Lenses: applications and generalizations

David I. Spivak
Department of Mathematics
Massachusetts Institute of Technology

Outline

1 Introduction

- An agent in an environment
- Lenses organize interactions
- Lenses in CT

2 Some applications of lenses

3 Generalizing lens categories

4 Conclusion

An agent in an environment

We always hear of an agent in an environment. What's that?

An agent in an environment

We always hear of an agent in an environment. What's that?
■ The agent has an effect on the environment and vice versa.
■ What does that mean?

An agent in an environment

We always hear of an agent in an environment. What's that?

- The agent has an effect on the environment and vice versa.

■ What does that mean?
■ It means agent and environment are communicating somehow.
■ The agent observes the environment and acts on it.

An agent in an environment

We always hear of an agent in an environment. What's that?
■ The agent has an effect on the environment and vice versa.
■ What does that mean?
■ It means agent and environment are communicating somehow.

- The agent observes the environment and acts on it.
- The agent's state affects that of the environment and vice versa.
- Agent affects environment through action.

■ Environment affects agent through observation.

- Each is affected in that it undergoes a change of state.

How shall we model this mathematically?

A formalization of agent/environment interaction

Setup:
■ Agent affects environment through action.
■ Environment affects agent through observation.
■ Each is affected in that it undergoes a change of state.

A formalization of agent/environment interaction

Setup:
■ Agent affects environment through action.
■ Environment affects agent through observation.
■ Each is affected in that it undergoes a change of state.
Let's model states and communications as sets:
■ a set S_{Ag} for the possible states of the agent,
■ a set $S_{\text {En }}$ for the possible states of the environment,
■ a set Act for the possible actions, and
■ a set Obs for the possible observations.

A formalization of agent/environment interaction

Setup:
■ Agent affects environment through action.
■ Environment affects agent through observation.
■ Each is affected in that it undergoes a change of state.
Let's model states and communications as sets:
■ a set S_{Ag} for the possible states of the agent,
■ a set $S_{\text {En }}$ for the possible states of the environment,
■ a set Act for the possible actions, and

- a set $O b s$ for the possible observations.

These change in time. At every time step, what happens?
■ Action is dictated by agent's state via some $S_{\mathrm{Ag}} \rightarrow$ Act.

A formalization of agent/environment interaction

Setup:
■ Agent affects environment through action.
■ Environment affects agent through observation.
■ Each is affected in that it undergoes a change of state.
Let's model states and communications as sets:
■ a set S_{Ag} for the possible states of the agent,
■ a set $S_{\text {En }}$ for the possible states of the environment,
■ a set Act for the possible actions, and

- a set Obs for the possible observations.

These change in time. At every time step, what happens?
■ Action is dictated by agent's state via some $S_{\mathrm{Ag}} \rightarrow$ Act.
■ Agent's state is updated by the observation via $S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}}$.

A formalization of agent/environment interaction

Setup:
■ Agent affects environment through action.
■ Environment affects agent through observation.

- Each is affected in that it undergoes a change of state.

Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,

■ a set $S_{\text {En }}$ for the possible states of the environment,
■ a set Act for the possible actions, and
■ a set Obs for the possible observations.
These change in time. At every time step, what happens?
■ Action is dictated by agent's state via some $S_{\mathrm{Ag}} \rightarrow$ Act.
■ Agent's state is updated by the observation via $S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}}$.
■ Observation is dictated by environment's state via $S_{\text {En }} \rightarrow$ Obs.

A formalization of agent/environment interaction

Setup:
■ Agent affects environment through action.
■ Environment affects agent through observation.
■ Each is affected in that it undergoes a change of state.
Let's model states and communications as sets:

- a set S_{Ag} for the possible states of the agent,
- a set S_{En} for the possible states of the environment,

■ a set Act for the possible actions, and
■ a set Obs for the possible observations.
These change in time. At every time step, what happens?
■ Action is dictated by agent's state via some $S_{\mathrm{Ag}} \rightarrow$ Act.

- Agent's state is updated by the observation via $S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}}$.
$■$ Observation is dictated by environment's state via $S_{\mathrm{En}} \rightarrow$ Obs.
■ Environment's state is updated by the action via $S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}$.

How to organize all this stuff?

We have sets $S_{\mathrm{Ag}}, S_{\mathrm{En}}, A c t, O b s$ and functions

$$
\begin{array}{rlr}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{array}
$$

How to organize all this stuff?

How to organize all this stuff?

We have sets $S_{\mathrm{Ag}}, S_{\mathrm{En}}, A c t, O b s$ and functions

$$
\begin{array}{rlr}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{array}
$$

How to organize all this stuff?
■ Each pair of functions is a special case of what are called lenses.
■ Lenses are the morphisms in a cat Lens, whose objects are pairs $\binom{X}{Y}$.
■ The lenses from our agent/environment setup would be denoted:

- $\binom{S_{\mathrm{Ag}}}{S_{\mathrm{Ag}}} \rightarrow\binom{A c t}{O b s} \quad$ and $\quad\binom{S_{\mathrm{En}}}{S_{\mathrm{En}}} \rightarrow\binom{O b s}{A c t}$

How to organize all this stuff?

We have sets $S_{\mathrm{Ag}}, S_{\mathrm{En}}, A c t, O b s$ and functions

$$
\begin{array}{rr}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{array}
$$

How to organize all this stuff?
■ Each pair of functions is a special case of what are called lenses.
■ Lenses are the morphisms in a cat Lens, whose objects are pairs $\binom{X}{Y}$.
■ The lenses from our agent/environment setup would be denoted:

- $\binom{S_{A_{\mathrm{Ag}}}}{\mathrm{A}_{\mathrm{Ag}}} \rightarrow\binom{A c t}{O b s} \quad$ and $\quad\binom{S_{\mathrm{En}}}{S_{\mathrm{En}}} \rightarrow\binom{$ Obs }{$A c t}$

Lenses have been coming up in the ACT community a lot lately.

Applications of lenses

There have been many uses of lens-like things over the years.

Applications of lenses

There have been many uses of lens-like things over the years.
■ Bidirectional transformations (Oles),

- dialectica categories and linear logic (de Paiva),
- the view-update problem in databases (Hoffman, Pierce),

■ functional programming (Gibbons, Oliveira, Palmer, Kmett),
■ wiring diagrams, discrete and continuous dynamical systems (Spivak),
■ open economic games (Ghani-Hedges),
■ supervised learning (Fong-Spivak-Tuyéras).
I'll explain a few of these as we go, especially the ones I've worked on.

The symmetric monoidal category of lenses

For any symmetric monoidal category \mathcal{C}, we get an SMC Lens ${ }_{\mathcal{C}}$.

The symmetric monoidal category of lenses

For any symmetric monoidal category \mathcal{C}, we get an SMC Lens $\mathcal{C}_{\mathcal{C}}$. For simplicity, let's take $\mathcal{C}=$ Set and just write Lens for Lens Set .

■ $\mathrm{Ob}($ Lens $):=\left\{\left.\binom{A}{A^{\prime}} \right\rvert\, A, A^{\prime} \in \mathrm{Ob}(\right.$ Set $\left.)\right\}$
■ Monoidal unit: $\binom{1}{1}$; monoidal product: $\binom{A}{A^{\prime}} \otimes\binom{B}{B^{\prime}}:=\binom{A \times B}{A^{\prime} \times B^{\prime}}$
$■ \operatorname{Lens}\left(\binom{A}{A^{\prime}},\binom{B}{B^{\prime}}\right):=\left\{\binom{f}{f^{\sharp}} \left\lvert\, \begin{array}{c}f: A \rightarrow B \\ f^{\sharp}: A \times B^{\prime} \rightarrow A^{\prime}\end{array}\right.\right\}$.

- $\operatorname{id}_{\binom{A}{A^{\prime}}}=\binom{\mathrm{id}_{A}}{\pi}$, where $\pi: A \times A^{\prime} \rightarrow A^{\prime}$ is the projection.

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

$$
\text { Lens }\left(\binom{A}{A^{\prime}},\binom{B}{B^{\prime}}\right):=\left\{\binom{f}{f^{\sharp}} \left\lvert\, \begin{array}{r}
f: A \rightarrow B \\
f^{\sharp}: A \times B^{\prime} \rightarrow A^{\prime}
\end{array}\right.\right\} .
$$

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

$$
\operatorname{Lens}\left(\binom{A}{A^{\prime}},\binom{B}{B^{\prime}}\right):=\left\{\binom{f}{f \sharp} \left\lvert\, \begin{array}{r}
f: A \rightarrow B \\
f^{\sharp}: A \times B^{\prime} \rightarrow A^{\prime}
\end{array}\right.\right\} .
$$

I wanted to understand Lens in a way I found more comfortable.
■ Today: we'll first see Lens as part of a larger category that

- provides a sort of geometrical perspective,

■ might be more familiar, e.g. to algebraic geometers, and
■ has better formal properties.

Bringing lenses into the fold

I found the formula for lenses and their composition kinda weird:

$$
\operatorname{Lens}\left(\binom{A}{A^{\prime}},\binom{B}{B^{\prime}}\right):=\left\{\binom{f}{f \sharp} \left\lvert\, \begin{array}{r}
f: A \rightarrow B \\
f^{\sharp}: A \times B^{\prime} \rightarrow A^{\prime}
\end{array}\right.\right\} .
$$

I wanted to understand Lens in a way I found more comfortable.
■ Today: we'll first see Lens as part of a larger category that

- provides a sort of geometrical perspective,

■ might be more familiar, e.g. to algebraic geometers, and
■ has better formal properties.
■ We then generalize further to pick up some close cousins of lenses.

Other generalizations

There are other generalizations possible.

Other generalizations

There are other generalizations possible.
■ Kmett, Riley, etc. have generalized lenses to optics.
■ Briefly: for any monoidal category (\mathcal{C}, I, \otimes), ...
■ an optic $\binom{A}{A^{\prime}} \rightarrow\binom{B}{B^{\prime}}$ can be identified with an element of

$$
\int^{M \in \mathcal{C}} C(A, M \otimes B) \times C\left(M \otimes B^{\prime}, A^{\prime}\right)
$$

Other generalizations

There are other generalizations possible.
■ Kmett, Riley, etc. have generalized lenses to optics.
■ Briefly: for any monoidal category $(\mathcal{C}, I, \otimes), \ldots$
■ an optic $\binom{A}{A^{\prime}} \rightarrow\binom{B}{B^{\prime}}$ can be identified with an element of

$$
\int^{M \in \mathcal{C}} C(A, M \otimes B) \times C\left(M \otimes B^{\prime}, A^{\prime}\right)
$$

■ This can be generalized even further using Tambara modules.
■ However, it's not the direction I want to go today.

Plan of the talk

Plan for the rest of the talk:
■ Some applications of lenses
■ Generalizing lens categories

Outline

1 Introduction

2 Some applications of lenses

- Back to the agent in an environment
- Machine learning
- Examples that don't quite work right

3 Generalizing lens categories

4 Conclusion

Agent in an environment

We began with an agent and an environment interacting.

$$
\begin{array}{rlr}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{array}
$$

Agent in an environment

We began with an agent and an environment interacting.

$$
\begin{array}{rlr}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{array}
$$

Agent in an environment

We began with an agent and an environment interacting.

$$
\begin{aligned}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{aligned}
$$

These are lenses $\binom{S_{\mathrm{Ag}}}{S_{\mathrm{Ag}}} \rightarrow\binom{A c t}{O b s}$ and $\binom{S_{\mathrm{En}}}{S_{\mathrm{En}}} \rightarrow\binom{O b s}{A c t}$. Explain the flip?
■ Idea: if we tensor \otimes these lenses we get:

$$
\binom{S_{\mathrm{Ag}} \times S_{\mathrm{En}}}{S_{\mathrm{Ag}} \times S_{\mathrm{En}}} \rightarrow\binom{A c t \times O b s}{O b s \times A c t}
$$

and there's an "symmetry" lens morphism $\binom{$ Act \times Obs }{ Obs \times Act }$\rightarrow\binom{1}{1}$.

Agent in an environment

We began with an agent and an environment interacting.

$$
\begin{aligned}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{aligned}
$$

These are lenses $\binom{S_{\mathrm{Ag}}}{S_{\mathrm{Ag}}} \rightarrow\binom{A c t}{O b s}$ and $\binom{S_{\mathrm{En}}}{S_{\mathrm{En}}} \rightarrow\binom{O b s}{A c t}$. Explain the flip?

- Idea: if we tensor \otimes these lenses we get:

$$
\binom{S_{\mathrm{Ag}} \times S_{\mathrm{En}}}{S_{\mathrm{Ag}} \times S_{\mathrm{En}}} \rightarrow\binom{A c t \times O b s}{O b s \times A c t}
$$

and there's an "symmetry" lens morphism $\binom{$ Act \times Obs }{ Obs $\times A c t} \rightarrow\binom{1}{1}$.
■ Composing, we get a single lens $\binom{S}{S} \rightarrow\binom{1}{1}$, where $S=S_{\mathrm{Ag}} \times S_{\mathrm{En}}$.
■ It's just a set S and a map $S \rightarrow S$: a discrete dynamical system.

Agent in an environment

We began with an agent and an environment interacting.

$$
\begin{aligned}
S_{\mathrm{Ag}} \rightarrow A c t & S_{\mathrm{En}} \rightarrow O b s \\
S_{\mathrm{Ag}} \times O b s \rightarrow S_{\mathrm{Ag}} & S_{\mathrm{En}} \times A c t \rightarrow S_{\mathrm{En}}
\end{aligned}
$$

These are lenses $\binom{S_{\mathrm{Ag}}}{S_{\mathrm{Ag}}} \rightarrow\binom{A c t}{O b s}$ and $\binom{S_{\mathrm{En}}}{S_{\mathrm{En}}} \rightarrow\binom{O b s}{A c t}$. Explain the flip?

- Idea: if we tensor \otimes these lenses we get:

$$
\binom{S_{\mathrm{Ag}} \times S_{\mathrm{En}}}{S_{\mathrm{Ag}} \times S_{\mathrm{En}}} \rightarrow\binom{A c t \times O b s}{O b s \times A c t}
$$

and there's an "symmetry" lens morphism $\binom{$ Act \times Obs }{$O b s \times A c t} \rightarrow\binom{1}{1}$.
■ Composing, we get a single lens $\binom{S}{S} \rightarrow\binom{1}{1}$, where $S=S_{\mathrm{Ag}} \times S_{\mathrm{En}}$.
■ It's just a set S and a map $S \rightarrow S$: a discrete dynamical system.
We can see this as part of a bigger picture.

The agent-environment system

So what were we doing when we:

- started with lenses $\binom{S}{S} \rightarrow\binom{A c t}{O b s}$ and $\binom{S^{\prime}}{S^{\prime}} \rightarrow\binom{O b s}{A c t}$,
- multiplied them together to get a map $\binom{S \times S^{\prime}}{S \times S^{\prime}} \rightarrow\binom{A c t \times O b s}{O b s \times A c t}$, and then
- composed the result with a canonical map to $\binom{1}{1}$?

The agent-environment system

So what were we doing when we:
■ started with lenses $\binom{S}{S} \rightarrow\binom{A c t}{O b s}$ and $\binom{S^{\prime}}{S^{\prime}} \rightarrow\binom{O b s}{A c t}$,
■ multiplied them together to get a map $\binom{S \times S^{\prime}}{S \times S^{\prime}} \rightarrow\binom{A c t \times O b s}{O b s \times A c t}$, and then

- composed the result with a canonical map to $\binom{1}{1}$?

It turns out we were doing this:

The agent-environment system

So what were we doing when we:
■ started with lenses $\binom{S}{S} \rightarrow\binom{A c t}{O b s}$ and $\binom{S^{\prime}}{S^{\prime}} \rightarrow\binom{O b s}{A c t}$,

- multiplied them together to get a map $\binom{S \times S^{\prime}}{S \times S^{\prime}} \rightarrow\binom{A c t \times O b s}{O b s \times A c t}$, and then
- composed the result with a canonical map to $\binom{1}{1}$?

It turns out we were doing this:

More generally we can consider open systems with many interacting agents

Wiring diagrams

What is going on in this picture mathematically:

Wiring diagrams

What is going on in this picture mathematically:

For each box, we have an object $\binom{$ outputs }{ inputs } in Lens.

Wiring diagrams

What is going on in this picture mathematically:

For each box, we have an object $\binom{$ outputs }{ inputs } in Lens.

- We have three interior boxes: $\binom{C}{E \times A},\binom{D \times G}{B},\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\binom{F \times G}{A \times B}$.

Wiring diagrams

What is going on in this picture mathematically:

For each box, we have an object $\binom{$ outputs }{ inputs } in Lens.

- We have three interior boxes: $\binom{C}{E \times A},\binom{D \times G}{B},\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\binom{F \times G}{A \times B}$.
- The wiring diagram induces a lens $\binom{C \times D \times G \times E \times F}{E \times A \times B \times C \times A \times D} \rightarrow\binom{F \times G}{A \times B}$

Wiring diagrams

What is going on in this picture mathematically:

For each box, we have an object $\binom{$ outputs }{ inputs } in Lens.

- We have three interior boxes: $\binom{C}{E \times A},\binom{D \times G}{B},\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\binom{F \times G}{A \times B}$.
- The wiring diagram induces a lens $\binom{C \times D \times G \times E \times F}{E \times A \times B \times C \times A \times D} \rightarrow\binom{F \times G}{A \times B}$

■ Both maps are just projections and diagonals:

$$
\begin{aligned}
C \times D \times G \times E \times F & \rightarrow F \times G \\
C \times D \times G \times E \times F \times A \times B & \rightarrow E \times A \times B \times C \times A \times D
\end{aligned}
$$

Wiring diagrams

What is going on in this picture mathematically:

For each box, we have an object $\binom{$ outputs }{ inputs } in Lens.

- We have three interior boxes: $\binom{C}{E \times A},\binom{D \times G}{B},\binom{E \times F}{C \times A \times D}$.
- We have one exterior box: $\binom{F \times G}{A \times B}$.
- The wiring diagram induces a lens $\binom{C \times D \times G \times E \times F}{E \times A \times B \times C \times A \times D} \rightarrow\binom{F \times G}{A \times B}$

■ Both maps are just projections and diagonals:

$$
\begin{aligned}
C \times D \times G \times E \times F & \rightarrow F \times G \\
C \times D \times G \times E \times F \times A \times B & \rightarrow E \times A \times B \times C \times A \times D
\end{aligned}
$$

Every wiring diagram gives a lens made of projections and diagonals.

WDs and discrete dynamical systems

A discrete dynamical system of type $\binom{A}{A^{\prime}}$ consists of

- A set S
- A function $f^{\text {rdt }}: S \rightarrow A$ called "readout"
- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

■ Optional: an element $s_{0} \in S$ called "initial state".

WDs and discrete dynamical systems

A discrete dynamical system of type $\binom{A}{A^{\prime}}$ consists of

- A set S
- A function $f^{\text {rdt }}: S \rightarrow A$ called "readout"
- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"
- Optional: an element $s_{0} \in S$ called "initial state".

This is just a lens $\binom{f \mathrm{fdt}}{f$ upd }$:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$, with optional $\binom{s_{0}}{!}:\binom{1}{1} \rightarrow\binom{S}{S}$.

WDs and discrete dynamical systems

A discrete dynamical system of type $\binom{A}{A^{\prime}}$ consists of

- A set S
- A function $f^{\text {rdt }}: S \rightarrow A$ called "readout"
- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

■ Optional: an element $s_{0} \in S$ called "initial state".
This is just a lens $\binom{f \mathrm{fdt}}{f$ upd }$:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$, with optional $\binom{S_{0}}{!}:\binom{1}{1} \rightarrow\binom{S}{S}$.
■ We'll denote this setup by writing S, or $\left(S, s_{0}\right)$ inside the box

$$
A^{\prime}=S \text { or } A^{\prime} S, s_{0} A
$$

WDs and discrete dynamical systems

A discrete dynamical system of type $\binom{A}{A^{\prime}}$ consists of

- A set S
- A function $f^{\text {rdt }}: S \rightarrow A$ called "readout"
- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

■ Optional: an element $s_{0} \in S$ called "initial state".
This is just a lens $\binom{f \mathrm{fdt}}{f$ upd }$:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$, with optional $\binom{S_{0}}{!}:\binom{1}{1} \rightarrow\binom{S}{S}$.
■ We'll denote this setup by writing S, or $\left(S, s_{0}\right)$ inside the box

$$
A^{\prime}-A \quad \text { or } \quad A^{\prime} S, s_{0}-A
$$

- A wiring diagram is a lens $\binom{A_{1}}{A_{1}^{\prime}} \otimes \cdots \otimes\binom{A_{n}}{A_{n}^{\prime}} \rightarrow\binom{B}{B^{\prime}}$, and
- Each dyn'l system is a lens $\binom{S_{i}}{S_{i}} \rightarrow\binom{A_{i}}{A_{i}^{i}}$. Composing and multiplying...
- We get a dynamical system $\binom{S_{1} \times \cdots \times S_{n}}{S_{1} \times \cdots \times S_{n}} \rightarrow\binom{B}{B^{\prime}}$ in outer box.

WDs and discrete dynamical systems

A discrete dynamical system of type $\binom{A}{A^{\prime}}$ consists of

- A set S

■ A function $\mathrm{f}^{\text {rdt }}: S \rightarrow A$ called "readout"

- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

■ Optional: an element $s_{0} \in S$ called "initial state".
This is just a lens $\binom{f \mathrm{fdt}}{f$ upd }$:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$, with optional $\binom{S_{0}}{!}:\binom{1}{1} \rightarrow\binom{S}{S}$.
■ We'll denote this setup by writing S, or $\left(S, s_{0}\right)$ inside the box

$$
A^{\prime}=S \text { or } A^{\prime} S, s_{0} A
$$

- A wiring diagram is a lens $\binom{A_{1}}{A_{1}^{\prime}} \otimes \cdots \otimes\binom{A_{n}}{A_{n}^{\prime}} \rightarrow\binom{B}{B^{\prime}}$, and
- Each dyn'l system is a lens $\binom{S_{i}}{S_{i}} \rightarrow\binom{A_{i}}{A_{i}^{i}}$. Composing and multiplying...

■ We get a dynamical system $\binom{S_{1} \times \cdots \times S_{n}}{S_{1} \times \cdots \times S_{n}} \rightarrow\binom{B}{B^{\prime}}$ in outer box.
This story of DS's and WD's existed years before I knew about lenses.

Learners

Similarly, the story of learners existed before we knew about lenses.

Learners

Similarly, the story of learners existed before we knew about lenses.

■ A learner is something that approximates a function $A^{\prime} \rightarrow A$.

Learners

Similarly, the story of learners existed before we knew about lenses.
■ A learner is something that approximates a function $A^{\prime} \rightarrow A$.

- It consists of a function $P \times A^{\prime} \rightarrow A$, where P is a set.

■ It also has an update-backprop function $P \times A^{\prime} \times A \rightarrow P \times A^{\prime}$.

Learners

Similarly, the story of learners existed before we knew about lenses.
■ A learner is something that approximates a function $A^{\prime} \rightarrow A$.

- It consists of a function $P \times A^{\prime} \rightarrow A$, where P is a set.
- It also has an update-backprop function $P \times A^{\prime} \times A \rightarrow P \times A^{\prime}$.

■ So it's just a lens $\binom{$ implement }{ upd-backprop }$:\binom{P}{P} \otimes\binom{A^{\prime}}{A^{\prime}} \rightarrow\binom{A}{A}$

Learners

Similarly, the story of learners existed before we knew about lenses.
■ A learner is something that approximates a function $A^{\prime} \rightarrow A$.
■ It consists of a function $P \times A^{\prime} \rightarrow A$, where P is a set.
■ It also has an update-backprop function $P \times A^{\prime} \times A \rightarrow P \times A^{\prime}$.

- So it's just a lens $\binom{$ implement }{ upd-backprop }$:\binom{P}{P} \otimes\binom{A^{\prime}}{A^{\prime}} \rightarrow\binom{A}{A}$

■ For any monoidal category \mathcal{C}, there is a monoidal category $\operatorname{Para}(\mathcal{C})$:
■ Objects in Para(C) are objects in \mathcal{C}
■ Morphisms $A^{\prime} \rightarrow A$ in $\operatorname{Para}(\mathcal{C})$ consist of pairs (P, f) where

- P is an object of \mathcal{C}, (chosen up to isomorphism)

■ $f: P \otimes A^{\prime} \rightarrow A$ is a morphism

- Composition is "multiply parameters and compose"

Learners

Similarly, the story of learners existed before we knew about lenses.
■ A learner is something that approximates a function $A^{\prime} \rightarrow A$.
■ It consists of a function $P \times A^{\prime} \rightarrow A$, where P is a set.
■ It also has an update-backprop function $P \times A^{\prime} \times A \rightarrow P \times A^{\prime}$.

- So it's just a lens $\binom{$ implement }{ upd-backprop }$:\binom{P}{P} \otimes\binom{A^{\prime}}{A^{\prime}} \rightarrow\binom{A}{A}$

■ For any monoidal category \mathcal{C}, there is a monoidal category $\operatorname{Para}(\mathcal{C})$:
■ Objects in Para(C) are objects in \mathcal{C}

- Morphisms $A^{\prime} \rightarrow A$ in $\operatorname{Para}(\mathcal{C})$ consist of pairs (P, f) where
- P is an object of \mathcal{C}, (chosen up to isomorphism)

■ $f: P \otimes A^{\prime} \rightarrow A$ is a morphism
■ Composition is "multiply parameters and compose"
Our category Learn is just Para(Lens).

View update?

The view-update problem is a widely-cited example of lenses.

View update?

The view-update problem is a widely-cited example of lenses.
■ A database instance is a bunch of tables filled with data.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a schema.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a schema.

■ Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.

■ The tables interlock according to a certain pattern, called a schema.
■ Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.
The usual view-update formulation is kinda weird from my perspective.
■ It treats the instances on \mathcal{C} as a set; let's denote it $\mid \mathcal{C}$-Inst|.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.

■ The tables interlock according to a certain pattern, called a schema.
■ Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.
The usual view-update formulation is kinda weird from my perspective.
■ It treats the instances on \mathcal{C} as a set; let's denote it $\mid \mathcal{C}$-Inst|.
$■$ View-update is considered as a lens $\binom{$ view }{ update }$:\binom{\mathcal{C}$ - - Inst $\mid}{\mid \mathcal{C}$-Inst $\mid} \rightarrow\binom{\mid \mathcal{D}$-Inst $\mid}{\mid \mathcal{D}$-Inst $\mid}$.
■ Isn't this quite floppy? Totally not functorial, anything goes.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a schema.

■ Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.
The usual view-update formulation is kinda weird from my perspective.
■ It treats the instances on \mathcal{C} as a set; let's denote it $\mid \mathcal{C}$ - Inst|.
$■$ View-update is considered as a lens $\binom{$ view }{ update }$:\binom{\mathcal{C}$ - - Inst $\mid}{\mid \mathcal{C}$-Inst $\mid} \rightarrow\binom{\mid \mathcal{D}$-Inst $\mid}{\mid \mathcal{D}$-Inst $\mid}$.
■ Isn't this quite floppy? Totally not functorial, anything goes.
People use lens laws to try to mitigate the floppiness.
■ Lens laws: get-put, put-get, and put-put.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a schema.

■ Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.
The usual view-update formulation is kinda weird from my perspective.
■ It treats the instances on \mathcal{C} as a set; let's denote it $\mid \mathcal{C}$-Inst|.
■ View-update is considered as a lens $\binom{$ view }{ update }$:\binom{\mathcal{C}$-Inst $\mid}{\mid \mathcal{C}$-lnst $\mid} \rightarrow\binom{\mid \mathcal{D}$-Inst $\mid}{\mid \mathcal{D}$-Inst $\mid}$.
■ Isn't this quite floppy? Totally not functorial, anything goes.
People use lens laws to try to mitigate the floppiness.
■ Lens laws: get-put, put-get, and put-put.
■ These together are equivalent to "constant complement" condition.

- That implies that \mathcal{C}-Inst $\cong \mathcal{D}$-Inst $\times M$ for some M.

■ Too strong: e.g. if $\mathcal{D} \subseteq \mathcal{C}$, it must be totally disjoint from the rest!

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.
- The tables interlock according to a certain pattern, called a schema.

■ Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.
The usual view-update formulation is kinda weird from my perspective.
■ It treats the instances on \mathcal{C} as a set; let's denote it $\mid \mathcal{C}$-Inst|.
■ View-update is considered as a lens $\binom{$ view }{ update }$:\binom{\mid \mathcal{C}$-Inst $\mid}{\mid \mathcal{C}$-Inst $\mid} \rightarrow\binom{\mid \mathcal{D}$-Inst $\mid}{\mid \mathcal{D}$-Inst $\mid}$.
■ Isn't this quite floppy? Totally not functorial, anything goes.
People use lens laws to try to mitigate the floppiness.
■ Lens laws: get-put, put-get, and put-put.
■ These together are equivalent to "constant complement" condition.

- That implies that \mathcal{C}-Inst $\cong \mathcal{D}$-Inst $\times M$ for some M.

■ Too strong: e.g. if $\mathcal{D} \subseteq \mathcal{C}$, it must be totally disjoint from the rest!

- The lens laws are too strong, but without them lenses are too floppy.

View update?

The view-update problem is a widely-cited example of lenses.

- A database instance is a bunch of tables filled with data.

■ The tables interlock according to a certain pattern, called a schema.

- Instances for a given schema \mathcal{C} form a category \mathcal{C}-Inst.

The usual view-update formulation is kinda weird from my perspective.
■ It treats the instances on \mathcal{C} as a set; let's denote it $\mid \mathcal{C}$-Inst|.
■ View-update is considered as a lens $\binom{$ view }{ update }$:\binom{\mid \mathcal{C}$-Inst $\mid}{\mid \mathcal{C}$-Inst $\mid} \rightarrow\binom{\mid \mathcal{D}$-Inst $\mid}{\mid \mathcal{D}$-Inst $\mid}$.
■ Isn't this quite floppy? Totally not functorial, anything goes.
People use lens laws to try to mitigate the floppiness.
■ Lens laws: get-put, put-get, and put-put.
■ These together are equivalent to "constant complement" condition.

- That implies that \mathcal{C}-Inst $\cong \mathcal{D}$-Inst $\times M$ for some M.

■ Too strong: e.g. if $\mathcal{D} \subseteq \mathcal{C}$, it must be totally disjoint from the rest!
■ The lens laws are too strong, but without them lenses are too floppy.
Can we do better?

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A^{\prime} and outputs A is:

- A set S
\square A function $f^{\text {rdt }}: S \rightarrow A$ called "readout" $\quad\binom{f}{f$ rupd }$:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$
■ A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A^{\prime} and outputs A is:

- A set S
\square A function $f^{\text {rdt }}: S \rightarrow A$ called "readout" $\quad\binom{f}{f$ rupd }$:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$
■ A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"
Replacing sets A^{\prime}, A by manifolds, a continuous dynamical system is:
■ A manifold S, (denote its tangent bundle $T S$),

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A^{\prime} and outputs A is:

- A set S
- A function $f^{\text {rdt }}: S \rightarrow A$ called "readout" $\quad\binom{f r \mathrm{rdt}}{f u p d}:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$
- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

Replacing sets A^{\prime}, A by manifolds, a continuous dynamical system is:
■ A manifold S, (denote its tangent bundle $T S$),

- A differentiable map $f^{\text {rdt }}: S \rightarrow A$,

■ A differentiable map $f^{\text {dyn }}: S \times A^{\prime} \rightarrow T S$ satisfying:

In other words, for every input a^{\prime} and state s, a tangent vector at s.

Continuous dynamical systems?

Recall that a discrete dynamical system with inputs A^{\prime} and outputs A is:

- A set S
- A function $f^{\text {rdt }}: S \rightarrow A$ called "readout" $\quad\binom{f r \mathrm{rdt}}{f u p d}:\binom{S}{S} \rightarrow\binom{A}{A^{\prime}}$
- A function $f^{\text {upd }}: S \times A^{\prime} \rightarrow S$ called "update"

Replacing sets A^{\prime}, A by manifolds, a continuous dynamical system is:
■ A manifold S, (denote its tangent bundle $T S$),

- A differentiable map $f^{\text {rdt }}: S \rightarrow A$,

■ A differentiable map $f^{\text {dyn }}: S \times A^{\prime} \rightarrow T S$ satisfying:

In other words, for every input a^{\prime} and state s, a tangent vector at s. The two notions are quite similar, but can we see the latter as a lens?

Outline

1 Introduction

2 Some applications of lenses

3 Generalizing lens categories

- Another way to think about Lens
- Bundles

■ Relationship between bundles and lenses
■ Examples of generalized lenses

4 Conclusion

So how should I think about an object in Lens?

How should we think about $\binom{A}{A^{\prime}}$?
■ Is it just a pair of sets?
■ Why are maps $\binom{A}{A^{\prime}} \rightarrow\binom{B}{B^{\prime}}$ the way they are?

So how should I think about an object in Lens?

How should we think about $\binom{A}{A^{\prime}}$?
■ Is it just a pair of sets?

- Why are maps $\binom{A}{A^{\prime}} \rightarrow\binom{B}{B^{\prime}}$ the way they are?

$$
\text { Lens }\left(\binom{A}{A^{\prime}},\binom{B}{B^{\prime}}\right):=\left\{\binom{f}{f \sharp} \left\lvert\, \begin{array}{r}
f: A \rightarrow B \\
f^{\sharp}: A \times B^{\prime} \rightarrow A^{\prime}
\end{array}\right.\right\} .
$$

So how should I think about an object in Lens?

How should we think about $\binom{A}{A^{\prime}}$?
■ Is it just a pair of sets?

- Why are maps $\binom{A}{A^{\prime}} \rightarrow\binom{B}{B^{\prime}}$ the way they are?

$$
\operatorname{Lens}\left(\binom{A}{A^{\prime}},\binom{B}{B^{\prime}}\right):=\left\{\binom{f}{f^{\sharp}} \left\lvert\, \begin{array}{r}
f: A \rightarrow B \\
f^{\sharp}: A \times B^{\prime} \rightarrow A^{\prime}
\end{array}\right.\right\} .
$$

Suggestion: think of objects as "bundles."

What are bundles?

The term bundle is most used in algebraic topology and algebraic geometry.

What are bundles?

The term bundle is most used in algebraic topology and algebraic geometry.

■ A bundle is a special kind of morphism $p: E \rightarrow B$ in a category.
■ The base space B consists of "locations" or contexts.

- For any context $b: B$, the fiber $E(b):=p^{-1}(b)$ are possibilities.

What are bundles?

The term bundle is most used in algebraic topology and algebraic geometry.

■ A bundle is a special kind of morphism $p: E \rightarrow B$ in a category.
■ The base space B consists of "locations" or contexts.
■ For any context $b: B$, the fiber $E(b):=p^{-1}(b)$ are possibilities.
■ Example: vector bundles in geometry/topology.
■ For a manifold B, the tangent bundle $T B$ is a vector bundle.
■ At each $b: B$, the fiber $T B(b)=$ possible velocities at b.

What are bundles?

The term bundle is most used in algebraic topology and algebraic geometry.

■ A bundle is a special kind of morphism $p: E \rightarrow B$ in a category.
■ The base space B consists of "locations" or contexts.

- For any context $b: B$, the fiber $E(b):=p^{-1}(b)$ are possibilities.

■ Example: vector bundles in geometry/topology.
■ For a manifold B, the tangent bundle $T B$ is a vector bundle.
■ At each $b: B$, the fiber $T B(b)=$ possible velocities at b.
■ A database instance can be thought of as a bundle over its schema.
■ A discrete opfibration of categories $p: E \rightarrow B$.

- At each table $b: B$, the fiber $E(b)=$ rows in table b.

What are bundles?

The term bundle is most used in algebraic topology and algebraic geometry.

■ A bundle is a special kind of morphism $p: E \rightarrow B$ in a category.
■ The base space B consists of "locations" or contexts.

- For any context $b: B$, the fiber $E(b):=p^{-1}(b)$ are possibilities.

■ Example: vector bundles in geometry/topology.
■ For a manifold B, the tangent bundle $T B$ is a vector bundle.
■ At each $b: B$, the fiber $T B(b)=$ possible velocities at b.
■ A database instance can be thought of as a bundle over its schema.

- A discrete opfibration of categories $p: E \rightarrow B$.

■ At each table $b: B$, the fiber $E(b)=$ rows in table b.
A trivial bundle is one of the form $\pi_{1}: B \times B^{\prime} \rightarrow B$ for some B^{\prime}.

Pullbacks of bundles

Suppose that $p: E \rightarrow B$ is a bundle.
■ We haven't said what that means exactly, just given examples.
■ But whatever bundles are, you should be able to pull them back.

Pullbacks of bundles

Suppose that $p: E \rightarrow B$ is a bundle.
■ We haven't said what that means exactly, just given examples.
■ But whatever bundles are, you should be able to pull them back.
■ That is, given a bundle $E_{2} \xrightarrow{p_{2}} B_{2}$ and a map $B_{1} \rightarrow B_{2}, \ldots$
■ ... the pullback should exist and be a bundle over B_{1}.

Pullbacks of bundles

Suppose that $p: E \rightarrow B$ is a bundle.

- We haven't said what that means exactly, just given examples.

■ But whatever bundles are, you should be able to pull them back.
■ That is, given a bundle $E_{2} \xrightarrow{p_{2}} B_{2}$ and a map $B_{1} \rightarrow B_{2}, \ldots$
■ ... the pullback should exist and be a bundle over B_{1}.

The fiber over any $b_{1}: B_{1}$ is that over its image, $\left(f^{*} E_{2}\right)\left(b_{1}\right)=E_{2}\left(f\left(b_{1}\right)\right)$.

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

$$
\operatorname{Hom}\left(\begin{array}{cc}
E_{1} & E_{2} \\
p_{1} \downarrow & , \\
\downarrow^{p_{2}} \\
B_{1} & B_{2}
\end{array}\right)=\left\{(f, g) \left\lvert\, \begin{array}{ccc}
E_{1} & g & E_{2} \\
p_{1} \downarrow & & \downarrow^{p_{2}} \\
B_{1} & \rightarrow & B_{2}
\end{array}\right.\right\}
$$

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

$$
\operatorname{Hom}\left(\begin{array}{cc}
E_{1} & E_{2} \\
p_{1} \downarrow & , \\
\downarrow^{p_{2}} \\
B_{1} & B_{2}
\end{array}\right)=\left\{(f, g) \left\lvert\, \begin{array}{ccc}
E_{1} & g & E_{2} \\
p_{1} \downarrow & & \downarrow^{p_{2}} \\
B_{1} & \rightarrow & B_{2}
\end{array}\right.\right\}
$$

■ The pullback $f^{*} E_{2} \cong B_{1} \times_{B_{2}} E_{2}$ has a universal property by which...
$\square \ldots$ the map g can be identified with a map $E_{1} \rightarrow f^{*} E_{2}$.

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

$$
\operatorname{Hom}\left(\begin{array}{cc}
E_{1} & E_{2} \\
p_{1} \downarrow & , \\
\downarrow^{p_{2}} \\
B_{1} & B_{2}
\end{array}\right)=\left\{(f, g) \left\lvert\, \begin{array}{ccc}
E_{1} & g & E_{2} \\
p_{1} \downarrow & & \downarrow^{p_{2}} \\
B_{1} & \rightarrow & B_{2}
\end{array}\right.\right\}
$$

■ The pullback $f^{*} E_{2} \cong B_{1} \times_{B_{2}} E_{2}$ has a universal property by which...
$■$... the map g can be identified with a map $E_{1} \rightarrow f^{*} E_{2}$.
But in algebraic geometry, the arrow $E_{1} \rightarrow f^{*}\left(E_{2}\right)$ is often reversed:

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

$$
\operatorname{Hom}\left(\begin{array}{cc}
E_{1} & E_{2} \\
p_{1} \downarrow & , \\
\downarrow^{p_{2}} \\
B_{1} & B_{2}
\end{array}\right)=\left\{(f, g) \left\lvert\, \begin{array}{ccc}
E_{1} & g & E_{2} \\
p_{1} \downarrow & & \downarrow^{p_{2}} \\
B_{1} & \rightarrow & B_{2}
\end{array}\right.\right\}
$$

■ The pullback $f^{*} E_{2} \cong B_{1} \times_{B_{2}} E_{2}$ has a universal property by which...
$■$... the map g can be identified with a map $E_{1} \rightarrow f^{*} E_{2}$.
But in algebraic geometry, the arrow $E_{1} \rightarrow f^{*}\left(E_{2}\right)$ is often reversed:

or simply

Morphisms of bundles

The usual sort of bundle morphism is just a commutative square

$$
\operatorname{Hom}\left(\begin{array}{cc}
E_{1} & E_{2} \\
p_{1} \downarrow & , \\
\downarrow^{p_{2}} \\
B_{1} & B_{2}
\end{array}\right)=\left\{(f, g) \left\lvert\, \begin{array}{ccc}
E_{1} & g & E_{2} \\
p_{1} \downarrow & & \downarrow^{p_{2}} \\
B_{1} & \rightarrow & B_{2}
\end{array}\right.\right\}
$$

■ The pullback $f^{*} E_{2} \cong B_{1} \times_{B_{2}} E_{2}$ has a universal property by which...
$\square \ldots$ the map g can be identified with a map $E_{1} \rightarrow f^{*} E_{2}$.
But in algebraic geometry, the arrow $E_{1} \rightarrow f^{*}\left(E_{2}\right)$ is often reversed:

or simply

There's a strong relationship between the AG-style maps and lenses.

Example

Given a bundle $p: E \rightarrow B$, let's visualize a map to the bundle $1 \rightarrow 1$.

Example

Given a bundle $p: E \rightarrow B$, let's visualize a map to the bundle $1 \rightarrow 1$.

Example

Given a bundle $p: E \rightarrow B$, let's visualize a map to the bundle $1 \rightarrow 1$.

Example

Given a bundle $p: E \rightarrow B$, let's visualize a map to the bundle $1 \rightarrow 1$.

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

- That is, there is a fully faithful functor Lens \rightarrow Bund.

■ Send lens object $\binom{B}{B^{\prime}}$ to the trivial bundle (projection) $B \times B^{\prime} \rightarrow B$.

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

- That is, there is a fully faithful functor Lens \rightarrow Bund.

■ Send lens object $\binom{B}{B^{\prime}}$ to the trivial bundle (projection) $B \times B^{\prime} \rightarrow B$.
■ Note that the pullback of a projection is a projection:

Interpretation of bimorphic lenses as trivial bundles

We will see that Lens sits inside this category Bund of bundles.

- That is, there is a fully faithful functor Lens \rightarrow Bund.
$■$ Send lens object $\binom{B}{B^{\prime}}$ to the trivial bundle (projection) $B \times B^{\prime} \rightarrow B$.
■ Note that the pullback of a projection is a projection:

■ Send morphism $\binom{f}{f \sharp}:\binom{B_{1}}{B_{1}^{\prime}} \rightarrow\binom{B_{2}}{B_{2}^{\prime}}$ to the bundle morphism:

Such a map $f^{\sharp}: B_{1} \times B_{2}^{\prime} \rightarrow B_{1} \times B_{1}^{\prime}$,

- in order to commute with π_{1} has no choice on the B_{1} factor. Thus it can be identified with a map $f^{\sharp}: B_{1} \times B_{2}^{\prime} \rightarrow B_{1}^{\prime}$.

What are we really using

What do we really need to create a lens-like world?
■ A category \mathcal{B} where the bases live $f: B_{1} \rightarrow B_{2}$.

What are we really using

What do we really need to create a lens-like world?
■ A category \mathcal{B} where the bases live $f: B_{1} \rightarrow B_{2}$.
■ For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.

What are we really using

What do we really need to create a lens-like world?

- A category \mathcal{B} where the bases live $f: B_{1} \rightarrow B_{2}$.

■ For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.
■ For each map $f: B_{1} \rightarrow B_{2}$ and bundle $E_{2} \in \mathcal{E}\left(B_{2}\right), \ldots$
... a notion of pullback $f^{*} E_{2} \in \mathcal{E}\left(B_{1}\right)$.

What are we really using

What do we really need to create a lens-like world?
■ A category \mathcal{B} where the bases live $f: B_{1} \rightarrow B_{2}$.
■ For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.
■ For each map $f: B_{1} \rightarrow B_{2}$ and bundle $E_{2} \in \mathcal{E}\left(B_{2}\right), \ldots$
... a notion of pullback $f^{*} E_{2} \in \mathcal{E}\left(B_{1}\right)$.
That is, a category \mathcal{B} and a functor $\mathcal{E}: \mathcal{B}^{\text {op }} \rightarrow$ Cat.
■ Then define Lens $\mathcal{E}_{\mathcal{E}}$ as a Grothendieck construction.

What are we really using

What do we really need to create a lens-like world?
■ A category \mathcal{B} where the bases live $f: B_{1} \rightarrow B_{2}$.
■ For each base B, a category $\mathcal{E}(B)$ of possible "bundles" over B.
$■$ For each map $f: B_{1} \rightarrow B_{2}$ and bundle $E_{2} \in \mathcal{E}\left(B_{2}\right), \ldots$
... a notion of pullback $f^{*} E_{2} \in \mathcal{E}\left(B_{1}\right)$.
That is, a category \mathcal{B} and a functor $\mathcal{E}: \mathcal{B}^{\text {op }} \rightarrow$ Cat.
■ Then define Lens $\mathcal{E}_{\mathcal{E}}$ as a Grothendieck construction.
■ objects $\left\{\left.\left[\begin{array}{c}E \\ B\end{array}\right] \right\rvert\, B: \mathcal{B}, E: \mathcal{E}(B)\right\}$
■ morphisms $\left[\begin{array}{c}f \\ f\end{array}\right]:\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$, where $f: B_{1} \rightarrow B_{2}$, $f^{\sharp}: f^{*} E_{2} \rightarrow E_{1}$.

Notation

We denote by $\left[\begin{array}{c}E \\ B\end{array}\right]$ the bundle whose

- base space is B
- fiber over $b: B$ is $E(b)$.

Notation

We denote by $\left[\begin{array}{c}E \\ B\end{array}\right]$ the bundle whose

- base space is B

■ fiber over b : B is $E(b)$.
Here $\left[\begin{array}{c}E \\ B\end{array}\right]$ is an object in Lens $\mathcal{E}_{\mathcal{E}}$ for $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat. Examples:

Notation

We denote by $\left[\begin{array}{c}E \\ B\end{array}\right]$ the bundle whose

- base space is B
- fiber over b : B is $E(b)$.

Here $\left[\begin{array}{c}E \\ B\end{array}\right]$ is an object in Lens $\mathcal{E}_{\mathcal{E}}$ for $\mathcal{E}: \mathcal{B}^{\text {op }} \rightarrow$ Cat. Examples:

- If S is a manifold and $T S(s)$ is the tangent space, we write $\left[\begin{array}{c}T S \\ S\end{array}\right]$.
- If B^{\prime} is a set and $E(b)=B^{\prime}$ for all $b: B$, we'd denote this $\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$

Notation

We denote by $\left[\begin{array}{c}E \\ B\end{array}\right]$ the bundle whose

- base space is B

■ fiber over b : B is $E(b)$.
Here $\left[\begin{array}{c}E \\ B\end{array}\right]$ is an object in Lens $\mathcal{E}_{\mathcal{E}}$ for $\mathcal{E}: \mathcal{B}^{\text {op }} \rightarrow$ Cat. Examples:

- If S is a manifold and $T S(s)$ is the tangent space, we write $\left[\begin{array}{c}T S \\ S\end{array}\right]$.
- If B^{\prime} is a set and $E(b)=B^{\prime}$ for all $b: B$, we'd denote this $\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$ Note that $\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$ really means the trivial bundle $B \times B^{\prime} \rightarrow B$.

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.

- An object $\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right]$ consists of contexts and actions: $\left[\begin{array}{c}\text { actions } \\ \text { contexts }\end{array}\right]$
- A is the contexts; in each $a: A$ there are $A^{\prime}(a)$ actions available.

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.
■ An object $\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right]$ consists of contexts and actions: $\left[\begin{array}{c}\text { actions } \\ \text { contexts }\end{array}\right]$

- A is the contexts; in each $a: A$ there are $A^{\prime}(a)$ actions available.

■ Example $\left[\begin{array}{l}S \\ S\end{array}\right]$. At each $s: S$, where in S do you want to go next?

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.
■ An object $\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right]$ consists of contexts and actions: $\left[\begin{array}{c}\text { actions } \\ \text { contexts }\end{array}\right]$
■ A is the contexts; in each $a: A$ there are $A^{\prime}(a)$ actions available.
■ Example [$\left.\begin{array}{l}S \\ S\end{array}\right]$. At each $s: S$, where in S do you want to go next?
■ Example $\left[\begin{array}{c}T S \\ S\end{array}\right]$. At each $s: S$, which tangent direction to go in?
■ A morphism $\left[\begin{array}{c}f_{f}^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right] \rightarrow\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$ is like A giving control to B.
■ Each context a: A is communicated by f to give $f a: B$.

- Each B-action $b^{\prime}: B^{\prime}(f a)$, provide an A-action $f^{\sharp}\left(b^{\prime}\right): A^{\prime}(a)$.

How to think about Lens

This suggests the following way of thinking of (generalized) lenses.
■ An object $\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right]$ consists of contexts and actions: $\left[\begin{array}{c}\text { actions } \\ \text { contexts }\end{array}\right]$

- A is the contexts; in each $a: A$ there are $A^{\prime}(a)$ actions available.

■ Example [$\left.\begin{array}{c}S \\ S\end{array}\right]$. At each $s: S$, where in S do you want to go next?
■ Example $\left[\begin{array}{c}T S \\ S\end{array}\right]$. At each $s: S$, which tangent direction to go in?
■ A morphism $\left[\begin{array}{c}f_{f}^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right] \rightarrow\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$ is like A giving control to B.
■ Each context a: A is communicated by f to give $f a: B$.

- Each B-action $b^{\prime}: B^{\prime}(f a)$, provide an A-action $f^{\sharp}\left(b^{\prime}\right): A^{\prime}(a)$.

Examples: ringed spaces, cts dynamical systems, functorial view-update.

Ringed spaces

In algebraic geometry they study ringed spaces $\left(X, \mathcal{O}_{X}\right)$.
■ Here X is a topological space and \mathcal{O}_{X} is a sheaf of rings on it.
■ We can think of \mathcal{O}_{X} as a bundle with a fiber-wise ring structure.
■ (This is necessary, not sufficient, but pretty close.)

Ringed spaces

In algebraic geometry they study ringed spaces $\left(X, \mathcal{O}_{X}\right)$.
■ Here X is a topological space and \mathcal{O}_{X} is a sheaf of rings on it.

- We can think of \mathcal{O}_{X} as a bundle with a fiber-wise ring structure.
\square (This is necessary, not sufficient, but pretty close.)
A morphism of ringed spaces $\binom{f \sharp}{f \sharp}:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is:
- A continuous map $f: X \rightarrow Y$

■ A map of sheaves $f^{*} \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}$.
That is, it's a map $\left[\begin{array}{c}\mathcal{O}_{X} \\ X\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{O}_{Y} \\ Y\end{array}\right]$.

Continuous dynamical systems

Recall: if A^{\prime}, A are manifolds, a continuous dynamical system is:

- A manifold S, (tangent bundle $T S$),
- A differentiable map $f^{\mathrm{rdt}}: S \rightarrow A$,

■ A differentiable map $f^{\mathrm{dyn}}: S \times A^{\prime} \rightarrow T S$

Continuous dynamical systems

Recall: if A^{\prime}, A are manifolds, a continuous dynamical system is:

- A manifold S, (tangent bundle $T S$),
- A differentiable map $f^{\mathrm{rdt}}: S \rightarrow A$,

■ A differentiable map $f^{\mathrm{dyn}}: S \times A^{\prime} \rightarrow T S$

But from the bundle perspective that commutative diagram is baked in.

In other words the dynamical system is just a lens map $\left[\begin{array}{c}T S \\ S\end{array}\right] \rightarrow\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right]$

More principled view update

Here's a principled notion of view-update for databases.

- You have two schemas B_{1}, B_{2} and a profunctor $Q: B_{1} \mapsto B_{2}$.

More principled view update

Here's a principled notion of view-update for databases.
■ You have two schemas B_{1}, B_{2} and a profunctor Q : $B_{1} \rightarrow B_{2}$.
■ This gives a query/coquery adjunction $Q_{*}: B_{1}$-Inst $\leftrightarrows B_{2}$-Inst : Q^{*}.

- Take instance I_{1}, view via Q_{*}, update (insert or dedup.): $Q_{*} I_{1} \rightarrow I_{2}$.

■ Then form the pushout of $\left(I_{1} \leftarrow Q^{*} Q I_{1} \rightarrow Q^{*} I_{2}\right)$.
■ This is a universal construction. Adjunction: I_{1} / B_{1} - Inst $\leftrightarrows Q_{*} I_{1} / B_{2}$-Inst.

More principled view update

Here's a principled notion of view-update for databases.
■ You have two schemas B_{1}, B_{2} and a profunctor Q : $B_{1} \rightarrow B_{2}$.
■ This gives a query/coquery adjunction Q_{*} : B_{1}-Inst $\leftrightarrows B_{2}$-Inst : Q^{*}.

- Take instance I_{1}, view via Q_{*}, update (insert or dedup.): $Q_{*} I_{1} \rightarrow I_{2}$.

■ Then form the pushout of $\left(I_{1} \leftarrow Q^{*} Q I_{1} \rightarrow Q^{*} I_{2}\right)$.
■ This is a universal construction. Adjunction: I_{1} / B_{1} - Inst $\leftrightarrows Q_{*} I_{1} / B_{2}$-Inst.

$$
\sum_{I_{1}: B_{1} \text {-lnst }} Q_{*} I_{1} / B_{2} \text {-Inst } \longrightarrow \sum_{I_{2}: B_{2} \text {-lnst }} I_{2} / B_{2} \text {-Inst }
$$

univ. construction above \downarrow

$$
\begin{aligned}
& \sum_{I_{1}: B_{1} \text {-lnst }} I_{1} / B_{1} \text { - Inst } \\
& \pi_{1} \downarrow \\
& B_{1} \text { - Inst } \longrightarrow Q_{*} \text { - Inst }
\end{aligned}
$$

This lens $\left[\begin{array}{c}-/ B_{1}-\text { Inst } \\ B_{1}-\text { Inst }\end{array}\right] \rightarrow\left[\begin{array}{c}-/ B_{2} \text {-Inst } \\ B_{2}-\text { Inst }\end{array}\right]$ does the expected view-update.

Lenses in any symmetric monoidal category

If $(\mathcal{M}, I, \otimes)$ is any $S M C$, there is a notion of lenses in it.

Lenses in any symmetric monoidal category

If $(\mathcal{M}, I, \otimes)$ is any $S M C$, there is a notion of lenses in it.
■ Objects are pairs $\left[\begin{array}{c}m \\ c\end{array}\right]$ where m is an object and...
$\square \ldots c$ is a comonoid; i.e. it implicitly has $\epsilon: c \rightarrow I$ and $\delta: c \rightarrow c \otimes c$.

Lenses in any symmetric monoidal category

If $(\mathcal{M}, I, \otimes)$ is any SMC, there is a notion of lenses in it.
■ Objects are pairs $\left[\begin{array}{c}m \\ c\end{array}\right]$ where m is an object and...
$■ \ldots c$ is a comonoid; i.e. it implicitly has $\epsilon: c \rightarrow I$ and $\delta: c \rightarrow c \otimes c$.
■ A morphism $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}m \\ c\end{array}\right] \rightarrow\left[\begin{array}{c}m^{\prime} \\ c^{\prime}\end{array}\right]$ consists of
■ a comonoid homomorphism $f: c \rightarrow c^{\prime}$ and

- a morphism $f^{\sharp}: c \otimes m^{\prime} \rightarrow m$.

Lenses in any symmetric monoidal category

If $(\mathcal{M}, I, \otimes)$ is any $S M C$, there is a notion of lenses in it.
■ Objects are pairs $\left[\begin{array}{c}m \\ c\end{array}\right]$ where m is an object and...
$■ \ldots c$ is a comonoid; i.e. it implicitly has $\epsilon: c \rightarrow I$ and $\delta: c \rightarrow c \otimes c$.
■ A morphism $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}m \\ c\end{array}\right] \rightarrow\left[\begin{array}{c}m^{\prime} \\ c^{\prime}\end{array}\right]$ consists of
■ a comonoid homomorphism $f: c \rightarrow c^{\prime}$ and

- a morphism $f^{\sharp}: c \otimes m^{\prime} \rightarrow m$.

■ Example: (Set, $1, \times$)
■ Every object and morphism has a unique comonoid structure.
■ So the above description just reduces to the one we know.

Lenses in any symmetric monoidal category

If $(\mathcal{M}, I, \otimes)$ is any $S M C$, there is a notion of lenses in it.

- Objects are pairs $\left[\begin{array}{c}m \\ c\end{array}\right]$ where m is an object and...
$■ \ldots c$ is a comonoid; i.e. it implicitly has $\epsilon: c \rightarrow I$ and $\delta: c \rightarrow c \otimes c$.
■ A morphism $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}m \\ c\end{array}\right] \rightarrow\left[\begin{array}{c}m^{\prime} \\ c^{\prime}\end{array}\right]$ consists of
■ a comonoid homomorphism $f: c \rightarrow c^{\prime}$ and
- a morphism $f^{\sharp}: c \otimes m^{\prime} \rightarrow m$.

■ Example: (Set, $1, \times$)
■ Every object and morphism has a unique comonoid structure.
■ So the above description just reduces to the one we know.
So how can we see this in the general $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat setup?

Lenses in any symmetric monoidal category

If $(\mathcal{M}, I, \otimes)$ is any $S M C$, there is a notion of lenses in it.

- Objects are pairs $\left[\begin{array}{c}m \\ c\end{array}\right]$ where m is an object and...
$■ \ldots c$ is a comonoid; i.e. it implicitly has $\epsilon: c \rightarrow I$ and $\delta: c \rightarrow c \otimes c$.
■ A morphism $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}m \\ c\end{array}\right] \rightarrow\left[\begin{array}{c}m^{\prime} \\ c^{\prime}\end{array}\right]$ consists of
■ a comonoid homomorphism $f: c \rightarrow c^{\prime}$ and
- a morphism $f^{\sharp}: c \otimes m^{\prime} \rightarrow m$.

■ Example: (Set, $1, \times$)
■ Every object and morphism has a unique comonoid structure.
■ So the above description just reduces to the one we know.
So how can we see this in the general $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat setup?
■ Take $\mathcal{B}:=\{$ comonoids (c, ϵ, δ) in $\mathcal{M}\}$
■ Take $\mathcal{E}(c):=\operatorname{coKI}(c \otimes-)$, the coKleisli cat. of comonad $x \mapsto c \otimes x$.
■ In $\left[\begin{array}{c}m \\ c\end{array}\right]$, think of m as the product coalgebra $c \otimes m$, "trivial bundle".

Lenses are everywhere?

We've seen many different lens-like categories \mathcal{L}.
■ Usual Lens ${ }_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.

Lenses are everywhere?

We've seen many different lens-like categories \mathcal{L}.
■ Usual Lens $\mathcal{C}_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
■ For each, there's a category \mathcal{B} and a functor $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat \ldots
■ ... for which the Grothendieck construction (op) gives Lens $\mathcal{E}^{\cong} \cong \mathcal{L}$.

Lenses are everywhere?

We've seen many different lens-like categories \mathcal{L}.
■ Usual Lens $\mathcal{C}_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
■ For each, there's a category \mathcal{B} and a functor $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat \ldots
■ ... for which the Grothendieck construction (op) gives Lens $\mathcal{E} \cong \mathcal{L}$.
People say "lenses are everywhere".
■ But they often change what they mean subtly in each case.
■ The above is quite general-almost facile-but gives a formalization.

Lenses are everywhere?

We've seen many different lens-like categories \mathcal{L}.
■ Usual Lens $\mathcal{C}_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
■ For each, there's a category \mathcal{B} and a functor $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat \ldots
■ ... for which the Grothendieck construction (op) gives Lens $\mathcal{E} \cong \mathcal{L}$.
People say "lenses are everywhere".

- But they often change what they mean subtly in each case.
- The above is quite general-almost facile-but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

- The twisted arrow cat of \mathcal{C} is Lens ${ }_{-/ \mathcal{C}}$.

Lenses are everywhere?

We've seen many different lens-like categories \mathcal{L}.
■ Usual Lens $\mathcal{C}_{\mathcal{C}}$ for \mathcal{C} an SMC, ringed spaces, cts dynamical systems.
■ For each, there's a category \mathcal{B} and a functor $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat \ldots
■ ... for which the Grothendieck construction (op) gives Lens $\mathcal{E} \cong \mathcal{L}$.
People say "lenses are everywhere".

- But they often change what they mean subtly in each case.
- The above is quite general-almost facile-but gives a formalization.

Unexpected example of a lens-like category: twisted arrows.

- The twisted arrow cat of \mathcal{C} is Lens ${ }_{-/ \mathcal{C}}$.

A morphism $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{l}E_{2} \\ B_{2}\end{array}\right]$ in the twisted arrow category.

Formal properties of Lens \mathcal{E}

The properties of Lens \mathcal{E} depend on choice of $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat.

Formal properties of Lens \mathcal{E}

The properties of Lens \mathcal{E} depend on choice of $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat.
■ Always: get a "vertical-cartesian" factorization system.
■ Each $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ factors as $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}f^{*} E_{2} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$

- Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, Lens \mathcal{E} is an SMC.

Formal properties of Lens $\mathcal{E}^{\mathcal{E}}$

The properties of Lens \mathcal{E} depend on choice of $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat.
■ Always: get a "vertical-cartesian" factorization system.
■ Each $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ factors as $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}f^{*} E_{2} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$
■ Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, Lens $\mathcal{E}_{\mathcal{E}}$ is an SMC.
A nice case: the slice functor: $\mathcal{B} /-: \mathcal{B}^{\circ \boldsymbol{p}} \rightarrow$ Cat

- This works if \mathcal{B} has pullbacks.

■ It sends $B \mapsto \mathcal{B} / B$, the category of bundles.
■ So an object $\left[\begin{array}{c}E \\ B\end{array}\right] \in \operatorname{Lens}_{\mathcal{B} /-}$ is just a map $E \rightarrow B$.

Formal properties of Lens $\mathcal{E}^{\mathcal{E}}$

The properties of Lens \mathcal{E} depend on choice of $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat.
■ Always: get a "vertical-cartesian" factorization system.
■ Each $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ factors as $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}f^{*} E_{2} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$
■ Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, Lens \mathcal{E} is an SMC.
A nice case: the slice functor: $\mathcal{B} /-: \mathcal{B}^{\circ \boldsymbol{p}} \rightarrow$ Cat

- This works if \mathcal{B} has pullbacks.

■ It sends $B \mapsto \mathcal{B} / B$, the category of bundles.
■ So an object $\left[\begin{array}{c}E \\ B\end{array}\right] \in \boldsymbol{L e n s}_{\mathcal{B} /-}$ is just a map $E \rightarrow B$.
■ If \mathcal{B} is locally cart. closed with disjoint coproducts (e.g. a topos) ...

Formal properties of Lens \mathcal{E}

The properties of Lens \mathcal{E} depend on choice of $\mathcal{E}: \mathcal{B}^{\circ p} \rightarrow$ Cat.
■ Always: get a "vertical-cartesian" factorization system.
■ Each $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]:\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ factors as $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}f^{*} E_{2} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$
■ Always: if \mathcal{B} is an SMC and \mathcal{E} is lax monoidal, Lens \mathcal{E} is an SMC.
A nice case: the slice functor: $\mathcal{B} /-: \mathcal{B}^{\circ \boldsymbol{p}} \rightarrow$ Cat

- This works if \mathcal{B} has pullbacks.

■ It sends $B \mapsto \mathcal{B} / B$, the category of bundles.

- So an object $\left[\begin{array}{c}E \\ B\end{array}\right] \in \operatorname{Lens}_{\mathcal{B} /-}$ is just a map $E \rightarrow B$.
- If \mathcal{B} is locally cart. closed with disjoint coproducts (e.g. a topos) ...
- ... then Lens $_{\mathcal{B} /-}$ has excellent formal properties.

■ Complete, cocomplete, cartesian closed.

- Initial alg's and final coalg's for polynomial endofunctors.
- Another fact'n system: $\left[\begin{array}{c}f^{\sharp} \\ f\end{array}\right]$ factors as $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}f_{*} E_{1} \\ B_{2}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$

Polynomial functors

There's a strong connection to polynomial functors, aka containers.

Polynomial functors

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.

■ Provide data structures like lists, binary trees, trees, streams, etc.
■ Called polynomials because they send x to e.g. $x^{4}+3 x^{2}+2 x+1$.

Polynomial functors

There's a strong connection to polynomial functors, aka containers.

- These are used a lot in functional programming.

■ Provide data structures like lists, binary trees, trees, streams, etc.
■ Called polynomials because they send x to e.g. $x^{4}+3 x^{2}+2 x+1$. Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.

■ We're looking at Lens $\mathcal{B}_{\mathcal{B} /-}$, i.e. objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ are maps $E \rightarrow B$ in \mathcal{B}.

Polynomial functors

There's a strong connection to polynomial functors, aka containers.
■ These are used a lot in functional programming.
■ Provide data structures like lists, binary trees, trees, streams, etc.
■ Called polynomials because they send x to e.g. $x^{4}+3 x^{2}+2 x+1$.
Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.
■ We're looking at $\operatorname{Lens}_{\mathcal{B} /-}$, i.e. objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ are maps $E \rightarrow B$ in \mathcal{B}.

- An object $\left[\begin{array}{c}E \\ B\end{array}\right]$ is the same data as a polynomial functor!

■ It would denote the functor sending $x \mapsto \sum_{b: B} x^{E(b)}$.

Polynomial functors

There's a strong connection to polynomial functors, aka containers.
■ These are used a lot in functional programming.
■ Provide data structures like lists, binary trees, trees, streams, etc.
■ Called polynomials because they send x to e.g. $x^{4}+3 x^{2}+2 x+1$.
Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.
$■$ We're looking at $\operatorname{Lens}_{\mathcal{B} /-}$, i.e. objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ are maps $E \rightarrow B$ in \mathcal{B}.

- An object $\left[\begin{array}{c}E \\ B\end{array}\right]$ is the same data as a polynomial functor!

■ It would denote the functor sending $x \mapsto \sum_{b: B} x^{E(b)}$.

- E.g. the above polynomial corresponds to the following bundle

Polynomial functors

There's a strong connection to polynomial functors, aka containers.
■ These are used a lot in functional programming.
■ Provide data structures like lists, binary trees, trees, streams, etc.
■ Called polynomials because they send x to e.g. $x^{4}+3 x^{2}+2 x+1$.
Setting: suppose \mathcal{B} is locally cartesian closed with disjoint coproducts.
$■$ We're looking at $\operatorname{Lens}_{\mathcal{B} /-}$, i.e. objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ are maps $E \rightarrow B$ in \mathcal{B}.

- An object $\left[\begin{array}{c}E \\ B\end{array}\right]$ is the same data as a polynomial functor!
- It would denote the functor sending $x \mapsto \sum_{b: B} x^{E(b)}$.
- E.g. the above polynomial corresponds to the following bundle

■ And they have the same morphisms too: Poly $_{\mathcal{B}} \cong \operatorname{Lens}_{\mathcal{B} /-}$.

Polynomial functor interpretation

Polynomial functor interpretation

■ How are objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ functors exactly?
■ And how are lenses $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ natural transformations?

Polynomial functor interpretation

How should we interpret the isomorphism Poly Set Lensset/-?
■ How are objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ functors exactly?
■ And how are lenses $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ natural transformations?
Answer:
■ Interpreting $\left[\begin{array}{c}E \\ B\end{array}\right]$ as a functor, it sends X to the set $\operatorname{Lens}\left(\left[\begin{array}{l}X \\ 1\end{array}\right],\left[\begin{array}{c}E \\ B\end{array}\right]\right)$.

Polynomial functor interpretation

How should we interpret the isomorphism Poly Set Lensset/-?
■ How are objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ functors exactly?
■ And how are lenses $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{l}E_{2} \\ B_{2}\end{array}\right]$ natural transformations?
Answer:
■ Interpreting $\left[\begin{array}{c}E \\ B\end{array}\right]$ as a functor, it sends X to the set $\operatorname{Lens}\left(\left[\begin{array}{l}X \\ 1\end{array}\right],\left[\begin{array}{c}E \\ B\end{array}\right]\right)$.

Polynomial functor interpretation

How should we interpret the isomorphism Poly Set Lensset/-?
■ How are objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ functors exactly?
■ And how are lenses $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{c}E_{2} \\ B_{2}\end{array}\right]$ natural transformations?
Answer:
■ Interpreting $\left[\begin{array}{c}E \\ B\end{array}\right]$ as a functor, it sends X to the set $\operatorname{Lens}\left(\left[\begin{array}{l}X \\ 1\end{array}\right],\left[\begin{array}{c}E \\ B\end{array}\right]\right)$.

- Do you see why this sends X to $X^{4}+3 X^{2}+2 X+1$?

Polynomial functor interpretation

■ How are objects $\left[\begin{array}{c}E \\ B\end{array}\right]$ functors exactly?
■ And how are lenses $\left[\begin{array}{c}E_{1} \\ B_{1}\end{array}\right] \rightarrow\left[\begin{array}{l}E_{2} \\ B_{2}\end{array}\right]$ natural transformations?
Answer:
■ Interpreting $\left[\begin{array}{c}E \\ B\end{array}\right]$ as a functor, it sends X to the set $\operatorname{Lens}\left(\left[\begin{array}{l}X \\ 1\end{array}\right],\left[\begin{array}{c}E \\ B\end{array}\right]\right)$.

- Do you see why this sends X to $X^{4}+3 X^{2}+2 X+1$?
- The functor acts on a lens $\left[\begin{array}{c}E \\ B\end{array}\right] \rightarrow\left[\begin{array}{c}E^{\prime} \\ B^{\prime}\end{array}\right]$ by composing with it.

Outline

1 Introduction

2 Some applications of lenses

3 Generalizing lens categories

4 Conclusion

Summary

Lenses seem to be springing up in many different places.
■ Functional programming; database transactions;
■ Open games; supervised learning;
■ Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.

Summary

Lenses seem to be springing up in many different places.
■ Functional programming; database transactions;
■ Open games; supervised learning;
■ Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.
We can make sense of their peculiar form $\left(B_{1} \rightarrow B_{2}, B_{1} \times E_{2} \rightarrow E_{1}\right)$.

- Namely, we think in terms of bundles $\left[\begin{array}{c}E \\ B\end{array}\right]$.

■ This perspective puts lenses in a more familiar categorical setting.

- Used in algebraic geometry and theory of polynomial functors.

Summary

Lenses seem to be springing up in many different places.
■ Functional programming; database transactions;
■ Open games; supervised learning;
■ Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.
We can make sense of their peculiar form $\left(B_{1} \rightarrow B_{2}, B_{1} \times E_{2} \rightarrow E_{1}\right)$.

- Namely, we think in terms of bundles $\left[\begin{array}{c}E \\ B\end{array}\right]$.

■ This perspective puts lenses in a more familiar categorical setting.

- Used in algebraic geometry and theory of polynomial functors.
- The larger category of bundles has better formal properties

■ Coproducts, initial algebras, an extra factorization system, etc.

Summary

Lenses seem to be springing up in many different places.
■ Functional programming; database transactions;
■ Open games; supervised learning;
■ Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.
We can make sense of their peculiar form $\left(B_{1} \rightarrow B_{2}, B_{1} \times E_{2} \rightarrow E_{1}\right)$.

- Namely, we think in terms of bundles $\left[\begin{array}{c}E \\ B\end{array}\right]$.

■ This perspective puts lenses in a more familiar categorical setting.

- Used in algebraic geometry and theory of polynomial functors.
- The larger category of bundles has better formal properties

■ Coproducts, initial algebras, an extra factorization system, etc.
■ In fact, one gets a lens-like category for any $\mathcal{E}: \mathcal{B}^{\circ \boldsymbol{p}} \rightarrow$ Cat.
■ Just take its Grothendieck construction (op).

Summary

Lenses seem to be springing up in many different places.
■ Functional programming; database transactions;
■ Open games; supervised learning;
■ Wiring diagrams; discrete, cts dynamic systems; hierarchical planning.
We can make sense of their peculiar form $\left(B_{1} \rightarrow B_{2}, B_{1} \times E_{2} \rightarrow E_{1}\right)$.

- Namely, we think in terms of bundles $\left[\begin{array}{c}E \\ B\end{array}\right]$.

■ This perspective puts lenses in a more familiar categorical setting.

- Used in algebraic geometry and theory of polynomial functors.
- The larger category of bundles has better formal properties

■ Coproducts, initial algebras, an extra factorization system, etc.
■ In fact, one gets a lens-like category for any $\mathcal{E}: \mathcal{B}^{\circ \boldsymbol{p}} \rightarrow$ Cat.
■ Just take its Grothendieck construction (op).
Thanks; comments and questions welcome!

