
Lenses: applications and generalizations

David I. Spivak

Department of Mathematics
Massachusetts Institute of Technology

0 / 33

Introduction

Outline

1 Introduction
An agent in an environment
Lenses organize interactions
Lenses in CT

2 Some applications of lenses

3 Generalizing lens categories

4 Conclusion

0 / 33

Introduction An agent in an environment

An agent in an environment

We always hear of an agent in an environment. What’s that?

The agent has an effect on the environment and vice versa.

What does that mean?

It means agent and environment are communicating somehow.

The agent observes the environment and acts on it.

The agent’s state affects that of the environment and vice versa.

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

How shall we model this mathematically?

1 / 33

Introduction An agent in an environment

An agent in an environment

We always hear of an agent in an environment. What’s that?

The agent has an effect on the environment and vice versa.

What does that mean?

It means agent and environment are communicating somehow.

The agent observes the environment and acts on it.

The agent’s state affects that of the environment and vice versa.

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

How shall we model this mathematically?

1 / 33

Introduction An agent in an environment

An agent in an environment

We always hear of an agent in an environment. What’s that?

The agent has an effect on the environment and vice versa.

What does that mean?

It means agent and environment are communicating somehow.

The agent observes the environment and acts on it.

The agent’s state affects that of the environment and vice versa.

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

How shall we model this mathematically?

1 / 33

Introduction An agent in an environment

An agent in an environment

We always hear of an agent in an environment. What’s that?

The agent has an effect on the environment and vice versa.

What does that mean?

It means agent and environment are communicating somehow.

The agent observes the environment and acts on it.

The agent’s state affects that of the environment and vice versa.

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

How shall we model this mathematically?

1 / 33

Introduction An agent in an environment

A formalization of agent/environment interaction

Setup:

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

Let’s model states and communications as sets:

a set SAg for the possible states of the agent,

a set SEn for the possible states of the environment,

a set Act for the possible actions, and

a set Obs for the possible observations.

These change in time. At every time step, what happens?

Action is dictated by agent’s state via some SAg → Act.

Agent’s state is updated by the observation via SAg × Obs → SAg.

Observation is dictated by environment’s state via SEn → Obs.

Environment’s state is updated by the action via SEn × Act → SEn.

2 / 33

Introduction An agent in an environment

A formalization of agent/environment interaction

Setup:

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

Let’s model states and communications as sets:

a set SAg for the possible states of the agent,

a set SEn for the possible states of the environment,

a set Act for the possible actions, and

a set Obs for the possible observations.

These change in time. At every time step, what happens?

Action is dictated by agent’s state via some SAg → Act.

Agent’s state is updated by the observation via SAg × Obs → SAg.

Observation is dictated by environment’s state via SEn → Obs.

Environment’s state is updated by the action via SEn × Act → SEn.

2 / 33

Introduction An agent in an environment

A formalization of agent/environment interaction

Setup:

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

Let’s model states and communications as sets:

a set SAg for the possible states of the agent,

a set SEn for the possible states of the environment,

a set Act for the possible actions, and

a set Obs for the possible observations.

These change in time. At every time step, what happens?

Action is dictated by agent’s state via some SAg → Act.

Agent’s state is updated by the observation via SAg × Obs → SAg.

Observation is dictated by environment’s state via SEn → Obs.

Environment’s state is updated by the action via SEn × Act → SEn.

2 / 33

Introduction An agent in an environment

A formalization of agent/environment interaction

Setup:

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

Let’s model states and communications as sets:

a set SAg for the possible states of the agent,

a set SEn for the possible states of the environment,

a set Act for the possible actions, and

a set Obs for the possible observations.

These change in time. At every time step, what happens?

Action is dictated by agent’s state via some SAg → Act.

Agent’s state is updated by the observation via SAg × Obs → SAg.

Observation is dictated by environment’s state via SEn → Obs.

Environment’s state is updated by the action via SEn × Act → SEn.

2 / 33

Introduction An agent in an environment

A formalization of agent/environment interaction

Setup:

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

Let’s model states and communications as sets:

a set SAg for the possible states of the agent,

a set SEn for the possible states of the environment,

a set Act for the possible actions, and

a set Obs for the possible observations.

These change in time. At every time step, what happens?

Action is dictated by agent’s state via some SAg → Act.

Agent’s state is updated by the observation via SAg × Obs → SAg.

Observation is dictated by environment’s state via SEn → Obs.

Environment’s state is updated by the action via SEn × Act → SEn.

2 / 33

Introduction An agent in an environment

A formalization of agent/environment interaction

Setup:

Agent affects environment through action.

Environment affects agent through observation.

Each is affected in that it undergoes a change of state.

Let’s model states and communications as sets:

a set SAg for the possible states of the agent,

a set SEn for the possible states of the environment,

a set Act for the possible actions, and

a set Obs for the possible observations.

These change in time. At every time step, what happens?

Action is dictated by agent’s state via some SAg → Act.

Agent’s state is updated by the observation via SAg × Obs → SAg.

Observation is dictated by environment’s state via SEn → Obs.

Environment’s state is updated by the action via SEn × Act → SEn.

2 / 33

Introduction Lenses organize interactions

How to organize all this stuff?

We have sets SAg, SEn,Act,Obs and functions

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

How to organize all this stuff?

Each pair of functions is a special case of what are called lenses.

Lenses are the morphisms in a cat Lens, whose objects are pairs
(X
Y

)
.

The lenses from our agent/environment setup would be denoted:(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
Lenses have been coming up in the ACT community a lot lately.

3 / 33

Introduction Lenses organize interactions

How to organize all this stuff?

We have sets SAg, SEn,Act,Obs and functions

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

How to organize all this stuff?

Each pair of functions is a special case of what are called lenses.

Lenses are the morphisms in a cat Lens, whose objects are pairs
(X
Y

)
.

The lenses from our agent/environment setup would be denoted:(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)

Lenses have been coming up in the ACT community a lot lately.

3 / 33

Introduction Lenses organize interactions

How to organize all this stuff?

We have sets SAg, SEn,Act,Obs and functions

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

How to organize all this stuff?

Each pair of functions is a special case of what are called lenses.

Lenses are the morphisms in a cat Lens, whose objects are pairs
(X
Y

)
.

The lenses from our agent/environment setup would be denoted:(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
Lenses have been coming up in the ACT community a lot lately.

3 / 33

Introduction Lenses organize interactions

Applications of lenses

There have been many uses of lens-like things over the years.

Bidirectional transformations (Oles),

dialectica categories and linear logic (de Paiva),

the view-update problem in databases (Hoffman, Pierce),

functional programming (Gibbons, Oliveira, Palmer, Kmett),

wiring diagrams, discrete and continuous dynamical systems (Spivak),

open economic games (Ghani-Hedges),

supervised learning (Fong-Spivak-Tuyéras).

I’ll explain a few of these as we go, especially the ones I’ve worked on.

4 / 33

Introduction Lenses organize interactions

Applications of lenses

There have been many uses of lens-like things over the years.

Bidirectional transformations (Oles),

dialectica categories and linear logic (de Paiva),

the view-update problem in databases (Hoffman, Pierce),

functional programming (Gibbons, Oliveira, Palmer, Kmett),

wiring diagrams, discrete and continuous dynamical systems (Spivak),

open economic games (Ghani-Hedges),

supervised learning (Fong-Spivak-Tuyéras).

I’ll explain a few of these as we go, especially the ones I’ve worked on.

4 / 33

Introduction Lenses in CT

The symmetric monoidal category of lenses

For any symmetric monoidal category C, we get an SMC LensC .

For simplicity, let’s take C = Set and just write Lens for LensSet.

Ob(Lens) :=
{(A

A′

) ∣∣∣ A,A′ ∈ Ob(Set)
}

Monoidal unit:
(1
1

)
; monoidal product:

(A
A′

)
⊗
(B
B′

)
:=
(A×B
A′×B′

)
Lens

((A
A′

)
,
(B
B′

))
:=

{(f
f]

) ∣∣∣∣ f : A→B

f] : A×B′→A′

}
.

id(A
A′)

=
(idA
π

)
, where π : A× A′ → A′ is the projection.(f

f]

)
#
(g
g]

)
=
(f #g
(a,c ′)7→f](a,g](f (a),c ′))

)
f gA B

C
A

f
g]

B
f]

B′C ′
A′

5 / 33

Introduction Lenses in CT

The symmetric monoidal category of lenses

For any symmetric monoidal category C, we get an SMC LensC .
For simplicity, let’s take C = Set and just write Lens for LensSet.

Ob(Lens) :=
{(A

A′

) ∣∣∣ A,A′ ∈ Ob(Set)
}

Monoidal unit:
(1
1

)
; monoidal product:

(A
A′

)
⊗
(B
B′

)
:=
(A×B
A′×B′

)
Lens

((A
A′

)
,
(B
B′

))
:=

{(f
f]

) ∣∣∣∣ f : A→B

f] : A×B′→A′

}
.

id(A
A′)

=
(idA
π

)
, where π : A× A′ → A′ is the projection.(f

f]

)
#
(g
g]

)
=
(f #g
(a,c ′)7→f](a,g](f (a),c ′))

)
f gA B

C
A

f
g]

B
f]

B′C ′
A′

5 / 33

Introduction Lenses in CT

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

Lens

((
A

A′

)
,

(
B

B ′

))
:=

{(
f

f]

) ∣∣∣∣∣ f : A→ B

f] : A× B ′ → A′

}
.

I wanted to understand Lens in a way I found more comfortable.

Today: we’ll first see Lens as part of a larger category that

provides a sort of geometrical perspective,

might be more familiar, e.g. to algebraic geometers, and

has better formal properties.

We then generalize further to pick up some close cousins of lenses.

6 / 33

Introduction Lenses in CT

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

Lens

((
A

A′

)
,

(
B

B ′

))
:=

{(
f

f]

) ∣∣∣∣∣ f : A→ B

f] : A× B ′ → A′

}
.

I wanted to understand Lens in a way I found more comfortable.

Today: we’ll first see Lens as part of a larger category that

provides a sort of geometrical perspective,

might be more familiar, e.g. to algebraic geometers, and

has better formal properties.

We then generalize further to pick up some close cousins of lenses.

6 / 33

Introduction Lenses in CT

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

Lens

((
A

A′

)
,

(
B

B ′

))
:=

{(
f

f]

) ∣∣∣∣∣ f : A→ B

f] : A× B ′ → A′

}
.

I wanted to understand Lens in a way I found more comfortable.

Today: we’ll first see Lens as part of a larger category that

provides a sort of geometrical perspective,

might be more familiar, e.g. to algebraic geometers, and

has better formal properties.

We then generalize further to pick up some close cousins of lenses.

6 / 33

Introduction Lenses in CT

Other generalizations

There are other generalizations possible.

Kmett, Riley, etc. have generalized lenses to optics.

Briefly: for any monoidal category (C, I ,⊗), ...

an optic
(A
A′

)
→
(B
B′

)
can be identified with an element of∫ M∈C

C (A,M ⊗ B)× C (M ⊗ B ′,A′).

This can be generalized even further using Tambara modules.

However, it’s not the direction I want to go today.

7 / 33

Introduction Lenses in CT

Other generalizations

There are other generalizations possible.

Kmett, Riley, etc. have generalized lenses to optics.

Briefly: for any monoidal category (C, I ,⊗), ...

an optic
(A
A′

)
→
(B
B′

)
can be identified with an element of∫ M∈C

C (A,M ⊗ B)× C (M ⊗ B ′,A′).

This can be generalized even further using Tambara modules.

However, it’s not the direction I want to go today.

7 / 33

Introduction Lenses in CT

Other generalizations

There are other generalizations possible.

Kmett, Riley, etc. have generalized lenses to optics.

Briefly: for any monoidal category (C, I ,⊗), ...

an optic
(A
A′

)
→
(B
B′

)
can be identified with an element of∫ M∈C

C (A,M ⊗ B)× C (M ⊗ B ′,A′).

This can be generalized even further using Tambara modules.

However, it’s not the direction I want to go today.

7 / 33

Introduction Lenses in CT

Plan of the talk

Plan for the rest of the talk:

Some applications of lenses

Generalizing lens categories

8 / 33

Some applications of lenses

Outline

1 Introduction

2 Some applications of lenses
Back to the agent in an environment
Machine learning
Examples that don’t quite work right

3 Generalizing lens categories

4 Conclusion

8 / 33

Some applications of lenses Back to the agent in an environment

Agent in an environment

We began with an agent and an environment interacting.

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

These are lenses
(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
. Explain the flip?

Idea: if we tensor ⊗ these lenses we get:(
SAg × SEn
SAg × SEn

)
→
(

Act × Obs

Obs × Act

)
and there’s an “symmetry” lens morphism

(Act×Obs
Obs×Act

)
→
(1
1

)
.

Composing, we get a single lens
(S
S

)
→
(1
1

)
, where S = SAg × SEn.

It’s just a set S and a map S → S : a discrete dynamical system.

We can see this as part of a bigger picture.

9 / 33

Some applications of lenses Back to the agent in an environment

Agent in an environment

We began with an agent and an environment interacting.

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

These are lenses
(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
. Explain the flip?

Idea: if we tensor ⊗ these lenses we get:(
SAg × SEn
SAg × SEn

)
→
(

Act × Obs

Obs × Act

)
and there’s an “symmetry” lens morphism

(Act×Obs
Obs×Act

)
→
(1
1

)
.

Composing, we get a single lens
(S
S

)
→
(1
1

)
, where S = SAg × SEn.

It’s just a set S and a map S → S : a discrete dynamical system.

We can see this as part of a bigger picture.

9 / 33

Some applications of lenses Back to the agent in an environment

Agent in an environment

We began with an agent and an environment interacting.

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

These are lenses
(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
. Explain the flip?

Idea: if we tensor ⊗ these lenses we get:(
SAg × SEn
SAg × SEn

)
→
(

Act × Obs

Obs × Act

)
and there’s an “symmetry” lens morphism

(Act×Obs
Obs×Act

)
→
(1
1

)
.

Composing, we get a single lens
(S
S

)
→
(1
1

)
, where S = SAg × SEn.

It’s just a set S and a map S → S : a discrete dynamical system.

We can see this as part of a bigger picture.

9 / 33

Some applications of lenses Back to the agent in an environment

Agent in an environment

We began with an agent and an environment interacting.

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

These are lenses
(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
. Explain the flip?

Idea: if we tensor ⊗ these lenses we get:(
SAg × SEn
SAg × SEn

)
→
(

Act × Obs

Obs × Act

)
and there’s an “symmetry” lens morphism

(Act×Obs
Obs×Act

)
→
(1
1

)
.

Composing, we get a single lens
(S
S

)
→
(1
1

)
, where S = SAg × SEn.

It’s just a set S and a map S → S : a discrete dynamical system.

We can see this as part of a bigger picture.

9 / 33

Some applications of lenses Back to the agent in an environment

Agent in an environment

We began with an agent and an environment interacting.

SAg → Act SEn → Obs

SAg × Obs → SAg SEn × Act → SEn

These are lenses
(SAg
SAg

)
→
(Act
Obs

)
and

(SEn
SEn

)
→
(Obs
Act

)
. Explain the flip?

Idea: if we tensor ⊗ these lenses we get:(
SAg × SEn
SAg × SEn

)
→
(

Act × Obs

Obs × Act

)
and there’s an “symmetry” lens morphism

(Act×Obs
Obs×Act

)
→
(1
1

)
.

Composing, we get a single lens
(S
S

)
→
(1
1

)
, where S = SAg × SEn.

It’s just a set S and a map S → S : a discrete dynamical system.

We can see this as part of a bigger picture.
9 / 33

Some applications of lenses Back to the agent in an environment

The agent-environment system

So what were we doing when we:

started with lenses
(S
S

)
→
(Act
Obs

)
and

(S ′
S ′

)
→
(Obs
Act

)
,

multiplied them together to get a map
(S×S ′
S×S ′

)
→
(Act×Obs
Obs×Act

)
, and then

composed the result with a canonical map to
(1
1

)
?

It turns out we were doing this:

SEn SAg
Obs

Act

More generally we can consider open systems with many interacting agents

S1

S2

S3

10 / 33

Some applications of lenses Back to the agent in an environment

The agent-environment system

So what were we doing when we:

started with lenses
(S
S

)
→
(Act
Obs

)
and

(S ′
S ′

)
→
(Obs
Act

)
,

multiplied them together to get a map
(S×S ′
S×S ′

)
→
(Act×Obs
Obs×Act

)
, and then

composed the result with a canonical map to
(1
1

)
?

It turns out we were doing this:

SEn SAg
Obs

Act

More generally we can consider open systems with many interacting agents

S1

S2

S3

10 / 33

Some applications of lenses Back to the agent in an environment

The agent-environment system

So what were we doing when we:

started with lenses
(S
S

)
→
(Act
Obs

)
and

(S ′
S ′

)
→
(Obs
Act

)
,

multiplied them together to get a map
(S×S ′
S×S ′

)
→
(Act×Obs
Obs×Act

)
, and then

composed the result with a canonical map to
(1
1

)
?

It turns out we were doing this:

SEn SAg
Obs

Act

More generally we can consider open systems with many interacting agents

S1

S2

S3

10 / 33

Some applications of lenses Back to the agent in an environment

Wiring diagrams

What is going on in this picture mathematically:

A

B

C

A

D

E

E

F

G

For each box, we have an object
(outputs
inputs

)
in Lens.

We have three interior boxes:
(C
E×A

)
,
(D×G

B

)
,
(E×F
C×A×D

)
.

We have one exterior box:
(F×G
A×B

)
.

The wiring diagram induces a lens
(C×D×G×E×F
E×A×B×C×A×D

)
→
(F×G
A×B

)
Both maps are just projections and diagonals:

C × D × G × E × F → F × G

C × D × G × E × F × A× B → E × A× B × C × A× D

Every wiring diagram gives a lens made of projections and diagonals.

11 / 33

Some applications of lenses Back to the agent in an environment

Wiring diagrams

What is going on in this picture mathematically:

A

B

C

A

D

E

E

F

G

For each box, we have an object
(outputs
inputs

)
in Lens.

We have three interior boxes:
(C
E×A

)
,
(D×G

B

)
,
(E×F
C×A×D

)
.

We have one exterior box:
(F×G
A×B

)
.

The wiring diagram induces a lens
(C×D×G×E×F
E×A×B×C×A×D

)
→
(F×G
A×B

)
Both maps are just projections and diagonals:

C × D × G × E × F → F × G

C × D × G × E × F × A× B → E × A× B × C × A× D

Every wiring diagram gives a lens made of projections and diagonals.

11 / 33

Some applications of lenses Back to the agent in an environment

Wiring diagrams

What is going on in this picture mathematically:

A

B

C

A

D

E

E

F

G

For each box, we have an object
(outputs
inputs

)
in Lens.

We have three interior boxes:
(C
E×A

)
,
(D×G

B

)
,
(E×F
C×A×D

)
.

We have one exterior box:
(F×G
A×B

)
.

The wiring diagram induces a lens
(C×D×G×E×F
E×A×B×C×A×D

)
→
(F×G
A×B

)
Both maps are just projections and diagonals:

C × D × G × E × F → F × G

C × D × G × E × F × A× B → E × A× B × C × A× D

Every wiring diagram gives a lens made of projections and diagonals.

11 / 33

Some applications of lenses Back to the agent in an environment

Wiring diagrams

What is going on in this picture mathematically:

A

B

C

A

D

E

E

F

G

For each box, we have an object
(outputs
inputs

)
in Lens.

We have three interior boxes:
(C
E×A

)
,
(D×G

B

)
,
(E×F
C×A×D

)
.

We have one exterior box:
(F×G
A×B

)
.

The wiring diagram induces a lens
(C×D×G×E×F
E×A×B×C×A×D

)
→
(F×G
A×B

)

Both maps are just projections and diagonals:

C × D × G × E × F → F × G

C × D × G × E × F × A× B → E × A× B × C × A× D

Every wiring diagram gives a lens made of projections and diagonals.

11 / 33

Some applications of lenses Back to the agent in an environment

Wiring diagrams

What is going on in this picture mathematically:

A

B

C

A

D

E

E

F

G

For each box, we have an object
(outputs
inputs

)
in Lens.

We have three interior boxes:
(C
E×A

)
,
(D×G

B

)
,
(E×F
C×A×D

)
.

We have one exterior box:
(F×G
A×B

)
.

The wiring diagram induces a lens
(C×D×G×E×F
E×A×B×C×A×D

)
→
(F×G
A×B

)
Both maps are just projections and diagonals:

C × D × G × E × F → F × G

C × D × G × E × F × A× B → E × A× B × C × A× D

Every wiring diagram gives a lens made of projections and diagonals.

11 / 33

Some applications of lenses Back to the agent in an environment

Wiring diagrams

What is going on in this picture mathematically:

A

B

C

A

D

E

E

F

G

For each box, we have an object
(outputs
inputs

)
in Lens.

We have three interior boxes:
(C
E×A

)
,
(D×G

B

)
,
(E×F
C×A×D

)
.

We have one exterior box:
(F×G
A×B

)
.

The wiring diagram induces a lens
(C×D×G×E×F
E×A×B×C×A×D

)
→
(F×G
A×B

)
Both maps are just projections and diagonals:

C × D × G × E × F → F × G

C × D × G × E × F × A× B → E × A× B × C × A× D

Every wiring diagram gives a lens made of projections and diagonals.
11 / 33

Some applications of lenses Back to the agent in an environment

WDs and discrete dynamical systems

A discrete dynamical system of type
(A
A′

)
consists of

A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

Optional: an element s0 ∈ S called “initial state”.

This is just a lens
(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
, with optional

(s0
!

)
:
(1
1

)
→
(S
S

)
.

We’ll denote this setup by writing S , or (S , s0) inside the box

SA′ A or S , s0A′ A

A wiring diagram is a lens
(A1
A′1

)
⊗ · · · ⊗

(An

A′n

)
→
(B
B′

)
, and

Each dyn’l system is a lens
(Si
Si

)
→
(Ai
A′i

)
. Composing and multiplying...

We get a dynamical system
(S1×···×Sn
S1×···×Sn

)
→
(B
B′

)
in outer box.

This story of DS’s and WD’s existed years before I knew about lenses.

12 / 33

Some applications of lenses Back to the agent in an environment

WDs and discrete dynamical systems

A discrete dynamical system of type
(A
A′

)
consists of

A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

Optional: an element s0 ∈ S called “initial state”.

This is just a lens
(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
, with optional

(s0
!

)
:
(1
1

)
→
(S
S

)
.

We’ll denote this setup by writing S , or (S , s0) inside the box

SA′ A or S , s0A′ A

A wiring diagram is a lens
(A1
A′1

)
⊗ · · · ⊗

(An

A′n

)
→
(B
B′

)
, and

Each dyn’l system is a lens
(Si
Si

)
→
(Ai
A′i

)
. Composing and multiplying...

We get a dynamical system
(S1×···×Sn
S1×···×Sn

)
→
(B
B′

)
in outer box.

This story of DS’s and WD’s existed years before I knew about lenses.

12 / 33

Some applications of lenses Back to the agent in an environment

WDs and discrete dynamical systems

A discrete dynamical system of type
(A
A′

)
consists of

A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

Optional: an element s0 ∈ S called “initial state”.

This is just a lens
(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
, with optional

(s0
!

)
:
(1
1

)
→
(S
S

)
.

We’ll denote this setup by writing S , or (S , s0) inside the box

SA′ A or S , s0A′ A

A wiring diagram is a lens
(A1
A′1

)
⊗ · · · ⊗

(An

A′n

)
→
(B
B′

)
, and

Each dyn’l system is a lens
(Si
Si

)
→
(Ai
A′i

)
. Composing and multiplying...

We get a dynamical system
(S1×···×Sn
S1×···×Sn

)
→
(B
B′

)
in outer box.

This story of DS’s and WD’s existed years before I knew about lenses.

12 / 33

Some applications of lenses Back to the agent in an environment

WDs and discrete dynamical systems

A discrete dynamical system of type
(A
A′

)
consists of

A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

Optional: an element s0 ∈ S called “initial state”.

This is just a lens
(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
, with optional

(s0
!

)
:
(1
1

)
→
(S
S

)
.

We’ll denote this setup by writing S , or (S , s0) inside the box

SA′ A or S , s0A′ A

A wiring diagram is a lens
(A1
A′1

)
⊗ · · · ⊗

(An

A′n

)
→
(B
B′

)
, and

Each dyn’l system is a lens
(Si
Si

)
→
(Ai
A′i

)
. Composing and multiplying...

We get a dynamical system
(S1×···×Sn
S1×···×Sn

)
→
(B
B′

)
in outer box.

This story of DS’s and WD’s existed years before I knew about lenses.

12 / 33

Some applications of lenses Back to the agent in an environment

WDs and discrete dynamical systems

A discrete dynamical system of type
(A
A′

)
consists of

A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

Optional: an element s0 ∈ S called “initial state”.

This is just a lens
(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
, with optional

(s0
!

)
:
(1
1

)
→
(S
S

)
.

We’ll denote this setup by writing S , or (S , s0) inside the box

SA′ A or S , s0A′ A

A wiring diagram is a lens
(A1
A′1

)
⊗ · · · ⊗

(An

A′n

)
→
(B
B′

)
, and

Each dyn’l system is a lens
(Si
Si

)
→
(Ai
A′i

)
. Composing and multiplying...

We get a dynamical system
(S1×···×Sn
S1×···×Sn

)
→
(B
B′

)
in outer box.

This story of DS’s and WD’s existed years before I knew about lenses.
12 / 33

Some applications of lenses Machine learning

Learners

Similarly, the story of learners existed before we knew about lenses.

A learner is something that approximates a function A′ → A.

It consists of a function P × A′ → A, where P is a set.

It also has an update-backprop function P × A′ × A→ P × A′.

So it’s just a lens
(implement
upd-backprop

)
:
(P
P

)
⊗
(A′
A′

)
→
(A
A

)
For any monoidal category C, there is a monoidal category Para(C):

Objects in Para(C) are objects in C
Morphisms A′ → A in Para(C) consist of pairs (P, f) where

P is an object of C, (chosen up to isomorphism)

f : P ⊗ A′ → A is a morphism

Composition is “multiply parameters and compose”

Our category Learn is just Para(Lens).

13 / 33

Some applications of lenses Machine learning

Learners

Similarly, the story of learners existed before we knew about lenses.

A learner is something that approximates a function A′ → A.

It consists of a function P × A′ → A, where P is a set.

It also has an update-backprop function P × A′ × A→ P × A′.

So it’s just a lens
(implement
upd-backprop

)
:
(P
P

)
⊗
(A′
A′

)
→
(A
A

)
For any monoidal category C, there is a monoidal category Para(C):

Objects in Para(C) are objects in C
Morphisms A′ → A in Para(C) consist of pairs (P, f) where

P is an object of C, (chosen up to isomorphism)

f : P ⊗ A′ → A is a morphism

Composition is “multiply parameters and compose”

Our category Learn is just Para(Lens).

13 / 33

Some applications of lenses Machine learning

Learners

Similarly, the story of learners existed before we knew about lenses.

A learner is something that approximates a function A′ → A.

It consists of a function P × A′ → A, where P is a set.

It also has an update-backprop function P × A′ × A→ P × A′.

So it’s just a lens
(implement
upd-backprop

)
:
(P
P

)
⊗
(A′
A′

)
→
(A
A

)
For any monoidal category C, there is a monoidal category Para(C):

Objects in Para(C) are objects in C
Morphisms A′ → A in Para(C) consist of pairs (P, f) where

P is an object of C, (chosen up to isomorphism)

f : P ⊗ A′ → A is a morphism

Composition is “multiply parameters and compose”

Our category Learn is just Para(Lens).

13 / 33

Some applications of lenses Machine learning

Learners

Similarly, the story of learners existed before we knew about lenses.

A learner is something that approximates a function A′ → A.

It consists of a function P × A′ → A, where P is a set.

It also has an update-backprop function P × A′ × A→ P × A′.

So it’s just a lens
(implement
upd-backprop

)
:
(P
P

)
⊗
(A′
A′

)
→
(A
A

)

For any monoidal category C, there is a monoidal category Para(C):

Objects in Para(C) are objects in C
Morphisms A′ → A in Para(C) consist of pairs (P, f) where

P is an object of C, (chosen up to isomorphism)

f : P ⊗ A′ → A is a morphism

Composition is “multiply parameters and compose”

Our category Learn is just Para(Lens).

13 / 33

Some applications of lenses Machine learning

Learners

Similarly, the story of learners existed before we knew about lenses.

A learner is something that approximates a function A′ → A.

It consists of a function P × A′ → A, where P is a set.

It also has an update-backprop function P × A′ × A→ P × A′.

So it’s just a lens
(implement
upd-backprop

)
:
(P
P

)
⊗
(A′
A′

)
→
(A
A

)
For any monoidal category C, there is a monoidal category Para(C):

Objects in Para(C) are objects in C
Morphisms A′ → A in Para(C) consist of pairs (P, f) where

P is an object of C, (chosen up to isomorphism)

f : P ⊗ A′ → A is a morphism

Composition is “multiply parameters and compose”

Our category Learn is just Para(Lens).

13 / 33

Some applications of lenses Machine learning

Learners

Similarly, the story of learners existed before we knew about lenses.

A learner is something that approximates a function A′ → A.

It consists of a function P × A′ → A, where P is a set.

It also has an update-backprop function P × A′ × A→ P × A′.

So it’s just a lens
(implement
upd-backprop

)
:
(P
P

)
⊗
(A′
A′

)
→
(A
A

)
For any monoidal category C, there is a monoidal category Para(C):

Objects in Para(C) are objects in C
Morphisms A′ → A in Para(C) consist of pairs (P, f) where

P is an object of C, (chosen up to isomorphism)

f : P ⊗ A′ → A is a morphism

Composition is “multiply parameters and compose”

Our category Learn is just Para(Lens).

13 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.

View-update is considered as a lens
(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?

14 / 33

Some applications of lenses Examples that don’t quite work right

View update?

The view-update problem is a widely-cited example of lenses.

A database instance is a bunch of tables filled with data.

The tables interlock according to a certain pattern, called a schema.

Instances for a given schema C form a category C-Inst.

The usual view-update formulation is kinda weird from my perspective.

It treats the instances on C as a set; let’s denote it |C-Inst|.
View-update is considered as a lens

(view
update

)
:
(|C-Inst|
|C-Inst|

)
→
(|D-Inst|
|D-Inst|

)
.

Isn’t this quite floppy? Totally not functorial, anything goes.

People use lens laws to try to mitigate the floppiness.

Lens laws: get-put, put-get, and put-put.

These together are equivalent to “constant complement” condition.

That implies that C-Inst ∼= D-Inst×M for some M.

Too strong: e.g. if D ⊆ C, it must be totally disjoint from the rest!

The lens laws are too strong, but without them lenses are too floppy.

Can we do better?
14 / 33

Some applications of lenses Examples that don’t quite work right

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A′ and outputs A is:
A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)

Replacing sets A′,A by manifolds, a continuous dynamical system is:

A manifold S , (denote its tangent bundle TS),

A differentiable map f rdt : S → A,

A differentiable map f dyn : S × A′ → TS satisfying:

S × A′ TS

S

f dyn

π1
π

In other words, for every input a′ and state s, a tangent vector at s.

The two notions are quite similar, but can we see the latter as a lens?

15 / 33

Some applications of lenses Examples that don’t quite work right

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A′ and outputs A is:
A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
Replacing sets A′,A by manifolds, a continuous dynamical system is:

A manifold S , (denote its tangent bundle TS),

A differentiable map f rdt : S → A,

A differentiable map f dyn : S × A′ → TS satisfying:

S × A′ TS

S

f dyn

π1
π

In other words, for every input a′ and state s, a tangent vector at s.

The two notions are quite similar, but can we see the latter as a lens?

15 / 33

Some applications of lenses Examples that don’t quite work right

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A′ and outputs A is:
A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
Replacing sets A′,A by manifolds, a continuous dynamical system is:

A manifold S , (denote its tangent bundle TS),

A differentiable map f rdt : S → A,

A differentiable map f dyn : S × A′ → TS satisfying:

S × A′ TS

S

f dyn

π1
π

In other words, for every input a′ and state s, a tangent vector at s.

The two notions are quite similar, but can we see the latter as a lens?

15 / 33

Some applications of lenses Examples that don’t quite work right

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A′ and outputs A is:
A set S

A function f rdt : S → A called “readout”

A function f upd : S × A′ → S called “update”

(f rdt
f upd

)
:
(S
S

)
→
(A
A′

)
Replacing sets A′,A by manifolds, a continuous dynamical system is:

A manifold S , (denote its tangent bundle TS),

A differentiable map f rdt : S → A,

A differentiable map f dyn : S × A′ → TS satisfying:

S × A′ TS

S

f dyn

π1
π

In other words, for every input a′ and state s, a tangent vector at s.

The two notions are quite similar, but can we see the latter as a lens?
15 / 33

Generalizing lens categories

Outline

1 Introduction

2 Some applications of lenses

3 Generalizing lens categories
Another way to think about Lens
Bundles
Relationship between bundles and lenses
Examples of generalized lenses

4 Conclusion

15 / 33

Generalizing lens categories Another way to think about Lens

So how should I think about an object in Lens?

How should we think about
(A
A′

)
?

Is it just a pair of sets?

Why are maps
(A
A′

)
→
(B
B′

)
the way they are?

Lens

((
A

A′

)
,

(
B

B ′

))
:=

{(
f

f]

) ∣∣∣∣∣ f : A→ B

f] : A× B ′ → A′

}
.

Suggestion: think of objects as “bundles.”

16 / 33

Generalizing lens categories Another way to think about Lens

So how should I think about an object in Lens?

How should we think about
(A
A′

)
?

Is it just a pair of sets?

Why are maps
(A
A′

)
→
(B
B′

)
the way they are?

Lens

((
A

A′

)
,

(
B

B ′

))
:=

{(
f

f]

) ∣∣∣∣∣ f : A→ B

f] : A× B ′ → A′

}
.

Suggestion: think of objects as “bundles.”

16 / 33

Generalizing lens categories Another way to think about Lens

So how should I think about an object in Lens?

How should we think about
(A
A′

)
?

Is it just a pair of sets?

Why are maps
(A
A′

)
→
(B
B′

)
the way they are?

Lens

((
A

A′

)
,

(
B

B ′

))
:=

{(
f

f]

) ∣∣∣∣∣ f : A→ B

f] : A× B ′ → A′

}
.

Suggestion: think of objects as “bundles.”

16 / 33

Generalizing lens categories Bundles

What are bundles?

The term bundle is most used in algebraic
topology and algebraic geometry.

A bundle is a special kind of morphism p : E → B in a category.

The base space B consists of “locations” or contexts.

For any context b : B, the fiber E (b) := p−1(b) are possibilities.

Example: vector bundles in geometry/topology.

For a manifold B, the tangent bundle TB is a vector bundle.

At each b : B, the fiber TB(b) = possible velocities at b.

A database instance can be thought of as a bundle over its schema.

A discrete opfibration of categories p : E → B.

At each table b : B, the fiber E (b) = rows in table b.

A trivial bundle is one of the form π1 : B × B ′ → B for some B ′.

17 / 33

Generalizing lens categories Bundles

What are bundles?

The term bundle is most used in algebraic
topology and algebraic geometry.

A bundle is a special kind of morphism p : E → B in a category.

The base space B consists of “locations” or contexts.

For any context b : B, the fiber E (b) := p−1(b) are possibilities.

Example: vector bundles in geometry/topology.

For a manifold B, the tangent bundle TB is a vector bundle.

At each b : B, the fiber TB(b) = possible velocities at b.

A database instance can be thought of as a bundle over its schema.

A discrete opfibration of categories p : E → B.

At each table b : B, the fiber E (b) = rows in table b.

A trivial bundle is one of the form π1 : B × B ′ → B for some B ′.

17 / 33

Generalizing lens categories Bundles

What are bundles?

The term bundle is most used in algebraic
topology and algebraic geometry.

A bundle is a special kind of morphism p : E → B in a category.

The base space B consists of “locations” or contexts.

For any context b : B, the fiber E (b) := p−1(b) are possibilities.

Example: vector bundles in geometry/topology.

For a manifold B, the tangent bundle TB is a vector bundle.

At each b : B, the fiber TB(b) = possible velocities at b.

A database instance can be thought of as a bundle over its schema.

A discrete opfibration of categories p : E → B.

At each table b : B, the fiber E (b) = rows in table b.

A trivial bundle is one of the form π1 : B × B ′ → B for some B ′.

17 / 33

Generalizing lens categories Bundles

What are bundles?

The term bundle is most used in algebraic
topology and algebraic geometry.

A bundle is a special kind of morphism p : E → B in a category.

The base space B consists of “locations” or contexts.

For any context b : B, the fiber E (b) := p−1(b) are possibilities.

Example: vector bundles in geometry/topology.

For a manifold B, the tangent bundle TB is a vector bundle.

At each b : B, the fiber TB(b) = possible velocities at b.

A database instance can be thought of as a bundle over its schema.

A discrete opfibration of categories p : E → B.

At each table b : B, the fiber E (b) = rows in table b.

A trivial bundle is one of the form π1 : B × B ′ → B for some B ′.

17 / 33

Generalizing lens categories Bundles

What are bundles?

The term bundle is most used in algebraic
topology and algebraic geometry.

A bundle is a special kind of morphism p : E → B in a category.

The base space B consists of “locations” or contexts.

For any context b : B, the fiber E (b) := p−1(b) are possibilities.

Example: vector bundles in geometry/topology.

For a manifold B, the tangent bundle TB is a vector bundle.

At each b : B, the fiber TB(b) = possible velocities at b.

A database instance can be thought of as a bundle over its schema.

A discrete opfibration of categories p : E → B.

At each table b : B, the fiber E (b) = rows in table b.

A trivial bundle is one of the form π1 : B × B ′ → B for some B ′.

17 / 33

Generalizing lens categories Bundles

Pullbacks of bundles

Suppose that p : E → B is a bundle.

We haven’t said what that means exactly, just given examples.

But whatever bundles are, you should be able to pull them back.

That is, given a bundle E2
p2−→ B2 and a map B1 → B2, ...

... the pullback should exist and be a bundle over B1.

f ∗(E2) E2

B1 B2

p1
y p2

f

The fiber over any b1 : B1 is that over its image, (f ∗E2)(b1) = E2(f (b1)).

f

18 / 33

Generalizing lens categories Bundles

Pullbacks of bundles

Suppose that p : E → B is a bundle.

We haven’t said what that means exactly, just given examples.

But whatever bundles are, you should be able to pull them back.

That is, given a bundle E2
p2−→ B2 and a map B1 → B2, ...

... the pullback should exist and be a bundle over B1.

f ∗(E2) E2

B1 B2

p1
y p2

f

The fiber over any b1 : B1 is that over its image, (f ∗E2)(b1) = E2(f (b1)).

f

18 / 33

Generalizing lens categories Bundles

Pullbacks of bundles

Suppose that p : E → B is a bundle.

We haven’t said what that means exactly, just given examples.

But whatever bundles are, you should be able to pull them back.

That is, given a bundle E2
p2−→ B2 and a map B1 → B2, ...

... the pullback should exist and be a bundle over B1.

f ∗(E2) E2

B1 B2

p1
y p2

f

The fiber over any b1 : B1 is that over its image, (f ∗E2)(b1) = E2(f (b1)).

f

18 / 33

Generalizing lens categories Bundles

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

Hom

 E1

B1

p1 ,
E2

B2

p2

 =

(f , g)

∣∣∣∣∣∣∣∣
E1 E2

B1 B2

g

p1 p2

f

The pullback f ∗E2
∼= B1 ×B2 E2 has a universal property by which...

... the map g can be identified with a map E1 → f ∗E2.

But in algebraic geometry, the arrow E1 → f ∗(E2) is often reversed:

f ∗E2 E2

E1

B1 B2

f] y

p2

p1

f

or simply

f ∗E2 E2

E1

B1 B2

f]
y

p2

p1

f

There’s a strong relationship between the AG-style maps and lenses.

19 / 33

Generalizing lens categories Bundles

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

Hom

 E1

B1

p1 ,
E2

B2

p2

 =

(f , g)

∣∣∣∣∣∣∣∣
E1 E2

B1 B2

g

p1 p2

f

The pullback f ∗E2

∼= B1 ×B2 E2 has a universal property by which...

... the map g can be identified with a map E1 → f ∗E2.

But in algebraic geometry, the arrow E1 → f ∗(E2) is often reversed:

f ∗E2 E2

E1

B1 B2

f] y

p2

p1

f

or simply

f ∗E2 E2

E1

B1 B2

f]
y

p2

p1

f

There’s a strong relationship between the AG-style maps and lenses.

19 / 33

Generalizing lens categories Bundles

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

Hom

 E1

B1

p1 ,
E2

B2

p2

 =

(f , g)

∣∣∣∣∣∣∣∣
E1 E2

B1 B2

g

p1 p2

f

The pullback f ∗E2

∼= B1 ×B2 E2 has a universal property by which...

... the map g can be identified with a map E1 → f ∗E2.

But in algebraic geometry, the arrow E1 → f ∗(E2) is often reversed:

f ∗E2 E2

E1

B1 B2

f] y

p2

p1

f

or simply

f ∗E2 E2

E1

B1 B2

f]
y

p2

p1

f

There’s a strong relationship between the AG-style maps and lenses.

19 / 33

Generalizing lens categories Bundles

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

Hom

 E1

B1

p1 ,
E2

B2

p2

 =

(f , g)

∣∣∣∣∣∣∣∣
E1 E2

B1 B2

g

p1 p2

f

The pullback f ∗E2

∼= B1 ×B2 E2 has a universal property by which...

... the map g can be identified with a map E1 → f ∗E2.

But in algebraic geometry, the arrow E1 → f ∗(E2) is often reversed:

f ∗E2 E2

E1

B1 B2

f] y

p2

p1

f

or simply

f ∗E2 E2

E1

B1 B2

f]
y

p2

p1

f

There’s a strong relationship between the AG-style maps and lenses.

19 / 33

Generalizing lens categories Bundles

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

Hom

 E1

B1

p1 ,
E2

B2

p2

 =

(f , g)

∣∣∣∣∣∣∣∣
E1 E2

B1 B2

g

p1 p2

f

The pullback f ∗E2

∼= B1 ×B2 E2 has a universal property by which...

... the map g can be identified with a map E1 → f ∗E2.

But in algebraic geometry, the arrow E1 → f ∗(E2) is often reversed:

f ∗E2 E2

E1

B1 B2

f] y

p2

p1

f

or simply

f ∗E2 E2

E1

B1 B2

f]
y

p2

p1

f

There’s a strong relationship between the AG-style maps and lenses. 19 / 33

Generalizing lens categories Bundles

Example

Given a bundle p : E → B, let’s visualize a map to the bundle 1→ 1.

•

•

•

•

•

•

•

• •

•
E

• • • •B

p

20 / 33

Generalizing lens categories Bundles

Example

Given a bundle p : E → B, let’s visualize a map to the bundle 1→ 1.

•

•

•

•

•

•

•

• •

•
E

• • • •B

p

•

•

id

20 / 33

Generalizing lens categories Bundles

Example

Given a bundle p : E → B, let’s visualize a map to the bundle 1→ 1.

•

•

•

•

•

•

•

• •

•
E

• • • •B

p

•

•

id

• • • •

y

id

20 / 33

Generalizing lens categories Bundles

Example

Given a bundle p : E → B, let’s visualize a map to the bundle 1→ 1.

•

•

•

•

•

•

•

• •

•
E

• • • •B

p

•

•

id

• • • •

y
f]

•

•

•

•

•

•

•

• •

•

20 / 33

Generalizing lens categories Relationship between bundles and lenses

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

That is, there is a fully faithful functor Lens→ Bund.

Send lens object
(B
B′

)
to the trivial bundle (projection) B × B ′ → B.

Note that the pullback of a projection is a projection:

B1 × B ′ B2 × B ′

B1 B2

y

f

Send morphism
(f
f]

)
:
(B1
B′1

)
→
(B2
B′2

)
to the bundle morphism:

B1 × B ′2 B2 × B ′2

B1 × B ′1

B1 B2

π1

f]

y

π1
f

Such a map f] : B1×B ′2 → B1×B ′1,
— in order to commute with π1 —
has no choice on the B1 factor.
Thus it can be identified with a
map f] : B1 × B ′2 → B ′1.

21 / 33

Generalizing lens categories Relationship between bundles and lenses

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

That is, there is a fully faithful functor Lens→ Bund.

Send lens object
(B
B′

)
to the trivial bundle (projection) B × B ′ → B.

Note that the pullback of a projection is a projection:

B1 × B ′ B2 × B ′

B1 B2

y

f

Send morphism
(f
f]

)
:
(B1
B′1

)
→
(B2
B′2

)
to the bundle morphism:

B1 × B ′2 B2 × B ′2

B1 × B ′1

B1 B2

π1

f]

y

π1
f

Such a map f] : B1×B ′2 → B1×B ′1,
— in order to commute with π1 —
has no choice on the B1 factor.
Thus it can be identified with a
map f] : B1 × B ′2 → B ′1.

21 / 33

Generalizing lens categories Relationship between bundles and lenses

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

That is, there is a fully faithful functor Lens→ Bund.

Send lens object
(B
B′

)
to the trivial bundle (projection) B × B ′ → B.

Note that the pullback of a projection is a projection:

B1 × B ′ B2 × B ′

B1 B2

y

f

Send morphism
(f
f]

)
:
(B1
B′1

)
→
(B2
B′2

)
to the bundle morphism:

B1 × B ′2 B2 × B ′2

B1 × B ′1

B1 B2

π1

f]

y

π1
f

Such a map f] : B1×B ′2 → B1×B ′1,
— in order to commute with π1 —
has no choice on the B1 factor.
Thus it can be identified with a
map f] : B1 × B ′2 → B ′1.

21 / 33

Generalizing lens categories Relationship between bundles and lenses

What are we really using

What do we really need to create a lens-like world?

A category B where the bases live f : B1 → B2.

For each base B, a category E(B) of possible “bundles” over B.

For each map f : B1 → B2 and bundle E2 ∈ E(B2), ...
... a notion of pullback f ∗E2 ∈ E(B1).

That is, a category B and a functor E : Bop → Cat.

Then define LensE as a Grothendieck construction.

objects
{[

E
B

] ∣∣ B : B,E : E(B)
}

morphisms
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
, where f : B1 → B2,

f] : f ∗E2 → E1.

22 / 33

Generalizing lens categories Relationship between bundles and lenses

What are we really using

What do we really need to create a lens-like world?

A category B where the bases live f : B1 → B2.

For each base B, a category E(B) of possible “bundles” over B.

For each map f : B1 → B2 and bundle E2 ∈ E(B2), ...
... a notion of pullback f ∗E2 ∈ E(B1).

That is, a category B and a functor E : Bop → Cat.

Then define LensE as a Grothendieck construction.

objects
{[

E
B

] ∣∣ B : B,E : E(B)
}

morphisms
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
, where f : B1 → B2,

f] : f ∗E2 → E1.

22 / 33

Generalizing lens categories Relationship between bundles and lenses

What are we really using

What do we really need to create a lens-like world?

A category B where the bases live f : B1 → B2.

For each base B, a category E(B) of possible “bundles” over B.

For each map f : B1 → B2 and bundle E2 ∈ E(B2), ...
... a notion of pullback f ∗E2 ∈ E(B1).

That is, a category B and a functor E : Bop → Cat.

Then define LensE as a Grothendieck construction.

objects
{[

E
B

] ∣∣ B : B,E : E(B)
}

morphisms
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
, where f : B1 → B2,

f] : f ∗E2 → E1.

22 / 33

Generalizing lens categories Relationship between bundles and lenses

What are we really using

What do we really need to create a lens-like world?

A category B where the bases live f : B1 → B2.

For each base B, a category E(B) of possible “bundles” over B.

For each map f : B1 → B2 and bundle E2 ∈ E(B2), ...
... a notion of pullback f ∗E2 ∈ E(B1).

That is, a category B and a functor E : Bop → Cat.

Then define LensE as a Grothendieck construction.

objects
{[

E
B

] ∣∣ B : B,E : E(B)
}

morphisms
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
, where f : B1 → B2,

f] : f ∗E2 → E1.

22 / 33

Generalizing lens categories Relationship between bundles and lenses

What are we really using

What do we really need to create a lens-like world?

A category B where the bases live f : B1 → B2.

For each base B, a category E(B) of possible “bundles” over B.

For each map f : B1 → B2 and bundle E2 ∈ E(B2), ...
... a notion of pullback f ∗E2 ∈ E(B1).

That is, a category B and a functor E : Bop → Cat.

Then define LensE as a Grothendieck construction.

objects
{[

E
B

] ∣∣ B : B,E : E(B)
}

morphisms
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
, where f : B1 → B2,

f] : f ∗E2 → E1.

22 / 33

Generalizing lens categories Relationship between bundles and lenses

Notation

We denote by
[
E
B

]
the bundle whose

base space is B

fiber over b : B is E (b).

Here
[
E
B

]
is an object in LensE for E : Bop → Cat. Examples:

If S is a manifold and TS(s) is the tangent space, we write
[
TS
S

]
.

If B ′ is a set and E (b) = B ′ for all b : B, we’d denote this
[
B′
B

]
Note

that
[
B′
B

]
really means the trivial bundle B × B ′ → B.

23 / 33

Generalizing lens categories Relationship between bundles and lenses

Notation

We denote by
[
E
B

]
the bundle whose

base space is B

fiber over b : B is E (b).

Here
[
E
B

]
is an object in LensE for E : Bop → Cat. Examples:

If S is a manifold and TS(s) is the tangent space, we write
[
TS
S

]
.

If B ′ is a set and E (b) = B ′ for all b : B, we’d denote this
[
B′
B

]
Note

that
[
B′
B

]
really means the trivial bundle B × B ′ → B.

23 / 33

Generalizing lens categories Relationship between bundles and lenses

Notation

We denote by
[
E
B

]
the bundle whose

base space is B

fiber over b : B is E (b).

Here
[
E
B

]
is an object in LensE for E : Bop → Cat. Examples:

If S is a manifold and TS(s) is the tangent space, we write
[
TS
S

]
.

If B ′ is a set and E (b) = B ′ for all b : B, we’d denote this
[
B′
B

]

Note
that

[
B′
B

]
really means the trivial bundle B × B ′ → B.

23 / 33

Generalizing lens categories Relationship between bundles and lenses

Notation

We denote by
[
E
B

]
the bundle whose

base space is B

fiber over b : B is E (b).

Here
[
E
B

]
is an object in LensE for E : Bop → Cat. Examples:

If S is a manifold and TS(s) is the tangent space, we write
[
TS
S

]
.

If B ′ is a set and E (b) = B ′ for all b : B, we’d denote this
[
B′
B

]
Note

that
[
B′
B

]
really means the trivial bundle B × B ′ → B.

23 / 33

Generalizing lens categories Relationship between bundles and lenses

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.

An object
[
A′
A

]
consists of contexts and actions: [actions

contexts]

A is the contexts; in each a : A there are A′(a) actions available.

Example
[
S
S

]
. At each s : S , where in S do you want to go next?

Example
[
TS
S

]
. At each s : S , which tangent direction to go in?

A morphism
[
f]
f

]
:
[
A′
A

]
→
[
B′
B

]
is like A giving control to B.

Each context a : A is communicated by f to give fa : B.

Each B-action b′ : B ′(fa), provide an A-action f](b′) : A′(a).

Examples: ringed spaces, cts dynamical systems, functorial view-update.

24 / 33

Generalizing lens categories Relationship between bundles and lenses

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.

An object
[
A′
A

]
consists of contexts and actions: [actions

contexts]

A is the contexts; in each a : A there are A′(a) actions available.

Example
[
S
S

]
. At each s : S , where in S do you want to go next?

Example
[
TS
S

]
. At each s : S , which tangent direction to go in?

A morphism
[
f]
f

]
:
[
A′
A

]
→
[
B′
B

]
is like A giving control to B.

Each context a : A is communicated by f to give fa : B.

Each B-action b′ : B ′(fa), provide an A-action f](b′) : A′(a).

Examples: ringed spaces, cts dynamical systems, functorial view-update.

24 / 33

Generalizing lens categories Relationship between bundles and lenses

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.

An object
[
A′
A

]
consists of contexts and actions: [actions

contexts]

A is the contexts; in each a : A there are A′(a) actions available.

Example
[
S
S

]
. At each s : S , where in S do you want to go next?

Example
[
TS
S

]
. At each s : S , which tangent direction to go in?

A morphism
[
f]
f

]
:
[
A′
A

]
→
[
B′
B

]
is like A giving control to B.

Each context a : A is communicated by f to give fa : B.

Each B-action b′ : B ′(fa), provide an A-action f](b′) : A′(a).

Examples: ringed spaces, cts dynamical systems, functorial view-update.

24 / 33

Generalizing lens categories Relationship between bundles and lenses

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.

An object
[
A′
A

]
consists of contexts and actions: [actions

contexts]

A is the contexts; in each a : A there are A′(a) actions available.

Example
[
S
S

]
. At each s : S , where in S do you want to go next?

Example
[
TS
S

]
. At each s : S , which tangent direction to go in?

A morphism
[
f]
f

]
:
[
A′
A

]
→
[
B′
B

]
is like A giving control to B.

Each context a : A is communicated by f to give fa : B.

Each B-action b′ : B ′(fa), provide an A-action f](b′) : A′(a).

Examples: ringed spaces, cts dynamical systems, functorial view-update.

24 / 33

Generalizing lens categories Examples of generalized lenses

Ringed spaces

In algebraic geometry they study ringed spaces (X ,OX).

Here X is a topological space and OX is a sheaf of rings on it.

We can think of OX as a bundle with a fiber-wise ring structure.

(This is necessary, not sufficient, but pretty close.)

A morphism of ringed spaces
(f
f]

)
: (X ,OX)→ (Y ,OY) is:

A continuous map f : X → Y

A map of sheaves f ∗OY → OX .

That is, it’s a map
[OX

X

]
→
[OY

Y

]
.

25 / 33

Generalizing lens categories Examples of generalized lenses

Ringed spaces

In algebraic geometry they study ringed spaces (X ,OX).

Here X is a topological space and OX is a sheaf of rings on it.

We can think of OX as a bundle with a fiber-wise ring structure.

(This is necessary, not sufficient, but pretty close.)

A morphism of ringed spaces
(f
f]

)
: (X ,OX)→ (Y ,OY) is:

A continuous map f : X → Y

A map of sheaves f ∗OY → OX .

That is, it’s a map
[OX

X

]
→
[OY

Y

]
.

25 / 33

Generalizing lens categories Examples of generalized lenses

Continuous dynamical systems

Recall: if A′,A are manifolds, a continuous dynamical system is:

A manifold S , (tangent bundle TS),

A differentiable map f rdt : S → A,

A differentiable map f dyn : S × A′ → TS

S × A′ TS

S

f dyn

π1
π

But from the bundle perspective that commutative diagram is baked in.

S × A′ A× A′

TS

S A

f]
y

π1

π

f

In other words the dynamical system is just a lens map
[
TS
S

]
→
[
A′
A

]

26 / 33

Generalizing lens categories Examples of generalized lenses

Continuous dynamical systems

Recall: if A′,A are manifolds, a continuous dynamical system is:

A manifold S , (tangent bundle TS),

A differentiable map f rdt : S → A,

A differentiable map f dyn : S × A′ → TS

S × A′ TS

S

f dyn

π1
π

But from the bundle perspective that commutative diagram is baked in.

S × A′ A× A′

TS

S A

f]
y

π1

π

f

In other words the dynamical system is just a lens map
[
TS
S

]
→
[
A′
A

]
26 / 33

Generalizing lens categories Examples of generalized lenses

More principled view update

Here’s a principled notion of view-update for databases.

You have two schemas B1,B2 and a profunctor Q : B1 B2.

This gives a query/coquery adjunction Q∗ : B1-Inst� B2-Inst :Q∗.

Take instance I1, view via Q∗, update (insert or dedup.): Q∗I1 → I2.

Then form the pushout of (I1 ← Q∗QI1 → Q∗I2).

This is a universal construction. Adjunction: I1/B1-Inst� Q∗I1/B2-Inst.∑
I1:B1-Inst

Q∗I1/B2-Inst
∑

I2:B2-Inst

I2/B2-Inst

∑
I1:B1-Inst

I1/B1-Inst

B1-Inst B2-Inst

univ. construction above

y

π1

π1

Q∗

This lens
[
−/B1-Inst
B1-Inst

]
→
[
−/B2-Inst
B2-Inst

]
does the expected view-update.

27 / 33

Generalizing lens categories Examples of generalized lenses

More principled view update

Here’s a principled notion of view-update for databases.

You have two schemas B1,B2 and a profunctor Q : B1 B2.

This gives a query/coquery adjunction Q∗ : B1-Inst� B2-Inst :Q∗.

Take instance I1, view via Q∗, update (insert or dedup.): Q∗I1 → I2.

Then form the pushout of (I1 ← Q∗QI1 → Q∗I2).

This is a universal construction. Adjunction: I1/B1-Inst� Q∗I1/B2-Inst.

∑
I1:B1-Inst

Q∗I1/B2-Inst
∑

I2:B2-Inst

I2/B2-Inst

∑
I1:B1-Inst

I1/B1-Inst

B1-Inst B2-Inst

univ. construction above

y

π1

π1

Q∗

This lens
[
−/B1-Inst
B1-Inst

]
→
[
−/B2-Inst
B2-Inst

]
does the expected view-update.

27 / 33

Generalizing lens categories Examples of generalized lenses

More principled view update

Here’s a principled notion of view-update for databases.

You have two schemas B1,B2 and a profunctor Q : B1 B2.

This gives a query/coquery adjunction Q∗ : B1-Inst� B2-Inst :Q∗.

Take instance I1, view via Q∗, update (insert or dedup.): Q∗I1 → I2.

Then form the pushout of (I1 ← Q∗QI1 → Q∗I2).

This is a universal construction. Adjunction: I1/B1-Inst� Q∗I1/B2-Inst.∑
I1:B1-Inst

Q∗I1/B2-Inst
∑

I2:B2-Inst

I2/B2-Inst

∑
I1:B1-Inst

I1/B1-Inst

B1-Inst B2-Inst

univ. construction above

y

π1

π1

Q∗

This lens
[
−/B1-Inst
B1-Inst

]
→
[
−/B2-Inst
B2-Inst

]
does the expected view-update.

27 / 33

Generalizing lens categories Examples of generalized lenses

Lenses in any symmetric monoidal category

If (M, I ,⊗) is any SMC, there is a notion of lenses in it.

Objects are pairs [mc] where m is an object and...

... c is a comonoid; i.e. it implicitly has ε : c → I and δ : c → c ⊗ c .

A morphism
[
f]

f

]
: [mc]→

[
m′

c ′

]
consists of

a comonoid homomorphism f : c → c ′ and

a morphism f] : c ⊗m′ → m.

Example: (Set, 1,×)

Every object and morphism has a unique comonoid structure.

So the above description just reduces to the one we know.

So how can we see this in the general E : Bop → Cat setup?

Take B := {comonoids (c , ε, δ) in M}
Take E(c) := coKl(c ⊗−), the coKleisli cat. of comonad x 7→ c ⊗ x .

In [mc], think of m as the product coalgebra c ⊗m, “trivial bundle”.

28 / 33

Generalizing lens categories Examples of generalized lenses

Lenses in any symmetric monoidal category

If (M, I ,⊗) is any SMC, there is a notion of lenses in it.

Objects are pairs [mc] where m is an object and...

... c is a comonoid; i.e. it implicitly has ε : c → I and δ : c → c ⊗ c .

A morphism
[
f]

f

]
: [mc]→

[
m′

c ′

]
consists of

a comonoid homomorphism f : c → c ′ and

a morphism f] : c ⊗m′ → m.

Example: (Set, 1,×)

Every object and morphism has a unique comonoid structure.

So the above description just reduces to the one we know.

So how can we see this in the general E : Bop → Cat setup?

Take B := {comonoids (c , ε, δ) in M}
Take E(c) := coKl(c ⊗−), the coKleisli cat. of comonad x 7→ c ⊗ x .

In [mc], think of m as the product coalgebra c ⊗m, “trivial bundle”.

28 / 33

Generalizing lens categories Examples of generalized lenses

Lenses in any symmetric monoidal category

If (M, I ,⊗) is any SMC, there is a notion of lenses in it.

Objects are pairs [mc] where m is an object and...

... c is a comonoid; i.e. it implicitly has ε : c → I and δ : c → c ⊗ c .

A morphism
[
f]

f

]
: [mc]→

[
m′

c ′

]
consists of

a comonoid homomorphism f : c → c ′ and

a morphism f] : c ⊗m′ → m.

Example: (Set, 1,×)

Every object and morphism has a unique comonoid structure.

So the above description just reduces to the one we know.

So how can we see this in the general E : Bop → Cat setup?

Take B := {comonoids (c , ε, δ) in M}
Take E(c) := coKl(c ⊗−), the coKleisli cat. of comonad x 7→ c ⊗ x .

In [mc], think of m as the product coalgebra c ⊗m, “trivial bundle”.

28 / 33

Generalizing lens categories Examples of generalized lenses

Lenses in any symmetric monoidal category

If (M, I ,⊗) is any SMC, there is a notion of lenses in it.

Objects are pairs [mc] where m is an object and...

... c is a comonoid; i.e. it implicitly has ε : c → I and δ : c → c ⊗ c .

A morphism
[
f]

f

]
: [mc]→

[
m′

c ′

]
consists of

a comonoid homomorphism f : c → c ′ and

a morphism f] : c ⊗m′ → m.

Example: (Set, 1,×)

Every object and morphism has a unique comonoid structure.

So the above description just reduces to the one we know.

So how can we see this in the general E : Bop → Cat setup?

Take B := {comonoids (c , ε, δ) in M}
Take E(c) := coKl(c ⊗−), the coKleisli cat. of comonad x 7→ c ⊗ x .

In [mc], think of m as the product coalgebra c ⊗m, “trivial bundle”.

28 / 33

Generalizing lens categories Examples of generalized lenses

Lenses in any symmetric monoidal category

If (M, I ,⊗) is any SMC, there is a notion of lenses in it.

Objects are pairs [mc] where m is an object and...

... c is a comonoid; i.e. it implicitly has ε : c → I and δ : c → c ⊗ c .

A morphism
[
f]

f

]
: [mc]→

[
m′

c ′

]
consists of

a comonoid homomorphism f : c → c ′ and

a morphism f] : c ⊗m′ → m.

Example: (Set, 1,×)

Every object and morphism has a unique comonoid structure.

So the above description just reduces to the one we know.

So how can we see this in the general E : Bop → Cat setup?

Take B := {comonoids (c , ε, δ) in M}
Take E(c) := coKl(c ⊗−), the coKleisli cat. of comonad x 7→ c ⊗ x .

In [mc], think of m as the product coalgebra c ⊗m, “trivial bundle”.

28 / 33

Generalizing lens categories Examples of generalized lenses

Lenses in any symmetric monoidal category

If (M, I ,⊗) is any SMC, there is a notion of lenses in it.

Objects are pairs [mc] where m is an object and...

... c is a comonoid; i.e. it implicitly has ε : c → I and δ : c → c ⊗ c .

A morphism
[
f]

f

]
: [mc]→

[
m′

c ′

]
consists of

a comonoid homomorphism f : c → c ′ and

a morphism f] : c ⊗m′ → m.

Example: (Set, 1,×)

Every object and morphism has a unique comonoid structure.

So the above description just reduces to the one we know.

So how can we see this in the general E : Bop → Cat setup?

Take B := {comonoids (c , ε, δ) in M}
Take E(c) := coKl(c ⊗−), the coKleisli cat. of comonad x 7→ c ⊗ x .

In [mc], think of m as the product coalgebra c ⊗m, “trivial bundle”.

28 / 33

Generalizing lens categories Examples of generalized lenses

Lenses are everywhere?

We’ve seen many different lens-like categories L.

Usual LensC for C an SMC, ringed spaces, cts dynamical systems.

For each, there’s a category B and a functor E : Bop → Cat ...

... for which the Grothendieck construction (op) gives LensE ∼= L.

People say “lenses are everywhere”.

But they often change what they mean subtly in each case.

The above is quite general—almost facile—but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

The twisted arrow cat of C is Lens−/C .

E1 E2

B1 B2

p1

f]

p2

f

A morphism
[
E1
B1

]
→

[
E2
B2

]
in the

twisted arrow category.

29 / 33

Generalizing lens categories Examples of generalized lenses

Lenses are everywhere?

We’ve seen many different lens-like categories L.

Usual LensC for C an SMC, ringed spaces, cts dynamical systems.

For each, there’s a category B and a functor E : Bop → Cat ...

... for which the Grothendieck construction (op) gives LensE ∼= L.

People say “lenses are everywhere”.

But they often change what they mean subtly in each case.

The above is quite general—almost facile—but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

The twisted arrow cat of C is Lens−/C .

E1 E2

B1 B2

p1

f]

p2

f

A morphism
[
E1
B1

]
→

[
E2
B2

]
in the

twisted arrow category.

29 / 33

Generalizing lens categories Examples of generalized lenses

Lenses are everywhere?

We’ve seen many different lens-like categories L.

Usual LensC for C an SMC, ringed spaces, cts dynamical systems.

For each, there’s a category B and a functor E : Bop → Cat ...

... for which the Grothendieck construction (op) gives LensE ∼= L.

People say “lenses are everywhere”.

But they often change what they mean subtly in each case.

The above is quite general—almost facile—but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

The twisted arrow cat of C is Lens−/C .

E1 E2

B1 B2

p1

f]

p2

f

A morphism
[
E1
B1

]
→

[
E2
B2

]
in the

twisted arrow category.

29 / 33

Generalizing lens categories Examples of generalized lenses

Lenses are everywhere?

We’ve seen many different lens-like categories L.

Usual LensC for C an SMC, ringed spaces, cts dynamical systems.

For each, there’s a category B and a functor E : Bop → Cat ...

... for which the Grothendieck construction (op) gives LensE ∼= L.

People say “lenses are everywhere”.

But they often change what they mean subtly in each case.

The above is quite general—almost facile—but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

The twisted arrow cat of C is Lens−/C .

E1 E2

B1 B2

p1

f]

p2

f

A morphism
[
E1
B1

]
→

[
E2
B2

]
in the

twisted arrow category.

29 / 33

Generalizing lens categories Examples of generalized lenses

Lenses are everywhere?

We’ve seen many different lens-like categories L.

Usual LensC for C an SMC, ringed spaces, cts dynamical systems.

For each, there’s a category B and a functor E : Bop → Cat ...

... for which the Grothendieck construction (op) gives LensE ∼= L.

People say “lenses are everywhere”.

But they often change what they mean subtly in each case.

The above is quite general—almost facile—but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

The twisted arrow cat of C is Lens−/C .

E1 E2

B1 B2

p1

f]

p2

f

A morphism
[
E1
B1

]
→

[
E2
B2

]
in the

twisted arrow category.

29 / 33

Generalizing lens categories Examples of generalized lenses

Formal properties of LensE

The properties of LensE depend on choice of E : Bop → Cat.

Always: get a “vertical-cartesian” factorization system.

Each
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
factors as

[
E1
B1

]
→
[
f ∗E2
B1

]
→
[
E2
B2

]
Always: if B is an SMC and E is lax monoidal, LensE is an SMC.

A nice case: the slice functor: B/− : Bop → Cat

This works if B has pullbacks.

It sends B 7→ B/B, the category of bundles.

So an object
[
E
B

]
∈ LensB/− is just a map E → B.

If B is locally cart. closed with disjoint coproducts (e.g. a topos) ...

... then LensB/− has excellent formal properties.

Complete, cocomplete, cartesian closed.

Initial alg’s and final coalg’s for polynomial endofunctors.

Another fact’n system:
[
f]

f

]
factors as

[
E1
B1

]
→
[
f∗E1
B2

]
→
[
E2
B2

]

30 / 33

Generalizing lens categories Examples of generalized lenses

Formal properties of LensE

The properties of LensE depend on choice of E : Bop → Cat.

Always: get a “vertical-cartesian” factorization system.

Each
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
factors as

[
E1
B1

]
→
[
f ∗E2
B1

]
→
[
E2
B2

]
Always: if B is an SMC and E is lax monoidal, LensE is an SMC.

A nice case: the slice functor: B/− : Bop → Cat

This works if B has pullbacks.

It sends B 7→ B/B, the category of bundles.

So an object
[
E
B

]
∈ LensB/− is just a map E → B.

If B is locally cart. closed with disjoint coproducts (e.g. a topos) ...

... then LensB/− has excellent formal properties.

Complete, cocomplete, cartesian closed.

Initial alg’s and final coalg’s for polynomial endofunctors.

Another fact’n system:
[
f]

f

]
factors as

[
E1
B1

]
→
[
f∗E1
B2

]
→
[
E2
B2

]

30 / 33

Generalizing lens categories Examples of generalized lenses

Formal properties of LensE

The properties of LensE depend on choice of E : Bop → Cat.

Always: get a “vertical-cartesian” factorization system.

Each
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
factors as

[
E1
B1

]
→
[
f ∗E2
B1

]
→
[
E2
B2

]
Always: if B is an SMC and E is lax monoidal, LensE is an SMC.

A nice case: the slice functor: B/− : Bop → Cat

This works if B has pullbacks.

It sends B 7→ B/B, the category of bundles.

So an object
[
E
B

]
∈ LensB/− is just a map E → B.

If B is locally cart. closed with disjoint coproducts (e.g. a topos) ...

... then LensB/− has excellent formal properties.

Complete, cocomplete, cartesian closed.

Initial alg’s and final coalg’s for polynomial endofunctors.

Another fact’n system:
[
f]

f

]
factors as

[
E1
B1

]
→
[
f∗E1
B2

]
→
[
E2
B2

]

30 / 33

Generalizing lens categories Examples of generalized lenses

Formal properties of LensE

The properties of LensE depend on choice of E : Bop → Cat.

Always: get a “vertical-cartesian” factorization system.

Each
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
factors as

[
E1
B1

]
→
[
f ∗E2
B1

]
→
[
E2
B2

]
Always: if B is an SMC and E is lax monoidal, LensE is an SMC.

A nice case: the slice functor: B/− : Bop → Cat

This works if B has pullbacks.

It sends B 7→ B/B, the category of bundles.

So an object
[
E
B

]
∈ LensB/− is just a map E → B.

If B is locally cart. closed with disjoint coproducts (e.g. a topos) ...

... then LensB/− has excellent formal properties.

Complete, cocomplete, cartesian closed.

Initial alg’s and final coalg’s for polynomial endofunctors.

Another fact’n system:
[
f]

f

]
factors as

[
E1
B1

]
→
[
f∗E1
B2

]
→
[
E2
B2

]

30 / 33

Generalizing lens categories Examples of generalized lenses

Formal properties of LensE

The properties of LensE depend on choice of E : Bop → Cat.

Always: get a “vertical-cartesian” factorization system.

Each
[
f]

f

]
:
[
E1
B1

]
→
[
E2
B2

]
factors as

[
E1
B1

]
→
[
f ∗E2
B1

]
→
[
E2
B2

]
Always: if B is an SMC and E is lax monoidal, LensE is an SMC.

A nice case: the slice functor: B/− : Bop → Cat

This works if B has pullbacks.

It sends B 7→ B/B, the category of bundles.

So an object
[
E
B

]
∈ LensB/− is just a map E → B.

If B is locally cart. closed with disjoint coproducts (e.g. a topos) ...

... then LensB/− has excellent formal properties.

Complete, cocomplete, cartesian closed.

Initial alg’s and final coalg’s for polynomial endofunctors.

Another fact’n system:
[
f]

f

]
factors as

[
E1
B1

]
→
[
f∗E1
B2

]
→
[
E2
B2

]
30 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functors

There’s a strong connection to polynomial functors, aka containers.

These are used a lot in functional programming.

Provide data structures like lists, binary trees, trees, streams, etc.

Called polynomials because they send x to e.g. x4+3x2+2x+1.

Setting: suppose B is locally cartesian closed with disjoint coproducts.

We’re looking at LensB/−, i.e. objects
[
E
B

]
are maps E → B in B.

An object
[
E
B

]
is the same data as a polynomial functor!

It would denote the functor sending x 7→
∑

b:B xE(b).

E.g. the above polynomial corresponds to the following bundle

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

And they have the same morphisms too: PolyB
∼= LensB/−.

31 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functors

There’s a strong connection to polynomial functors, aka containers.

These are used a lot in functional programming.

Provide data structures like lists, binary trees, trees, streams, etc.

Called polynomials because they send x to e.g. x4+3x2+2x+1.

Setting: suppose B is locally cartesian closed with disjoint coproducts.

We’re looking at LensB/−, i.e. objects
[
E
B

]
are maps E → B in B.

An object
[
E
B

]
is the same data as a polynomial functor!

It would denote the functor sending x 7→
∑

b:B xE(b).

E.g. the above polynomial corresponds to the following bundle

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

And they have the same morphisms too: PolyB
∼= LensB/−.

31 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functors

There’s a strong connection to polynomial functors, aka containers.

These are used a lot in functional programming.

Provide data structures like lists, binary trees, trees, streams, etc.

Called polynomials because they send x to e.g. x4+3x2+2x+1.

Setting: suppose B is locally cartesian closed with disjoint coproducts.

We’re looking at LensB/−, i.e. objects
[
E
B

]
are maps E → B in B.

An object
[
E
B

]
is the same data as a polynomial functor!

It would denote the functor sending x 7→
∑

b:B xE(b).

E.g. the above polynomial corresponds to the following bundle

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

And they have the same morphisms too: PolyB
∼= LensB/−.

31 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functors

There’s a strong connection to polynomial functors, aka containers.

These are used a lot in functional programming.

Provide data structures like lists, binary trees, trees, streams, etc.

Called polynomials because they send x to e.g. x4+3x2+2x+1.

Setting: suppose B is locally cartesian closed with disjoint coproducts.

We’re looking at LensB/−, i.e. objects
[
E
B

]
are maps E → B in B.

An object
[
E
B

]
is the same data as a polynomial functor!

It would denote the functor sending x 7→
∑

b:B xE(b).

E.g. the above polynomial corresponds to the following bundle

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

And they have the same morphisms too: PolyB
∼= LensB/−.

31 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functors

There’s a strong connection to polynomial functors, aka containers.

These are used a lot in functional programming.

Provide data structures like lists, binary trees, trees, streams, etc.

Called polynomials because they send x to e.g. x4+3x2+2x+1.

Setting: suppose B is locally cartesian closed with disjoint coproducts.

We’re looking at LensB/−, i.e. objects
[
E
B

]
are maps E → B in B.

An object
[
E
B

]
is the same data as a polynomial functor!

It would denote the functor sending x 7→
∑

b:B xE(b).

E.g. the above polynomial corresponds to the following bundle

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

And they have the same morphisms too: PolyB
∼= LensB/−.

31 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functors

There’s a strong connection to polynomial functors, aka containers.

These are used a lot in functional programming.

Provide data structures like lists, binary trees, trees, streams, etc.

Called polynomials because they send x to e.g. x4+3x2+2x+1.

Setting: suppose B is locally cartesian closed with disjoint coproducts.

We’re looking at LensB/−, i.e. objects
[
E
B

]
are maps E → B in B.

An object
[
E
B

]
is the same data as a polynomial functor!

It would denote the functor sending x 7→
∑

b:B xE(b).

E.g. the above polynomial corresponds to the following bundle

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

And they have the same morphisms too: PolyB
∼= LensB/−.

31 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functor interpretation

How should we interpret the isomorphism PolySet
∼= LensSet/−?

How are objects
[
E
B

]
functors exactly?

And how are lenses
[
E1
B1

]
→
[
E2
B2

]
natural transformations?

Answer:

Interpreting
[
E
B

]
as a functor, it sends X to the set Lens

([
X
1

]
,
[
E
B

])
.

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

•
•
•

X

•1

Do you see why this sends X to X 4 + 3X 2 + 2X + 1?

The functor acts on a lens
[
E
B

]
→
[
E ′

B′

]
by composing with it.

32 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functor interpretation

How should we interpret the isomorphism PolySet
∼= LensSet/−?

How are objects
[
E
B

]
functors exactly?

And how are lenses
[
E1
B1

]
→
[
E2
B2

]
natural transformations?

Answer:

Interpreting
[
E
B

]
as a functor, it sends X to the set Lens

([
X
1

]
,
[
E
B

])
.

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

•
•
•

X

•1

Do you see why this sends X to X 4 + 3X 2 + 2X + 1?

The functor acts on a lens
[
E
B

]
→
[
E ′

B′

]
by composing with it.

32 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functor interpretation

How should we interpret the isomorphism PolySet
∼= LensSet/−?

How are objects
[
E
B

]
functors exactly?

And how are lenses
[
E1
B1

]
→
[
E2
B2

]
natural transformations?

Answer:

Interpreting
[
E
B

]
as a functor, it sends X to the set Lens

([
X
1

]
,
[
E
B

])
.

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

•
•
•

X

•1

Do you see why this sends X to X 4 + 3X 2 + 2X + 1?

The functor acts on a lens
[
E
B

]
→
[
E ′

B′

]
by composing with it.

32 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functor interpretation

How should we interpret the isomorphism PolySet
∼= LensSet/−?

How are objects
[
E
B

]
functors exactly?

And how are lenses
[
E1
B1

]
→
[
E2
B2

]
natural transformations?

Answer:

Interpreting
[
E
B

]
as a functor, it sends X to the set Lens

([
X
1

]
,
[
E
B

])
.

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

•
•
•

X

•1

Do you see why this sends X to X 4 + 3X 2 + 2X + 1?

The functor acts on a lens
[
E
B

]
→
[
E ′

B′

]
by composing with it.

32 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functor interpretation

How should we interpret the isomorphism PolySet
∼= LensSet/−?

How are objects
[
E
B

]
functors exactly?

And how are lenses
[
E1
B1

]
→
[
E2
B2

]
natural transformations?

Answer:

Interpreting
[
E
B

]
as a functor, it sends X to the set Lens

([
X
1

]
,
[
E
B

])
.

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

•
•
•

X

•1

Do you see why this sends X to X 4 + 3X 2 + 2X + 1?

The functor acts on a lens
[
E
B

]
→
[
E ′

B′

]
by composing with it.

32 / 33

Generalizing lens categories Examples of generalized lenses

Polynomial functor interpretation

How should we interpret the isomorphism PolySet
∼= LensSet/−?

How are objects
[
E
B

]
functors exactly?

And how are lenses
[
E1
B1

]
→
[
E2
B2

]
natural transformations?

Answer:

Interpreting
[
E
B

]
as a functor, it sends X to the set Lens

([
X
1

]
,
[
E
B

])
.

•
•
•
•

•
•
•
•
•
•
• •

E

• • • • • • •B

•
•
•

X

•1

Do you see why this sends X to X 4 + 3X 2 + 2X + 1?

The functor acts on a lens
[
E
B

]
→
[
E ′

B′

]
by composing with it.

32 / 33

Conclusion

Outline

1 Introduction

2 Some applications of lenses

3 Generalizing lens categories

4 Conclusion

32 / 33

Conclusion

Summary

Lenses seem to be springing up in many different places.

Functional programming; database transactions;

Open games; supervised learning;

Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form (B1 → B2, B1 × E2 → E1).

Namely, we think in terms of bundles
[
E
B

]
.

This perspective puts lenses in a more familiar categorical setting.

Used in algebraic geometry and theory of polynomial functors.

The larger category of bundles has better formal properties

Coproducts, initial algebras, an extra factorization system, etc.

In fact, one gets a lens-like category for any E : Bop → Cat.

Just take its Grothendieck construction (op).

Thanks; comments and questions welcome!

33 / 33

Conclusion

Summary

Lenses seem to be springing up in many different places.

Functional programming; database transactions;

Open games; supervised learning;

Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form (B1 → B2, B1 × E2 → E1).

Namely, we think in terms of bundles
[
E
B

]
.

This perspective puts lenses in a more familiar categorical setting.

Used in algebraic geometry and theory of polynomial functors.

The larger category of bundles has better formal properties

Coproducts, initial algebras, an extra factorization system, etc.

In fact, one gets a lens-like category for any E : Bop → Cat.

Just take its Grothendieck construction (op).

Thanks; comments and questions welcome!

33 / 33

Conclusion

Summary

Lenses seem to be springing up in many different places.

Functional programming; database transactions;

Open games; supervised learning;

Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form (B1 → B2, B1 × E2 → E1).

Namely, we think in terms of bundles
[
E
B

]
.

This perspective puts lenses in a more familiar categorical setting.

Used in algebraic geometry and theory of polynomial functors.

The larger category of bundles has better formal properties

Coproducts, initial algebras, an extra factorization system, etc.

In fact, one gets a lens-like category for any E : Bop → Cat.

Just take its Grothendieck construction (op).

Thanks; comments and questions welcome!

33 / 33

Conclusion

Summary

Lenses seem to be springing up in many different places.

Functional programming; database transactions;

Open games; supervised learning;

Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form (B1 → B2, B1 × E2 → E1).

Namely, we think in terms of bundles
[
E
B

]
.

This perspective puts lenses in a more familiar categorical setting.

Used in algebraic geometry and theory of polynomial functors.

The larger category of bundles has better formal properties

Coproducts, initial algebras, an extra factorization system, etc.

In fact, one gets a lens-like category for any E : Bop → Cat.

Just take its Grothendieck construction (op).

Thanks; comments and questions welcome!

33 / 33

Conclusion

Summary

Lenses seem to be springing up in many different places.

Functional programming; database transactions;

Open games; supervised learning;

Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

We can make sense of their peculiar form (B1 → B2, B1 × E2 → E1).

Namely, we think in terms of bundles
[
E
B

]
.

This perspective puts lenses in a more familiar categorical setting.

Used in algebraic geometry and theory of polynomial functors.

The larger category of bundles has better formal properties

Coproducts, initial algebras, an extra factorization system, etc.

In fact, one gets a lens-like category for any E : Bop → Cat.

Just take its Grothendieck construction (op).

Thanks; comments and questions welcome!

33 / 33

	Introduction
	An agent in an environment
	Lenses organize interactions
	Lenses in CT

	Some applications of lenses
	Back to the agent in an environment
	Machine learning
	Examples that don't quite work right

	Generalizing lens categories
	Another way to think about Lens
	Bundles
	Relationship between bundles and lenses
	Examples of generalized lenses

	Conclusion

