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These lecture notes present the basic experimental facts of the integral and 
fractional quantized Hall effect. By means of a phenomenological comparison between 
integral and fractional quantized Hall effect,it is concluded that the fractional 
quantized Hall effect is of many-particle origin. A simplified approach to the 
presently prevailing theoretical model of the electronic grounds tate and its quasi­
particle excitations is presented. together with a set of illustrations, in the hope 
of providing some physical insight into this novel many-particle state. 

INTRODUCTION 

The essence of the experimental observations, termed the quantized Hall effect,is 
quickly stated. At low temperatures and in high perpendicular magnetic fields,the 
Hall resistance Pxy of a two-dimensional (2D) electron gas is quantized to Pxy = 
h/ve2 to an accuracy as high as ~ 1 part in 107• The quantum number v can be either 
an integer (integral quantized Hall effect, IQHE) [1] or a rational fraction with 
exlusively odd denominator (fractional quantized Hall effect, FQHE) [2]. 
Concomitant with the quantization of Pxy' the normal resistivity Pxx seems to 
vanish as the temperature tends towards T = O. 

Experimental observations of this nature must be surprising even to the most 
experienced physicists. Traditionally, solid state physics is not the discipline 
for high-precision measurements of quantum numbers,and yet this phenomenon shows an 
accuracy which rivals the accuracy of experimental data achieved in atomic 
physics. (Interestingly enough, an ideal 2D system would not even show the effect; 
a small amount of randomness is essential). Fractional quantum numbers generally 
belong to the realm of elementary particle physics. and yet the fractional quantized 
Hall effect exhibits quantum numbers such as v = 1/3 and v = 2/5. Vanishing 
resistivity, the absence of dissipation, is interesting in itself and promises some 
kind of ideality of the underlying electronic state. 

All these features have a fundamental ring to them and the appearance of Planck's 
constant h and the electronic change e make the quantized Hall effect a 
macroscopic quantum phenomenon. 

These lecture notes restate the basic observations of the IQHE and the FQHE. The 
IQHE is being derived in terms of the single-particle density of states of a 2D 
electron system in a magnetic field. From a phenomenological comparison between the 
IQHE and the FQHE it is concluded that the FQHE is of many-particle origin. These 
parts of the lecture notes are a reiteration of an earlier review [3]. In a final 
chapter, the presently prevailing theoretical model for the electronic groundstate 
and its quasi-particle excitations are presented. Though the approach is not 
rigorous,it is hoped that this train of thought and the accompanying illustrations 
might help the reader to develop an intuitive understanding of this novel, highly 
correlated electronic state. For these lecture notes no attempt is being made to 
present a complete listing of citations. For this purpose we refer the reader to a 
few recent review articles and lecture notes listed at the end. 
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1. Two-Dimensional Systems. 

Two-dimensionality of the electronic system is an important prerequisite for the 
observation of the QHE. This first chapter briefly reviews the classical device 
structures in which these conditions can be achieved [4). 

In a three-dimensional world two-dimensional (2D) systems are necessarily 
associated with a surface or an interface. The motion of a particle along the plane 
(x,y) is essentially free,while its normal motion is restricted. For quantum 
mechanical objects these restrictions can be made so severe that the particle loses 
any degree of freedom in the z-direction. and hence assumes a truly 2D character. 
This situation is achieved by confining the particle to a narrow potential well in 
the z-direction. Quantum mechanically, the bound states of such a potential well are 
discrete,with a typical energy spacing of 

1i2 1 
liE '" ___ '" 10 meV 

2m" d 2 
0) 

(for a well width d '" SOA and me '\. 1/10m. typical for electrons in semiconductors). 
At low temperatures (kT « liE) carriers trapped in the lowest bound state of such a 
well lack any degree of freedom in the z-direction,while being able to move freely 
along the interface following the free-particle dispersion relation 

E = (2) 
2m" 

Two devices are presently preferred to generate 2D carrier systems. In a Si­
MOSFET, carriers are confined to the interface between Si and Si02 via a strong 
electric field establishing a quasi-triangular potential well [4) (Fig. 1). 
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Fig.l Carrier confinement in 
a Si MOSFET. A quasi­
triangular potential well is 
established via the Si-Si02 
interface and an external 
voltage which is applied to 
the gate metal. 

The second structure is termed modulation-doped GaAs-(AlGa)As heterostructure;in 
which the equivalent situation is achieved by an abrupt doping profile,resulting in 
carrier confinement at the GaAs-(AlGa)As interface [3) (Fig. 2). The Si-MOSFET has 
the advantage over GaAs - (AlGa)As that the 2D carrier concentration can readily be 
varied by the application of an external gate-voltage. Conversely, the mobility ~ 

of carriers in the GaAs-(AlGa)As (~ '" 106 cm2 /Vsec) far exceeds those of carriers 
in a Si-MOSFET (~ '" 104 cm2/Vsec). Since a low carrier scattering rate is crucial 
for the observation of the FQHE the GaAs-(AlGa)As system is presently preferred for 
studies of this kind. 

2. Integral Quantum Hall Effect (IQHE) in Modulation-Doped Systems 

This chapter describes some aspects of the integral quantum Hall effect (IQHE) as it 
is observed in modulation-doped GaAs-(AlGa)As and thereby introduces some of the 
notation used in the next chapter. Figure 3 shows one of the most distinct 
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Fig.2 Carrier confinement in 
a modulation-doped GaAs­
(AIGa)As heterojunction. A 
quasi-triangular potential 
well is established via the 
GaAs-(AlGa)As interface and a 
strong electric field 
generated by an abrupt doping 
profile and subsequent charge­
transfer. 

!!~ The integral 
quantum Hall effect 
lQHE. Low-temperature 
Hall resistance (p xy = 
VH/I) and magneto­
resistance (pxx = VL/I) 
of a modulation-doped 
GaAs-(AlGa)As sample 
with a density of n = 
4.0xlO ll cm- 2 and \J = 
8.6xl0 4 cm 2 /Vsec. 
Insert shows sample 
configuration [5]. 

manifestations of the lQHE in a GaAs-(AlGa)As heterostructure at 50 mK [5]. The 
sample configuration is shown as an insert. Two characteristic voltages VH and VL 
are measured as a current I is imposed onto the 2D system and the perpendicular 
magnetic field B is varied. VH' the Hall voltage across the current path, and VL' 
the longitudinal voltage along the current path, are normalized to I. This yields 
the components of the resistivity tensor p with Pxy = VH/l and Pxx = gVL/l where g 
is a geometry factor typically of the order of 1. The relations between the 
components of the resistivity tensor p with Pxy = VHII and Pxx = gVL/l where g is a 
geometry factor typically of the order of 1. The relations between the components 
of the resistivity tensor p and the components of the conductivity tensor 8 = p-l 
are 

Pxx -P xy 
°xx , °xy , 0yy °xx' °yx -Oxy (3) 

P~x + P~y p2xx + p2xy 

°xx -axy 
Pxx , Pxy , Pyy Pxx' Pyx -Pxy (4) 

a~x + a~y a 2xx + a 2xy 

At first glance these equations seem to be surpr~s~ng,since vanishing resistivity 
(pxx + 0) implies also vanishing conductivity (oxx + O),while in the absence of a 
magnetic field one quantity is the inverse of the other. Figure 4 illustrates this 
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Fig.4 Cycloid motion of a carrier in crossed electric (E) and magnetic fields (B). 

counterintuitive relationship for carriers in a crossed magnetic (B) and electric 
field (E). Under such conditions carriers move on a cycloid orbit in the direction 
perpendicular to E and B. Since there is no electric current along E the 
conductivity a = i/E = O. Conversely, the absence of any electric field component 
along the current direction implies for the resistivity p = E/j = O. 

From purely classical considerations, i.e., balancing the Lorentz force acting on 
a carrier moving in a magnetic field against the force from the electric Hall 
field, it is expected that Pxy shows a linear magnetic field dependence 

Pxy = B/en (S) 

with n being the 2D electron density. Rather than this linear B-dependence, Fig. 3 
shows a Hall resistivity Pxy which assumes a staircase-like structure with plateaus 
quantized to 

Pxy = h/ie2 , i = 1,2,3 ••• (6) 

The accuracy of this quantization has been verified to approximately 1 part in 107• 
Concomitant with the appearance of plateaus in Pxy' the diagonal resistivit1 Pxx 
seems to vanish over large portions of B. Resistivities as low as Pxx < 10- 0 Q/ 
equivalent to roughly 10- 16 Q cm, have recently been established. 

Following the present understanding of the IQHE,the formation of plateaus in Pxy 
and vanishing values of Pxx are directly related to the singularities in the 
density of states (DOS) of a 2D system in a stron.g perpendicular magnetic field 
(Fig. Sa). The DOS of an ideal two-dimensional system consists of spin-split Landau 
levels with energies 

i=I,i<2,i<3,i=4 ... 
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Fig.Sa Density of states of an ideal 2D system. fiwc = Landau splitting, g"I1BB 
spin splitting, The degeneracy of each singularity is deB/h. 

h) 

Fig.Sb Landau fan and position of Fermi energy EF as a function of field for an 
ideal 2D system at low temperature. 
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E (j + 1/2)fiwc ~ Sg·~B B, j = 0,1,2 • . . (7) 

fiwc fieB/m· = 0.17 [meV/kG]xB is the Landau level splitting for an effective mass 
of GaAs of m· = 0.067 mo. S is the spin of the carriers, g" their effective g­
factor and ~B = eh/2mo is Bohr's magneton. For our purposes it is not important to 
discern between Landau level splitting and spin-splitting. We only retain a 
sequence of singularities (from now on called magnetic levels or levels) numbered 
by i = 1,2,3 . •. starting with i = 1 at the lowest energy. Thenumbe r o f states per 
level for any 2D-system is 

d = eB/h = B/~o = 2 . 42 x 109 cm- 2 kG-l x B (8) 

where ~o = hie is the magnetic flux quantum. This value is independent of any 
material parameter. Through it one can define a filling factor 

v = n/d. (9) 

At low temperatures(kT « fiw c , g · ~BB) and at any given field, v indicates the 
number of populated levels. Noting that n is the number of carriers per unit area 
and d is the number of flux quantum per unit area, v is also a measure of the 
number of flu x quantum associated with each electron. For a system with fixed 
carrier density , the filling factor decreases as B is raised. The variation of the 
Fermi level EF is periodically abrupt due to the strongly singular DOS (Fig. Sb) . 
At any given field, EF resides in the close vicinity of level i = int (v) + 1. 
However, an exceptional situation arises at fields 

(10) 

where an exact multiple i of levels is filled. Then EF is intermittent and lies in 
the gap region between level i and level i + 1. 

The value of Px and the vanishing of Pxx can then be derived apparently in the 
following way : T~e diagonal conductivity 0xx is entirely dependent on the DOS at 
the position of EF• Since the DOS vanishes in the gap region, 0xx vanishes as well 
and with Eq . 4 we der i ve Pxx = 0 as long as Pxy 1- • The classical expression Pxy = 
B/en holds also for quantum mechanical free electrons. Hence, at a sequence of 
singular points on the field axis Bl = n~o/i where P xx vanishes, the Hall 
resistance is Pxy = ~o/ie = h/ie 2: 

Such a derivation of P xx and Pxy neither accounts for the finite width of the 
plateaus noli" for the width of the zero resistance regions, both of which are the 
truly outstanding features of the IQHE. Explanation of a finite width of these 
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Fig.6a Density of states of a real 2D system. Disorder broadens the s i ngularities 
(Fig.Sa) into bands. The central part of each band contains de localized states 
while the states in the flanks are localized, not participating in transport . 
Fig.6b Landau fan and position of Fermi energy EF as a function of field for a 
real 2D system at low temperature. 
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features requires the existence of localized states. Localized states are expected 
to be present in real two-dimensional systems,due to disorder as a result of random 
distribution of impurities or random interface steps. They lift the degeneracies of 
the magnetic levels and broaden them (Fig. 6a). States at the center of this 
distribution will be extended~whi1e those in its tails will be 10ca1ized,not 
participating in electronic transport. This broadening of the magnetic levels 
moderates the abrupt jumps of EF from one level to the next as B is varied about 
the crucial values B1 (Fig. 6b). Hence, for finite ranges of field, EF moves 
through regions of localized states between magnetic levels. In an elegant gedanken 
experiment [6] LAUGHLIN has shown that under these conditions Pxy remains quantized 
and Pxx tends towards zero in spite of the disorder. He demonstrates quite 
generally that independent of the strength of the disorder 

0xx = 0 and 0xy - ie/to - ie2/h, i = 0, ± 1, ± 2 ••• (11) 

whenever EF lies within localized states (mobility gap) or within the region of a 
true gap. The value of i may be zero. which describes the case of an insulator. 
Except for this degenerate case i is finite and, hence, with Eq. 4 

Pxx = 0 and Pxy = h/ie2 , i = 0, ± 1, ± 2 ••• (12) 

which are the quantities one generally obtains in transport measurements. The 
quantized region may be wide (as wide as 95% plateaus and 5% transitions) 
indicating that the major part of the DOS consists of localized states and still 
Eq. 12 holds. LAUGHLIN's gedanken experiment does not specify the value of 1. For 
weak disorder i is expected to coincide with the value obtained from the ideal 
case, in agreement with the experiment. 

We summarize this chapter stating that the IQHE is understood in terms of gaps in 
the single particle DOS of a 2D electron system in a strong perpendicular magnetic 
field. Disorder leads to the formation of localized states in the gap region 
between ma~etic levels. Whenever the Fermi energy lies in this range Pxx = 0 and 
Pxy = h/ie (i = 1,2,3 ••• ) excluding the degenerate case i = 0 of an insulator. A 
sing1e-e1ectron picture is sufficient for a description of the IQHE. 

3. The Fractional Quantized Hall Effect (FQHE) 

Experiment 

The availability of low-density 2D modu1at;ion-doped heterostructures with 
unprecedent1y high mobilities (p ~ 106 cm2/Vsec) led to magneto-transport studies 
on GaAs-(A1Ga)As structures at low temperatures in extremely high magnetic fields 
(up to 280 kG) where the extreme quantum limit could be reached. In terms of the 
filling factor v = n/d the extreme quantum limit, where only the lowest magnetic 
level is populated, is characterized by v ~ 1. Fifure 7 shows PXI data from a 
sample of constant electron density n = 2.13 x 10 1 cm- 2 and moblity p ~ 106 
cm2/Vsec.[7]. For this low concentration,exact multiples (v = i) of magnetic levels 
are filled at B - nh/ie ~ 88 kG, 44 kG, 22 kG ••• In the vicinity of these field 
positions one expects the appearance of the IQHE. The last of these plateaus and 
concomitant resistance minimum are indeed observed at Bl ~ 88 kG. Data below 70 kG 
were not accessible, due to the use of a fixed base field from a superconducting 
magnet. Measurement in the absence of this base field (not shown) reveals clearly 
the higher orders (v = 2,3 ••• ) of the IQHE. The majority of Fig. 7 covers the 
region of the extreme quantum limit where v < 1. Contrary to expectation,a rich 
sequence of structures is observed,reminiscent of the IQHE. However, the deduced 
quantum numbers are not integers but rational fractions with exclusively odd 
denominators. At the present time. structures in Pxx have been observed in the 
vicinity of filling factors 

v = 1/3, 2/3, 4/3, 5/3, 8/3 
v = 1/5, 2/5, 3/5, 4/5, 6/5, 7/5, 8/5 
\I 2/7, 3/7, 4/7 (13) 
v = 4/9, 5/9 
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Fig.7 The fractional quantum Hall effect FQHE. Low-temperature Hall resistance Pxy 
and magneto-resistance Pxx of a very high-mobility modulation-doped GaAs-(AlGa)As 
sample with density n = 2.l3xlOll cm- 2 and mobility ~ ~ 106 cm2/Vsec in the extreme 
quantum limit (v < 1). Structures resembling the IQHE (Fig. 3) occur at fractional 
filling factor v. [7]. 

The concomitant Hall plateaus of the more prominent of these structures have been 
determined to be quantized to Px = h/ve 2 to an accuracy as high as 3 parts in 105 
(limited by the equipment). White the existence of plateaus in Pxy and vanishing 
resistance in Pxx at integer filling factor v are well accounted for by theIQHE, 
the appearance of similar phenomena at fractional v is inconsistent with such an 
interpretation. Not only do these structures appear at fractional occupation of a 
magnetic level but, moreover, Pxy is quantized to Pxy = h/ve 2 with v being an exact 
rational fraction and not an integer. 

Since phenomenologically these new features resemble those of the IQHE, this 
phenomenon is termed the fractional quantum Hall effect (FQHE), though both must 
be of different origin. While the IQHE can be explained in terms of non-interacting 
2D electrons in a high magnetic field, no such interpretation seems to be possible 
for the FQHE. 

4. Phenomenological interpretation of the FQHE 

In order to assess the possible origin of the FQHE, we return to Laughlin's 
gedanken experiment described in section 2. As an example.we choose the v = 1/3 
state. The other fractions can be discussed in an analogous way. From Pxx - 0 and 
Pxy ~ 0 at v % 1/3, we can deduce 0xx + O. Hence, the DOS at the position of EF for 
partial filling of the lowest magnetic level is vanishingly low, being either zero 
and forming a true gap, or finite but localized, forming a mobility gap. 

The appearance of such gaps in the single particle DOS of 2D electrons in the 
extreme quantum limit is totally unexpected. A description of the minima in Pxx 
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cannot be given in terms of a non-interacting particle DOS. One has to involve 
electron interaction for their explanation. 

The formation of the long predicted electron Wigner solid. where a finite gap 
separates the condensed state from the single particle excitations,initially seems 
to provide a basis for the observed anomalies. This would require such an electron 
solid to form preferentially around given filling factors. e.g.v = 1/3. Numerical 
studies on the groundstate energy of a Wigner solid and the related CDW in a 2D 
system in the extreme quantum limit indicate no preference for any given fractional 
v and. hence. call in question any interpretation of the FQHE in terms of A Wigner 
solid. Experimental data also dismiss such an interpretation. At low temperature. 
and in the presence of disorder. a Wigner lattice is pinned to potential 
fluctuation and a non-linear current/voltage characteristic is expected to occur as 
the solid becomes depinned at small electric fields. Measurements at v = 1/3 down 
to electric fields as low as 10 ~V/cm did not produce any such non-linearities. 

Since a Wigner solid does not seem to explain the experimental results.we must 
look beyond such an interpretation. For this we return to the earlier gedanken 
experiment, which requires Pxy = h/ie 2 • i = ::!:. 1. ::!:. 2 •••• whenever EF lies in a gap 
region (excluding here the trivial case i = 0). The experimental result Pxy = h/ 
1/3 e 2 is clearly in conflict with such a conclusion. indicating that the 
assumptions under which the statement was derived do not hold for the electronic 
state responsible for the FQHE. However. with an ad hoc assumption. Eq. 12 can be 
reconciled. This will shed some light on thepossible nature of the underlying 
electronic state. 

Laughlin's gedanken experiment [6] relies on gauge invariance of the vector 
potential (by which the flux quantum ~o enters the derivation of pxy)' and on the 
quantization of the electric charge. e. The final result is actually stated as a 
ratio of these quantities Pxy = ~o/ie = h/ie2• The experimentally observed value of 
Pxy = ~o/ 1/3 e in the FQHE can be regained if we assume the formation of carriers 
with effective fractional charge ee = 1/3 e. 

Fractionally charged quasi-particles as current-carrying units. and the existence 
of a gap at EF for v = p/q do provide a phenomenological explanation of the FQHE 
with Pxy = ~o/ee. The above deduction is by no means rigorous. This picture is 
rather brought forward here,guided by recent theoretical studies on the groundstate 
of 2D systems in the extreme quantum limit. which suggest the formation of a novel 
electron liquid with fractionally charged quasi-particles of fraction v. 

5. Present Understanding of the FQHE 

This chapter retraces the lines of thought which led to the presently prevailing 
theoretical model for the electronic state underlying the FQHE. 

The discovery of the FQHE has initiated a reexamination of the groundstate of a 
2D electron system in the extreme quantum limit. A numerical calculation by 
YOSHIOKA. HALPERIN and LEE [8] for a finite size system of 4. 5. and 6 electrons in 
a rectangular box with periodic boundary conditions in a high magnetic field. 
yielded three important results : 

1. Over a wide range of v. the groundstate of the collection of electrons is 
significantly lower than that of a Wigner solid. 

Z. At v = 1/3 (and possibly at v = Z/5. but also at v = liZ). the grounds tate 
energy. as a function of v. develops a downward cusp. indicating a commensurate 
energy at these filling factors. 

3. The pair correlation function of the grounds tate differs considerably from 
that of a Wigner crystal. 

All these results indicate that the Wigner crystal is not the grounds tate for 
this finite system. While extrapolation to many electrons is unreliable. these 
numerical data. nevertheless. are suggestive for the groudstate of a real system. 
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An analytic expression for the grounds tate of a 2D system in the extreme quantum 
limit at rational filling factor was recently proposed by LAUGHLIN [9]. This many­
particle wavefunction, with built-in-pair correlation, presently forms the basis 
for most theoretical models of the FQHE. 

LAUGHLIN's wavefunction has the following properties : 

1. It describes a state which only has alfi1ling factor \I =l/m, where m is an integer. 
Assuming electron/hole symmetry, a case can also be made for \I = 1 - 11m. 

2. It is antisymmetric only for odd m, hence/only odd denominators are allowed. 
3. Its pair correlation function suggests it to be a novel quantum-fluid rather 

than a Wigner solid for m ~ 10. 
4. The elementary excitations are separated from the grounds tate by a finite gap. 
5. These quasi-particle excitations have fractional charge ee = elm. 
6. The quantum-fluid is incompressible and has no low-lying excitations. Hence, 

it flows resistance-less at T = o. 
7. For m ~ 10, the quantum liquid is expected to crystalline into a Wigner solid. 

For a rigorous derivation of these properties I refer the reader to the original 
liteFature and to some recent review articles on the subject. 

5.1 Illustration of the Wavefunction 

In the remainder of the paper I would like to present a greatly simplified approach 
to Laughlin's wavefunction. Though it lacks rigor it might assist the reader in 
developing a physical understanding of the electronic state at fractional filling of 
a Landau level. The lines of thought follow closely a suggestion by Halperin [10]. 

The wavefunction proposed by LAUGHLIN to describe the state at filling factor \I = 
11m is : 

(14) 

The square of this N-particle wavefunction describes the probability to find the N 
partjcipating electrons at positions Zl' Z2 ••• ZN. 

The complex plane has been chosen to represent the 2D plane. Such a choice is a 
matter of mathematical convenience since it simplifies Eq. 14 considerably. A 
particle at (x,y) in the real 2D plane is described by a single complex number z 
(x - iy)1o where 10 = I IiIBe is the magnetic length. Apart from the scale factor 
10 and an inversion of the y-axis,the real 2D plane and the complex plane are 
equivalent. 

Many particle wave functions are difficult to visualize. In order to simplify this 
task we will focus on the motion of one prototype-electron (ZN) in the presence of 
all other electrons fixed at positions Z'l' Z'2' Z'3 ••• Z'N-l. The wavefunction for 
this single particle is then : 

1 N-l 
V(ZN) = Zo exp [ - _ IZNI2] IT (ZN - Z'i)m (15) 

4 1 

where the products over all fixed pairs, [Z{ - Zj)m and their exponential are 
collected into ZOo Equation (15) describes a particle which moves through a set of 
fixed points Zi like a ball through a pin-ball machine trying to stay away from the 
fixed particles. In the vicinity of each of the fixed electrons its wavefunction 
decays rapidly with a power m. 

It is instructive to try to develop an intuitive understanding of the particular 
form of Eq. 15. For this we start with a single electron in the lowest Landau level 
(spin neglected) on an infinite 2D plane in a normal field B restricted to the 
lowest Landau level. Using a symmetric gauge,its wavefunction can be written as 
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Fig.S Illustration of the basis functions for a 2D-carrier in the lowest Landau 
level using a symmetric gauge for the vector potential. The orbits are racetracks 
about the or1g1n with increasing angular momentum k and increasing radius r = / 2k 
10 .10 = / Ii/Be. 

1 
~ (z) = p Zk exp [ - Izl2 1 (16) 

4 

where P is a normalization factor and the same complex notation is used. These 
wave functions are racetracks around the origin with angular momentum k and orbital 
radius r = /2k in units of 10 (see Fig. 8). The general case of a wavefunction for 
one electron in the lowest Landau level can then be written as a linear combination 
of these basic functions 

1 
~(Z) = P'exp [- Izl2 1 L akZk ( 17) 

4 k-l 

with expansion coefficients ak' 

If we confine the system to a large dis of radius R (in units of 1 0 ) the basic 
functions remain approximately valid,but the expansion has to be cut off for 
orbitals bigger than R. The limits k to ~ax = S = R2/2. 

s 1 
p' L akZk exp [- Izl2 1 (18) 

k-l 4 

Since the exponential in Eq. 18 is always a positive real number ~(Z) has s . roots 
(Z1. Z2' Z3"'Z~) in the complex plane. Then ~(Z) can obviously be expressed in 

terms of its roots 

1 s 
~(z) p' exp [- Izl2 1 IT (z-z'k) (19) 

4 k=l 

Though in principle some roots might be degenerate (same position), for a general 
case they are roughly uniformly distributed over the disc (Fig. 9). On a small loop 
around each root the phase of the wavefunction changes exactly by 2~. We might call 
these points vortices due to their formal analogy to vortices in superconductors. 
Their extent is ~ /210 and their density in the plane is n = s/~R21~ = Be/h = B/~o 
which coincides with the density of flux quantum ~o due to the magnetic field B. 
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Fig.9 Illustration of a general wave function for a single 2D-carrier in the lowest 
Landau level confined to a large disc of radius R. The ~ indicate the positions of 
"vortices" i.e., positions where the wavefunction vanishes and its phase changes 
by 2w around it. Their density is the same as the magnetic flux density n = B/~o of 
the magnetic field B. 
Fig.lO Additional (fixed) electrons can be positioned only at the vortices of the 
prototype-electron ($ = 0) to obey Pauli's principle. At maximum filling the 
electron density equals the magnetic flux density and hence v = 1, i.e., the Landau 
level is completely filled. 
Fig.ll At v = 1/3 the electrons occupy only 1/3 of the vortices. The existence of 
the other vortices is required by the strengh of B but there is no compelling 
reason for their actual position. 
Fig.12 The v = 1/3 system can considerably reduce its potential energy by placing a 
three-fold vortex at the position of each electron. This reduces Coulomb interaction 
since the wavefunction now vanishes like the 3rd power (three vortices) rather than 
linearly (one vortex). 

So far we have considered only a single electron. Were we to add more electrons 
to the system, we would have to take products over their wavefunctions, 
anti symmetrize the product and the problem would become quickly unmanageable. 
However, we are satisfied with observing the motion of a prototype-electron among a 
set of other fixed electrons. Such additional (fixed) electrons in Fig. 9 can only 
be positioned at the location of the vortices of the prototype in order to obey 
Pauli's principle. Only in the center of the vortices does the wavefunction of the 
prototype vanish. As we keep adding carriers we fill up all vortices until an 
electron density n is reached. This is the maximum number of electrons which fit 
into the lowest Landau level (Fig. 10). Since the electron density equals the 
magnetic flux density, the filling factor is exactly v = 1, as required. Hence, 
within the limits of our model, which keeps S - 1 particles fixed, Eq. 19 describes 
the state of a noninteracting electron gas at v = 1. The prototype-electron 
produces a vortex at the position of all other electrons. 

If we were to release the fixed electrons, simple illustrations like Fig. 10 
would be impossible. However, one can imagine snapshots where at any time each 
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electron generates a vortex at the position of each other electron to satisfy 
Pauli's principle. Then, by induction from Eq. 19, one might suggest the following 
wavefunction for this many-particle state. 

s s 1 
V(Zl,Z2,Z3 ••• Z3 ) = pH n (Zi-Zj) exp L [- IZkl2 1 

1<1 k 4 
(20) 

Indeed,Eq. 20 is the totally antisymmetrized solution for the v = 1 state in very 
high magnetic fields neglecting electron-electron interaction. 

Our aim, however, is to find an intuitive solution to the v = lim state. As a 
concrete example we chose v = 1/3 and return to Fig. 9. At v = 1/3 the lowest 
Landau level is only filled to 1/3 capacity Le., the fixed electrons occupy only 
1/3 of the vortices leaving 2/3 of the vortices unoccupied (Fig. 11). Vortices at 
the position of the fixed electrons are required by the Pauli principle. There are 
no compelling reasons for vortices at other positions, except that the total 
vortex-density has to remain n. In an interacting system such unoccupied vortices 
are actually wasteful, since the prototype electron avoids certain points in the 
plane without gaining energy. A much more favorable solution is to generate three­
fold vortices at the position of each fixed electron (Fig. 12). This keeps the 
prototype further away from the fixed electrons and, hence, reduces considerably 
the Coulomb energy of the system. Since each fixed electron is located at a three­
fold root of l/I this state is just the illustration of Eq. 15 for m = IN • 3. 
Through induction we regain Eq. 14 which is Laughlin's wavefunction for the 
electronic state underlying the FQHE. In this state each electron generates an m­
fold vortex around each other's electron. Because the wavefunction drops off like 
the distance between carrier pairs to the m-th powe~ such a configuration 
considerably reduces the Coulomb energy of the 2D system. This is the reason why 
this highly correlated motion of the carriers is energetically so favorable and is 
believed to form the grounds tate of a 2D electron system in a magnetic field. 

5.2 Illustration of the Quasi-particles 

Excitation from the groundstate of Eq. 15 forms quasi-particles with fractional 
charge ee = elm. This section proposes a gedanken experiment to develop an 
intuitive picture of such an e/3 quasi-particle. 

Figure 13 shows again the v = 1/3 electronic state. There are four fixed 
electrons each accompanied by a three-fold vortex of the prototype-electron. The 
extent of each three-fold vortex is ~ 12mlo = 1610 which coincides with their 
average spacing. In this sense the vortices are dense in the 2D plane. The 
probability of finding the prototype-electron is shown as contour lines tending 
towards zero in the vicinity of the fixed carriers. 

At fixed carrier density we slightly raise the magnetic field so that exactly one 
more flux quantum ~o enters the system. This requires one more single vortex in the 
wavefunction of the prototype which we might place in the center of Fig. 13. Such 
an additional vortex requires the wavefunction to vanish at a given point, 
introduces considerable distortion and raises the total energy of the system. 
Predominantly this energy increase is caused by the increased cyclotron energy (1/2 
fioo c ). However, a small fraction of it is due to the close proximity of the 
additional vortex to the neighboring three-fold vortices. It is energetically 
advantageous for the system to open the cage surrounding the single vortex at the 
cost of lowering the average distance between all fixed particles and their 
accompanying three-fold vortices. 

In a gedanken experiment we can perform this flux quantum addition three times, 
creating a three-fold vortex in the center and successively displacing the 
surrounding carriers. Finally we take an electron from outside the system and place 
it at the position of the vortices. The resulting state is again a v = 1/3 state 
where each fixed electron is associated with a three-fold vortex. This state is 
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Fig.13 Schematic illustration of v = 1/3 
state. Four electrons are fixed. One 
electron moves and generates three vortices 
at the position of each of the fixed 
electron. Its probability distribution is 
shown as contour lines tending towards zero 
near the fixed electrons. 
Fig.14 Introduction of one additional 
vortex (slight increase of magnetic field) 
into the state of Fig. 13. The vortex 
considerably perturbs the system. It 
regains equilibrium by a slight 
displacement of the fixed carriers. The 
vortex represents a quasi-particle with 
charge e+/3. 

electrically neutral, since the total charge of the electrons is compensated by the 
total charge of ionized impurities from which the electrons emerged. Therefore, 
removing again the additional electron creates locally an apparent positive charge 
e+ at the position of the three-fold vortex in the center. With further removal of 
two of its three vortices , an apparent positive charge of roughly e+/3 will remain 
i.~., each single vortex in the system appears to be associated with a charge eO = 
e+/3. The vortex in the center of Fig. 14 therefore represents a quasi-particle of 
charge e+/3. They are stable objects and like real carriers these quasi-particles 
can move through the system carrying a fraction of a charge from one place to 
another and, hence, give rise to an electrical current . A rigorous calculation 
shows that their charge is exactly e· = elm. 

Conclusions 

These lecture notes have considered only a few selected aspects of the experiments 
and theoretical models of the IQHE and the FQHE. The form of presentation might 
mislead the reader to assume that these phenomena are well understood. This is far 
from being true, beginning with theoretical models for the FQHE which are radically 
different from the model presented here. And even within this model important 
questions remain to be answered: What is the grounds tate for v = p/q where p 'I 1 
and p 'I q = 11 Hierarchical models have been suggested, where e.g., the quasi­
particle of the v = 1/3 state performs a correlated motion and generates the v = 2/7 
and v = 3/5 state. A wavefunction as aesthetically appealing as Eq. 14 has not been 
found yet. Maybe a simple expression does not exist. How do the plateaus in Pxy and 
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minima in Pxx in the FQHE come about? In analogy to the IQHE, localization of 
particles (quasi-particles in this case) is probably involved. But other scenarios, 
like the formation of Wigner lattices of quasi-particles, are also being cited. 
What is the effect of localization on the size of the quasi-particle energy gap? 
What is the dispersion relation for quasi-particle? ... to pose but a few questions. 

The experimental data on the new grounds tate are also rather rudimentary. Only 
electrical transport measurements have so far been performed,and the information 
gained does not go much beyond what can be read off from Fig. 7. The field is wide 
open for ingenious, though probably difficult, experiments to probe the nature of 
the electronic state underlying the FQHE and in general to investigate the rich 
pattern of behavior of a 2D electron system in the presence and absence of a 
magnetic field over a wide range of carrier densities. 
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