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Properties of electrons - and, in a few cases, of holes - in heterojunctions are 
described, with emphasis on simple treatments of energy levels and low-temperature 
transport properties in AlxGal_xAs/GaAs heterojunctions. A few related aspects of 
electrons in quantum wells are also described. 

1. Introduction 

Although heterojunctions have been structures of basic interest and of device 
potential for many years, [I] the rapid developments in recent years have been 
spurred by the availability of growth techniques for making nearly ideal structures 
and by the superlattice proposal of Esaki and Tsu, subjects covered in other 
lectures at this School. The two-dimensional aspects of the properties of electrons 
in heterojunctions had as a forerunner the related properties of electrons in 
semiconductor inversion and accumulation layers, a field that was in some sense 
opened by the experiment of Fowler, Fang, Howard, and Stiles [2], although there 
was a considerable body of related work on that system and on thin films even 
earlier. For the purpose of these lectures I will not discuss these earlier 
developments, some of which are described in the review article by Ando et al.[3]. 
The reader should recognize that much of the elementary physics of electrons in 
heterojunctions is taken bodily, or in some cases adapted, from the earlier 
literature. 

First, a few basic results. The density of states in a two-dimensional electrons 
gas is given by 

(1) 

where m is the density-of-states effective mass for motion along the interface and 
where a spin degeneracy of 2 and a valley degeneracy of 1 have been assumed. When, 
as described below, there is a ladder of subbands i, with energies beginning at~i' 
then the total density of electrons is given, with Fermi-Dirac statistics, by 
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where the density-of-states mass has been taken to be a constant, an approximation 
which ignores the nonparabolicity of the conduction band of GaAs. The simple notion 
of a constant, isotropic effective mass fails altogether for holes, as will be 
discussed in the lectures by Altarelli [4]. 

2. Heterojunction in Equilibrium 

The simple, ungated heterojunction considered here is shown in Fig. 1. This figure 
omits the band bending associated with a gate or with Fermi level pinning at the 
outer surface of a real device, and therefore applies to structures in which the 
AlxGal_xAs layer is sufficiently thick that these influences are absent. The 
additional effects induced by a gate will be discussed in the lectures by Vinter [5]. 
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In most high-mobility heterojunctions, electrons are supplied to the GaAs 
channel by donors in the AlxGal_xAs [6,7]. In a heterojunction in equilibrium, the 
Fermi level must be constant across the junction, leading to the condition 

(3) 

where Vb is the conduction band offset at the interface, EDb is the donor 
binding energy in the AlxGal_xAs, VI and Vsp are the potential energy drops across 
the ionized part of the doped layer and across the undoped spacer layer, 
respectively, Eo is the lowest quantum level in the GaAs channel, and EF-Eo is the 
Fermi energy in the GaAs channel measured from the bottom of the lowest subband. 

Fig.l Schematic conduction band 
diagram for AlxGal_xAs/GaAs hetero­
junction at low temperature. The 
doping levels in the barrier region 
and in the GaAs are NDb and NAc ' 
respectively, and the thickness of 
the nominally undoped spacer is d sp ' 
The Fermi level in the barrier is 
assumed to be fixed by the donor 
binding energy EDb' 

Although the considerations leading to Eq. (3) are well known [8,9], this 
equation will be discussed here briefly, because it has turned out to be one way to 
determine band offsets, as applied to holes in AlxGal_xAs/GaAs heterojunctions by 
Wang et al. [10,11] and to electrons in GalnAs/AlInAs heterojunctions by Chaudhuri 
et al. [12]. The case shown in Fig. 1 assumes that the donor binding energy in 
AlxGal_xAs is deep enough for the Fermi level to be pinned at the impurity level at 
low temperatures. That implies that any shallow donor levels, if present, ~re 
outnumbered by the residual acceptors often found in AlxGal_xAs. If the AlAs mole 
fraction x is small, or in the presence of light, Eq. (3) must be modified to 
account for a Fermi level above the conduction band edge in the AlxGal_xAs [13]. 

The potential energy changes VI and Vsp of Fig. I are given by 

VI = e(Nd + Ns)2/ 2EbNDb' 

Vsp = edsp(Nd + Ns)/Eb' (5) 

where Eb is the permittivity of the AlxGal_xAs, NDb is the net donor impurity 
concentration in the AlxGal_xAs, Ns is the channel electron density, and Nd is the 
density of fixed charges in the GaAs, given approximately by 

(6) 

where Ec is the permittivity of GaAs, NAc is the net acceptor concentration in the 
GaAs, and e$d is the energy difference between the conduction band edge in the 
bulk of the GaAs and the Fermi level (or the quasi-Fermi-level in the bulk, if 
there is a substrate bias or back gate bias). A more complete discussion is given, 
for example, in Sec. III.A.I of Ref. 3. 

The last term in Eq. (3) is simply given from the channel density Ns and the 
densi ty 0 f s ta tes, Eq. (1) or, for temperatures above absolute zero, from Eq. (2). 
The quantum energy Eo is found from methods like those outlined in the following 
section. The channel density itself is determined from a Hall effect measurement or 
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from analysis of the magnetoconductance oscillations. If Eq. (3) is to be used to 
determine the band offset Vb' the remaining unknowns are the donor binding energy 
and Nd' the density of fixed charges. Nd is difficult to determine accurately 
because the impurity concentration in the GaAs may not be well known, especially 
for relatively pure samples. Fortunately, in those cases Nd is often small compared 
to Ns • It may be possible to measure Nd using back gate bias [14] or to infer it 
from measured subband splittings in conjunction with theoretical calculations 
[lS,16]. 

The donor binding energy in AlxGal_xAs has been known for many years to have a 
strong dependence on composition [17,24] and is difficult to measure accurately. 
Wang et a1. [10,11] used p-type samples to determine the valence band offset from 
the valence band analog of Eq. (3). This has advantages over the corresponding 
procedure for n-type samples,because the acceptor binding energy in AlxGal_xAs 
varies more gradually with composition than the donor binding energ~ and because p­
type samples are relatively free of the persistent photoconductance [2S,32] that 
complicates many measurements on n-type samples. Wang et a1. [10,11] studied p­
AlxGal_xAs/GaAs heterojunctions with x = O.S and x = 1. They found that the valence 
band offset is given approximately by 0.4Sx (in eV) although other measurements, 
some of which are noted in Ref. II, give values closer to O.S x. Most of the recent 
values (see Ref. 11 for a partial compilation) are considerably larger than the 
valence band offsets h 0.2 x, in eV) originally found by Dingle et a1. [33] from 
analysis of quantum well optical absorption spectra, which were generally accepted 
for many years. 

This abbreviated discussion does not cover the possible sources of error, both 
theoretical and experimental, that may affect this so-called charge transfer method 
of determining band offsets, nor does it describe the other methods that have been 
used. It shows, however, that very simple physics can sometimes lead to unexpected 
and useful results. 

3. Subband Structure 

The energy level structure of quasi-two-dimensional systems is easily calculated 
wi thin the framework of effective mass approximation, provided that the 
complications associated with valley degeneracy, effective mass anisotropy, and 
with the complex valence band structure of most III-V and group IV semiconductors 
are put aside. We assume that the electron states (the simple considerations that 
follow are generally not valid for holes) have effective mass m and are derived 
from a single conduction band minimum. Then the one-electron wave function can be 
written as a product 

~(x,y,z) = ~i(z) u(r) exp (iK.R), (7) 

where ~i(z) is the envelope wave function for the ith subband, u(r) is the periodic 
Bloch function associated with the bottom of the conduction band, and K and Rare 
vectors in two-dimensional wave-vector and configuration space, respectively. 

Within the spirit of effective mass approximation, the Schrodinger equation for 
the envelope function is 

(8) 

where m3 is the effective mass for motion normal to the interface and V(z) is the 
effective potential, which can contain both electrostatic contributions and 
contributions due to band structure variations. The energy levels measured from the 
bottom of the conduction band are 

(9) 
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where m is the effective mass, assumed isotropic, for motion paral l el to the 
interface. 

For silicon inversion layers, where V(z) is very large (=3eV) in the oxide, one 
can usually assume that only the semiconductor region, with z > 0, enters in the 
Schrodinger equation, and use the boundary condition ~i(O) = O. In heterojunctions 
and quantum wells, where the interface barrier height is smaller and wave functions 
can spread into regions with varying effective mass, a modified Schr~'dinger 

equation [34) 

(10) 

can be used provided there is no change in conduction band character across the 
interface. This form conserves probability current. 

It is clear that some kind of grading is present in an electronic sense even for 
crystallographically ideal surfaces, as indicated schematically in Fig. 2. There 
must be at least one layer of atoms with bonding - and therefore also other 
electronic properties such as energy levels and polarizability - different from 
that of either of the adjoining materials. Equation (10) is an approximate way of 
dealing with such a transition layer. Other methods have been discussed, for 
example, by Kroemer and Zhu [35) and by White et al [36) . Stern and Schulman [37) 
used both the effective mass approach of Eq. (10) and a tight-binding approach to 
study energy levels in quantum wells,and found that a modest amount of grad i ng has 
a relatively small effect on the energy levels. 
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Fig.2 Schematic illustration of a crystal­
lographically ideal interface. Atoms on the 
line b-b have bonding different from that 
of atoms on e i ther side of the interface. 

Some interesting formal consequences of a modified Schrodinger equation with a 
rapidly but continuously varying effective mass in a graded transition layer have 
been discussed by Price and Stern [38). Interface boundary conditions enter in a 
cruc i al way in the coupling of the two valleys for a (001) Si surface, as reviewed 
by Ando [39).Interface boundary conditions and general aspects of the effective 
mass approximation will be discussed in the lectures by Altarelli [4). 

Solutions of the Schrodinger equation within the simple effective mass 
approximation have been given by many authors. The potential energy V(z) includes a 
term which depends on the eigenfunctions ~i (z), and the Schrodinger equation and 
Poisson's equation must therefore be solved self-consistently. The Hartree 
approximation, in which many-body effects are ignored, has been used by Stern and 
Howard [40) for silicon inversion layers and similar systems, including the 
effects of effective mass anisotropy, and detailed results have been given by Stern 
[41). Many-body effects must, however, be included to give agreement with 
experiment. These effects have been treated by many authors, including Vinter [42), 
Jonson [43), and Ando [44). A discussion of many-body effects in relation to the 
temperature dependence of energy levels has been given by Kalia et al [45,46). 
Experimental test s of theory are provided by optical absorption measurements (see, 
for example , [3] , but the absorption peaks are not expected to coincide with 
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the calculated energy differences. The necessary corrections have been reviewed by 
Ando [47]. Results for (001) Si inversion layers show good agreement with the 
theory, but recent measurements [48] on other Si surfaces are in less satisfactory 
agreement with the theory [49]. Subband separations can also be found from Raman 
scattering measurements, a subject covered in the lectures by Abstreiter [50]. 

Self-consistent solutions of the Schrodinger equation and Poisson's equation are 
required unless there is negligible charge in the channel. The band bending and the 
envelope wave function for the lowest subband in an AlxGal_xAs/GaAs heterojunction 
are shown in Fig. 3, from a self-consistent calculation by Ando [9]. 
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Fig.3 Self-consistent results for 
an AlxGal_xAs/GaAs heterojunction 
calculated using both variational 
(full and dashed curves) and 
numerical (dotted curve) envelope 
functions (after Ando, Ref. 9) 

Self-consistency may also be important in a quantum well if carriers are 
introduced by adding impurities in the barrier. In relatively wide wells and for 
sufficiently high carrier densities, the quantum well then approaches the character 
of two isolated heterojunctions, and the lowest energies occur in pairs, with 
symmetric and antisymmetric envelope functions. The evolution of the eigenvalue 
spectrum for such a situation is shown in Fig. 4. 
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ELECTRON DENSITY I '0" em-') 
Fig.4 The four lowest calculated energy levels in an AlO.4GaO.6As-GaAs-AlO.4GaO.6As 
quantum well 40 nm wide versus the density of electrons in the well. Also shown are 
the Fermi energy EF and the maximum energy Em of the self-consistent potential in 
the well. All energies are measured from the bottom of the empty well. Many-body 
effects, which have been included via a local-density scheme as in Ref. 16, account 
for the dip at low electron densities (after Stern and Schulman, Ref. 37). 
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4. Static Screening 

A system with mobile charges will respond to changes in the energies of electronic 
states in such a way as to screen out fluctuations. The conventional treatment of 
such systems assumes that the fluctuations are sufficiently small that Poisson's 
equation can be linearized. Let us assume that we are dealing with an electron 
system that is two-dimensional in a quantum sense, so that at low enough 
temperatures only one subband is occupied, and that the charge distribution of 
electrons is given by 

(11) 

where CO(z) is the normalized envelope wave function for the lowest subband. 
Suppose that some perturbation, for example a charged impurity, induces a weak 
perturbing potential $(r). Then the physically relevant potential to be screened by 
the two-dimensional electron system is the average potential in the electron layer, 

~av(R) = J ~(r)g(z)dz, 
where R = (x,y). Poisson's equation for the perturbing potential is [40] 

where the screening parameter qs is 

me2 
qs = 2 

21Te:ft [1 + exp (-y)] 

(12) 

(13) 

and y" (Ep-EO)/kBT. (As before, we assume a valley degeneracy of 1 here). At low 
temperatures, the bracketed expression in Eq. (13) approaches unity. At high 
temperatures, Eq. (13) gives qs ,. Ns e 2 /2e:kBT, but this result and the simplified 
one-subband picture used here become invalid when carriers in higher subbands 
contribute to the screening. 

Equation (13) gives the two-dimensional screening effect for static potentials 
and long-wavelength perturbations. The linear response under more general 
conditions, the two-dimensional analog of the Lindhard [51] dielectric response of 
a free electron gas, has been derived by Stern [52]. In the limit of long 
wavelengths and zero frequency, his result is equivalent to the long-wavelength 
treatment given above, but for wave vectors greater than 2kp it leads to a rapid 
decrease in the screening parameter with increasing q [52]. Screening, like other 
aspects of two-dimensional physics, sometimes has a different character from that 
which might be expected from intuition based on physics in three dimensions. The 
wave-vector independence of screening for q < 2kp is one example. Another is the 
fact that the screening does not depend on electron density, at least for an ideal 
two-dimensional system at absolute zero. A treatment of the dielectric response of 
a two-dimensional electron system.,including its nonlocal character, was given by 
Dahl and Sham [53]. 

5. Scattering Mechanisms 

Although many of the aspects of transport in two-dimensional systems are worthy of 
detailed examination, the discussion here concentrates on the simplest case, the 
Coulomb scattering that limits the mobility in GaAs-based heterojunctions at low 
temperatures, and refers only briefly to other mechanisms. 

Scattering by a charge outside a sheet of electrons is most simply described in 
Born approximation, which gives the cross-section for scattering through an angle e 
as [40] 

(14) 
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where v is the carrier velocity. The perturbing potential - e~(r) reflects both the 
external charge and the screening effect of the carrier in the two-dimensional 
layer. If we simplify the problem further by assuming that the electrons lie in a 
sheet of zero thickness in the plane z = 0 and that the surrounding media have 
permittivity E, then the screened Coulomb potential in the electron plane 
associated with a charge Ze located a distance d away is 

(15) 

where JO is the Bessel function of order zero, R is the distance from the point in 
the layer closest to the charge, and qs is the screening parameter given in Eq. 
(13). A more complete expression that takes both the finite thickness of the 
electron layer and the dielectric discontinuity into account was first given by 
Stern and Howard [40] using the Fang-Howard [54] variational envelope function. 
They showed that, at least for silicon inversion layers, the Born approximation is 
not seriously in error. To the best of my knowledge, a similar analysis of the 
validity of the Born approximation has not been carried out for GaAs-based 
heterojunctions. The most detailed calculation of Coulomb scattering is that of 
Vinter [55], who went beyond the linear screening approximation and found somewhat 
smaller mobilities for silicon inversion layers than those deduced from the model 
indicated here, based on linear screening and the Born approximation. 

The dominant Coulomb scatterers in silicon inversion layers are thought to be 
residual charged impurities at the Si-Si02 interface, with impurities in the Si 
itself making a negligible contribution in the samples typically used. In GaAs 
heterojunctions, on the other hand, the Coulomb scatterers arise both from the 
impurities that donate electrons to the channel and from residual impurities in the 
GaAs itself. 

The effect of an interface on the conductance of a bulk semiconductor has long 
been discussed in terms of specular and diffuse scattering by the boundary. For a 
dynamically two-dimensional system, the notion of specularity has no meaning 
because the carriers have no component of velocity in the direction normal to the 
interface. Instead, the scattering must be treated microscopically. This subject 
has been discussed in some detail in Ref. 3, primarily with silicon inversion 
layers in mind. For GaAs-based heterojunctions and quantum wells, there are seve,ral 
experiments shoWing that the interface is quite smooth, with lateral correlation 
lengths greater than 10 nm and vertical steps of atomic dimensions. Because 
interface scattering increases strongly with electron density, and the densities in 
these structures are generally smaller than in silicon inversion layers, interface 
scattering is not believed to play an important role in limiting the mobility in 
heterojunction devices [9], as opposed to the strong role played by this mechanism 
in silicon inversion layers at high electron densities. Alloy scattering connected 
with penetration of the wave function into the AlxGa1_xAs is also weak [9], but may 
be important in other systems in which the material on the channel side of the 
heterojunction is an alloy, as discussed, for example, by Bastard [56]. 

In GaAs-based heterojunctions, where interface scattering is believed to be 
relatively unimportant in limiting the mobility, the principal low-temperature 
scattering mechanism in good samples arises from the ionized impurities in the 
barrier that contribute charges to the channel and from residual impurities in the 
GaAs itself. A calculation of the combined effect of these two contributions [57], 
shown in Fig. 5, gives a peak mobility of order 106 cm 2V- l s-1, close to the highest 
values that have been measured in AlxGa1_xAs/GaAs heterojunctions in the dark (see, 
for example, [ 58] ). The predicted peak mobility depends mainly on the residual 
ionized impurity concentration in the GaAs, and the measured values indicate that 
this is of order 1014 cm- 3 in the best samples. Further improvement in the mobility 
of ungated heterojunctions would appear to require even purer GaAs. 

When carriers occupy more than one subband, the factors that influence the 
mobility change in at least two ways. First, the screening is changed by the 
presence of carriers in the second subband. Here the wave vector dependence of 

44 



... 
E 
u ..... 
u ., 
'" > 

~ 

~ 

>-.... 
;;j 

~ 
..I « 
u 
0 
a:: 
Q. 

U 
w 
a:: 

10r-,--.-.,-r---------.-----,----r~ 

T=O K EOb=l00 meV 

N =N =1 0 .4 cm·3 
Ac ap 

NOb=7x 1017 cm-3 

TOTAL ,,-
~--------.///,-

. ........ /" 
~'"' 

,-//' 
,-

0. 1 

BARRIER ..... ------- ., .,., ....... , ., . CHANNEL 

.~~~~~~-~~----. '.'.'~.' ....... , ., ." ., 

........... , ............ . 

0.01 
0 .5 0.7 

' ....•. SPACER 
..... 

........... 
". 

2 3 4 
CHANNEL ELECTRON DENSITY (10" em· 2 ) 

5 

Fig.5 
Calculated low-temperature 
mobility of elecrons in Alx 
Gal_xAs/GaAs heterojunctions 
as limited by Coulomb scat­
tering (after Stern, [57]) 

screening [52], noted briefly above, becomes nontriv i al because the Fermi wave 
vectors in the two subbands are generally different. Second, the presence of the 
second subband may open a new scattering channel. The first of these effects 
appears to increase the mobil i ty [59] , while the second reduces it [60] . For GaAs­
based heterojunctions, mobility reduction is expected [9] and observed [61]. 

Although temperature dependence of mobility in semiconductors outside the range 
of strong or weak localization is usually attributed to phonon scattering, the 
temperature dependence of screening can lead to a decrease of mobility with 
increasing temperature. This effect was first pointed our for silicon inversion 
layers by Stern [62]. His calculation gave a linear dependence on temperature, 
cons i stent with experiments of Cham and Wheeler [63]. Kawaguchi et al. [64], 
however, found a more nearly quadratic dependence. Theoretical attempts to resolve 
this are still inconclusive [65]. 
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For electrons in GaAs-based heterojunctions the situation is quite different. 
The Coulomb scattering is primarily forward scattering because the screening is 
relatively weak (in part because of the small electron effective mass). Thus the 
mechanism described above is not effective. Instead, in very high mobility samples 
the mobility decreases with increasing temperature, [66-68] whereas in low mobility 
samples it first increases [67,68]. These effects are illustrated in Fig. 6, from 
the Ph.D. thesis of Lin [69]. The former effect is attributed to phonon scattering, 
including a piezoelectric contribution [66]. The mobility increase is thought to 
result from averaging of the relaxation time over the thermal distribution of 
carrier energies, [65,68,69]. At temperatures above '" 10 K the mobility in the best 
sample is dominated by phonon scattering, including polar optical phonons. The 
theory of phonon scattering has been discussed, for example, by Price [70], and 
will be covered in part in the lectures by Vinter [5]. 
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