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The bundle SO(n − 1)→ SO(n)→ Sn−1

The bundle SO(n − 1)→ SO(n)→ Sn−1

For detailed explanations/proofs see Hatcher section 3D p.292+
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Special cases

SO(1) is a point.
SO(2), the rotations of R2, is both homeomorphic and
isomorphic as a group to S1, thought of as the unit complex
numbers.
SO(3) is homeomorphic to RP3

SO(4) is homeomorphic to S3 × SO(3) ' S3 × RP3

Remarkably, in general, SO(n) inherits a cell structure from a
product of RPk ’s.
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The bundle structure

Regard Sn as en ∪ e0.
Use the geometry to describe a contraction of en, e.g. along
lines of longitude.
Choose a metric connection for the bundle, then choose the
corresponding lift of en to get SO(n) ∪ en

Extend to SO(n)× en using the multiplication in SO(n + 1).

Alternatively, regard the sphere as the union of two
hemispheres en

+ and en
− and play the same game one each,

then notice that over Sn−1 the two lifts
SO(n)× Sn−1× → SO(n + 1) differ by a transition function
given by Sn−1 → SO(n).
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A cell structure for SO(n) from a product of RPk ’s

In particular, there is a map

RP4 × RP3 × RP2 × RP1 → SO(5)

which is the product using the SO(5) group multiplication of
individual maps RPk → SO(5)

We already have RP3 = SO(3)

Recall that the minimal cell structure for RPk consists of a
single cell ei for each i ≤ k . Let Di denote the closed i ball.
Then the attaching map φi : ∂Di → RP i−1 is the 2-sheeted
covering.
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To simplify notation, we will write P i for RP i .
To each nonzero vector v ∈ Rn, we can associate the reflection
r(v) ∈ O(n) across the hyperplane consisting of all vectors
orthogonal to v . Consider the composition
ρ(v) = r(v)r(e1).Since ρ(v) depends only on the line spanned
by v , ρ defines a map Pn−1 → SO(n). This map is injective
since r(v) determined an injection of Pn−1 into O(n)− SO(n).
We may think of ρ as embedding Pn−1 as a subspace of SO(n).
Notice that restriction to the top cell en−1 of Pn−1 gives an
alternate description to be compared to the argument using a
metric connection. I leave it to the geometers to tell me if they
agree on the nose. What is the relation between this Pn−1 and
a Pontryagin cycle?
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More generally, for a sequence I = (i1, · · · , im) with each ij < n,
we define a map ρ : P I = P i1 × · · · × P im → SO(n) to be the
product in SO(n) of the ρ(vj). The product of the appropriate
ρ(vj) applied to characteristic maps for the top- dimensional
cells of the P ij will give cells DI = Di1 × · · · × Dim for SO(n). Of
special interest are the sequences I = (i1, · · · , im) satisfying
n > i1 > > im > 0. These sequences will be called admissible,
as will the sequence consisting of a single 0.

Theorem

The maps DI → SO(n), for I ranging over all admissible
sequences, are the characteristic maps of a CW structure on
SO(n) for which the map Pn−1 × Pn−2 × · · · × P1 → SO(n) is
cellular.

jim stasheff SO(n) for Herman



The homology H•(SO(n)) and the cohomology

H•(SO(n))

Though I don’t know if it is of any use to you, the homology
H•(SO(n);Z2) follows easily from the way the cell structure was
described and the fact that the attaching map of the top cell in
P i is the 2-sheeted covering.
theorem The Pontryagin ring H•(SO(n);Z2) is the exterior
algebra ΛZ2 [e1, ,en−1]. We know that there is at least an
additive isomorphism H•(SO(n);Z2) ≡ ΛZ2 [e1, . . . ,en−1] since
their admissible products form a basis. The inclusion
P iP i ⊂ P iP i−1 then implies that the Pontryagin product (ei)

2 is
0. The graded commutativity relation follows from the inclusion
P iP j ⊂ P jP i for i < j .
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