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Abstract
This is a greatly revised version of the talk in the Deformation

Theory Seminar at Penn Jan 19, 2011. In a homotopy setting, i.e.
of fibrations = maps p : E → B with the homotopy lifting property,
parallel transport and holonomy can be defined without a connection
and in terms of morphisms from the space of paths or based loops
without passing to homotopy. Closely related is the notion of (strong
or ∞) homotopy action, which has variants under a variety of names.
My aim is to impose some order on this zoo of concepts and names
with major emphasis on the examples coming from fibrations.

Inspired by recent extensions in the smooth setting of parallel trans-
port to representations of Singsmooth(B) on a smooth fibre bundle, I
revisit the development of a notion of ‘parallel’ transport in the topo-
logical setting of fibrations with the homotopy lifting property and
then extend it to representations of Sing(B) on such fibrations.
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1 Introduction/History

In clasical differential geometry (a language the muse did not sing at my
cradle - see below), parallel transport is defined in the context of a connection
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on a smooth bundle p : E → B. The latter can mean a covariant derivative
operator, a differential 1-form or a set of horizontal subspaces in the tangent
bundle Tp : TE → TB. The corresponding parallel transport τ : E×BI → E
is constructed by lifting a path in B to a unique! path in E with specified
starting point. The holonomy is given by the evaluation of τ on ΩB, the
space of based loops in B. The holonomy group is the image as a subgroup
of the structure group of the bundle. That it is a group follows from the
uniqueness of the lifting. It is well defined up to conjugation depending on
the choice of base point.

If p : E → B is only a fibration of topological spaces, the situation is
different: we still can lift paths but not uniquely.

Perhaps the oldest treatment in algebraic topology (I learned it as a grad
student from Hilton’s Introduction to Homtopy Theory [Hil53] - the earliest
textbook on the topic) is to consider the long exact sequence, where F is
the fibre over a chosen base point in B,

· · · → πn(F ) → πn(E) → πn(B) → πn−1(F ) → · · ·

ending with
· · · → π1(B) → π0(F ) → π0(E) → π0(B).

Of course, exactness is very weak at the end since the last three are in
general only sets, but exactness at π0(F ) is in terms of the action of π1(B)
on π0(F ). This passage to homotopy classes obscures the ‘action’ of ΩB on
F . Initially, this was referred to as a homotopy action [?], meaning only
that fλ)µ was homotopic to f(λµ)

In those days, at least at Princeton, there was no differential geometry
until Milnor gave an undergrad course my final year there. Notice that
Characteristic Classes consider differential forms only in Appendix C, added
much later. I think this was the results of Serre’s thesis which triumphed
over characteristic 0, cf. choux de bruxelles.

It was also not ’til years later that I learned of the notiion of thin ho-
motopy which quotients ΩB to a group without losing so much information.
Just recently, Johannes Huebschman led me to a paper of Kobayashi (from
1954!) where he is already using what is now called thin homotopy in terms
of plarallel transport and holonomy for smooth bundles with connection.

Back in 1966, in the Mexican Math Bulletin [Sta66], a journal not readily
available, I showed that in the topological setting of fibrations the homotopy
lifting property gave not only the above homotopy action, but in fact an
sh(or A∞)-action, which is to say the adjoint ΩB → End(F ) was an A∞-
map.
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For my purposes, it was sufficient to consider transport along based loops
in the base, though the arguments allow for transport along any path in the
base.

2 Review of the construction of an A∞-action

We first recall what are rightly known as Moore paths [Moo55] on a topo-
logical space X.

Definition 1. Let R+ = [0,∞) be the nonnegative real line. For a space X,
let Moore(X) be the subspace of Moore paths ⊂ XR+ × R+ of pairs (f, r)
such that f is constant on [r,∞). There are two maps

• ∂−, ∂+ : Moore(X) → X,

• ∂−(f, r) = f(0),

• ∂+(f, r) = f(r).

Recall composition ◦ of Moore paths in Moore(X) is given by sending
pairs (λ, r), (µ, s) ∈ Moore(X) such that λ(r) = µ(0) to λµ ∈ Moore(X)
which is constant on [r + s,∞), λµ|[0, r] = λ|[0, r] and λµ(t) = µ(t− r) for
t ≥ r. An identity function ε : X → Moore(X) is given by ε(x) = (x̂, 0)
where x̂ is the constant map on R+ with value x.

Composition is continuous and gives, as is well known, a category/groupoid
structure on Moore(X). If we had used the ‘ancient’ Poincaré paths I → X,
we would have had to work with an A∞-structure on XI . Indeed, it was
working with that standard parameterization which led to A∞-structures
[Sug57, Sta63].

For a category C, we denote by C(n) the set of n-tuples of composable
morphisms. In partcular, we will be concerned with Moore(B)(n). We will
write t for (t1, · · · , tn) and t̂i for (t1, · · · , ti−1, ti+1, · · · , tn), Back in 1988
[Sta88], I referred to strong homotopy representations, but today I will use
the representation up to homotopy terminology, having in mind the gener-
alization that comes next. Because λµdenotes travelling along λ first and
then along µ, the actions will be written as right actions: (e, λ) 7→ eλ.

Definition 2. A representation up to homotopy of Moore(B) on a fibration
E → B is an A∞-morphism (or shm-morphism [Sug61]) from Moore(B) to
EndB(E); that is, a collection of maps

θn : In−1 × E ×B Moore(B)(n) → E
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(where E ×B Moore(B)(n) consists of n + 1-tuples (e, λ1, . . . , λn) where the
λi are composable paths, constant on [ri,∞), and p(e) = λ1(0)) such that

p(θn(t, e, λ1, . . . , λn)) = λn(rn),

θn(t,−−, λ1, . . . , λn)

is a fibre homotopy equivalence and satisfies the usual/standard relations:

•

θn(t1, · · · , ti = 0, · · · , tn−1, e, λ1, . . . , λn)) = θn−1(t̂i, e, · · · , λiλi+1, · · · ))

•
θn(t1, · · · , ti = 1, · · · , tn−1, e, λ1, . . . , λn)) =

θi(· · · , ti−1, θn−i(ti+1, · · · , tn−1, λi, · · · , λn, e), λ1, . . . , λi−1, )

Remark 3. That the parameterization is by cubes, as for Sugawara’s strongly
homotopy multiplicative maps rather than more general polytopes, reflects the
fact that Moore(X) and EndB(E) are strictly associative. Strictly speaking,
referring to Moore(B) → EndB(E) as an A∞-map raises issues about a
topology on EndB(E); the adjoint formulas above avoid this difficulty.

Since our construction uses in a crucial way the homotopy lifting prop-
erty, we first construct maps

Θn : In × E ×B Moore(B)(n)×B → E

such that the desired θn are then recovered at t1 = 1.
The idea is that if Θj has been defined satisfying these relations for all

j < n, the Θn−1 will fit together to define Θn on all faces of the cube except
for the face where t1 = 1. In analogy with the horns of simplicial theory,
we will talk about filling an open box, meaning the boundary of the cube
minus the open face, called a lid, where ti = 1 (compare horn-filling in the
simplicial setting). Use the homotopy lifting property to ‘fill in the box’
after filling in the trivial image box in B.That box is B is trivial box since
it is just the composite path λ1 · · ·λn.

It might help to consider the cases n = 1, 2. Consider (λ, r) ∈ Moore(B).
Lift λ to a path (λ̄, r) starting at e ∈ E. Define Θ1 : I × E → E by

Θ1(t, e, (λ, r)) = (λ̄, r)(tr) ∈ E

and θ1(e, (λ, r)) = Θ1(1, e, (λ, r)) =: e(λ, r).
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Now lift (µ, s) to a path (µ̄, s) starting at e(λ, r) ∈ E and lift (λ, r)(µ, s)
to a path (λµ, r+s) starting at e. These lifts fit together to define a map to E,
which will be the restriction of the desired map on the open 2-dimensional
box of the desired map Θ2. This open box has an image in B which can
trivially be filled in. Regarding the filling as a homotopy, the map to E on
the open 2-dimensional box can be filled in by lifting that homotopy.

Theorem 4. (cf. Theorem A in [Sta66]) For any fibration p : E → B, there
is an A∞-action {θn} of Moore(B) on E such that θ1 is a fibre homotopy
equivalence. This action is unique up to homotopy in the A∞-sense.

In Theorem B in [Sta66], I proved further:

Theorem 5. Given an A∞-action {θn} of the Moore loops ΩB on a space F ,
there is a fibre space pθ : Eθ → B such that, up to homotopy, the A∞-action
{θn} can be recovered by the above procedure. If the A∞-action {θn} was
originally obtained by the above procedure from a fibre space p : E → B,
then pθ is fibre homotopy equivalent to p.

This construction gave rise to the slightly more general (re)construction
below. It can also be generalized to give an ∞-version of the Borel con-
struction/homotopy quotient: G → X → XG = X//G for an sh-action
[IM89].

3 Upping the ante to Sing

Inspired by Block-Smith [BS] and Igusa (arXiv:0912.0249), Abad and Schaetz
[AS] look not at just composable paths, but rather look at the singular
complex Sing(B), which is also referred to as. For a singular k-simplex
σ : ∆k → B, there are several k-tuples of composable paths from vertex 0
to vertex k by restriction to edges, in fact, k! such. Given σ, we denote by
Fi the fibre over vertex i ∈ σ.

Following e.g. Abad-Schaetz [AS] (based on Abad’s thesis and his earlier
work with Crainic), we make the following definition of a representation up
to homotopy, where we take a singular k-simplex σ to be (the image of )
< 0, 1, · · · , k > with the p-th face ∂pσ being < 0, · · · , p− 1, p + 1, · · · , k > .
However, we keep much of the notation above rather than switch to theirs.

Remark 6. Again, in contrast to the smooth bundle case, the fibration case
is considerably more subtle since horn filling in the base need not lift to horn
filling in the total space

Definition 3.1. A representation up to homotopy of Sing(B) on a fibration
E → B is a collection of maps {θk}k≥0 which assign to any k-simplex σ :
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∆k → B a map θk(σ) : Ik−1 × F0 → Fk satisfying the relations for any
e ∈ F0:

θ0 is the identity on F0

For any (t1, · · · , tk−1),
θk(σ)(t1, · · · , tk−1,−) : F0 → Fk is a homotopy equivalence.

For any 1 ≤ p ≤ k − 1 and e ∈ F0,

θk(σ)(· · · , tp = 0, · · · , e) = θk−1(∂pσ)(· · · , t̂p, · · · , , e)

θk(σ)(· · · , tp = 1, · · · , e) =

θp(< 0, · · · , p >)(t1, · · · , tp−1, θq(< p, · · · , k >)(tp+1, · · · , tk, e)).

Remark 7. In definition 4, we worked with Moore paths so that the A∞-
map was between strictly associative spaces. Here instead the compatible
1-simplices compose just as e.g. a pair of 1-simplices and are related to
a single 1-simplex only by an intervening 2-simplex. Associativity is triv-
ial; the subtlety is in handling the 2-simplices and higher ones for multiple
compositions. The idea of constructing a representation up to homotopy is
very much like that of Theorem 1, the major difference being that instead of
comparing two different liftings of the composed paths which are necessarily
homotopic, we are comparing a lifting e.g. of a path from 0 to 1 to 2 with
a lifting of a path from 0 to 2 IF there is a singular 2-simplex < 012 >.
However, note that < 02 > plays the role of λ1λ2 of Moore paths in the
above formulas.

Theorem 8. For any fibration p : E → B, there is a representation up to
homotopy of Sing(B) on E.

The essence of the proof is in essence the same as that for Theorem
4. The desired θn will appear as the missing lid on an open box (defined
inductively) which is filled in by homotopy liftings Θn of a coherent set of
maps

pn : In → ∆n,

where ∆n is the set

{(t1, · · · , tn)|0 ≤ t1 ≤ t2... ≤ 1},

are given in terms of iterated convex linear functions. The basic example is

c : (x, y) 7→ (x · 1 + (1− x)y, y).
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Write t1 = t, t2 = s, t3 = r.

For n = 1, define q1 : t 7→ t1.
For n = 2, define q2 = c : (t, s) 7→ (t · 1 + (1− t)s, s) and then

q3 : (t, s, r) 7→ (c(c(t, s), r), c(s, r), r) = (c(t · 1 + (1− t)s), r), c(s, r), r).

These have probably been written else; if you find them, let me know.

By coherent I mean respecting the facial structure of the cubes and
simplices.

Closely related are coherent maps

γn : In−1 → P∆n

where P denotes the set of paths, i.e. P∆n = Map(I, ∆n) and γ1 : I → ∆1

is the ‘identity’. Such maps were first produced by Adams [Ada56] in the
topological context by induction using the contractability of ∆n. Later
specific formulas were introduced by Chen [Che73, ] and, most recently,
equivalently but more transparently, by Igusa [Igu].
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By coherent I mean precisely
γ1(0) is the trivial path, constant at 0.

For any 1 ≤ p ≤ k − 1,

γk(· · · , tp = 0, · · · ) = γk−1(· · · , t̂p, · · · )

and
γk(σ)(· · · , tp = 1, · · · ) =

γp(t1, · · · , tp−1)γq(tp+1, · · · , tk−1).

One way to describe the relation between the pn and the γn in words is:
travel from vertex 0 partway to vertex 1 then straight partway to vertex 2
then straight partway to vertex 3 etc.

See file transport-figure.pdf
Note that these are slighty different from the version of γn given by Igusa;

see the next figure taken from [Igu].
Hopefully the pattern is clear.
Correspondingly, the liftings Θn : In×E → E form a collection of maps

which assign to any k-simplex σ : ∆k → B a map Θk(σ) : Ik × F0 → Fk

satisfying the relations for any e ∈ F0:
Θ0(0) is the identity on F0

For any (t1, · · · , tk),
Θk(σ)(t1, · · · , tk,−) : F0 → Fk is a homotopy equivalence.

For any 1 ≤ p ≤ k − 1,

Θk(σ)(· · · , tp = 0, · · · , e) = Θk−1(∂pσ)(· · · , t̂p, · · · , e)

Θk(σ)(· · · , tp = 1, · · · , e) =

Θp(< 0, · · · , p >)(t1, · · · , tp−1, θq(< p, · · · , k >)(tp+1, · · · , tk, e)).

The desired θn is again recovered at t1 = 1.

The maps pn can be interpreted as homotopies qn : I → (∆n)In−1
and

so subject to the homotopy lifting property. For example, γ1 : 0 → P∆1 is
a path which can be lifted as in Theorem 1 to give Θ1 : I × E → E. Then
γ2 : I → P∆2 such that 0 maps to the ‘identity’ path I →< 02 > while 1
maps to the concatenated path < 01 >< 12 > . (Henceforth, we will assume
paths have been normalized to length 1 where appropriate.) Now lift the
homotopy γ2 to a homotopy Θ2(< 012 >) : I × I × E → E between Θ1(<
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Figure 1: Igusa’s Figure 3
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02 >) and Θ1(< 01 >< 12 >). In particular, Θ2(< 012 >) : 1× I × E → E
gives the desired homotopy θ2(σ) : I × F0 → Fk.

The situation becomes slightly more complicated as we increase the di-
mension of σ. The case ∆3 is illustrative. The faces < 023 > and < 013 >
lift just as < 012 > had via Θ2, but that lift must then be ‘whiskered’ by a
rectangle over < 23 > which glues onto Θ3(< 012 >. In a less complicated
way < 123 > is lifted so that vertex 1 agrees with the end of the ‘whisker’
which is the lift of < 01 >. Thus the total lift of < 0123 ends with the
desired θ3 : I2 ×F0 → F3. The needed whiskering (of various dimensions) is
prescribed by the tp = 1 relations of Definition 2 to be satisfied.

See file Theta 3.pdf

4 (Re)-construction of fibrations

In [Sta66], I showed how to construct a fibration from the data of an strong
homotopy action of ΩB on a ‘fibre’ F . If the action came from a given
fibration F → E → B, the constructed fibration was fibre homotopy equiv-
alent to the given one. For representations up to homotopy, a similar result
applies using analogous techniques, with some additional subtlety.

First we try to construct a fibration naively. Over each 1-simplex σ of
Sing(B), we take σ×F0 and attempt to glue these pieces appropriately. For
the one simplices < 01 > and < 12 >, we have θ1 : F0 → F1 which tells us
how to glue < 01 > ×F0 to < 12 > ×F1 at vertex 1, but, since θ1 : F0 → F2

is not the composite of θ1 : F0 → F1 and θ1 : F1 → F2, we can not simply
plug in < 012 > ×F0 over < 012 >. However, we can plug in I2 × F0 since
θ2 : I × F0 → F2 will supply the glue over vertex 2.

To describe the fibration (or at least a quasi-fibration), we use the special
maps pn : In → ∆n. Return to the description of the fibration p̄2 : E2 → ∆2

above. In greater precision,

E2 =< 01 > ×F0 ∪1 < 12 > ×F1 ∪0 < 02 > ×F0 ∪ I2 × F0.

The attaching maps over the vertices 0 and 1 are obvious as are the projec-
tions to the edges of ∆2. On I2×F0, the attaching maps are obvious except
for the face t1 where it is given by θ2 : I × F0 → F2, so as to be compatible
with the projection I2 × F0 → ∆2.

The result is at least a quasi-fibration q : Eθ → B and can be replaced
up to fibre homotopy equivalence by a true fibration.

Notice that although the definition of representation up to homotopy was
in terms of a fibrations, in fact it really needs only the collection of fibres
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Fσ for the 0-simplices of Sing(B). The equivalence in the appropriate sense
between representations up to homotopy of Sing(B) and fibrations over B
follows as for Theorem B in [Sta66].
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