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1 Introduction

The simplest abstract model for a rewriting system is a binary relation on a set; the struc-
tures being rewritten are the elements of the set and a pair of elements is related if and
only if the first rewrites to the second. In several kinds of rewriting the structures being
rewritten form not merely a set, but support a composition so that they are the morphisms
of a category. This leads to models of rewriting in which the rewrites appear as 2-cells
between morphisms.

The binary relation model has been applied [Hue80] to term rewriting systems in order
to separate those parts of confluence results which depend essentially on the rewritten struc-
tures being terms, from those aspects of such results which are true of an arbitrary binary
relation. One aspect of confluence results which cannot be handled by the binary relation
model of a term rewriting system is that of critical pairs [KB70]. The significance of the
compositional structure in term rewriting is that this structure, together with coproducts,
is sufficient to account for critical pairs. This is demonstrated in section 5 below.

It has been shown [RS87] that a term rewriting system gives rise to a 2-category in which
the objects are finite sets of variables, the morphisms are substitutions, and the 2-cells are
rewrites. In this paper the question of whether a 2-category really is the most appropriate
structure to model a term rewriting system is considered, and a more general structure,
called a sesqui-category is proposed as an alternative.

There are two advantages in using the weaker structure of a sesqui-category, rather than
a 2-category. The first advantage is conceptual. A sesqui-category may be described infor-
mally as having all the structure of a 2-category except that there is no general horizontal
composition o for combining a 2-cell with a 2-cell. There are instead two compositions o,
and op for combining a 2-cell with a morphism and vice versa respectively. The operations
o, and op each has a natural interpretation from the viewpoint of term rewriting, whereas
the operation o of the 2-category has no such straightforward interpretation. .The second
advantage is that the hom-categories of the sesqui-category are (-caitegori.es, in the sense
of [Mit72]; this means that we have a notion of length for 2-cells. This notion of length al-
lows a distinction between confluence and local confluence, and hence a treatment of critical
pairs.
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2 Term Rewriting Systems
rm rewriting the survey [DJ90] will be found helpful.

r Tq on Set, XTa being the set of terms with
variables in X. It is usual to fix a countably infinite set V o va:rlaible symb‘(”isg abllld b
call a function from V to VT which is the identity exc.ept for finitely hm?nl)l/ gxa. t e
substitution. The functor T is part of 2 monad, and Fin Yvdl denote tfevu subcategory
of the Kleisli category for this monad determined by the finite subsete o' b:
The objects of Fin are thus finite sets of variables, and a,.morphllsm i d b—) tt'ls -
function f: X — Y'Tq. If g : Y — Z in Fin, then the composite fg is defined by se e
for each z € X, the term z fg to be the term obtained by substituting yg foz S
y in zf. The morphisms of Fin correspond to substitutions, however some care 18 {leed(.ad
as the correspondence does not preserve composition. For example, the comp051Fe in Fin
of {x =y} : {x} = {y} and {y = z} : {y} = {2} is {x ~+ z}, but the composite of the
substitutions {x ~ y} and {y — z} is {x = 2,y — 2. :
The usual notion of occurrences in a term extends to morphisms of Fin. An occurrence
of f: X =Y is a pair za, where € X and a is an occurrence in the term z f. The set of
he occurrence za in f is denoted

all occurrences of f will be written occ (f). The term at t €
f@za, and the result of replacing this term by a term ¢ is denoted f[t\za]. The notions of

occurrences and replacement are also used with respect to substitutions.

A term rewriting system, or TRS, is a set of rules where each rule, / = r, is a pair
of terms with all variables present in r also appearing in /. A TRS induces a graph on each
hom-set of Fin. An edge from f; to f; is a triple of the form (I = r, ¢, za), where [ = r
is a rule, ¢ is a substitution, and za is an occurrence of fi. These data will satisfy the
conditions that f,@za = l¢p, and f, will be obtained from f; by replacing the subterm at
za by re.

There are two ways in which rewrites interact with composition in Fin. Firstly, there
is instantiation. If f;,fo: X 9> Y and h: Y = Z, and (I = r, ¢, za) is a rewrite from f;
to f2, then (I = r,ph,za) is a rewrite from fih to foh. Secondly, there is embedding. If
g:W = Xand fi,fo2: X =Y, and (I = r,¢,za) is a rewrite from f; to f;, then there
will be a set of rewrites between gf; and gf,.

For a more detailed introduction to te
A signature Q gives rise to an endofuncto

3 Sesqui-Categories

In looking for an appropriate categorical abstraction for term rewriting we are led to con-
sider a category Ko, each hom-set Ko(X,Y) of which is a category, K(X,Y) where the
composition represents the action of performing one rewrite followed by anc;ther For each
triple X,Y, Z of objects of Ko there are two compositions op and or, to model e.mbeddin
and ins’ﬁfmtia,tion respectiyely. If f X =Y and a is a 2-cell in K(Y,Z), then foga igs
;(?;?g;.n K(X,Z). If Bis a 2-cell in K(X,Y) and g : Y — Z, then B oy g is a 2-cell in
A sesqui-category is defined to be data Ky, og and oL as above, subject to the
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following equations, which hold whenever the composites are defined.

g, dxonf = g ii. (f9)orB = fogr(gonp)

iii. gorla Lon iv.  gop(B:8) = (gorf)-(goré)

V aorly = o vi. aoy, (hk) = (aoLh)oLk

vii.  lgoph = 1 viii. (a-9)oph = (or h) - (yor k)
ix. (fora)oph = for(aogh)

In these equations, 1x is an identity 1-cell, 1 7 an identity 2-cell, and - is the ‘vertical’

composition in the hom-categories. Sesqui-categories are so called as the prefix ‘sesqui’ is

used to mean ‘one and a half’ and these structures lie part-way between categories and

2-categories. A sesqui-category satisfying (Gpa og B) - (@ or, 8 B) = (aor, 8oP) - (B or B),

where do and 0; denote domain and codomain, is just a 2-category.
An alternative definition of a sesqui-category is that it

is an ordinary category Ko equipped with a lifting of the Cat
hom-functor to Cat, as in the commutative diagram at
the right, in which U : Cat — Set is the functor which K(--) U
forgets the morphisms.

A third way of describing sesqui-categories is as en- op
riched categories. Besides the usual cartesian closed By st Kilo) 5=t

structure, Cat possesses exactly one other symmetric

monoidal closed structure [FLK80]. This second structure can be called the unnatural
symmetric monoidal closed structure on Cat, since the internal hom is the category of
functors and transformations which are not required to be natural. If Cat’ denotes Cat
equipped with the unnatural closed structure, then a Cat’-category is exactly a sesqui-
category. This description of a sesqui-category as a Cat’-category leads via the notion
of colimits in enriched categories to the appropriate definition of a coproduct in a sesqui-
category, viz the Cat’-coproduct.

4 Sesqui-Categories Associated to a TRS

In this section we see how a TRS gives rise to a sesqui-category, Fin, and a 2-category,
FIN, each having Fin as its underlying category.

We saw above that a TRS makes each Fin(X,Y) into a graph. If f : X = Y in Fin, two
occurrences zja; and zgay of f are said to be disjoint if z; # g or Eleither a; nor ap is an
initial substring of the other. When there are three morphisms in FIFI,V fiufo,fa: X =Y,
and there are rewrites oy = (I = 71,1, 2121) from f1 to fa, and gz (.12.=> 2, P2, Toaz)
from f; to f3, we shall say the rewrites are disjoint if z;a; and z2az are filS_]Ol_ﬂt ?CC}lrrenCeS.
When this happens, the rewrites may be performed in the other order: That is, if f3 denotes
hllipi\z1a1, 792\ z2az), then ay is a rewrite from f3 to f3,and @z is a rewrite fr.om fito
f3. To form the category Fin (X,Y) from the graph Fin (X,Y), we require that if @; and
@, are disjoint rewrites, such that a; - &y is defined, then @y -ap = a3 - 1. _

The compositions og and o, can be defined using the 1(.ieas of embeddm.g anfi instan-
tiation of rewrites respectively, and Fin has coproducts which exte.nd those in Fm.b Each
hom-category of Fin has length, that is, for any morl?lusm. f there is a natural numfer |f]
such that f is expressible as a composite of | f| non-identity morphisms, but not of more
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than |f|. This notion of length corresponds exactly to the usual notion of length in term
rewriting,. :

A category with a graph on each hom-set is called a derivation scheme m.[Str95].
The construction of Fin, above, used one derivation scheme, but we can also consider .the
derivation scheme, D, where the edges of the graphs are the rules alone, and not the rewrites
derived from these. The following result characterizes Fin by a universal property.

Theorem 4.1 Fin is the free sesqui-category with coproducts generated by D. I

The proof of the theorem uses the following normal form lemma, which is also needed for
the results in section 5.

Lemma 4.2 Every length one 2-ceil in the free sesqui-category with coproducts genera'ted
by D has a unique ezpression in the form fop (a+ X)or[g, X] where f and docx are epi. D

In Fin the 2-cells are sequences of one-step rewrites subject to the equivalence that
disjoint rewrites commute. By imposing an additional equivalence, we get a 2-category,
FIN.

A sequence of m+1 one-step rewrites, where m > 0, is said to be an outer nesting if it
has the form (I; = ry, #1,2a)(ly = g, 0z, aby) - - - (I = 12,2, zaby,), and there is a sub-
stitution 4, and a variable y occurring in 9, such that ¢; = 9[lap,\y], and {by,...,b,} =
{b € occ(r19) | (r19%)@b = y}. When the variables of r1 are a proper subset of those in [y,
we may have m = 0. A sequence of n + 1 one-step rewrites, where n > 1, is said to be an
inner nesting if it has the form (I2 = ra, 2, zacy) -+ - (I = T2, 2, zacy) (ly = r1, ¢4, za),
and there is a substitution 1, and a variable y occurring in 9, such that ¢; = 9[ryp,\y],
and {cy,...,cn} = {c € occ(l;9) | (I43)@c = y}.

To any sequence of rewrites from f to g which form an inner nesting, we can associate
a sequence also from f to g which constitutes an outer nesting. By equating each inner
nesting with its associated outer nesting, in addition to imposing commutativity of disjoint
rewrites, the graph Fin (X,Y) becomes a category FZA (X,Y), which is a quotient of
Fin (X,Y). The 2-category, FZN, can be characterized by a universal property.

Theorem 4.3 FIN is the free 2-category with coproducts generated by D. D

The most significant distinction between the sesqui-category Fin and the 2-category
FIN is that, in general, the latter lacks a notion of length. For example, with rules £(x) =
£(£(x)) and £(x) = a, the following sequences of one-step rewrites are all identified.

££(x)h = Ja
ff(x) = fff(x) = a
£f£(x) = fff(x) = fEff(x) = a.

Even when FZN does have length, this may not correspond to the usual notion of length
in term rewriting. For example, with rules £(x) = a and a = b, there is no distinction in
FIN between the one-step rewrite £(a) = a and the two-step rewrite £ (a) = £(b)' = a.

5 Confluence and Critical Pairs

In this section we see how the critical pairs of a TRS arise from the structure of Fin.
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By a span in a sesqui-category with coproducts and length, K, is meant a pair of 2-cells
(e, B), where Joa = Jof. The span can be completed if there exist 2-cells 7, and §, such
that 1o = 9o, and 918 = 9o6, and dyy = 9,6, A span (a, ) is said to be ex’nbedd’ed in
a span (A, p) if there exist 2-cells 4 and & such that A = o - vand p=f-6. A span where
o] =1= |8 is a local span. K is said to be confluent if every span can be completed.
If every local span can be completed, K is said to be locally confluent.

Certain spans owe their existence to the algebraic operations present in K. If the 1-cells
doc and Jof3 are composable, then there will be a span (Gpaop B, acor, 9oB). Such a span
is created by or and or. In a similar fashion, two 2-cells & and B give rise to a span
(G + B, a + 0of3). Spans of these two forms can always be completed, and will be called
explicable spans. A span which cannot be embedded in an explicable span will be called
non-trivial.

Given a span (a, f3), and suitable morphisms f, g, and k, then there must also be spans
(foraoLg, forBorg), and (a+k, B+k). A span (e, ) is said to be propagated from
a span (7, d) if there is a sequence of spans (@, B) = (o, Bo), {e1,B1), *++, (an, Bn) = (7, 6),
where, for 0 < 7 < n, either (a;,ﬂ,’) = (f OR @it1 0L g, foRr fiy1 0L g) for some f and g,
or (@i, Bi) = (@it1 + k, Biy1 + k) for some k. If this happens, and (v, ) can be completed,
then so can (a, §).

A span basis for K is defined as a set, B, of local spans of K such that every non-trivial
local span of K is propagated from some member of B, and no member of B is propagated
from any other. If K possesses a span basis, B, and all spans in B can be completed, then
K will be locally confluent.

The fact that the sesqui-category derived from a TRS does possess a span basis was
essentially demonstrated in [KB70], the elements of the span basis being the critical pairs.
The usual definition of critical pair depends on notions of subterm and unification, but it
is possible to characterize critical pairs solely in terms of the sesqui-category Fin.

The notion of propagation provides two relations on local spans in Fin. Write (o, 8) <o
(o/, "), for local spans (e, 8) and (o, 8'), if (/,8') = (for@ oL g, for B oL g) for some
f and g and (o/, () is not isomorphic to (e, ). Similarly, write (o, 8) <4 (¢, ') for
local spans (e, B) and (o, (), if (¢/,') = (@ + k,B + k) for some k, and (e, f) is not
isomorphic to (@, ’). The relation < on local spans is defined to be the lexicographic
product of (firstly) <4, and (secondly) <.. A local span (@, 3) in Fin is irreducible if
there is no local span (/, ') for which (o/,8') < (@, 8). The ordering < is well founded,
so the non-trivial irreducible spans form a span basis for Fin.

Theorem 5.1 The critical pairs of a TRS are ezactly the non-trivial irreducible spans. D

Recall that a TRS is left-linear if no left hand side of a rule contains any repeated
variables, and is orthogonal if it is left-linear and has no critical pairs. The critical pairs
in an orthogonal TRS admit a simpler characterization than those in the general case.

Theorem 5.2 In a left-linear TRS, the critical pairs are ezactly the irreducible spans which
are not ezplicable. D

Corollary 5.3 A TRS is orthogonal iff all irreducible spans in Fin are ezplicable. 0
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6 Further Work

It has been proposed [Buc85] that a general framework be found to a.cc?unt for various
phenomena similar to critical pairs. Work towards such a framework includes [Sto92]
and [Rei91], however these do not use sesqui-categories, and it seems that further develop-
ment of the above treatment of confluence in sesqui-categories may be relevant. .

It is a basic result of term rewriting theory that orthogonal systems are conﬂ.uent. It. is
not clear whether this result can be explained in terms of the categorical properties of Fin.
It seems that other sesqui-categories which can be derived from a TRS may be useful here,
in particular one formed by using parallel rewrites as length one 2-cells.
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