# The topology and algebra of $S O(n-1) \rightarrow S O(n) \rightarrow S^{n-1}$ 

## Herman's seminar 7-31-13

jim stasheff

July 31, 2013

## Outline

## The bundle $S O(n-1) \rightarrow S O(n) \rightarrow S^{n-1}$

The bundle $S O(n-1) \rightarrow S O(n) \rightarrow S^{n-1}$

For detailed explanations/proofs see Hatcher section 3D p.292+

## Special cases

$S O(1)$ is a point.
$S O(2)$, the rotations of $R^{2}$, is both homeomorphic and isomorphic as a group to $S^{1}$, thought of as the unit complex numbers.
$S O(3)$ is homeomorphic to $R P^{3}$
$S O(4)$ is homeomorphic to $S^{3} \times S O(3) \simeq S^{3} \times R P^{3}$

Remarkably, in general, $S O(n)$ inherits a cell structure from a product of $R P^{k}$ 's.

## The bundle structure

Regard $S^{n}$ as $e^{n} \cup e^{0}$.
Use the geometry to describe a contraction of $e^{n}$, e.g. along lines of longitude.
Choose a metric connection for the bundle, then choose the corresponding lift of $e^{n}$ to get $S O(n) \cup e^{n}$
Extend to $S O(n) \times e^{n}$ using the multiplication in $S O(n+1)$.
Alternatively, regard the sphere as the union of two hemispheres $e_{+}^{n}$ and $e_{-}^{n}$ and play the same game one each, then notice that over $S^{n-1}$ the two lifts
$S O(n) \times S^{n-1} \times \rightarrow S O(n+1)$ differ by a transition function given by $S^{n-1} \rightarrow S O(n)$.

## A cell structure for $S O(n)$ from a product of $R P^{k}$ 's

In particular, there is a map

$$
R P^{4} \times R P^{3} \times R P^{2} \times R P^{1} \rightarrow S O(5)
$$

which is the product using the $S O(5)$ group multiplication of individual maps $R P^{k} \rightarrow S O$ (5)
We already have $R P^{3}=S O(3)$
Recall that the minimal cell structure for $R P^{k}$ consists of a single cell $e^{i}$ for each $i \leq k$. Let $D^{i}$ denote the closed $i$ ball. Then the attaching map $\phi^{i}: \partial D^{i} \rightarrow R P^{i-1}$ is the 2-sheeted covering.

To simplify notation, we will write $P^{i}$ for $R P^{i}$.
To each nonzero vector $v \in \mathbb{R}^{n}$, we can associate the reflection $r(v) \in O(n)$ across the hyperplane consisting of all vectors orthogonal to $v$. Consider the composition $\rho(v)=r(v) r\left(e_{1}\right)$.Since $\rho(v)$ depends only on the line spanned by $v, \rho$ defines a map $P^{n-1} \rightarrow S O(n)$. This map is injective since $r(v)$ determined an injection of $P^{n-1}$ into $O(n)-S O(n)$. We may think of $\rho$ as embedding $P^{n-1}$ as a subspace of $S O(n)$. Notice that restriction to the top cell $e^{n-1}$ of $P^{n-1}$ gives an alternate description to be compared to the argument using a metric connection. I leave it to the geometers to tell me if they agree on the nose. What is the relation between this $P^{n-1}$ and a Pontryagin cycle?

More generally, for a sequence $I=\left(i_{1}, \cdots, i_{m}\right)$ with each $i_{j}<n$, we define a map $\rho: P^{\prime}=P^{i_{1}} \times \cdots \times P^{i_{m}} \rightarrow S O(n)$ to be the product in $S O(n)$ of the $\rho\left(v_{j}\right)$. The product of the appropriate $\rho\left(v_{j}\right)$ applied to characteristic maps for the top- dimensional cells of the $P^{i_{j}}$ will give cells $D^{\prime}=D^{i_{1}} \times \cdots \times D^{i_{m}}$ for $S O(n)$. Of special interest are the sequences $I=\left(i_{1}, \cdots, i_{m}\right)$ satisfying $n>i_{1} \gg i_{m}>0$. These sequences will be called admissible, as will the sequence consisting of a single 0 .

## Theorem

The maps $D^{\prime} \rightarrow S O(n)$, for I ranging over all admissible sequences, are the characteristic maps of a CW structure on $S O(n)$ for which the map $P^{n-1} \times P^{n-2} \times \cdots \times P^{1} \rightarrow S O(n)$ is cellular.

## The homology $H_{0}(S O(n))$ and the cohomology $H^{\circ}(S O(n))$

Though I don't know if it is of any use to you, the homology $H_{\bullet}\left(S O(n) ; \mathbb{Z}_{2}\right)$ follows easily from the way the cell structure was described and the fact that the attaching map of the top cell in $P^{i}$ is the 2-sheeted covering.
theorem The Pontryagin ring $H_{\bullet}\left(S O(n) ; \mathbb{Z}_{2}\right)$ is the exterior algebra $\Lambda_{\mathbb{Z}_{2}}\left[e^{1},, e^{n-1}\right]$. We know that there is at least an additive isomorphism $H_{\bullet}\left(S O(n) ; \mathbb{Z}_{2}\right) \equiv \Lambda_{\mathbb{Z}_{2}}\left[e^{1}, \ldots, e^{n-1}\right]$ since their admissible products form a basis. The inclusion $P^{i} P^{i} \subset P^{i} P^{i-1}$ then implies that the Pontryagin product $\left(e_{i}\right)^{2}$ is 0 . The graded commutativity relation follows from the inclusion $P^{i} P^{j} \subset P^{j} P^{i}$ for $i<j$.

