The topology and algebra of $SO(n-1) \rightarrow SO(n) \rightarrow S^{n-1}$

Herman's seminar 7-31-13

jim stasheff

July 31, 2013

jim stasheff SO(n) for Herman

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Outline

jim stasheff SO(n) for Herman

The bundle $SO(n-1) \rightarrow SO(n) \rightarrow S^{n-1}$

The bundle $SO(n-1) \rightarrow SO(n) \rightarrow S^{n-1}$

For detailed explanations/proofs see Hatcher section 3D p.292+

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SO(1) is a point.

SO(2), the rotations of R^2 , is both homeomorphic and isomorphic as a group to S^1 , thought of as the unit complex numbers.

SO(3) is homeomorphic to RP^3

SO(4) is homeomorphic to $S^3 imes SO(3) \simeq S^3 imes RP^3$

Remarkably, in general, SO(n) inherits a cell structure from a product of RP^k 's.

Regard S^n as $e^n \cup e^0$.

Use the geometry to describe a contraction of e^n , e.g. along lines of longitude.

Choose a metric connection for the bundle, then choose the corresponding lift of e^n to get $SO(n) \cup e^n$

Extend to $SO(n) \times e^n$ using the multiplication in SO(n+1).

Alternatively, regard the sphere as the union of two hemispheres e_+^n and e_-^n and play the same game one each, then notice that over S^{n-1} the two lifts $SO(n) \times S^{n-1} \times \to SO(n+1)$ differ by a transition function given by $S^{n-1} \to SO(n)$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

In particular, there is a map

$$RP^4 \times RP^3 \times RP^2 \times RP^1 \rightarrow SO(5)$$

which is the product using the SO(5) group multiplication of individual maps $RP^k \to SO(5)$ We already have $RP^3 = SO(3)$ Recall that the minimal cell structure for RP^k consists of a single cell e^i for each $i \le k$. Let D^i denote the closed *i* ball. Then the attaching map $\phi^i : \partial D^i \to RP^{i-1}$ is the 2-sheeted covering. To simplify notation, we will write P^i for RP^i .

To each nonzero vector $v \in \mathbb{R}^n$, we can associate the reflection $r(v) \in O(n)$ across the hyperplane consisting of all vectors orthogonal to v. Consider the composition

 $\rho(\mathbf{v}) = r(\mathbf{v})r(e_1)$. Since $\rho(\mathbf{v})$ depends only on the line spanned by v, ρ defines a map $P^{n-1} \rightarrow SO(n)$. This map is injective since r(v) determined an injection of P^{n-1} into O(n) - SO(n). We may think of ρ as embedding P^{n-1} as a subspace of SO(n). Notice that restriction to the top cell e^{n-1} of P^{n-1} gives an alternate description to be compared to the argument using a metric connection. I leave it to the geometers to tell me if they agree on the nose. What is the relation between this P^{n-1} and a Pontryagin cycle?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

More generally, for a sequence $I = (i_1, \dots, i_m)$ with each $i_j < n$, we define a map $\rho : P^I = P^{i_1} \times \dots \times P^{i_m} \to SO(n)$ to be the product in SO(n) of the $\rho(v_j)$. The product of the appropriate $\rho(v_j)$ applied to characteristic maps for the top- dimensional cells of the P^{i_j} will give cells $D^I = D^{i_1} \times \dots \times D^{i_m}$ for SO(n). Of special interest are the sequences $I = (i_1, \dots, i_m)$ satisfying $n > i_1 > > i_m > 0$. These sequences will be called *admissible*, as will the sequence consisting of a single 0.

Theorem

The maps $D^{I} \rightarrow SO(n)$, for I ranging over all admissible sequences, are the characteristic maps of a CW structure on SO(n) for which the map $P^{n-1} \times P^{n-2} \times \cdots \times P^{1} \rightarrow SO(n)$ is cellular.

ヘロン 人間 とくほとくほとう

э

The homology $H_{\bullet}(SO(n))$ and the cohomology $H^{\bullet}(SO(n))$

Though I don't know if it is of any use to you, the homology $H_{\bullet}(SO(n); \mathbb{Z}_2)$ follows easily from the way the cell structure was described and the fact that the attaching map of the top cell in P^i is the 2-sheeted covering.

theorem The Pontryagin ring $H_{\bullet}(SO(n); \mathbb{Z}_2)$ is the exterior algebra $\Lambda_{\mathbb{Z}_2}[e^1, e^{n-1}]$. We know that there is at least an additive isomorphism $H_{\bullet}(SO(n); \mathbb{Z}_2) \equiv \Lambda_{\mathbb{Z}_2}[e^1, \dots, e^{n-1}]$ since their admissible products form a basis. The inclusion $P^i P^i \subset P^i P^{i-1}$ then implies that the Pontryagin product $(e_i)^2$ is 0. The graded commutativity relation follows from the inclusion $P^i P^j \subset P^j P^i$ for i < j.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □