
May 23, 2009

COHOMOLOGICAL PHYSICS IN THE XXTH CENTURY: A SURVEY

JIM STASHEFF

Abstract. Cohomological physics is a phrase I introduced sometime ago in the context of anom-

alies in gauge theory, but it all began with Gauss in 1833. The cohomology referred to in Gauss was
that of differential forms, div, grad, curl and especially Stokes Theorem (the de Rham complex).

This survey is limited to the years before 2001 since there has been an explosion of cohomological

applications in theoretical physics (even of K-theory) in the new century.
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1. Introduction

This survey is limited to the years before 2001 since there has been an explosion of cohomological
applications in theoretical physics (even of K-theory) in the new century. Since 1931 but especially
toward the end of the XXth century, there has been increased use of cohomological and more recently
homotopy theoretical techniques in mathematical physics. The chart on the next page will give you
some indication, though I’m sure it is not complete and would appreciate any additions.

In this survey intended for a mixed sudience of mathematically inclined physicists and physically
inclined mathematicians, I’ll paint with a very broad brush, hoping to provide an overview and guide
to the literature. I will emphasize the comparatively recent development of two aspects, the use of
configuration and moduli spaces (cf. operads) and the use of homological algebra, where I’ve been
actively involved, at least in spreading the gospel. Each section begins with a brief synopsis.

Research supported in part by NSF grant DMS-9504871, DMS-9803435 and in part by W.R. Kenan and Depart-
mental Research and Study Leaves from the University of North Carolina - Chapel Hill and the hospitality of the
University of Pennsylvania.
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2 JIM STASHEFF

First, however, here are some historical background and brief comments on some of the other
topics listed.

Although Maxwell’s equations were for a long time expressed only in coordinate dependent form,
they were recast in a particularly attractive way in terms of differential forms on Minkowski space
[Max73].

More subtle differential geometry and implicitly characteristic classes occurred visibly in Dirac’s
magnetic monopole (1931) [Dir31], which lived in a U(1) bundle over R3 − 0. The magnetic charge
was given by the first Chern number; for magnetic charge 1, the monopole lived in the Hopf bundle,
introduced that same year 1931 by Hopf [Hop31], though it seems to have taken some decades for
that coincidence to be recognized [GP75]. Thus were characteristic classes (and by implication the
cohomology of Lie algebras and of Lie groups) introduced into physics.

1931 - it was a very good year. It also saw Birkhoff’s proof of the Ergodic Theorem [Bir31],
Borsuk’s theory of retracts [Bor31], Chandrasekhar’s description of stellar collapse to white dwarfs
[Cha31], de Rham’s description of his (and Elie Cartan’s) cohomology [dR31], Gödel’s incompleteness
theorem [G3̈1] and Hopf and Rinow’s results on complete Riemannian manifolds [HR31] - it was a
very good year!

The chart below lists some of the major themes and papers in cohomological physics that I am
aware of; suggestions for further entries would be appreciated. There should also be included group
theoretic cohomology which appeared in the work of Bargmann [Bar47, Bar54] on extensions of
the Galilean, Lorentz and de Sitter groups, using explicit 2-cocycles. Corresponding Lie algebra
2-cocycles appear more recently in the study of W-algebras, extensions of the Virasoro algebras [?].
This in turn is related to deformation theory whcih first appeared in a physically context as Wigner’s
contractions of the Lorentz group to the Poincaré group [Wig85].
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DG and H∗(Lie) and Homological String Deformation Variational

Year Knot Theory Char. Classes Algebra Field Theory Quantization Bicomplex

1833 Gauss

1931 Dirac Hopf

1947

1954

1959 Calugareanu

1967 Fade’ev-Popov

1968 Pohl

1971 Fuller

1975 BRST

1975 BFV

1978 BFFLS

1983 BV

1984 Vinogradov

1985 Henneaux

1986 DeWilde-

-Lecomte

1987 Browning-

-McMullen

1988 Stasheff

1989 FHST

1991 Fedosov

1993 Zwiebach

1994 Bott-Taubes

1996 Donin

1997 Bott-Cattaneo Kontsevich

1998 Zwiebach

1999 Chas-Sullivan Cattaneo-

-Felder

2000

In the above table,
BRST = Becchi, Rouet, Stora and Tyutin
BFFLS = Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer
BFV = Batalin, Fradkin and Vilkovisky
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BV = Batalin and Vilkovisky

FHST = Fisch, Henneaux, Stasheff and Teitelboim
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2. From Gauss to Vasiliev and beyond

A considerable body of work in the XXth century has its roots in the work of Gauss, with
essentially no intermediaries in over 200 years. Gauss explicitly defined the linking number of two
circles imbedded in 3-space by an integral defined in terms of the electromagnetic effect of a current
circulating in one of the circles.

Of Geometria Situs, that Leibnitz guessed and of which only a pair of geometers
(Euler and Vandermonde) were privilieged to have had a weak sight, we know not
much more that nothing after a century and a half.

A major task from the boundary of Geometria Situs and Geometria Magnitudinus
would be to count the linking number of two closed or infinite curves.

Let the coordinates of an arbitrary point on the first curve be x, y, z; on the
second x′, y′, z′ and

Z Z
(x′ − x)(dydz′ − dzdy′) + (y′ − y)(dzdx′ − dxdz′) + (z − z′)(dxdy′ − dydx′)

[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2

then the integral extended over both curves equals 4πm and m is the linking
number.

The value is symmetric, i.e. it remains the same, if the two curves are inter-
changed. 1833, Jan. 22.

A revisionist view of his integral would see it as the integral of a 2-form on S1×S1, the configuration
space of ordered pairs of points, the first on one circle and the second on the other.

A successful generalization to a knot invariant waited until 1959: Calugareanu [Cal59] (later
improved by Pohl [Poh68] and B. Fuller [Ful71]). One difficulty was that configurations of ordered
pairs of distinct points on a single circle do NOT give a compact manifold

In the past decade, there has been a major renaissance in knot theory, both mathematical and
physical, one aspect of which is the use of compactifications of such configuration spaces. It was
Kontsevich’s definition [Kon93] of Vassiliev knot invariants via integrals that led to Bott and Taubes
description [BT94] in terms of compactifications of such configuration spaces as manifolds with
corners. In particular, for ordered pairs of points on a circle, the compactification is just a cyclinder,
but for ordered triples, the manifold is S1 ×W3 where W3 is a hexagon. Here are pictures of W3

and W4:
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For those of you who know my work, the resemblance to the associahedra is manifest. With
Kimura and Voronov [?], I revisited the associahedra as a compactified moduli space of ordered
n-tuples of distinct points on the real line.

The compactification of importance here is the real non-projective version of the Fulton-Mac
Pherson compactification from algebraic geometry [FM94]. which is described in terms of ‘blow-ups’.
The real non-projective version amounts to removing successively smaller tubular neighborhoods of
the various sub-diagonals in ∆ beginning with the thin diagonal where all xi are equal. The special
cases of the associahedra and cyclohedra can thus be seen as truncated simplices; for full details, see
[SS96]. The associahedra can also be seen as truncated products of simplices, as seen and illustrated
beautifully by Devadoss [?].

Bott and Cattaneo [BC97] extend the same approach to integral invariants of 3-manifolds.
I will return to consideration of configuration spaces and moduli spaces in section ??.

3. Homological reduction of constrained Poisson algebras

Cohomological physics had a major break through with the ‘ghosts’ introduced by Fade’ev and
Popov [FP67]. These were incorporated into what came to be known as BRST cohomology (Becchi-
Rouet-Stora [BRS75] and Tytutin [Tyu75]) and which was applied to a variety of problems in
mathematical physics. There the ghosts were reinterpreted by Stora [Sto77] and others in terms
of the Maurer-Cartan forms in the case of a finite dimensional Lie group and more generally as
generators of the Chevalley-Eilenberg cochain complex [CE48] for Lie algebra cohomology.

Thanks to Henneaux [Hen85] and Browning and McMullen [BM87], I became aware of the use of
this ghost technology for the cohomological reduction of constrained Poisson algebras. The motivat-
ing physical systems are described as differential equations of motion or evolution involving smooth
functions on a manifold W, but the true ‘physical degrees of freedom’ correspond to a quotient of
V ⊂ W by a foliation F . Homological reduciton refers tgo describing the appropriate algebra for
C∞(M) as H0 of a differntial graded algebra given by homological algebra techniques in terms of
V ⊂W and F . Specifically the Batalin-Fradkin-Vilkovisky approach [BF83, FF78, FV75] extended
BRST by reinventing the Koszul-Tate resolution of the ideal of constraints describing V and produc-
ing a synergistic combination of both Chevalley-Eilenberg and resolution cohomology. Here it was
that I saw the essential features of a strong homotopy Lie algebra (sh-Lie algebra or L∞-algebra),
the Lie analog of the A∞-algebras of my thesis under John Moore [?].
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The setting is the following:
The original manifold W is assumed to be symplectic. This means there is a 2-form ω such that

dω = 0 and ωdimW 6= 0. Equivalently, ω induces an isomorphism

TW → T ∗W.

Think of R2n with coordinates (q1, . . . , qn; p1, . . . , pn) and 2-form dqi ∧ dpi.
From an algebra point of view, the crucial point is two-fold: For any function f ∈ C∞(W ), there

is a Hamiltonian vector field Xf defined by ω(Xf , ) = df . For two functions f, g ∈ C∞(W ), their
Poisson bracket {f, g} ∈ C∞(W ) is defined by

{f, g} = ω(Xf , Xg) = df(Xg) = −dg(Xf ).

This bracket makes C∞(W ) into a Poisson algebra, that is, a commutative algebra P (with product
denoted fg) together with a bracket { , } : P ⊗ P → P forming a Lie algebra such that {f, } is a
derivation of P as a commutative algebra: {f, gh} = {f, g}h+ g{f, h}, called the Leibniz rule.

A Hamiltonian system with constraints means we have functions φα : W → R, 1 ≤ α ≤ r,
the constraints. Solutions of the system are constrained to lie in a subspace V ⊂ W given as the
zero set of φ : W → Rr with components φα. The algebra C∞(V ) is given by C∞(W )/I where I is
the ideal generated by the φα. Dirac calls the constraints first class if I is closed under the Poisson
bracket. In this case, the Hamiltonian vector fields Xφα

determined by the constraints are tangent
to V (where V is smooth) and give a foliation F of V . Similarly, C∞(W )/I is an I-module with
respect to the bracket. (In symplectic geometry, the corresponding variety is called coisotropic
[W].) The true physics of the system is the induced system on the space of leaves V/F .

In this context, the classical BRST construction, at least as developed by Batalin-Fradkin-
Vilkovisky in the case of regular constraints, is a homological model for C∞(V/F) or rather for
the full de Rham complex Ω(V,F) consisting of forms on vertical vector fields, those tangent to the
leaves. If we think of F as an involutive sub-bundle of the tangent bundle to V , then Ω(V,F) con-
sists of sections of Λ∗F , the exterior algebra bundle on the dual of F . In adapted local coordinates
(x1, ..., xr+s) with (x1, ..., xr) being coordinates on a leaf, a typical longitudinal form is

fJ(x)dxJ where J = (j1, ..., jq) with 1 ≤ j1 < ...jq ≤ r.

The usual exterior derivative of differential forms restricts to determine the vertical exterior deriva-
tive because F is involutive.

By “model” for Ω(V,F), I mean in the sense of rational homotopy theory [Sul77], that is, a free
graded commutative algebra with a derivation differential weakly homotopy equivalent to Ω(V,F).

The de Rham complex Ω∗(M) of a smooth manifoldM can be described in terms of the Chevalley-
Eilenberg complex of the Lie algebra of vector fields on M with coefficients in C∞(M). Rinehart
[?] generalized this complex to the context of a pair L,A where A is a Lie module over L and L is
a commutative module over A with conditions on the relation between the two module structures.
In particular, Ω(V,F) can be described as the Rinehart complex for the Lie algebra of vertical
vector fields with coefficients in P/I. As an algebra, this can be described as AltP (I, P/I), denoting
alternating P -multilinear functions on I with values in P/I. This description is useful for comparison
with the BFV complex. The latter was crucially a Poisson algebra extension of the Poisson algebra
C∞(W ) and its differential contained a piece which reinvented the Koszul complex for the ideal I.
The differential also contained a piece which looked like the Cartan-Chevalley-Eilenberg differential;
this followed from the physical motivation for seeking a differential of BRST-type.

This model is constructed as follows: Let P = C∞(W ) and Φ be the vector space spanned by
the φα. Construct the Koszul complex for the ideal I in terms of the generators φα. That is, let
sφα denote a copy of φα but regarded as having degree -1. Let δ be the derivation of P ⊗ ΛsΦ
determined by δφ = sφ for φ ∈ Φ. In other words, P ⊗ ΛsΦ is the Koszul complex [Kos50] for the
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ideal I in the commutative algebra P . If I is what is now known as a regular (at one time: Borel)
ideal, the Koszul complex (P ⊗ ΛsΦ, δ) is a model for P/I. For more general ideals, this fails, i.e.,
Hi(P ⊗ΛsΦ, δ) 6= 0 for some i 6= 0. The Tate resolution [Tat57] (which, as inspired by John Moore,
mimics a Postnikov system) kills this homology by systematically enlarging sΦ to a graded vector
space Ψ and gives a model (P ⊗ ΛΨ, δ) as desired. We refer to this model as KI for brevity. It is
graded by the grading on Ψ extended multiplicatively, δ being still of degree 1.

Now we wish to replace P/I by KI in AltP (I, P/I) with the Rinehart generalization of the
Cartan-Chevalley-Eilenberg differential d and further alter it to a model which is itself a (graded)
Poisson algebra.

Theorem 3.1. If I is a first class ideal, there is a differential graded Poisson algebra, called the
BFV complex,

π : ((ΛΨ)∗ ⊗ P ⊗ ΛΨ), ∂) → (AltP (I, P/I), d)
with ∂ of the form δ+ d+ “terms of higher order”. If the ideal is regular or close to it, this provides
a model for AltP (I, P/I).

The existence of the terms of higher order is nowadays usually obtained by standard methods
in Homological Perturbation Theory (HPT) [Gug82, GL89, GLS90, GS86, Hue84, HK91] using the
contractability of the Koszul-Tate complex.

By the way, in physpeak, the generators sφα of ΛΨ are called anti-ghosts and the generators
sφα of Λ(Ψ)∗ are called ghosts. For those who prefer such language, an interpretation in terms of
super-manifolds is possible, as we indicate in section 4 for the corresponding Lagrangian formalism.

But what do these terms of higher order signify? The derivation ∂ is in fact of the form {Q, }
for Q in the BFV complex, which Q can be expanded as

∑
Qi were i denotes the number of ghost

factors and runs from 1 on. The first terms Q1 gives the Koszul-Tate differential and part of the
Chevalley-Eilenberg, the rest being given by Q2. What is Q3 telling us? Since Φ is the vector space
span of the constraints, the bracket encoded in Q2 does not satisfy the Jacobi identity, but does up
to a homotopy provided by Q3. The homotopy can be denoted as a tri-linear [ , , ] on Φ⊗3. And so
it goes. The total structure includes that of an L∞-algebra. L∞-algebras are also known variously
as strong homotopy Lie algebras or sh-Lie algebras. The defining identities for an L∞-algebra [LS93]
are:

d[v1, . . . , vn] +
n∑

i=1

ε(i)[v1, . . . , dvi, . . . , vn]

=
∑

p+q=n+1

∑
unshuffles σ

ε(σ)[[vi1 , . . . , vip
], vj1 , . . . , vjq

],(1)

where ε(σ) denotes an appropriate sign. An unshuffle σ is a permutation such that i1 < · · · < ip
and j1 < · · · < jq; think of separating a deck of cards into two decks, the order within each deck
being as in the original deck.
L∞-algebras have occurred elsewhere on the boundary between mathematical physics and math-

ematics, notably in deformation quantization [Kon97] and in Zwiebach’s string field theories ( [?]).

4. The Batalin-Vilkovisky complex for gauge symmetries of Lagrangians

Soon after Batalin, Fradkin and Vilkovisky had handled the Hamiltonian case, Batalin and Vilko-
visky applied similar techniques to quantizing Lagrangians with symmetries. Their method turned
out to be of considerable interest in the classical setting.

We start with with a bundle E →M and the associated jet bundles. A Lagrangian is a function
L on some finite jet bundle JnE, giving an action by integrating over M after pulling L down to
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M by the jet of a section σ : M → E. Symmetries refer to variations in σ which leave the integral
unchanged.

The Batalin-Vilkovisky approach [BV83, BV84, BV85] to quantizing particle Lagrangians and
subsequently applied to string field theory, both classical and quantum [Zwi93], can, with hindsight,
be recognized as that of homological algebra [HT92]. It is the analog of their construction with
Fradkin for the Hamiltonian problem, the Koszul complex now being that of (the ideal generated by)
the Euler-Lagrange equations (Equations of Motion). The most striking difference is that the Poisson
bracket is replaced by an ‘anti’-bracket of degree 1 (like a Whitehead product or the Browder bracket
for loop space homology) and begins with a pairing of the Koszul generators with the original fibre
coordinates. The ‘quantum’ Batalin-Vilkovisky master equation has the form of the Maurer-Cartan
equation for a flat connection, while the ‘classical’ version has the form of the integrability equation
of deformation theory. These are more than analogies; the master equations are the integrability
equations of the deformation theory of, respectively, differential graded commutative algebras and
graded commutative algebras. Just as the Maurer-Cartan equation makes sense in the context of
Lie algebra cohomology, so the Batalin-Vilkovisky master equation has an interpretation in terms
of L∞-algebras.

Under the rubric of the anti-field, anti-bracket formalism, physicists reinvented and then extended
homological algebra. Here the ‘standard construction’ is the Batalin-Vilkovisky complex.

4.1. The jet bundle setting for Lagrangian field theory. Let us begin with a space Φ of
fields regarded as the space of sections of some bundle π : E →M . For expository and coordinate
computational purposes, I will assume E is a trivial vector bundle and will write a typical field as
φ = (φ1, . . . , φk) : M → Rk. In terms of local coordinates, we start with a trivial vector bundle
E = F ×M → M with base manifold M, locally Rn, with coordinates xi, i = 1, . . . , n and fibre
Rk with coordinates ua, a = 1, . . . , k. We ‘prolong’ this bundle to create the associated jet bundle
J = J∞E → E → M which is an infinite dimensional vector bundle with coordinates ua

I where
I = i1 . . . ir is a symmetric multi-index (including, for r = 0, the empty set of indices, meaning just
ua). The notation is chosen to bring to mind the mixed partial derivatives of order r. Indeed, a
section of J is the (infinite) jet j∞φ of a section φ of E if, for all r, we have ∂i1∂i2 ...∂irφ

a = ua
I ◦ j∞φ

where φa = ua ◦ φ and ∂i = ∂/∂xi.

Definition 4.1. A local function “on E” L(x, u(p)) is a smooth function in the coordinates xi

and the coordinates ua
I , where the order |I| = r of the multi-index I is less than or equal to some

integer p.

Thus a local function is in fact the pullback to J of a smooth function on some finite jet bundle
JpE, i.e. a composite J → JpE → R.

The space of local functions will be denoted LocE.

Definition 4.2. A local functional

L[φ] =
∫

M

L(x, φ(p)(x))dvolM =
∫

M

(j∞φ)∗L(x, u(p))dvolM(2)

is the integral over M of a local function evaluated for sections φ of E. (Of course, we must restrict
M and φ or both for this to make sense.)

The variational approach is to seek the critical points of such a local functional. More precisely,
we seek sections φ such that δL[φ] = 0 where δ denotes the variational derivative corresponding to
an ‘infinitesimal’ variation: φ 7→ φ+δφ. The condition δL[φ] = 0 is equivalent to the Euler-Lagrange
equations on the corresponding local function L as follows: Let

Di =
∂

∂xi
+ ua

Ii

∂

∂ua
I

(3)
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be the total derivative acting on local functions and

Ea = (−D)I
∂

∂ua
I

(4)

the Euler-Lagrange derivatives. Here the notation (−D)I means (−1)rDi1 · · ·Dir
. The Euler-

Lagrange equations are then

Ea(L) = 0.(5)

A Lagrangian L determines a stationary surface or solution surface or shell Σ ⊂ J such
that φ is a solution of the variational problem (equivalently, the Euler-Lagrange equations) if j∞φ
has its image in Σ. The corresponding algebra is the stationary ideal I of local functions which
vanish ‘on shell’, i.e. when resticted to the solution surface Σ.

The Euler-Lagrange equations generate I as a differential ideal, but this means we may have not
only Noether identities

ra
αEa(L) = 0 with ra

α ∈ LocE(6)

but also

raI
α DIEa(L) = 0 with raI

α ∈ LocE.(7)

Of course we have ‘trivial’ identities of the form

DJEb(L)µbJaI
α DIEa(L) = 0,(8)

since we are dealing with a commutative algebra of functions. We now assume we have a set of
indices {α} such that the above identities generate all the non-trivial relations in I. According to
Noether [Noe18], each such identity corresponds to an infinitesimal gauge symmetry, i.e. an
infinitesimal variation that preserves the space of solutions or, equivalently, a vector field tangent
to Σ. For each Noether identity indexed by α, we denote the corresponding vector field by δα. We
denote by Ξ, the space of gauge symmetries, considered as a vector space but also as a module
over LocE. We can regard δα as a (constant) vector field on the space of fields Φ and hence δ as a
linear map

δ : Ξ → V ect Φ.

Since the bracket of two such vector fields [δα, δβ ] is again a gauge symmetry, it agrees with
something in the image of δ when acting on solutions. If we denote that something as [α, β], one
says this bracket ‘closes on shell’. It is not in general a Lie bracket, since the Jacobi identity may
hold only ‘on shell’.

To make this more explicit, write

[δα, δβ ] = δ[α,β] + νa
αβ

δL

δua
.(9)

The possible failure of the Jacobi identity results from those last terms which vanish only on shell
and, especially, the fact that we are working in a module over LocE. (For example, we have structure
functions rather than structure constants in terms of our generators.)

All of this, including these latter subtleties, are incorporated into the remarkable complex due
to Batalin and Vilkovisky [BV83, BV84, BV85] using anti-field and ghost technology and the anti-
bracket of Zinn-Justin [ZJ75]. Let me take you ‘through the looking glass’ and present a ‘bi-lingual’
(math and physics) dictionary.

We first extend LocE by adjoining generators of various degrees to form a free graded commu-
tative algebra over LocE, that is, even graded generators give rise to a polynomial algebra and
odd graded generators give rise to a Grassmann (= exterior) algebra. The generators (and their
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products) are, in fact, bigraded (p, q); the graded commutativity is with respect to the total degree
p− q.

For each variable ua, adjoin an anti-field u∗a and for each rα, adjoin a corresponding ghost Cα and
a corresponding anti-ghost C∗

α. Here is a table showing the corresponding math terms (explained
below) and the bidegrees.

Physics Math Ghost Anti-ghost Total
Term Term Degree Degree Degree
field section 0 0 0

anti-field Koszul generator 0 1 -1

ghost Cartan-Eilenberg generator 1 0 1

anti-ghost Tate generator 0 2 -2

Note that the anti-field coordinates depend on E alone, but the ghosts and anti-ghosts depend also
on the specific Lagrangian. Again an interpretation in the language of super-manifolds is possible:
Just as an ordinary manifold can be thought of (almost entirely) in terms of the algebra C∞(M) of
smooth functions on M , so a supermanifold M can be thought of in terms its Z2−graded algebra
of smooth functions. The difference is that the oddly graded functions anti-commute with each
other and all other pairs commute. In terms of local coordinates, (x1, . . . , xp; η1, . . . , ηq), they form
a graded commutative algebra with the xi of degree 0 and the ηi of degree 1. (More generally,
one could consider the situation more familiar in algebraic topology where the coordinates would
be Z-graded.) It is worthwhile to think of the xi as coordinates on a base manifold M and the
ηi as fibre coordinates for a bundle over the base. Two particularly important examples are the
tangent TM and cotangent bundles T ∗M of M but with the parity of the fibre coordinates reversed,
i.e. redefined as odd. After reversal, these are denoted as ΠTM or T [1]M , respectively ΠT ∗M or
T ∗[1]M. The (smooth) functions on T [1]M can be identified with differential forms on M , while the
(smooth) functions on T ∗[1]M can be identified with (alternating) multi-vector fields on M .

[?, ?, AKSZ97, ?, ?]
From this point of view of the Batalin-Vilkovisky machinery, we think of the supermanifold M

as T [1]E where E is a G-bundle over M . Later (see below) we will adjoin further variables so that
we can think of the supermanifold M as T [1]J∞E. This may provide some ‘geometric intuition’ for
what is essentially a process in homological algebra.

The algebra constructed so far can in turn be given an anti-bracket ( , ) of degree −1 which, re-
markably, combines with the product we began with to produce precisely an analog of a Gerstenhaber
algebra [LZ93, KVZ96], though this was not recognized until much later. (In the super-geometric
language, the anti-bracket corresponds to an odd symplectic structure.)

Definition 4.3. A Gerstenhaber algebra is a graded commutative and associative algebra A
together with a bracket [·, ·] : A ⊗ A → A of degree −1, such that for all homogeneous elements x,
y, and z in A,

[x, y] := −(−1)(|x|−1)(|y|−1)[y, x],

[x, [y, z]] = [[x, y], z] + (−1)(|x|−1)(|y|−1)[y, [x, z]],

and
[x, yz] = [x, y]z + (−1)(|x|−1)|y|y[x, z].
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The anti-bracket is defined on generators and then extended to polynomials by applying the
graded Leibniz identity so that (ψ, ) is a graded derivation for any ψ in this algebra. The only
non-zero anti-brackets of generators are

(ua, u∗b) = δa
b and (Cα, C∗

β) = δα
β .

Now we further extend LocE with corresponding jet coordinates uI∗
a , C

α
I and CI∗

α with the cor-
responding pairings giving the extended anti-bracket. The resulting Batalin-Vilkovisky algebra we
denote BV.

4.2. Differentials on the graded algebra BV . Define an operator s0 of degree −1 on BV as
(L0, ).

We call the antifields Koszul generaters because

s0u
∗
a =

δL0

δua
(10)

as in the Koszul complex for the idealcorresponding to the Euler-lagrange equations, so thatH0,0 ⊂ Φ
is given by δL0

δua = 0, but

s0(ra
αu

∗
a) = ra

α

δL

δua
= 0,(11)

which may give a non-trivial H0,1.
Now consider the extended Lagrangian

L1 = L0 + u∗ar
a
αC

α(12)

and s1 = (L1, ), so that

s1C
∗
α = uar

a
α(13)

and H0,1 is now 0, as in Tate’s extension of the Koszul complex of the ideal to produce a resolution
[Tat57]. That is why we refer to the anti-ghosts as Tate generators. (If needed, Tate tells us to add
further generators in bidegree (0, q) for q > 2 so that H0,q = 0 for q > 0.)

Further extend L1 to

L2 = L1 + C∗
αc

α
β≫CβC≫,(14)

so that
s2C

α = cαβ≫CβC≫

s2u
a = ra

αC
α

which is how the Chevalley-Eilenberg coboundary looks in terms of bases for a Lie algebra and a
module and corresponding structure constants. However, we may not have (s2)2 = 0 since ra

α and
cαβ≫ are functions. Batalin and Vilkovisky prove that all is not lost. First, they add to L2 a term
involving the functions νa

αβ .
L versus integrate L aka S

Theorem 4.1. L2 can be further extended by terms of higher degree in the anti-ghosts to L∞ so
that (L∞, L∞) = 0 and hence the corresponding s∞ will have square zero.

With hindsight, we can see that the existence of these terms of higher order is guaranteed because
the antifields and antighosts provide a resolution of the ideal.

We refer to this complex (BV, s∞) as the Batalin-Vilkovisky complex.
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4.3. The Classical Master Equation and Higher Homotopy Algebra. What is the signifi-
cance of (s∞)2 = 0 in our Lagrangian context, or, equivalently, of the Classical Master Equation
(L∞, L∞) = 0? There are three answers: in higher homotopy algebra, in deformation theory and in
mathematical physics. It is the deformation theory that provides the transition betweeen the other
two.

If we expand s = s0 + s1 + ... where the subscript indicates the change in the ghost degree p, the
individual si do not correspond to (x, ) for any term x in L∞ but do have the following description:

so that we see the BV-complex as a multi-complex. The differential s1 gives us the Koszul-Tate dif-
ferential dKT and part of s2 looks like that of Chevalley-Eilenberg. That is, C∗

αc
α
β≫CβC≫ describes

the (not-quite-Lie) bracket on Ξ. Further terms with one anti-ghost C∗
α and three ghosts CβC≫Cδ

describe a tri-linear [ , , ] and so on for multi-brackets of possibly arbitrary length. Moreover, the
graded commutativity of the underlying algebra of the BV-complex implies appropriate symmetry
of these multi-brackets. The condition that s2∞ = 0 translates the identities (1) for an L∞-algebra.

4.4. The Quantum Master Equation. ADD Q-ME
include def of BV-alg

5. String field theory

String field theory (SFT) deals with functions on a space of strings, either the space of maps M I

called open strings or the space of maps LM = Maps(S1,M) or, rather, its quotient by rotation of
S1, SM := LM/S1. The functions, known as em fields may be vector valued or may be sections of
a bundle, e.g. differential forms; usually they will form an algebra. Notice that MS1 ⊂ M I via the
usual quotient map I → S1 which identifies the end points.

In order to do Lagrangian (or Hamiltonian) field theory, we want the fields to form an algebra
reflecting the string structure, namely, as a convolution algebra determined by the decomposition of
a string into two, in all possible ways. For example, for
φ, ψ ∈ FunSM , define φ ? ψ by

(φ ? ψ)(X) =
∫
φ(Y )ψ(Z)

where the integral is over all Y, Z ∈ SM such thatX = Y ?Z where ? is the chosen string composition,
Poincaré, Moore, Lashof-Witten or HIKKO.

6. Deformation quantization

Although I was unaware of it for decades, at the same time that I was beginning my own research,
Murray Gerstenhaber [Ger63] developed a cohomological theory for the deformation of algebras. This
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provides a bridge between the kind of homotopy theory I have done and mathematical physics via de-
formation quantization (Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer [BFF+78a, BFF+78b]),
though the cohomological aspects were of minor importance in that application originally.

By a formal deformation of an algebra A, we mean an algebra structure on the formal power
series ring A[[t]] with coefficients in A which reduces to the algebra structure on A when t is set
equal to 0. Thus we can write

a ∗ b =
∑

timi(a, b)

with m0(a, b) the original ab.
If the star product is to be associative, m1 must be a 2-cocycle in the Hochschild cochain complex

C•(A < A) of A with coefficients in itself. Whether or not such a 2-cocyle extends to a full
derformation depends on the cohomology class [m1] ∈ H2(A,A). Gerstenhaber introduced his
bracket in showing that the Hochschild complex had the structure of a differential graded Lie algebra,
if the gradings are shifted by one, and, hence, the total cohomology H∗(A,A) had the structure of a
graded Lie algebra, - in other words, again the analog of the Whitehead product algebra. The first
obstruction was given by the bracket of [m1] with itself and higher obstructions by iterated n-ary
brackets [ , . . . , ], the Lie analogs [Ret93] of Massey products [Mas58].

Now back on the physics side, the problem of quantization of C∞(M), the algebra of smooth
functions on a symplectic manifold, interacted with deformation theory as follows: The Leibniz rule
for the Poisson bracket implies that { , } is a Hochschild 2-cocycle and a candidate infinitesimal
deformation. Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer showed that if the Poisson
bracket extended to a full associative deformation or star-product ? of the commutative product,
then one form of ‘quantization’ could be achieved. Over the past decade, a successful attack leading
to the existence of star products on all symplectic manifolds was completed first by DeWilde and
Lecomte [DWL83] and refined further by Fedosov [Fed94] and Donin [Don97]. Meanwhile, attention
had extended to Poisson manifolds, ones where the smooth functions admitted a bracket satisfying
the same formal algebraic properties but without coming from a symplectic 2-form on the manifold.
For example, the Lie bracket on a Lie algebra g induces a Poisson bracket on the algebra C∞(g∗).
Finally, Kontsevich [Kon97] succeeded in showing that the existence of a star-product for any Poisson
manifold (for more general Poisoon algebras, there is a counterexample due to Mathieu [?]) and
remarkably he succeeded by using integrals on certain compactified configuration spaces (very similar
to those used by Zwiebach in his open-closed string field theory [Zwi98]) as well as ideas first
developed in rational homotopy theory.

The relevance of L∞-algebras is the following: As indicated, the Hochschild cochain complex
C(A,A) of multilinear maps of A⊗n to A admits the structure of a dg Lie algebra and hence the
Hochschild cohomology admits the structure of a dg Lie algebra with d = 0. If there were a map of dg
Lie algebras between cohomology and cochains inducing an isomorphism in cohomology, deformation
quantization would always be possible once the primary obstruction vanished. No such map is known
for a general Poisson bracket even on Rn, but there is a complicated alternative which works well
enough. That is, consider a dg Lie algebra as a special case of an L∞-algebra and allow L∞-maps.
This is what Kontsevich, by a remarkable tour de force, carries out.

Consider a chain map f : L→ K of dg Lie algebras which induces an isomorphism in cohomology
but does not respect the brackets strictly but only ‘mod an exact term’, i.e.

f [x, y] = [fx, fy] + dh(x, y) + h(dx, y) + h(x, dy).

In other words, h is a homotopy from f ◦ { , } to { , } ◦ (f ⊗ f). An L∞-map consists of a
whole family of higher homotopies hn : L⊗n → K which fit together compatibly [?]. Kontsevich
shows that, for the graded Lie algebra of polyvector fields, L = Γ(M,Λ∗TM), and K, the graded
Lie algebra of polydiffernetial operators (the sub dg Lie algebra of the Hochschild cochain complex
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Hoch(C∞(M), C∞(M)) spanned over C∞(M) by cochains of the form ∂I0 ⊗ · · · ⊗ ∂Ip
), there is

such an L∞-map. This suffices to show that deformation quantization is always possible once the
primary obstruction vanishes. Moreover, the maps hn can be used used to give a precise formula for
the higher order terms mn. The maps hn are constructed using differential forms on the compactified
moduli spaces of configurations of ordered tuples (x1, . . . , xp; y1, . . . , yq) where the xi are on the real
axis and the yj on the upper half plane.

SEE IF PENN HAS AN UPDATE 7/18
Although Kontsevich’s proof does not involve a physicist’s vision directly, it is possible to view it

that way, as has been worked out by Cattaneo and Felder [CF99], providing a very specific realization
of the Batalin-Vilkovisky machinery.

Kontsevich’s approach can be stated effectively in terms of a homological algebraic concept called
formality which arose in rational homotopy theory [?, ?]. It applies to any type of differential
graded algebra, but preferably to an algebra A such that H(A) is of the same type, e.g. associative,
associative commutative or Lie. Such an algebra is called formal if there is an algebra map or
even a strongly homotopy mulitplicative map H(A) → A inducing an isomorphism in homology.
The precursor example is provide by symmetric? spaces with A the deRham algebra of differential
forms, for then there is such a map given by choosing a harmonic representative in each class (in
general, the product of harmonic forms is not harmonic).

Kontsevich proved that arbitrary Poisson manifolds admitted star products by showing that the
Hochschild cohomology of the Poisson algebra A of Rn was formal and then such local star products
could be patched together to give a global star product. His work lead to further conjectures
and theorems in related mathemaical contexts, though I am unaware of nay with direct physical
relevance.

7. Configuration, moduli spaces and operads

Spaces of maps, such as
occur in physics in sigma models as do closely related configuration and moduli spaces.
For a general space, I will denote by Confign(X) the space

Xn −∆ = {(x1, . . . , xn)|xi 6= xj if i 6= j}.

‘Moduli space’ will refer to a quotient of a configuration space or to a quotient of a configuration
space with ‘decorations’, e.g. local coordinates at the points. We will have maps Mn(X) →
Confign(X)/ ∼.

A major branch of contemporary mathematical physics, including conformal field theory and
topological quantum field theory, is based on algebraic structures parameterized by moduli spaces
Mn,g of ordered configurations of points on a Riemann surface of genus g. Of crucial importance
is the operation of sewing two such surfaces together, meaning forming a topologist’s connected
sum but with attention to matching the complex structure in the overlap. If one of the points in a
configuration is distinguished as outgoing and sewing is resticted to the outgoing point on the first
surface with any of the incoming points on the other surface, the mathematical structure of an operad
results [?, ?]. This is comparatively straightforward and related to classical algebraic topology for
genus 0, i.e. Mn+1 = Mn+1,0 = Mn+1(S2) (known in the physics literature as being at tree level).
Passing to homology of the moduli space gives a clear description of an algebraic structure which is
then represented on a ‘physical’ state space S.

H(Mn+1) → Hom(S⊗n,S)
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That physical state space S is in turn the homology of a complex C and the chain level representation
(or perhaps strong homotopy representation [?])

C(Mn+1) → Hom(C⊗n, C)

is of physical significance, perhaps hidden at the homology level. Particularly striking examples
occur in Zwiebach’s closed string field theory and more recently in his combined open-closed string
field theory [?].

OTHER EXAMPLE? ksv

8. Coda

Thus we see a rather intricate interweaving of several kinds of cohomology, including especially
that of configuration spaces and moduli spaces, being brought to bear on problems in physics. In
turn, physics has provided not only new applications for existing mathematics but also novel new
concepts (e.g. Batalin-Vilkovisky algebras) and problems to enrich mathematics.
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