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Abstract

Looking back over 55 years of higher homotopy structures,
I will reminisce as I recall the early days and ponder how
they developed and how I now see them. From the history
of A∞-structures and later of L∞-structures, I will present
selective highlights as they morphed into the topic of this
Program on Higher Structures in Geometry and Physics.
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Once upon a time: A∞-spaces and algebras

The history of A∞-structures begins, implicitly, in 1957 with the
work of Masahiro Sugawara. He showed that, with a
generalized notion of fibration, the Spanier-Whitehead
condition for a space F to be an H-space:

A fibration with fibre F contractible in the total space

is necessary and sufficient.

He goes on to obtain similar criteria for F to be a
homotopy-associative H-space or a loop space.
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Problem

PROBLEM: When is a primitive cohomology class u ∈ Hn(X , π)
of a topological group or loop space X the suspension of a
class in Hn+1(BX , π).

In other words, when is an H-map X → K (π,n) induced as the
loops on a map BX → K (π,n + 1).
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Projective spaces

Any H-space has a projective ‘plane’ XP(2) and homotopy
associativity implies the existence of XP(3). Contrast this with
classical projective geometry where the existence of a
projective 3-space implies strict associativity.
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Definition
An An space X consists of a space X together with a coherent
set of maps

mk : Kk × X k → X for k ≤ n

where Kk is the (by now) well known k − 2-dimensional
associahedron in one of its first realizations.

Note that is not the same as an A∞-space with mk = ∗ for
k > n. For example, for n = 3 an associating homotopy need
have no relation to the usual pentagon relation.
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Theorem
A ‘nice’ connected space X has the homotopy type of a based
loop space ΩY for some Y if and only if X admits the structure
of an A∞-space.

The published versions in 1963 of ‘Homotopy Associativity of
H-spaces I and II’ correspond respectively to the topology of the
Princeton thesis and the homological algebra of the Oxford one.
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1968 Boardman and Vogt, motivated by the many infinite loop
spaces then of interest, emphasized the point of view of

homotopy invariant algebraic structures

to characterize such infinite loop spaces.

Around 1970, Peter May developed his theory of operads to
handle iterated loop spaces of any level.

Since then, there has been a proliferation of operads with
additional structure as well as generalizations.
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Operads were crucial for studying an important issue in the
∞-version of commutative algebras:

whether to relax the commutativity up to homotopy or to keep
the strict symmetry but relax the associativity or relax both.

As emphasized by Kontsevich, the triumvirate of A∞ , L∞ and
C∞-algebras play a dominant role.

By C∞-algebra we mean what is also known as a balanced
A∞-algebra, that is, a strictly commutative A∞-algebra defined
in terms of a coherent set of n-ary products which vanish on
shuffles.

C∞-algebras and L∞-algebras are in an adjoint relationship just
as for strict associative and Lie algebras.
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L∞-algebra

Definition
An L∞-algebra is a differential graded vector space
(L = {Li},d = `1) with a coherent set of n-ary brackets

`n = [ , . . . , ] : ΛnX → X .

Equivalently, an L∞-algebra is a graded vector space L = {Li}
with a coderivation differential of degree ±1 on the graded
symmetric coalgebra C(L) on the shift sL.

For an ordinary Lie algebra, this is the classical
Chevalley-Eilenberg chain complex.
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Degree??

Remark
Usually L is either non positively or non-negatively graded.

Note the ambiguity as to the degree ±1 of d in defining an
L∞-algebra. The binary operation is always of degree 0;
sometimes the ‘manifest’ grading in examples is not the right
one; see examples below. The shift of the bracket now has the
same degree as the shift of `1.

Notice also this bracket extends to an action of the degree 0
piece on the piece of degree 1 (or -1 respectively), as for a
module over an algebra. Notice d : module→ algebra
d : algebra→ module depending on the grading.
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L∞ in deformation theory

L∞-algebras arose by 1977 in my work with Mike Schlesinger
on deformation theory of rational homotopy types.

The yoga of deformation theory:
any problem in deformation theory is “controlled" by a
differential graded Lie algebra (unique up to homology
equivalence of dg Lie algebras)
we extended to similar control by an L∞-algebra.

Let H be a simply connected graded commutative algebra of
finite type and (ΛZ ,d)→ H a filtered model. Differential graded
Lie algebras provide a natural setting in which to pursue the
obstruction method for trying to integrate “infinitesimal
deformations”, elements of H1(DerΛZ ), to full perturbations. In
that regard, H∗(DerΛZ ) appears not only as a graded Lie
algebra (in the obvious way) but also as an L∞-algebra.
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L∞ in deformation theory

Our main result compares the set of augmented homotopy
types of dgca’s (A, i : H ≈ H(A)) with the path components of
C(L) where L ⊂ Der ΛZ consists of the weight decreasing
derivations.
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L∞ in deformation theory

Deformation theory as such began with deformations of
complex structure. The algebraic version dates back to the
work of Murray Gerstenhaber (1963 - it was a very good year!!).
This led to an algebraic description of deformation quantization,
a term derived from physics.

Given a Poisson algebra (A, { , }), a deformation quantization
is an associative unital ? product on the algebra of formal power
series A[[~]] subject to the following two axioms:

f ? g = fg +O(~) (1)

f ? g − g ? f = ~{f ,g}+O(~2). (2)

The devil is in the terms of higher order!
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L∞-algebra in physics

L∞-algebras are becoming increasingly useful in physics 1 in
two ways:

Solution of a physical problem leads to a structure which
later is recognized as that of an L∞-algebra.
Solution of a physical problem is attacked using knowledge
of L∞-algebras.

There are some famous ‘no go’ theorems that rule out certain
physical models, e.g. higher spin particles. What is ruled out is
models in terms of Lie algebras and their representations. It
has been evident for some time that L∞-algebras bypass these
obstacles.

1see https://ncatlab.org/nlab/print/L-
infinity+algebras+in+physics for an extensive, annotated
chronological list - thanks to Urs Schreiber
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L∞-algebra in physics

In 1982, L∞-algebras appeared in disguise in gravitational
physics in work of D’Auria and Fré. Unfortunately they referred
to their algebras as ‘FDA’s - free differential algebras; to be
precise, their FDA is a dgca (free as a gca ignoring the
differential) as in Sullivan’s models of rational homotopy types,
which they realized later.

In 1987, the formulas of the BRST operator in the construction
of Batalin-Fradkin-Vilkovisky constrained Hamiltonian systems
could be recognized as corresponding to an L∞-algebra as did
the corresponding Lagrangian formulas of Batalin-Vilkovisky.
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L∞-algebra in physics

A more exciting breakthrough into mathematical physics
occurred when I recognized an L∞-algebra structure in the
closed field string theory of Zwiebach. This occurred in 1989
when he fortuitously gave a talk in Chapel Hill at the last GUT
(Grand Unification Theory) conference.
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Truncated L∞-algebras

�

Warning!! Notice there is a real problem of nomenclature.

There are significant uses of truncated L∞-algebras ‘truncated’
having trivial brackets for k > n. For example:

Lie n-algebra means an L∞-algebra concentrated in
degrees 0 to n-1 (or -n+1 to 0) with d of degree −1 (or +1
respectively).
n-Lie algebra means having a k-ary bracket only for k = n
and satisfying one of two fundamental identities
generalizing Jacobi or that for the Nambu bracket.

Both of these types of algebras are important in geometry and
in physics.
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L∞-algebras in geometry

Courant algebroids are structures which include as examples
the doubles of Lie bialgebras and the bundles TM ⊕ T ∗M with
the bracket introduced by T. Courant.

Roytenberg showed in his PhD thesis the equivalence of this
structure with a specific two-term L∞ algebra, in which l1 is
determined by the de Rham differential, l2 by the Courant
bracket and the operation l3 contains “flux” (e.g. a three-form
known as H-flux).
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L∞-algebras in geometry

In 1998, Roytenberg and Weinstein, building on Roytenberg’s
thesis, showed that Courant algebroids give rise to
L∞-algebras.

A Courant algebroid E → TM → M comes equipped with an
operator D : C∞(M)→ Γ(E).

Consider the total space of the following resolution X of
H = cokerD:

X2 = kerD d2−→ X1 = C∞(M)
d1−→ X0 = Γ(E) −→ H −→ 0, (3)

where with d1 = D and d2 is the inclusion ι : kerD ↪→ C∞(M).

The Courant brackets on H come from Courant brackets on
Γ(E) for which the Jacobi identity is satisfied up to a D exact
term.They extend the Courant bracket to an L∞-structure on all
of their resolution X , manifestly a Lie 3-algebra.
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L∞-algebras in geometry

In contrast, working from the physics side (in the context of
Yang-Mills theory on a smooth Riemannian manifold), Zeitlin
explored the Maxwell complex built from part of the de Rham
complex using the Hodge star operator and d ? d :

0→ Ω0(M)→ Ω1(M)
d?d−−→ ΩD−1(M)→ ΩD(M)→ 0. (4)

which he renames as (F ·,Q):

0→ F0 Q−→ F1 Q−→ F2 Q−→ F3 → 0. (5)

He then tensors it with some reductive Lie algebra g.
He defines graded brackets [ , ] based on the operator product
expansion for open strings and [ , , ] by computation and
shows they define an L∞-algebra (with all higher brackets 0).

Notice this is not a Lie n-algebra since d is of degree 1 but the
complex is non-negatively graded and d : algebra→ module
(cf. BBvD algebras).
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Lie n-algebras from multisymplectic manifolds

Chris Rogers:
A manifold is multisymplectic, or more specifically n-plectic, if it
is equipped with a closed nondegenerate differential form of
degree n + 1. Just as a symplectic manifold gives rise to a
Poisson algebra of functions, any n-plectic manifold gives rise
to a Lie n-algebra of differential forms with multi-brackets
specified via the n-plectic structure. The underlying graded
vector space consists of a subspace of (n − 1)-forms he calls
Hamiltonian together with all p-forms for 0 ≤ p ≤ n − 2.

C∞(M)
d→ Ω1(M)

d→ · · · d→ Ωn−2(M)
d→ Ωn−1

Ham (6)

The bilinear bracket, as well as all higher k -ary brackets, are
explicitly specified by the n-plectic structure.

This is a Lie n-algebra if we flip the indices.
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Continuing in a more physical setting/language, Ritter and
Saemann propose new physical field theory models by taking
Lie n-algebras as ingredients. They consider ‘zero-dimensional
field theories’ which means the fields are elements of an L∞-
algebra (think functions on a point!).
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BBvD L∞-algebras

In contrast to Lie n-algebras as above, it is possible to have an
L∞-algebra concentrated in degrees 0 to n-1 with d of degree
+1 as for the higher spin algebras of Berends, Burgers and van
Dam .

They start with a given space of ‘fields’ Φ which is a module
over a Lie algebra Ξ of gauge symmetries.
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BBvD L∞-algebras

By a field dependent gauge transformation of Ξ on Φ, they
mean a polynomial (or power series) map Ξ⊕ Φ→ Φ:

δξ(φ) = Σi≥0Ti(ξ, φ)

where Ti is linear in ξ and polynomial of homogeneous degree i
in φ.

Note the operation T0 : Ξ→ Φ from ‘algebra’ to ‘module’, in
contrast to the above examples except for Zeitlin’s.
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BBvD L∞-algebras

They have a corresponding field dependent generalization of a
Lie algebra structure on Ξ: a polynomial (or power series) map
Ξ⊕ Ξ⊕ Φ→ Ξ

[ , ] : (ξ, η)(φ) = Σi≥0Ci(ξ, η, φ)

where Ci is bilinear in ξ and η and of homogeneous degree i in
φ.

These operations obey consistency relations which Fulp, Lada
and I identified as structure relations of an L∞ algebra.

Remark
Note the BBvD structure gives rise to an L∞-algebra structure
on the direct sum of the space of fields and the space of gauge
parameters, not of the form of an L∞-algebra and its module.
This is similar to what occurs in the BFV and BV formalisms.
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Small L∞-algebras

Zwiebach and/or other physicists asked about small examples
of L∞-agebras, (physicists’ ‘toy’ models) leading to work of Tom
Lada and his student Marilyn Daily. Daily classified all
3-dimensional L∞-algebras: 2-graded with one 1-dimensional
component and one 2-dimentional component; 3-graded where
each component is 1-dimensional.

Daily and Lada showed that the 2-graded examples fit into the
context of BBvD theory.
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DFT - Double Field Theory

In the last two decades, what is called T-duality in string theory
and supergravity required a formulation of differential geometry
on a generalized tangent bundle (locally TM ⊕ T ∗M) as a
Courant algebroid.

These have been further generalized to higher Courant
algebroids are generalizations of TM ⊕ Λk (T ∗M).

This in turn has led to Double Field Theory.

Double Field Theory (DFT) is a proposal to
incorporate T-duality, a distinctive symmetry of string
theory, as a symmetry of a field theory defined on a
double configuration space.
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A generalized tangent bundle E is an extension of T by T ∗

0 −→ T ∗M −→ E π−→ TM −→ 0. (7)

Locally, the bundle E looks like TM ⊕ T ∗M. As above, there is
an associated Courant bracket and hence an L∞-algebra.
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As a bundle over TM with a local trivialization with respect to a
covering U = {Uα}, we have transition functions
aαβ ∈ GL(2d ,R) satisfying the usual cocycle condition, but, in
terms of the local splitting TM ⊕ T ∗M, there is a higher order
‘twist’ τ depending on a 2-form ω. Now the cocycle condition
fails, the failure depending on ω:

gαβgβγ 6= gαγ on Uα ∩ Uβ ∩ Uγ .

This is often described as a failure of associativity, but it is more
accurately failure to correspond to a representation.

Since gαβgβγ can be expressed in terms of 1-forms, it could be
that the difference is an exact form dλαβγ for some function
λαβγ on Uα ∩ Uβ ∩ Uγ . One could say the transition functions
form a representation up to homotopy (RUTH).
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Representations up to homotopy/ RUTHs

An ordinary representation of a group or algebra is equivalent
to a morphism to the endomorphisms of another object. An ‘up
to homotopy’ analog appeared early on in in terms of the action
of the loop space ΩB on the fiber F of a fibration F → E → B:

ΩB × F → F or ΩB → H(F )

where H(F ) denotes the monoid of self homotopy equivalence
F → F .

Initially, this was referred to as a homotopy action, meaning
only that (fλ)µ was homotopic to f (λµ), with no higher order
structure. Sugawara generalized this to homotopy multiplicative
maps betwwen associative H-spaces.
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Representations up to homotopy/ RUTHs

Notice the map ΩB → H(F ) above corresponds only to an
H-map; the full equivalence between such fibrations and
A∞-maps ΩB → H(F ) had to wait until such maps were
available.

The corresponding terminology is that of (strong or coherent or
∞) homotopy action, which has further variants under a variety
of names.

Author, Another Short Paper Title



Representations up to homotopy/ RUTHs

In the case of a smooth fibre bundle E → B,
the corresponding notion is parallel transport.
From a topological point of view,∞-homotopy action is the
more basic notion.

String theory and string field theory [have] inspired string
topology, initiated by Chas and Sullivan and a variety of
∞-algebras.

The corresponding theory of ‘representation up to coherent
homotopy’ should feed back into physics.
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A∞-functors and A∞-categories

Since associativity is a key property of categories, it is not
surprising that A∞-categories were eventually defined. In 1993,
Fukaya defined them to handle Morse theoretic homology.

Just as one considers A∞-morphisms of A∞-algebras, one can
consider A∞-functors (also known as homotopy coherent
functors) between A∞-categories. Such functors were first
considered for ordinary strict but topological categories in the
context of classification of fibre spaces.
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A∞-functors and A∞-categories

For fibrations which are locally homotopy trivial with respect to
a good open cover {Uα} of the base, one can define transition
functions

gαβ : Uα ∩ Uβ → H(F ),

but instead of the cocycle condition for fibre bundles, one
obtains only that gαβgβγ is homotopic to gαγ as a map of
Uα ∩ Uβ ∩ Uγ into H(F ).
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A∞-functors and A∞-categories

In 1965, Wirth showed how a set of coherent higher
homotopies arise on multiple intersections. He calls that set a
homotopy transition cocycle.

Regarding the disjoint union
∐

Uα as a topological category U,
and H(F ) as a category with one object in the standard way,
Wirth shows the transition cocycle web of higher homotopies is
precisely equivalent to a functor up to strong homotopy

U → H(F ),

also known as a homotopy coherent functor.

For ‘good’ spaces, the usual classification of such fibrations is
effected by the realization of this functor via a map

BU → BH(F ).
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A∞or L∞-“geometry”

The coherent homotopy generalization of the definition of a
dg-manifold is straightforward, but requires a coherent
homotopy cocycle condition.

Definition
A dg∞-manifold or sh-manifold is a locally ringed space
(M,OM) (in dg commutative algebras over R), which is locally
homotopy equivalent (as dcga’s) to (U,OU), where
OU = C∞(U)⊗ S(V •) with {U} an open cover of M and
(S(V •),d) a dcga.

The analogs of classical transition functions with a cocycle
condition are exactly Wirth’s homotopy transition cocycles.
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A∞-algebra in physics

The most obvious presence of A∞-structures in physics is in
open and open-closed string field theory.

In OCSFT, there is an L∞-algebra acting on an A∞-algebra in a
special way, well explicated in pictures.

Less well established are AA-structures involving what
physicists call flux, especially H-flux but also R-flux and Q-flux.
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Now and future

That brings us somewhat up to date; there is much work in
progress even in this small part of the space of higher
structures.

Now I find in Manin’s Mathematics, Art, Civilization:
With the advent of polycategories, enriched
categories, A∞-categories, and similar structures, we
are beginning to speak a language. . . .

I find this delightfully ironic since, when I first submitted my
theses for publication in AJM, they were deemed too narrow
and essentially of no relation to other parts of math!

Perhaps Heraclitus was right: All is flux, nothing stays still. ;-)
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