Lenses: applications and generalizations

David I. Spivak

Department of Mathematics Massachusetts Institute of Technology

Outline

1 Introduction

- An agent in an environment
- Lenses organize interactions
- Lenses in CT
- **2** Some applications of lenses
- **3** Generalizing lens categories
- 4 Conclusion

We always hear of an agent in an environment. What's that?

We always hear of an agent in an environment. What's that?

- The agent has an effect on the environment and vice versa.
- What does that mean?

We always hear of an agent in an environment. What's that?

- The agent has an effect on the environment and vice versa.
- What does that mean?
- It means agent and environment are communicating somehow.
 - The agent *observes* the environment and *acts* on it.

We always hear of an agent in an environment. What's that?

- The agent has an effect on the environment and vice versa.
- What does that mean?
- It means agent and environment are communicating somehow.
 - The agent *observes* the environment and *acts* on it.
 - The agent's state affects that of the environment and vice versa.
 - Agent affects environment through *action*.
 - Environment affects agent through observation.
 - Each is affected in that it undergoes a change of *state*.

How shall we model this mathematically?

Setup:

- Agent affects environment through *action*.
- Environment affects agent through *observation*.
- Each is affected in that it undergoes a change of *state*.

Setup:

- Agent affects environment through *action*.
- Environment affects agent through *observation*.
- Each is affected in that it undergoes a change of *state*.

Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,
- a set S_{En} for the possible states of the environment,
- a set Act for the possible actions, and
- a set *Obs* for the possible observations.

Setup:

- Agent affects environment through *action*.
- Environment affects agent through *observation*.
- Each is affected in that it undergoes a change of *state*.

Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,
- a set S_{En} for the possible states of the environment,
- a set Act for the possible actions, and
- a set *Obs* for the possible observations.

These change in time. At every time step, what happens?

• Action is dictated by agent's state via some $S_{Ag} \rightarrow Act$.

Setup:

- Agent affects environment through *action*.
- Environment affects agent through *observation*.
- Each is affected in that it undergoes a change of *state*.

Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,
- a set S_{En} for the possible states of the environment,
- a set Act for the possible actions, and
- a set *Obs* for the possible observations.

These change in time. At every time step, what happens?

- Action is dictated by agent's state via some $S_{Ag} \rightarrow Act$.
- Agent's state is updated by the observation via $S_{Ag} \times Obs \rightarrow S_{Ag}$.

Setup:

- Agent affects environment through *action*.
- Environment affects agent through *observation*.
- Each is affected in that it undergoes a change of *state*.

Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,
- a set S_{En} for the possible states of the environment,
- a set Act for the possible actions, and
- a set *Obs* for the possible observations.

These change in time. At every time step, what happens?

- Action is dictated by agent's state via some $S_{Ag} \rightarrow Act$.
- Agent's state is updated by the observation via $S_{Ag} \times Obs \rightarrow S_{Ag}$.
- Observation is dictated by environment's state via $S_{En} \rightarrow Obs$.

Setup:

- Agent affects environment through *action*.
- Environment affects agent through *observation*.
- Each is affected in that it undergoes a change of *state*.

Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,
- a set S_{En} for the possible states of the environment,
- a set Act for the possible actions, and
- a set *Obs* for the possible observations.

These change in time. At every time step, what happens?

- Action is dictated by agent's state via some $S_{Ag} \rightarrow Act$.
- Agent's state is updated by the observation via $S_{Ag} \times Obs \rightarrow S_{Ag}$.
- Observation is dictated by environment's state via $S_{En} \rightarrow Obs$.
- Environment's state is updated by the action via $S_{En} \times Act \rightarrow S_{En}$.

How to organize all this stuff?

We have sets S_{Ag} , S_{En} , Act, Obs and functions

$$egin{aligned} S_{\mathsf{Ag}} &
ightarrow Act & S_{\mathsf{En}} &
ightarrow Obs \ S_{\mathsf{Ag}} &
ightarrow Obs
ightarrow S_{\mathsf{Ag}} & S_{\mathsf{En}} &
ightarrow Act
ightarrow S_{\mathsf{En}} \end{aligned}$$

How to organize all this stuff?

How to organize all this stuff?

We have sets S_{Ag} , S_{En} , Act, Obs and functions

$$egin{aligned} S_{\mathsf{Ag}} &
ightarrow Act & S_{\mathsf{En}} &
ightarrow Obs \ S_{\mathsf{Ag}} &
ightarrow Obs
ightarrow S_{\mathsf{Ag}} & S_{\mathsf{En}} &
ightarrow Act
ightarrow S_{\mathsf{En}} \end{aligned}$$

How to organize all this stuff?

- Each pair of functions is a special case of what are called *lenses*.
- Lenses are the morphisms in a cat **Lens**, whose objects are pairs $\begin{pmatrix} \chi \\ \gamma \end{pmatrix}$.

The lenses from our agent/environment setup would be denoted:

How to organize all this stuff?

We have sets S_{Ag} , S_{En} , Act, Obs and functions

$$egin{aligned} S_{\mathrm{Ag}} &
ightarrow Act & S_{\mathrm{En}}
ightarrow Obs \ S_{\mathrm{Ag}} &
ightarrow Obs
ightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} &
ightarrow Act
ightarrow S_{\mathrm{En}} \end{aligned}$$

How to organize all this stuff?

■ Each pair of functions is a special case of what are called *lenses*.
 ■ Lenses are the morphisms in a cat Lens, whose objects are pairs (^X_Y).
 ■ The lenses from our agent/environment setup would be denoted:
 ■ (^S_{Ag}) → (^{Act}_{Obs}) and (^{S_{En}}<sub>S_{En}) → (^{Obs}_{Act})
 Lenses have been coming up in the ACT community a lot lately.
</sub>

Applications of lenses

There have been many uses of lens-like things over the years.

Applications of lenses

There have been many uses of lens-like things over the years.

- Bidirectional transformations (Oles),
- dialectica categories and linear logic (de Paiva),
- the view-update problem in databases (Hoffman, Pierce),
- functional programming (Gibbons, Oliveira, Palmer, Kmett),
- wiring diagrams, discrete and continuous dynamical systems (Spivak),
- open economic games (Ghani-Hedges),
- supervised learning (Fong-Spivak-Tuyéras).

I'll explain a few of these as we go, especially the ones I've worked on.

The symmetric monoidal category of lenses

For any symmetric monoidal category $\mathcal C,$ we get an SMC $\textbf{Lens}_{\mathcal C}.$

The symmetric monoidal category of lenses

For any symmetric monoidal category C, we get an SMC Lens_C. For simplicity, let's take C =Set and just write Lens for Lens_{Set}.

Ob(Lens) :=
$$\left\{ \begin{pmatrix} A \\ A' \end{pmatrix} \mid A, A' \in Ob(Set) \right\}$$
Monoidal unit: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$; monoidal product: $\begin{pmatrix} A \\ A' \end{pmatrix} \otimes \begin{pmatrix} B \\ B' \end{pmatrix}$:= $\begin{pmatrix} A \times B \\ A' \times B' \end{pmatrix}$
Lens $\left(\begin{pmatrix} A \\ A' \end{pmatrix}, \begin{pmatrix} B \\ B' \end{pmatrix} \right)$:= $\left\{ \begin{pmatrix} f \\ f^{\sharp} \end{pmatrix} \mid f: A \to B \\ f^{\sharp}: A \times B' \to A' \end{pmatrix}$.
id_(A') = $\begin{pmatrix} id_A \\ \pi \end{pmatrix}$, where $\pi: A \times A' \to A'$ is the projection.
 $\left\{ \begin{pmatrix} f \\ f^{\sharp} \end{pmatrix} \circ \begin{pmatrix} g \\ g^{\sharp} \end{pmatrix} = \begin{pmatrix} (a,c') \mapsto f^{\sharp}(a,g^{\sharp}(f(a),c')) \end{pmatrix} \right\}$

 $f^{\sharp} \vdash A'$

g♯

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

Lens
$$\begin{pmatrix} \begin{pmatrix} A \\ A' \end{pmatrix}, \begin{pmatrix} B \\ B' \end{pmatrix} \end{pmatrix} \coloneqq \left\{ \begin{pmatrix} f \\ f^{\sharp} \end{pmatrix} \middle| \begin{array}{c} f \colon A \to B \\ f^{\sharp} \colon A \times B' \to A' \end{array} \right\}.$$

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

$$\operatorname{\mathsf{Lens}}\left(\binom{\mathsf{A}}{\mathsf{A}'},\binom{\mathsf{B}}{\mathsf{B}'}\right) \coloneqq \left\{\binom{f}{f^{\sharp}} \middle| \begin{array}{c} f: \mathsf{A} \to \mathsf{B} \\ f^{\sharp}: \mathsf{A} \times \mathsf{B}' \to \mathsf{A}' \end{array}\right\}.$$

I wanted to understand Lens in a way I found more comfortable.

- Today: we'll first see Lens as part of a larger category that
 - provides a sort of geometrical perspective,
 - might be more familiar, e.g. to algebraic geometers, and
 - has better formal properties.

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

$$\operatorname{\mathsf{Lens}}\left(\binom{\mathsf{A}}{\mathsf{A}'},\binom{\mathsf{B}}{\mathsf{B}'}\right) \coloneqq \left\{\binom{f}{f^{\sharp}} \middle| \begin{array}{c} f: \mathsf{A} \to \mathsf{B} \\ f^{\sharp}: \mathsf{A} \times \mathsf{B}' \to \mathsf{A}' \end{array}\right\}.$$

I wanted to understand Lens in a way I found more comfortable.

- Today: we'll first see Lens as part of a larger category that
 - provides a sort of geometrical perspective,
 - might be more familiar, e.g. to algebraic geometers, and
 - has better formal properties.
- We then generalize further to pick up some close cousins of lenses.

Other generalizations

There are other generalizations possible.

Lenses in CT

Other generalizations

There are other generalizations possible.

- Kmett, Riley, etc. have generalized lenses to optics.
 - Briefly: for any monoidal category $(\mathcal{C}, I, \otimes)$, ...
 - an optic $\binom{A}{A'} \rightarrow \binom{B}{B'}$ can be identified with an element of

$$\int^{M\in\mathcal{C}} C(A,M\otimes B)\times C(M\otimes B',A').$$

Lenses in CT

Other generalizations

There are other generalizations possible.

Kmett, Riley, etc. have generalized lenses to optics.

Briefly: for any monoidal category $(\mathcal{C}, I, \otimes), \dots$

• an optic $\binom{A}{A'} \rightarrow \binom{B}{B'}$ can be identified with an element of

$$\int^{M\in\mathcal{C}} C(A,M\otimes B)\times C(M\otimes B',A').$$

This can be generalized even further using Tambara modules. However, it's not the direction I want to go today.

Lenses in CT

Plan of the talk

Plan for the rest of the talk:

- Some applications of lenses
- Generalizing lens categories

Outline

Introduction

2 Some applications of lenses

- Back to the agent in an environment
- Machine learning
- Examples that don't quite work right
- **3** Generalizing lens categories
- 4 Conclusion

We began with an agent and an environment interacting.

$$egin{aligned} S_{\mathsf{Ag}} &
ightarrow Act & S_{\mathsf{En}} &
ightarrow Obs \ S_{\mathsf{Ag}} &
ightarrow Obs
ightarrow S_{\mathsf{Ag}} & S_{\mathsf{En}} &
ightarrow Act
ightarrow S_{\mathsf{En}} \end{aligned}$$

We began with an agent and an environment interacting.

These are lenses $\binom{S_{Ag}}{S_{Ag}} \rightarrow \binom{Act}{Obs}$ and $\binom{S_{En}}{S_{En}} \rightarrow \binom{Obs}{Act}$. Explain the flip?

We began with an agent and an environment interacting.

$$S_{Ag}
ightarrow Act$$
 $S_{En}
ightarrow Obs$
 $S_{Ag} imes Obs
ightarrow S_{Ag}$ $S_{En} imes Act
ightarrow S_{En}$

These are lenses $\binom{S_{Ag}}{S_{Ag}} \rightarrow \binom{Act}{Obs}$ and $\binom{S_{En}}{S_{En}} \rightarrow \binom{Obs}{Act}$. Explain the flip? Idea: if we tensor \otimes these lenses we get:

$$\begin{pmatrix} S_{\mathsf{Ag}} \times S_{\mathsf{En}} \\ S_{\mathsf{Ag}} \times S_{\mathsf{En}} \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{Act} \times \mathsf{Obs} \\ \mathsf{Obs} \times \mathsf{Act} \end{pmatrix}$$

and there's an "symmetry" lens morphism $\binom{Act \times Obs}{Obs \times Act} \rightarrow \begin{pmatrix} 1\\ 1 \end{pmatrix}$.

We began with an agent and an environment interacting.

$$S_{Ag}
ightarrow Act$$
 $S_{En}
ightarrow Obs$
 $S_{Ag} imes Obs
ightarrow S_{Ag}$ $S_{En} imes Act
ightarrow S_{En}$

These are lenses $\binom{S_{Ag}}{S_{Ag}} \rightarrow \binom{Act}{Obs}$ and $\binom{S_{En}}{S_{En}} \rightarrow \binom{Obs}{Act}$. Explain the flip? Idea: if we tensor \otimes these lenses we get:

$$\begin{pmatrix} S_{\mathsf{Ag}} \times S_{\mathsf{En}} \\ S_{\mathsf{Ag}} \times S_{\mathsf{En}} \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{Act} \times \mathsf{Obs} \\ \mathsf{Obs} \times \mathsf{Act} \end{pmatrix}$$

and there's an "symmetry" lens morphism $\binom{Act \times Obs}{Obs \times Act} \rightarrow \binom{1}{1}$. Composing, we get a single lens $\binom{S}{S} \rightarrow \binom{1}{1}$, where $S = S_{Ag} \times S_{En}$. It's just a set S and a map $S \rightarrow S$: a discrete dynamical system.

We began with an agent and an environment interacting.

$$S_{Ag}
ightarrow Act$$
 $S_{En}
ightarrow Obs$
 $S_{Ag} imes Obs
ightarrow S_{Ag}$ $S_{En} imes Act
ightarrow S_{En}$

These are lenses $\binom{S_{Ag}}{S_{Ag}} \rightarrow \binom{Act}{Obs}$ and $\binom{S_{En}}{S_{En}} \rightarrow \binom{Obs}{Act}$. Explain the flip? Idea: if we tensor \otimes these lenses we get:

$$\begin{pmatrix} S_{\mathsf{Ag}} \times S_{\mathsf{En}} \\ S_{\mathsf{Ag}} \times S_{\mathsf{En}} \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{Act} \times \mathsf{Obs} \\ \mathsf{Obs} \times \mathsf{Act} \end{pmatrix}$$

and there's an "symmetry" lens morphism $\binom{Act \times Obs}{Obs \times Act} \rightarrow \binom{1}{1}$. Composing, we get a single lens $\binom{S}{S} \rightarrow \binom{1}{1}$, where $S = S_{Ag} \times S_{En}$. It's just a set S and a map $S \rightarrow S$: a discrete dynamical system. We can see this as part of a bigger picture.

The agent-environment system

So what were we doing when we:

- started with lenses $\binom{S}{S} \to \binom{Act}{Obs}$ and $\binom{S'}{S'} \to \binom{Obs}{Act}$,
- multiplied them together to get a map $\binom{S \times S'}{S \times S'} \rightarrow \binom{Act \times Obs}{Obs \times Act}$, and then
- composed the result with a canonical map to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$?

The agent-environment system

So what were we doing when we:

- started with lenses $\binom{S}{S} \to \binom{Act}{Obs}$ and $\binom{S'}{S'} \to \binom{Obs}{Act}$,
- multiplied them together to get a map $\binom{S \times S'}{S \times S'} \rightarrow \binom{Act \times Obs}{Obs \times Act}$, and then
- composed the result with a canonical map to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$?

It turns out we were doing this:

The agent-environment system

So what were we doing when we:

- started with lenses $\binom{S}{S} \to \binom{Act}{Obs}$ and $\binom{S'}{S'} \to \binom{Obs}{Act}$,
- multiplied them together to get a map $\binom{S \times S'}{S \times S'} \rightarrow \binom{Act \times Obs}{Obs \times Act}$, and then
- composed the result with a canonical map to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$?

It turns out we were doing this:

More generally we can consider open systems with many interacting agents

Wiring diagrams

What is going on in this picture mathematically:

What is going on in this picture mathematically:

For each box, we have an object $\binom{outputs}{inputs}$ in Lens.

What is going on in this picture mathematically:

For each box, we have an object $\binom{\text{outputs}}{\text{inputs}}$ in **Lens**.

- We have three interior boxes: $\begin{pmatrix} C \\ E \times A \end{pmatrix}$, $\begin{pmatrix} D \times G \\ B \end{pmatrix}$, $\begin{pmatrix} E \times F \\ C \times A \times D \end{pmatrix}$.
- We have one exterior box: $\begin{pmatrix} F \times G \\ A \times B \end{pmatrix}$.

What is going on in this picture mathematically:

For each box, we have an object $\binom{\text{outputs}}{\text{inputs}}$ in Lens.

- We have three interior boxes: $\binom{C}{E \times A}$, $\binom{D \times G}{B}$, $\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\begin{pmatrix} F \times G \\ A \times B \end{pmatrix}$.
- The wiring diagram induces a lens $\binom{C \times D \times G \times E \times F}{E \times A \times B \times C \times A \times D} \rightarrow \binom{F \times G}{A \times B}$

What is going on in this picture mathematically:

For each box, we have an object $\binom{\text{outputs}}{\text{inputs}}$ in Lens.

- We have three interior boxes: $\binom{C}{E \times A}$, $\binom{D \times G}{B}$, $\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\begin{pmatrix} F \times G \\ A \times B \end{pmatrix}$.
- The wiring diagram induces a lens $\binom{C \times D \times G \times E \times F}{E \times A \times B \times C \times A \times D} \rightarrow \binom{F \times G}{A \times B}$
- Both maps are just projections and diagonals:

 $C \times D \times G \times E \times F \to F \times G$ $C \times D \times G \times E \times F \times A \times B \to E \times A \times B \times C \times A \times D$

What is going on in this picture mathematically:

For each box, we have an object $\binom{\text{outputs}}{\text{inputs}}$ in Lens.

- We have three interior boxes: $\binom{C}{E \times A}$, $\binom{D \times G}{B}$, $\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\begin{pmatrix} F \times G \\ A \times B \end{pmatrix}$.
- The wiring diagram induces a lens $\binom{C \times D \times G \times E \times F}{E \times A \times B \times C \times A \times D} \rightarrow \binom{F \times G}{A \times B}$
- Both maps are just projections and diagonals:

 $C \times D \times G \times E \times F \to F \times G$

 $C \times D \times G \times E \times F \times A \times B \rightarrow E \times A \times B \times C \times A \times D$

Every wiring diagram gives a lens made of projections and diagonals.

A discrete dynamical system of type $\begin{pmatrix} A \\ A' \end{pmatrix}$ consists of

- A set S
- A function $f^{rdt}: S \rightarrow A$ called "readout"
- A function f^{upd} : $S \times A' \rightarrow S$ called "update"
- Optional: an element $s_0 \in S$ called "initial state".

A discrete dynamical system of type $\begin{pmatrix} A \\ A' \end{pmatrix}$ consists of

- A set S
- A function $f^{rdt}: S \rightarrow A$ called "readout"
- A function $f^{upd} \colon S \times A' \to S$ called "update"
- Optional: an element $s_0 \in S$ called "initial state".

This is just a lens $\binom{f^{\text{rdt}}}{f^{\text{upd}}} \colon \binom{S}{S} \to \binom{A}{A'}$, with optional $\binom{s_0}{!} \colon \binom{1}{1} \to \binom{S}{S}$.

A discrete dynamical system of type $\begin{pmatrix} A \\ A' \end{pmatrix}$ consists of

- A set S
- A function $f^{rdt}: S \rightarrow A$ called "readout"
- A function $f^{upd} \colon S \times A' \to S$ called "update"
- Optional: an element $s_0 \in S$ called "initial state".
- This is just a lens $\binom{f^{\text{rdt}}}{f^{\text{upd}}} \colon \binom{S}{S} \to \binom{A}{A'}$, with optional $\binom{s_0}{!} \colon \binom{1}{1} \to \binom{S}{S}$.
 - We'll denote this setup by writing S, or (S, s_0) inside the box

$$A' - S - A$$
 or $A' - S, s_0 - A$

A discrete dynamical system of type $\begin{pmatrix} A \\ A' \end{pmatrix}$ consists of

- A set S
- A function $f^{rdt}: S \rightarrow A$ called "readout"
- A function $f^{upd} \colon S \times A' \to S$ called "update"
- Optional: an element $s_0 \in S$ called "initial state".
- This is just a lens $\binom{f^{\text{rdt}}}{f^{\text{upd}}}$: $\binom{S}{S} \to \binom{A}{A'}$, with optional $\binom{s_0}{!}$: $\binom{1}{1} \to \binom{S}{S}$.
 - We'll denote this setup by writing S, or (S, s_0) inside the box

$$A' - S - A$$
 or $A' - S, s_0 - A$

- A wiring diagram is a lens $\binom{A_1}{A'_1} \otimes \cdots \otimes \binom{A_n}{A'_n} \to \binom{B}{B'}$, and
- Each dyn'l system is a lens $\binom{S_i}{S_i} \to \binom{A_i}{A'_i}$. Composing and multiplying...
- We get a dynamical system $\binom{S_1 \times \cdots \times S_n}{S_1 \times \cdots \times S_n} \to \binom{B}{B'}$ in outer box.

A discrete dynamical system of type $\begin{pmatrix} A \\ A' \end{pmatrix}$ consists of

- A set S
- A function $f^{\mathsf{rdt}} \colon S \to A$ called "readout"
- A function $f^{upd} \colon S \times A' \to S$ called "update"
- Optional: an element $s_0 \in S$ called "initial state".
- This is just a lens $\binom{f^{\text{rdt}}}{f^{\text{upd}}}$: $\binom{S}{S} \to \binom{A}{A'}$, with optional $\binom{s_0}{!}$: $\binom{1}{1} \to \binom{S}{S}$.
 - We'll denote this setup by writing S, or (S, s_0) inside the box

$$A' - S - A$$
 or $A' - S, s_0 - A$

- A wiring diagram is a lens $\binom{A_1}{A'_1} \otimes \cdots \otimes \binom{A_n}{A'_n} \to \binom{B}{B'}$, and
- Each dyn'l system is a lens $\binom{S_i}{S_i} \to \binom{A_i}{A'_i}$. Composing and multiplying...

• We get a dynamical system $\binom{S_1 \times \cdots \times S_n}{S_1 \times \cdots \times S_n} \to \binom{B}{B'}$ in outer box.

This story of DS's and WD's existed years before I knew about lenses.

Similarly, the story of learners existed before we knew about lenses.

• A learner is something that approximates a function $A' \rightarrow A$.

- A learner is something that approximates a function $A' \rightarrow A$.
 - It consists of a function $P \times A' \rightarrow A$, where P is a set.
 - It also has an update-backprop function $P \times A' \times A \rightarrow P \times A'$.

- A learner is something that approximates a function $A' \rightarrow A$.
 - It consists of a function $P \times A' \rightarrow A$, where P is a set.
 - It also has an update-backprop function $P \times A' \times A \rightarrow P \times A'$.
 - So it's just a lens $\binom{\text{implement}}{\text{upd-backprop}} : \binom{P}{P} \otimes \binom{A'}{A'} \to \binom{A}{A}$

- A learner is something that approximates a function $A' \rightarrow A$.
 - It consists of a function $P \times A' \rightarrow A$, where P is a set.
 - It also has an update-backprop function $P \times A' \times A \rightarrow P \times A'$.
 - So it's just a lens $\binom{\text{implement}}{\text{upd-backprop}} : \binom{P}{P} \otimes \binom{A'}{A'} \to \binom{A}{A}$
- For any monoidal category C, there is a monoidal category **Para**(C):
 - Objects in $Para(\mathcal{C})$ are objects in \mathcal{C}
 - Morphisms $A' \to A$ in **Para**(C) consist of pairs (P, f) where
 - P is an object of C, (chosen up to isomorphism)
 - $f: P \otimes A' \to A$ is a morphism
 - Composition is "multiply parameters and compose"

Similarly, the story of learners existed before we knew about lenses.

- A learner is something that approximates a function $A' \rightarrow A$.
 - It consists of a function $P \times A' \rightarrow A$, where P is a set.
 - It also has an update-backprop function $P \times A' \times A \rightarrow P \times A'$.
 - So it's just a lens $\binom{\text{implement}}{\text{upd-backprop}} : \binom{P}{P} \otimes \binom{A'}{A'} \to \binom{A}{A}$
- For any monoidal category C, there is a monoidal category **Para**(C):
 - Objects in $Para(\mathcal{C})$ are objects in \mathcal{C}
 - Morphisms $A' \rightarrow A$ in **Para**(C) consist of pairs (P, f) where
 - P is an object of C, (chosen up to isomorphism)
 - $f: P \otimes A' \to A$ is a morphism

Composition is "multiply parameters and compose"
 Our category Learn is just Para(Lens).

The view-update problem is a widely-cited example of lenses.

The view-update problem is a widely-cited example of lenses.

• A database *instance* is a bunch of tables filled with data.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema C form a category C-Inst.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a *set*; let's denote it |C-Inst|.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

- It treats the instances on *C* as a *set*; let's denote it |*C*-Inst|.
- View-update is considered as a lens $\binom{\text{view}}{\text{update}}$: $\binom{|\mathcal{C}-\text{Inst}|}{|\mathcal{C}-\text{Inst}|} \rightarrow \binom{|\mathcal{D}-\text{Inst}|}{|\mathcal{D}-\text{Inst}|}$.
- Isn't this quite floppy? Totally not functorial, anything goes.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema \mathcal{C} form a category \mathcal{C} -Inst.

The usual view-update formulation is kinda weird from my perspective.

- It treats the instances on *C* as a *set*; let's denote it |*C*-Inst|.
- View-update is considered as a lens $\binom{\text{view}}{\text{update}}$: $\binom{|\mathcal{C}-\text{Inst}|}{|\mathcal{C}-\text{Inst}|} \rightarrow \binom{|\mathcal{D}-\text{Inst}|}{|\mathcal{D}-\text{Inst}|}$.
- Isn't this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

- It treats the instances on C as a *set*; let's denote it |C-Inst|.
- View-update is considered as a lens $\binom{\text{view}}{\text{update}}$: $\binom{|\mathcal{C}-\text{Inst}|}{|\mathcal{C}-\text{Inst}|} \rightarrow \binom{|\mathcal{D}-\text{Inst}|}{|\mathcal{D}-\text{Inst}|}$.
- Isn't this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

- Lens laws: get-put, put-get, and put-put.
- These together are equivalent to "constant complement" condition.
- That implies that C-Inst $\cong D$ -Inst $\times M$ for some M.
- Too strong: e.g. if $\mathcal{D} \subseteq \mathcal{C}$, it must be totally disjoint from the rest!

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

- It treats the instances on C as a *set*; let's denote it |C-Inst|.
- View-update is considered as a lens $\binom{\text{view}}{\text{update}}$: $\binom{|\mathcal{C}-\text{Inst}|}{|\mathcal{C}-\text{Inst}|} \rightarrow \binom{|\mathcal{D}-\text{Inst}|}{|\mathcal{D}-\text{Inst}|}$.
- Isn't this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

- Lens laws: get-put, put-get, and put-put.
- These together are equivalent to "constant complement" condition.
- That implies that C-Inst $\cong D$ -Inst $\times M$ for some M.
- Too strong: e.g. if $\mathcal{D} \subseteq \mathcal{C}$, it must be totally disjoint from the rest!
- The lens laws are too strong, but without them lenses are too floppy.

The view-update problem is a widely-cited example of lenses.

- A database *instance* is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a *schema*.
- Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

- It treats the instances on C as a *set*; let's denote it |C-Inst|.
- View-update is considered as a lens $\binom{\text{view}}{\text{update}}$: $\binom{|\mathcal{C}-\text{Inst}|}{|\mathcal{C}-\text{Inst}|} \rightarrow \binom{|\mathcal{D}-\text{Inst}|}{|\mathcal{D}-\text{Inst}|}$.
- Isn't this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

- Lens laws: get-put, put-get, and put-put.
- These together are equivalent to "constant complement" condition.
- That implies that C-Inst $\cong D$ -Inst $\times M$ for some M.
- Too strong: e.g. if $\mathcal{D} \subseteq \mathcal{C}$, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy. Can we do better?

Recall that a discrete dynamical system with inputs A' and outputs A is: • A set S

• A function $f^{\mathsf{rdt}} \colon S \to A$ called "readout"

- $\binom{f^{\mathrm{rdt}}}{f^{\mathrm{upd}}} \colon \binom{S}{S} \to \binom{A}{A'}$
- A function $f^{upd}: S \times A' \rightarrow S$ called "update"

Recall that a discrete dynamical system with inputs A' and outputs A is: • A set S

• A function $f^{\mathsf{rdt}} \colon S \to A$ called "readout"

$$\binom{f^{\mathrm{rdt}}}{f^{\mathrm{upd}}}$$
: $\binom{S}{S} \to \binom{A}{A'}$

• A function $f^{upd}: S \times A' \rightarrow S$ called "update"

Replacing sets A', A by manifolds, a *continuous dynamical system* is:

• A manifold S, (denote its tangent bundle TS),

Recall that a discrete dynamical system with inputs A' and outputs A is: • A set S

• A function $f^{rdt}: S \rightarrow A$ called "readout"

$$\binom{f^{\mathrm{rdt}}}{f^{\mathrm{upd}}} \colon \binom{S}{S} \to \binom{A}{A'}$$

• A function $f^{\text{upd}} : S \times A' \to S$ called "update"

Replacing sets A', A by manifolds, a *continuous dynamical system* is:

- A manifold S, (denote its tangent bundle TS),
- A differentiable map $f^{rdt} \colon S \to A$,
- A differentiable map $f^{dyn}: S \times A' \to TS$ satisfying:

In other words, for every input a' and state s, a tangent vector at s.

Recall that a discrete dynamical system with inputs A' and outputs A is: • A set S

• A function $f^{\mathsf{rdt}} \colon S \to A$ called "readout"

$$\binom{f^{\mathrm{rdt}}}{f^{\mathrm{upd}}} \colon \binom{S}{S} \to \binom{A}{A'}$$

• A function $f^{\text{upd}} : S \times A' \to S$ called "update"

Replacing sets A', A by manifolds, a *continuous dynamical system* is:

- A manifold S, (denote its tangent bundle TS),
- A differentiable map $f^{rdt} \colon S \to A$,
- A differentiable map $f^{dyn}: S \times A' \to TS$ satisfying:

In other words, for every input a' and state s, a tangent vector at s. The two notions are quite similar, but can we see the latter as a lens?

Outline

1 Introduction

2 Some applications of lenses

3 Generalizing lens categories

- Another way to think about Lens
- Bundles
- Relationship between bundles and lenses
- Examples of generalized lenses

4 Conclusion

So how should I think about an object in Lens?

How should we think about $\begin{pmatrix} A \\ A' \end{pmatrix}$?

- Is it just a pair of sets?
- Why are maps $\binom{A}{A'} \rightarrow \binom{B}{B'}$ the way they are?

So how should I think about an object in Lens?

How should we think about $\binom{A}{A'}$?

Is it just a pair of sets?
Why are maps
$$\begin{pmatrix} A \\ A' \end{pmatrix} \rightarrow \begin{pmatrix} B \\ B' \end{pmatrix}$$
 the way they are?
Lens $\left(\begin{pmatrix} A \\ A' \end{pmatrix}, \begin{pmatrix} B \\ B' \end{pmatrix} \right) := \left\{ \begin{pmatrix} f \\ f^{\sharp} \end{pmatrix} \middle| \begin{array}{c} f : A \rightarrow B \\ f^{\sharp} : A \times B' \rightarrow A' \end{array} \right\}.$

So how should I think about an object in Lens?

How should we think about $\begin{pmatrix} A \\ A' \end{pmatrix}$?

Is it just a pair of sets?
Why are maps
$$\binom{A}{A'} \to \binom{B}{B'}$$
 the way they are?
Lens $\left(\begin{pmatrix} A \\ A' \end{pmatrix}, \begin{pmatrix} B \\ B' \end{pmatrix} \right) := \left\{ \begin{pmatrix} f \\ f^{\sharp} \end{pmatrix} \middle| \begin{array}{c} f : A \to B \\ f^{\sharp} : A \times B' \to A' \end{array} \right\}.$

Suggestion: think of objects as "bundles."

What are bundles?

The term *bundle* is most used in algebraic topology and algebraic geometry.

What are bundles?

The term *bundle* is most used in algebraic topology and algebraic geometry.

• A *bundle* is a special kind of morphism $p: E \rightarrow B$ in a category.

- The *base space B* consists of "locations" or contexts.
- For any context b : B, the fiber $E(b) := p^{-1}(b)$ are possibilities.
What are bundles?

The term *bundle* is most used in algebraic topology and algebraic geometry.

- A *bundle* is a special kind of morphism $p: E \rightarrow B$ in a category.
 - The base space B consists of "locations" or contexts.
 - For any context b : B, the fiber $E(b) := p^{-1}(b)$ are possibilities.
- Example: vector bundles in geometry/topology.
 - For a manifold *B*, the tangent bundle *TB* is a vector bundle.
 - At each b : B, the fiber TB(b) = possible velocities at b.

What are bundles?

The term *bundle* is most used in algebraic topology and algebraic geometry.

- A *bundle* is a special kind of morphism $p: E \rightarrow B$ in a category.
 - The base space B consists of "locations" or contexts.
 - For any context b : B, the fiber $E(b) := p^{-1}(b)$ are possibilities.
- Example: vector bundles in geometry/topology.
 - For a manifold *B*, the tangent bundle *TB* is a vector bundle.
 - At each b : B, the fiber TB(b) = possible velocities at b.
- A database instance can be thought of as a bundle over its schema.
 - A discrete opfibration of categories $p: E \rightarrow B$.
 - At each table b : B, the fiber E(b) = rows in table b.

What are bundles?

The term *bundle* is most used in algebraic topology and algebraic geometry.

- A *bundle* is a special kind of morphism $p: E \rightarrow B$ in a category.
 - The base space B consists of "locations" or contexts.
 - For any context b : B, the fiber $E(b) := p^{-1}(b)$ are possibilities.
- Example: vector bundles in geometry/topology.
 - For a manifold *B*, the tangent bundle *TB* is a vector bundle.
 - At each b : B, the fiber TB(b) = possible velocities at b.
- A database instance can be thought of as a bundle over its schema.
 - A discrete opfibration of categories $p: E \rightarrow B$.
 - At each table b : B, the fiber E(b) = rows in table b.
- A *trivial bundle* is one of the form $\pi_1: B \times B' \to B$ for some B'.

Pullbacks of bundles

Suppose that $p: E \rightarrow B$ is a bundle.

- We haven't said what that means exactly, just given examples.
- But whatever bundles are, you should be able to pull them back.

Bundles

Pullbacks of bundles

Suppose that $p: E \to B$ is a bundle.

- We haven't said what that means exactly, just given examples.
- But whatever bundles are, you should be able to pull them back.
 - That is, given a bundle $E_2 \xrightarrow{p_2} B_2$ and a map $B_1 \rightarrow B_2, \dots$
 - \blacksquare ... the pullback should exist and be a bundle over B_1 .

Pullbacks of bundles

Suppose that $p: E \to B$ is a bundle.

- We haven't said what that means exactly, just given examples.
- But whatever bundles are, you should be able to pull them back.
 - That is, given a bundle $E_2 \xrightarrow{p_2} B_2$ and a map $B_1 \rightarrow B_2$, ...
 - ... the pullback should exist and be a bundle over B_1 .

$$egin{array}{ccc} f^*(E_2) &\longrightarrow & E_2 \ & & & & \downarrow^{p_2} \ & & & & \downarrow^{p_2} \ & & & & & \downarrow^{p_2} \ & & & & & & & \downarrow^{p_2} \ & & & & & & & & & \downarrow^{p_2} \ & & & & & & & & & \downarrow^{p_2} \ & & & & & & & & & & & & & & & & & \end{pmatrix}$$

The fiber over any $b_1 : B_1$ is that over its image, $(f^*E_2)(b_1) = E_2(f(b_1))$.

The usual sort of bundle morphism is just a commutative square

$$\operatorname{Hom}\left(\begin{array}{cc} E_{1} & E_{2} \\ p_{1}\downarrow & , \ \downarrow^{p_{2}} \\ B_{1} & B_{2} \end{array}\right) = \left\{ (f,g) \left| \begin{array}{c} E_{1} \xrightarrow{g} E_{2} \\ p_{1}\downarrow & \downarrow^{p_{2}} \\ B_{1} \xrightarrow{f} B_{2} \end{array} \right\} \right.$$

The usual sort of bundle morphism is just a commutative square

$$\operatorname{Hom} \begin{pmatrix} E_{1} & E_{2} \\ p_{1} \downarrow & , \quad \downarrow^{p_{2}} \\ B_{1} & B_{2} \end{pmatrix} = \begin{cases} (f,g) & E_{1} \stackrel{g}{\longrightarrow} E_{2} \\ p_{1} \downarrow & \downarrow^{p_{2}} \\ B_{1} \stackrel{g}{\longrightarrow} B_{2} \end{cases}$$

The pullback f*E₂ ≅ B₁ ×_{B₂} E₂ has a universal property by which...
 ... the map g can be identified with a map E₁ → f*E₂.

The usual sort of bundle morphism is just a commutative square

$$\operatorname{Hom} \begin{pmatrix} E_{1} & E_{2} \\ p_{1} \downarrow & , \quad \downarrow^{p_{2}} \\ B_{1} & B_{2} \end{pmatrix} = \begin{cases} (f,g) & E_{1} \stackrel{g}{\longrightarrow} E_{2} \\ p_{1} \downarrow & \downarrow^{p_{2}} \\ B_{1} \stackrel{g}{\longrightarrow} B_{2} \end{cases}$$

The pullback $f^*E_2 \cong B_1 \times_{B_2} E_2$ has a universal property by which... ... the map g can be identified with a map $E_1 \to f^*E_2$. But in algebraic geometry, the arrow $E_1 \to f^*(E_2)$ is often reversed:

The usual sort of bundle morphism is just a commutative square

$$\operatorname{Hom} \begin{pmatrix} E_{1} & E_{2} \\ p_{1} \downarrow & , \quad \downarrow^{p_{2}} \\ B_{1} & B_{2} \end{pmatrix} = \begin{cases} (f,g) & E_{1} \xrightarrow{g} E_{2} \\ p_{1} \downarrow & \downarrow^{p_{2}} \\ B_{1} \xrightarrow{f} B_{2} \end{cases}$$

• The pullback $f^*E_2 \cong B_1 \times_{B_2} E_2$ has a universal property by which... • ... the map g can be identified with a map $E_1 \to f^*E_2$. But in algebraic geometry, the arrow $E_1 \to f^*(E_2)$ is often reversed:

The usual sort of bundle morphism is just a commutative square

$$\operatorname{Hom} \begin{pmatrix} E_{1} & E_{2} \\ p_{1} \downarrow & , \quad \downarrow^{p_{2}} \\ B_{1} & B_{2} \end{pmatrix} = \left\{ (f,g) \middle| \begin{array}{c} E_{1} \stackrel{g}{\longrightarrow} E_{2} \\ p_{1} \downarrow & \downarrow^{p_{2}} \\ B_{1} \stackrel{g}{\longrightarrow} B_{2} \end{array} \right\}$$

The pullback $f^*E_2 \cong B_1 \times_{B_2} E_2$ has a universal property by which... ... the map g can be identified with a map $E_1 \to f^*E_2$. But in algebraic geometry, the arrow $E_1 \to f^*(E_2)$ is often reversed:

There's a strong relationship between the AG-style maps and lenses. 19/33

Example

Bundles

Example

Example

Example

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

- \blacksquare That is, there is a fully faithful functor $\textbf{Lens} \rightarrow \textbf{Bund}.$
- Send lens object $\binom{B}{B'}$ to the trivial bundle (projection) $B \times B' \to B$.

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

- \blacksquare That is, there is a fully faithful functor $\textbf{Lens} \rightarrow \textbf{Bund}.$
- Send lens object $\binom{B}{B'}$ to the trivial bundle (projection) $B \times B' \to B$.
- Note that the pullback of a projection is a projection:

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

- \blacksquare That is, there is a fully faithful functor $\textbf{Lens} \rightarrow \textbf{Bund}.$
- Send lens object $\binom{B}{B'}$ to the trivial bundle (projection) $B \times B' \to B$.
- Note that the pullback of a projection is a projection:

• Send morphism $\binom{f}{f^{\sharp}}: \binom{B_1}{B'_1} \to \binom{B_2}{B'_2}$ to the bundle morphism:

Such a map $f^{\sharp}: B_1 \times B'_2 \to B_1 \times B'_1$, — in order to commute with π_1 has no choice on the B_1 factor. Thus it can be identified with a map $f^{\sharp}: B_1 \times B'_2 \to B'_1$.

What do we really need to create a lens-like world?

• A category \mathcal{B} where the bases live $f: B_1 \to B_2$.

What do we really need to create a lens-like world?

- A category \mathcal{B} where the bases live $f: B_1 \to B_2$.
- For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.

What do we really need to create a lens-like world?

- A category \mathcal{B} where the bases live $f: B_1 \to B_2$.
- For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.
- For each map $f: B_1 \rightarrow B_2$ and bundle $E_2 \in \mathcal{E}(B_2)$, ...
 - ... a notion of pullback $f^*E_2 \in \mathcal{E}(B_1)$.

What do we really need to create a lens-like world?

- A category \mathcal{B} where the bases live $f: B_1 \to B_2$.
- For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.
- For each map $f: B_1 \rightarrow B_2$ and bundle $E_2 \in \mathcal{E}(B_2)$, ...
 - ... a notion of pullback $f^*E_2 \in \mathcal{E}(B_1)$.

That is, a category $\mathcal B$ and a functor $\mathcal E\colon \mathcal B^{\mathsf{op}}\to \mathbf{Cat}.$

Then define $Lens_{\mathcal{E}}$ as a Grothendieck construction.

What do we really need to create a lens-like world?

- A category \mathcal{B} where the bases live $f: B_1 \to B_2$.
- For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.
- For each map $f: B_1 \rightarrow B_2$ and bundle $E_2 \in \mathcal{E}(B_2)$, ...
 - ... a notion of pullback $f^*E_2 \in \mathcal{E}(B_1)$.

That is, a category $\mathcal B$ and a functor $\mathcal E\colon \mathcal B^{\mathsf{op}}\to \mathbf{Cat}.$

Then define Lens $_{\mathcal{E}}$ as a Grothendieck construction.

• objects
$$\left\{ \begin{bmatrix} E \\ B \end{bmatrix} \mid B : B, E : \mathcal{E}(B) \right\}$$

• morphisms $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix} : \begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$, where $f : B_1 \rightarrow B_2$, $f^{\sharp} : f^*E_2 \rightarrow E_1$.

We denote by $\begin{bmatrix} E \\ B \end{bmatrix}$ the bundle whose

- base space is *B*
- fiber over b : B is E(b).

We denote by $\begin{bmatrix} E \\ B \end{bmatrix}$ the bundle whose

- base space is *B*
- fiber over b : B is E(b).

Here $\begin{bmatrix} E \\ B \end{bmatrix}$ is an object in **Lens**_{\mathcal{E}} for $\mathcal{E} \colon \mathcal{B}^{op} \to \mathbf{Cat}$. Examples:

We denote by $\begin{bmatrix} E \\ B \end{bmatrix}$ the bundle whose

- base space is *B*
- fiber over b : B is E(b).

Here $\begin{bmatrix} E \\ B \end{bmatrix}$ is an object in **Lens**_{\mathcal{E}} for $\mathcal{E} \colon \mathcal{B}^{op} \to \mathbf{Cat}$. Examples:

- If S is a manifold and TS(s) is the tangent space, we write $\begin{bmatrix} TS \\ S \end{bmatrix}$.
- If B' is a set and E(b) = B' for all b : B, we'd denote this $\begin{bmatrix} B' \\ B \end{bmatrix}$

We denote by $\begin{bmatrix} E \\ B \end{bmatrix}$ the bundle whose

- base space is *B*
- fiber over b : B is E(b).

Here $\begin{bmatrix} E \\ B \end{bmatrix}$ is an object in **Lens**_{\mathcal{E}} for $\mathcal{E} \colon \mathcal{B}^{op} \to \mathbf{Cat}$. Examples:

- If S is a manifold and TS(s) is the tangent space, we write $\begin{bmatrix} TS \\ S \end{bmatrix}$.
- If B' is a set and E(b) = B' for all b : B, we'd denote this [^{B'}_B] Note that [^{B'}_B] really means the trivial bundle B × B' → B.

This suggests the following way of thinking of (generalized) lenses.

- An object $\begin{bmatrix} A' \\ A \end{bmatrix}$ consists of contexts and actions: $\begin{bmatrix} actions \\ contexts \end{bmatrix}$
 - A is the contexts; in each a : A there are A'(a) actions available.

This suggests the following way of thinking of (generalized) lenses.

- An object $\begin{bmatrix} A' \\ A \end{bmatrix}$ consists of contexts and actions: $\begin{bmatrix} actions \\ contexts \end{bmatrix}$
 - A is the contexts; in each a : A there are A'(a) actions available.
 - Example $\begin{bmatrix} S \\ S \end{bmatrix}$. At each s : S, where in S do you want to go next?

This suggests the following way of thinking of (generalized) lenses.

- An object $\begin{bmatrix} A' \\ A \end{bmatrix}$ consists of contexts and actions: $\begin{bmatrix} actions \\ contexts \end{bmatrix}$
 - A is the contexts; in each a : A there are A'(a) actions available.
 - Example $\begin{bmatrix} S \\ S \end{bmatrix}$. At each s : S, where in S do you want to go next?
 - **Example** $\begin{bmatrix} TS \\ S \end{bmatrix}$. At each s : S, which tangent direction to go in?
- A morphism $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix} : \begin{bmatrix} A' \\ A \end{bmatrix} \rightarrow \begin{bmatrix} B' \\ B \end{bmatrix}$ is like A giving control to B.
 - Each context a : A is communicated by f to give fa : B.
 - Each *B*-action b' : B'(fa), provide an *A*-action $f^{\sharp}(b') : A'(a)$.

This suggests the following way of thinking of (generalized) lenses.

- An object $\begin{bmatrix} A' \\ A \end{bmatrix}$ consists of contexts and actions: $\begin{bmatrix} actions \\ contexts \end{bmatrix}$
 - A is the contexts; in each a : A there are A'(a) actions available.
 - Example $\begin{bmatrix} S \\ S \end{bmatrix}$. At each s : S, where in S do you want to go next?
 - **Example** $\begin{bmatrix} TS \\ S \end{bmatrix}$. At each s : S, which tangent direction to go in?
- A morphism $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix} : \begin{bmatrix} A' \\ A \end{bmatrix} \rightarrow \begin{bmatrix} B' \\ B \end{bmatrix}$ is like A giving control to B.
 - Each context a : A is communicated by f to give fa : B.
 - Each *B*-action b' : B'(fa), provide an *A*-action $f^{\ddagger}(b') : A'(a)$.

Examples: ringed spaces, cts dynamical systems, functorial view-update.

Ringed spaces

In algebraic geometry they study ringed spaces (X, \mathcal{O}_X) .

- Here X is a topological space and \mathcal{O}_X is a sheaf of rings on it.
- We can think of \mathcal{O}_X as a bundle with a fiber-wise ring structure.
- (This is necessary, not sufficient, but pretty close.)

Ringed spaces

In algebraic geometry they study ringed spaces (X, \mathcal{O}_X) .

- Here X is a topological space and \mathcal{O}_X is a sheaf of rings on it.
- We can think of \mathcal{O}_X as a bundle with a fiber-wise ring structure.
- (This is necessary, not sufficient, but pretty close.)
- A morphism of ringed spaces $\binom{f}{f^{\sharp}}: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is:
 - A continuous map $f: X \to Y$
 - A map of sheaves $f^*\mathcal{O}_Y \to \mathcal{O}_X$.

That is, it's a map $\begin{bmatrix} \mathcal{O}_X \\ X \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{O}_Y \\ Y \end{bmatrix}$.

Continuous dynamical systems

Recall: if A', A are manifolds, a *continuous dynamical system* is:

- A manifold S, (tangent bundle TS),
- A differentiable map $f^{\mathrm{rdt}} \colon S \to A$,
- A differentiable map $f^{\mathsf{dyn}} \colon S \times A' \to TS$

Continuous dynamical systems

Recall: if A', A are manifolds, a *continuous dynamical system* is:

- A manifold S, (tangent bundle TS),

But from the bundle perspective that commutative diagram is baked in.

In other words the dynamical system is just a lens map $\begin{bmatrix} TS \\ S \end{bmatrix} \rightarrow \begin{bmatrix} A' \\ A \end{bmatrix}$

More principled view update

Here's a principled notion of view-update for databases.

• You have two schemas B_1, B_2 and a profunctor $Q: B_1 \rightarrow B_2$.
More principled view update

Here's a principled notion of view-update for databases.

- You have two schemas B_1, B_2 and a profunctor $Q: B_1 \rightarrow B_2$.
- This gives a query/coquery adjunction $Q_*: B_1$ -Inst $\hookrightarrow B_2$ -Inst $: Q^*$.
 - Take instance I_1 , view via Q_* , update (insert or dedup.): $Q_*I_1 \rightarrow I_2$.
 - Then form the pushout of $(I_1 \leftarrow Q^*QI_1 \rightarrow Q^*I_2)$.
- This is a universal construction. Adjunction: l_1/B_1 -Inst $\Leftrightarrow Q_*l_1/B_2$ -Inst.

More principled view update

Here's a principled notion of view-update for databases.

- You have two schemas B_1, B_2 and a profunctor $Q: B_1 \rightarrow B_2$.
- This gives a query/coquery adjunction $Q_*: B_1$ -Inst $\leftrightarrows B_2$ -Inst $: Q^*$.
 - Take instance I_1 , view via Q_* , update (insert or dedup.): $Q_*I_1 \rightarrow I_2$.
 - Then form the pushout of $(I_1 \leftarrow Q^*QI_1 \rightarrow Q^*I_2)$.
- This is a universal construction. Adjunction: l_1/B_1 -Inst $\Leftrightarrow Q_*l_1/B_2$ -Inst.

- Objects are pairs $\begin{bmatrix} m \\ c \end{bmatrix}$ where *m* is an object and...
- ... c is a comonoid; i.e. it implicitly has $\epsilon: c \to I$ and $\delta: c \to c \otimes c$.

- Objects are pairs [^m_c] where *m* is an object and...
- - lacksquare a comonoid homomorphism $f\colon c
 ightarrow c'$ and

• a morphism
$$f^{\sharp}: c \otimes m' \to m$$
.

- Objects are pairs [^m_c] where *m* is an object and...
- - lacksquare a comonoid homomorphism $f\colon c
 ightarrow c'$ and
 - a morphism $f^{\sharp}: c \otimes m' \to m$.
- Example: (Set, 1, ×)
 - Every object and morphism has a unique comonoid structure.
 - So the above description just reduces to the one we know.

If $(\mathcal{M}, I, \otimes)$ is any SMC, there is a notion of lenses in it.

- Objects are pairs [^m_c] where *m* is an object and...
- ... c is a comonoid; i.e. it implicitly has $\epsilon \colon c \to I$ and $\delta \colon c \to c \otimes c$. • A morphism $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix} \colon \begin{bmatrix} m \\ c \end{bmatrix} \to \begin{bmatrix} m' \\ c' \end{bmatrix}$ consists of
 - lacksquare a comonoid homomorphism $f\colon c
 ightarrow c'$ and
 - a morphism $f^{\sharp}: c \otimes m' \to m$.
- Example: (Set, $1, \times$)
 - Every object and morphism has a unique comonoid structure.
 - So the above description just reduces to the one we know.

So how can we see this in the general $\mathcal{E} \colon \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$ setup?

If $(\mathcal{M}, I, \otimes)$ is any SMC, there is a notion of lenses in it.

- Objects are pairs [^m_c] where *m* is an object and...
- ... c is a comonoid; i.e. it implicitly has $\epsilon \colon c \to I$ and $\delta \colon c \to c \otimes c$. • A morphism $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix} \colon \begin{bmatrix} m \\ c \end{bmatrix} \to \begin{bmatrix} m' \\ c' \end{bmatrix}$ consists of
 - lacksquare a comonoid homomorphism $f\colon c
 ightarrow c'$ and
 - a morphism $f^{\sharp}: c \otimes m' \to m$.
- Example: (Set, $1, \times$)
 - Every object and morphism has a unique comonoid structure.
 - So the above description just reduces to the one we know.

So how can we see this in the general $\mathcal{E}\colon \mathcal{B}^{\mathsf{op}}\to \boldsymbol{\mathsf{Cat}}$ setup?

- Take $\mathcal{B} := \{ \text{comonoids } (c, \epsilon, \delta) \text{ in } \mathcal{M} \}$
- Take $\mathcal{E}(c) \coloneqq \mathbf{coKI}(c \otimes -)$, the coKleisli cat. of comonad $x \mapsto c \otimes x$.
- In $\begin{bmatrix} m \\ c \end{bmatrix}$, think of *m* as the product coalgebra $c \otimes m$, "trivial bundle".

We've seen many different lens-like categories \mathcal{L} .

u Usual Lens_C for C an SMC, ringed spaces, cts dynamical systems.

We've seen many different lens-like categories \mathcal{L} .

- **u** Usual **Lens**_C for C an SMC, ringed spaces, cts dynamical systems.
- For each, there's a category $\mathcal B$ and a functor $\mathcal E\colon \mathcal B^{\mathsf{op}}\to \boldsymbol{\mathsf{Cat}}\ ...$
- ... for which the Grothendieck construction (op) gives $\text{Lens}_{\mathcal{E}} \cong \mathcal{L}$.

We've seen many different lens-like categories \mathcal{L} .

- Usual Lens $_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
- For each, there's a category ${\mathcal B}$ and a functor ${\mathcal E}\colon {\mathcal B}^{\mathsf{op}} o {\mathbf{Cat}} \dots$
- ... for which the Grothendieck construction (op) gives $\text{Lens}_{\mathcal{E}} \cong \mathcal{L}$.

People say "lenses are everywhere".

- But they often change what they mean subtly in each case.
- The above is quite general—almost facile—but gives a formalization.

We've seen many different lens-like categories \mathcal{L} .

- Usual Lens $_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
- For each, there's a category ${\mathcal B}$ and a functor ${\mathcal E}\colon {\mathcal B}^{\mathsf{op}} o {\mathbf{Cat}} \dots$
- ... for which the Grothendieck construction (op) gives $\text{Lens}_{\mathcal{E}} \cong \mathcal{L}$.
- People say "lenses are everywhere".
 - But they often change what they mean subtly in each case.
 - The above is quite general—almost facile—but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

• The twisted arrow cat of C is **Lens**_{-/C}.

$$\begin{array}{cccc}
E_1 & \stackrel{f^{\sharp}}{\longleftarrow} & E_2 \\
\stackrel{p_1}{\downarrow} & & \downarrow^{p_2} \\
B_1 & \stackrel{f^{\sharp}}{\longrightarrow} & B_2
\end{array}$$

We've seen many different lens-like categories \mathcal{L} .

- Usual Lens $_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
- For each, there's a category ${\mathcal B}$ and a functor ${\mathcal E}\colon {\mathcal B}^{\mathsf{op}} o {\mathbf{Cat}} \dots$
- ... for which the Grothendieck construction (op) gives $\text{Lens}_{\mathcal{E}} \cong \mathcal{L}$. People say "lenses are everywhere".
 - But they often change what they mean subtly in each case.
- The above is quite general—almost facile—but gives a formalization. Unexpected example of a lens-like category: twisted arrows.
 - The twisted arrow cat of C is **Lens**_{-/C}.

$$\begin{array}{cccc} E_1 & \stackrel{f^{\sharp}}{\longleftarrow} & E_2 \\ P_1 & & \downarrow_{P_2} \\ B_1 & \stackrel{f^{\pm}}{\longrightarrow} & B_2 \end{array} & \begin{array}{cccc} A & \text{morphism} & \begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow & \begin{bmatrix} E_2 \\ B_2 \end{bmatrix} & \text{in the} \\ \text{twisted arrow category.} \end{array}$$

The properties of $\textbf{Lens}_{\mathcal{E}}$ depend on choice of $\mathcal{E}\colon \mathcal{B}^{\mathsf{op}}\to \textbf{Cat}.$

The properties of $\textbf{Lens}_{\mathcal{E}}$ depend on choice of $\mathcal{E}\colon \mathcal{B}^{\mathsf{op}}\to \textbf{Cat}.$

Always: get a "vertical-cartesian" factorization system.

• Each $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix}$: $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ factors as $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} f^* E_2 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$

Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, Lens_{\mathcal{E}} is an SMC.

The properties of $\text{Lens}_{\mathcal{E}}$ depend on choice of $\mathcal{E}\colon \mathcal{B}^{\mathsf{op}}\to \text{Cat}.$

Always: get a "vertical-cartesian" factorization system.

■ Each $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix}$: $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ factors as $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} f^* E_2 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$

Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, **Lens**_{\mathcal{E}} is an SMC.

A nice case: the slice functor: $\mathcal{B}/{-}\colon \mathcal{B}^{\mathsf{op}}\to \mathbf{Cat}$

This works if \mathcal{B} has pullbacks.

It sends $B \mapsto \mathcal{B}/B$, the category of bundles.

• So an object $\begin{bmatrix} E \\ B \end{bmatrix} \in \text{Lens}_{\mathcal{B}/-}$ is just a map $E \to B$.

The properties of $\text{Lens}_{\mathcal{E}}$ depend on choice of $\mathcal{E}\colon \mathcal{B}^{\mathsf{op}}\to \text{Cat}.$

Always: get a "vertical-cartesian" factorization system.

• Each $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix}$: $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ factors as $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} f^*E_2 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$

Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, **Lens**_{\mathcal{E}} is an SMC.

A nice case: the slice functor: $\mathcal{B}/{-}\colon \mathcal{B}^{\mathsf{op}}\to \mathbf{Cat}$

This works if B has pullbacks.

It sends $B \mapsto \mathcal{B}/B$, the category of bundles.

• So an object $\begin{bmatrix} E \\ B \end{bmatrix} \in \text{Lens}_{\mathcal{B}/-}$ is just a map $E \to B$.

If \mathcal{B} is locally cart. closed with disjoint coproducts (e.g. a topos) ...

The properties of $\text{Lens}_{\mathcal{E}}$ depend on choice of $\mathcal{E}\colon \mathcal{B}^{\mathsf{op}}\to \text{Cat}.$

Always: get a "vertical-cartesian" factorization system.

• Each $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix}$: $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ factors as $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} f^*E_2 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$

Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, Lens_{\mathcal{E}} is an SMC.

A nice case: the slice functor: $\mathcal{B}/{-}\colon \mathcal{B}^{\mathsf{op}}\to \mathbf{Cat}$

This works if B has pullbacks.

• It sends $B \mapsto \mathcal{B}/B$, the category of bundles.

• So an object $\begin{bmatrix} E \\ B \end{bmatrix} \in \text{Lens}_{\mathcal{B}/-}$ is just a map $E \to B$.

■ If B is locally cart. closed with disjoint coproducts (e.g. a topos) ...

- ... then $\text{Lens}_{\mathcal{B}/-}$ has excellent formal properties.
 - Complete, cocomplete, cartesian closed.
 - Initial alg's and final coalg's for polynomial endofunctors.

• Another fact'n system: $\begin{bmatrix} f^{\sharp} \\ f \end{bmatrix}$ factors as $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} f_* E_1 \\ B_2 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$

There's a strong connection to polynomial functors, aka containers.

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.
- Provide data structures like lists, binary trees, trees, streams, etc.
- Called polynomials because they send x to e.g. x^4+3x^2+2x+1 .

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.
- Provide data structures like lists, binary trees, trees, streams, etc.
- Called polynomials because they send x to e.g. x^4+3x^2+2x+1 .

Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.

• We're looking at **Lens**_{$\mathcal{B}/-$}, i.e. objects $\begin{bmatrix} E \\ B \end{bmatrix}$ are maps $E \to B$ in \mathcal{B} .

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.
- Provide data structures like lists, binary trees, trees, streams, etc.
- Called polynomials because they send x to e.g. x^4+3x^2+2x+1 .

Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.

- We're looking at **Lens**_{$\mathcal{B}/-$}, i.e. objects $\begin{bmatrix} E\\B \end{bmatrix}$ are maps $E \to B$ in \mathcal{B} .
- An object $\begin{bmatrix} E \\ B \end{bmatrix}$ is the same data as a polynomial functor!

It would denote the functor sending $x \mapsto \sum_{b:B} x^{E(b)}$.

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.
- Provide data structures like lists, binary trees, trees, streams, etc.
- Called polynomials because they send x to e.g. x^4+3x^2+2x+1 .

Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.

- We're looking at **Lens**_{$\mathcal{B}/-$}, i.e. objects $\begin{bmatrix} E\\B \end{bmatrix}$ are maps $E \to B$ in \mathcal{B} .
- An object $\begin{bmatrix} E \\ B \end{bmatrix}$ is the same data as a polynomial functor!
 - It would denote the functor sending $x \mapsto \sum_{b:B} x^{E(b)}$.
 - E.g. the above polynomial corresponds to the following bundle

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.
- Provide data structures like lists, binary trees, trees, streams, etc.
- Called polynomials because they send x to e.g. x^4+3x^2+2x+1 .

Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.

- We're looking at **Lens**_{$\mathcal{B}/-$}, i.e. objects $\begin{bmatrix} E\\B \end{bmatrix}$ are maps $E \to B$ in \mathcal{B} .
- An object $\begin{bmatrix} E \\ B \end{bmatrix}$ is the same data as a polynomial functor!
 - It would denote the functor sending $x \mapsto \sum_{b:B} x^{E(b)}$.
 - E.g. the above polynomial corresponds to the following bundle

And they have the same morphisms too: $\mathbf{Poly}_{\mathcal{B}} \cong \mathbf{Lens}_{\mathcal{B}/-}$.

How should we interpret the isomorphism $Poly_{Set} \cong Lens_{Set/-}$?

How should we interpret the isomorphism $Poly_{Set} \cong Lens_{Set/-}$?

- How are objects $\begin{bmatrix} E \\ B \end{bmatrix}$ functors exactly?
- And how are lenses $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ natural transformations?

How should we interpret the isomorphism $\textbf{Poly}_{\textbf{Set}}\cong \textbf{Lens}_{\textbf{Set}/-}?$

• How are objects $\begin{bmatrix} E \\ B \end{bmatrix}$ functors exactly?

• And how are lenses $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ natural transformations?

Answer:

Interpreting $\begin{bmatrix} E \\ B \end{bmatrix}$ as a functor, it sends X to the set Lens $\left(\begin{bmatrix} X \\ 1 \end{bmatrix}, \begin{bmatrix} E \\ B \end{bmatrix} \right)$.

How should we interpret the isomorphism $\textbf{Poly}_{\textbf{Set}}\cong \textbf{Lens}_{\textbf{Set}/-}?$

- How are objects $\begin{bmatrix} E \\ B \end{bmatrix}$ functors exactly?
- And how are lenses $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ natural transformations?

Answer:

■ Interpreting $\begin{bmatrix} E \\ B \end{bmatrix}$ as a functor, it sends X to the set Lens $\left(\begin{bmatrix} X \\ 1 \end{bmatrix}, \begin{bmatrix} E \\ B \end{bmatrix} \right)$.

How should we interpret the isomorphism $\textbf{Poly}_{\textbf{Set}}\cong \textbf{Lens}_{\textbf{Set}/-}?$

- How are objects $\begin{bmatrix} E \\ B \end{bmatrix}$ functors exactly?
- And how are lenses $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ natural transformations?

Answer:

■ Interpreting $\begin{bmatrix} E \\ B \end{bmatrix}$ as a functor, it sends X to the set Lens $\left(\begin{bmatrix} X \\ 1 \end{bmatrix}, \begin{bmatrix} E \\ B \end{bmatrix} \right)$.

Do you see why this sends X to $X^4 + 3X^2 + 2X + 1$?

How should we interpret the isomorphism $\textbf{Poly}_{\textbf{Set}}\cong \textbf{Lens}_{\textbf{Set}/-}?$

- How are objects $\begin{bmatrix} E \\ B \end{bmatrix}$ functors exactly?
- And how are lenses $\begin{bmatrix} E_1 \\ B_1 \end{bmatrix} \rightarrow \begin{bmatrix} E_2 \\ B_2 \end{bmatrix}$ natural transformations?

Answer:

■ Interpreting $\begin{bmatrix} E \\ B \end{bmatrix}$ as a functor, it sends X to the set Lens $\left(\begin{bmatrix} X \\ 1 \end{bmatrix}, \begin{bmatrix} E \\ B \end{bmatrix} \right)$.

Do you see why this sends X to X⁴ + 3X² + 2X + 1?
The functor acts on a lens [^E_B] → [^{E'}_{B'}] by composing with it.

Outline

- I Introduction
- **2** Some applications of lenses
- **3** Generalizing lens categories
- 4 Conclusion

Lenses seem to be springing up in many different places.

- Functional programming; database transactions;
- Open games; supervised learning;
- Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

Lenses seem to be springing up in many different places.

- Functional programming; database transactions;
- Open games; supervised learning;
- Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form $(B_1 \rightarrow B_2, B_1 \times E_2 \rightarrow E_1)$.

- Namely, we think in terms of bundles $\begin{bmatrix} E \\ B \end{bmatrix}$.
- This perspective puts lenses in a more familiar categorical setting.
 - Used in algebraic geometry and theory of polynomial functors.

Lenses seem to be springing up in many different places.

- Functional programming; database transactions;
- Open games; supervised learning;
- Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form $(B_1 \rightarrow B_2, B_1 \times E_2 \rightarrow E_1)$.

- Namely, we think in terms of bundles $\begin{bmatrix} E \\ B \end{bmatrix}$.
- This perspective puts lenses in a more familiar categorical setting.
 - Used in algebraic geometry and theory of polynomial functors.
- The larger category of bundles has better formal properties
 - Coproducts, initial algebras, an extra factorization system, etc.

Lenses seem to be springing up in many different places.

- Functional programming; database transactions;
- Open games; supervised learning;
- Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form $(B_1 \rightarrow B_2, B_1 \times E_2 \rightarrow E_1)$.

- Namely, we think in terms of bundles $\begin{bmatrix} E \\ B \end{bmatrix}$.
- This perspective puts lenses in a more familiar categorical setting.
 - Used in algebraic geometry and theory of polynomial functors.
- The larger category of bundles has better formal properties
 - Coproducts, initial algebras, an extra factorization system, etc.
- In fact, one gets a lens-like category for any $\mathcal{E} \colon \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$.
 - Just take its Grothendieck construction (op).

Lenses seem to be springing up in many different places.

- Functional programming; database transactions;
- Open games; supervised learning;
- Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form $(B_1 \rightarrow B_2, B_1 \times E_2 \rightarrow E_1)$.

- Namely, we think in terms of bundles $\begin{bmatrix} E \\ B \end{bmatrix}$.
- This perspective puts lenses in a more familiar categorical setting.
 - Used in algebraic geometry and theory of polynomial functors.
- The larger category of bundles has better formal properties
 - Coproducts, initial algebras, an extra factorization system, etc.
- In fact, one gets a lens-like category for any $\mathcal{E} \colon \mathcal{B}^{\mathsf{op}} \to \mathbf{Cat}$.
 - Just take its Grothendieck construction (op).

Thanks; comments and questions welcome!