

tions of rational homotopy theory. For a model category C we construct the associated homotopy

category Ho(C) and prove that this construction yields a localization of C with respect to the class

of weak equivalences. We also prove a total derived functor theorem. This gives sufficient condi-

tions for a functor between two model categories to induce an equivalence of categories between

the associated homotopy categories. We then turn our attention to some specific examples of model

categories. We put a model structure on the category of r-reduced simplicial sets and r-reduced

simplicial groups. In both cases the weak equivalences are those maps inducing isomorphism on

rational homotopy groups. We then prove a general result which, given a category C (satisfying

some conditions), provides a model structure on the category sC of simplicial objects in C. This

theorem is applied to give model structures on the category of r-reduced simplicial complete ratio-

nal Hopf algebras and the r-reduced simplicial rational Lie algebras, respectively. Finally we put

a model structure on the category of r-reduced differential graded rational Lie algebras, where the

weak equivalences are the maps inducing isomorphism on homology. As we prove the model cat-

egory axioms for the various structures we also construct pairs of adjoint functors between them

and show that these satisfy the conditions of the total derived functor theorem. As a result, the

homotopy category Ho(sSetQ
1 ) of 1-reduced simplicial sets is equivalent to the homotopy category

Ho(dgLie0) of connected differential graded Lie algebras.

Resumé

Dette speciale omhandler modelkategoriteori med applikationer til grundlaget for rationel homoto-

piteori. Givet en modelkategori C konstruerer vi den associerede homotopikategori Ho(C) og viser

at denne konstruktion giver en lokalisering af C ved de svage ækvivalenser. Vi beviser også en sæt-

ning om totaltderiverede funktorer. Denne giver tilstrækkelige betingelser for at en funktor mellem

to modelkategorier inducerer en ækvivalens mellem de associerede homotopikategorier. Dernæst

vender vi vores opmærksomhed mod nogle specifikke eksempler på modelkategorier. Vi lægger

en modelstruktur på kategorien af r-reducerede simplicielle mængder og r-reducerede simplicielle

grupper. I begge tilfælde er de svage ækvivalenser de afbildninger som inducerer isomorfier på

de rationelle homotopigrupper. Dernæst viser vi et generelt resultat der, givet en kategori C (som

opfylder nogle bestemte betingelser), lægger en modelstruktur på kategorien sC af simplicielle ob-

jekter i C. Dette teorem anvendes så til at lægge modelstrukturer på kategorien af r-reducerede

simplicielle fuldstændige rationelle Hopf-algebraer og kategorien af r-reducerede simplicielle ra-

tionelle Lie-algebraer. Til sidst lægger vi en modelstruktur på kategorien af r-reducerede differen-

tialgraduerede rationelle Lie-algebraer, hvor de svage ækvivalenser er de afbildninger som induc-

erer isomorfier på homologi. Samtidig med at vi viser modelkategoriaksiomerne for de forskellige

strukturer, konstruerer vi parvist adjungerede funktorer mellem kategorierne, og viser at disse op-

fylder betingelserne for sætningen om totaltderiverede funktorer. Af dette følger at homotopikat-

egorien Ho(sSetQ
1 ) af 1-reducerede simplicielle mængder er ækvivalent med homotopikategorien

Ho(dgLie0) af sammenhængende differentialgraduerede Lie-algebraer.
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Chapter 1

Introduction

In 1967 Daniel Quillen published the paper [Qui67] thereby founding homotopical
algebra. Quillen describes homotopical algebra as the “generalization of homolog-
ical algebra to arbitrary categories which results by considering a simplicial object
as being a generalization of a chain complex”.
The work of John Milnor ([Mil57]) and Daniel Kan ([Kan58]) in the late 50s showed
that the “ordinary” pointed homotopy theory of topological spaces was in fact
equivalent to the “homotopy theory” of reduced simplicial sets and to the “ho-
motopy theory” of simplicial groups. Therefore there was a need for a general
categorical framework which could explain the nature of these equivalences. In
[Qui67] Quillen introduced such a framework with his definition of model cate-
gories. Model categories have since become the central notion of the homotopical
algebra. Quillen explains that the term “model category” is short for “a category
of models for a homotopy theory”. Indeed, the same homotopy theory may have
many different models, as the work by Milnor and Kan has shown.
In 1969 ([Qui69]) Quillen demonstrated the powerful ideas of [Qui67] by showing
that the rational homotopy theory of simply-connected pointed spaces is equiva-
lent to the homotopy theory of reduced differential graded Lie algebras. This is no
small feat. Indeed just proving the axioms of a model category can be quite diffi-
cult. The reward for doing this is the definite homotopical content thus produced.
For example, Quillen uses the quoted equivalence to derived several new spec-
tral sequences for rational homotopy theory and to solve problems posed by both
Heinz Hopf and René Thom. For more about the history of rational homotopy
theory and Quillen’s role in its development see [Hes99] and [TVP13].
This thesis aims at studying the theory of model categories as it is exemplified
in [Qui69]. Quillen establishes his equivalence by five steps, starting with the
category of spaces, going through several simplicial categories and ending at the
category of differential graded Lie algebras. The structure of the thesis is based
around these five steps. We will examine each of the categories and show how to
put the corresponding model category structure on the category.

1



2 CHAPTER 1. INTRODUCTION

This first chapter serves as a quick introduction to Quillen’s strategy in [Qui69].
This should motivate the detailed considerations in the later chapter. In partic-
ular we go through Quillen’s Lie model construction λ : Top1 → dgLie1 which
associates to a simply connected space, X, a differential graded Lie algebra, λX,
carrying “the same” rational homotopy theoretical information as X.

Homotopy groups

In classical homotopy theory one studies topological spaces by examining their
homotopy groups. For a space X, the n-th homotopy group (where n ≥ 1) of X
is the set [Sn, X] of homotopy classes of continuous based maps Sn → X. The
set [Sn, X] may be equipped with a group structure since Sn is a co-group object
in the homotopy category. For n ≥ 2 there are n different group structures on
[Sn, X]. Though different, the multiplication in one group structure is a group-
homomorphism with respect to any other structure. By the “Eckmann-Hilton
argument” it follows that these structures all coincide and are commutative. The
resulting Abelian group is denoted πnX.
For n = 1 the Eckmann-Hilton argument cannot be applied since there is only
one group structure on [S1, X], thus the first homotopy group π1X may be non-
Abelian. This group is usually called the fundamental group of the space X. For
n = 0 the space [S0, X] of homotopy classes of based maps is in bijection with the
path-components of X. This set is denoted π0X. A space such that π0X = ∗ is
a point, is called path connected. A connected space, whose fundamental group is
trivial, is called simply connected. In a simply connected space all pairs of points
may be connected by a continuous path in the space in exactly one way, up to
homotopy equivalence.
A central problem in homotopy theory is the calculation of the homotopy groups
of spheres Sk. In more detail, one wants to have explicit descriptions of the groups
πnSk for various n and k. For example it can be shown that π1S1 ∼= Z and πnS1 =

0 for n ≥ 2. In general this problem is very open.
In the 1950s Serre proved the following result.

Theorem 1.0.1. (Serre) The Abelian groups πnSk for n ≥ 2 are all finitely generated.

In fact Serre gave a more specific description of πnSk. He showed that πnSk is
finite except when n = k or when k is even and n = 2k − 1. For n = k and
n = 2k − 1 the group πnSk has rank 1. In other words the study of the homotopy
groups of spheres is really the study of the torsion components of these groups. If
one disregards torsion, then the problem is solved by Serre’s result.
Since CW-complexes are built out of spheres and discs one might wonder if the
study of homotopy groups of general spaces might also be solvable if one disre-
gards torsion. Indeed this might apply to all spaces since any space is weakly
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equivalent to a CW-complex, i.e. for a space X there is a CW-complex QX and a
map QX → X which induces isomorphisms on homotopy groups.
One useful way of “disregarding torsion” in an Abelian group A is to tensor with
Q, the ring of rational numbers. This has the added bonus of not only creating
a torsion free Abelian group A ⊗Z Q, but in fact creates a rational vector space.
Of course this really relies on the assumption that A is Abelian. Thus we must
restrict our attention to simply connected spaces.
At this point the story merges with a different story about homotopy groups. It
turns out that for any space X there is a natural product structure on the tower π∗X
of homotopy groups. This is the Whitehead product [, ] : πpX × πqX → πp+q−1X.
The Whitehead product is Z-bilinear, graded commutative and satisfies the graded
Jacobi identity. It is thus very close to being a graded Lie algebra. Considering in-
stead of π∗ΩX, the rational homotopy groups π∗ΩX⊗Q we get a fully fledged re-
duced graded Lie algebra over Q, called the rational homotopy Lie algebra of X. This
provides a functor π∗(Ω−)⊗Q from the category of simply connected spaces, to
the category of reduced graded Lie algebras over Q. Thus from spaces we get
graded Lie algebras. The famous topologist, Heinz Hopf, had asked the following
question.

Question 1. Does every reduced graded Lie algebra over Q occur as the rational
homotopy Lie algebra of some simply connected space?

Graded Lie algebras also appear when taking the homology of a differential graded
Lie algebra. Thus it is natural to ask the following question.

Question 2. Does there exist a functor λ : Top1 → dgLie0 between the category of
simply connected spaces and reduced differential graded Lie algebras such that
the homology of λX coincides with the rational homotopy Lie algebra π∗X⊗Q?

Quillen provided such a functor λ and used it to answer Hopf’s question in the
affirmative.

The construction of λ

We now sketch Quillen’s construction of the functor λ : Top1 → dgLie0. The
functor λ is realized as the composition of several functors, each of which we
briefly sketch below. We are given a simply connected space X and will associate,
in a functorial way, a reduced differential graded Lie algebra.

From spaces to simplicial sets

At the time Quillen wrote his paper it was well known that studying the homo-
topy theory of spaces was equivalent – in the sense of model categories, more
about this later – to studying the homotopy theory of simplicial sets. The functors
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establishing this equivalence are Sing : Top → sSet, the singular complex, and its
left adjoint | · | : sSet→ Top the geometric realization.
Thus Sing(X) provides a simplicial model for the given space X. However we
want a model that takes into account our knowledge that X is simply-connected.
For this we apply the Eilenberg subcomplex functor E1 : sSet→ sSet1 which takes a
pointed simplicial set K and removes those simplices whose 1-skeleton is not at the
basepoint. The result is then a 1-reduced simplicial set E1K. If K is a Kan complex
then the inclusion E1K → K is a weak equivalence of simplicial sets. Since Sing(X)

is a Kan complex it follows that E1SingX is a sensible 1-reduced simplicial model
for X. Taking the geometric realization |E1SingX| yields a space which is weakly
homotopic to X. This gives the first pair of adjoints | · | a E1Sing(·).

Top1 sSet1

E1Sing

|·|

From simplicial sets to simplicial groups

In the passage to the simplicial world we have given ourselves a combinatorial
model of the space X, namely the 1-reduced simplicial set K = E2SingX. We now
wish to look at the “space of loops” in X. Topologically we could just look at the
loop space ΩX. But since we have shifted to the simplicial world we need to work
a little to get good models of Ω(−). This work was done by Kan in [Kan58] who
constructed a pair of adjoints

sSet0 sGrp

G

W

where GK is a model for the loop space of K and WA is a classifying space for the
group A.
We apply G to our 1-reduced model E2SingX to get a reduced simplicial group
GE2SingX.

From groups to complete Hopf algebras

Given a group G, the rational group algebra QG may be equipped with a coalgebra
structure with the map ∆g = g⊗ g (for g ∈ G) as the coproduct. The coalgebra
structure is compatible with the algebra structure and so QG is a Hopf algebra.
Given any Hopf algebra H the subspace of primitive elements (those elements x
such that ∆x = x ⊗ 1 + 1 ⊗ x) PH is a Lie algebra with the commutator as Lie
bracket. However, for the group algebra QG the subspace of primitive elements is
trivial, so we need a more refined Hopf algebra in order to retain the homotopical
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information. Quillen’s solution is to complete QG with respect to the filtration
defined by powers of the augmentation ideal Ker(ε). Having completed QG we
get a complete Hopf algebra Q̂G where the exponential function exp : Q̂G → Q̂G
(defined by the usual power series formula) now makes sense. Furthermore for a
primitive element x the exponential element exp(x) is group-like. Conversely, if x
is group-like then the logarithm log(x) is primitive. Thus PQ̂G might plausibly
retain homotopical information about the original group G.
This whole strategy is carried out in each level of the reduced simplicial group
GE2SingX. This yields a simplicial complete Hopf algebra Q̂GE2SingX.
The “group-like elements” functor G : sCHopf → Grp is right adjoint to the
functor Q̂.

sGrp0 sCHopf0

Q̂

G

Furthermore, for free simplicial groups G (such as the group GE2SingX) Quillen
proves that G is weakly rational homotopy equivalent to GQ̂G (assuming G is
connected and free), thus it again seems reasonable to suppose that not much
homotopical information is lost in the passage GE2SingX 7−→ Q̂GE2SingX.

From simplicial complete Hopf algebras to simplicial Lie algebras

In the previous step we hinted strongly at how we might go from a (reduced
simplical complete) Hopf algebra H to a reduced simplicial Lie algebra, namely
by considering the subspace of primitive elements, with the commutator bracket.
Thus, to our simplicial complete Hopf algebra Q̂GE2SingX we associate the sim-
plicial Lie algebra PQ̂GE2SingX.
Again the operation of taking primitives is somewhat reversible. The left adjoin
to P is given by the completed universal enveloping algebra functor Û : Lie →
CHopf, where the completion is with respect to the augmentation ideal.

sCHopf0 sLie0

P

Û

Since PQ̂GE2SingX is reduced it is in particular connected. Given any connected
free simplicial Lie algebra g, Quillen proves that g is weakly equivalent to PÛg,
thus it seems likely that we do not throw away too much homotopical information
when passing from the Hopf algebra to the primitives.

From simplicial Lie algebras to dg Lie algebras

We arrive at the final step in Quillen’s construction. At present we have a reduced
simplicial Lie algebra g = PQ̂GE2SingX. This is in particular a simplicial Q-vector
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space, and the Dold-Kan correspondence tells us that these carry the same homo-
topy theory as the homotopy theory of non-negatively graded chain complexes
over Q i.e. differential graded vector spaces over Q. Thus the final step must be
to prove a specific version of the Dold-Kan correspondence, linking simplicial Lie
algebras with dg Lie algebras. This is exactly what Quillen does. The normalized
chains functor N : sVect→ dgVect can be restricted to a functor N : sLie→ dgLie.
This works by taking the simplicial Lie brackets and shuffling them together (us-
ing the Eilenberg-Mac Lane map) to get a graded Lie bracket. Furthermore N has
a left adjoint N∗

sLie0 dgLie0

N

N∗

Quillen’s construction is therefore the composite

λ = NPQ̂GE2Sing : Top1 → dgLie0.

Making sense of the construction

We shall view Quillen’s construction through the lens of model categories; a con-
ceptual homotopy-theoretic framework developed by Quillen a few years before
rational homotopy theory.
The axioms of a model category have changed slightly since Quillen’s first steps
in [Qui67].

Definition 1.0.1. A model category is a complete and cocomplete category C equipped
with three distinguished classes of morphisms; the weak equivalences, the fibrations
and the cofibrations. A morphism in C is called an acyclic fibration if it is both a weak
equivalence and a fibration, likewise an acyclic cofibration is both a cofibration and
a weak equivalence. We require the following axioms be satisfied.

(i) The weak equivalences satisfy the 2-out-of-3 axiom.
(ii) All three classes are closed under retracts.

(iii) Acyclic cofibrations have the LLP with respect to fibrations. Acyclic fibra-
tions have the RLP with respect to cofibrations.

(iv) Any morphism may be factored in two ways: as a cofibration followed by an
acyclic fibration, or as an acyclic cofibration followed by a fibration.

The structure of a model category C allows one to define a sensible notion of
homotopy between morphisms and so also a notion of homotopy equivalence between
the objects of C. The weak equivalences play the same role that classical weak
equivalences (i.e. continuous maps inducing isomorphism on homotopy groups)
do in topology. In particular a weak equivalence between cofibrant-fibrant objects
is in fact a homotopy equivalence between these objects (Whitehead’s theorem).
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The notion of homotopy equivalence in a model category C allows one to define
the associated homotopy category Ho(C) of C. It turns out that this is a localization
of C with respect to the weak equivalences, i.e. there is a canonical functor

γ : C → Ho(C)

such that γ( f ) is an isomorphism whenever f is a weak equivalence, and γ is
universal with this property.
The axioms of model categories are phrased in a language very reminiscent of
the category of topological spaces. Indeed the category of topological spaces with
continuous maps does carry a model structure (in fact several). However, this is
by no means the only example. For example, each of the categories through which
Quillen’s λ-functor passes admits a model structure, as we explain below. First,
here is a classical example which illustrates the flexibility of the model category
axioms.

Theorem 1.0.2. Let R be a ring and Ch(R) the category of chain complexes (non-
negatively graded) of left R-modules. For a map f : M → N in ChR we make the
following definitions.

(i) The map f is a weak equivalence if it induces an isomorphism on homology (also
known as a quasi-isomorphism)

(ii) The map f is a fibration if it is an epimorphism in positive degrees.
(iii) The map f is a cofibration if it is a monomorphism having projective cokernels in

all degrees.

With these definitions Ch(R) is a model category.

Suppose C and D are model categories and F : C → D, U : D → C are adjoint
functors with F left adjoint to U. We call F a left Quillen functor if F preserves
cofibrations and acyclic cofibrations. Likewise U is a right Quillen functor if U
preserves fibrations and acyclic fibrations. The adjunction (F, U) is called a Quillen
adjunction if F is a left Quillen functor (equivalently if U is a right Quillen functor).
A Quillen adjunction (F, U) is called a Quillen equivalence if the following condition
is satisfied:

• For cofibrant A in C and fibrant X in D and every map g : A → UX. The
map g is a weak equivalence in C if and only if g[ : FA → X is a weak
equivalence in D.

The terminology is justified by the Total derived functor theorem which we now state.

Theorem 1.0.3. Let (F, U) be a Quillen equivalence. Then the left derived functor LF :
Ho(C)→ Ho(D) exists, as does the right derived functor RU : Ho(D)→ Ho(C). These
functors form an adjoint equivalence of categories.
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Quillen uses Theorem 1.0.3 repeatedly to show that λ induces an equivalence on
the homotopy level.



Chapter 2

Model categories

The purpose of this chapter is to lay out the basic theory of model categories. Our
exposition follows [Hov99], [DS95], [Hir03], and [GJ99].
In general [DS95] provides a quick introduction starting from scratch. They go
through the model structure on the category of chain complex in some depth.
[Hov99] is a good place to find detailed explanations of examples and [Hir03] is
good for detailed axiomatics and thorough investigations of abstract model cat-
egory theory. The material on model categories in [GJ99] is strongly inclined
towards simplicial methods (as the title of their book suggests).

2.1 Model categories

Given a category C we let C→ denote the associated category of morphisms whose
objects are the morphisms of C and whose morphisms are commutative squares.
A morphism f in C is a retract of a morphism g in C if f is a retract of g (in the
usual sense) as objects of C→. Explicitly this means that there is a commutative
diagram in C

A C A

B D B

f g f

where the horizontal compositions are identity morphisms.
Given morphisms i : A→ B and p : X → Y in C then i has the left lifting property
(LLP) with respect to p and p has the right lifting property (RLP) with respect
to i if, for every commutative diagram (without h)

A C

B D

i ph

9
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there exists a morphism h : B → X making the filled diagram commutative. Note
that we do not require the filling morphism h to be unique.

Definition 2.1.1. A model structure on a category C consists of three specified
subcategories: weak equivalences W , cofibrations Cofib, and fibrations Fib. A mor-
phims which is both a fibration and a weak equivalence is called an acyclic fibration,
likewise a morphism which is both a cofibration and a weak equivalence is called
an acyclic cofibration. We require the following axioms are satisfied for morphisms
f and g of C;

2-Out-of-3 Axiom If f and g are composable and two of { f , g, g f } are weak equiv-
alences, then so is the third.

Retract Axiom If f is a retract of g and g is a weak equivalence, cofibration or
fibrations, then so is f .

Lifting Axiom Acyclic cofibrations have the left lifting property with respect to fi-
brations, and cofibrations have the left lifting property with respect to acyclic
fibrations.

Factorization Axiom Every morphism f has two factorizations

(i) f = hi where i is a cofibration and h is an acyclic fibration.
(ii) f = pj where p is a fibration and j is an acyclic cofibration.

Remark 2.1.1. When speaking of a weak equivalence, fibration or cofibration we
mean a morphism in the respective subcategory, not an object.

Definition 2.1.2. A model category is a category C which has all small limits and
colimits together with a model structure on C.

We abuse notation by suppressing the distinguished subcategories (W , Cofib and
Fib) and will always write C for the model category.

Remark 2.1.2. Some authors require the factorization axiom to be functorial (for
example [Hov99] and [Hir03]). Some authors (including Quillen in [Qui67] and
[Qui69]) only require C to be finitely (co)complete.

Notation 1. We frequently use the standard notation: →
∼

for weak equivalences, ↪→
for cofibrations and � for fibrations.

2.2 Basic examples

Example 2.2.1 (Trivial structure). Let C be any complete and cocomplete category.
Let the weak equivalences consist of all isomorphisms in C, and let every map be
both a fibration and a cofibration. With these choices C is a model category. In
fact we get a model structure on C by choosing any one of W , Cofib or Fib to be
the subcategory of isomorphisms and letting the other two be all of C.
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Most often it takes some hard work to verify the model structure axioms. We
therefore wait with the more advanced examples until later in this thesis. However
it may be beneficial to look ahead at the Section 2.7 and Section 2.7 to get a feel
for the classical examples of model structures.

Example 2.2.2 (Product structure). Given model categories C and D, the product
category C × D may be endowed with the product model structure where a mor-
phism ( f , g) belongs to one of the distinguished subcategories if and only if both
f and g belong to the corresponding subcategory of C and D, respectively.

Example 2.2.3 (Under). Suppose C is a model category and A an object of C. The
under-category A/C (objects are morphisms A→ X out of A, morphisms are com-
mutative triangles) is then a model category where a morphism is a weak equiva-
lence, cofibration, or fibration if it is one in C. Of course one must take care that
colimits in A/C are not simply computed in C.

Example 2.2.4 (Basepoint). Note the following special case of the under-category
model structure; let C be a model category and ∗ the terminal object. The under-
category ∗/C will then be denoted C∗. Objects in this category may be thought of
as objects X of C together with a specified “basepoint” b : ∗→ X. Then morphisms
in C∗ are morphisms in C that preserve the basepoint.

Example 2.2.5 (Over). If C is a model category and X an object of C, then the over-
category C/X (objects are morphisms A → X into X, morphisms are commutative
triangles) is a model category where a morphism is a weak equivalence, cofibra-
tion, or fibration it it is one in C. In this case one must be careful that limits are
not simply computed in C.

2.3 Basic properties

The model category axioms are self-dual in the sense that if C is a model category
then the opposite category Cop has the opposite model structure where the cofi-
brations of Cop are the fibrations of C, the fibrations of Cop are the cofibrations of
C and the weak equivalences remain the same. This fact has the practical conse-
quence that all theorems deduced directly from the model category axioms come
in dual pairs. Thus having proven one theorem one automatically deduces the
dual theorem.
We now state a number of useful results. The proofs are not hard and are omitted
from this exposition.

Lemma 2.3.1 (The Retract Argument). Let C be any category and f = pi a factorization
of a morphism f in C. If f has the LLP with respect to p then f is a retract of i. Dually, if
f has the RLP with respect to i then f is a retract of p.

Lemma 2.3.2. Suppose C is a model category.
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(i) A morphism is a cofibration if and only if it has the LLP with respect to all acyclic
fibrations.

(ii) A morphism is an acyclic cofibration if and only if it has the LLP with respect to all
fibrations.

(iii) A morphism is a fibration if and only if it has the RLP with respect to all acyclic
cofibrations.

(iv) A morphism is an acyclic fibration if and only if it has the RLP with respect to all
cofibrations.

Corollary 2.3.1. Any isomorphism in a model category is both an acyclic fibration and an
acyclic cofibration.

From Lemma 2.3.2 the weak equivalences together with the cofibrations deter-
mine the collection of fibrations. Dually, the weak equivalences together with the
fibrations determine the cofibrations. In fact the collections of cofibrations and
fibrations also determine the weak equivalences. To see this, let f be a morphism
in the model category C. By assumption f may be factored as f = pj with p a
fibration and j a map which has the LLP with respect to all fibrations. Now, by
the 2-out-of-3 property, f is a weak equivalence if and only if p has the RLP with
respect to all cofibrations. We thus have the following result.

Lemma 2.3.3. Let C be a model category. Any two of the subcategories W , Cofib and
Fib determine the third.

Lemma 2.3.4. Suppose C is a model category. The cofibrations and acyclic cofibrations
are closed under pushouts. Dually, the fibrations and acyclic fibrations are closed under
pullbacks.

Since model categories are assumed complete and cocomplete they have both a
terminal object 0 and an initial object 1.

Definition 2.3.1. An object A in C is said to be cofibrant if the unique morphism
0 → A is a cofibration. An object X in C is said to be fibrant if the unique
morphism X → 1 is a fibration.

2.4 Homotopy theory in model categories

In the category of topological spaces the usual definition of the homotopy rela-
tion between continuous maps f , g : X → Y requires the use of the unit interval
I = [0, 1] to form the “cylinder on X”, namely the product space X × I. If C is
a general category its objects may be very different from topological spaces, in
particular there may be no obvious replacement for the unit interval in C. In a
model category, however, we can still carry out the cylinder construction. This is
axiomatized in the following definition.
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Definition 2.4.1. Suppose C is a model category and let f , g : A → X be mor-
phisms in C.

(i) A cylinder object for A is an object Cyl(A) and a factorization

Aq A
i0+i1
−−−→ Cyl(A)

p
−−−→ A

of the fold map id + id : Aq A → A, such that i0 + i1 is a cofibration and p
is a weak equivalence.

(ii) A left homotopy from f to g consists of a cylinder object AqA i0+i1→ Cyl(A)
p→

A and a map H : Cyl(A)→ X such that H(i0 + i1) = f + g.

Aq A Cyl(A) A

X

f+g

i0+i1

H

p

If there exists a left homotopy from f to g we say that f and g are left homo-

topic and write f
l' g.

Lemma 2.4.1. Suppose C is a model category. Every object A of C has a cylinder object

Aq A i0+i1→ Cyl(A)
p→ A in which p is a (necessarily acyclic) fibration.

Proof. Apply the factorization axiom to the fold map id + id : A q A → A to get
id + id = pi where p is an acyclic fibration and i is a cofibration.

Dual to cylinder objects are path objects which generalize path spaces in the cate-
gory of topological spaces.

Definition 2.4.2. Suppose C is a model category and let f , g : A → X be mor-
phisms in C.

(i) A path object for X is an object Path(X) and a factorization

X
s

−−−→ Path(X)
(p0,p1)

−−−→ X× X

of the diagonal map ∆ : X → X × X, such that s is a weak equivalence and
(p0, p1) is a fibration.

(ii) A right homotopy from f to g consists of a path object X s→ Path(X)
(p0,p1)→

X× X and a map H : A→ Path(X) such that p0H = f and p1H = g.

X Path(X) X× X

A

s (p0,p1)

H
f×g



14 CHAPTER 2. MODEL CATEGORIES

If there exists a right homotopy from f to g we say that f and g are right
homotopic and write f

r' g.

Remark 2.4.1. There is no requirement that the choice of cylinder objects nor path
objects be functorial.

Lemma 2.4.2. Suppose C is a model category. Every object X of C has a path object

X s→ Path(X)
(p0,p1)→ X× X in which s is a (necessarily acyclic) cofibration.

Proof. Apply the factorization axiom to the diagonal map ∆ : X → X × X to get a
∆ = ps where p is an fibration and s is an acyclic cofibration.

Lemma 2.4.1 and Lemma 2.4.2 show that, at least in this primitive sense, a model
category has the structure needed to define homotopy relations.

Definition 2.4.3. Suppose C is a model category and let f , g : A → X be mor-
phisms in C.

(i) The morphisms f and g are homotopic if they are both left homotopic and
right homotopic, this is written f ' g.

(ii) f is a homotopy equivalence if there is a map h : X → A such that h f ' idA

and f h ' X.

Left and right homotopy relations

Left homotopy and right homotopy are relations on the set HomC(A, X). They are
not in general equivalence relations. Let πl(A, X) denote the set of equivalence
classes of HomC(A, X) under the equivalence relation generated by left homotopy.
Dually, let πr(A, X) denote the set of equivalence classes of HomC(A, X) under
the relation generated by right homotopy.

Lemma 2.4.3. If A is cofibrant and Aq A i0+i1→ Cyl(A)
p→ A is a cylinder object for A,

then i0, i1 : A→ Cyl(A) are acyclic cofibrations.

Proof. Since id : A → A is a weak equivalence and since A i0→ Cyl(A)
p→ A is a

factorization of id with p a weak equivalence, it follows from the 2-out-of-3 axiom
that i0 is a weak equivalence. The following diagram is a pushout in C

0 A

A Aq A

in0

in1

Since 0 ↪→ A is a cofibration (i.e. A is cofibrant) and since cofibrations are pre-
served under pushouts it follows that in0 : A → A q A is a cofibration. Thus
i0 = (i0 + i1) ◦ in0 is a cofibration. Switching the roles of i0 and i1 shows that i1 is
an acyclic cofibration too.
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Remark 2.4.2. The first part of the above proof does not use the cofibrancy hypoth-
esis on A. Thus i0, i1 : A→ Cyl(A) are always weak equivalences.

Lemma 2.4.4. Let f , g : A→ X and suppose f
l' g. Then f is a weak equivalence if and

only if g is.

Proof. By assumption there is some homotopy H : Cyl(A) → X with f = Hi0 and
g = Hi1. By Remark 2.4.2, i0 and i1 are weak equivalences. By the 2-out-of-3 axiom
g is a weak equivalence if and only if H is a weak equivalence, which happens if
and only if f is a weak equivalence.

Lemma 2.4.5. If A is cofibrant then left homotopy
l' is an equivalence relation on

HomC(A, X)

Proof. Reflexivity Let f ∈ HomC(A, X). Choose any cylinder object A q A i0+i1→
Cyl(A)

p→ A and define H to be f ◦ p.
Symmetry Let f , g ∈ HomC(A, X) and suppose H : Cyl(A) → X is a left homo-

topy from some chosen cylinder object for A. The switch map τ : Aq A →
Aq A is easily seen to be a cofibration and thus we get a new cylinder object

A q A τ→ A q A i0+i1→ Cyl(A)
p→ A. Now H((i0 + i1)τ) = g + f and so g is

left homotopic to f .
Transitivity Suppose f , g, h : A→ X are morphisms and that (Cyl(A), H), (Cyl ′(A), H ′)

are left homotopies between f and g and between g and h, respectively. Form
the pushout

A Cyl(A)

Cyl ′(A) C

i0

i ′1 q

q ′

where, since A is assumed cofibrant, i0 and i ′1 are acyclic cofibrations. By
Lemma 2.3.4, q and q ′ are acyclic cofibrations. Let j = q ◦ i0 denote the map
A → C. Thus j is an acyclic cofibration. The maps p : Cyl(A) → A and
p ′ : Cyl ′(A) → A define, via the universal property of the pushout square,
a map q ′′ : C → A. Since p and q are weak equivalences so is q ′′ (using the
2-out-of-3 property). Also, q ′′ ◦ j = idA. The map j + j : A q A → C need
not be a cofibration, but we can factor it (using the factorization axiom) as

Aq A
j ′→ C ′ s→ C, a cofibration followed by an acyclic fibration. Then C ′ is a

cylinder object for A, i.e. the map

Aq A
j ′

−−−→ C ′
q ′′◦s
−−−→ A



16 CHAPTER 2. MODEL CATEGORIES

factors the fold map and q ′′ ◦ s is a weak equivalence and j ′ is a cofibration.
Now the maps H and H ′ define, via the universal property, a map H ′′ : C →
X. Then H ′′ ◦ s defines a left homotopy from f to h.

Remark 2.4.3. We only used the hypothesis on A to show the transitivity property.
So left homotopy is always reflexive and symmetric.

Lemma 2.4.6. If X is fibrant then right homotopy
r' is an equivalence relation on HomC(A, X).

Proof. Dual to the proof of Lemma 2.4.5.

Lemma 2.4.7. Let f , g : A→ X be morphisms.

(i) If A is cofibrant and f
l' g, then f

r' g.

(ii) If X is fibrant and f
r' g, then f

l' g.

Proof. We show (i), then (ii) follows by duality. Let A q A i0+i1→ Cyl(A)
p→ A and

H : Cyl(A) → X be the cylinder object and left homotopy that we assume exist.
By Lemma 2.4.3, i0 is an acyclic cofibration. Choose a path object

X s→ Path(X)
(p0,p1)→ X× X

for X. Consider the diagram

A Path(X)

Cyl(A) X× X.

s◦ f

i0 (p0,p1)

( f p,H)

K

Since (p0, p1) is a fibration and i0 is an acyclic cofibration, there is a lift K :
Cyl(A) → Path(X) making the filled diagram commute. Now the map Ki1 :
A→ Path(X) is a right homotopy from f to g.

Remark 2.4.4. In the proof of the lemma we chose an arbitrary path object for X
and used the given left homotopy to create a right homotopy with the chosen path
object as codomain. Thus, if f , g : A → X are maps where A is cofibrant and X is

fibrant, then f ' g if and only if f
l' g for a fixed cylinder object, if and only if

f
r' g for a fixed path object.

Proposition 2.4.1. If A and X are fibrant-cofibrant then the left-homotopy and right-
homotopy relations on HomC(A, X) coincide and are equivalence relations.

Proof. Follows from Lemma 2.4.7.
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Lemma 2.4.8. If A is cofibrant and p : Y → X is an acyclic fibration, then “composition
with p” induces a natural bijection p∗ : πl(A, Y)→ πl(A, X) taking [ f ] to [p f ].

Proof. The map p∗ is well defined since composition with p takes a given homo-
topy H to a homotopy pH between the images (by p∗) of Hi0 and Hi1.
To see that p∗ is surjective, let [ f ] ∈ πl(A, X). Since A is cofibrant and p is an
acyclic fibration there is a lift g : A→ Y in the diagram

0 Y

A X

p

f

g

Now pg = f and so p∗([g]) = [ f ]. For injectivity, suppose f , g : A → Y are left
homotopic, say with homotopy H : Cyl(A)→ Y. Now the diagram

Aq A Y

Cyl(A) X

f+g

p

H

Ĥ

has a lift Ĥ : Cyl(A) → Y since Aq A → Cyl(A) is a cofibration. Then Ĥ is a left
homotopy from f to g, i.e. [ f ] = [g].

Lemma 2.4.9. If X is fibrant and i : A → B is an acyclic cofibration, then composition
with i induces a natural bijection i∗ : πr(B, X)→ πr(A, X).

Proof. Dual to Lemma 2.4.8.

Lemma 2.4.10. If X is a fibrant object, f
l' f ′ : A → X and h : A ′ → A is a map, then

f h
l' f ′h.

Proof. We have a left homotopy H : Cyl(A) → X from f to f ′. Factor the map
Cyl(A) → A as Cyl(A) → C → A a (necessarily acyclic) cofibration followed by
an acyclic fibration. Now let Ĥ : C → X be the lift in the diagram

Cyl(A) X

C 1

H

Ĥ

Then Ĥ is also a homotopy from f to f ′. Thus we may assume that Cyl(A) → A
is an acyclic fibration.



18 CHAPTER 2. MODEL CATEGORIES

Choose a cylinder object Cyl(A ′) for A ′ and consider the diagram

A ′ q A ′ Cyl(A ′)

Aq A Cyl(A) A

X

i ′0+i1

hqh k

f+ f ′

∼

H

where we wish to find k. We get k as a lift in the following diagram where we use
the fact that Cyl(A)→ A is an acyclic fibration:

A ′ q A ′ Aq A Cyl(A)

Cyl(A ′) A ′ A

i ′0+i1

hqh

i0+i1

p∼
k

h

Now Hk is the desired left homotopy.

Lemma 2.4.11. If X is a fibrant object then using the composition law of C we get a well
defined map

πl(A ′, A)× πl(A, X) −−−→ πl(A ′, X) ([ f ], [g]) 7−→ [g f ]

Proof. Follows from Lemma 2.4.10 and the observation that if f , f ′ : A ′ → A are
left homotopic via H, and g : A → X is some map, then g f is left homotopic to
g f ′ via gH.

Lemma 2.4.12. If A is a cofibrant object then using the composition law of C we get a
well defined map

πr(A, X)× πl(X, Y) −−−→ πl(A, Y) ([ f ], [g]) 7−→ [g f ]

Proof. Dual to Lemma 2.4.11.

Proposition 2.4.2. Let C be a model category. Composition is well defined between ho-
motopy classes of maps between fibrant-cofibrant objects of C.

Proof. By Proposition 2.4.1 there is a well defined notion π(A, X) of homotopy
classes of maps between two fibrant-cofibrant objects A and X. Thus πl(A, X) =

πr(A, X) = π(A, X). The result now follows from Lemma 2.4.11 (or from Lemma 2.4.12).



2.4. HOMOTOPY THEORY IN MODEL CATEGORIES 19

Whitehead’s theorem

Whitehead’s theorem from topology states that weakly homotopy equivalent maps
between CW complexes are homotopy equivalences. The model category frame-
work allows one to give a broad generalization of this theorem to arbitrary model
categories.

Theorem 2.4.1 (Whitehead’s Theorem). Suppose C is a model category. Suppose A
and X are both fibrant and cofibrant in C. Then f : A → X is a weak equivalence if and
only if f is a homotopy equivalence.

Proof. “⇒” Suppose f : A→ X is a weak equivalence. Factor f as A
q
↪→
∼

C
p
� X an

acyclic cofibration followed by a fibration. Since f is a weak equivalence it follows
that p is a weak equivalence. Since A is fibrant the diagram

A A

C 1

id

q r

may be filled, yielding a left inverse r to q. Since X is fibrant and q is an acyclic cofi-
bration, the induced map q∗ : πr(C, C) → πr(A, C) is a bijection by Lemma 2.4.9.
Now

q∗([qr]) = [qrq] = [q] = q∗([idC])

shows that qr
r' idC. Thus r is a two-sided right homotopy inverse to q. Dually,

using that A is cofibrant and Lemma 2.4.8 one gets a two-sided left homotopy
inverse s : X → C to p. Thus we have maps

A C A
q
∼

p
∼

r s

and we claim that rs is a homotopy inverse to f = pq. This follows from the
following calculations

f (rs) = p(qr)s
r' ps = idX

and
(rs) f = r(sp)q

l' rq = idA.

“⇐” Now suppose f has a homotopy inverse g : X → A. Factor f as before,

A
q
↪→
∼

C
p
� X. If we prove that p is a weak equivalence then we are done. Let

H : Cyl(X) → X be a left homotopy between f g and idX. Since X is cofibrant
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Lemma 2.4.3 implies that i0 : X → Cyl(X) is an acyclic cofibration. Thus there is a
lift in the diagram

X C

Cyl(X) X

i0∼

qg

p

H

H ′

Let s = H ′i1 : X → C. The map H ′ is a homotopy witnessing s ' qg. Then
ps = pH ′i1 = Hi1 = idX. Let r : C → A be a homotopy inverse to q, which exists
by “⇒” just proved. Then f r = pqr ' p. Thus we see

sp ' qgp ' qg f r ' qr ' idC

where we have used Lemma 2.4.11 and the dual Lemma 2.4.12. Since idC is a
weak equivalence and idC ' sp it follows from Lemma 2.4.4 that sp is a weak
equivalence. Now p is a retract of sp as seen by the commutativity of

C C C

X C X

id

p sp

id

p

s p

Thus p is a weak equivalence. This completes the proof.

Corollary 2.4.1. Let f , f ′ : A → X be homotopic maps between fibrant-cofibrant objects
and let h : X → Y be a weak equivalence, where Y is also fibrant-cofibrant. Then h f ' h f ′

implies f ' f ′.

Proof. By Theorem 2.4.1, h has a homotopy inverse h ′ : Y → X. Now f '
h ′h f ' h ′h f ′ ' f ′ (compositions make sense since the objects are assumed fibrant-
cofibrant), so f ' f ′.

The classical homotopy category

We can now describe the “classical homotopy category” of a model category C.
This is not the same as the “Quillen homotopy category associated to C”. In the
classical homotopy category we include only the fibrant-cofibrant objects of C. We
have seen that the homotopy relation behaves very well between fibrant-cofibrant
objects, reminiscent of the situation in topology.

Proposition 2.4.3. Suppose C is a model category. There exists a category πCc f whose
objects are the fibrant-cofibrant objects of C and where morphisms between A and X from
πCc f is the set of equivalence classes π(A, X).

Proof. Follows from Proposition 2.4.2.
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Fibrant and cofibrant replacement

The next step towards the construction of the homotopy category Ho(C) associ-
ated to a model category C is that of fibrant and/or cofibrant replacement. This
generalizes the CW approximations from topology and the projective/injective
resolutions from homological algebra.
First we describe replacements of objects.

Definition 2.4.4. Suppose C is a model category and X is an object of C.

(i) A cofibrant replacement to X is a weak equivalence QX →
∼

X where QX is
a cofibrant object in C.

(ii) A fibrant replacement to X is a weak equivalence X →
∼

RX where RX is a
fibrant object in C

We often refer simply to QX instead of the map QX →
∼

X when using the term
cofibrant replacement. Similarly we use the term fibrant replacement to refer to RX
instead of the map X →

∼
RX.

Lemma 2.4.13. Every object X in a model category has both a fibrant and a cofibrant
replacement.

Proof. Factor the unique map 0 → X as a cofibration followed by an acyclic fibra-
tion, 0 ↪→ QX �

∼
X. Likewise, factor the map X → 1 as an acyclic cofibration

followed by an fibration X ↪→
∼

RX � 1.

The replacements given by the factorization axiom (as in Lemma 2.4.13) have the
extra property that the map QX → X is in fact a fibration, and that the map
X → RX is in fact a cofibration. This motivates the next definition.

Definition 2.4.5. Suppose C is a model category and X is an object of C.

(i) A fibrant cofibrant replacement to X is a cofibrant replacement QX �
∼

X
which is a fibration.

(ii) A cofibrant fibrant replacement to X is a fibrant replacement X ↪→
∼

RX
which is a cofibration.

Of course an object X may have several replacements, so it is worthwhile to com-
pare these.

Definition 2.4.6. Suppose C is a model category and X is an object of C.

(i) A map of cofibrant replacements between two cofibrant replacements Q1X →
∼

X and Q2X →
∼

X is a map Q1X → Q2X in the over category C/X.
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(ii) A map of fibrant replacements between two fibrant replacements X →
∼

R1X
and X →

∼
R2X is a map R1X → R2X in the under category X/C.

In the familiar situations such as homological algebra, one proves equivalence up
to homotopy of projective/injective resolutions. The corresponding statement in a
general model category also holds.

Lemma 2.4.14. Suppose C is a model category and X is an object of C.

(i) If Q1X �
∼

X and Q2X �
∼

X are two fibrant cofibrant replacements, then there is a
map of cofibrant replacements g : Q1X → Q2X which is a homotopy equivalence

(ii) If X ↪→
∼

R1X and X ↪→
∼

R2X are two cofibrant fibrant replacements, then there is a
map of fibrant replacements g : R1X → R2X which is a homotopy equivalence.

Proof. We prove (i), (ii) is similar. Consider the commuting diagram

0 Q2X

Q1X X

∼

∼

g

The lift g : Q1X → Q2X exists since Q2X �
∼

X is an acyclic cofibration, and since
Q1X is cofibrant. Now g is a weak equivalence by the 2-out-of-3 axiom.

Remark 2.4.5. One can prove more precise uniqueness statements about replace-
ments. For instance, one can show that arbitrary cofibrant replacements are “weakly
equivalent” in the sense that there exists a “zig-zag” of weak equivalences (itself
unique in a precise sense) connecting any two such replacements. For more details
in this direction see [Hir03, chap. 8, and chap. 14].

We now describe replacements of maps in C.

Definition 2.4.7. Let C be a model category and f : X → Y a map in C.

(i) A cofibrant replacement of f consists of a cofibrant replacement QX of X,
a cofibrant replacement QY of Y and a map Q f : QX → QY such that the
following diagram commutes.

QX QY

X Y

Q f

∼ ∼

f
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(ii) A fibrant replacement of f consists of a fibrant replacement RX of X, a
fibrant replacement RY of Y and a map R f : RX → RY such that the the
following diagram commutes.

X Y

RX RY

f

∼ ∼

R f

Similarly one defines fibrant cofibrant replacements and cofibrant fibrant replacements
of f by requiring that the replacements satisfy the obvious extra condition in each
case.

Lemma 2.4.15. Let f : X → Y be a map in the model category C.

(i) There is a fibrant cofibrant replacement Q f of f .
(ii) There is a cofibrant fibrant replacement R f of f .

Proof. Factor 0 → X as 0 ↪→ QX �
∼

X. Now factor QX �
∼

X
f→ Y as a cofibration

followed by an acyclic fibration QX ↪→ QY �
∼

Y. Then QY �
∼

Y is a cofibrant

replacement of Y and QX ↪→ QY is a fibrant cofibrant replacement of f . The proof
of (ii) is similar.

Functorial replacements

So far we have not dealt with the possibility of getting functorial replacement func-
tors Q() and R(). There seems to be no reason why we should succeed in getting
functorial replacement functors C → C since there may be many choices of replace-
ments. But Lemma 2.4.14 tells us that the choices are never homotopically different
(at least when we choose fibrant cofibrant replacements and cofibrant fibrant re-
placements), so perhaps we can get replacement functors C → πCc f by passing to
homotopy classes of maps.

Proposition 2.4.4. Let C be a model category. There is a functor ρ : C → πCc f which to
every object X of C associates a fibrant replacement of a cofibrant replacement of X, and
which to every map f associates the homotopy class of fibrant replacements of cofibrant
replacements of f .

Proof. We first choose specific fibrant replacements of cofibrant replacements for
each object X of C (see Remark 2.4.7 below for some thoughts on the set theoretical
issues here). Choose a factorization of 0→ X as

0 ↪→ QX
pX
�
∼

X.
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Now choose a factorization of QX → 1 as

QX
jX
↪→
∼

RQX � 1.

If X is cofibrant to begin with then we choose pX = idX. If QX is fibrant then we
choose jX = idQX. For all objects X the resulting object RQX is then fibrant and
cofibrant. Define ρ(X) = RQX.
Given a map f : X → Y, first lift f to Q f : QX → QY (where now QX and QY are
fixed from the previous paragraph) as in the proof of Lemma 2.4.15. Now lift Q f
to a map RQ f : RQX → RQY (again RQX and RQY have already been chosen).
Define ρ( f ) = [RQ f ] ∈ π(RQX, RQY) the homotopy class of RQ f .
We check that ρ defines a functor. For id : X → X the map idQX : QX → QX
defines a cofibrant replacement of idX with respect to the chosen replacement
QX. The map idRQX : RQX → RQX is a fibrant replacement of idQX. Thus
[idRQX] = ρ(idX), and [idRQX] is the identity in πCc f .
Suppose we are given maps f : X → Y and g : Y → Z. Consider the following
diagram

X Y Z

QX QY QZ

RQX RQY RQZ

f g

pX

Q f

jX

pY

Qg

jY

pZ

jZ

RQ( f ) RQ(g)

where each of the four small squares commute. By the commutativity of the top
two squares we have (pZ)∗(Q(g) ◦ Q( f )) = (pZ)∗(Q(g) ◦ Q( f )). Since pZ is an
acyclic fibration, (pZ)∗ : πl(QX, QZ) → πl(QX, Z) is a bijection by Lemma 2.4.8.

Thus Q(g) ◦Q( f )
l' Q(g ◦ f ).

Postcomposing with jZ and using Lemma 2.4.11 we have

jZ ◦Q(g) ◦Q( f )
l' jZ ◦Q(g ◦ f ).

By commutativity this means that

RQ(g) ◦ RQ( f ) ◦ jX
l' RQ(g ◦ f ) ◦ jX.

Since QX is cofibrant Lemma 2.4.7 implies RQ(g) ◦ RQ( f ) ◦ jX
r' RQ(g ◦ f ) ◦ jX.

Finally by Lemma 2.4.9 we conclude RQ(g) ◦ RQ( f )
r' RQ(g ◦ f ). Thus ρ(g) ◦

ρ( f ) = ρ(g ◦ f ).
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Remark 2.4.6. We could have defined a model category to have functorial factoriza-
tions. This would make the above proof much simpler. However, then we would
also have had to check functoriality in each of the examples to come. In [Hir03]
and [Hov99] functorial factorization is assumed while in [GJ99] and [DS95] it is
not.

Remark 2.4.7. The proof of Proposition 2.4.4 requires a lot of choices! Since we have
required our model categories to have all small limits, all (non trivial) examples
will be large (see e.g. [Shu08]), i.e. the collection of objects will not form a set. So
the usual axiom of choice will not suffice for the above proof. Of course if we
assume as part of the model category structure some construction of the required
factorizations, then this problem disappears. However we have avoided this as-
sumption since it seems somewhat clumsy. Another possible solution would be
to work inside the von Neumann-Bernays-Gödel (NBG) axiomatic system. The
axiom of global choice is a consequence of the axioms of NBG (see [Shu08, chap.
7]) and this would therefore suffice for our purposes. One could also work inside
a Grothendieck Universe where it is possible to be more delicate about size issues.
We shall make no explicit choice of foundations in this thesis. While this state of
affairs is not completely satisfactory, we will not delve deeper than this comment.

The Quillen homotopy category

We now construct Quillen’s homotopy category Ho(C) associated to a model cat-
egory C. The objects of Ho(C) will be the same as those of C and we define

HomHo(C)(X, Y) = HomπCc f (ρ(X), ρ(Y)) = π(ρ(X), ρ(Y))

where ρ : C → πCc f is the replacement functor defined in Proposition 2.4.4.

Remark 2.4.8. If X and Y are fibrant-cofibrant objects of C then the action of the
functor ρ (defined in the proof of Proposition 2.4.4) is simply ρ(X) = X and
ρ(Y) = Y and so HomHo(C)(X, Y) = π(X, Y).

There is a functor
γ : C → Ho(C)

which is the identity on objects and takes a map f to ρ( f ).
If f : X → Y is a weak equivalence then RQ f : RQX → RQY is a weak equivalence
(by construction and using the 2-out-of-3 property twice). Since RQX and RQY
are fibrant and cofibrant, Whitehead’s theorem (Theorem 2.4.1) implies that RQ( f )
is a homotopy equivalence, i.e. γ( f ) = [RQ f ] is an isomorphism in Ho(C). We will
show that γ is universal amongst functors from C inverting the weak equivalences.
First we need a lemma.

Lemma 2.4.16. Let C be a model category and δ : C → D be a functor which sends weak

equivalences to isomorphisms. If f , g : A→ X are maps such that either f
l' g or f

r' g,
then δ( f ) = δ(g).
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Proof. Suppose f
l' g. Let H : Cyl(A) → X be a left homotopy. By assumption

δ(i0) and δ(i1) are isomorphisms (see Remark 2.4.2). Also, the map Cyl(A)
p→
∼

A

is a weak equivalence (so δ(p) is an isomorphism) and pi0 = pi1 = id. Thus
δ(i0) = δ(i1). Then

δ( f ) = δ(H)δ(i0) = δ(H)δ(i1) = δ(g).

The proof in the case f
r' g is similar.

Proposition 2.4.5. The functor γ : C → Ho(C) is universal with respect to all functors
from C which invert weak equivalences. More precisely, suppose δ : C → D is a functor
such that δ( f ) is an isomorphism in D whenever f is a weak equivalence in C. Then there
is a unique functor δ∗ : Ho(C)→ D such that δ∗ ◦ γ = δ.

Proof. We define δ∗ to be δ on objects. Suppose f : RQX → RQY represents a
morphism from X to Y in Ho(C). Then the diagrams

X Y

QX QY

RQX RQY

pX ∼

jX ∼

pY ∼

jY ∼

f

δ7−→
X Y

QX QY

RQX RQY

δ(pX) ∼=

δ(jX) ∼=

δ(pY) ∼=

δ(jY) ∼=

δ( f )

indicate that we may define

δ∗([ f ]) = δ(pY)δ(jY)−1δ( f )δ(jX)δ(pX)
−1,

which is well-defined by Lemma 2.4.16. This defines δ∗ as a functor and we have
δ∗γ = δ.
As for uniqueness, the maps pX and jX represent identity morphisms on RQX
and so [ f ] = γ(pY)γ(jY)−1γ( f )γ(jX)γ(pX)

−1 in Ho(C), so the value of δ∗ on [ f ] is
determined.

Remark 2.4.9. Proposition 2.4.5 is a way of stating that γ : C → Ho(C) is a local-
ization of C with respect to the class W of weak equivalences. Such a localization
is usually written C → W−1C. It is a remarkable consequence of this that Ho(C),
which we constructed using all the model structure (weak equivalences, fibration,
and cofibrations), depends only on the class W of weak equivalences. A category
C may well have many different model structures (for example the category of
spaces has at least three different model structures), but if two model structures
have the same weak equivalences then their homotopy categories will be equiva-
lent.
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Proposition 2.4.6. The Quillen homotopy category Ho(C) is equivalent (as a category)
to the classical homotopy category πCc f .

Proof. It follows from Remark 2.4.8 that the inclusion ε : πCc f ↪→ Ho(C) is a
functor. Define η : Ho(C) → πCc f by η(X) = ρ(X) and η([ f ]) = [ f ]. Then
ηε = idπCc f and ε ◦ η ∼= idHo(C).

Proposition 2.4.7. Let C be a model category. A map f : X → Y in C is a weak
equivalence if and only if γ( f ) is an isomorphism in Ho(C).

Proof. It is clear that if f is a weak equivalence then γ( f ) is an isomorphism.
Suppose γ( f ) is an isomorphism. Then γ( f ) is represented by a homotopy equiv-
alence f̃ : RQX → RQY. By Whitehead’s Theorem (Theorem 2.4.1) f̃ is a weak
equivalence. Thus since the replacement morphisms jX, jY, pX, pY are all weak
equivalences, it follows by the 2-out-of-3 axiom that f is a weak equivalence.

2.5 Derived functors

Derived functors play an important role in this thesis. The total derived functor
theorem is used several times to show that a pair of adjoint functors between
model categories (subject to some constraints) induces an equivalence at the level
of the homotopy categories.

Left and right derived functors

Suppose C is a model category and F : C → D is a functor with values in a category
D. It is natural to ask if F may be extended along γ : C → Ho(C) to yield a functor
F̃ : Ho(C)→ D at the homotopy level. Thus we ask for a factorization

C D

Ho(C)

F

γ
F̃

If F takes weak equivalences of C into isomorphisms in D then the universal prop-
erty of Ho(C) (Proposition 2.4.5) shows that F̃ exists. However, even when F does
not invert weak equivalences some approximation to an extension along γ may
exist. We may weaken the condition that the above diagram is commutative to
require that there is simply a natural transformation between F̃ ◦ γ and F. This is
made precise by the following definitions.

Definition 2.5.1. Let C be a model category, D a category, and F : C → D a functor.

(i) A left derived functor of F is a universal pair (LF, ε) of a functor LF :
Ho(C) → D and a natural transformation (from the left) ε : LF ◦ γ → F.
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Thus, given any pair (G, ζ) of a functor G : Ho(C) → D and natural trans-
formation ζ : G ◦ γ → F there must exist a unique natural transformation
θ : G → LF such that ζ = ε(θγ(−)).

(ii) A right derived functor of F is a universal pair (RF, η) of a functor RF :
Ho(C) → D and a natural transformation (from the right) η : F → RF ◦ γ.
Thus, given any pair (G, ζ) of a functor G : Ho(C) → D and natural trans-
formation ζ : F → G ◦ γ there must exist a unique natural transformation
θ : RF → G such that ζ = (θγ(−))η.

Remark 2.5.1. As usual, the universality requirement implies uniqueness up to
unique natural equivalence of left (or right) derived functors. Thus we speak of
the left (or right) derived functor, if it exists.

Example 2.5.1. As hinted before the definition, if F : C → D inverts weak equiva-
lences then the left (and right) derived functor LF (and RF) exists. We may simply
take LF = F̃ and ε = idF (likewise for RF, thus RF = LF in this case).

We will show that F : C → D has a left derived functor when F inverts weak
equivalences between cofibrant objects of C. In fact one only needs to check this for
the acyclic cofibrations. Dually, to get a right derived functor it suffices to check
the dual condition on the fibrant objects of C. To make the theorem as sharp as
possible we note the following result which will be useful later as well.

Lemma 2.5.1. (Ken Brown’s Lemma) Let C be a model category.

(i) If g : X → Y is a weak equivalence between cofibrant objects of C, then g may be
factored as g = ji where i is an acyclic cofibration, j is an acyclic fibration which has
a right inverse which is an acyclic cofibration.

(ii) If g : X → Y is a weak equivalence between fibrant objects of C, then g may be
factored as g = ji where i is an acyclic cofibration which has a left inverse which is
an acyclic fibration, and j is an acyclic fibration.

Proof. Since X and Y are cofibrant the pushout square

0 Y

X X qY

shows that X → X q Y and Y → X q Y are cofibrations. Now factor the map
g + id : X qY → Y as

X qY
k
↪→ Z

j
�
∼

Y

where j is an acyclic fibration and k is a cofibration. The map i : X → X q Y → Z
is a cofibration which is acyclic by the 2-out-of-3 axiom applied to g, j and i. Thus

X
i
↪→
∼

Z
j
�
∼

Y gives the factorization. Now the cofibration r : Y → X q Y → Z is a



2.5. DERIVED FUNCTORS 29

right inverse to j. The map r is acyclic by the 2-out-of-3 axiom. The proof of (ii) is
similar.

Corollary 2.5.1. Let C be a model category and F : C → D a functor.

(i) If F takes acyclic cofibrations between cofibrant objects to isomorphisms, then F takes
all weak equivalences between cofibrant objects to isomorphisms.

(ii) If F takes acyclic fibrations between fibrant objects to isomorphisms, then F takes all
weak equivalences between fibrant objects to isomorphisms.

Proof. Suppose f : X → Y is a weak equivalence between cofibrant objects. By
Lemma 2.5.1 we may factor f = ji where i is an acyclic cofibration and j has a
right inverse which is an acyclic cofibration. Apply F to the diagram X ↪→

∼
Z �

∼
Y.

By assumption F(i) is an isomorphism and so is F(r) (where r is the right inverse
to j). Thus F(j) is also an isomorphism, hence so is F( f ). Likewise for the dual
statement.

Proposition 2.5.1. Let C be a model category, D a category, and F : C → D a functor.

(i) If F takes acyclic cofibrations between cofibrant objects to isomorphisms, then the left
derived functor of F exists.

(ii) If F takes acyclic fibrations between fibrant objects to isomorphisms, then the right
derived functor of F exists.

Proof. We show (i). Let Q(−) be a functorial fibrant cofibrant replacement. Q
may be constructed as in the proof of Proposition 2.4.4 (see also Remark 2.4.7).
We define FQ : C → D by precomposition with Q, i.e. FQ(X) = F(Q(X)) and
FQ( f ) = F(Q( f )).
Now FQ will invert weak equivalences. To see this, note that if f : X → Y is
a weak equivalence then Q( f ) is a weak equivalence between cofibrant objects.
By Corollary 2.5.1, FQ( f ) = F(Q( f )) is an isomorphism. Thus, by the universal
property of Ho(C) (Proposition 2.4.5) there is an induced functor LF : Ho(C)→ D
such that LF ◦ γ = FQ. We need a natural transformation from LF ◦ γ to F, but
LF ◦ γ = FQ by construction. Thus we take εX = F(QX �

∼
X). We claim that

(LF, ε) is in fact a left derived functor of F.
Suppose we are given (G, ζ), another left pair for F. Use the naturality of ζ with
respect to the natural acyclic fibration pX : QX �

∼
X to get the commuting square

Gγ(QX) F(QX)

Gγ(X) F(X)

ζQX

Gγ(pX) F(pX)=εX

ζX



30 CHAPTER 2. MODEL CATEGORIES

Since γ(pX) is an isomorphism in Ho(C) we may define

θX : G −−−→ F(QX) = FQ(X) = LF ◦ γ

by
θX = ζQX ◦ (Gγ(pX))

−1.

Then θX is natural in X, i.e. defines a natural transformation G → LF such that
ζX = ε(θγ(−))X. If X is cofibrant then F(pX) = εX is an isomorphism (as before by
use of Corollary 2.5.1), thus the requirement ζX = ε(θγ(−))X determines θX. Since
X is isomorphic to its cofibrant replacement in Ho(C) this shows that θX is unique
(such that ζX = ε(θγ(−))X) for all X. This completes the proof.

Total derived functors

Definition 2.5.2. Let C and D be model categories and F : C → D a functor.

(i) A total left derived functor of F is a left derived functor of the composition

C F→ D γD→ Ho(D) where γD is the localization functor for the model category
D. In more detail, a total left derived functor for F is a functor LF : Ho(C)→
Ho(D) together with a natural transformation ε : LγC → γD ◦ F which is the
“closest such pair from the left”.

(ii) A total right derived functor of F is a right derived functor of the compo-

sition C F→ D γD→ Ho(D). In more detail, a total right derived functor for F
is a functor RF : Ho(C) → Ho(D) together with a natural transformation
ε : γD ◦ F → RF ◦ γC which is the “closest such pair from the right”.

As a corollary to Proposition 2.5.1 we have the following proposition.

Proposition 2.5.2. Suppose F : C → D is a functor between model categories.

(i) If F takes acyclic cofibrations between cofibrant objects to weak equivalences in D,
then the total left derived functor of F exists.

(ii) If F takes acyclic fibrations between fibrant objects to weak equivalences in D, then
the total right derived functor of F exists.

Proof. By Proposition 2.4.7, γD ◦ F satisfies the hypothesis of Proposition 2.5.1 and
thus induces the left (respectively right) derived functors which are then seen to
be total derived functors.

2.6 Quillen adjunctions and Quillen equivalences

We now define the relevant notion of morphisms between model categories.

Definition 2.6.1. Suppose C and D are model categories.
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(i) A functor F : C → D is called a left Quillen functor if F is a left adjoint and
preserves cofibrations and acyclic cofibrations.

(ii) A functor U : D → C is called a right Quillen functor if U is a right adjoint
and preserves fibrations and acyclic fibrations.

(iii) An adjunction F : C → D and U : D → C with F left adjoint to U is called a
Quillen adjunction if F is a left Quillen functor.

Notation 2. Given an adjoint pair (F, U) with F left adjoint to U we follow Grothendieck’s
(and Quillen’s) symphonic notation for the adjoint morphisms, i.e. given mor-
phisms

f : FX → Y and g : X → UY

we let
f ] : X → UY and g[ : FX → Y

denote the corresponding adjoint morphisms.

The definition of a Quillen adjunction seems asymmetric, however we could just
as well define Quillen adjunctions by requiring U be a right Quillen functor. To
see this we first need a lemma about adjunctions between Quillen categories.

Lemma 2.6.1. Suppose C and D are model categories, (F, U) is an adjunction between
them. Let i ∈ Mor(C) and p ∈ Mor(D). Then i has the LLP with respect to U(p) if
and only if p has the RLP with respect to F(i). Thus, F preserves cofibrations if and only
if U preserves acyclic fibrations. Likewise F preserves acyclic cofibrations if and only if U
preserves fibrations.

The proof uses the adjointness relations and is left to the reader.

Proposition 2.6.1. An adjunction (F, U) between model categories is a Quillen adjunc-
tion if and only if U is a right Quillen functor.

Proof. Follows directly from the Lemma 2.6.1.

Lemma 2.6.2. Let (F, U) be a Quillen pair. If A is cofibrant and Cyl(A) is a cylinder
object for A, then F(Cyl(A)) is a cylinder object for FA. Dually, if X is fibrant and
Path(X) is a path object for X, then U(Path(X)) is a path object for UX.

Proof. Suppose A is cofibrant and Aq A ↪→ Cyl(A)→
∼

A is a cylinder object for A.

Since F is left adjoint it preserves colimits so the natural map F(Aq A)
∼=← F(A)q F(A)

is an isomorphism. Thus F(A q A) ↪→ F(Cyl(A)) → F(A) factors the fold map
idFA + idFA and F(Aq A) ↪→ F(Cyl(A) is a cofibration since F is a left Quillen func-
tor. Since A is cofibrant i0 : A→ Cyl(A) is an acyclic cofibration (by Lemma 2.4.3)
and so F(i0) is too. By the 2-out-of-3 axiom, F(Cyl(A)) → FA is a weak equiva-
lence, proving that F(Cyl(A)) is a cylinder object for F(A). The proof of the dual
statement is similar.



32 CHAPTER 2. MODEL CATEGORIES

Total derived functor theorem

We can now state and prove a version of the total derived functor theorem.

Theorem 2.6.1. (Total derived functor theorem) Let (F, U) be a Quillen pair between the
model category C and D. Then the total left derived functor LF of F exists, the total right
derived functor RU of U exists and LF is left adjoint to RU.

Proof. By Proposition 2.5.2 both LF and RU exist. It remains to show that they
are adjoint. Let Q(−) be as in the proof of Proposition 2.5.1 and R(−) the corre-
sponding cofibrant fibrant replacement functor, let Q ′ and R ′ be the replacement
functors for D. The map pA : QA �

∼
A becomes a bijection γpA in Ho(C). Thus

γpA induces a bijection

HomHo(C)(A, RUX)
(γpA)

∗

−−−→
∼=

HomHo(C)(QA, RUX) = HomHo(C)(QA, UR ′X).

Now QA is cofibrant and R ′X is fibrant so Lemma 2.6.3 (proved below) gives a
natural bijection

HomHo(C)(QA, UR ′X) ∼= HomHo(D)(FQA, R ′X).

Working backwards we see HomHo(D)(FQA, R ′X) ∼= HomHo(D)(LFA, X) using the
bijection induced by γj ′X (where j ′X : X ↪→

∼
R ′X is a weak equivalence). Thus LF is

left adjoint to RU.

Lemma 2.6.3. Let (F, U) be a Quillen pair between the model categories C and D. Let LF
and RU be the total derived functors. If A is cofibrant in C and X is fibrant in D then the
adjoint isomorphism HomD(FA, X) ∼= HomC(A,UX) induces a natural isomorphism
HomHo(D)(FA, X) ∼= HomHo(C)(A, UX).

Proof. By definition HomHo(C)(A, UX) = π(RQA, RQUX). Since A is cofibrant
QA = A and pA = idA. Since X is fibrant UX is fibrant (since U preserves
fibrations), thus RQUX = QUX and jX = idQUX, since Q is a fibrant cofibrant
replacement. Thus π(RQA, RQUX) = π(RA, QUX). Now the map jA : A ↪→

∼
RA

is an acyclic cofibration and so, since X is fibrant, Lemma 2.4.9 gives a natural
isomorphism

π(RA, QUX) ∼= π(A, QUX).

Likewise pQUX is an acyclic fibration and so, since A is cofibrant, Lemma 2.4.8
gives a natural isomorphism

π(A, QUX) ∼= π(A, UX).

Let f , g : A → UX be homotopic maps, say H : Cyl(A) → UX is a homotopy.
Then H[ : F(Cyl(A)) → X is a homotopy between f [ : FA → X and g[ : FA → X
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by Lemma 2.6.2. Thus the natural isomorphism HomC(A, UX) ∼= HomD(FA, X)

induces a natural isomorphism π(A, UX) ∼= π(FA, X). Now working backwards
we see that π(FA, X) is naturally isomorphic to π(RQFA, RQX) which establishes
the claim.

Quillen equivalences

Definition 2.6.2. Let (F, U) be a Quillen pair between model categories C and D.
Then F is called a left Quillen equivalence, U a right Quillen equivalence and
(F, U) a pair of Quillen equivalences if the following condition is satisfied:

(i) For every cofibrant object A in C and fibrant object X in D and every map
g : A → UX in C, the map g is a weak equivalence in C if and only if the
corresponding g[ : FA→ X is a weak equivalence in D.

Theorem 2.6.2. (Total derived functor theorem for equivalences) Let (F, U) be a pair
of Quillen equivalences. Then the induced derived functors (LF, RU) form an adjoint
equivalence of the categories Ho(C) and Ho(D).

Proof. We have seen in Theorem 2.6.1 that the pair (LF, RU) form an adjunction.
It remains to show that, under the extra hypothesis, this adjunction is in fact an
equivalence of categories. Let A be a cofibrant object of C. The replacement map

FA
jFA
↪→
∼

R ′FA is a weak equivalence in D. By assumption the adjoint map

j]FA : A −−−→
∼

U(R ′FA) = RU(FA) = RU(LF(A))

is a weak equivalence. Here we have used that A is cofibrant to conclude FA = LFA.
Thus the induced map ηA := γ(j]FA) is an isomorphism in Ho(C). We have thus
shown that the unit ηA of the adjunction is an isomorphism, at least for cofibrant
A. But since any object of Ho(C) is isomorphic to an object which is cofibrant in
C this shows that η is an natural isomorphism. Dually one shows that the counit
is also a natural isomorphism.

2.7 Two classical examples

As an illustration we provide the model structure on kTop and sSet. The proofs
of the axioms are quite hard and will not be given here see [Qui67] or, for a more
detailed approach [Hov99, chap. 2 and 3].

Spaces

We refer to objects of kTop simply as “topological spaces”.

Definition 2.7.1. If f : X → Y is a continuous map of topological spaces then
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(i) f is a weak equivalence if f induces a bijection of path components and an
isomorphism of homotopy groups f∗ : πn(X, x0) → πn(Y, y0) for all n ≥ 1
and all choices of basepoint x0 ∈ X (setting y0 = f (x0)).

(ii) f is a fibration if it is a Serre fibration (i.e. f has the RLP with respect to
inclusions Dn ↪→ Dn × I for all n).

(iii) f is a cofibration if it has the LLP with respect to all maps that are both
fibrations and weak equivalences.

Theorem 2.7.1. The category kTop with the proposed model structure of Definition 2.7.1
is a model category.

Let kTop∗ denote the category of pointed k-spaces with continuous maps preserv-
ing the base-point. Let U : kTop∗ → kTop denote the forgetful functor.

Definition 2.7.2. If f : X → Y is a pointed continuous map of topological space
then

(i) f is a weak equivalence if U( f ) is a weak equivalence in kTop.
(ii) f is a fibration if U( f ) is a fibration in kTop.

(iii) f is a cofibration if it is levelwise injective.

Proposition 2.7.1. The category kTop∗ with the proposed model structure of Defini-
tion 2.7.2 is a model category.

Simplicial sets

Definition 2.7.3. If f : X → Y is a map of simplicial sets then

(i) f is a weak equivalence if the geometric realization | f | of f is a weak equiva-
lence of topological spaces.

(ii) f is a fibration if it is a Kan fibration (i.e. f has the right lifting property with
respect to all horn-inclusions Λn

k → ∆n for n > 0 and 0 ≤ k ≤ n).
(iii) f is a cofibration if it has the LLP with respect to all maps that are both

fibrations and weak equivalences.

Theorem 2.7.2. The category sSet with the proposed model structure of Definition 2.7.3
is a model category.

Let sSet∗ denote the category of pointed simplicial sets with base-point preserving
simplicial maps. Let U : sSet∗ → sSet be the forgetful functor.

Definition 2.7.4. If f : X → Y is a map of pointed simplicial sets then

(i) f is a weak equivalence if U( f ) is a weak equivalence in sSet.
(ii) f is a fibration if U( f ) is a fibration in sSet.

(iii) f is a cofibration if it has the LLP with respect to all maps that are both
fibrations and weak equivalences.
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Proposition 2.7.2. The category sSet∗ with the proposed model structure of Defini-
tion 2.7.4 is a model category.





Chapter 3

Simplicial Homotopy Theory

In this chapter we put a model structure on the category of r-reduced simplicial
sets. We follow [Qui69, Part II, chap. 2].

3.1 r-Reduced simplicial sets

In this section we work in the category sSet∗ of pointed simplicial sets.

Definition 3.1.1. A simplicial set K is called r-reduced if there is a unique k-
simplex x ∈ K for 0 ≤ k ≤ r. In particular K is 1-reduced if K0 and K1 are
both one-point sets. For r ≥ 0 we let sSetr denote the full subcategory of sSet∗
consisting of r-reduced simplicial sets.

Note that an object in sSetr automatically has a unique choice of basepoint.

Definition 3.1.2. For a simplical set K let skrK denote the r’th skeleton of K (i.e.
the subcomplex generated by the simplices in dimension ≤ r). Then K/skrK is
clearly r-reduced. This defines an r-reduction functor redr : sSet∗ → sSetr.

Definition 3.1.3. Given a simplicial set K (with basepoint x0) let ErK denote the
subcomplex of K consisting of those simplices x ∈ K such that any face of x in
dimension ≤ r is at the base point. This is the r’th Eilenberg subcomplex. More
precisely, x : ∆n → K is in ErK if, whenever t ≤ r then the following diagram
commutes

∆n K

∆t ∗

x

x0

for any map ∆t → ∆n.

37
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The next proposition says that sSetr is a reflective and coreflective subcategory of
sSet∗.

Proposition 3.1.1. The inclusion functor i : sSetr → sSet∗ has a right and left adjoints.
The left adjoint is given by the r-reduction functor redr. The right adjoint is given by the
r’th Eilenberg subcomplex functor Er(−).

Proof. If T is any r-reduced simplicial set and f : K → T is a simplicial map, then f
induces a unique map f̂ : redrK → T such that the following diagram commutes.

K T

redrK

f

f̂

Thus redr is left adjoint to the inclusion.
The right adjoint is given by the r’th Eilenberg subcomplex. If T is an r-reduced
simplicial set and f : T → K is a pointed simplicial map then f clearly factors
uniquely through the inclusion ErK ↪→ K, showing that Er(−) is right adjoint to
the inclusion functor.

Corollary 3.1.1. The category sSetr is both complete and cocomplete. Both limits and
colimits are computed in sSet∗.

Proof. This follows from general category theory of reflective and coreflective sub-
categories of a complete and cocomplete category.

Remark 3.1.1. If one worked without base points then colimits in sSetr would not
simply be computed in sSet∗, we would have to compose with an Eilbenberg
subcomplex, dependent on the choice of basepoint.

3.2 Model structure on sSetr

We will use the following simplicial version of a theorem of Serre.

Proposition 3.2.1. Let f : X → Y be a morphism of 1-connected pointed simplicial sets.
The following conditions are equivalent.

(i) π∗ f ⊗Q : π∗X⊗Q
∼=
−−−→ π∗Y⊗Q is an isomorphism.

(ii) H∗( f ;Q) : H∗(X;Q)
∼=
−−−→ H∗(Y;Q) is an isomorphism.

(iii) f ∗ : H∗(Y, A)
∼=
−−−→ H∗(X, A) is an isomorphism for all uniquely divisible Abelian

groups A.

See [Ber12, Theorem 4.1 and Lemma 4.8] for some wonderful proofs of these
equivalences.
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Definition 3.2.1. A map f which satisfies the equivalent conditions of Proposi-
tion 3.2.1 is called a rational equivalence or sometimes a Q-equivalence.

Definition 3.2.2. Let f be a morphism in sSetr for r ≥ 1. We make the following
definitions.

(i) Call f a weak equivalence if it is a Q-equivalence (cf. Definition 3.2.1).
(ii) Call f a cofibration if it is injective.

(iii) Call f a fibration if it has the RLP with respect to all the acyclic cofibrations
(i.e. the injective Q-equivalence).

Remark 3.2.1. Note that a map f in sSetr which is a Kan fibration in sSet∗ is also a
fibration in sSetr.

Remark 3.2.2. Note that the condition r ≥ 1 is required to ensure that there is no
fundamental group.

Theorem 3.2.1. The category sSetr (for r ≥ 1) with the proposed model structure of
Definition 3.2.2 is a model category, which we denote by sSetQ

r .

The proof of Theorem 3.2.1 is quite long, so we have spread it out as a series
of lemmas. Note that Corollary 3.1.1 already shows that sSetr is complete and
cocomplete. The 2-out-of-3 property for the rational equivalences and the retract
axioms are both readily verified. Also, by definition fibrations have the RLP with
respect to acyclic cofibrations, which gives half of the lifting axiom.

Lemma 3.2.1. Any map f in sSetQ
r may be factored as a cofibration followed by an acyclic

fibration.

Proof. Consider f as a map in sSet∗. The model structure on sSet∗ ensures the

existence of a factorization X
i
↪→ Z

p
�
∼

Y where i is a cofibration and p is an acyclic
Kan fibration. The simplicial set Z may not be r-reduced. However, taking the
Eilenberg subcomplex ErZ at the basepoint i(x0) (where x0 is the basepoint of X)
we get a commutative diagram

X Z Y

ErZ

i

i ′

p
∼

p ′

since X is r-reduced. Since i ′ is just i with a restricted codomain, it is injective. We
must check that p ′ is an acyclic fibration. We will show that p ′ is infact an acyclic
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fibration in sSet∗. Consider the diagram

∂∆n ErZ Z

∆n Y Y

α

p ′ p∼

β

h

id

The map h : ∆n → Z exists since p is an acyclic fibration in sSet∗. We claim that h
factors through ErZ. We need only assume n > r since if n ≤ r then the required
lift h ′ : ∆n → ErZ is given by the basepoint z0 : ∆n → ErZ. Suppose d : t → n
is some injection where t ≤ r in ∆ and x ∈ ∆n. Then d∗h(x) = h(d∗x) since h
is a simplicial map. Then d∗x ∈ ∆n

t but, ∆n
t = (∂∆n)t since t ≤ r < n. Thus

h(d∗x) = α(d∗x) is in ErZ. So the image of h is contained in ErZ.
This shows that p ′ is an acyclic Kan fibration, hence it is a fibration in sSetQ

r (cf.
Remark 3.2.1). It is also a weak equivalence in sSetQ

r since it already induces
isomorphisms on integral homotopy groups.

Lemma 3.2.2. Acyclic fibrations have the RLP with respect to cofibrations in sSetQ
r .

Proof. This is an application of the retract argument (Lemma 2.3.1). Let f be an
acyclic fibration. Use Lemma 3.2.1 to factor f = p ′i ′ where p ′ is an acyclic fibration
and i ′ is a cofibration. By the 2-out-of-3 property for weak equivalences, i ′ is a
weak equivalence. Thus f (being a fibration) has the RLP with respect to i ′ and so
is a retract of p ′. Thus f is an acyclic fibration in sSet∗, hence has the RLP with
respect to injections, i.e. cofibrations.

We also have the following corollary of the proof.

Corollary 3.2.1. A map f in sSetr is an acyclic fibration in sSetQ
r if and only if f is an

acyclic Kan fibration in sSet∗.

It remains to prove the final factorization property in order to get a proof of The-
orem 3.2.1. This will occupy us for quite a while.
First, we need a fact from homological algebra which will be useful. For an
Abelian group A we let A[n] be the chain complex concentrated in degree n where
it has a copy of A. Similarly A〈n + 1〉 denotes the chain complex concentrated in
degrees n + 1 and n with a copy of A at these levels and with the identity map as
the n + 1st differential.

Lemma 3.2.3. Let C∗ be a chain complex and let C∗ = Hom(C∗, A) be the associated
cochain complex, with respect to the Abelian group A. Let Z∗ be the cocycle’s in C∗. Then
there are natural isomorphisms Cn ∼= Hom(C∗, A〈n + 1〉) and Zn ∼= Hom(C∗, A[n])
(where the hom-sets are in the category of chain complexes).
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The proof is a straightforward unpacking of definitions.
In Section 8.4 we investigate the Dold-Kan correspondence, setting up an adjoint
equivalence between simplicial Abelian groups and (non-negatively graded) chain
complexes. In one direction, the functor

N−1 : dgAb→ sAb

(defined in Section 8.4) is left adjoint to the normalized chains functor N : sAb→
dgAb. By Moore’s theorem that the homotopy groups of simplical Abelian groups
may be computed as the homology of the normalized chain complex, one sees that
N−1 A[n] is an Eilenberg-Mac Lane object in sAb, i.e.

πkN−1 A[n] ∼= Hn(NN−1 A[n]) ∼= Hn(A[n]) =
{

A if k = n
0 if k 6= n

.

We denote this object by K(A, n), thereby fixing a specific model for the Eilenberg-
Mac Lane object.

Proposition 3.2.2. Let X be a simplicial set and A an Abelian group. Then there is a
natural isomorphism [X, K(A, n)] ∼= Hn(X, A).

See [GJ99, chap. 3, Theorem 2.19] for a proof.
If we apply N−1 to the short exact sequence

0→ A[n]→ A〈n + 1〉→ A[n + 1]→ 0

the result is a short exact sequence

0→ K(A, n)→WK(A, n)
ϕ(A,n)
−−−→ K(A, n + 1)→ 0

where WK(A, n) is contractible, by Whitehead’s theorem (since WK(A, n) is a Kan
complex). We shall have great use of the map ϕ(A, n) in a moment. The reason is
the following. See Appendix A.1 for the notion of a minimal simplicial sets.

Lemma 3.2.4. The Eilenberg-Mac Lane object K(A, n) is a minimal Kan complex. It
follows that the map ϕ : WK(A, n)→ K(A, n + 1) is a minimal fibration.

See [GJ99, chap. 3, Lemma 2.21] for a proof.
An elementary, but important property of ϕ(A, n) is that it represents the cobound-
ary ∂∗ : Cn → Zn+1. I.e. the coboundary ∂∗ induces, under the natural isomor-
phisms of Lemma 3.2.3, the map ϕ(A, n).
We will also need to know that the usual Postnikov tower construction can be car-
ried out to yield a tower of minimal fibrations (see Appendix A.1 for the definition
of a minimal fibration).

Proposition 3.2.3. ([Moo58, Proposition 2.18]) For a minimal Kan complex the Postnikov
system consists of minimal fibrations.
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A proof of Proposition 3.2.3 is given in [May67, Lemma 12.1].
For a map f in sSet∗ we let Ker f denote the fiber of f .

Lemma 3.2.5. Let f : Z → X be a morphism in sSetr. If f is a (Kan) fibration in sSet∗
and π∗Ker f is uniquely divisible, then f is a fibration in sSetQ

r such that πr−1 f ⊗Q is
surjective.

Proof. Consider the long exact sequence of homotopy groups, associated to the
Kan fibration f : Z → Y in sSet∗. The sequence looks like

· · ·→ πr−1Z⊗Q
πr−1 f⊗Q

−−−→ πr−1X⊗Q
∂

−−−→ πr−2Ker f ⊗Q→ · · ·
Since Z is r-reduced, Ker f ⊆ Z is also r-reduced, in particular is r-connected,
hence πr−2Ker f ⊗Q = 0, so πr−1 f ⊗Q is surjective.
It remains to show that f is a fibration in sSetQ

r , i.e. has the RLP with respect to
acyclic cofibrations. We will reduce the problem to showing that the maps ϕ(A, n),
constructed above, with A = πnKer f , have the required lifting properties. To do
this replace f by a minimal Kan fibration (see [May67, chap. 2, Theorem 10.9] for
a general procedure which does this) i.e. factor f = pq where q is an acyclic Kan
fibration and p : X → Y is a minimal Kan fibration. Thus we are done if p has the
required lifting property. Applying Proposition 3.2.3 we get a Postnikov system

X = lim←−
n

Xn → · · ·→ Xn
pn

−−−→ Xn+1 −−−→ · · · −−−→ Xr−2 = Y

where each map pn is a minimal fibration with fiber K(A, n) where A = πnKer(p).
Then A ∼= πnKer( f ) since the diagram,

Ker( f ) Z

Ker(p) X

∗ Y

∼ q∼

p

is a pullback in sSet∗. Note that by assumption A is uniquely divisible. Propo-
sition 3.2.2 above gives an isomorphism Hn+1(Z, A) ∼= [Z, K(A, n + 1)]. Fur-
thermore, for Z a 1-connected set, the map ϕ(A, n) induces a surjection from
[Z, K(A, n+ 1)] onto the set of isomorphism classes of minimal Kan fibrations with
base Z and fiber K(A, n + 1) ([May67, Theorem 25.4]). A map u : Z → K(A, n + 1)
is mapped to the induced Kan fibration u∗ϕ(A, n).
Since we assume r ≥ 1 and each set Xn is r-reduced, they are also 1-connected.
Thus the minimal fibrations pn in the Postnikov tower are all induced as pullbacks
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along ϕ(A, n). Thus to show that pn has the RLP, it suffices to show that ϕ(A, n)
has the RLP, with respect to acyclic cofibrations.
Let h : U ↪→

∼
V be an acyclic cofibration, i.e. an injective Q-equivalence of r-reduced

simplicial sets. Let

U WK(A, n)

V K(A, n)

α

h ϕ(A,n)

β

γ

be a commutative diagram representing a lifting problem. Finding the map γ

making the diagram commute corresponds, by definition of ϕ(A, n), to finding a
normalized n-cochain γ̃ ∈ Cn(V; A) such that h∗ : C∗(V; A) → C∗(U; A) maps γ̃

to α̃ the normalized n-cochain α̃ ∈ Cn(U; A) corresponding to α, and such that the
coboundary δ maps γ̃ to the normalized n-cocycle β̃ ∈ Zn+1 corresponding to β.
The pairs (α, β) making the above diagram commute are represented by elements
of the pullback

P Zn+1(V; A)

Cn(U; A) Zn+1(U; A)

h∗

δ

The induced map h∗ : C∗(V; A) → C∗(U; A) is a surjective quasi-isomorphism of
cochain complexes – surjectivity follows from the fact that A is an injective Z-
module. Suppose that the induced map (h∗, δ) : Cn(V; A) → P is a surjection.
Then there is some γ̃ ∈ Cn(V; A) solving the lifting problem. Thus we must show
that (h∗, δ) : Cn(V; A)→ P is a surjection. Consider the following diagram

Cn(V, U; A) Zn+1(V, U; A) 0

Cn(V, A) Zn+1(V; A) Hn+1(V; A)

P

Cn(U, A) Zn+1(U; A) Hn+1(U; A)

j

δ

(h∗,δ)

h∗

δ

h∗ h∗∼=

δ
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Given an element (a, b) ∈ P we can lift a to an element ã ∈ Cn(V; A). Then
b− δ(ã) ∈ Zn+1(V; A) is in the kernel of h∗ and so is a relative (normalized) cocycle
hence in Zn+1(V, U; A). Now the map Cn(V, U; A) → Zn+1(V, U; A) is surjective
since its cokernel is the kernel of the induced map h∗ on cohomology. This kernel
is trivial since by assumption h∗ induces an isomorphism on cohomology with
coefficients in A since A is uniquely divisible (cf. Definition 3.2.1). We therefore
get a relative chain c̃ ∈ Cn(V, U; A). One can now check that ã − j(c̃) ∈ Cn(V; A)

is mapped to (a, b) by (h∗, δ). This completes the proof.

In fact the converse of Lemma 3.2.5 also holds, giving us a good characterization
of those fibrations in sSetQ

r whose induced map on πr−1(−)⊗Q is surjective.

Lemma 3.2.6. Let f : Z → Y be a map in sSetr such that πr−1 f ⊗Q is surjective. Then
f = pi where i is an acyclic cofibration in sSetQ

r and where p is a Kan fibration such that
π∗Kerp is uniquely divisible.

We will not prove this lemma. See [Qui69, part II, Lemma 2.5] for a proof.
Putting the two lemma’s together we have the following corollary.

Corollary 3.2.2. The following conditions are equivalent for a map f in sSetr.

(i) The map f is a fibration in sSetQ
r with πr−1 f ⊗Q surjective.

(ii) The map f is a Kan fibration in sSet∗ and π∗Ker f is uniquely divisible.

Proof. The implication (ii) ⇒ (i) is Lemma 3.2.5. For (i) ⇒ (ii) factor f = pi as
guaranteed by Lemma 3.2.7. Now the retract argument applies since i has the LLP
with respect to f (since f is assumed a fibration). Thus f is a retract of p and so
satisfies (ii).

Corollary 3.2.3. The fibrant objects of sSetQ
r are the r-reduced Kan complexes with

uniquely divisible homotopy groups.

We are not quite done with showing the final factorization axiom for sSetQ
r .

Lemma 3.2.7. If f is a map in sSetr then f may be factored as jg where j is an injective
fibration in sSetQ

r and πr−1g⊗Q is surjective.

See [Qui69, Part II, Lemma 2.7] for a proof of this lemma.
Putting these facts together we get the final factorization axiom.

Proposition 3.2.4. Any map f in sSetr may be factored as an acyclic cofibration in sSetQ
r

followed by a fibration in sSetQ
r .

Proof. Factor f as jg as in Lemma 3.2.7 such that πr−1g ⊗Q is surjective, and j
is an injective fibration in sSetQ

r . By Lemma 3.2.7 we may further factor g as pi
where i is an acyclic cofibration in sSetQ

r and p is a Kan fibration such that π∗Kerp
is uniquely divisible. Now f = (jp)i and this is indeed a factorization of the
required form.
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This completes the proof of the model category axioms for sSetQ
r , i.e. the proof of

Theorem 3.2.1.

3.3 Representable simplicial sets

The category of simplicial sets sSet = Set∆op
is a presheaf category. The Yoneda

embedding y : ∆ → sSet associates to each ordinal n the representable functor
Hom∆(−, n) : ∆op → Set, i.e. a simplicial object. Mostly we denote Hom∆(−, n)
by ∆n, alluding to the fact that the geometric realization (defined below) of this
simplicial set is (homeomorphic to) the standard n-simplex in Rn+1. As with
any presheaf category, arbitrary objects are colimits of representable objects. This
works as follows. Given a simplicial set X, form the comma category y ↓ X.
The objects are pairs (m, µ : ∆m → X) where m is an object of ∆ and µ is a
map of simplicial sets. The morphisms in y ↓ X between (m, µ) and (m ′, µ ′) are
morphisms f : m→ m ′ in ∆ such that the diagram

∆m ∆m ′

X

f∗

µ µ ′

commutes. Using the Yoneda lemma this can be described as follows. The objects
in y ↓ X are pairs (m, x) where m is some finite ordinal and x ∈ Xm. The maps
between (m, x) and (m ′, x ′) are the maps f : m→ m ′ such that X( f )(x ′) = x.
“Forgetting” the second coordinates in y ↓ X gives a functor UX : y ↓ X → ∆
which takes an object (m, µ) to µ. Composing with the Yoneda embedding gives
a diagram

y ↓ X
UX
−−−→ ∆

y
−−−→ sSet

of simplicial sets. “Forgetting” the first coordinates gives a natural transformation
ρ : y ◦U → δX where δX is the constant diagram y ↓ X → sSet with value X. The
component of ρ at (m, µ) is simply µ : ∆m → X. The pair (X, ρ) is a cocone over
y ◦UX

Proposition 3.3.1. The pair (X, ρ) is a colimit for the diagram y ◦UX.

The proof follows from the Yoneda lemma, [Mac71, chap. 3, sec. 7]. We will
follow a common abuse of notation and write X = colim(y ◦UX), suppressing the
natural transformation ρ.
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3.4 The geometric realization

Recall the standard topological n-simplex |∆n|, defined as the subset of Rn+1 given
by

|∆n| = {

n∑
i=0

tiei | ti ≥ 0 and
∑

ti = 1}

where (e0, . . . , ei, . . . , en) are the standard basis vectors in Rn+1. We can use Propo-
sition 3.3.1 to construct the geometric realization functor | · | : sSet → Top. In fact
the definition is forced on us if we assume that the realization of y(n) = ∆n is the
topological n-simplex and that | · | preserves colimits.

Definition 3.4.1. Let X be a simplicial set. The geometric realization of X is the
space colimy↓X |∆n|.

The diagram y ↓ X → Top is the same as before, only this time y : ∆ → Top
associates to each finite ordinal the space |∆n|. For a map f : m → n the induced
map y( f ) = f∗ : |∆n|→ |∆m| is the map defined by

f
(∑

tiei

)
=
∑

tie f (i).

Note that since a map of simplicial sets f : X → Y is a natural transformation, it in-
duces a continuous map on the colimits | f | : |X|→ |Y| which respects composition
and identites. Thus | · | is a functor sSet→ Top.
A more concrete description of |X| is as follows. Consider the space∐

n∈ω

Xn × |∆n|

Now let ∼ be the equivalence relation generated by the following relation. For
θ : m→ n a morphism in ∆ we require

(θ∗(x), t) ∼ (x, θ∗(t))

for all x ∈ Xn and all t =
∑

tiei ∈ |∆m|. Then

|X| =

(∐
n∈ω

Xn × |∆n|

)
/ ∼ .

3.5 The singular simplicial set

If X is a topological space then a singular n-simplex in X is a continuous map
σ : |∆n|→ X. Given a map θ : m→ n in ∆ and a singular n-simplex σ : |∆n|→ X the
map σ ◦ θ∗ : |∆m|→ X is a singular m-simplex. This defines a simplicial set Sing(X)

called the singular simplicial set of X. A continuous map f : X → Y defines a
natural transformation Sing(X)→ Sing(Y) taking σ : |∆n|→ X to f ◦ σ : |∆n|→ Y.
This defines a functor Sing(−) : Top→ sSet.
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Proposition 3.5.1. The geometric realization is left adjoint to the singular simplicial set.

Proof. The proof works by first proving the statement for the representable ob-
jects, i.e. HomTop(|∆n|, Y) ∼= HomsSet(∆n, Sing(Y)). This is a bijection is almost by
definition, since a continuous map σ : |∆n| → Y is an element σ ∈ Sing(Y)n, so
by the Yoneda lemma it corresponds naturally to a unique map of simplicial sets
∆n → Sing(Y).
We now have the following sequence of natural bijections

HomTop(|X|, Y) ∼= lim
y↓X

HomTop(|∆n|, Y)

∼= lim
y↓X

HomsSet(∆n, Sing(Y))

∼= HomsSet(X, Sing(Y))

using that colimy↓X∆n ∼= X and that representable functors map colimits to limits.

Proposition 3.5.2. The geometric realization |X| of a simplicial set is a CW-complex.

3.6 Quillen equivalence

As a result of Proposition 3.5.2 we can view the geometric realization as a functor
| · | : sSet → kTop taking values in the category of k-spaces (see Appendix A.2).
The category k-spaces admits a model structure (see [Hov99, chap. 2, Theorem
2.4.23]) induced by the model structure on Top.

Theorem 3.6.1. The geometric realization and singular simplicial set form a Quillen
equivalence between kTop and sSet. They also form Quillen equivalences between the
corresponding pointed model categories kTop∗ and sSet∗.

The proof of this theorem is long and hard. A relatively detailed exposition may
be found in [Hov99, chap. 3, sec. 6] (See also [GZ67, chap. 7]).
The Quillen equivalence just exhibited above can not be refined to yield a Quillen
equivalence between Topr (r ≥ 1) (the category of pointed r-connected topological
spaces) and sSetQ

r for the trivial reason that Topr does not admit a model structure.
But Topr still has a useful notion of homotopy, namely the usual one! Thus we
can get a result of the same flavor as a Quillen equivalence.

Definition 3.6.1. Define a map f : X → Y in Topr to be a weak equivalence if it
is a rational equivalence, i.e. if πn( f )⊗Q : πn(X, x0)⊗Q −−−→ πn(Y, y0)⊗Q is an
isomorphism.

Since Topr is not a model category our construction of the associated homotopy
category (Section 2.4) can not be used. Instead we make an “external” localization
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with respect to the weak equivalences. Let W denote the class of weak equiva-
lences in Topr and let γ : Topr → W−1Topr be a localization of Topr with respect
to the maps inW .

Theorem 3.6.2. The functors | · | : sSetQ
r → Topr and ErSing : Topr → sSetQ

r both
preserve weak equivalences. Furthermore the counit εX : |ErSing(X)| → X is a weak
equivalence for all spaces X. As a consequence | · | and ErSing induce an equivalence of
the localized categoriesW−1Topr and Ho(sSetQ

r ).

Proof. The geometric realization preserves weak equivalences by Definition 3.2.2.
If K is an r-connected pointed Kan complex (e.g. if K is r-reduced) then the r-th
Eilenberg subcomplex ErX is also a Kan complex, and the inclusion ErK → K is a
weak equivalence in sSet [Moo58, Proposition 2.7]. Suppose f : X → Y is a weak
equivalence in TopQ

r . Then

πnErSingX
f∗
−−−→ πnErSingY

is an isomorphism since πnK ∼= πn|K| for a Kan complex.
From Theorem 3.6.1 we know that the unit K → Sing|K| is a weak equivalence
in sSet. Recall that SingX is a Kan complex for any space X and that homotopy
groups of Kan complexes may be computed directly in sSet. If X is r-connected
then

π∗X ∼= π∗SingX ∼= π∗ErSingX ∼= π∗|ErSingX|

and so ε is a weak equivalence.



Chapter 4

Simplicial Groups

In this chapter we introduce the two functors G and W and to prove that they
are adjoint. We then consider the problem of putting a model structure on the
category of r-reduced simplicial groups. Finally we sketch an argument showing
that G and W form a Quillen equivalence.

4.1 Kan’s loop group

Let sSet0 be the category of reduced simplicial sets, and sGrp the category of
simplicial groups. We define functors

sSet0 sGrp

G

W

and prove various properties about them, chief among these being that G and W
induce equivalences after localization with respect to weak homotopy.

Definition 4.1.1. Let K be a reduced simplicial set. The loop group of K, denoted
GK is the simplicial group with

GKn = F(Kn+1)/F(s0Kn)

where F(X) denotes the free group on X. Note that GKn is isomorphic to F(Kn+1 −

s0Kn) the free group on Kn−1 − s0Kn, in particular each group GKn is free. We
define the face and degeneracy maps by the equations

d0[x] = [d1x] · [d0x]−1

di[x] = [di+1x] i > 0

si[x] = [si+1x] i ≥ 0

49
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It is straight forward to check that these definitions are well-defined and satisfy
the simplicial identities. Furthermore given a map of reduced simplicial sets f :
K → K ′ we get a map G f : GK → GK ′ given level-wise as G fn[x] = [ fn+1x]. This
defines the functor G(−) from sSet0 to sGrp.

Theorem 4.1.1. (Moore) The underlying simplicial set of any simplicial group is a Kan
complex.

The proof of this theorem is reproduced in several places, e.g. [GJ99, chap. 1,
Lemma 3.4] and [May67, Theorem 17.1], however they are often very brief. See
[GM03, chap. 5, sec. 2] for detailed proof.
In particular Kan’s loop group GK is a Kan complex.

Definition 4.1.2. Let G be a simplicial group. We define the simplicial classifying
space for G, denoted WG, to be the reduced simplicial set given by

WGn = Gn−1 × Gn−2 × · · · × G0, n > 0

and with WG0 = ∗. The simplicial operators are given by

d0(gn−1, . . . , g0) = (gn−2, . . . , g0)

di(gn−1, . . . , g0) = (di−1gn−1, di−2gn−2, . . . , d0gn−i · gn−i−1, gn−i−2, . . . , g0) i > 0

si(gn−1, . . . , g0) = (si−1gn−1, si−2gn−2, . . . , s0gn−i, en−i, gn−i−1, . . . , g0) i ≥ 0

s0(gn−1, . . . , g0) = (en, gn−1, . . . , g0)

where ej is the unit in Gj.

Proposition 4.1.1. WG is a Kan complex.

See [GJ99, Corollary 6.8].

4.2 Adjointness

Let f : GK → H be a map of simplicial groups and let α( f ) : K → WH be defined
by

α( f )(x) = ( f [x], f [d0x], f [d2
0x], · · · , f [dn−1

0 x])

for x ∈ Kn. Conversely, given g : K →WH a map of reduced simplicial sets, define
β(g) : GK → H by

β(g)[x] = yn−1

where yn−1 is the first entry in the n-tuple g(x) = (yn−1, yn−2, · · · , y0) ∈ WH. It is
not hard to verify that α and β witness that G is left adjoint to W.

Proposition 4.2.1. The functor G is left adjoint to W. In particular, the maps α and β

are natural inverse bijections between HomsSet0(K, WH) and HomsGrp(GK, H).

See also [Kan58, Proposition 10.5].
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4.3 GK is a loop group

In the above construction of GK we called it the loop group for K. We briefly justify
using this term.

Definition 4.3.1. A principal bundle is a triple (G, t, K) where G is a simplicial
group, K is a reduced simplicial set, and t : K → G is a function (called a twisting
function) of degree −1 satisfying

dit(x) = t(di+1x) i > 0

d0t(x) = t(d1x) · t(d0x)−1

sit(x) = t(si+1x) i ≥ 0

∗ = t(s0x)

Suppose (G, t, K) is a principal bundle. The associated bundle complex G ×t K
has the same underlying set as G×K and same structure maps except for d0 which
“twists” via t, i.e.

d0(a, x) = (d0a · t(x), d0(x)).

Proposition 4.3.1. The bundle complex is a simplicial set and G → G ×t K
p→ K is a

fibration.

See [May67, Proposition 18.4] for a proof.

Definition 4.3.2. If the bundle complex G ×t K of a principle bundle (G, t, K) is
contractible then G is called a loop group for K. Then K is called a classifying
complex for G.

A straightforward application of the long exact sequence applied to the fibration
from Proposition 4.3.1 shows the following result.

Lemma 4.3.1. If GK is a loop group for K then πnK = πn−1GK.

Thus GK does indeed “homotopically look like” the usual loop space construction.

Proposition 4.3.2. Let K be a reduced simplicial set. Then GK is a loop group, i.e.
GK×t K is contractible, where t : K → GK is the twisting function x 7→ [x].

To prove this proposition one must show that EK = GK ×t K contractible. This
may be done by showing that EK is connected, simply connected, and acyclic (in
the sense that all homology groups vanish). Then using a Hurewicz argument
and the fact that EK is fibrant, one concludes that EK is contractible. See [Cur67,
Theorem 3.16] for a proof.
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4.4 A different total space

In the previous section we saw that EK = GK ×t K is contractible when K is
a reduced simplicial set, thereby showing that GK is a loop group for K. We
now show that GK is also a loop group for WGK, i.e. there is a principal bundle
(GK, s, WGK) such that the total space GK×s WGK is again contractible.

Lemma 4.4.1. Given any simplicial group G, the map s : WG → G, (gn−1, · · · , g0) 7→
gn−1 is a twisting function.

Proof. We must show that the identities from Definition 4.3.1 hold. Showing dis =
sdi+1 and sis = ssi+1 (i > 0) is straightforward. The other two identities are
checked as follows.

s(d1(g) · (s(d0(g))−1 = s(d0gn−1 · gn−2, gn−3, . . . , g0) · (s(gn−2, . . . , g0))
−1

= d0gn−1 · gn−2 · g−1
n−2

= d0gn−1

= d0s(gn−1, . . . , g0)

And

s(s0(g)) = s(en, g) = en.

Define s : WGK → GK by

([xn−1], · · · , [x0]) 7−→ [xn−1]

From the lemma it follows that s is a twisting function, thus (GK, s, WGK) is a
principal bundle.

Proposition 4.4.1. The total space GK×s WGK is contractible, thus GK is a loop group
for WGK.

4.5 Unit and counit are weak equivalences

In this and the next section we prove that the unit and counit

η : idsSet0 −−−→ WG

ε : GW −−−→ idsGrp

of the adjunction G aW, are weak equivalences with respect to the relevant struc-
ture.
We now sketch Kan’s original argument for the following result ([Kan58, Theorem
11.2]).



4.6. MODEL STRUCTURE ON SIMPLICIAL GROUPS 53

Proposition 4.5.1. If K is a reduced simplicial set the the simplicial map η : K → WGK
is a weak homotopy equivalence.

Proof. (Sketch) Consider the following diagram

K WGK

GK GK

t

η

s

id

where s and t are the twisting functions defined in Section 4.4 and Section 4.3,
respectively. One can check that the diagram commutes. If follows that there is
a well-defined morphism of simplicial sets j : GK ×t K → GK ×s WGK given by
j([x], σ) = ([x], ησ). Now the diagram

GK GK×t K K

GK GK×s WGK WGK

q

id

p

j η

q ′ p ′

where the rows are Kan fibrations (cf. Proposition 4.3.1). One can check that the
diagram is commutative, i.e. is a map of Kan fibrations. Thus it induces a map
between the long exact sequences associated to these fibrations (cf. [GJ99, chap.
1, Lemma 7.3] for the simplicial version of the long exact sequence associated to
a fibration). Since both GK ×t K and GK ×s WGK are contractible, the map j,
trivially induces an isomorphism on homotopy groups, as does idGK. Thus by the
five lemma applied to the map of long exact sequences we see that η induces an
isomorphism on homotopy groups as well.

As similar argument gives the corresponding result for the counit.

Proposition 4.5.2. If A is a simplicial group, then the counit ε : GWA → A is a weak
equivalence in the

See [Kan58, Proposition 11.3].

4.6 Model structure on simplicial groups

In the rest of this chapter we put a model structure on the category of r-reduced
simplicial groups and show that the pair (G, W) form a Quillen equivalence be-
tween the resulting model category and the one defined in the previous chapter.

In [Qui67, Part II, chap. 3] Quillen put a model structure on sGrp which we briefly
describe. Let us recall Moore’s definition of the homotopy groups of a simplicial
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group H, these are define by taking the homology of the normalized complex N∗G
[May67, chap. 4, sec. 17, in particular Theorem 17.4].
We make the following definitions for a map f in sGrp:

(i) The map f is a weak equivalence if the induced map π∗( f ) on the (Moore)
homotopy groups, is an isomorphism.

(ii) The map f is a fibration if the maps Nq f are surjective for all positive q
(iii) The map f is a cofibration if it is a retract of almost free simplicial group maps

(cf. Appendix A.4)

Remark 4.6.1. In fact the results of Section 5.3 can be used to give sGrp a model
structure. However it takes a little work to show that the two structure are in fact
the same (one can use [Qui67, Part II, chap. 3, Proposition 1]). As a result, a map
in sGrp is a fibration (in the above sense) if and only if it is a Kan fibration on the
underlying simplicial set level.

Apart from this model structure we shall also rely on the following “left-properness”
result due to Quillen [Qui69, Part II, chap 3].

Theorem 4.6.1. Let

H G

H ′ G ′

i

f f ′

i ′

be a pushout square in sGrp where either i of f is a cofibration. If f is a weak equivalence,
so is f ′.

The proof of Theorem 4.8.2 uses the theory of group homology with local coeffi-
cients. See [Qui69, pp. 249-252] for a proof.

4.7 r-Reduced simplicial groups

Definition 4.7.1. A simplicial group H is called r-reduced if the groups H0, · · · , Hr

are all trivial. A 0-reduced simplicial group is called a reduced group. In particu-
lar H is reduced if H0 is the trivial group. For r ≥ 0 we let sGrpr denote the full
subcategory of sGrp consisting of r-reduced simplicial groups.

As was the case with r-reduced simplicial sets, sGrpr is a both reflective and
coreflective subcategory of sGrp. One can use analogues of the reduction functor
redr and Eilenberg subcomplex functor Er(−) to prove this (see Section 5.4). As a
result we have the following proposition.

Proposition 4.7.1. The category sGrpr is both complete and cocomplete. All limits and
colimits may be calculated by composing with the inclusion functor into sGrp.
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4.8 Model structure on sGrpr

Note that if H is a reduced simplicial group, then it is connected, i.e. π0H = 0.

Definition 4.8.1. A map f : H → H ′ of connected simplicial groups such that

π∗ f ⊗Q : π∗H ⊗Q→ π∗H ′ ⊗Q

is an isomorphism, is called a rational equivalence or sometimes a Q-equivalence.

Definition 4.8.2. Let f be a morphism in sGrpr for r ≥ 0. We make the following
definitions.

(i) Call f a weak equivalence if it is a Q-equivalence (cf. Definition 4.8.1).
(ii) Call f a cofibration if it is a cofibration with respect to the model structure on

sGrp
(iii) Call f a fibration if it has the RLP with respect to all the acyclic cofibrations

(i.e. the injective Q-equivalence).

Remark 4.8.1. Note that a map f in sGrpr which is a fibration in sGrp is also a
fibration in sGrpr.

Theorem 4.8.1. The category sGrpr with the proposed model structure of Definition 4.8.2
is a model category, which we denote by sGrpQ

r .

Proposition 4.7.1 shows that sGrpr is a complete and cocomplete category. The
2-out-of-3 axiom for weak equivalences is clear, as is the retract axiom. One of the
lifting axioms is also clear; by the definition of fibrations, any acyclic cofibration
has the LLP with respect to fibrations. It remains to prove that acyclic fibrations
have the RLP with respect to cofibrations and to prove the factorization axiom.
The proof uses the following analogue of Theorem 4.8.2.

Theorem 4.8.2. Let

H G

H ′ G ′

i

f f ′

i ′

be a pushout square in sGrp where either i of f is a cofibration and G is connected. If f is
a Q-equivalence, so is f ′.

As was the case with Theorem 4.8.2 we will not prove this theorem. See [Qui69,
p. 252] for the proof.
We can now use the work done in Section 3.1 to help create the required factor-
izations.
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Proposition 4.8.1. Any map f : H → H ′ in sGrpr may be factored as f = pi where i is
a cofibration and p is an acyclic fibration.

Proof. Consider the the map W f : WH →WH ′ in sSetr+1. By the model structure
(Definition 3.2.2) on sSetQ

r+1, factor W f as

WH
u
↪→ X

v
�
∼

WH ′

where u is a cofibration in sSetQ
r+1 and v is an acyclic fibration in sSetQ

r+1. Thus u
is injective and v is a surjective weak equivalence of simplicial sets. Apply G to
this factorization and consider the diagram

GWH GX GWH ′

H Z H ′

Gu

εH i ′

Gv

εH ′

i p

where the first square is a pushout, and p is the map induced by f and εH ′ ◦ Gv.
Now Gu is a cofibration in sGrpQ

r since it is a cofibration in sGrp (since it is an
almost free map). By Theorem 4.8.2 i ′ is a Q-equivalence. The counit maps εH

and εH ′ are weak equivalences in sGrp (Proposition 4.5.2) hence also in sGrpr,
thus by the 2-out-of-3 property, p is a Q-equivalence too. The counit maps are
surjective and so by the commutativity of the second square, p is surjective, hence
is a fibration in sGrp (since surjective maps are fibrations in sGrp, [Qui67, Part
II, p. 3.10]) and so also in sGrpQ

r (cf. Remark 4.8.1). The map i is a cofibration
since it is a pushout of a cofibration (in sGrp). Thus f = pi gives a required
factorization.

Note that the map p we constructed is a fibration in sGrp! As a corollary we get
the remaining lifting axiom.

Corollary 4.8.1. Acyclic fibrations in sGrpQ
r have the RLP with respect to cofibrations.

Proof. This is an application of the retract argument (Lemma 2.3.1). Suppose f
is an acyclic fibration. Using Proposition 4.8.1, factor f as f = pi where p is an
acyclic fibration in sGrp and i is a cofibration. By the 2-out-of-3 property, i is an
acyclic cofibration, hence f has the RLP with respect to i. Thus f is a retract of
p and so has the RLP with respect to cofibrations from sGrp hence a fortiori in
sGrpr.

We also have the following characterizations of the acyclic fibrations in sGrpQ
r

([Qui69, Part II, Proposition 3.3.]).

Corollary 4.8.2. The acyclic fibrations in sGrpQ
r are exactly those maps in sGrpr which

are surjective weak equivalences.
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It remains to provide acyclic cofibration- fibration factorizations in sGrpQ
r . We

now set out to give these.

Lemma 4.8.1. Any map f : H → H ′ in sGrpr may be factored as f = pi where i is an
acyclic cofibration and p is a map such that Nq(p) is surjective for q > r + 1, π∗Ker(p)
is uniquely divisible and Cokerπr+1 f is torsion-free.

Proof. Suppose first that πr+1 f ⊗Q is surjective. Factor W f in sSetQ
r+1 as

WH
u
↪→
∼

K
v
� WH ′

where u is an acyclic cofibration (i.e. an injective Q-equivalence) and v a Kan
fibration, in sSetQ

r+1. By Lemma 3.2.7 we get that v is a Kan fibration in sSet∗ and
that π∗Kerv is uniquely divisible (here we use that πr+1W f ⊗Q is surjective, i.e.
W preserves this property).
We now apply Kan’s loop group functor G to get back to sGrpr. Since v is a Kan
fibration (between connected simplicial sets) it is surjective, thus Gv is surjective
too. Now WG preserves fibrations and so we have a map of fibrations, i.e. a
commutative diagram:

Kerv K WH ′

WKerGv WGK WGWH ′

v

ηK ηWH ′

WGv

Considering the induced map on the long exact homotopy sequences we see that
πq+1(WKerGv) ∼= πq+1(KerG). Since W is delooping functor (Lemma 4.3.1) we
have πq+1(WKerGv) ∼= πqKerGv. Thus KerGv has uniquely divisible homotopy
groups.
We form the diagram

GWH GK GWH ′

H Z H ′

εH

Gv

i ′ εH ′

i p

such that the first square is a pushout and p is induced by f and εH ′ ◦ Gv. The
map GWH → GK is a cofibration (since it is almost free) and the counit εH is a
weak equivalence (Proposition 4.5.2). By Theorem 4.8.2, i ′ is a weak equivalence in
sGrpQ

r . Since εH ′ ◦Gv is surjective so is p. By the commutativity of the right-hand
square, π∗Kerp ∼= π∗KerGv which we have just show is uniquely divisible. Thus
f = pi gives the required factorization.
The case where πr+1 f ⊗Q is not surjective can, through some work, be reduced
to the case thus far treated. We will not give the details of this reduction here (see
[Qui69, Part II, chap 3, p. 247]).
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Proposition 4.8.2. The following conditions are equivalence for a map f in sGrpr.

(i) f is a fibration in sGrpQ
r .

(ii) Nq( f ) is surjective for q > r + 1, π∗Ker(p) is uniquely divisible and Cokerπr+1 f
is torsion-free.

Proof. (i) ⇒ (ii): Suppose f is a fibration in sGrpQ
r . Using Lemma 4.8.1 we factor

f as f = pi with i an acyclic cofibration and p a map which satisfies condition (ii).
Since f is a fibration it has the RLP with respect to i. Thus f is a retract of p. It
is straightforward to see (by writing out the required diagrams) that a retract of a
map satisfying condition (ii) also satisfies condition (ii).
(ii)⇒ (i): This direction depends on the details of the general part of the proof of
Lemma 4.8.1.

Proposition 4.8.2 together with Lemma 4.8.1 show that we may factor any map
f in sGrpQ

r as an acyclic cofibration followed by a fibration. This completes the
proof of the model category axioms, and thereby the proof of Theorem 4.8.1.
Using Proposition 2.4.6 we can deduce the following characterization of Ho(sGrpQ

r ).

Theorem 4.8.3. The homotopy category Ho(sGrpQ
r ) is equivalent to the category whose

objects are the r-reduced almost free simplicial groups with uniquely divisible homotopy
groups and with homotopy classes of maps of simplicial groups.

4.9 Reduced simplicial groups and reduced simplicial sets

We have succeeded in putting model structures on the categories sSetr+1 and
sGrpr. In this section we show that the functors G and W induce an equivalence
of homotopy categories Ho(sSetQ

r+1) and Ho(sGrpQ
r ).

Theorem 4.9.1. The adjoint functors

sSetQ
r+1 sGrpQ

r

G

W

are Quillen equivalences (for r ≥ 0). In particular they induce an equivalence of categories
Ho(sSetQ

r+1)
∼= Ho(sGrpQ

r ).

Proof. Proposition 4.2.1 shows that G and W are indeed adjoint. Furthermore, by
Proposition 4.5.2 and Proposition 4.5.2 both G and W preserve all weak equiva-
lence (they already do so on integral homotopy groups). The second claim follows
from Theorem 2.6.2.



Chapter 5

Model Structures on Simplicial
“Algebraic” Categories

The purpose of this chapter is (a) to introduce simplicial model categories and (b)
to prove a general result giving sufficient conditions on a category C ensuring that
sC has a simplicial model structure. This exposition follows [Hir03] and [GJ99]
quite closely.

5.1 Simplicial categories

We define simplicial categories by which we mean a category which is enriched over
sSet, as opposed to, say, a simplicial object in the category CAT of categories.

Definition 5.1.1. A simplicial category C is a category together with the following
structure.

(i) For each pair of objects X and Y of C there is a simplicial set Map(X, Y)
called the simplicial mapping space of X and Y.

(ii) For objects X, Y and Z of C there is a map of simplicial sets

cX,Y,Z : Map(Y, Z)×Map(X, Y)→Map(X, Z)

called the composition rule.
(iii) For every object X there is a simplicial map iX : ∗ →Map(X, X) (where ∗ is

the terminal object in sSet)
(iv) For objects X and Y of C, an isomorphism Map(X, Y)0

∼= HomC(X, Y) be-
tween morphisms in C and 0-simplices in Map(X, Y).
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This structure is subject to “associativity” and “unital” requirements, namely that
the following diagrams commute.

(Map(Y, Z)×Map(X, Y))×Map(W, X) Map(X, Z)×Map(W, X)

Map(Y, Z)× (Map(X, Y)×Map(W, X))

Map(Y, Z)×Map(W, Y) Map(W, Z)

cX,Y,Z×id

∼=

cW,X,Z

id×cW,X,Y

cW,Y,Z

expressing the associativity.

∗ ×Map(X, Y) Map(Y, Y)×Map(X, Y)

Map(X, Y)

iY×id

∼=
cX,Y,Y

expressing left unitality. Finally

Map(X, Y)× ∗ Map(X, Y)×Map(X, X)

Map(X, Y)

id×iX

∼=
cX,X,Z

expresses right unitality.

Notation 3. The mapping space will sometimes be given a subscript MapC(X, Y)
to help indicate that X and Y are objects of C.

Definition 5.1.2. A closed simplicial category is a simplicial category C in which
for each pair of objects X and Y of C and every simplicial set K there are objects
X⊗ K and YK in C, and natural isomorphisms of simplicial sets

Map(X⊗ K, Y) ∼= MapsSet(K, Map(X, Y)) ∼= Map(X, YK).

Remark 5.1.1. What we are calling a closed simplicial category some authors (e.g.
[GJ99]) call a simplicial category. Our definition of simplicial category is consistent
with the general concept of a category enriched over another category, in this case
sSet. The reasoning behind the extra adjective “closed” in Definition 5.1.2 is to
mimic the definition of Cartesian closed categories.
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Proposition 5.1.1. Suppose C is a simplicial category. Then the mapping space Map(−,−) :
Cop × C → sSet is a functor. If C is a closed simplicial category, then “tensor” −⊗− :
C × sSet→ C and (−)− : C × sSet→ C are functors.

See [Hir03] for a proof.

Simplicial Functors

Lemma 5.1.1. Suppose C and D are (closed) simplicial categories and G : D → C is a
functor with left adjoint F : D → C. Suppose that, for every K ∈ sSet and A ∈ C there is
a natural isomorphism F(A⊗ K) ∼= F(A)⊗ K. Then the adjunction internalizes, in the
sense that there is a natural isomorphism of simplicial sets

MapD(FA, B) ∼= MapC(A, GB).

Furthermore G respects the “exponential” structure in the sense that G(XK) ∼= (GX)K

naturally in K and B.

Proof. The proof consists of manipulating the various adjunctions. See [GJ99, chap.
2 sec. 3] for a proof.

5.2 Simplicial model categories

Definition 5.2.1. A (closed) simplicial model category is a model category C
which is also a closed simplicial category such that the following compatibility
axiom is satisfied:

SM7 If i : A ↪→ B is a cofibration in C and p : X � Y is a fibration in C, then the
map of simplicial sets

Map(B, X)
i∗×p∗
−−−→Map(A, X)×Map(A,Y) Map(B, Y)

is a Kan fibration. The map i∗ × p∗ is a weak equivalence if either i or p is a
weak equivalence.

Remark 5.2.1. The axiom SM7 generalizes the homotopy lifting and extension property
(“HLEP”) from ordinary homotopy theory of spaces and simplicial sets.

Proposition 5.2.1. The simplicial model category axiom SM7 implies the lifting axiom
for model categories. More precisely, given a lifting problem

A X

B Y

i p

in a simplicial category C satisfying SM7, then if either i or p is a weak equivalence, there
is a lift B→ X.
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The proof is straightforward and left to the reader.
A closed simplicial category C has several different “hom-like” objects living in
the three (possibly quite different) categories, Set, sSet and C. There is the usual
HomC(X, Y) consisting of the set of morphisms from X to Y. There is the mapping
space Map(X, Y) which is a simplicial set. There is also the “exponential” XK

which is again an object of C. The simplicial model category axiom SM7 above is
a statement about the second “hom-like” concept, namely Map(−,−). The next
proposition says that one can reinterpret SM7 with respect to the other two to get
equivalent conditions for C to be a simplicial model category.

Proposition 5.2.2. Suppose C is both a model category and a closed simplicial category.
Then the following conditions are equivalent.

(i) The axiom SM7 is satisfied, i.e. C is a simplicial model category.
(ii) If i : A ↪→ B is a cofibration in C and j : L ↪→ K is a cofibration of simplicial sets

(i.e. a level-wise injection) then the map

A⊗ K
∐
A⊗L

B⊗ L −−−→ B⊗ K

is a cofibration in C. It is an acyclic cofibration if either i or j is a weak equivalence.
(iii) If j : L ↪→ K is a cofibration of simplicial sets (i.e. a level-wise injection) and

p : X � Y is a fibration in C, then the map

XK −−−→ XL ×YL YK

is a fibration in C. It is an acyclic fibration if either j or p is a weak equivalence.

Proof. The proof is straightforward checking the requisite lifting properties (cf.
Lemma 2.3.2) and using the universal properties of the pullbacks and pushouts
used to define the given maps.

Example: simplicial sets

The category sSet, of simplicial sets, with the usual model category structure
supports a simplicial model structure. As a simplicial category it has the following
structure. Let X, Y and K be simplicial sets.

(i) We let Map(X, Y) be the usual internal mapping space for sSet defined by
Map(X, Y)n := HomsSet(X×∆n, Y). (This is the internal mapping space that
sSet gets from its presheaf structure).

(ii) We let X⊗ K be X× K and XK be Map(K, X).

Proposition 5.2.3. With the simplicial structure above, sSet becomes a simplicial model
category.

See [GJ99, chap. 1] for proof or [Hov99, chap. 3].
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Homotopy theory in simplicial model categories

Simplicial model categories allow for a more easily accessible homotopy theory
due to the extra structure. In sSet the internal mapping space between objects X
and Y is defined to be HomsSet(X× ∆n, Y). In general, replacing × by ⊗ and sSet
by C reproduces the mapping space, as we now show.

Proposition 5.2.4. Let C be a simplicial model category with objects X and Y. For every
n ≥ 0 there is a natural bijection Map(X, Y)n ∼= HomC(X⊗ ∆n, Y).

Proof. This basically follows from the Yoneda lemma. We have

HomC(X⊗ ∆n, Y) ∼= Map(X⊗ ∆n, Y)0

by one of the requirements of the mapping space. Now by the axioms of a closed
simplicial category Map(X⊗∆n, Y)0 is naturally isomorphic to MapsSet(∆

n, Map(X, Y))0.
By definition of the simplicial structure from Proposition 5.2.3,

MapsSet(∆
n, Map(X, Y))0 = HomsSet(∆n × ∆0, Map(X, Y)) ∼= Map(X, Y)n

by Yoneda.

Lemma 5.2.1. Let C be a simplicial model category. For each object X of C there are
natural isomorphisms X⊗ ∆0 ∼= X and X∆0 ∼= X.

Proof. Since HomC(X, Y) ∼= HomC(X⊗ ∆0, Y) for all objects Y from C, the Yoneda
lemma implies X ∼= X⊗ ∆0. Likewise for X∆0

.

Enriching a category

Given a complete and cocomplete category C we now see one way of equipping
sC, the category of simplicial objects in C, with a closed simplicial structure.
We first define the “tensor” functor, and then use this to define the mapping space
functor. Given A ∈ sC and K ∈ sSet define (A⊗ K) ∈ sC by

(A⊗ K)n =
∐
x∈Kn

An.

For θ : m→ n in ∆ we let θ∗ : (A⊗ K)n → (A⊗ K)m be the composition

∐
x∈Kn

An

∐
θ∗

−−−→ ∐
x∈Kn

Am −−−→ ∐
x∈Km

Am

where the second map acts by sending the component corresponding to x ∈ Kn

to the component corresponding to θ∗(x) ∈ Km along the identity map. This
construction is clearly functorial in both variables.
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Using ⊗ as just defined and Proposition 5.2.4 as a guide, we define the mapping
space functor by

MapsC(X, Y)n := HomsC(X⊗ ∆n, Y).

for objects X and Y in sC.

Theorem 5.2.1. Let C be a complete and cocomplete category. The construction Map :
Cop × C → sSet just described makes sC a closed simplicial category.

See [GJ99, chap. 2 Thm. 2.5] for a proof. The proof relies on quite general facts
(Yoneda lemma, co-Yoneda lemma) using that sSet is a presheaf category.

Remark 5.2.2. Applying Theorem 5.2.1 to the category C = Set we get a simplicial
structure on sSet. This is the usual structure, the one defined in Section 5.2. To
see this note that a product of simplicial sets T × K may be given in degree n as a
coproduct

(T × K)n = Tn × Kn ∼=
∐
x∈Tn

Kn.

This determines the simplicial structure.

5.3 Finding simplicial model categories

This section is devoted to proving rather general results about when the category
of simplicial objects in some fixed category C, may be given a simplicial model
structure. These results will be used to show that the category of r-reduced simpli-
cial complete Hopf algebras and the category of r-reduced simplicial Lie algebras,
may be equipped with simplicial model structures. We follow [GJ99, chap. 2 sec.
3-5].
Suppose C is some category equipped with adjoint functors G : C → Set and
F : Set → C, where F is left adjoint. The prolongated functors sC → sSet and
sSet→ sC will also be denoted by G and F, respectively.

Definition 5.3.1. Let f be a morphism in sC.

(i) Call f a weak equivalence if G f is a weak equivalence in sSet.
(ii) Call f a fibration if G f is a fibration in sSet.

(iii) Call f a cofibration if f has the LLP with respect to all acyclic fibrations in sC.

The theorem that we aim to prove is the following.

Theorem 5.3.1. Suppose C is a category, G : C → Set and F : Set → C are functors.
Suppose that the following conditions are satisfied.

(i) C is complete and cocomplete.
(ii) F is left adjoint to G.
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(iii) In the terms of Definition 5.3.1, every cofibration with the LLP with respect to all
fibrations is a weak equivalence.

(iv) The functor G preserves filtered colimits.

Then, sC is a model category with the structure from Definition 5.3.1. The model category
sC may be enriched with the structure of a closed simplicial model category.

Proof. First note that the completeness assumptions on C ensure that sC is com-
plete and cocomplete (limits and colimits are computed pointwise). The 2-out-of-3
axiom for sC follows from the corresponding statement in sSet. Likewise if f is a
retract of g and g is a weak equivalence (respectively, a fibration), then f is a weak
equivalence (respectively, a fibration) by the retract axiom for sSet. The retract
axiom for cofibrations follows directly from the definition. It remains to provide
factorizations and to prove the lifting properties. This is done in Lemma 5.3.2,
Lemma 5.3.3 and Lemma 5.3.4 below. This proves that sC has the advertised
model structure.
On the simplicial side, Theorem 5.2.1 gives sC a closed simplicial structure. We
must show that the axiom SM7 is satisfied. The simplicial structure thus given to
sC makes it clear that F(A× K) ∼= F(A)⊗ K since F is a left adjoint, hence pre-
serves coproducts. By Lemma 5.1.1 it follows that G preserves the “exponential”
objects. Using this we can check Item (iii) of Proposition 5.2.2. Suppose j : L ↪→ K
is a cofibration of simplicial sets and p : X � Y is a fibration in C. We must show
that

XK −−−→ XL ×YL YK

is a fibration in sC, i.e. that it becomes a fibration in sSet after applying G. Since G
is right adjoint and preserves the “exponential” this is equivalent to showing that

(GX)K −−−→ (GX)L ×(GY)L (GY)K

is a fibration in sSet. This follows from the fact that sSet is a simplicial model
category, Proposition 5.2.3. If either j or p is a weak equivalence, so is the above
map. This conclude the proof.

We now turn to proving the several lemmas used in the above proof. First we need
an important lemma about simplicial sets. Recall that a simplicial set K is said to
be finite if it has only finitely many non-degenerate simplices.

Lemma 5.3.1. Every finite simplicial set is small. In more detail this means that given a
finite simplicial set K and given any ω-sequence of maps X0 → X1 → · · · , the natural
map colimnHomsSet(K, Xn)→ HomsSet(K, colimnXn) is a bijection.

See [Hov99, chap. 3 Lemma 3.1.2] for a proof. In particular ∆n, ∂∆n and Λn
k are all

finite.
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Lemma 5.3.2. Under the assumptions of Theorem 5.3.1 any morphism f : A → X in sC
may be factored as A

j
↪→ Z

q
�
∼

X where j is a cofibration and q is an acyclic fibration.

Proof. We shall define Z as a colimit over an ω-sequence {Zn → Zn+1}n<ω where

at each stage we define maps Zn
jn→ Zn+1 and Zn

qn→ X . We let Z0 := A, and
q0 : Z0 → X be f . Given (Zn, qn) we construct Zn+1 as follows. For each m ∈ ω

consider the set Sm consisting of all pairs (α, β) such that the following diagram
commutes

F∂∆m Zn

F∆m X

F(i)

α

qn

β

Note that Sm is indeed a set. Define Zn+1 in the following pushout square

∐
m∈ω

∐
(α,β)∈Sm

F∂∆m Zn

∐
m∈ω

∐
(α,β)∈Sm

F∆m Zn+1

qmqSm F(i)

∑
m
∑

Sm α

jn

which exists by our cocompleteness assumption. Note that this defines the map
jn : Zn → Zn+1. The map qn+1 : Zn+1 → X is defined by the universal property of
the pushout

∐
m∈ω

∐
(α,β)∈Sm

F∂∆m Zn

∐
m∈ω

∐
(α,β)∈Sm

F∆m Zn+1

X

qmqSm F(i)

∑
m
∑

Sm α

jn
qn

∑
m
∑

Sm β

qn+1

In this way we get the ω-sequence A = Z0
j0→ Z1

j1→ Z2 → · · · . Let Z := colimnZn

be the colimit over this sequence, again using the cocompleteness assumption.
Let us remark now that the maps jn are cofibrations: the maps i : ∂∆m ↪→ ∆m are
cofibrations in sSet, it follows easily that F(i) is a cofibration since F is left adjoint
to G. It is also easy to check that coproducts and pushouts of cofibrations are
cofibrations. Thus, jn is a cofibration for each n. It follows that the map j : A→ Z
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(which is the transfinite composition of the jn’s) is also a cofibration. This may
be proven directly using the universal property of the colimit to reduce the lifting
problem to the case jn ◦ · · · ◦ j0 : A ↪→ Zn which is a cofibration.
It remains to define q : Z → X and show that it is an acyclic fibration. The
definition comes from the universal property of the colimit. The maps (qn)n∈ω

form a family that is compatible with the structure maps (jn)n∈ω and thus induces
a unique map q : Z → X commuting with the structure maps of the colimit Z.
To show q is an acyclic fibration we must show Gq is an acyclic fibration in sSet.
For this it suffices to show that it has the RLP with respect to the maps ∂∆m →
∆m. By assumption, G commutes with filtered colimits, and so the natural map

colimnGZn

∼=
−−−→ G(colimnZn) is an isomorphism. Thus we may assume we are

given a commuting diagram

∂∆m colimnGZn

∆m GX

i

α]

Gq

β]

h

where we wish to find h making the filled diagram commute. By Lemma 5.3.1 the
natural map

Hom(∂∆m, colimnGZn)
∼=← colimnHom(∂∆m, GZn).

is a bijection, so α] factors through the natural map GZn → colimnGZn for some
n. Then we have the commutative diagram

∂∆m GZn GZn+1 colimnGZn

∆m GX GX GX

i

α̃] Gjn

Gqn Gqn+1 Gq

β]

id id

where the composition of the top row is α]. Consider the adjoint diagram:

F∂∆m Zn Zn+1 colimnZn

F∆m X X X

Fi

α̃ jn

qn qn+1 q

β

h[

id id

The pair (α̃, β) is in Sm and so by the pushout construction of Zn+1 there is a
map h[ : F∆m → Zn+1 making the filled diagram commute. The adjoint map h
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followed by the natural map GZn+1 → colimGZn provides the required filling of
the original diagram. Thus q is an acyclic fibration. By construction f = qj and so
we are done.

Remark 5.3.1. (Small Object Argument) The proof of Lemma 5.3.2 is an application
of the small object argument as Quillen calls it in [Qui69, p. 3.4]. The term “small”
refers to the fact that Hom(∂∆m,−) preserves the sequential colimits, i.e. mapping
∂∆m into the colimit of an ω-sequence is the same as mapping it into some finite
stage of the sequence. Grothendieck used a version of the small object argument
already in 1957 in his Tohoku paper to prove the existence results concerning
injective resolutions in Abelian categories.

Lemma 5.3.3. Under the assumptions of Theorem 5.3.1 any morphisms f : A→ X in sC
may be factored as A

j
↪→
∼

Z
q
� X where j is a cofibration and q is a fibration. Furthermore

j has the LLP with respect to all fibrations. It follows that j is an acyclic cofibration.

Proof. The argument runs along the same lines as Lemma 5.3.2 only this time we
use the acyclic cofibrations Λm

k → ∆m in sSet. Since Λm
k is a finite simplicial com-

plex Lemma 5.3.1 still applies and so the small object argument carries through,
giving j the LLP with respect to all fibrations.

It remains to check the lifting axioms for the model structure in order to prove
Theorem 5.3.1.

Lemma 5.3.4. Under the assumptions of Theorem 5.3.1 suppose given a (solid) commu-
tative diagram

A X

B Y

i

α

p

β

h

where i is a cofibration and p is a fibration. If either i or p is a weak equivalence then there
exists a morphism h : B→ X making the filled diagram commute.

Proof. If p is a weak equivalence then by assumption the diagram may be filled.
Suppose therefore i is an acyclic cofibration and p some fibration. By Lemma 5.3.3
we may factor i as qj where q is a fibration and j has the LLP with respect to all
fibrations. By the 2-out-of-3 axiom (which has been verified already) q is a weak
equivalence. Thus q has the RLP with respect to i (since i is a cofibration). By the
retract argument Lemma 2.3.1 i is a retract of j. Since j has the LLP with respect
to all acyclic fibrations, so does i. This completes the proof.
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5.4 Reduction

Quillen’s Lie models require, as we have seen, model structures on certain reduced
versions of the categories involved. In this section we sketch how one can modify
the constructions of the previous section to put a model structure on (sC)r, the
category of r-reduced simplicial objects in C. For this to make sense we now
specify that C be pointed i.e. terminal and initial objects are isomorphic.

Definition 5.4.1. Suppose C is a complete and cocomplete pointed category. Let ∗
denote a terminal-initial object. A simplicial object X in sC is said to be r-reduced
if Xn ∼= ∗ for all n ≤ r. The full subcategory of sC consisting of the r-reduced
objects is denoted by (sC)r.

Definition 5.4.2. Let Z be an object in sC. Define the r-th Eilbenberg subcomplex
ErZ of Z as follows. For n ≥ 0 we consider all injective morphisms ϕ : r ↪→ n in
∆ and take the limit over the diagram of monomorphisms Kerϕ∗ ↪→ Zn in C. Here
Kerϕ∗ is the fiber of ϕ∗, defined by the pullback

Kerϕ∗ Zn

∗ Zr

ϕ∗

Thus

(ErZ)n = lim←−
ϕ∈Hom∆(r,n), injective

Kerϕ∗

which comes equipped with a family of morphisms (ErZ)n → Kerϕ∗ one for each
injective map ϕ : r → n. The object (ErZ)n then comes with a single monomor-

phism (ErZ)n
jn
↪→ Zn. Suppose θ : s→ t is a morphism in ∆. Then for each injective

ϕ : r → s we get a diagram

(ErZ)t Zt

Kerϕ∗ Zn

∗ Zr

jt

θ∗

ϕ∗

which commutes. The universal property of the pullback then gives a unique map
(ErZ)t → Kerϕ∗ making the filled diagram commute. These maps (one for each

injective ϕ : r → s) assemble to give a map (ErZ)t
θ∗→ (ErZ)s making the following
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diagram commute

(ErZ)t Zt

(ErZ)s Zs

jt

θ∗ θ∗

js

Note that in the case C = Set∗ (pointed sets) this agree’s with the usual definition
of the Eilenberg subcomplex. In this case the objects Kerϕ∗ are the fibers of the
maps ϕ∗ over the basepoint and the limit (ErZ)n is then the intersection of all these
fibers, i.e. the collection of all n-simplices whose faces map to the basepoint.

The Eilenberg subcomplex Er(−) defines a functor sC → (sC)r which is right ad-
joint to the inclusion functor (sC)r → sC. Similarly one can define a reduction
functor which is left adjoint to the inclusion functor. The upshot is that the cat-
egory (sC)r is a reflective and coreflective subcategory of sC. This proves the
following proposition.

Proposition 5.4.1. The category (sC)r is complete and cocomplete.

Model structure on (sC)r.

Assume as before that C is a pointed complete and cocomplete category equipped
with functors G : C → Set and a left adjoint F : Set → C. As usual we prolongate
these functors to the associated simplicial categories, using the same notation G :
sC → sSet, F : sSet→ sC, G : (sC)r → sSetr and F : sSetr → (sC)r.
In Section 3.2 we provide a model structure on sSetr where the weak equivalences
are the rational equivalences. In fact this construction still works if one defines the
weak equivalences to be morphisms inducing isomorphisms on the usual homo-
topy groups. We state this result without proof, noting only that it follows entirely
the same pattern as the proof for sSetQ

r (see [Qui69]).

Theorem 5.4.1. The category sSetr of r-reduced simplicial sets (r ≥ 0) has the following
model structure.

(i) A map f is a weak equivalence if it induces isomorphisms on all homotopy groups.
(ii) A map f is a cofibration if it is injective.

(iii) A map f is a fibration if it has the RLP with respect to acyclic cofibrations.

As in Section 3.2 we have the following result.

Proposition 5.4.2. The acyclic fibrations in sSetr are precisely those maps in sSetr which
are acyclic fibrations in sSet.

Definition 5.4.3. (Model structure on (sC)r)

(i) A map f in (sC)r is a weak equivalence if G( f ) is a weak equivalence in sSetr.
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(ii) A map f in (sC)r is a fibration if G( f ) is a fibration in sSetr.
(iii) a map f in (sC)r is a cofibration if it has the LLP with respect to all acyclic

fibrations.

Theorem 5.4.2. Let C be a category equipped with functors G and F as above. Assume
the following conditions are satisfied

(i) C is complete, cocomplete and pointed.
(ii) F is left adjoint to G.

(iii) G preserves filtered colimits.
(iv) G(Z) is a Kan complex (i.e. a fibrant object in sSet) for every Z in sC.

Then the proposed model structure of Definition 5.4.3 satisfies the model category axioms,
making (sC)r into a model category.

By Proposition 5.4.1 (sC)r is complete and cocomplete. The 2-out-of-3 axiom fol-
lows from the corresponding statement in sSetr. Likewise for the retract axiom.
Proposition 5.4.2 immediately implies the following.

Lemma 5.4.1. The acyclic fibrations in (sC)r are precisely those maps in (sC)r which are
acyclic fibrations in sC.

Proposition 5.4.3. Any morphism f in (sC)r may be factored as a cofibration followed by
an acyclic fibration.

Proof. The proof is a modification of the proof of Lemma 5.3.2 using the small
object argument. We modify the construction of the objects Zn so that we only
take pushouts of the form

∐
m>r
∐

(α,β)∈Sm
F∂∆m Zn

∐
m>r
∐

(α,β)∈Sm
F∆m Zn+1

qmqSm F(i)

∑
m
∑

Sm α

jn

i.e. using only those m such that m > r. This works because we only need to
achieve lifting properties with respect to the inclusions ∂∆m → ∆m when m >

r.

A feature of the proof is that the cofibration produced will still be a cofibration in
sC therefore a fortiori a cofibration in (sC)r (this follows from Lemma 5.4.1). Thus,
if f is a cofibration in (sC)r then factoring f = pi where p is an acyclic fibration
and i is a cofibration we see that f is a retract of i hence a cofibration in sC. Thus
we have proved.
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Lemma 5.4.2. A map in (sC)r is a cofibration, acyclic fibration or weak equivalence if and
only if it is so as a map in sC.

So of the different classes of special maps in (sC)r, only the (non-acyclic) fibrations
can be different from those of sC.
We now prove the second part of the factorization axiom. It will be useful to note
that since G is right adjoint and the Eilenberg subcomplex (cf. Definition 5.4.2)

is defined in terms of limits, the canonical map G(ErZ)
∼=→ ErG(Z) is an isomor-

phism.

Proposition 5.4.4. Any map f in (sC)r may be factored as an acyclic cofibration followed
by a fibration.

Proof. Let f : X → Y in (sC)r be given. Consider f as a map in sC and factor

it as X i ′→ Z
p ′→ Y where i ′ is an acyclic cofibration in sC and p ′ is a fibration in

sC. Since the Eilenberg subcomplex is right adjoint to the inclusion functor this
factorization induces a commutative diagram

X Z Y

ErZ

i ′

i

p ′

∼

p

We claim that p is a fibration in (sC)r. We must show that G(p) is a fibration in
sSetr. To do this one must show that given an acyclic cofibration A ↪→

∼
B in sSetr

and a lifting problem

A G(ErZ)

B G(Y)

G(p)

there exists a lift. This is straightforward, using that Er is right adjoint to the
inclusion and that G(ErZ) ∼= ErG(Z).
Now since G(Z) is a Kan complex by assumption, the map ErG(Z) → G(Z) is
a weak equivalence and so i is a weak equivalence by the 2-out-of-3 property.
Using Proposition 5.4.3 we factor i as i = qj where j is a cofibration and q is an
acyclic fibration. Then j is in fact also a weak equivalence and so f = (pq)j gives
a factorization in terms of an acyclic cofibration followed by a fibration.

As regards the lifting axiom, the first part is the definition of cofibrations in (sC)r.
It remains to show the last part of the lifting axiom.
First a small lemma characterizing acyclic cofibrations between fibrant objects.
Recall that in a simplicial model category, the object B∆1

is a path object i.e. the
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map B s→
∼

B∆1
� B× B factors the diagonal map (Definition 2.4.2). There are two

maps j0, j1 : B∆1 → B induced by the projections pr0, pr1 : B× B→ B.

Lemma 5.4.3. If i : A ↪→
∼

B is an acyclic cofibration in a simplicial model category such
that A is fibrant, then i is a strong deformation retract, i.e. there exist retract r : B → A
and a homotopy h : B→ B∆1

such that ri = idA, j1h = idB, j0h = ir and hi = is.

Proof. We get r from the following diagram

A A

B ∗

id

i∼
r

Then h is given by the lift in the diagram

A B∆1

B B× B

si

i∼ (j0,j1)
h

The stated relations are then easily verified.

With this general lemma in hand we return to the specific category (sC)r.

Proposition 5.4.5. Acyclic cofibrations in (sC)r have the LLP with respect to fibrations.

Proof. Let i : A ↪→ B be an acyclic cofibration. By Lemma 5.4.2, i is an acyclic cofi-
bration in sC. Since G(A) is assumed to be a Kan complex for all A, Lemma 5.4.3
applies and so r and h exists with the relations noted in the lemma. Suppose
p : X � Y is a fibration in (sC)r and

A X

B Y

α

i∼ p

β

is a lifting problem. Consider the diagram

A Er(X∆1

B X×Y Er(Y∆1

α∆1
s

i∼ (j0,Er(p∆1
))

(αr,β∆1
h)

k
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If the right hand vertical arrow is an acyclic fibration, then the diagram has a lift
k : B→ Er(X∆1

) and the γ = j1k is a solution to the original lifting problem. Thus
it remains to show that (j0, Er(p∆1

) is an acyclic fibration. See [Qui69, p. 255] for
the final part of this argument.

This completes the proof of Theorem 5.4.2.



Chapter 6

Simplicial Complete Hopf
Algebras

In this chapter we introduce the category of complete Hopf algebras, denoted
Hopfcomp. There are few sources treating complete Hopf algebras in detail. We
therefore rely mainly on Quillen’s original appendix [Qui69, Appendix A].
In the following section we shall abuse notation, suppressing much of the data in-
volved in our objects. For example a complete augmented algebra (A, µ, η, ε, {Fn A}n∈ω)

carries with it several data such as the choice of filtration {Fn A}n∈ω. However, we
will always drop this choice from the notation, denoting such a gadget simply by
A.

6.1 Algebras

All algebras A in this section will be over k = Q. Most of the following would
work fine with any other characteristic 0 field. Vector spaces and tensor products
etc. will be over Q unless otherwise is indicated.
An associative algebra (A, µ) is a k-vector space A equipped with a linear map
µ : A⊗ A → A which is associative. We usually write µ(a, b) = a · b and abuse
notation by referring to A as the algebra (A, µ). A unital algebra (A, µ, η) is an
algebra equipped with a map of algebras η : k → A such that η(1k) · a = a =

a · η(1k). If nothing else is noted then “algebra” will always mean associative and
unital algebra.

6.2 Complete augmented algebras

A (unital associative) algebra A is augmented if has a counit, i.e. a map of algebras
ε : A → k satisfying the dual axioms of those for η. In this case the kernel of ε is
denoted A and is called the augmentation ideal of A. It will play an important

75
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role in what follows. Note that an augmented algebra A splits canonically as
A ∼= A⊕ k (as a k-vector space).
A filtration of an algebra A is a decreasing sequence of subspaces

A = F0 A ⊇ F1 A ⊇ · · ·

such that Fp A · Fq A ⊆ Fp+q A. This last requirement makes Fp A into a two-sided
ideal in A for each p.

Example 6.2.1. If A is an augmented algebra with augmentation ideal A then
{An

}n∈ω is a filtration on A.

Given an algebra A with a filtration, the product µ in A induces a product on the
associated graded algebra

grA =
∞⊕

n=0

Fn A/Fn+1 A

given by multiplying representatives. The associated graded algebra grA is very
useful when studying properties of A. The n’th filtration quotient with respect to
the filtration {Fn A}n∈ω is denoted

grn A = Fn A/Fn+1 A.

For the definition of completion with respect to a filtration see Appendix A.3.

Definition 6.2.1. An algebra A together with a filtration {Fn A}n∈ω is called a com-
plete augmented algebra provided

(i) The subspace F1 A is the augmentation ideal A of A.
(ii) The associated graded algebra grA is generated, as an algebra, by gr1 A.

(iii) The algebra is complete with respect to the filtration, i.e. A = lim←−n
A/Fn A.

A morphism between two complete augmented algebras is an augmented algebra
map f : A→ A ′ such that f (Fn A) ⊆ Fn A ′.

Note that condition (i) is equivalent with the condition that gr0 A = k. Furthermore
(i) implies that An ⊆ Fn A for all n.

Lemma 6.2.1. Any augmented algebra B admits a completion making it a complete aug-
mented algebra. This construction is left adjoint to the forgetful functor from complete
augmented algebras to augmented algebras.

See [Qui69, Appendix A, Example 1.2] for a proof of this lemma.
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Categorical properties of complete augmented algebras

Example 6.2.2. Let {Xi}i∈I be a set of indeterminate (non-commuting) variables in-
dexed over some set i ∈ I and let P = k〈〈Xi〉〉i∈I denote the algebra of formal
power series in the variables Xi. The algebra P is the completion of the algebra
k〈Xi〉 of polynomials in the Xi with respect to the augmentation map ε which
maps Xi to 1 for all i. Therefore P is a complete augmented algebra.

In [Qui69, Appendix A] Quillen shows that the projective objects in the category
of complete augmented algebras are exactly those which are isomorphic to P =

k〈〈Xi〉〉i∈I for some set I.

Proposition 6.2.1. Any complete augmented algebra A is the quotient of a power series
ring P by a closed ideal.

Thus, the category of complete augmented algebras has enough projectives. From
this structure it is not hard to prove the following completeness and cocomplete-
ness result about complete augmented algebras.

Theorem 6.2.1. The category of complete augmented algebras is complete and cocomplete
and has P = k〈〈x〉〉 as a projective generator.

See [Qui69, Appendix A, Proposition 1.10].

Exponential and logarithmic series

Let A be a complete augmented algebra. The set 1 + A is a group under multi-
plication denoted Gm A. Given a ∈ A the inverse of 1 − a is the geometric series
1 + a + a2 + · · · , which converges since A is complete and An ⊆ Fn A for all n.
Then, 1 + a = 1 − (−a) is also invertible. A map of complete augmented algebras
preserves these units so Gm defines a functor

Gm : Algcomp
aug −−−→ Grp.

Similarly the augmentation ideal A is a Lie algebra with the commutator operation
induced by the product on A. We denote this Lie algebra by Ga A. A map of
complete augmented algebras preserves the commutator and so induces a map of
Lie algebras. Thus Ga defines a functor

Ga : Algcomp
aug −−−→ Lie.

Proposition 6.2.2. The functor Gm is right adjoint to the completed group algebra functor.
The functor Ga is right adjoint to the completed universal enveloping algebra functor. Thus
we have a diagram of adjoints.

Grp Algcomp
aug Lie

k̂

Gm Ga

Û
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See [Qui69, Appendix A, (1.12)]
Given a complete augmented algebra A with filtration {Fn A} we get an induced
group filtration on Gm A (see [Ser92, chap. 2, sec. 2] for more on filtrations of
groups). The filtration on the group Gm A is given by

FnGm A = 1 + Fn A

for n ≥ 1. The subgroups FnGm A are normal in Fn+1Gm A and satisfy the filtration
property, namely that [FpGm A, FqGm A] ⊆ Fp+qGm A (here the commutator denotes
the group commutator, i.e. [g, h] = ghg−1h−1). This property ensures that the
commutator subgroup [FpGm A, FpGm A] is contained in Fp+1Gm A for all p, thus
the filtration quotients

FpGm A/Fp+1Gm A

are all Abelian. This means that we can define the associated graded Abelian group

grGm A =
∞⊕

n=1

FnGm A
Fn+1Gm A

.

The commutator operation on Gm A induces a bilinear operator on grGm A which
makes grGm A into a Lie algebra over Z (see [Ser92, chap. 2, Proposition 2.3] for a
full proof).
Similarly, there is an induced Lie algebra filtration on Ga A given by

FnGa A = Fn A

which satisfies the requirement [FpGa A, FqGa A] ⊆ Fp+qGa A. Again we can define
the associated graded Lie algebra

grGa A =
∞⊕

n=1

FnGa A
Fn+1Ga A

.

The Lie bracket on Ga A induces a Lie bracket on grGa A making grGa A a Lie
algebra over Q. The function f : FnGa A −−−→ FnGm A given by f (x) = 1 + x
induces a group homomorphism when taking quotients. This in fact induces an
isomorphism of Z-Lie algebras

grGa A
f

−−−→ grGm A.

In fact so does any map f given by a power series of the form

f (x) = 1 + x + a2x2 + a3x3 + · · ·

for an ∈ Q. In particular we can use the exponential power series

f (x) = ex =
∞∑

n=0

xn

n!
.

Note that this power series is well defined over k since k has characteristic zero.
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Proposition 6.2.3. The exponential series defines a (set theoretic) function

exp : Ga A −−−→ Gm A

which is a bijection. The inverse is the logarithm

log(1 + x) =
∞∑

n=1

(−1)n

n
xn.

Proof. (sketch) The exponential series does indeed define a function since for x ∈ A
then xn ∈ An ⊆ Fn A, thus the power series converges.

While not a group homomorphism, the exponential does satisfy the relation

exp(x + y) = exp(x) exp(y)

whenever [x, y] = 0 i.e. x and y commute. This follows from the binomial theorem.

6.3 Completed tensor product

In Appendix A.3 we define the completed tensor product on filtered vector spaces.
If A and A ′ are complete augmented algebras with filtrations {Fn A}n and {FnnA ′}n
respectively then the (usual) tensor product A⊗k A ′ admits the filtration

Fn(A⊗ A ′) =
⊕

i+j=n

Fi A⊗ Fj A ′.

The completed tensor product of A and A ′ is the completion Â⊗ A ′ of A⊗ A ′

with respect to this filtration. We state some result about the completed tensor
product of complete augmented algebras. See [Qui69, Appendix A, p. 269].

Lemma 6.3.1. The completed tensor product of complete augmented algebras is a complete
augmented algebra.

Lemma 6.3.2. If A and B are augmented algebras then Â⊗ B ∼= Â⊗̂B̂.

Thus if A and B are complete augmented algebras then A⊗̂B is a complete aug-
mented algebra.

Proposition 6.3.1. Suppose A, A ′ and B are complete augmented algebras and suppose
given morphisms u : A→ B and v : A ′ → B such that

[ux, vy] = 0 for all x ∈ A and y ∈ A ′

then there is a unique map
w : A⊗̂A ′ −−−→ B

such that w(x⊗̂1) = u(x) and w(1⊗̂y) = v(y).
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6.4 Coalgebras

The study of Hopf algebras encompasses more than the “usual” algebraic struc-
tures such as groups, modules and (well...) algebras. A Hopf algebra, apart from
being an augmented algebra, is also a coalgebra. Coalgebras are defined in a way
that is dual to the usual definition of algebras, in the sense that “all arrows go in
the opposite direction”.

Definition 6.4.1. A k-vector space C equipped with k-linear maps ∆ : C → C⊗ C
(called the coproduct) and ε : C → k (called the counit) is called a coalgebra if it is
coassociative, counital and cocommutative. The meaning of these three requirements
is that the following diagrams must commute. Coassociativity is expressed by the
following diagram.

C C⊗ C

C⊗ C C⊗ C⊗ C

∆

∆ 1C⊗∆

∆⊗1C

Counitality is expressed by the following diagram.

C

C ∼= C⊗ k C⊗ C k⊗ C ∼= C

∆
1C 1C

ε⊗1C1C⊗ε

Cocommutativity is expressed by the following diagram.

C

C⊗ C C⊗ C

∆ ∆

τ

where τ : A⊗ B→ B⊗ A is the “twist map” determined by τ(a⊗ b) = b⊗ a (note
that we are not in the graded case).

Remark 6.4.1. Unlike for algebras we will always assume that coalgebras are co-
commutative. Many places in the literature do not assume cocommutativity. The
reason we do is that all coalgebras we will deal with have this property.

6.5 Hopf algebras

Informally, a Hopf algebra is a set equipped with an (associative, unital) algebra
structure, a (coassociative, cocommutative, counital) coalgebra structure, and an
antipode map (defined below) such all structures are compatible. To make this
more precise we first deal with the combination of algebra and coalgebra structure.
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Definition 6.5.1. A bialgebra (H, µ, η, ∆, ε) over k is a k-vector space H such that
(H, µ, η) is a unital algebra, (H, ∆, ε) is a counital cocommutative coalgebra such
that ∆ is an algebra map (equivalently µ is a coalgebra map) and such that ε is an
augmentation (equivalently η is a coagumentation).

We will often denote a bialgebra simply by H or by (H, µ, ∆). The sense in which
∆ is required to be an algebra map is the following. We provide H ⊗ H with the
algebra structure (H ⊗ H)⊗ (H ⊗ H)→ H ⊗ H determined by µH⊗H((x1 ⊗ y1)⊗
(x2 ⊗ y2)) = µH(x1 ⊗ x2)⊗ µH(y1 ⊗ y2), i.e. multiplication component wise.

Definition 6.5.2. A Hopf algebra (H, µ, η, ∆, ε, S) over k is a bialgebra (H, µ, η, ∆, ε)

together with a k-linear map S : H → H called the antipode making the following
diagram commute.

H ⊗ H H ⊗ H

H k H

H ⊗ H H ⊗ H

S⊗id

µ

ε

∆

∆

η

id⊗S
µ

A bialgebra H has at most one antipode map making it a Hopf algebra. This
follows from an equivalent definition of the antipode as the (two-sided) inverse of
the identity map id ∈ Homk(H, H) under the associative convolution product. This
is a product ? on Homk(H, H) given by f ? g = µ ◦ ( f ⊗ g) ◦ ∆ (see [LV12, chap. 1,
sec. 3.10]). Thus, being a Hopf algebra is really a property of a bialgebra.

Example 6.5.1. (Group algebra) Let G be a group and kG the group algebra. Then
kG is a coalgebra with coproduct determined by ∆(g) = g ⊗ g for g ∈ G. The
counit is the augmentation map ε : kG → k determined by ε(g) = 1 for all g ∈ G.
The antipode S : kG → kG is determined by S(g) = g−1 for g ∈ G. In this case the
antipode axiom reduces to the fact that g−1g = 1 = gg−1. Note that kG is indeed
cocommutative since τ(g ⊗ g) = g ⊗ g. The Hopf algebra kG is commutative if
and only if G is a commutative group.

The Hopf algebra structure is a good example of the importance of noticing alge-
braic structure. The “isomorphism problem for group algebras” is the following
question: if kG ∼= kG ′ as k-algebras does it follow that G ∼= G ′? In general
the answer is no; for example if k is the field of complex numbers and G 6∼= G ′

are two non-isomorphic Abelian groups of equal order then one can show that
kG ∼= Cn ∼= kG ′ as k-algebras. The analogous “isomorphism problem for group
(Hopf) algebras” is easy to solve; In any Hopf algebra H we say that an element
x is group-like (see below) if ∆(x) = x⊗ x. Now one can show that for H = kG
then the group of group-like elements is exactly G. Furthermore the group of
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group-like elements forms an invariant of H thus if kG ∼= kG ′ as Hopf algebras
then G ∼= G ′ as groups.

Example 6.5.2. (Universal Enveloping Algebra) Let g be a Lie algebra over k. Let
U(g) be the universal enveloping algebra of g. The map ∆(x) = 1 ⊗ x + x ⊗ 1
for x ∈ g determines a coproduct on U(g) with counit x 7→ 0. The antipode
S : Ug→ Ug is determined by x 7→ −x for x ∈ g.

6.6 Complete Hopf algebras

If A is a complete augmented algebra (cf. Definition 6.2.1) then it can be shown
that A⊗̂A is also a complete augmented algebra (cf. Lemma 6.3.2), with the filtra-
tion described in Section 6.3. So it makes sense to require a map ∆ : A→ A⊗̂A to
be a morphism of complete augmented algebras.

Definition 6.6.1. A complete Hopf algebra (H, µ, η, ∆, ε) is a complete augmented
algebra H with a coproduct ∆ : H → H⊗̂H, which is a map of complete aug-
mented algebras and which is coassociative, cocommutative and such that the
augmentation ε : H → k is a counit. A k-linear map f : H → H ′ of complete Hopf
algebras is a morphism of complete Hopf algebras if f is a morphism of complete aug-
mented algebras which also preserves the coproduct i.e. ∆H ′ ◦ f = ( f ⊗ f ) ◦ ∆.
The category of complete Hopf algebras will be denoted Hopfcomp.

Remark 6.6.1. The definition of a complete Hopf algebras, as given above, does not
mention an antipode map. Thus, in modern terminology we might have called
these complete bialgebras instead. We have, however, decided to stick with Quillen
on this matter. Indeed it is the belief of the author that complete Hopf algebras
actually do have natural antipode, but we will not go further in this matter.

Lemma 6.6.1. If H is a cocommutative Hopf algebra then the completion Ĥ with respect
to the augmentation ideal ker(ε) admits a complete Hopf algebra structure. The coproduct
∆̂ : Ĥ → Ĥ ⊗ H ∼= Ĥ⊗̂Ĥ is induced by the coproduct on H and the isomorphism
Ĥ ⊗ H ∼= Ĥ⊗̂Ĥ, the counit ε̂ : Ĥ → k̂ ∼= k is induced by the augmentation ε : H → k.
This construction is functorial providing a functor Algcomp

aug → Hopfcomp.

Proof. Let H be any cocommutatuve Hopf algebra. Filter H with powers of the
augmentation ideal

H = H0 ⊇ H1 ⊇ H2 ⊇ H3 ⊇ · · · .

Recall that we filter the ground field k by F0k = k and Fnk = 0 for n > 0. Then the
counit ε : H → k preserves the filtration. Likewise for the unit η : k → H (clearly
η always preserves the filtration, regardless of the filtration on H). Suppose x ∈
H = Ker(ε) is an element of the augmentation ideal. Since ε is a counit the identity
(ε⊗ id) ◦ ∆ = id is satisfied and since ε(u) = 0 this implies that ∆(u) = 1⊗ u +
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y1 + y2 for some y1 ∈ H ⊗ 1 and some y2 ∈ H ⊗ H. The identity (id⊗ ε) ◦ ∆ = id
then implies that ∆(u) = u⊗ 1 + 1⊗ u + y for some y ∈ H⊗ H. Thus ∆ preserves
the first component of the filtration. Using a similar argument (this time using
that ∆ is an algebra morphism) one shows that ∆ preserves the filtration. The
product µ : H ⊗ H → H clearly also preserves the filtration. It now follows that
the completion Ĥ = lim←−H/Hn admits the structure of a complete Hopf algebra
since the maps ∆, µ, η, ε all induce maps satisfying the corresponding identities.

Note that to define the diagonal we use the isomorphism Ĥ ⊗ H
∼=→ Ĥ⊗̂Ĥ.

As a corollary of this canonical completion process, the usual group algebra and
universal algebra have completed counterparts.

Corollary 6.6.1. The completed group algebra k̂G defines a functor k̂ : Grp→ Hopfcomp.
The completed universal enveloping algebra Ûg defines a functor Lie→ Hopfcomp.

Definition 6.6.2. Let H be a complete Hopf algebra. A subspace J ⊆ H is called a
closed Hopf ideal provided ∆J ⊆ H⊗̂J + J⊗̂H.

If J ⊆ H is a closed Hopf ideal then we can take the cokernel H/J. The filtrations
on H and J then induce a filtration on H/J and one can then shows that H/J is
complete with respect to this filtration.

6.7 Group-like and primitive elements

The notions of group-like (respectively, primitive) elements in a Hopf algebra have
proved fruitful. We now make the direct extension of these notions to the case of
complete Hopf algebras.

Definition 6.7.1. Let H be a complete Hopf algebra. An element x ∈ 1 + H is said
to be group-like if ∆x = x⊗̂x. The subset of group-like elements is denoted GH.
A element x ∈ H is said to be primitive if ∆x = 1⊗̂x + x⊗̂1. The set of primitive
elements is denoted PH.

So the group like element of H are those x ∈ H such that ε(x) = 1 and ∆(x) =

x⊗̂x. The primitive elements are those x ∈ H such that ε(x) = 0 and ∆(x) =

x⊗̂1 + 1⊗̂x.

Lemma 6.7.1. The set GH is a subgroup of GmH. The set PH is a Lie subalgebra of GaH.
The functor G : Hopfcomp → Grp is right adjont to k̂. The functor P : Hopfcomp → Lie
is right adjoint to Û. Thus we have a diagram of adjoints.

Grp Hopfcomp Lie
k̂

G P

Û

Recall the standing assumption that k = Q, in particular k has characteristic zero.
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Proposition 6.7.1. Let H be a complete Hopf algebra. The exponential function exp :

H → H restricts to a bijection PH
∼=→ GH. This bijection is natural, so we have a natural

isomorphism of functors P ∼= G : Hopfcomp → Set.

Proof. Suppose x ∈ PH. The function exp : H → H clearly preserves the coprod-
uct, thus

∆(exp(x)) = exp(∆x) = exp(x⊗̂1 + 1⊗̂x) = exp(x⊗̂1) exp(1⊗̂x)

where the last equality follows from the fact that 1⊗̂x and x⊗̂1 commute. Now

exp(x⊗̂1) exp(1⊗̂x) = (exp(x)⊗̂1)(1⊗̂ exp(x)) = exp(x)⊗̂ exp(x).

Also, since x ∈ PH we have ε(x) = 0, so ε(exp(x)) = 1. Thus, exp(x) is group-
like.
For the inverse we use log : H → H. Once again it is easy to show that ∆ log(x) =
log(∆x). Supposing x to be group-like, we then have ∆ log(x) = log(x⊗̂x). Using
once again that 1⊗̂x commutes with x⊗̂1 we have

∆(log(x)) = log(x⊗̂x) = log((1⊗̂x) · (x⊗̂1)) = log(1⊗̂x) + log(x⊗̂1).

Now log(1⊗̂x) = 1⊗̂x and so the above shows that ∆(log(x)) = 1⊗̂ log(x) +
log(x)⊗̂1.

Now since log and exp are inverse power series, we conclude that PH
∼=→ GH.

This isomorphism is clearly natural in H.

For further investigations of these ideas, and the closely related Baker-Campbell-
Hausdorff formula, see [Ser92, chap. 4].

6.8 Free Hopf algebras

We have seen two specific ways to generate complete Hopf algebras: from a group
we get the completed group algebra, from a Lie algebra we get the completed uni-
versal enveloping algebra. Of course the two Hopf algebras may be very different.
However, if we start with just a set then we can consider the free group or the free
Lie algebra generated by the set, and then generate the respective complete Hopf
algebras. We have the following diagram of functors.

Grp

Set Hopfcomp

Lie

k̂

f orget

F

L

P

G

Û

f orget
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A corollary of Proposition 6.7.1 and Lemma 6.7.1 is that the two ways of generat-
ing complete Hopf algebras, from a given set, are isomorphic. We can also give
a concrete description of this complete Hopf algebra. Let S be a set. The group
algebra kF(S) on the free group generated by S is the algebra of polynomials in
non-commuting variables {Xs}s∈S, denoted kF(S) = k〈Xs〉s∈S. This algebra is aug-
mented by the map ε(s) = 1 for s ∈ S and the completion of this algebra with re-
spect to the augmentation ideal is the ring of powers series in the non-commuting
variables {Xs}s∈S, denoted k〈〈Xs〉〉s∈S. We can give k〈〈Xs〉〉s∈S a coalgebra structure
making it a complete Hopf algebra. The coproduct is determined by making each
element Xs primitive, i.e. ∆(Xs) = 1⊗̂Xs + Xs⊗̂1. The counit is given by ε(Xs) = 0.
We know that there are isomorphism k̂F(S) ∼= k〈〈Xs〉〉s∈S

∼= ÛL(S). Explicitely the
isomorphism

ϕ : k̂F(S)
∼=
−−−→ k〈〈Xs〉〉s∈S

is given by ϕ(s) = exp(Xs) for s ∈ S. The isomorphism

θ : ÛL(S)
∼=
−−−→ k〈〈Xs〉〉s∈S

is given by θ(S) = Xs for s ∈ S.

Definition 6.8.1. The complete Hopf algebra k〈〈Xs〉〉s∈S is called the free complete
Hopf algebra on the set S. In general a complete Hopf algebra H will be called
free if it is isomorphic to the free complete Hopf algebra on a set S.

The free complete Hopf algebras play an important role in Hopfcomp.

Proposition 6.8.1. A complete Hopf algebra is projective if and only if it is isomorphic to
a free complete Hopf algebra k〈〈Xs〉〉s∈S on S, for some set S.

Theorem 6.8.1. Any complete Hopf algebra H is isomorphic to the quotient of a free
complete Hopf algebra P by a closed Hopf ideal (cf. Definition 6.6.2). The free complete
Hopf algebras are the projective objects in Hopfcomp.

For the proof of both these results see [Qui69, Appendix A, Proposition 2.22 and
Corollary 2.23].
The existence and plentifulness of free complete Hopf algebras allow us prove
results about complete Hopf algebras using generators and relations. In particular
one can prove the following result ([Qui69, Appendix A, Proposition 2.24]).

Theorem 6.8.2. The category Hopfcomp of complete Hopf algebras is complete and cocom-
plete.

Remark 6.8.1. Giving explicit descriptions of limits in categories of Hopf algebras
seems quite difficult. As late as 2010 work was done by Agore (see [Ago11])
giving descriptions of all limits in the category of “ordinary” (i.e. not filtered)
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Hopf algebras, with no cocompleteness assumption. The author does not know
if the methods of [Ago11] could be applied to give explicit descriptions of limits
in Hopfcomp. At least the issue of cocommutativity should not pose too many
problems. Indeed, the category of “ordinary” cocommutative Hopf algebras is
coreflective in the category of Hopf algebras. Given an “ordinary” Hopf algebra H,
the coreflector is the operation of taking the subset Hcocomm ⊆ H of cocommutative
elements (i.e. elements x ∈ H such that ∆x = τ∆x where τ is the “switch” map).
Then Hcocomm is in fact a Hopf subalgebra and the association H 7→ Hcocomm is right
adjoint to the inclusion of the category of cocommutative Hopf algebras into the
category of Hopf algebras.

6.9 Model structure

We now have almost all the properties required in order to use Theorem 5.4.2.
The candidate for the functor G : Hopfcomp → Set is the functor P of primitive
elements (or, equivalently, the functor G of group-like elements). Here we think og
P as a Set-valued functor, disregarding the fact that it factors through the category
of Lie algebras. Thus we make the following candidate definitions.

Definition 6.9.1. Let r ≥ 0 and let f : H → H ′ be a morphism in (sHopfcomp)r.

(i) Call f a weak equivalence if G( f ) is a weak equivalence in sSetr.
(ii) Call f a fibration if G( f ) is a fibration in sSetr.

(iii) Call f a cofibration if it has the LLP with respect to all acyclic fibrations.

Remark 6.9.1. In order to prove that the above definitions yield a model structure
on the category sHopfcomp

r of r-reduced simplicial complete Hopf algebras, we
must show that G = P preserves all filtered colimits. However, it appears that it
does not! The reason being the inherently infinitary definition of complete Hopf
algebras . See also Remark 7.3.2 for the corresponding situation in the unproblem-
atic case of simplicial Lie algebras.

As Remark 6.9.1 shows, we cannot directly us Theorem 5.4.2 to put a model struc-
ture on sHopfcomp

r . However, the proof of Theorem 5.4.2 only uses the assumption
that G preserves filtered colimits once, namely in the proof of the factorization
axiom (Lemma 5.3.2) using the small object argument. Thus, we can salvage the
conclusion of Theorem 5.4.2 applied to C = sHopfcomp

r if we can find some other
way of proving the factorization axiom. The solution is to use the fact (stated
in Theorem 6.8.1) that Hopfcomp has enough projectives, to make a factorization
anyway.

Lemma 6.9.1. Any morphism f : H → H ′ of complete Hopf algebras may be factored as
f = pi where i is a cofibration and p is an acyclic fibration.
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The result as it appears in [Qui67, Part II, chap 4, Proposition 3] relies on the
theory of effective epimorphisms.

Theorem 6.9.1. Definition 6.9.1 puts a model structure on sHopfcomp
r , the category of

r-reduced simplicial complete Hopf algebras.

6.10 Connections with simplicial groups

With the model structure now placed on sHopfcomp
r we can discuss the functors

G and Q̂ in the context of Section 2.6. First, we need a result proved by Quillen
using results by Curtis ([Cur65]).

Proposition 6.10.1. If G is a reduced almost free simplicial group then the unit η : G →
GQ̂G is a weak equivalence in sGrpQ

0

See [Qui69, Part I, Theorem 3.4] for a proof.

Proposition 6.10.2. The pair (Q̂,G) of adjoint functors form a Quillen equivalence.

sGrpQ
r sHopfcomp

r

Q̂

G

In particular they induce an adjoint equivalence of categories Ho(sGrpQ
r )

∼= Ho(sHopfcomp
r ).

Proof. By Lemma 6.7.1 the two functors are adjoint. We know that cofibrant simpli-
cial groups in sGrpQ

r are the r-reduced almost free simplicial groups, and that all
complete Hopf algebras are fibrant. Suppose G is a cofibrant r-reduced simplicial
group and H is a complete Hopf algebra. Given a weak equivalence f : Q̂G →

∼
H

in sHopfcomp
r , the adjoint of f is the composition

G
η

−−−→ GQ̂G
G f
−−−→ GH.

This is a weak equivalence since η is (by Proposition 6.10.1) and since G preserves
weak equivalences, as is seen by the natural isomorphism G ∼= ¶.
Conversely, suppose g : G →

∼
GH is a weak equivalence. We must show that the

adjoint Q̂G → H is a weak equivalence in sHopfcomp
r . Consider the commutative

diagram

PQ̂G PQ̂GH PH

GQ̂G GQ̂GH GH

G

P(Q̂(g))

exp∼=

P(ε)

exp∼= exp∼=

GQ̂(g) G(ε)

η ∼
g

∼
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By the 2-out-of-3 property for weak equivalences in sGrpQ
r we see that the adjoint

Q̂G → H is indeed a weak equivalence in sHopfcomp
r . Thus, (Q̂,G) form a Quillen

equivalence. The second claim follows from Theorem 2.6.2.



Chapter 7

Simplicial Lie Algebras

The purpose of this chapter is to introduce the category of Lie algebras and then
the category of simplicial Lie algebras. We will not come close to a full develop-
ment of the exciting theory of Lie algebras. For a very elementary introduction
(with focus on classification of finite dimensional Lie algebras over C) see [EW06].
For a more general and sophisticated approach see e.g. Serre’s book [Ser92] about
Lie algebras and Lie groups.
We give a proof that Lie is a complete and cocomplete category and use this to
put a model structure on sLie.

7.1 The category of Lie algebras

Let k be a field of characteristic zero. As usual the focus is on the case k = Q.

Definition 7.1.1. A Lie algebra over k is a k-vector space g equipped with a linear
map [, ] : g⊗ g → g, called the (Lie) bracket, which is antisymmetric (i.e. [x, y] =
−[y, x]) and satisfies the Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. A
k-linear map f : g → h between two Lie algebras is a Lie homomorphism if
f ([x, y]) = [ f x, f y] for all x, y ∈ g.

The category of Lie algebras and Lie homomorphisms is denoted Lie. We will be
considering some aspects of the category Lie.

Remark 7.1.1. A few elementary observations.

(i) Lie algebras are not assumed to be associative, and generally they won’t be.
(ii) Since k has characteristic zero the antisymmetry condition is equivalent to

the alternating condition on the bracket, i.e. [x, x] = 0 for all x ∈ g.
(iii) Using the bilinearity and antisymmetry we can rewrite the Jacobi identity as

[x, [y, z]] = [[x, y], z] + [y, [x, z]] which shows that the operator [x,−] satisfies
the Leibniz identity.

89
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(iv) Lie algebras are defined in terms of sets and finitary operations satisfying
certain identities, thus they form a variety (in the sense of universal algebra).
See for instance [Ber15, chap. 9, sec. 7]. From this it follows that Lie is both
complete and cocomplete. However, we shall not use this machinery but
instead prove these results “by hand”.

(v) The set of all Lie homomorphisms HomLie(g, h) between two Lie algebras,
g and h, is naturally a k-vector space with point-wise addition and scalar
multiplication. The zero map is the neutral element.

If g is a Lie algebra and h ⊆ g is a subspace then we say that h is a Lie subalgebra
if [x, y] ∈ h for all x, y ∈ h. If furthermore [x, y] ∈ h for all x ∈ h and y ∈ g then h

is called a (Lie) ideal of g.

Lemma 7.1.1. If h ⊆ g is a Lie ideal, then the Lie bracket on g induces a Lie bracket on
the quotient space g/h. Any subspace V ⊆ g is contained in a smallest Lie ideal 〈V〉 ⊆ g.

The proof is straightforward (see e.g. [EW06, chap. 2]).

Example 7.1.1. The trivial vector space 0 admits a Lie algebra structure with trivial
bracket. This is both an initial and terminal object in Lie.

Example 7.1.2. For every field k there is a unique 1-dimensional Lie algebra g, i.e.
Lie algebra with 1-dimensional underlying vector space. The bracket must in this
case be 0 since all elements x, y ∈ g are linearly dependent i.e. there is some λ ∈ k
such that y = λx. Then [x, y] = [x, λx] = λ[x, x] = 0.

Example 7.1.3. If A is an associative algebra over k then consider ALie the Lie al-
gebra which has A as underlying k-vector space. The bracket is given by the
commutator [x, y] = xy − yx. The associativity of the product on A ensures the
Jacobi identity holds. A map f : A → A ′ of associative k-algebras preserves the
commutator and so induces a map fLie : ALie → A ′Lie. This association is functorial.

Proposition 7.1.1. The category Lie of Lie algebras is complete.

Proof. Given a family {gi}i∈I (where I is some set) of Lie algebras with brackets
[, ]i, the product vector space

∏
i gi may be equipped with a Lie bracket defined as

[(ai)i∈I , (bi)i∈I ] = ([ai, bi]i)i∈I . The projection maps are Lie homomorphisms and it
is clear that the required universal property is satisfied. Similarly, equalizers may
be computed in Vect and then equipped with brackets: given f , f ′ : g→ h parallel
Lie homomorphisms, consider the subspace Ker( f − f ′) ⊆ g. Then Ker( f − f ′)
is stable under the bracket in g and so inherits the Lie algebra structure from g.
It is clear that this is an equalizer in Lie. The proposition now follows from the
general fact that categories with arbitrary (small) products and with equalizers
have all (small) limits.
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The functor (−)Lie : Alg→ Lie from Example 7.1.3 is forgetting the product struc-
ture on A and only remembering the commutator. As is often the case with “for-
getful” functors, there is a left adjoint U : Lie→ Alg called the universal envelop-
ing algebra. Given a Lie algebra g, a universal enveloping algebra Ug together
with a Lie homomorphism i : g→ Ug must have the following universal property.
For any associative algebra A with a Lie homomorphism ϕ : g→ ALie there exists
a unique map of algebras ϕ̂ : Ug→ A such that ϕ̂ ◦ i = ϕ. Note that if Ug exists it
is unique up to isomorphism of associative k-algebras.

Proposition 7.1.2. Every Lie algebra g has a universal enveloping algebra Ug.

Proof. Recall the construction of the tensor algebra on a vector space V; this is the
free associative algebra on V and may be constructed as follows. Let TnV = V⊗n

be the n-fold tensor product (over k) of V with itself, where V⊗0 = k. Then

TV =
⊕

TnV.

This is indeed a free associative algebra on V, i.e. has the correct universal prop-
erty. Let I ⊆ Tg be the ideal generated by [x, y]− x⊗ y − y⊗ x for x, y ∈ g. Then
Tg/I together with the obvious map i : g→ Tg→ Tg/I is a universal enveloping
algebra for g.

7.2 The Poincaré-Birkhoff-Witt theorem

The Poincaré-Birkhoff-Witt theorem comes in several somewhat different, yet equiv-
alent, versions. One important corollary is a representation theorem, showing that
any Lie algebra is in fact a Lie subalgebra of an associative algebra.
Let a Lie algebra g over k be given. Choose a basis {eα}α∈A for g as a k-vector space.
We may assume the index set A is well-ordered. If I = (α1, . . . , αn) is a sequence of
indices then we denote by eI the product eα1 · · · eαn in Ug. (This is a slight abuse of
notation, this should really read eI = i(eα1) · · · i(eαn)). Call a sequence I increasing
if α1 ≤ α2 ≤ · · · ≤ αn. Define e∅ = 1.

Theorem 7.2.1. (Poincaré-Birkhoff-Witt) The set {eI ∈ Ug : I an increasing sequence }
forms a basis for Ug as a k-vector space.

The proofs (at least those found by the author) are quite involved. See [Ser92,
chap. 3, Theorem 4.3] or, for dg versions of the theorem see [FHT01, chap. 21,
Theorem 21.1] [Qui69, Appendix B]. If I = (α) then eI = i(eα) ∈ Ug is the image
of eα ∈ g under the map i : g → Ug. By the theorem, these images are all linearly
independent in Ug. From this observation we get the following corollary.

Corollary 7.2.1. The map i : g→ Ug is injective. Thus g is a Lie subalgebra of (Ug)Lie.
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7.3 Free Lie algebras and colimits

The Poincaré-Birkhoff-Witt theorem allows us to construct free Lie algebras.

Proposition 7.3.1. The forgetful functor Lie→ Vect which forgets the bracket has a left
adjoint L : Vect→ Lie called the free Lie algebra functor.

Proof. Given a vector space V, define L(V) to be the Lie subalgebra of (TV)Lie (cf.
Example 7.1.3) generated by V = T1V ⊆ TV. Suppose g is some Lie algebra and

f : V → g is a k-linear map. Composing with i : g → Ug gives a map V
i◦ f→ Ug

into an associative algebra. This extends to a unique algebra map f̄ : TV → Ug.
By Corollary 7.2.1, g is a Lie subalgebra of Ug, thus since L(V) is generated by V
the map f̄ : TV → Ug restricts to a map L(V)→ g which is a Lie homomorphism
since f̄ is.

In particular, if X is a set then the k-vector space kX generated by X gives rise to
L(kX). We shall call L(kX) the free Lie algebra generated by X and denote it by
L(X), as in the following corollary.

Corollary 7.3.1. The forgetful functor Lie→ Set which forgets the Lie algebra and vector
space structure has a left adjoint L : Set→ Lie (also) called the free Lie algebra functor.

Proof. One constructs L by composing with the free k-vector space functor Set →
Vect.

Proposition 7.3.2. The category Lie of Lie algebras is cocomplete.

Proof. We show that Lie has coequalizers and small coproducts. Suppose f1, f2 :
g → h are parallel Lie homomorphisms. The coequalizer is given as follows. The
image Im( f1 − f2) is a Lie subalgebra. Let J be the smallest Lie ideal containing
Im( f1 − f2) (cf. Lemma 7.1.1). Then h/J is a coequalizer. This follows from the
homomorphism theorems for Lie algebras (see [EW06, chap. 2] ).
We now construct coproducts. Let {gi}i∈I be a set-indexed family of Lie algebras.
The Lie bracket in gi is denoted [, ]i. Consider the coproduct (i.e. direct sum) of
the underlying k-vector spaces

⊕
i∈I gi with the linear inclusions inj : gj →⊕

i∈I gi.
Let L denote the free Lie algebra on the vector space

⊕
i∈I gi with bracket [, ]L. Let

ιj : L(gj)→ L be the map L(inj). Let J be the Lie ideal generated by the relations

ιj([g, g ′]j) = [ιj(g), ιj(g ′)]L for all j ∈ I and all g, g ′ ∈ gj.

Let π : L → L/J be the quotient Lie homomorphism. The maps π ◦ ιj are Lie
homomorphisms for all j ∈ I and the pair (L/J, {π ◦ ιj}j∈I) is universal among
such pairs, i.e. a coproduct of the family {gi}i∈I .
Since categories with coequalizers and (small) coproducts are cocomplete ([Mac71,
chap. 5, sec. 2]), we are done.
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Remark 7.3.1. The construction of coproducts in Lie is unfortunately not very ex-
plicit. The author does not know of a more explicit description. The situation is
reminiscent of the coproduct (also known as free product) in Grp. To see how things
get complicated one can try to describe the coproduct of two 1-dimensional Lie
algebras g1

∼= k ∼= g2 (cf. Example 7.1.2). Let [, ]i denote the bracket in gi (i = 1, 2)
and [, ] the bracket in the coproduct g1 q g2. If x ∈ g1 and y ∈ g2 then there is no
obvious reduction of [x, y] nor of [x, [x, y]] or [[x, y], y], etc..

We shall now prove that the forgetful functor G : Lie → Set preserves filtered
colimits. This relies on the following lemma which says that filtered colimits com-
mute with finite limits in Set. A finite category is a category with only finitely
many objects and morphisms.

Theorem 7.3.1. Let I be a small filtered category and J a finite category. If X : I × J →
Set is a diagram in Set then the canonical map

colimIlimJX(i, j) −−−→ limJcolimI X(i, j)

is a bijection.

The proof of this fundamental result is not hard, however it does rely on a precise
description of filtered colimits in Set and so will be omitted. See [Mac71, chap. 9,
Theorem 2.1] for the details.

Corollary 7.3.2. The forgetful functor U : Lie→ Set preserves filtered colimits.

Proof. The crucial observation is that Lie algebras are defined as sets equipped
with certain finitary operations on them. In more detail, a Lie algebra g over k
may be described as a tuple (g, [ , ],+,−, 0, {λ}λ∈k) where g is a set and the other
entries are functions

g2
[ , ],+
−−−→ g g

−,λ
−−−→ g g0 ∼= ∗

0
−−−→ g

between various products of g. The vector space axioms and Lie algebra axioms
can all be described in terms of commutative diagrams. For example, the Jacobi
identity may be “coded” as the requirement that the following diagram is com-
mutative.

g3 g3 × g3 × g3 g2 × g2 × g2

g g× g g× g× g

(id,σ,σ2)

0

(id,[,])3

[ , ]×[ , ]×[ , ]

+ (id,+)
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Here 0 : g3 → g is really the composite g3 → ∗ 0→ g. The map σ : g3 → g3 is the
cyclic permutation (x, y, z) 7−→ (y, z, x). Suppose we are given a diagram I → Lie
where I is filtered. Composing with G we get a diagram

X : I → Lie G→ Set

in Set where each set X(i) may be equipped with a Lie algebra structure in the
form of the functions f (i) : X(i)n → X(i)m for various n and m. These func-
tions f (i) : X(i)n → X(i)m actually define natural transformations between the
diagrams given by the term-wise m-fold and n-fold products. By naturality, each
transformation f : Xn → Xm induces a map colimI( f ) on the colimits of the dia-
grams

colimI(Xn)
colimI( f )
−−−→ colimI(Xm).

Since taking k-fold products is a finite limit, Theorem 7.3.1 implies that the natural
map colimI(Xk) → colimI(X)k is a bijection. Thus we can uniquely define a map
f̃ : colimI(X)n → colimI(X)m by the following diagram

colimI(Xn) colimI(Xm)

colimI(X)n colimI(X)m

colimI( f )

∼= ∼=

f̃

By naturality, the association f 7→ f̃ is functorial i.e. given two composable op-
erations f : Xn → Xm and g : Xm → Xk then g̃ ◦ f = g̃ ◦ f̃ and ĩd = id. Thus,
the operations f̃ satisfy the same relations as the maps f do. For example, tak-
ing f = + : X2 → X the associativity relation + ◦ (id,+) = + ◦ (+, id) gives
+̃ ◦ (id, +̃) = +̃ ◦ (+̃, id). So +̃ : colimI(X)2 → colimI(X) is associative. Finally,
the universal maps ini : X(i)→ colimI X into the colimit are Lie homomorphisms,
since each of the maps in the diagram is a Lie homomorphism. Therefore the
colimI X together with the maps {ini}i∈I is the colimit in Lie.

Remark 7.3.2. As the proof of Corollary 7.3.2 shows, the fact that G preserves
filtered colimits is directly related to the “finitary definition” of Lie algebras. The
same arguments therefore apply to many other common “algebraic” categories C
with forgetful functors G : C → Set. For instance, the forgetful functor from groups
or rings also preserves filtered colimits. However, in the category of complete Hopf
algebras this strategy fails. A complete Hopf algebra H is required to satisfy
the infinitary condition H = lim←−n

H/FnH where {Fn}n∈ω is a specified filtration.
This issue required us to take a slightly different approach when proving the
model category axioms for the category of simplicial complete Hopf algebras, cf.
Remark 6.9.1.
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7.4 Model structure

In Section 5.3 we discussed a general method of putting a (simplicial) model struc-
ture on (sC)r where C is a sufficiently “algebraic” category. We shall use this
method to put a model structure on sLie, the category of simplicial objects in Lie.
Let us state the proposed model structure. We shall refer to the forgetful functor
G : sLie→ sSet (the prolongation of the forgetful functor Lie→ Set) as well as its
left adjoint L : sSet→ sLie.

Definition 7.4.1. Let r ≥ 0 and let f : g→ h be a morphism (sLie)r.

(i) Call f a weak equivalence if G( f ) is a weak equivalence in sSetr.
(ii) Call f a fibration if G( f ) is a fibration in sSetr.

(iii) Call f a cofibration if it has the LLP with respect to all acyclic fibrations.

Theorem 7.4.1. The model structure as proposed in Definition 7.4.1 equips Lie with a
model category structure.

Proof. We verify the conditions of Definition 5.4.3. We have shown in Proposi-
tion 7.1.1 and Proposition 7.3.2 that Lie is complete and cocomplete. As pointed
out in Example 7.1.1, Lie is a pointed category. The functors G and F of Defini-
tion 5.4.3 may be taken to be U and L respectively. By Corollary 7.3.2 G commutes
with filtered colimits.

7.5 Connection with sHopfcomp

In this section we will prove that the adjoint functors Û a P form a Quillen
equivalence (cf. Section 2.6). As a result they induce an equivalence of categories
between Ho(sHopfcomp

r ) and Ho(sLier).
First, we need a result proved by Quillen using results by Curtis ([Cur65]).

Proposition 7.5.1. If g is a reduced almost free simplicial Lie algebra then the unit η :
g→ PÛg is a weak equivalence in sLier.

See [Qui69, Part I, Theorem 3.5] for a proof.

Proposition 7.5.2. The pair (Û,P) of adjoint functors form a Quillen equivalence.

sHopfcomp
r sLier

P

Û

In particular they induce an adjoint equivalence of categories Ho(sLier) ∼= Ho(sHopfcomp
r ).
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Proof. By Lemma 6.7.1 the two functors are adjoint with Û left adjoint. We know
that cofibrant simplicial Lie algebras in sLier are the r-reduced almost free simpli-
cial Lie algebras. Also, all r-reduced complete Hopf algebras are fibrant. Suppose
g is a cofibrant r-reduced simplicial Lie algebra and H is an r-reduced complete
Hopf algebra. Given a weak equivalence f : Ûg→

∼
H in sHopfcomp

r , the adjoint of
f is the composition

g
η

−−−→ PÛg
P f
−−−→ PH.

This is a weak equivalence since η is (by Proposition 7.5.1) and since P preserves
weak equivalences, by definition.
Conversely, suppose g : g →

∼
PH is a weak equivalence in sLier. We must show

that the adjoint Ûg→ H is a weak equivalence in sHopfcomp
r , i.e. that the induced

map PÛg → PH is a weak equivalence in sSetQ
r . Consider the commutative

diagram

PÛg PÛPH PH

g

PÛg Pε

η ∼

g
∼

By the 2-out-of-3 property for weak equivalences in sSetQ
r we see that the adjoint

Ûg→ H is indeed a weak equivalence in sHopfcomp
r . Thus, (Q̂,G) form a Quillen

equivalence. The second claim follows from Theorem 2.6.2.



Chapter 8

Differential Graded Lie Algebras

In this chapter we introduce the functor N taking a simplicial Lie algebra to a
differential graded Lie algebra. We then put a model structure on dgLier the cate-
gory of r-reduced dg Lie algebras and show that N is part of a Quillen equivalence
between sLier and dgLier.

8.1 The normalization functor

Let sAb be the category of simplicial Abelian groups. A morphism in sAb is
a morphism of simplicial sets where each component is a group homomorphism.
Let dgAb be the category of differential graded Abelian groups where the grading
is nonnegative, i.e. objects of dgAb are sequences A = {An}n≥0 of Abelian groups,
equipped with a differential d : A→ A of degree −1 such that d2 = 0. Differential
graded Abelian groups will also be referred to their more common name: chain
complexes (over the ring Z) . We now define the functor

N : sAb −−−→ dgAb

of normalized chains. On objects we have

(NA)n =
⋂

0≤i<n

ker(di) ⊆ An

using all of the face maps di except the top face, dn. The map dn is used to construct
the differential

NAn
(−1)ndn

−−−→ NAn−1.

Note that the simplicial identity dn−1dn = dn−1dn−1 ensures that d ◦ d = 0 i.e. that
we have created a chain complex.

Remark 8.1.1. This definition makes sense even for possibly non-Abelian groups.
The result is then of course not a chain complex.

97
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Given a morphism ϕ : A → B of simplicial Abelian groups we get a morphism of
chain complexes N(ϕ) by restricting ϕn to NAn. This works since ϕn is a group
homomorphism and so commutativity of the diagram

An Bn

An−1 Bn−1

di

ϕn

di

ϕn−1

for 0 ≤ i < n ensures that ϕn restricts to a homomorphism

An ⊇
⋂

0≤i<n

ker(di) −−−→ ⋂
0≤i<n

ker(di) ⊆ Bn.

Furthermore the commutativity of the diagram for i = n ensures that N(ϕ) is a
morphism of chain complexes. Clearly N(ϕ ◦ ψ) = N(ϕ) ◦ N(ψ) and N(id) = id.
Thus N is a functor.

8.2 What is being normalized?

Why do we call N the normalized chains functor? This comes from the comparison
with two other ways of turning simplicial Abelian groups into chain complexes.
First there is the usual construction, used in simplicial homology, taking A to the
chain complex (A, ∂) with degree n equal to An and with differential

∂ =
n∑

i=0

(−1)idi.

This is called the Moore complex of A. Let DA ⊆ A be the subcomplex which is
generated by the degenerate simplices. Given x = sj(x ′) in DAn and computing
the differential

∂(x) =
n∑

i=0

(−1)idisj(x ′)

=
∑
i<j

(−1)idisj(x ′) + (−1)jdjsj(x ′) + (−1)j+1dj+1sj(x ′) +
∑

i>j+1

(−1)idisj(x ′)

= sj−1

∑
i<j

(−1)idi(x ′)

+ sj

∑
i>j+1

(−1)idi−1(x ′)


shows that ∂(x) is in DAn−1, the subgroup generated by the degeneracies in An−1.
Thus ∂ induces a map

∂ : An/DAn −−−→ An−1/DAn−1

making A/DA into a chain complex.
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Proposition 8.2.1. NA is isomorphic to A/DA as chain complexes.

Proof. The isomorphism will be the composition

NA
i

−−−→ A
p

−−−→ A/DA.

It suffices to show that this is a bijection in each level. For this we use the following
filtration

An ⊃ N0 An ⊃ N1 An ⊃ · · · ⊃ Nn−1 An = (NA)n

and the resulting diagram

An � An/D0 An � An/D1 An � · · ·� An/Dn−1 An = (A/DA)n

where Nj An =
⋂

0≤i≤j Ker(di) and Dj An is the subgroup generated by all degen-
eracies coming from si’s for i ≤ j.
We will show, by induction on j, that

Nj An −−−→ An −−−→ An/Dj An,

is an isomorphism. Call this map ϕn
j . If ϕn

j is an isomorphism for all j then taking
j = n − 1 yields the required isomorphism.
Suppose j = 0. To show surjectivity suppose [x] ∈ An/D0 An. Then [x] may be
represented by x− s0d0x. Using the simplicial identity d0s0 = id and using the fact
that d0 is a homomorphism we have d0(x − s0d0x) = 0. Thus x − s0d0x ∈ N0 An

maps via ϕn
0 to [x].

To show injectivity suppose ϕn
0(x) = 0. Thus x ∈ D0 An. At level 0 we have a

particularly simple description of D0 An. It contains elements of the form s0(y) for
y ∈ An−1 (the simplicity of this description fails for j > 0). Thus x = s0(y). Since
x ∈ N0 An we have

0 = d0x = d0s0y = y

so x = 0. Thus ϕn
0 is an isomorphism for all n.

Now suppose we have shown that ϕm
k : Nk Am −−−→ Am/Dk Am is an isomorphism

for all k < j and all m. Consider the commutative diagram

Nj−1 An An/Dj−1 An

Nj An An/Dj(An)

ϕn
j−1

∼=

ϕn
j

where the vertical arrows are the obvious maps. Suppose α ∈ An/Dj(An) then
since ϕn

j−1 is an isomorphism there is some representative x ∈ α such that x ∈



100 CHAPTER 8. DIFFERENTIAL GRADED LIE ALGEBRAS

Nj−1 An. Then x − sjdjx is in Nj An and is also a representative. Thus ϕn
j (x −

sjdjx) = α, so ϕn
j is surjective.

To show injectivity we first make some remarks. The map sj : An−1 → An takes
Nj−1 An−1 into Nj−1 An and takes Dj−1 An−1 to Dj−1 An, thus inducing a map s̃j :
An−1/Dj−1 An−1 −−−→ An/Dj−1 An. Consider the commutative diagram

Nj−1 An−1 An−1/Dj−1 An−1

Nj−1 An An/Dj−1 An

Nj An An/Dj An

ϕn−1
j−1

∼=

sj s̃j

ϕn
j−1

∼=

ϕn
j

where the bottom square is the same as in the previous commuting square. Now
the right-hand column of this diagram is short exact; the induced map s̃j is injec-
tive since sj : An−1 → An is a section of dj (and since the top square is commutative
with horizontal bijections). The rest of the exactness conditions are clear.
We can now prove injectivity by a diagram chase: if ϕn

j (x) = 0 then ϕn
j−1(x) is in

the kernel of the map An/Dj−1 An � An/Dj An hence in the image of s̃j, and so x
is of the form sjy for y ∈ Nj−1 An−1. Since djx = 0 we have

0 = djx = djsjy = y

and so x = 0. Thus ϕn
j is an isomorphism. By induction we are done.

8.3 The Normalization Theorem

We have seen that NA is isomorphic to A/DA. We can also relate NA directly to
A, thinking of A as a chain complex.

Proposition 8.3.1. The normalized chain complex NA is chain homotopic to A.

Proof. As in the proof that NA is isomorphic to A/DA we split the problem of
finding the chain homotopy into parts indexed by j = 0, . . . , n − 1.
For a fixed j ≥ 0 we define

Nj An =

{ ⋂j
i=0 Ker(di) if n ≥ j + 2

NAn if n ≤ j + 1

The differential ∂ =
∑n

i=0(−1)idi restricts to give a differential on the subgroups
Nj An. For n ≤ j + 1 this is clear. For n ≥ j + 2 one can check that ∂(x) is killed
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by any dk for k ≤ j, using the simplicial identity dkdi = di−1dk and also using the
homomorphism property of dk. Thus Nj A is a subcomplex of A.
By definition Nj+1 A ⊆ Nj A. Call the inclusion map ij. This is a map of chain
complexes. Define f j : Nj A→ Nj+1 A in the other direction,

Nj+1 A Nj Aij

f j

by

f j(x) =
{

x − sj+1dj+1 if n ≥ j + 2
x if n ≤ j + 1

.

Note that f j ◦ ij = idNj+1 A.
We thus have maps f = fn−2 · · · f0 : An −−−→ NAn and i = i0 · · · in−1 : NAn −−−→ An

for each n. These maps satisfy f ◦ i = idNAn .
It remains to show that i ◦ f ' idA. Let tj : Nj An → Nj An + 1 be defined by

tj(x) =
{

(−1)jsj+1 if n ≥ j + 1
0 if n ≤ j

.

Then tj defines a chain homotopy between idNj A and ij ◦ f j. Now we paste the
maps tj together. Fix n and define Tn : An → An+1 to be

Tn = i0 · · · in−2tn−1 fn−2 · · · f0 + i0 · · · in−3tn−2 fn−3 · · · f0 + i0t1 f0 + t0

To help parse Tn it may be helpful to keep this diagram in mind :

An+1

An N1 An+1

N1 An N2 An+1

...
...

Nn−2 An Nn−1 An+1

NAn NAn+1

t0

f0

i0

t1

f1

i1

tn−2

fn−2

in−2

tn−1 in−1

Then one can show that (Tn)n≥0 defines a chain homotopy between f ◦ i and idA.
This completes the proof.
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Proposition 8.3.1 in particular implies that to compute the homology of a given
chain complex it suffices to compute the homology of the much small normalized
complex!

8.4 The Dold-Kan Correspondence

It would seem that we have thrown away a lot of information when passing to
the normalized chains. Indeed we have “forgotten” all simplices that are killed by
lower face maps. However, we now show that any simplicial Abelian group can
be reconstructed from its normalized chains.
Given a simplicial Abelian group A, consider the simplicial Abelian group N−1 A
defined as follows:

N−1 An =
⊕
n�k

NAk

where the (finite) sum is taken over all surjections n � k in ∆. Given a map
θ : m → n in ∆ we define θ∗ = N−1 A(θ) as follows; on summand (Ak, σ : n � k)
first form the epi-mono factorization of σ ◦ θ

m n k

m ′

θ

s

σ

d

and then define θ∗ as the composition

NAk
d∗
−−−→ NAm ′

ins
−−−→ N−1 Am.

The Dold-Kan theorem says that N is in fact an equivalence of categories. The
inverse may be explicitly described as follows. Let N−1 : dgAb → sAb be the
following functor. For A a dg Abelian group we let

N−1 An =
⊕
n�k

Ak

The i’th face di : N−1 An → N−1 An−1 is given as follows: on the component corre-
sponding to σ : n � m first make the epi-mono factorization of σdi say σdi = ds.
Let ιs be the inclusion of the component corresponding to s. Now one the compo-
nent corresponding to σ we let di(x) = ιs(x) if d = id. If d = dj for some j < m
then set di = 0. Finally, if d = dm then we set di(x) = (−1)mιs∂(x). The i’th
degeneracy si : N−1 An → N−1 An+1 is defined on component corresponding to σ

by
si(x) = ισsi(x).



8.5. DIFFERENTIAL GRADED LIE ALGEBRAS 103

Given a map f : A → B of dg Abelian groups the map N−1 ϕ : N−1 A → N−1B
is defined at degree n, on the summand Ak corresponding to σ : n � k, by the
composite

Ak

fk
−−−→ Bk

ισ
−−−→ ⊕

n�k

Bk

where ισ denotes the summand inclusion. The following proposition is now a
matter of checking the simplicial identities hold. We will not write out the details.

Lemma 8.4.1. The definitions just given define a functor N−1 : dgAb→ sAb.

Theorem 8.4.1. (Dold-Kan) The functors N and N−1 form an equivalence of categories
between sAb and dgAb.

See [GJ99, chap. 2, Corollary 2.3] or [May67, chap. 22, Theorem 22.4] for proofs.
One can show in fact show that N−1 is left adjoint to N.

8.5 Differential graded Lie algebras

We shall work over k = Q the field of rationals.

Definition 8.5.1. A graded Lie algebra is a graded vector space L = {Lp}p≥0

equipped with a linear map [, ] : L⊗ L → L of degree 0 (called the Lie bracket)
which satisfies graded antisymmetry, i.e.

[x, y] = −(−1)pq[y, x]

for homogeneous elements x, y ∈ L of degree p and q respectively. We also require
a graded Jacobi identity

(−1)pr[x, [y, z]] + (−1)qp[y, [z, x]] + (−1)rq[z, [x, y]] = 0

for homogeneous elements x, y, z ∈ L of degree p, q, r respectively.

Definition 8.5.2. A morphism f : L → L ′ of graded Lie algebras is a linear map
of degree 0 which preserves the bracket, i.e. f [x, y] = [ f x, f y].

Example 8.5.1. If X is a simply connected topological space then the graded Q-
vector space π∗(ΩX)⊗Q equipped with the bracket operation

[α, β] = (−1)deg(α)+1∂∗([∂
−1
∗ α, ∂−1

∗ β]W)

(where ∂∗ : π∗X
∼=→ π∗−1(ΩX) is the connecting homomorphism (induced by the

fibration ΩX → PX → X) and [, ]W is the Whitehead product) is a graded Lie
algebra, called the rational homotopy Lie algebra of X. See [FHT01, chap 21(d)]
for a proof.
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Example 8.5.2. Given a graded algebra A and a graded Lie algebra L the tensor
product (as graded vector spaces) A⊗ L may be given the structure of a graded
Lie algebra with the bracket operation given by

[a⊗ x, a ′ ⊗ x ′] = (−1)deg(a)deg(x)aa ′ ⊗ [x, x ′]

for homogeneous elements a, a ′ ∈ A and homogenous elements x, x ′ ∈ L.

Let (L, [ ]) be a graded Lie algebra. A derivation of L of degree p ∈ Z is a linear
map θ ∈ Hom(L, L) such that

θ[x, y] = [θx, y] + (−1)p|x|[x, θy]

for all homogeneous elements x, y ∈ L. The set of derivations of degree p is
closed under addition and thus forms a vector space denoted Derp(L). Then
Der(L) = {Derp}p∈Z is the graded space of all derivations on L. A differential ∂

on L is a derivation of degree −1 such that ∂ ◦ ∂ = 0.

Definition 8.5.3. A differential graded Lie algebra is a triple (L, [ , ], ∂) where
(L, [ , ]) is a graded Lie algebra and ∂ is a differential.

Definition 8.5.4. A morphism f : (L, ∂) → (L ′, ∂ ′) of differential graded Lie alge-
bras is a morphism of differential graded vector spaces which is also a morphism
of graded Lie algebras.

The category of differential graded Lie algebras and morphisms between them is
denoted dgLie.
The next proposition is, while not difficult, important for rational homotopy the-
ory. The proposition shows that homology defines a functor dgLie→ gLie i.e. takes
values in graded Lie algebras. Quillen’s original question (or at least one version
of it) concerned how to lift the construction of the rational homotopy Lie algebra
(cf. Example 8.5.1) along the homology functor.

Proposition 8.5.1. If L is a dg Lie algebra then the homology H(L) is a graded Lie algebra
with the Lie bracket defined on representatives.

Proof. The homology H(L) is certainly a graded vector space. If a ∈ Zp(L) and
b ∈ Zq(L) are cycles then [a, b] ∈ Lp+q is also a cycle since ∂ is a derivation. Also
the bracket respects the boundary relation, i.e. if ∂ã ∈ Bp(L) is a boundary then
for any x ∈ Zq(L) the derivation property shows that

[∂a, x] = ∂[ã, x]− (−1)(p+1)q[ã, ∂x] = ∂[ã, x]

So [, ] : L⊗ L → L induces a well-defined linear map [, ] : H(L)⊗ H(L) → H(L).
The Jacobi identity and antisymmetry are then directly verified.

See Section 7.1 for the corresponding non-graded definitions of simplicial Lie al-
gebras.
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8.6 The Eilenberg-Mac Lane map

Given simplicial Abelian groups K and L define their product K ⊗ L to be the
simplicial Abelian group (K × L)n = Kn ⊗Z Ln, the dimension-wise tensor prod-
uct. In general, given simplicial k-modules V and W we let V ⊗W denote the
dimension-wise tensor product, (V ⊗W)n = Vn ⊗Wn.
For clarity let M : sAb → dgAb be the Moore complex construction, i.e. M(A) is
the chain complex with differential ∂ =

∑
i(−1)idi.

Definition 8.6.1. Let p and q be nonnegative integers. A (p, q)-shuffel is a permu-
tation (µ1, · · · , µp, ν1, · · · , νq) of {0, 1, · · · , p + q + 1} such that µ1 < µ2 < · · · < µp

and ν1 < ν2 < · · · < νq.

Following May ([May67, chap 29, Definition 29.7]) we shall refer to the Eilenberg-
Mac Lane map EM : M(V)⊗M(W) −−−→ M(V⊗W), the map of chain complexes
defined for x ∈ Vq and y ∈Wp as

EM(x⊗ y) =
∑
(µ,ν)

(−1)ε(µ)sνq · · · sν1(x)⊗ sµp · · · sµ1(y)

where the sum ranges over all (p, q)-shuffles (µ, ν) and where ε(µ) :=
∑p

i=1 µi −

(i − 1).

Remark 8.6.1. The Alexander-Whitney map AW : M(V ⊗W) −−−→ M(A) ⊗ M(W)

going in the other direction is in fact a homotopy-inverse to EM (see [May67,
chap. 29, Corollary 29.10]).

We will need the following properties of the Eilenberg-Mac Lane map.

Proposition 8.6.1. The Eilenberg-Mac Lane map satisfies the following properties. Here
x has degree p and y has degree q.

(i) EM(x, EM(y, z)) = EM(EM(x, y), z) (Associativity)
(i) d(EM(x, y)) = EM(dx, y) + (−1)pEM(x, dy)
(i) τEM(x, y) = (−1)pqEM(y, x) where τ is the twist map τ(x⊗ y) = y⊗ x.
(i) If x ∈ NVp and y ∈ NWq then EM(x, y) ∈ N(V ⊗W)p+q and the chain map

(NV)⊗ (NW)
N(EM)

−−−→ N(V ⊗W) x⊗ y 7→ EM(x, y).

is a chain homotopy equivalence.

For proofs of these claims we refer to [EML53, chap. 5].
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8.7 Reshuffling a simplicial Lie algebra

Viewing Abelian groups as Z-modules suggests generalizing the functor N to
other ground rings. Working over a field k, N becomes a functor

N : sVect −−−→ dgVect

between the category of simplicial vector spaces and differential graded vector
spaces.
Now suppose g is a simplicial Lie algebra. Forgetting the Lie structure form the
Moore complex M(g) giving a chain complex of k-vector spaces. As before N(g) is
a subcomplex (recall the differential in N(g) is given a sign (−1)n) of M(g). Now
the composition

M(g)⊗M(g)
EM
−−−→ M(g⊗ g)

β

−−−→ M(g)

defines a binary operation, denoted [[ , ]], on M(g). By the normalization property
of Proposition 8.6.1 [[ , ]] restricts to a binary operation (also denoted [[ , ]])
on N(g). Furthermore, by the rest of Proposition 8.6.1 we have the following
proposition.

Proposition 8.7.1. N(g) with [[ , ]] is a differential graded Lie algebra.

So the normalized chains functor may be viewed as a functor N : sLie → dgLie
between simplicial Lie algebras and dg Lie algebras.

8.8 The left adjoint N∗

We have seen that N : sVect→ dgVect is an equivalence of categories with inverse
given by N−1 : dgVect → sVect. We have also seen that N restricts to a functor
on the subcategory of simplicial Lie algebras. We now show that the restricted
functor N admits a left adjoint.
First we note that the forgetful functor U : Lie → Vect admits a left adjoint
L : Vect → Lie called the free Lie algebra functor. Given a vector space V the
universal property of LV is the following: there is a natural bijection between Lie
algebra morphisms LV → g and vector space morphisms V → U(g). One way of
constructing L(V) is by taking the Lie sub-algebra generated by V inside the free
tensor algebra T(V) on V (cf. the non-graded construction in Section 7.3).
Given a dg Lie algebra m we can forget the Lie bracket and view m as a dg vector
space. Applying N−1 yields a simplicial vector space N−1m. Then as dg vector
spaces there is a natural isomorphism m ∼= NN−1m coming from the Dold-Kan
correspondence. Viewing N−1m as a dg vector space (via the Moore complex
construction) we have

m ∼= NN−1m ⊆ N−1m.
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This gives a function fN−1 : m→ N−1m.

Proposition 8.8.1. The functor N : sLie→ dgLie has a left adjoint N∗ : dgLie→ sLie.

Proof. Let m be a dg Lie algebra. Forget the Lie structure and apply N−1 to get a
simplicial vector space N−1m. Apply the free Lie algebra functor in each dimen-
sion, giving a simplicial Lie algebra LN−1m. Given a simplicial Lie algebra g and
a map ϕ : m→ Ng apply N−1 to get

N−1m
N−1(ϕ)

−−−→ N−1Ng ∼= g

where the isomorphism is an isomorphism of simplicial vector spaces, coming
from the Dold-Kan correspondence. The composite map extends uniquely to a
map of simplicial Lie algebras θ : LN−1m −−−→ g. This map θ thus satisfies that
θ( fN−1(x)) = ϕ(x) for x ∈ m. We now force the extension θ to exist only when ϕ

was in fact a Lie homomorphism. Define

N∗m = LN−1m/I

where I is the simplicial ideal of LN−1m generated by [[ fN−1(x), fN−1(y)]]− fN−1 [x, y]
for x, y homogeneous elements of m. The first bracket is the one given by the shuf-
fle construction on N−1m and the second bracket is from m. Now in order for the
map

θ : LN−1m −−−→ g

to induce a map on N∗, the ideal I must be contained in the kernel of the map.
Thus we require

θ( fN−1 [x, y]) = θ([[ fN−1 x, fN−1 y]]).

Using the relation θ( fN−1(x)) = ϕ(x) for x ∈ m and that θ is a Lie homomorphism
this equality is equivalent to the equality

ϕ[x, y] = [[ϕx, ϕy]].

Thus there is an induced map of simplicial Lie algebras θ : N∗m→ g if and only if
ϕ : m→ Ng is a dg Lie algebra homomorphism.
The bijection HomdgLie(m, Ng) ∼= HomsLie(N∗m, g) thus constructed is clearly nat-
ural and so the proof is complete.

8.9 Preservations of Freeness

We shall now show that the left adjoint N∗ constructed above carries free dg Lie
algebras (defined below) to almost free simplicial Lie algebras. For the definition
of almost free see Appendix A.4.
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Definition 8.9.1. A dg Lie algebra (L, d) is called free if the underlying graded Lie
algebra L is isomorphic to a free graded Lie algebra LgV for some graded vector
space V.

Warning! 1. Note that we only say (L, d) is free if L is freely generated in the
category of graded Lie algebras. Specifically (LgV, d) need not be freely generated
in the category of differential graded Lie algebras.

If V is a graded vector space then we shall denote by V≤k the k-truncated graded
vector space with

(V≤k)j =

{
0 if j > k
Vj if j ≤ k

.

Lemma 8.9.1. The graded Lie subalgebra E of LgV generated by Vi for i ≤ k is isomorphic
to LgV≤k, the free graded Lie algebra on the k-truncation of V.

Proof. We check the universal property. Let ϕ : V≤k → L be a linear map of graded
vector spaces with L a graded Lie algebra. Extend ϕ to a linear map ϕ̂ : V → L
by setting ϕ̂ = 0 on degrees higher than k. This then extends to a map of graded
Lie algebras ̂̂ϕ : LgV → L which restricts to the required map of graded Lie
algebras ϕ̃ : E → L extending ϕ. This extension is unique since E is generated,
as a graded Lie algebra, by V≤k and the action of ϕ̃ is determined (equal to ϕ) on
this generating set.

Lemma 8.9.2. The two functors N∗Lg and LN−1 are isomorphic.

Proof. This will follow from the uniqueness of left adjoints. The situation is de-
picted in the following diagram of adjoints.

dgVect sVect

dgLie sLie

Lg

N−1

N

Lf orget

N∗

f orget

N

The functors N ◦ f orget and f orget ◦ N from sLie to dgVect are equal. To see this
note that all Lie brackets are forgotten so it remains to check that the differential
is the same, but in both cases we use the differential given from the normalized
chains construction. Now N∗Lg and LN−1 are left adjoints to N ◦ f orget = f orget ◦
N, thus N∗Lg ∼= LN−1
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Recall the chain complex models of the sphere and disk: The chain complex S(k −
1) has single generator yk−1 in degree k − 1, with d(yk−1) = 0. The chain complex
D(k) has a generator xk of degree k and a generator yk−1 of degree k − 1 and has
dxk = yk−1 (thus dyk−1 = 0). In the following the map S(k − 1) ↪→ D(k) denotes
the inclusion, which is a chain map.
Recall also (a possible version of) the simplicial set models of the sphere and disk:
The “simplicial k-sphere” A is given by the quotient

A = ∆k−1/∂∆k−1.

The “simplicial k-disk” B is given by the quotient

B = ∆k/Λk
0

where Λk
0 ⊆ ∆k is 0’th k-horn, generated by all faces dj(ιk) except the 0’th face

d0(ιk). The inclusion ∆k−1 ↪→ ∆k into the last face (the one which is missing in the
0’th horn) induces a map A→ B, which corresponds to the inclusion of the sphere
as the boundary of the disk.
Let Q : sSet∗ → sVect be the functor from pointed simplicial sets to simplicial
vector spaces which generates the free Q-space on the given simplicial set, with
the zero vector identified with the base-point.

Lemma 8.9.3. The maps N−1S(k − 1) → N−1D(k − 1) and QA → QB in sVect are
isomorphic.

Proof. The map f : N−1S(k− 1)→ QA is defined as follows. For degrees n < k− 1
both vector spaces are trivial. In degree k − 1 there is a unique summand of
N−1S(k − 1) corresponding to idk : k � k, namely Qyk−1. Likewise Ak−1 is a
two-point set with base-point the class [∂∆k−1

k−1] and the other element given by
idk−1 : k − 1→ k − 1. Thus (QA)k−1 = Q{idk−1}, so fk−1 is defined on basis vectors

by yk−1 7→ idk−1. For higher degree’s n > k − 1 the maps N−1S(k − 1)n
fn

−−−→ QAn

are determined by the unique representation of surjections in ∆; given a surjection
σ : n � m with m < n there exists unique factorization

σ = sj1 sj2 · · · sjn−m

where 0 ≤ jn−m < · · · < j1 ≤ m. The elements of An for n > k − 1 are precisely
the degeneracies of the map idk−1 together with the base-point [∂∆k−1

n ] (which is
the set of all the degeneracies of elements of ∆k−1

l for l < k − 1). So

fn : N−1S(k − 1)n → (QA)n

is determined by mapping a basis element yk−1 corresponding to sj1 sj2 · · · sjn−m :
n � m to the basis element sj1 sj2 · · · sjn−m ∈ An. The resulting map f = ( fn) :
N−1S(k − 1)→ QA is a simplicial map, which clearly is an isomorphism.
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The simplicial vector space isomorphism g : N−1D(k)→ QB is defined similarly.
From the definitions of f and g it may be checked that the diagram

N−1S(k − 1) N−1D(k)

QA QB

f ∼= g∼=

is commutative, thus an isomorphism in the arrow category.

We can now state and prove the preservation property of the left adjoint functor
N∗ constructed earlier.

Proposition 8.9.1. The functor N∗ : dgLie → sLie takes free dg Lie algebras to almost
free simplicial Lie algebras.

Proof. Let m be a free dg Lie algebra, say m = (LgV, d), where V is a graded
vector space. Define m(k) to be the differential graded Lie sub-algebra generated
by Vi for i ≤ k. As a graded Lie algebra m(k) is just the graded Lie sub-algebra
generated by Vi (for i ≤ k) since the differential preserves the subset

⋃
i≤k Vi. So

m(k) = (LgV≤k, d) by the Lemma 8.9.1.
Now pick a basis {ej : j ∈ J} for Vk. We claim that the following diagram in dgLie
is a pushout diagram,

∐
J LgS(k − 1)

∐
J LgD(k)

m(k−1) m(k)

a b

where a restricted to the j’th component is determined by a(yk−1) = d(ej) and
where b restricted to the j’th component is determined by b(xk) = ej (thus b(yk−1) =

dej). The coproducts in the top row are taken in the category dgLie.
To prove that the diagram is a pushout suppose given a dg Lie algebra L and dg
Lie homomorphisms f and g such that the diagram

∐
J LgS(k − 1)

∐
J LgD(k)

m(k−1) m(k)

L

a b
f

g

h
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(without h) commutes. We show that there exists a unique dg Lie homomorphism
h making the diagram commute. Forgetting the differentials we may consider the
diagram in gLie. It then looks as follows∐

J LgS(k − 1)
∐

J LgD(k)

LgV≤k−1 LgV≤k

L

a b
f

g

h

Now we define h by defining it on V≤k. Elements v ∈ V≤k of degree < k are
mapped to L via g. The basis vector ej ∈ Vk is mapped to f (xj). This determines
a unique lift h : LgV≤k −−−→ L. By construction it makes the complete diagram
commute. Furthermore since m(k) is generated, as a graded Lie algebra, by Vi,
i ≤ k and since h respects the differential of this generating set (by construction,
since f and g are dg Lie homomorphisms) h is actually a dg Lie homomorphism.
Thus the original diagram is indeed a pushout in dgLie. Thinking in terms of
cell complexes we have shown that m(k) is obtained from m(k−1) by attaching the
“cells” ej for j ∈ J.
Now apply the left adjoint functor N∗ to the pushout diagram. Since N∗ is left
adjoint it preserves all colimits, and so we get the following pushout diagram in
sLie: ∐

J N∗LgS(k − 1)
∐

J N∗LgD(k)

N∗m(k−1) N∗m(k)

a b

where we can no longer assume the horizontal arrows are monic. Our aim is now
to show that the maps N∗LgS(k − 1) → N∗LgD(k) are almost free maps. Since
almost free maps are closed under pushouts and sequential compositions this will
show that 0→ colimkN∗m(k) is almost free. Finally since N∗ is left adjoint we have
colimkN∗m(k) ∼= N∗colimkm(k) = N∗m. So we will have shown that 0 → N∗m is
almost free, as claimed.
By Lemma 8.9.2 N∗Lg is isomorphic to LN−1 so it suffices to show that

LN−1S(k − 1) −−−→ LN−1D(k)

is almost free. By Lemma 8.9.3 lemma the map N−1S(k − 1) → N−1D(k) is iso-
morphic to the map QA→ QB, so it suffices to show that

LQA
f

−−−→ LQB
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is almost free. Let Xq ⊆ LQBq be the subset of Bq consisting of those elements not
in the image of the injection Aq → Bq. Then evidently LQAqqLQXq ∼= LQBq and
this isomorphism may be chosen such that it acts as f on the LQAq-component.
Finally given a codegeneracy sj : q + 1 → q in ∆ the map sj : LQBq → LQBq+1

maps Xq into Xq−1 since this is true already at the level of Bq → Bq+1. Thus
f : LQA→ LQB is almost free and the proof is complete.

In [Qui69] Quillen uses Proposition 8.9.1 to prove that the unit of the adjunction
N∗ a N is a weak equivalence when the component is a free dg Lie algebra.
Specifically he proves the following result.

Theorem 8.9.1. Let m be a free reduced dg Lie algebra, then the unit map η : m→ NN∗m
is a quasi-isomorphism, i.e. induces an isomorphism on homology.

See [Qui69, Part I, Theorem 4.6] for a proof.

8.10 Model Structure on reduced dg Lie algebras

In this section we put a model structure on the category of reduced dg Lie algebras
such that the weak equivalences are maps inducing isomorphism on homology,
commonly called quasi-isomorphisms. Recall that in this thesis differential graded
objects are always assumed to be non-negatively graded. See Definition 8.5.3 for
the definition and basic properties of differential graded Lie algebras.

Definition 8.10.1. A dg Lie algebra L is said to be r-reduced if Li = 0 for i ≤ r.
We let dgLier denote the full subcategory of dgLie consisting of r-reduced dg Lie
algebras.

(i) A map f in dgLier is called a weak equivalence if it induces isomorphisms on
homology.

(ii) A map f in dgLier is called a fibration if it is surjective in degrees > r + 1.
(iii) A map f in dgLier is called a cofibration if it has the LLP with respect to all

acyclic fibrations.

Lemma 8.10.1. The category dgLier is complete and cocomplete.

Theorem 8.10.1. The category dgLier with the proposed model structure of Defini-
tion 8.10.1 is a model category.

In order to prove this theorem it is helpful to set up a couple of tools. Let Lg :
gVect → gLie be the free graded Lie algebra functor, left adjoint to the forgetful
functor. Its construction is very similar to the construction of the free Lie algebra
in Section 7.3. See [FHT01, chap. 21(c)] for the construction.
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Definition 8.10.2. Let S(q) be the differential graded vector space (over Q) which
has one generator σq in degree q and is 0 everywhere else. Note that the differential
is zero. This is the analogue of the q-sphere in dgVect. Taking the free dg Lie
algebra LgS(q) yields the analogue of the q-sphere in dgLie. Similarly let D(q) be
the dg vector space which has one generator τq in degree q and one generator σq−1

in degree q − 1. The differential is determined by the requirement d(τq) = σq−1.
Again, taking the free dg Lie algebra LgD(q) yields the analogue of the q-disc in
dgLie. When there is no risk of confusion we drop the subscripts on σq−1 and τq.

Lemma 8.10.2. Let q > r + 1 and consider the map of dg Lie algebras i : LgS(q − 1) →
LgD(q) induced by the inclusion S(q − 1)→ D(q). This map is a cofibration in dgLier.

Proof. We must show that i has the LLP with respect to all acyclic fibrations. It
suffices to solve the lifting problem at the level of dg vector spaces since Lg is a
left adjoint to the forgetful functor. Consider a lifting problem in dgVect:

S(q − 1) X

D(q) Y

α

i p∼

β

γ

where p is an acyclic fibration in dgLier. The solution is a diagram chase, but since
the result is key to proving the model category axioms we include it. There are
only two non-trivial levels which we must complete in order to get the dg map γ,
namely levels q and q − 1. Suppressing some of the indices the diagrams look as
follows

Qσ Xq−1

Qσ Yq−1

α

id p

β

γq−1 (degree q−1),

0 Xq

Qτ Yq

α

p

β

γq (degree q).

By the commutativity of the left-hand square we must have

γq−1(σ) = α(σ).

which indeed does make the filled left-hand square commute, i.e. p(α(σ)) = β(σ).
Since

dβ(τ) = β(dτ) = β(σ) = p(α(σ))

we see that p(α(σ)) is a boundary. Since p induces an isomorphism on homology
and since α(σ) is a cycle, this implies that α(σ) is a boundary, say α(σ) = ∂x.
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Then β(τ)− p(x) is a cycle (since ∂p(x) = p(α(σ)) = β(σ)). Since p induces an
isomorphism on homology we can find x ′ ∈ Zq(X), a q-cycle in X, corresponding
to β(τ)− p(x). Then there is some ỹ ∈ Yq+1 such that

β(τ)− p(x) = p(x ′) + ∂ỹ.

Since p is surjective in degree q + 1 there is some x̃ ∈ Xq+1 such that p(x̃) = ỹ.
One can now check that setting γ(τ) = x + x ′ + ∂x̃ completes the proof.

Lemma 8.10.3. The map 0→ LgS(r + 1) is a cofibration in dgLier.

Proof. As before, since Lg is left adjoint to the forgetful functor to dg vector spaces,
it suffices to solve the following lifting problem

0 X

S(r + 1) Y

α

p∼

β

γ

In degree r + 1 the problem looks as follows.

0 Xr+1

Qσ Yr+1

α

p

β

γr+1

Now since Yr = 0, β(σ) ∈ Yr+1 is a cycle. Since p induces an isomorphism
on homology, there is some x ∈ Zr+1(X) such that β(σ) = p(x) + dỹ for some
ỹ ∈ Yr+2. By assumption, p is surjective in degree r + 2 so there is some x̃ ∈ Xr+2

with p(x̃) = ỹ. One can check that σ 7→ dx̃ + x defines the required map γ.

Lemma 8.10.4. For q > r + 1 the map 0 → LgD(q) has the LLP with respect to all
fibrations.

Proof. The proof is similar to Lemma 8.10.3 but easier. If p : X � Y is a fibration
in a given lifting problem then one uses that pq is surjective to find the relevant
element of Xq. The details are left to the reader.

Definition 8.10.3. Suppose f : g → h is a map of dg Lie algebras. We call f
almost free if h is isomorphic to a coproduct (in dgLie) of g with an almost free
dg Lie algebra Lg(V) (i.e. a dg Lie algebra whose underlying graded Lie algebra
is free) in such a way that f is isomorphic to the inclusion g ↪→ gq Lg(V). (cf.
Appendix A.4for the corresponding notion between simplicial objects). We define
the n-skeleton h(n) of f to be the graded sub Lie algebra of h generated by the
image f (g) and all elements from V of degree ≤ n.
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Definition 8.10.4. A dg Lie algebra g is called almost free if the map 0 → g is an
almost free map. Thus g is almost free if g is isomorphic (as a graded Lie algebra)
to Lg(V) for some dg vector space V.

Lemma 8.10.5. Let f : g → h be an almost free map of dg Lie algebras (cf. Defini-
tion 8.10.3). The n-skeleton of f is obtained from the n − 1-skeleton of f by attaching
n-cells. More precisely, for each n ≥ 0 there is a pushout square

qα LgS(n − 1) h(n−1)

qα LgD(n) h(n)

.

We will not prove this lemma here, but the strategy one uses is a modification of
the proof we gave of Proposition 8.9.1.
Since cofibrations in dgLier are defined by their lifting property it follows from
Lemma 8.10.5 along with Lemma 8.10.2 and Lemma 8.10.3 that almost free maps
are cofibrations.

Lemma 8.10.6. Any map f in dgLier may be factored into f = pi where i is an almost
free map and p is an acyclic fibration.

Corollary 8.10.1. Any map f in dgLier may be factored into f = pi where i is a cofibra-
tion and p is an acyclic fibration.

Proof. This is an immediate corollary of Lemma 8.10.6 and the comments preced-
ing it.

Proposition 8.10.1. A map f in dgLier is a cofibration if and only if it is a retract of an
almost free map.

Proof. Suppose f is a cofibration. Lemma 8.10.6 provides a factorization f = pi
where i is an almost free map and p is an acyclic fibration. Thus f has the LLP
with respect to p and so is a retract of i by the retract argument (Lemma 2.3.1)
The converse is clear since almost free maps are cofibrations.

Lemma 8.10.7. Any map f : g → h in dgLier may be factored as f = pi where i is an
acyclic cofibration and p is a fibration.

Proof. An element x ∈ hq with q > r + 1 corresponds to a morphism LgD(q)→ h.
Thus letting V be a direct sum of D(q), one copy for each element x ∈ hq (for all
q > r + 1), we get a dg Lie map

p : gqLg(V) −−−→ h

which is surjective in degrees > r + 1, i.e. p is a fibration. The inclusion map
i : g ↪→ g q Lg(V) is almost free, hence by Proposition 8.10.1 it is a cofibration.
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We must show that i is a weak equivalence, i.e. induces an isomorphism on ho-
mology. This follows from the observation that H(D(q)) = 0 and since homology
commutes with the free functor (as can be shown using the Künneth isomorphism,
see [Qui69, Part I, Proposition 4.5]). Together these facts imply

H(gqLg(V)) ∼= H(g)q H(Lg(V)) ∼= H(g)qLgH(V) ∼= H(g)

since V is a direct sum of D(q)’s for various q. This completes the proof.

To finish the proof of the model category axioms for dgLier we must verify the
final lifting axiom.

Lemma 8.10.8. Any acyclic cofibration f in dgLier has the LLP with respect to fibrations.

Proof. From the proof of Lemma 8.10.7 we can factor f as f = pi where p is a
fibration and i is an almost free map. By the 2-out-of-3 property, p is an acyclic
fibration, thus f has the LLP with respect to p, and so is a retract of i. Now i is a
pushout

0 g

Lg(V) gqLg(V)

in0 .

and 0 → Lg(V) is itself a coproduct of maps 0 → LgD(q) for various q > r + 1.
Lemma 8.10.4 shows that 0 → D(q) has the LLP with respect to fibrations. Thus
so does 0→ Lg(V), and further so does i : g→ gqLg(V). Since f is a retract of i,
f too has the LLP with respect to fibrations.

This completes the proof of Theorem 8.10.1.

Remark 8.10.1. We did not use the Lie bracket in the above proof [check this!].
It therefore seems that the same structure would work for any pointed complete
and cocomplete category C equipped with a “forgetful” functor U : C → dgVect
having a left adjoint L : dgVect→ C.

Using Proposition 2.4.5 we can draw the following conclusion about the associated
homotopy category.

Theorem 8.10.2. The homotopy category Ho(dgLier) is equivalent to the category of
almost free dg Lie algebras with morphisms given by homotopy equivalence classes of dg
Lie algebra morphisms.

8.11 Connection with sLier.

In this section we will prove that the adjoint functors N∗ a N form a Quillen equiv-
alence. As a result they induce an equivalence of categories between Ho(sLier)

and Ho(dgLier).
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Proposition 8.11.1. The pair (N∗, N) of adjoint functors form a Quillen equivalence.

sLier dgLier

N

N∗

when r ≥ 0. In particular they induce an adjoint equivalence of categories Ho(sLier) ∼=
Ho(dgLier).

Proof. By Proposition 8.8.1 the two functors are adjoint with N∗ left adjoint. By
Theorem 8.10.2 we know that the cofibrant dg Lie algebras in sLier are the r-
reduced free simplicial Lie algebras. All r-reduced simplicial Lie algebras are
clearly fibrant. Suppose L is a cofibrant r-reduced dg Lie algebra and g is an r-
reduced simplicial Lie algebra. Given a weak equivalence f : N∗L →

∼
g in sLier,

the adjoint of f is the composition

L
η

−−−→ NN∗L
N f
−−−→ Ng.

The map η is a weak equivalence since r ≥ 0 and L is free so we can apply
Theorem 8.9.1). The map N( f ) is a weak equivalence since the homology of this
map computes the induced map on homotopy by f , i.e. using Moore’s formula for
the homotopy groups of simplicial groups.
Conversely, suppose g : L→

∼
Ng is a weak equivalence in dgLier, where L is a free

dg Lie algebra. We must show that the adjoint N∗L → g is a weak equivalence
in sLier. Again, this reduces to showing that the map NN∗L → Ng is a quasi-
isomorphism since H ◦ N( f ) = π( f ). Consider the commutative diagram

NN∗L NN∗Ng Ng

L

NN∗g Nε

η ∼

g
∼

By the 2-out-of-3 property for weak equivalences in sSetQ
r we see that the adjoint

N∗L → g is indeed a weak equivalence in sLier. Thus, (N∗, N) form a Quillen
equivalence. The second claim follows from Theorem 2.6.2.
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Appendix

A.1 Minimal fibrations

Here we define minimal Kan complexes and minimal fibrationa. We follow [GJ99,
chap. 1, sec. 10] and [May67, chap. 10].

Minimal fibrations and minimal Kan complexes are “rigidifications” or “stricti-
fications” of the usual concepts, fibration and Kan complex, respectively. In Sec-
tion 3.2 we uses the theory of minimal fibrations to prove the model category
axioms for sSetQ

r .

Minimal Kan complexes

Recall that two n-simplicies x, y ∈ Kn of a simplicial complex K are said to be
homotopic, denoted x ' y, if dix = diy for all 0 ≤ i ≤ n and there is some (n + 1)-
simplex z ∈ Kn+1 such that dnz = x, dn+1z = y and diz = sn−1dix = sn−1diy for
0 ≤ i < n. When K is a Kan complex this relation is an equivalence relation.

Definition A.1.1. A Kan complex K is said to be minimal if whenever two simpli-
cies of K are homotopic they are in fact equal.

The following is a very concrete characterization of minimality.

Lemma A.1.1. Let K be a Kan complex. Then K is minimal if and only if for all n-
simplices x and y, if dix = diy for all i 6= k then dkx = dky.

Proof. “⇒” Suppose K is minimal and suppose dix = diy for all i 6= k for x, y ∈
Kn+1. By minimality it suffices to show that dkx ' dky. There are two cases. If
k ≤ q then the family snd0x, · · · , ŝndkx, · · · , sndnx, x, y in Kn+1 is compatible and
so the Kan extension condition yields a z ∈ Kn+2. Now one can show that dkz is a
homotopy from dkx to dky.

119
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If k = n + 1, one instead uses the family sn−1dix (0 ≤ i < n) and x, y in Kn+1 which
is compatible yielding z ∈ Kn+2 such that dn+2 is a homotopy between dn+1x and
dn+1y.
“⇐” Suppose K satisfies the second condition. Suppose x ' y for some x, y ∈ Kn.
Then there is some z ∈ Kn+1 such that dn+1z = y, dnz = x and diz = sn−1dix =

sn−1diy for i < n. Now for i < n we have diz = sn−1dix = disnx. Also dnz = dnsnx.
Thus by the second condition applied to z and snx it follows that dn+1z = dn+1snx
i.e. y = x.

Minimal Fibrations

Definition A.1.2. Let p : E → B be a simplicial map. If x, y ∈ En we say that x is
p-homotopic to y, written x 'p y, if x ' y and there is some z ∈ En+1 such that
z : x ' y and p(z) = sn p(x).

If p is a Kan fibration then 'p is an equivalence relation.

Definition A.1.3. A Kan fibration p : E→ B is said to be minimal if x 'p y implies
x = y for x, y ∈ E.

The following proposition says that, up to homotopy, we can always assume that
a given Kan fibration is minimal.

Proposition A.1.1. ([GJ99, chap. 1, Proposition 10.3]) Let p : E→ B be a Kan fibration.
Then there is a minimal Kan fibration p ′ : E ′ → B which is a strong fibre-wise deformation
retract of p.

A.2 Topological spaces

Here we briefly introduce the category of spaces. Although it plays only a minor
role in the thesis, the assumption that we are working in a “convenient category
of spaces” is necessary. The category of k-spaces contains a lot of spaces, but is
“small enough” to allow for very nice categorial properties. This prioritization of
categorial properties over well-behaved objects reflects the general philosophy of
many parts of this thesis.

k-Spaces

Definition A.2.1. Suppose X is a topological space. A subset U ⊆ X is called
compactly open if for every continuous map f : K → X where K is compact
Hausdorff, f−1(U) is open in K.

Definition A.2.2. A k-space (or Kelley space) is topological space X where every
compactly open subset is open.
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Let kTop denote the full subcategory of Top on the k-spaces.

Proposition A.2.1. ([Hov99, Proposition 2.4.22]) The inclusion functor i : kTop ↪→ Top
has a right adjoint k : Top→ kTop called the “associated k-space”.

If X is a topological space then kX is the set X with the following topology: a
subset U is open in X if and only if U is compactly open.

Proposition A.2.2. ([Hov99, Proposition 2.4.22]) The category kTop has the following
structure and properties.

(i) kTop is complete and cocomplete.
(ii) kTop contains the geometric realization of all simplicial sets.

(iii) kTop is Cartesian closed; The internal mapping space is given by the k-topology
associated to the compact-open topology. X and Y are objects of kTop and K is a
simplicial set then there is a natural isomorphism of set

HomkTop(X× |K|, Y) ∼= HomkTop(X, Y|K|)

where Y|K| carries the k-topology associated to the compact-open topology.

One important motivation for restricting to a subcategory of Top is to get the
following result.

Theorem A.2.1. ([Hov99, Lemma 3.2.4]) Let X and Y be simplicial sets. Then the map
|X× Y|→ |X|×k |Y| is a homeomorphism. In fact, the geometric realization | · | : sSet→
kTop preserves all finite limits.

A.3 Completions

The purpose of this section is to introduce, without proofs, completions of alge-
braic structures such as groups, rings, and Hopf algebras. The category of complete
Hopf algebras plays an important role in Quillen’s rational homotopy theory. For
the basic theory we follow [AM69, chap. 10].

Abelian groups

We aim to study completions of Hopf algebras. A Hopf algebra is in particular a
ring, and a ring is in particular an Abelian group. So let us start with completions
of Abelian groups.
Suppose we are given a sequence of Abelian groups and group homomorphisms,

B0
θ1←− B1

θ2←− B2
θ3←− B3

θ1←− · · · θn←− Bn
θn+1←− · · ·
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forming a special diagram in the category of Abelian groups, a so-called inverse
system. The limit of this diagram is called the inverse limit and denoted lim←−n

Bn.
This limit may be calculated explicitly as the underlying set

lim←−
n

Bn =

{
(xn)n∈ω ∈

∏
n∈ω

Bn
∣∣ θn+1xn+1 = xn

}

and equipped with point-wise group operation and the obvious coordinate pro-
jections.
Suppose A is a fixed Abelian group and

A = A0 ⊇ A1 ⊇ A2 ⊇ A3 ⊇ · · · ⊇ An ⊇ · · ·

is a decreasing sequences of subgroups. The induced sequence

0 = A/A θ1←− A/A1
θ2←− A/A2

θ3←− A/A3
θ4←− · · · θn←− A/An

θn+1←− · · ·
forms an inverse system. The inverse limit lim←−n

A/An is called the completion
of A with respect to the filtration {An}n∈ω, it is denoted Â. A homomorphism
f : A → B between filtered groups is said to respect the filtration if f (An) ⊆ Bn

for all n.
By definition completion is functorial, i.e. given a filtration respecting homomor-
phism f : A → B between filtered groups induces a homomorphism f̂ : Â → B̂.
We have îd = id and ĝ ◦ f = ĝ ◦ f̂ .

Remark A.3.1. This definition is purely algebraic (i.e. taking some limit in the cat-
egory of Abelian groups). One can define Â as a topological completion as well.
Briefly this is done by giving A the topology defined by deeming the sequence
{An}n∈ω to be a fundamental system of neighborhoods of 0 ∈ A. This defines
a topology making A into a topological group. We can now define Cauchy se-
quences as usual, and define Â to be the set of Cauchy sequences in A modulo the
equivalence relation saying that two sequences are equivalent if and only if their
difference converges to 0. Then the two definitions of Â agree. In the topological
terminology the functoriality may be states as follows: if f : A→ B is a continuous
homomorphism, then f induces a continuous homomorphism f̂ : Â→ B̂.

Proposition A.3.1. The functor lim←− : Ab(ωop) → Ab is left-exact. If

0→ {An}→ {Bn}→ {Cn}→ 0

is an exact sequence in Ab(ωop) such that the morphisms θA
n in {An} are all surjective, then

0→ lim←− An → lim←− Bn → lim←−Cn → 0

is exact.
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Corollary A.3.1. Let A be an Abelian group with a decreasing sequence of subgroups
{An}n∈ω as above. Then Ân is a subgroup of Â and

Â/Ân ∼= Â/An ∼= A/An.

As a further corollary, the completion is complete.

Corollary A.3.2. Let A be an Abelian group with a decreasing sequence of subgroups.

Then ̂̂A ∼= Â.

Example A.3.1. Let A = k[x] be the ring of polynomials over some field k and
An = (x)n = (xn). Then Â = k[[x]] is the additive group of formal power series
over k.

Example A.3.2. Let A = Z be the ring integers, p some prime and An = pnZ. Then
Â = Zp is the additive group of p-adic integers.

In general, if A is an Abelian group with a filtration {An}n∈ω then the map ϕ : A→
Â sending an element a ∈ A to the constant sequence (a, a, a, ...) ∈ Â is a group
homomorphism.

Definition A.3.1. Let A be an Abelian group with a filtration {An}n∈ω. We say that
A is complete (with respect to the given filtration) if the map ϕ : A → Â is an
isomorphism.

Completeness amounts to the following two conditions.

(i) (Injectivity of ϕ) If,
⋂

n An = 0.
(ii) (Surjectivity of ϕ) If, for any sequence (a1, a2, . . . ) where an+1 ≡ an (mod An)

(n ≥ 1), there exists a ∈ A with a ≡ an (mod An) for all n.

Vector space completions

In this section we define and study filtered vector spaces and their completions.
We define colimits and tensor products of filtered vector spaces and define associ-
ated graded vector spaces. This will give the linear algebra framework which we
can draw on for the discussion of complete Hopf algebras.
All vector spaces will be over a field k of characteristic zero.

Definition A.3.2. A filtered vector space M over k is a vector space M equipped
with a filtration by subspaces

M = F0 M ⊇ F1 M ⊇ F2 M ⊇ · · · .

A morphism of filtered vector spaces is a linear map f : M → N which preserves
the filtration in the sense that f (Fn M) ⊆ FnN for all n ∈ ω.
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This defines a category of filtered vector spaces denoted Vect f ilt. This category
inherits many of the properties of the category Vect.

Example A.3.3. The field k is filtered by F0k = k and Fnk = 0 for n > 0.

Example A.3.4. Given a k-algebra A and an ideal I ⊆ A the powers of I form a
filtration A ⊇ I ⊇ I2 ⊇ I3 ⊇ · · · . This filtration is called the I-adic filtration.

Proposition A.3.2. The category Vect f ilt is cocomplete.

Proof. Coproducts: Given a family {Mα}α∈I of filtered vector spaces, the direct sum⊕
α Mα may be equipped with the filtration Fn

⊕
α Mα =

⊕
α Fn Mα. The inclusion

maps iα : Mα → ⊕
α Mα are filtration preserving. This defines a coproduct in

Vect f ilt.
Cokernels: Given a morphism f : M → N of filtered vector spaces, the im-
age f (M) ⊆ N has a filtration defined by Fn f (M) = f (M) ∩ FnN. The quo-
tient (taken in Vect), N/ f (M) may then be equipped with the filtration given by
Fn(N/ f (M)) = (Fn)/(Fn M). This filtered vector space, together with the projec-
tion map N → N/ f (M) defines a cokernel in Vect f ilt.
Since Vect f ilt has cokernels and small coproducts it is cocomplete.

Definition A.3.3. The completion of a filtered vector space M is the limit M̂ =

lim←−n
M/Fn M. The quotient maps qn : M → M/Fn M induce a natural map q :

M→ M̂. A filters vector space M is said to be complete if q is an isomorphism.

The completion M̂ of a filtered vector space is again filtered, by

Fn M̂ = ker(M̂→ M/Fn M)

where the maps M̂→ M/Fn M are the projection maps defining M̂ as a limit. This
defines a functor (̂) : Vect f ilt → Vect f ilt. In fact the completed vector space M̂ is
complete with respect to this filtration, as the following proposition states.

Proposition A.3.3. The completion functor (̂) : Vect f ilt → Vect f ilt is idempotent, in the

sense that ̂̂M ∼= M̂.

So the completion functor (̂) takes values in the category of complete vector
spaces. This category will be denoted Vectcomp, it is the full subcategory of Vect f ilt

generated by those filtered vector spaces which are complete. The functor (̂) :
Vect f ilt → Vectcomp is left adjoint to the inclusion functor Vectcomp → Vect f ilt, thus
Vectcomp is a reflective subcategory of Vect f ilt.

Corollary A.3.3. The category Vectcomp is cocomplete.

Proof. Colimits may be computed first in Vect f ilt and then completed.
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Complete tensor products

Given filtered vector space M and N, the tensor usual product M⊗ N (taken over
k) admits a filtration given by

Fn(M⊗ N) =
⊕

r+s=n
Fr M⊗ FsN

for each n. Even if M and N are both complete, their tensor product need not be.

Definition A.3.4. The tensor product of complete filtered vector spaces M and N,
denoted M⊗̂N is the completion of their tensor product as filtered vector spaces,
i.e.

M⊗̂N = M̂⊗ N = lim
n
(M⊗ N)/Fn(M⊗ N).

Proposition A.3.4. If M and N are filtered vector spaces then the morphism M⊗ N →
M̂⊗ N̂ → M̂⊗̂N̂ extends to an isomorphism M̂⊗ N

∼=→ M̂⊗̂N̂.

A.4 Almost free morphisms

The purpose of this section is to introduce almost free maps and almost free objects
and prove some elementary properties. An early reference for this material is
[Kan57].

Remark A.4.1. The terminology does not seem to be completely standard. What
Quillen and Kan call “free” we shall call “almost free”, following [GJ99].

Definitions

Let C be a cocomplete category equipped with a cocontinuous functor F : Set→ C.
Let ∆surj be the category of finite ordinals and surjective order-preserving maps.
We shall study morphisms in sC, the category of simplicial objects in C. The
following definition is a direct generalization of the notion of almost free maps
between simplicial groups as it appears in [GJ99, chap. 5, sec. 1].

Definition A.4.1. A simplicial map f : A → B in sC is said to be F-almost free if
there is a functor X : ∆op

surj → Set and a collection {θn}n∈ω of isomorphisms,

An q F(Xn)
θn
−−−→

∼=
Bn

satisfying the following compatibility conditions: for each n the following diagram
commutes

An Bn

An q F(Xn)

fn

inAn θn

∼=
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and for each t : m � n in ∆surj the following diagram commutes

An q F(Xn) Bn

Am q F(Xm) Bm.

t∗qF(X(t))

θn

t∗

θm

Definition A.4.2. A simplicial object B is said to be F-almost free if the initial map
0→ B is F-almost free.

Remark A.4.2. In the applications C will be some category of algebraic objects (e.g.
groups or Lie algebras) and F will be the free functor, left adjoint to the forgetful
functor. In this case, we suppress the F and simply speak of almost free maps and
almost free objects. Then the above definition may be roughly phrased as follows:
a map f : A → B is almost free if there is a choice of sets Xn which are stable
under degeneracies and such that the coproduct of An with the freely generated
structure on Xn is isomorphic to Bn.

Basic Properties

Let (C, F) be as above. Since F preserves all colimits we have the following closure
properties for the class of F-almost free maps.

Proposition A.4.1. The class of F-almost free maps is closed under the following opera-
tions.

(i) Isomorphism: If f : A→ B is F-almost free and if f ′ : A ′ → B ′ is an isomorphic
map, then f ′ is F-almost free.

(ii) Composition: If f : A0 → A1 and g : A1 → A2 are F-almost free then
g ◦ f : A0 → A2 is F-almost free.

(iii) Sequential composition: Let A : ω → sC be an ω-sequence, i.e. a diagram

A0
f 0

−−−→ A1
f 1

−−−→ · · ·→ An
f n

−−−→ An+1 → · · ·
of maps in sC. If each map An → An+1 is F-almost free, then A0 → colimn An is
F-almost free.

(iv) Coproducts: If f : A→ B and g : A→ B are F-almost free then f q g is F-almost
free.

(v) Pushouts: If f : A → B is F-almost free and and g : A → C is some morphism in
sC, then the pushout of f∗ : C → CqA B is F-almost free.
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Proof. (i) : We suppose given an isomorphism

A B

A ′ B ′

f

α∼= β∼=

f ′

of morphisms. To show f ′ is F-almost free we can use the same functor X as for f
and isomorphisms θ ′n defined by requiring the following diagram be commutative:

An q F(Xn) B

A ′n q F(Xn) B ′n

θn
∼=

αqid ∼= β∼=

θ ′n

The compatibility conditions are easily verified.
(ii) : We have maps θ0, θ1 and functors X0 and X1 witnessing that f and g are
F-almost free. Now take the following composite isomorphism

A0
n q F(X0

n q X1
n)

∼= A0
n q F(X0

n)q F(X1
n)

θ0
nqid
−−−→

∼=
A1

n q F(X1
n)

θ1
n

−−−→
∼=

A2
n

where the first (natural) isomorphism comes from the cocontinuity of F. Call the
composite ψ1

n. The collection {ψ1
n}n∈ω satisfies both compatibility conditions.

(iii) : By iterating the construction in part (ii) we get a map of ω-sequences (omit-
ting the subscript m):

A0 q F(X0) A0 q F(X0 q X1) · · · A0 q F(
∐

k<n Xk) · · ·

A0 A1 A2 · · · An

ψ0 :=θ0

∼=

i0

ψ1

∼=

i1

ψn−1

∼=

in−1

f 0

θ0

f 1

where the commutativity follows from the construction in part (ii). Since F is
cocontinuous we can compute the colimit of the top sequence as

colimn(A0 q F(
∐
k<n

Xk)) ∼= A0 q F(
∐
k<ω

Xk).

Thus we get an isomorphism

ψω
m : (A0)m q F(

∐
k<ω

Xk
m) −−−→∼= colimn(An)m.

One can then check that the ψω
m satisfy the compatibility conditions.
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(iv): By assumption there are θn, θ ′n and X, X ′ such that θn : Aq F(Xn) → Bn and
Aq F(X ′n)→ Bn are isomorphisms. Now take the following composition

(AqA)q F(XnqX ′n) ∼= AqAq F(Xn)q F(X ′n) ∼= Aq F(Xn)qAq F(X ′n)
θnqθ ′n
−−−→

∼=
Bnq Bn

where we have used that F preserves the coproduct. It is straightforward to check
that this makes f q g F-almost free.
(v) Consider the following pushout diagram

A B

C P.

g

f

f∗

where f is F-almost free. To show that f∗ is F-almost free consider the prism
diagram

An q F(Xn)

An Bn

Cn q F(Xn)

Cn Pn

θn

∼=

gn

fn

inAn

(gn)∗

(θn)∗
∼=

inCn

( fn)∗

where the front square is the pushout that we started with, and the back left-hand
square is the pushout of inAn along gn. The map (θn)∗ is induced by (gn)∗ ◦ θn and
( fn)∗. By the commutativity of the diagram the back right-hand square is also a
pushout and so (θn)∗ is an isomorphism, as indicated.
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