APPENDIX ! THE DEHN-N{ELSEN THEOREM

JOHN STILLWELL

1, Introduction

One important theorem attributed to Dehn does not appear in his
published work, and his proof of it seems to be lost. This is the
theorem that every automorphism of the fundamental group ul(s) of a
closed orientable surface S can be induced by a homeomorphism of S.
The earliest known proof appears in Nielsen [1927], and consists of two
parts. The first, which is in §9 of Nielsen's paper and expounded
below as Theorem 5, is guite elegant and is attributed to Dehn. The
second, in §23, is agonisingly long and is apparently Nielsen's own,
though he still credited the theorem to Dehn. As was mentioned in the
introduction to Paper 7, Nielsen in 1931 found a replacement for §23
which was much simpler, but he did not publish it. We glve a similar

proof below as Theorem 6.

Tt 1s a pity that Nielsen did not publish hia 193t pracl, an his
{1927] proof was made obsolete by tne much shorter one of Seilert [1937],
with the result that Debn's contribution to the theorem was buried along
with Nielsen's. Moreover, since Seifert's proof was purely topological,
it became forgotten that the roots of the Dehn-Nielsen theorem were in

hyperbolic geometry.

With the recent revival of intereslL in hyperbolic geometry, it seems
timely to reconstruct the Dehn-Nielsen proof and its geometric background.
Thlis not only fills a gap in the record of Dehn's work, it alsc brings
to light some little known but influential work of Poincareé. Tt is
fairly well known that Poincaré discovered the connection between hyper-
bolic geometry and surface topology in his work on fuchsian groups in the
early 1880's (for an English translation of these papers, see Poincare

{1985)). In a less well known (though often cited) paper, Poincaré (190
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took up the idea again for purely topological motives. He obtained
results about simple curves on surfaces by a method which turned out to

be crucial to the Dehn-Nielsen proof - the use of geodesics as canonical
representatives for homotopy classes of curves. This method is explained

in sections 3 and 4 below,

It was Poincaré [1904] which inspired Dehn to use hyperbolic geometry
in his solution of the word and conjugacy problems for surface groups,
Dehn [1912a] (Paper 4 in this volume), In the 1920's, Dehn was still a
little under the influence of Poincaré, judging by the remarks at the
beginning of Dehn [1921], but he was gravitating towards purely topological
methods . The torch of hyperbolic geometry in topology was picked up by
Nielsen in his [1927], [1929], [1932], a monumental series of works which
have only recently been assimilated, in the reworking and extension of
Nielsen's theory by Thurston. In surveying the development of geometric
methods in topology, the Dehn-Nielsen proof seems an excellent vantage

point from which to look back to Poincaré and forward to Thurston.

It should be mentioned that the hyperbolic metric used in the Dehn-
Nielsen proof can be replaced by a metric on elements of the fundamental
group, the purely combinatorial "word metric" introduced by Dehn [1912a]
(see the Introduction to Paper 4). A generalisation of Dehn's Theorem 5
is proved using the word metric by Floyd [1980], and it seems clear that
the concepts in the second part of the Dehn-Nielsen proof (Theorem 6)
could similarly be replaced by combinatorial ones. What this probably
means, however, is not that hyperbolic geometry is irrelevant, but that
the most relevant features of hyperbolic geometry are the combinatorial

properties of its regular tesselations.



2. The specisl csse of the torus

Among the closed orientable surfaces of genus & 1, the torus
T (genus 1) is distinguished by having a natural euclidean structure.
This is one reason for a separate discussion of T. The other is that
T enables us to review standard facts about canonical curves, univer-
sal covering and Cayley diagram in a context which is free of geometric
difficulties. When we move on, to a surface S of genus > 1, it will
then be possible to concentrate on the geometric difficulties which

arise from the hyperbolic structure on S.

The torus T contains a pair of canonical curves a,b with a
characteristic property: they are simple curves which meet at exactly
one point, 0, where they cross. Cutting T along a,b yields the
canonical polygon TO for T, which is topologically a square whose

edges originate from a and b as indicated in Fig. 1.

\

oY

Fig.1l

This follows from the classification theorem for surfaces (Dehn and
Heegaard [1907]), and does not depend on the special position of

a,b, as Fig.l might suggest. Namely, the cut along b leaves a
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connected orientable surface with two boundary curves (the two
“"sides'" of the cut, which are connected by the curve a). The
claesification theorem saye that any such surface is topologically a
cylinder, and cutting a cylinder along a simple arc a joining its

boundaries yields the square shown.

Thus if a', b' are any other curves with the characteristic
property of canonical curves, then cutting T along a', b' yields a
1
polygon T° homeomorphic to To, and with correspondingly labelled

sides. Yor example, Fig. 2.

Fig. 2

It follows that there is a homeomorphism T: T+ T which maps a onto

d' and b onto b'. One only needs to construct a homeomorphism

of To onto Té which maps equivalent points in the boundary of To
to equivalent points in the boundary of Té. A more intuitive way
to construct T is to paste the equivalent sides of P' together

again to form a torus on which a', b' "look like" a, b (Fig. 3).
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Fig 3.

Then the map T: T + T which sends a, b onto a', b' respectively

is defined by sending each point =z to the similarly positioned z'.

To summarise, we have

Theorem 1: If a, b are simple curves on T which meet at a single
point, where they cross, and if a', b' is another pair with the same

property, then there is a homeomorphism <t: T » T which maps a- onto

a' and b onto b'. 0

It follows that if Tg: nl(T) +—n1(T) is the automorphism of the
fundamental group induced by T, them T, sends the homotopy class
[a]l] of a to the homotopy class [a']l of a', and the homotopy class

[b] of b to the homotopy class [b'] of b'. We are therefore
able to induce any automorphism I: [a] » [a'l, [bl & [b'] of nl(T)

for which [a'], [b'] are representable by a pair of canonical curves.
To prove the Dehn -Nielsen theorem for the torus, then, it suffices

that any automorphism preserves the characteristic property of canonical

curves.

Theorem 2. Any automorphism I: nl(T) > nl(T) can be induced by a

homeomorphism T: T »+ T.

Proof: The fundamental group nl(T) is the free abelian group on two

generators (corresponding to a fixed pair of canonical curves a,b), so

we can identify it with the lattice of integer points (m,n) in the plane
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under vector addition. An automorphism 1I: ﬂl(T) > nl(T) is then a one-
to-one linear map of the lattice onto itself, hence given by an integer

matrix
P1 Py
9 99
with determinant + 1. I sends the generators (1,0) to (pl,pz) and
(0,1) to (ql,qz), where py» P, are coprime, and so are 917995 since
det I = + 1. It can then be checked by brute force that the corresponding
P Py 4 9
homotopy classes [a 1b ] and [a b "] can be represented by simple

curves which meet, and cross, at a single point, whence the theorem follows

from Theorem 1. O

A much clearer view of the above proof can be obtained by looking
at the universal cover of T. I shall now sketch this approach, since
it points the way to go in the case of higher genus, where the auto-

morphisms of the fundamental group are no longer so accessible.

The universal cover T of T is a plane obtained by pasting
together copies of the canonical polygon T0 for T so that the
neighbourhood of each vertex looks like the neighbourhood of the single

vertex 0 on T (Fig. 4).
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A point T on T, relative to 3, represents the homotopy class

[c] of an arc ¢ on T with fixed endpoints O and P. ¥ is

found by lifting ¢ to an arc € on T with initial point ¥, and

its association with the homotopy of class is due to the fact that a homotopy of
¢ with endpoints fixed lifts to a homotopy of T with endpoints fixed.

Fig. 5 shows an example in which ¢ 1is deformed into the straight line

segment between 0 ana P.

14

Fig.5
If we pull back the euclidean metric from the plane T to the torus T,
then line segments on T cover geodesics on T, and we can represent
each non-trivial homotopy class by a unique geodesic. If we imagine
that T is a self-contained world in which light rays travel along

geodesics, then T 1is the actual view of T seen by its inhabitants,

In particular, the vertices, which we take to be situated at the
integer lattice points, are the different images of the origin eeen
along closed geodesics. Thus the lattice points represent the homo-
topy classes of closed curves based at 0, the elements of ﬂl(T),
with (m,n) corresponding to the element [ambn]. This recovers the
?epresentation of nl(T) as the integer lattice under vector
addition, and shows that the net of labelled edges on T is the

Cayley diagram of ﬂl(T).

An automorphism 1: nl(T) > nl(T) can then bc viewed as a one-to-
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one linear map f of the lattice onto itwelf, and we can extend f to
a one-to-one linear map of the whole plane T. This extended map
sends points (x,y) and (x,y)+( m,n) over the same point P of T to
points ?(x,y) and ?(x,y) + ?(m,n) (by linearity of %) which again
lie over the ecame point, f(P) say, since z(m,n) is a lattice point by

hypothesis. Thus £ covers a homeomorphism f: T + T, and f induces

I because
[£(a"™)] = F(m,n) = I[a"p"]
by definition of f.

Fig. 6 shows the f and f associated with the automorphism

I: [a] » [abl, [b] ~ [ab2].
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Although the above proof does not require an explicit
determination of automorphisms of ﬂl(T), it depends heavily on the
ability of the euclidean plane to admit linear maps which are not rigid

motions. This ability can be expressed algebraically by saying that
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any automorphlmm of the group of lattice translations extends to an
automorphism of the group of all translations. In the hyperbolic plane
there are no linear maps except rigid motions: and hence there is no
obvious way to extend the automorphism of the "lattice" which represents
the fundamental group of a surface of genus > 1 to a map ? of the whole
plane. In the absence of a map ? we have to make a rather exacting
analysis of simple curves and intersections to show that an automorphism

sends one canonical geodesic curve system to another.

*This can be seen from the projective model. In this model, the
hyperbolic plane is the interior of the unit disc, "lines" are portions
of ordinary straight lines within the unit disc, and rigid motions are
all collineations of the ordinary plane which map the unit disc onto
itself, Hence there are no non-rigid maps of the hyperbolic plane

which map "lines" to "lines".
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3. Facts from group theory and hyperbolic geometry

Hyperbolic geometry enters the theory of surfaces when one attempts
to construct the universal cover S of a closed surface S of genus > 2
in a metrically regular way. For example, cutting the surfaoe of genus 2

along its canonical curves yields an octagon S, as canonical polygon

0

(Fig. 7).

Fig.7

and S 1is constructed by pasting copies of S together so that each

0
vertex has a neighbourhood like the neighbourhood of 0 on S,

namely, Fig. 8

Fig. 8

Thus eight octagons meet at each vertex on g. This is not possible for
regular euclidean octagons, but it is possible for regular octagons

in the hyperbolic plane, where the angle sum of a polygon can take

any value between 0 and the euclidean value. Thus one has

regular octagons with corner angle % , and one can fit them together

to form g as a tessellation of the hyperbolic plane, the labelled
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edges of which form the Cayley diagram of wl(S). The construction is
similar for any genus p # 2 - one has 4p 4p-gons meeting at each vertex.
Since wl(S) is the automorphism group of its own Cayley diagram, this
gives a faithful representation of wl(S) as a group of hyperbolic motions.
The motion associated with the element g € wl(S) shifts the vertex 1
representing the identity of wl(S) to the vertex representing g, and

hence the vertex representing h, for any h € wl(S), to the vertex

representing gh.

The topological properties of Cayley diagrams are said by Dehn 1922
to underly the proof of Dehn's theorem. To reconstruct such a proof
I generalise the Cayley diagram construction to any curve system {ai}
which cuts 8 down to a simply connected piece. The curves o then
lift to a net which partitions S into cells congruent to P. Since
P ie simply connected, each element of wl(S) is represented by a
closed path through the union of the a; on S, hence by a vertex of
the net on s and by the corresponding motion of the net onto itself.
To avoid making continual pedantic distinctions between elements
g € wl(S) and the vertices or motions which represent them, I shall

speak of 'the element g", "the vertex g" or "the motion g" as the

occasion requires.

0f course, one can define § and ite motions purely combinatorially,
but the lesson to be learned from Poincare, Dehn and Nielsen is that
hyperbolic metric concepts have great heuristic value, even if they can
theoretically be eliminated. We shall therefore assume the basic facts
of hyperbolic geometry, including the Poincare disc model, and develop only
the less familiar facts which are pertinent to surface theory. The best
sources for the facts we assume seem to be works on complex analysis, such

as Siegel [1971]1, and Zieschang [1981].
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Fact 1 (see Siegel [1971]). The hyperbolic plane can be modelled by

"motions" are interpreted as conformal

the open unit disc D E]Rz when
(equivalently, circle~preserving) maps of m? which map the unit circle,
9D, onto itself. Hyperbolic straight lines are then circular arcs

in D orthogonal to 9D, hyperbolic angle equals euclidean angle,

and the motions are of three types corresponding to the following

families of euclidean circles in D (Fig. 9. (i), (ii), (dii))

(1) (i) (iii)

Fig.9

(i) Circles orthogonal to the pencil of hyperbolic lines through a

point P € D are the hyperbolic circles with Dypé;bolic centre P,

A motion which leaves P fixed maps each circle with hyperbolic centre
P onto itself, permutes the hyperbolic lines through P, and is called

a rotation about P,

(ii) Circles orthogonal to the pencil of hyperbolic parallels

with limit point P €03D are called hyperbolic limit circles with
centre P, A motion which leaves P fixed maps each limit circle onto
itself, permutes the parallels with limit P, and is called a limit
rotation about P. Any two hyperbolic parallels approach each other
arbitrarily closely in the hyperbolic metric, and under a limit

rotation there are points which are moved through arbitrarily small



hyperbolic distancas.

(iii) Circles orthogonal to the hyperbolic perpendiculars to a

given line L C D are the curves at constant hyperbolic distance from L

(distance curves of L). A motion which fixes the end points of L
on 9D maps each distance curve of L onto itself, permutes the

perpendiculars to L, and is called a translation, or displacement,

with axis L. Each point of L 1is sent a constant hyperbolic

distance, A, called the displacement length of the motion, and the

segment between any point of L and ita image im called a displacement
segment. FEach point on a distance curve C of L is also sent a
constant hyperbolic distance, but the constant -is > A and increases

with the distance of C from L. O

Fact 2. Each non-identity motion g € nl(s) is a translation.

Proof. Since the motion g maps the Cayley diagram of nl(S) onto
iteself non-trivially, it must move every point through at least the
diameter of a cell in the tessellation. Thus there is a non-zero
lower bound to the distance moved by each point under the motion g,

whence g is a translation by Fact 1. (=

As Dehn [1910] remarks,  the non-existence of points on S which
move through arbitrarily small distances reflects the non-existence of
small curves on S which do not contract to a point. This is why
translations are important for topology, and we shall analyse them
in detail. Following Nielsen [1944], we call the fixed points of a

translation g ite fundamental points; g moves points of D away
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from the negative fundamental point, called U(g), towards the positive
fundamental point, called V(g), along the "streamlines" which are the

axis of g, called A(g), and ite distance curves.

The next fact, also cbserved by Dehn [1910], gives ® way to

find U(g), V(g), and hence A(g), from the Cayley diagram.

Fact 3. The vertices ..., g_l, 1, & gz,... of the Cayley diagram
lie on a distance curve through U(g), V(g). Moreover gn + V(g) and

g—n -+ U(g) (in the euclidean metric), as n - .

Proof. The motion g, by definition, maps each member of the

.lequence of vertices ..., g-l, 1, g, gz,... onto its successor. Hence
the vertices must lie along a streamline of the motion, i.e. along a
distance curve of A(g), by Fact 1. Since they are equally spaced

along the distance curve, by Fact 1, the hyperbolic distances of gn and
g-n from 1 tend to © as n -+ ® , hence g_n + U(g) and gn + V(g) 1in

the euclidean metric. D
Fact 4. If f, g are any two translatioms, then fgf_1 is a
translation of the same length as g, and
-1 -1 -1 _
A(fgf ) = A(g)-f (the f "-image of A(g))
-1 -1 -1
Proof. Consider the f “-images, U(g)-f = and v(g)-f =, of U(g)
and V(g), and their images in turn under fgf-l.
- -1 -1 -1
U(g)-£ L fgft = UGg)-gf T = Ug)f

wince U(g) 1is fixed by g. Thus U(g)'f_l is a fixed point of

fgf =, and similarly so is V(g)'f_l. Hence these are the fundamental



points of fgf-l und A(g)-f-1 = A(fgf_l). Moreover, a point
P € A(g) and ite g-image P.g € A(g) are sent by L to

-1

P-fle acfgfl) and P-gf_1 = image of P£™) under fgf_l, hence

the transletions on the two axes are of equal length. (=

The remaining facts are proved following Nielsen [1927].

Fact 5. In a group of translations, two non-commuting elements have

no common fundamental point.

Proof. Suppose on the contrary that f, g are non-commting
elements with a common fundamental point. By replacing one of f, g
by ite inverse, if neceisary, we can assume that V(f) = V(g). Now
V(fgf-l) = V(g) by Fact 4, thus fgf-1 and g-l have parallel axes
(with 1limit V(fgf-l) = V(g) = U(g-l)) and displacement lengths which
are equal (by Fact 4) but opposite in directiom. It then follows
from the continuity of motions that by choceing a point P on
A(fgf-l) sufficiently close to A(grl), the point P-fgf-l-g;_1 can
be made arbitrarily close to P, Thus the non-identity group

element fgf-.lf"1 moves points through arbitrarily small distances,

contrary to the properties of translations (Fact 1), [m]

Fact 6. In a group of translations, two elements commute if and only

if they have the same axis.

Proof. If f, g have the same axis then
fg = [translation of lengtk Ag + Ag with axie A(f)] = gf.
Conversely, if fg = gf then fgf_1 = g, hence A(fgf_l) = A(g)-

But A(fgf_l) = A(g).f-1 by Fact 4, hence f_1 must map the
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hyperbolic line A(g) onto itself. This line is therefore the

axia of f-l, and hence of f, by Fact 1. [m

For the last fact we use Nielaen's notation I for an

automorphism and 8 for the I-image of g.

Fact 7. An automorphism of a group G of translations induces

a permutation of the fundamental points of G.

Proof. An automorphism sends ghg"lh_1 to 1 if and only if

ghg_lh-l =1, hence fIgI = ng if and only if fg = gf. Since

I
I permutes the elements of G, it then follows from Fact 6 that I
induces a permutation of the axes of G. But no two distinct

axes have a common endpoint by Fact 5, hence the permutation of

axes is in fact a permutation of fundamental points. O



4. Axem, simple curves and intersections

If we attempt to generalise the analywis of the torus given in
section 2 to a surface S of higher genus, then several generalisations
of the canonical geodesic curve system suggest themselves. For reasons
which will appear later, it is good to take a system conaisting of simple
closed geodesice with no multiple intersections, and such that cute along
these geodesics render S wimply connected. In fact, on the surface §
of genus p there are geodesice Gy @gaseny azp with the following

properties

(i) Each o, meets o at exactly one point, where they cross.

i+l
(ii) There are no other multiple points; in particular, each o
is simple.
We shall see in Theorem 3 below that cutting along such curves oy renders

S eimply connected, so this sy®stem of curves meets all ocur requiramonts.

Such a system was used by Dehn's student Baer, [1927], and a similar

one appears in Nlelsen [1929, §4], though neither notes that the o; can be

realised by geodesice. Certainly it is clear that there are simple curves

oy with properties (i), (ii), e.g. as in Fig. 10, but to show that

Fig. 10

2p

topologically realisable incidences of curves are alsc realised by

gecdesice one needs the following ideas of Poincare [19041].
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The metric on S is inherited from the hyperbolic metric on
g, hence the geodesices on S are the curves covered by hyperbolic
straight lines on E, and intersections of geodesice lift to inter-
sections of hyperbolic linea. 1In turn, hyperbolic lines -Ll, L2
intersect if and only if the end points of L1 on a§ separate

the endpoints of L Poincaré makes thie trite remark topologically

¢
potent by combining it with the observation that a deformation of S

1ifts to a deformation of S through a bounded hyperbolic 'distance,

which therefore, déforms any line into a curve with the same endpoints

on 3S.

Lemmas 1-5 below ayatematise Poincaré's rather fragmentary appli-
cations of these remarks, and they suffice in particular to show the
existence of geodesics ai with propertiea (i), (ii). In stating
the proofs it is convenient to extend the notation of section 3 to allow
closed curves on S in place of their homotopy classes, the elements of
nl(s). Thus when a closed curve ¢ on S ims lifted to ¢ on S
with initial point 1 we shall call the final point c. It is a
vertex of the Cayley diagram, and the tranelation which carries 1 to c
will be called the motion ¢, ite axis A(c), and the closed curve on S
covered by a displacement segment &(c) of A(c) will be called af(c).
(Of course, when we are discussing elementa g € wl(S) directly, the

old notation will still be used, and o(g) will denote the curve on

S covered by a displacement segment of A(g).)

In what follows, "equivalent" sets on S are sets with the same

projection on S, i.e. translates of each other by motions in m,(S).
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lLemma 1. The clused geodesice on S are precisely the curves a(g),

g€ 1r1(S) .

Proof. A clomsed curve ¢ on S 1lifts to an arc ¢ on S with
endpoints equivalent under the motion c¢. If the curve ¢ 1is a
geodesic then c isa hyperbolic line segment which is collinear with
ite own translate under the motion c. That iwm, c is a dimsplacement

segment of A(c).

Conversely, a displacement aegment &(g) of A(g), g € m (S), has
a closed projection a(g) on S, since the endpoints of &6{g) are
equivalent (under g). And every segment of a(g) is geodesic because
successive tranelates of &§(g) by g are collinear and equivalent
(It follows that any displacement segment of A(g) has the same projection

a(g), if we do not distinguish an initial point.) O

In general, the curve on S covered by a hyperbolic line segment
with equivalent endpoints is a geodesic monogon with a corner where the
two endpoints project, rather than a closed geodesic. For example, the
curve covered by an edge labelled a; in the Cayley diagram of 1r1(S)
has a right angled corner at the basepoint 0 on S, since adjacent
edgea labelled ay meet at right angles; thus segments of the curve which
contain 0 are not geodesic. This monogon does however extend to a

closed "figure eight" geodesic covered by adjacent edges a;, a, , since

such edges are collinear. In particular, the segment labelled alaz-l

~

issuing from ! on S is a displacement segment of A(alaz—l).

(Cf. Figm. 7 and 8).
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Since successive 2 edges in the Cayley diagram are not
collinear, the distance curve of A(al) through the vertices 1, al,alz,..
is not a hyperbolic line, and hence the curve a; on S cannot be
deformed into a geodemic with 0 fixed. This leads us to consider
free homotopies on S, i.e. deformations without fixed basepoint, and
their lifts to S which are not fixed at the vertices of the Cayley

diagram.

Lemma 2 Any closed, non~contractible curve ¢ on S 1is freely homotopic

to a unique closed geodesic, namely a(c).

Proof. Consider the lift € of ¢ which iunl betwen the vertices 1 and
¢ in the Cayley diagram. Since the curve ¢ ia non-contractibleon S,
these vertices are distinct and, eince they lie on a distance curve of
A(c), we can drop perpendiculars from them to the endpoints of a dis-
placement segment &(c) of A(c). If we deform : into the distance
curve segment between 1l and ¢, and then descend through the intervening
distance curve segments onto &(c) (Fig.1l), then the endpoints

~

c

P Lag

Fig. 11

- Ale)
§(c)

remain equivalent throughout, and hence the whole deformation projects

to a free homotopy on S which converts ¢ to a(c).
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The uniqueness of a(c) can be sean as follows. By Lemma 1,
any deformation of ¢ to a closed geodesic liftes to a deformation

gt’ 0<t<1l, from EO = ¢ to :1 = some §(g), in which the endpoints of

~ ~

¢, are equivalent for each t. Initially, when gt: = ¢, the endpoints
are equivalent under the motion ¢, hence they must remain so (®ince 1r1(S)
ia a discontinuous group, e.g. by Fact 2). But the only axie which con-
taina points equivalent under the motion c¢ is A(c), hence El = 8(c),

which projects to a(c) as required. 0O

The next three lemma® exploit the separation properties of points

on a§ and the fixture of these points under deformations on S.

Lemma 3. A curve ¢ on S is freely homotopic to a simple curve

«=» a(c) is simple.

Proof. (+) is immediate from Lemma 2. To prove (=), suppose that a(c)
is not simple. A self-intersection of a(c) im covered by an inter-

section of A(c) with one of its translates A(c):g, g€ 1r1(S).

Case 1 : A(c) crosses A(c).g. Then the endpoints

of A(c) separate those of A(c)*g on 8'5. We know from Lemma 2 that t:here
is a deformation on S of a(c) to ¢, and this deformation lifte to a
deformation on S of A(c) to a curve gw with the game endpoints on

a;. The deformation similarly lifte to a deformation of A(c)+g to

gm-g, with fixed endpoints. The endpoints therefore continue tc separate
each other on 8§, and hence gm crosses gm-g (e.g+, by the Jordamn

curve theorem). This crossing covers a self intersection of ¢ on S.

Case 2. A(c) = A(c)+g, where g necessarily hae axis A(e)
although it is not a power of ¢, eince a double point on ¢ 1lifts to

points on E which are inequivalent under the motion c. The corresponding
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deformations then yield gm and Em-g with the same endpoints as
A(c). Since E; is periodic under the tramnslation c¢ along A(c),
it has points at maximum distance to left and right of A(c), and
since gm.g is congruent to E; by the translation g along A(c),
Em .g attains the same maximum distances to left and right of A(c).
It follows that gm .g cannot lie entirely to one side of Em , and
hence they meet. Since g im not a power of ¢, an intersection of

~

c_ and gm .g covers a double point of c¢. O

Lemma 4. If c¢,d are disjoint eimple curves on S, then a(c), a(d)

are either disjoint or identical.

Proof. Axes, and hence geodewsice, cannot be tangential unlees they
coincide, s0 if a(c), @(d) are neither disjoint nor identical they
muet croes, and hence A(c) crosses A(d) on E, Thus the endpoints
of A(c) on 8§ separate those of A(d). Deformations of a(c),
a(d) to c,d respectively lift to deformations of A(c), A(d) to

~ ~

¢, d_ , where Em has the same endpoints as A(c) and E has the

same endpoints as A(d). Then Em crosses E; , and this crossing covers

a point on S where ¢ meets 4, which is a contradiction. [m

The reader may eawily guees that a(c) = o(d) e+ c, d are freely
homotopic, though we ®hall not need this result. It is worth pointing
out, however, that the criterion a(c) = a(d) then leads to an
algorithm for deciding when two given curves are freely homotopic
(Dehn [19101), just as Lemma 3 leads to an algorithm for deciding

whether ¢ 1s homotopic to a simple curve (Poincaré [1904]).
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Lemma 5. If c,d are simple curves which meet at a wsingle polnt, whera

they cross, than a(c), a(d) have the same property.
Proof. We know from Lemma 3 that a(c), a(d) are simple.

To establish the crossing property, let Em, Em denote the curves
on S wwhich cover c¢,d and have the same endpoints es A(c), A(d).

The single crossing X of ¢ by d Llifte to a single croseing

~ ~

X of c_ by d_, together with a single crossing X" of c_ by

~

eech translate 4 - " of a by a power of the motion c¢. The latter

correspond to the encounters with X which result from successive tre-
versels of ¢, and since c¢,d do not meet in any other way, :m does
not meet any other trenelate E;'g, where genl(s). We want to show
that A(c) is similarly crossed - by A(d) and its translates A(d)»cn,
and no other translatee A(d).g - as thie will imply a single crossing

of a(ec) by a(d).

Since d im simple, all the translates E- c” are disjoint, hence

0

~

d  cennot lie elong A(c) by the argument of Lemma 3, case 2. Thus
A(d) # A(c) and the two axes must cross, otherwise there could not be
a single croseing of Em by Ew. We therefore have a situation like

that shown in Fig. 12.
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Trenslates of A(d) by the motion ¢ then also croes A(d), but
translates by any other g € nl(S) do not, since thie would imply a

crossing of c by E; .g- O

o0

It follows easily from Lemmae 3-5 that the curves al,...,azp

on S with the properties (i), (ii) stated at the beginning of
this section can be taken as geodesics. (The only worry is that
disjoint curves might have coincident geodeaic representatives, e.g.

o, and o . But this is ruled out beceuse one of asp @ crosses

i i+2 i+2

a curve which the other doea not croee.) Any geodesics Aysenes azp

with properties (i), (ii) will be eaid to conetitute a canonical geodesic

system. The proofs of Lemmas 1-5 show that LSTRRAILS cen be represen-
ted am a(gl)...., a(gzp) for some gl,...,gzp € wl(s) whose axes have

intersections which reflect the intersections of Qyseeesa We combine

2p°
these results into the following.

Theorem 3. For the surface S of genus p there are elements gl""’SZp
€ nl(s) euch that a(gl),...,a(gzp) i® a canonicel geodesic system on S.

This meane
. n
(i) For each 1,A(gi) crossee all translates A(gi+1).gi of
A(gi+1) by the motion g;, but no other translates A(gi+1).g where

g€ vrl(S)

(ii) Except for the trivial coincidence of A(gi) with its own
translates under the motions gi&’ the different translates A(gi).g.

1<1i<2p, g €m(s), have no other intersections. ]
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The above theorem does not appear explicitly in the literature, to
my knowledge, but it would surely have been clear to Poincaré. Since
Poincaré [1904] also proves the existence of homeomorphisms mapping curve
systems with given intersections onto other systems with the same inter-
sections, it also seems reasonable to attribute the following theorem to

him.

1) 1
Theorem 4. If Gyoeee ,azp and Ugheees 2p are canonicel geodesic

systems on S, then there is a homeomorphism T : S -+ S such that

i for each 1i.

T(ai) = Q

Proof. It is easily seen by induction on 1 thet cutting S along
al""’GZi—l gives a connected surface, with two boundaries that are

joined by @,., and that cutting along « gives a connected surface

2i 21

with one boundary. An Euler characterstic calculation then shows that

when 1 = p the cut surface becomes simply connected, i.e. a polygon P.

The boundary 3P of P is divided into 8p-4 wegments identified in

pairs : one pair for each of al,azp and two for each a_., 2K i< 2p -1

i’

since each of the latter oy is subdivided at two points, by PR and

®i+1. We label and orient these segments by the names of the curves from

which they originate, calling the pieces of ays 2€i<2p -1, a4y and

The latter pieces are determined by the orientation of « if we

aiZ' i

let %5 run from ai—l to % and o 9 from ai+1 to o

(See Fig. 14 below for the case p = 2.)

It can then also be checked by induction that the cyclic sequence of

labels on 3P is unique, hence the polygon P can be mapped onto the

polygon P' which results from cutting S along the o

in such a way
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that each segment in 3P is mapped onto the corresponding primed
segment in 3P’ , Adjusting the map by a deformation if necessary,
we can arrange that equivalent point pairs on 3P are sent to
equivalent point pairs on 3P', so that we have a homeomorphiam

T :8~>8 with 'r(ai)=a (m]

1
i

Informally speaking, both P and P' can be pasted together to
"look like" the s#tandard picture of Fig. 10, This shows that there
are homeomorphisms of S which send both the o, and ai' systems

to standard position, and hence there is a homeomorphiam of one system

onto the other.

Let us now compare our situation to where we were with the torus
efter Theorem l. Then it was cleer, because the basepoint for my (1)
could be taken at the intersection of the two canonical curves a,b,
that an automorphiam I of =,(T) was "given" by the images a',b!'
of e,b, and it only remained to ehow that the I-images of a,b were

canonical curves for any 1.

Now, in avoiding multiple intermectione, we seem to have lost a
basepoint for ‘nl(S), since there is no point common to all of
al,...,azp. However, ®ince the a; cut S down to a simply connected
plece, it turns out that an automorphiam I of nl(s) " 'is in fact
"given" by its effect on the a;+ The main problem is showing that I
sends one canonical geodesic system to another, when we know nothing

about the automorphisms 1.

This is where the avoidence of multiple intersections becomes

important. We only have to show that I preserves the single intersection
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of ay with ai+1. for each i, and the non-intersection of “i with
aj’ j#1i-1, i+ 1, which in turn reduces to showing that I preserves
intersections and non-intersections of axes. Dehn proved this result

very elegantly by looking at the behaviour of 1r1(S) at infinity. His

idea is developed in the next section.
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5. Mappings of 39S induced by automorphiame of "1( ) .

As just mentioned above, the key step towards the Dehn-Nielsen thecrem is
to prove that an automorphism I of wl(S) preserves intersections and
non-intersections of axes. We let I ect on the set of axes by sending
A(g) to A(gI) for each g € wl(S). Since A(g) 1is determined by
U(g) and V(g), it is equivalent to let I act on the set of fundamental
points by sending U(g) to U(gI) and V(g) to V(gI). We know that this
map is well-defined (in fact a bijection) by Fact 7, and it is
appropriate to view the action of I on axes as really taking place on
35, In S itself, I naturally acts on the vertices of the Cayley
diagram by sending vertex h to vertex hI' and this can only be inter-
preted as an action on axes by going to infinity (letting hj:n + U(h),v(h))

in

as inp Fact 3, we get hI - U(hI), V(hI)).

It was Dehn’s idea to investigate the action of I on axes by
approximating axes by edge paths in the Cayley diagram. One then needs
nothing but obvious properties of automorphiams in order to conclude
that the map vertex h# vertex h; is a "quasi-isometry" of the
Cayley diagram, and hence that nothing drastic can happen at 85, where

the axes and their intersections are determined.

The approximation of axes by edge paths is implicit in Dehn's
[1912a,b] solution of the conjugacy problem (see Nielsen [1927, §7(g)1),
but Dehn's analysis of automorphisms seems to be lost, and the proof
which follows is extracted from Nielsen [1927, 59}, where credit is given

to Dehn for the essential ideas.
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Theorem 5 (Dehn). U(g), V(g) weparate U(h), V(h) on 3%

- U(gI), V(gI) separate U(hI). V(hI).

Proof. The first step of the proof is to approach U(h), V(h)

by a doubly infinite edge path p(h) through the vertices

h", n=0,+1, +%2,,.. . We know from Fact 1 that these vertices

lie on e distence cuxrve of A(h). The segments of p(h) between
them can be chosen with identical sequences of edge labels (spelling

out a word for h), and then p(h) 1lies within a bounded hyper-

bolic distance of A(h). We cen similerly approach U(g), V(g)
by polygonal paths through the vertex sequences {g ~|n > N} and

{g"|n > N}, for eny positive integer N. Assuming U(g), V(g),
U(h), V(h) are distinct, Fact 3 says we can choose N 8o that the

latter paths are arbitrarily far away from p(g), and then if

U(g), V(g) eeparate U(h), V(h) we can also join their ends

g-N, gN by a path through successive vertices g-N = gyiBpresesBy = gN

which are all at least as far from p(h) asm g-N, gN themselves.

The resulting path p(g) 1is then far from p(h).

We cen also interpret "far" in terms of the word metric on the Cayley
diagram, which is the minimum number of edges conmecting given vertices.
Vertices "far apart" in the hyperbolic metric are also "far apart" in the
word metric, eince their hyperbolic distance is < (number of edges X maximum
length of an edge), end conversely, since only finitely many vertices lie

within a given hyperbolic redius,
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To simplify notation we denote the successive vertices of
p(g) by ..., E_1s 8y 8y gz,... and the successive vertices

of p(h) by ..., h_]dho, hl' h2,... . Fig. 13 shows how these

paths might look.

Fig.13

We now show that there ere similar disjoint edge paths, p(hI)
between U(hI) and V(hI), and p(gI) between U(gI) and V(gI), by
showing that 1 cennot send vertices which are far apart to vertices
which are close together. (This will show that U(gI), V(gI)
separate U(hI), V(hI) if U(g), V(g) separate U(h), V(h), and

the converse follows by considering I—l.)

In fact, letting d(u,v) = length (u—lv) denote the minimum number
of edges in a path between the vertices u, v 1in the Cayley diagram
(the word metric) we shall show that there ere constants k, K >0

such that



d(uI,vI) < Kd(u,v) ... 1)

d(uI,vI) 2 kd(u,v) ... (2)

This says that 1 1is a "quasi-isometry", while (2) in perticular says
that for any distance d > 0 in the word metric there is a D >0

such that vertices > D apart are sent to vertices > d apart,

To prove (1), let w be a word of minimal length for u_lv. Then

d(u,v) = length (w)
-1
while d(uI,vI) = length (uI vI)

= length ((u lv)))
= length (wI)
€ K length (w) = Kd(u,v)

where K = max length {(al) .,(bp)I}, since a word for w, is

I
obtained by replacing each generator a; by (ai)I and b, by (bi)I'

120"

The inequality (2) now follows from
d(u,v) < K'd(uI,vI) ee (YT,

which is proved by applying the same argument to I_l, and teking

k = 1/k',

Now to obtain a path p(gI) through the vertices (gi)I, and e
disjoint path through the vertices (hi)I’ we first notice, from (1),

that each vertex (gi)I can be comnected to by a path of

(85411

length < K, since is one edge awey from 8 by definition.

Bin1
We construct p(gI), and similarly p(hI), as the union of such subpaths
Then to ensure that p(gI) does not meet p(hI) it is enough to

ensure that each (gi)I is distance # 2K + 1 from each (hj)I' By (2),
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this can be achieved if each g; is distance 2D from each hy, for
a suitable D, and D in turn can be achieved by chooming a sufficiently

large N in the construction of p(g). o

The Dehn-Nielsen theorem now follows from Theorems 3, 4, 5.

Theorem 6. (Dehn-Nielsen) For any automorphism I : Ty (8) » =,y (8) there is a

homeomorphism 1t : S + S which induces 1I.

Proof. Theorem 3 gives canonicel geodesics o, = a(gi) on S, and
specifies intersections of the axes A(gi) +g> g € m(S), on S which
cover them. The axes A((gi)I.gI, gr € m (8), which cover the geodesice

(cti)I = a((gi) I)’ are eeen to have the same intersections, by Theorem 5,

when one notes that they result from the A(g.).g by the I action.
1/ *8

Namely A(gi).g = A(g—lgi g) by Fact 4, and
-1 -1
A((g "8y 8)p) = A(gp) "(gy)1 &) = A(gy)p) -8;-
Thue the (cti)I also form a canonical geodesic system on S, and there

is a homeomorphism Tt : S + S with r(ai) = (a by Theorem 4.

i)I

In fact, the proof of Theorem 4 tells ue that the polygons P,PI

which result from cutting S along the oy and (cti)I systems respectively
have isomorphically labelled boundaries, hence the generalised Cayley
diagrame D, D; which result from lifting the a

and (o systems

i i)I
respectively to § are isomorphic. Collinear edges of U unite to form
the axes A(gi) 8 g€ 1r1(S), and collinear edges of ?; unite to form
the axes of A((gi)I)'gI’ g1 € nl(S).

Fig. 14 shows the surface of genus 2 being cut along the ays and Fig.15
showe the cell of the Cayley diagram D which results.

Fig. 14,
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1 =A(g;) NA(gy)

-1 .
= Agy)ea;l N ACg,) alt
1 1 2 1

-1
A(gy) oy

Fig. 15

If we let the identity vertex of U be 1l = A(gl)f\l\(gz) and let the

identity vertex of DI be -]LI

D*DI means that if en sxis A(h) is reached by following s certain sequence

= A((gl)I) n A((gz)l), then the isomorphism

of a;, a., oro,, edges from 1 in D, then A(h;) is reached by following
the corresponding sequence of edges in DI from LI' But the vertex of D

representing g € L (S) is just
-1 -1
Algy).g NA(gy) .8 = A(g g;8) NA(g gy8)

and hence g is determined by a common path to these two axes. The corres-—

ponding path from LI in D; leads to

al@e e N A e = Ay e e N AU e ey
=A(gy)p).8; NA((gy) 1) 8

which is the vertex g of DI'

In other words, a closed path from oy n o, on S representing
g € ﬂl(S) is mapped by T onto a closed path from ‘l'(ct1 n az) =
(01)1 n (0.2)1 on t(S) representing 2y € nl(S). Thus T induces the auto-

morphism [ : 'nl(S)-'nl(S). B



