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Introduction

Introdu‘c_tio'n

We first discuss the relevance of theories of dependent types for theoretical computef science.
Then we explain the motivation for our work and finally ; glve a suryey of the contents of our
work ,

‘The Relevance of. Constructnve Theorles of Dependent Types fer Theoretlcal-
Computer Science '

In theoretical computer science the issue of correctness of programs has become more and
more important over the years. Early approaches to establishing correctness were program

logics such as Hoare calculi for verifying imperative programs and the method of algebrazc N

specification for spec1fy1ng modules in functional languages.
Program logics as e.g. the Hoare calculus are oriented towards state-o_riemed programming s
languages and provide calculi for dertving correct ‘Hoare tripl'es’ ie. expressidns of the form
{P}S{Q} with the intuitive meaning that whenever the initial state of a program satisfies pro-
position' P then the execution of program S terminates and results in a state. satisfying pro-
position - Q . Although this method works quite well for pldgm programs (i.e. using only
assignment, if_then_else and while over a single data type ) there are big problems when dea-
~ling with procedures, modules and general user defined data types. In general a main draw-
" back is that that the world of programs and the world of speciﬁcations are conceptually quite
different. Of course, this 'probl‘em is typical for all state-oriented imperative' programming lan-
guages. : : : - : :
This conceptual gap between programs and thelr specifications has been overcome by the -
. appearance and development of functional programming languages ‘As in functional pro-
gramming all objects are either functions or tuples: (maybe in a nested way) the world of pro-
' - grams and data appears as part of the term language of the specxﬁcatlon language and
therefore specifications of programs or modules can be expressed simply by logical formulae.
- The method of algebraic specification is from its very begmmng oriented towards the spec1ﬂ-_
_ cation of modules in functional programming laaguages. The basic intwition behind is that any '
such module-in a functional progremming language can be considered' as.a (consti‘uc’:tive)
many-sorted algebra where the types of the module are conceived as the carrier sets of the
algebra and the functions pr ovided by the modile are. concelved as the operations of the alge-
bra. Thus accordmg to the underiymg philosophy of the algebralc specification method a’
spemﬁcatton of a module is given - at least in principle - by the theory of its correspondmg
many-sorted algebra. -




Introduction

As long as o'n'ly' first order operations are considered and the type system of the programming
language is not too refined (a sitoation that can be found very often in practice !) this method
works very well and in a pleasingly simple way Traditionally the logical systems for repre-
senting the theory charactenzmg a module were and still are restricted to equational or Horn
logic. More courageous people also considered full first order logic together with rules for
structural induction and in principle one also can add higher order logic ‘which allows to
express induction schema by second - order quantxﬁcatlon Nevertheless the intentional
~ restriction to. weak logics as equational or Horn logic has the advantage that it facilitates the
model theory tremendousiy. Typically with’ any such theory one can associate the initial or the

' terminal model of the theory as the intended module descnbed by the specification. '

Nevertheless there is one main drawback of the algebraic spemﬁcauon method : one can. build - :

new functions from the given basic operations only in a very restricted way. by explicit defini-
tion. But definition of new function(al program)s by structural or general recursion is not pos-
- sible. But, of course, one can perforni such an extension by adding a A-calculus with a least
~ fixpoint operator. This actually has been done within the LCF (Logic of Computable Functio-
nals) System Variants of LCF have been implemented in Edmburgh and Cambridge and these
- systems have been widely used for the structured-and venﬁed development of qmte comphca—
- ted algonthms as e.g. unfication procedures :
But still, even this very powerful approach has two drawbacks. The first is that modules do not
 appear as first-order citizens. In other words one can always deal only with the description and
-~ construction of one single module: The reason for this defect is that ¢.g. the type of all alge- -
~ braic structures of a certain signature cannot be formulated without employing the concept of

dependent types. The best way to explain the notion of dependent type is maybe by example -

(where in the followmg 2 denotes disjoint union of a family): (X G : Set) G = G ~» G is the.
type of all structures with one type G and one (curried) binary operation ; (£ G : Set) G is
- the type of all pointed sets ; (X G Set})(Zm:G -G - G) G is the type of all algebraic
‘structures with one carrier set, one (curried) bmary operanon and one distinguished object.
Now, of course, on the Iatter structure type one can-define a predicate telling which such-
structures are a monmd i.e. satisfy the laws of associativity and neutrality. -

- After thls explanaclon by example’ we will now explain abetractly what ‘dependent types :

“mean in.terms. of analogy to common set- theoretic notions.

‘The notlon of dependent type eorresponds to the famlhar notion of ‘famlly of sets indexed by
aset’ as well- known from set- themettc mathematics. Examples of * families of sets’ are abun-

| _ dant both in mathematics and computer science. Therefore - although all these’ concepts can in
~ principle be expr_essed in (untyped) set-theory - at least for computer science it is better to
have atyped language which generally supports structured presentations and modularity. -

The main aspect of dependently typed languages is that type expresswns may depend on

'objecr expresszons In dependently typed languages one can easily express structure .tvpes

- whose objects are modules and predicates and operations on them. Thus for languages sup-
* porting the construction and verification of large modular systems the concept of dependent
type is inevitable. | |
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But there is a further more foundational aspect of dependent types which historiCally was the
actual motivation for logicians like Per Martin-L&f and J Y.Girard to introduce their type theo-

ries at the beginmng of the 1970s." :
| This foundational aspects of constructive type theories has become known as the paradigm of
propositions-as-types. The i 1mponance of the the paradigm of propositions-as- -types originates
from the importance of proofs when applying formal methods. The key idea is to allow proofs -
as objects which can be denoted by terms of the language Consequently a proposition is con-

sidered as the rype of its proofs ! Such types are called proposmonal types. This gives rise to a ) .

constructive interpretation of logic where a proof of the proposmon A implies B’ is simply a

. function’ mapping proofs of A to proofs of B, universal quantification corresponds to pro-- . |

ducts of families of propositional types and existential quantification to disjoint unions or -
sums of families of propositional types. In the end it appears that logic is included into a fun-
‘ctional programmlng language and the task of provmg appears as a subdiscpline of functional
programming. - : :
~ As the logic of type theory is constructive proof objects carry algorithmic mformauon and the-
. refore functional programs can be extracted from proofs The typical situation is the follo-
- wing. Let A and B be sets of 1nputs and outputs, respectively, P & A—B— Set be a
predicate spemfymg the relation between inputs and outputs and suppose we have a proof
. object p e (Mx:A}ZyB) P xy. ‘Then forog = (Ax:A) my(p) € A—)B is the program
extracted from p and foor = (Ax:A) my(p) € (TIx:A) P x (f x)- is the correctness proof for
* fprog - Thus there is a uniform method of extracting programs out of proofs together with -
proofs for their correctnéss. This way all conceivable algorithmic functions can be obtained
but in general the algorithms obtained in this way are not very efficient as they have to mani- -
pulate a lot of computationally irrelevant Iog:cal meta-information which is relevant for the
correctness proof but should not show up in the algorithm itself. Therefore it is often more
efficient to_ construct the programs in -advance anjd' verify them afterwards. From this point of
view a specification of a functional program _mapp’ing A to B and satisfying predicate P is
given by the sype (Zf:A—B) P(f) . Thus an object of type (Sf:A~B) P(f) is a pair (f,p)
where f: A—B and p is an object in P(f) providing a proof (object) for the correctness of
the functional program f. :
The ongmal aim "of type chscnphne was to prowde a pamal correctness mformatlon by
_spec1fymg e.g. the types of inputs and outputs But the type systems which are implemented in
fu'nctional programming languages as e.g. SML are to weak to express more realistic and the-
refore more restrictive correctness properties as e. g« f computes the ged of two natural num-
bers” bya type. The restricted expressiveness of these type systems lies in the fact that they do
not allow dependent types which are required fo include constructive logic into the programm-
ing language. Therefore-the relevance of constructive theories of dependent types is that pro-
gram correcmess reduces to tvpe cor rectness and that there are efficient algorithms for type
 checking. But, of course, as miracles are out of scope the correctness proof has to be supphecl
. together w1th the program. . : :
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Motivation

The topic of this work is the investigation of Intensional Type Thebry_ or Intensional Construc-
tive Set Theory (ICST) introduced by Per Martin-Lof as a foundation of constructive mathe- . -
_matics and a formal basis for developing (abvays terminating) functional programs. A very
precise introduction to [CST can be found in the book by Nordstrom, Petersson and Smith'
[NPS]. That the formalism of ICST is most su1table for these purposes has been demonstrated
- in [NPS] . : _
But the practically most relevant aspect of ICST beyond its foundational issue is that there isa
'coupie of computerized support systems for constructing and executing proofs and programs.
Rather well known examples are the LEGO system (cf. [LP]) developed by R. Pollack in
Edinburgh, the COQ system (cf [DFHHPW]) developed by a group around G. Huet at INRIA
and the ALF system (cf [Mag]) developed by the Gotenburg type theory group. | |
All these systems are based on intensional type theory as otherwise rype checking would :

become undecidable ! The reason is thatin order to have type-checking decidable one needs to

have a confluent and terminating rewrite system representing the operational semantics of the
- underlying term language of the type theory under consideration. ' '
As we will show in Chapter 1 it is the-

Reflection Rule TFp e IdAts

FFtit=s e A

- distinguishing extensional from intensional constructive set theory - which leads to the non-
confluence of the underlying rewrite system. Therefore the Reflection Rule has to be abando-
~ned and one has to stick to ICST when one wants to have a nice support systern. .

'One might think that what one really would like to have is extensional type theory (as descri-
bed e.g. in [ML3}). And actually extensional type theory has been taken as the basis for the .
NuPrL system (cf. [Const]) implemented by the group of R. Constable at Cornell University. |
" The NuPrL system is the oldest of the various support systems for type theory. But instead of -
deahng with rerms relative to a context of declarations and definitions it has to deal with deri-
* vations of judgements in the formal system of type theory. Of course, it does not deal with
derivations explicitely but constructs thern using quite refined tactics. So in the implementa-
tion the main advantage of type theory is lost : the principle of proposzrzons as-types which
allows to represent proofs by terms of the object language instead of represermng them by
derivation trees on. the meta-level. , : _ ,

But as mentioned above the more recent and more comfortable support systems as LEGO
COQ, ALF etc. have to pay the price of suppomng only a weaker theory, namely ICST with
its charactenstlc distinction between judgemenral and pmpo.wrzona[ equality.

Although'in ICST one can do most of the things orie wants to do one has to be careful in for-
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mulating propositions because the extensional way of thinking - which most mathematicians
and computer scientists are used to - sometimes allows to make formulations of propositions
and their proofs much shorter. And certain theorems simply do not hold due to the lack of
extensionality. A typical example is that from te B a and 'p € Id A ab one is notallowed to
-conclude thatt € B b where A isatypeand B isafamily of types indexed over A .(But, of
course, one is allowed to mfer te Bb from te Ba and a=be Al) '

- It is evident from the pracuca.l experience in using and teaching type theory that ICST is full
of - sometimes unpleasant - surprises for the naive user. The reason is that the naive user is
inclined to think in an extensional way because nowadays everybody is introduced to elemen-

~* tary mathematics in the language of naive set theory.

Accordingly, a lot of people have observed a couple of proposmons which are provable in
extensional type theory but have resisted any attempt to derive them in intensional type theory.

Itis éxac_tly these irza’ependenée problems which will be studied in this thesis.

There are to kinds of answers which one can give to these questions.
The first kind of answers is of syntactical character and will be dealt with in Chapter 1. There
we define extensions of current formulations of ICST, show that they are computationally
meaningful and ]ustlﬁed by their equivalence to propositions which mtmtlvely should be
valid. : : : .
-The second kind of answers is of semantical character and will be dealt with in Chapters 2
and 3 . There we will show for various propositions that they are not only so difficult to derive
that nobody has manged up to now but that these proposmons are really underivable. When
trying to show underivability one quickly finds out that syatactic proofs of underivability are
considerably hard already for simple problems and as far as the author knows no one hardly
ever has succeeded in giving such syntactic proofs for non-derivability. And, actually, the
common practice in mathematics for obtaining underivability ;esutts 18 10 construct counter- ,
models.
~That is the point where mathemarical modeis of tvpe theory become relevant. Be51des prov1—
' dmg the logical hygeny called consistency theu‘ main use 1s to prov:de inspiration for exten-
sions of current fo:mulanom of a fm mal system and 1o refute propositions which suspected to
- be underivable. : .- _
It is this latter aspect of models we concentrate on. We have already prevaously given seman-
- tical mde_pendence proo_fs for extensional type theory (cf. [Str2], [Str3]).
In this thesis we will give semantical proofs of underivability for most of those propositions
which are denvable in extensional type theory but have resisted any attempt to derive them
formaliy in ICST.
- We furthermore suggest and give evidence by the examples we study that semantical methods
are helpful for checkmg the vahdlty of suggested extensions of ICST.
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‘Survey 'of Contents .

. Chapter I .
Whereas the subsequent chapters are mainly concerned with semantical questlons the first
- chapter prov1des syntactrcal motivation for these latter studies. Qur interest in phenomena of
' intensmnahty has been initiated by trying to prove that all Ob]CCtS of an 1dent1ty type are pro-.
positionally equal. This is qmte easy to achieve in extensional CST as - at least in some for-
mulations, e.g. [ML2],[ML3] - it is even put as an axiom that all object of type IdA aa are :
even ]udgementally equal to the canomcai object r A a and in other more recent formulatlons -
of extensional type theory as e.g. in [NPS] it is easily- obtained: by the Reflection Rule.
But for the intensional theory as described e.g. in [NPS] - it is up to now an’ open problem
- whether it can be proved that all objects of an identity type are proposmonally equal. But a
- conceptual analysns of the problem shows that the problem can be solved by an obvious exten-
~ sion of the traditional formulation of intensional CST as descrxbed in {NPS] One sunply has -
* to introduce an new additional eliminator for 1dent1ty types. o
Whereas the traditional eliminator: :

J € {A Set} {C {x: A} {y: A} {z: IdAxy} Set}
' {d:{x: A}Cxx(rAx)} '
{a: A} b {b:A} {c IdAab}
i - Cabc

is the eliminator for the inductive farmly of sets correspondmg to the binary equalrty predlcate
~ (on Set ‘A ) our new addrtlonal ehmlnator o

K 'e {A:Set} {C: {x A} {z: IdAxx} Set}
' {d:{x: A}Cx(rAx)}

{a A} {c: IdAaa}

Cac

: corresponds to the elrmmator for the mducnvely deﬁned family of sets correspondmg to the' ’
unary predicate obtained by dtagona!zzanon of the bznary equality predzcare above.,
Chapter 1 of this work - whlch exclusively deals with syntactic questlons - 1s mainly devoted
to the study of this extension of intensional type theory ‘ ' 4

" After some preliminary observations about different . formulations of extensronal CST

(especially we show that the Reﬂectlon Rule and the n- rule for J are equwalent) we dlscuss_ ‘

the problem of proving that all objects of an identity ty_p_e are proposrt_rona]ly equal and then
analyze the reasons for the apparent undeﬁvabilit'y of this proposition. We show that this pro- o

blem can be solved quite easily after addmg our new additional ehmmator ‘K .. We explain
why it is natural to‘add the new eliminator K and show that it is equivalent to the derivability
of even more obvious propos_ltrons abou_t equality of pairs. We finally relate our new ehmma-
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tor K to other new eliminators for identity types which have evolved in the type theory com-

munity and show that these suggestions can be subsumed under our extension by K.

Finally, referring to a recent observation of Th. Altenkirch, we show that in any “reasonable”

model of intensional type theory the propositional equality of all objects of an identity type

can be proven. Here “reasonable” means that terms of the same type. are equal iff their under-

"_lymg algorithms obtamed by stripping off computationally irrelevant type information are
equal. - -

We have chosen this spec1ﬁc extension of the current formulation of ICST for the following
reasons. - '

. Firstly it has-been‘ our pe_rsohéll motivation (initiated by a question of Th. _Coqiiand) to enter
the field of intensibnality and - more impoitant - the subtleties of intensional type theory are
concetrated into the intriguing interplay between judgemental and propositional equality.
‘Secondly this extension is necessary for fullfilling the central claim of the underlying phlloso-
'phy of intensional CST, namely that it should be derivable in the theory that any object a of
an 'inductive type is propos1t10nally equal to a canonical object ¢ * which is obtained by
applying a uniquely determined constructor to the components of the ob]ect a. Thisis a gene-
ralization of surjective pairing or the n-rule for functional types to arbzrrary inductive types.
The eliminator K can be interpreted in the models discussed in chapters 2 and 3 as easily as

 the eliminator J . Therefore we think this example strongly supports our claim that in order to
check whether a suggested extension of intensional CST is reasonable a good test is trying to
interpret it in the models we study in the subsequent chapters.

Chaprer 2

This is the first chapter presentmg a model which is non-extensional. It 1s based on previous
~ work by P. Aczel [Acz]. Whereas he gives a model where one only can interpret Set, ie. :
* small types, we extend his model ina way that the ambient Togical framework can be interpre-
téd. The model is most concisely described as the sconing of Freyd cover of some appropriate
category of domains. Expressed in elementary terms the underlying category can be described
as follows. The objects are triples X = (X, D, r) where. X is an arbitrary set, D is an .
arbitrary domain and r is an arbitrary mapping associating with any object x &€ X its reaiizer
r(dye D.A morphism from X;=(Xy,D;,r7) to. Xo=(Xy,D,,17) is given by a set- -
theoretic function f: X, — X, fogether with a domain morphlsm (e.g. a Scott continuous
function or a stable function) a: D) — Dy such that rz(f(x)) a(ry(x)) forall x e Xl
Intuitively that means that the domain morphism a maps the realizer for an argument to the
realizer for the result. We say that a realizes the function and f is the underlying set-theore-
tic function of the type-theoretic function. Peter Aczel’s original model can be recovered from
our more gencral setting by Testriction to those X = (X, D,r) where X isa subsetof D
and T is the inclusion map of X into D and D-is some arbitrary (domain) model of (an -
extension of) untyped A-calculus fixed in advance. But for interpreting e.g. the big type Set -
as needed for mterpretmo the ambient logical framework - then one has to exploit the full
generality of our setting. The type Set will be interpreted as the triple ( P(D) , 1 ,r:
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P(D)->1) where D is some domain model of (an extension) of untyped A-calculus. Similarly

the interpretation of a type of families of sets will also have as underlying domain a trivial one

containing exactly one object. This trivial realizability structure reflects the intuition that ele- .

ments of such big ‘meta’-types do not carry any computaionally relevant information.

In Chapter 2 we will show that this structure provides a model for predicative Intensional
“Constructive Set Theory and satisfies the followmg two criteria of intensionality

(D) A:-Set,_x:A,_y:A,z:IdA"xy4—x=y e A
is not valid
2) Fp g--IdAis implies P-t':seA

Furthermore we show that it is not valid in these models that functions which are pointwise
equal are already equal as objects of their function type, i.e. the extensionality principle for
Junctions fails. Furthermore we show that in. general functions defined on one of the usual -
_inductive types may be different even if they give the same results when applied to objects in
constructor form. Therefore the n-rules for inductive types - which are typical for extensional -
type theory - fail in our models as they state the uniqueness of eliminatidn, i.e. that functions
“on an inductive type are determined uniquely by their behaviour on objeCts in constructor
form. ' : o
One drawback of the model studied in Chapter 2 is that it can be extended to a model of
zmpredzcatzve {CST only in a restricted sense.
A more cruc:lal drawback of this model is that it validates the followmg scquent

(3) A:[Se;,B.:A-»_s'et,-sz,y:A_,z:IdAxy F Bx =By

which 'd'eﬁﬁiteiy should not hold for a fully intensional model. But sequent (3) has been assu-
med in the type theory employed by J. Smith in his Thesis [Smi]. This is not a big surprise as
there he gave an axiomatization of type theory which is.complete w.L.L. 10 a (syntactic) inter-
pretation in a so-called theory of constructions, i.e. a first order constructive theory of A-cal-
culus extended with pairing, natural numbers etc.

Chapter 3 - _

To overcome these drawbacks in Chapter 3 we introduce a fufly mtensmnal model of ICST- .
satisfying the c_ntena (1) and (2) and furthermore refutes the sequent (3)-and allows to inter-
pret irripr?;di_cative ICST where the type Set is closed under arbitrary dependent products !-

A particularly pleasing aspect of this model is its simplicity. It is obtained only by a slight
. modification of the well-known realizability model for extensional type theory based on w--
Set' which was originally introduced by E. Moggi and studied to great detail by a lot of aut-
hors (cf. e.g. [Str1]). The suitability and flexibility of ®-Set as a model for extensional type
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theory has been exploited especially in order to obtain independence results (cf. [Str2],[Str3]).
The main advantage of the realizability model is that one can compute in it almost like in Set
- one only has to provide a realizer for any function defined in terms of naive set theory and as
long as the definition is constructive enough one obtains a required realizer by appealing to
Church’s Thesis (which - with some _effort‘ - can be made into a precise argument !).

Now, 1nstead of ®-Set - from now on called r-Set (acronym for reahzablhty sets) -
employ the category mr-Set (acronym for modified realizability sets).

. This alternative choice is not of a purely techmcai nature but has its origin in the following
conceptual analysis.

What we want to refute in a non—extensmnal model of CST is that functlons are already equal
if they give the same result when applied to ‘canonical’ objects as arguments. On the syntacti-
cal level one can have the phenomenon that two function terms give the same result up to con-
Vertlblhty when applied to arbitrary closed terms of the correct type but are not equal, i.e. not
convertible, when applied to an open term of the appropriate type as €. g. a variable of that .
type. When we want to mimick this syntactic phenomenon on the level of semantics we come
to the conclusion that variables do not only range over ‘canonical’, i.e. actual objects, but also
* over so-called potential objects which are not really denotable by terms but which could be
made denotable by some future extension of the syntax. Now if one- accepts these potential
objects then it may quite well be the case that two functions show the same behaviour on all
actual objects but give different results when applied to non-actual potential objects. o
‘This distinction between potential and actual objects arises from the ancient Greek idea that in
order to prove a universal statement it is sufficient to prove the statement for a most general
object of the appropriate type. The point is that it is impossible to give serhantical status to the
informal concept of a ‘most general object’. Instead we allow an arbitrary collection of non-

~ . actual, only potential objects which rogether 31mulate the idea of a ‘most general object’ by

modifying the above mentioned ancient Greek idea in the followmg way ! to prove a universal
statement is to prove the statement for all potential objects and notonly the actual ones !

Based on this consideration we accordingly define the category mr-Set. as follows : an mr-set
is an r-set together with a distinguished subset of actual objects and morphisms between mr-
sets are simply morphisms between the underlying r-sets which in addition preserve actual
- objects. This categoi'y serves as a model for the ambient logical framework which has to be
extensional. The crucial point for full iﬂtensionality is how Set is interpreted. A set (in the
sense of ICST) is an mr-set where potential objects are uniqdely determined by their realizers
~and there is always a (potential) object realized by 0 serving as a defauit or error element
allowing to refute universal proposmons even if they are vahd for all mstances by canomcal
" objects.. : ' '
In Chapter 3 we demonstrate that this model is really fully intensional and that the extensiona- -
lity principle fails for functions. Furthermore we show that the inductive type N of natural
numbers is not isomorphic to a certain W-type which in the extensional theory is isomorphic
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to N . We further show that that in our model the empty type Ng and"th‘e singleton type N,
do not satisfy several propositions which intuitively seem to be valid and can be proven in the:
‘extensional theory. _
" Due to the fact that the model based on mr-Set allows to mterpret 1mpredlcat1ve universal
quantification one has Leibniz equahty types in parallel with Martin-Lof’s identity types. We '
investigate the relation between these two concepts of propositional equality. First we show
that in the Extended Calculus of Constructions they are not even equxvalent if Martin-L6f’s
identity types do not live on the level of the type Prop but on the level of Type(0) . If both
" notions of prop051t1onal equality live on the level of the impredicative type Set then we show
that - also they are equivalént - they are not isomorphic. The reason for this phenomenon 1s
that for Martin-Lof 1dent1ty types realizers for actual objects are recursively separable frorn'
realizers for non-actual ObjeCtS whereas this is not the case for Leibniz equality types.
Finally we show that sets in the sense of ICST can also be interpreted as some kind of effec-
tive domains (complete extensional pers with bottom, cf. [FMRS]) with a distinguished sub-
collection of actuai objects. For this interpretation of Set it is shown that % cannot be
' 1nterpreted
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Chapter 1
Syntactic "Aspect_s of Intensional Constructive Set Theory

In thls chapter we will d1scuss syntactic aspects of Intensxonal Constructive Set Theory _
In the first section we show that the dlstmgmshmg feature of intensional CST is that the
notions of Judgemental and proposmonal equality are not equwalent anymore as in the exten-
sional theory. We show that the reflection rule of extenSion’al CST which makes both notions
of equality equivalent can be expressed in a purely equanonai way- by an n-rule for the elum-
nator -J for Martin-Lo6f’s Identity Sets. :
In the second section we discuss the apparent incompleteness of the current forrnulation of .
ICST w.r.t. the derivability of the proposition expressmg that all objects p ofset [dAaa are
| are proposmonally equal to the canonical object r A a. We introduce a new elimihator K for
1dent1ty sets and some equivalent formulatlon and show that K is equwalent to several intui-
tively valid propositions. '
In section 3 we show that another eliminator for 1dent1ty sets suggested by Ch. Paulin-Mohr-
ing can be expressed by our K and cite a proof of the fact that under under the assumption of '_
impredicativity for Set Paulin- -Mohring’s ellmmator can be defined already in terms of Mar-
tin-Lof’s J . S -
In section 5 we generahze our new ehmmator K by mtroducmg the concept of identity sets
for set contexts where with an identity set for a context of length n there are associated n+1
eliminators. In the case of n=1 the two ehmmators correspond to Martm Lof’s ehn:unator J
“and our ehmmator K. : '
In section 6 we show that under the assumptlon of a so-called uniformity principle the einm-
nator K canbe expressed in terms of T . The uniformity pnnCIpIe which is valid in all known
models which are not term models claims that any two terms of the same type whose under-
lying algorithms are convertible are already Judgementally equal. '
Finally in section 7 we discuss our extensions of ICST and relate it to the perspecuve of a
~ more liberal conception of ICST introduced by Th. Coguand where intensional type theory is
‘conceived as an open é_ystem allowing de__ﬁnit_ion schemes extending structural recursion.

1.1 Intensional Yersus Exte'nsioual Constructive Sét'Theory

" Over the years Martin-Lof's Construcnve Set Theory has undergone a lot of changes. The
main changes were motwated by the following quesuons

(D Should one disting’uish bet'weeu in‘t_ensi'onal and extensional equality ?
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(2) - How can the textual macro structure of mathematical theories itself
_ be expressed in a type theoretic language ?

The answer to the second question has led to the development of so called logical frameworks
- which have been implemented. quite successfully and allow to "declare” ones favorite type
theory in very high level languages, namely the logical frameworks, which - in the essence -
are the core of deBruijn's AUTOMATH languages, i.. a dependently typed A-calculus with
product types, the so called H -types . .

To the first question - which will be our main concern here - the final answer has not yet been
given and probably extensional and intensional constructive set theory have merits of their
own. ' _ _ o : - o

Surely, intensional constructive set theory is not as weH understood as the extensional one - at
least from the semantical point of view. But it is of great practlcal relevance as the shift to
- intensional constructive set theory facilitates the construction of computerized support
systems for constructive set theories. -

- Now, of course, one might think of mtcnswnal constructive set theory as the best approxima-
tion to extensional constructive set theory - which still satisfies normalisation, decidability of
_ .'type checking etc. But if one wants to understand the defects of intensional constructive set
- theory (w.r.t. expressivity compared with extensional constructive set theory) it seems to be
1nev1table to have nice models at hand in order to derive independence results.

But before one can construct models-one first has to ‘understand the conceptual differences
between proposirional and judgemental equality. Actually, an understanding of these differen-
ces is necessary even for the most simple minded use of Martin—L&f's identity sets.. '
Quite generaHy one can say that in constructive set theory the notion of identity or equal:ty

appears in two different forms. Qn the one hand as a judgement of the form t=s & A stating 7

that "t and s are both objects of set A and definitionally equal as such " and on the other
hand as the proposmon(al set) Id A ts whose objects are the proof objects or reahzers for the
proposition that "t and s are equal objects of set A " . If we know that 1d A ts is aset we
-also know that te A and se A~ which, of course, does not at ali imply that there is an object
~ contained in the set Td A ts .

In all versions of constructive set theory one has reflexivity of proposmonal equality, i.e. one =

can prove from the judgement t =s & A that for some object p we have pe IdAts. By
‘meta-mathematical reasoning it follows that if pe Id A ts is derivable w.r.t. the empty con-

“textthen t=s€ A is derivable w.r.t. the empty context as well. Thus --when reasoning abso-

lutely, Le. not using any non- -analytical material assumptlons - then the two concepts of
identity do coincide. This latter meta-mathematical property has been discussed in Z. Luo's-
- Thests [L1] and baptized there as "equality reflection lemma". :

Alas, the situation is quite different when reasoning w.r.t. non- empty contexts where the exi-
stence of some mathematical objects or the validity of some mathematical facts is assumed
“which are not guaranteed by purely logical reasons. A simple, but typical example is the follo-
wmg Consider the context x : N - (where N is the type of natural numbers) and relative to
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this context the terms t = [X (N x and s = [X:NJRO([x: N][y': N] suce y) x which repre-
sent different ways of computing the identity function on natural numbers. Then there is no
‘way to derive the sequent x:N F tx=sx € N as there is no way to convert or rewrite the
term R O ([x : N][y : N] succ y) X to-the term x . This.phenomenon is intended as t and s
are intensionally different in the sense that they correspond_to.different aigérith'ms‘co'mputing
the identity function on natural numbers. Nevertheless - using induction - we can construct a -
term p suchthat x:N +pe Id N (tx) (s x) . The latter judgement expresses that whenever
one substitutes for x a canoni_cai object ¢ of type N then t ¢ and s c both reduce to the _
same canonical element of type N . That means that for any choice of concrete values for the
‘variables in the contexr respectmg the type requirements of the context - the instances of tx
and s x are equal even in the sense of deﬁmtional identity.

Now should one consider this as a defect of the theory or as something intended ? Perhaps this
is a matter of taste, but anyway, there are two different ways of coping with that problem !’
One is to accept the difference between these two notions of identity as done in the original
version of constructive set theory, see [ML1], and in the current “official’ one, see [NPS],
which results in the so called intensional constructive set theory. The other one is to (try‘tb)
remedy this ‘defect’ by adding further rules as e.g. in [MLZ2], [ML3] which resuits in the so
called extensional constructive set theory. '

The only rule which distinguishes extensional from intensional set theory is the so called
Reflection Rule.

Th-peldAts

F'Ft=se A

which does not fit into the aesthetically appealing pattem- of introduction and'elimination'
rules As we shall see immediately quite serious problems are caused by this rule !

Of course, there is no problem at all with consistency but adding the Reflection Rule has an
€normous 1mpact on the computatlonal behaviour of the underlying functional language.

If one thinks that computatlon essentially is (applying) conversion (rules) then an elementary.
computation step might requlre to prove that considerably abstract objects as e.g. functions
between natural numbers are equal. As we know such proofs may be arbitrarily complicated.
-Actually, it is exactly this class of prop031t10ns_ wherein arithmetic becomes incomplete (the
* famous Gédel sentence is of the form (Vn) proves(n,’G") =0 where proves is a binary pri-
‘mitive recursive function and 'G’ is the Gﬁde_l number of the Gddel sentence).

In order to understand the special status of the Reflection Rule we first have to reconsider the
general scheme of the introduction and elimination rules for non-circular inductive sets as e.g.
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IT-, - or Id-sets (for circular inductive sets see [Dybl).

For each non-circular znducrzve set finitely many mtroducnon rules descnbe how to construct
canonical elements of this set. ‘ .
In the logical framework approach this means that with any set A there is assocmted a finite

number of constructors
_introir € {yi,l'-:Bm}...{yi,ji;Bi;ji}A _ (1e[1 n]) -

By definition a cdnénical objeet in A is g’iven by a term of the form' intro; ¢ . -G E A for =
- some i€ [l,n] and canonical objects cq.€ B, ... € BIJ [€1 4 5C1/ ) Vil ~Yije 1}
Furthermore for any farmly C of sets indexed over the set A and any mappings

di G {Yi,l - Bl,l} {.yi,ji : Bi,jj} C (iﬂthi ¥i,1 --- Yi.j;)_ - | (i € [1,n])
'. there is a canonical rﬁapping'
Elimd; ...d, € {x: A} Cx

whose behaviour on objects in constructor form - and therefore on canonical objects - is as
prescribed by the mappings d;, i.e.forall ie [1,n] and y; € By, ..., Yij; € Bij .

Elimd, ... dn (iﬁu'o-i y-i,l _yivj-i) = dyyi 1 ..__._-}’.i,ji e C (_intl'Oi yi,l "'_Yi»ji)_

This situation is illustrated by the foilowmg diagram where proj stands for the canonzcal pro-

jection of the context x : A, z: Cx to the context x : A:and the map Ehm dy .o dy s

, understood to be a section of proj,i.e. projeElimd; ... d, = id,.4, and the diagm is supoo-
sed to hold forall i€ {1,n]. : ' '

,z:Cx -

o XA
Elimd, ... d H; proj
X1 A R

¥i1:Bigs sy By eee——
bl ; ,‘_I’J' b mtrql

Now as the very assumption-of constructive set theory is that all objects in a set are equal to
_'an object in constructor form it is natural to assume that a function is uniquely determined by
its behaviour on canomcal elements as long as we insist on extensional equahty, where two
functions are equal iff they give the same value for all arguments. -

This s‘hggests the following uniqueness of elimination rule for objects of set A :
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"If f,ge {x:.A}C); :
and forall ie [1,n] and Yi,1 € Bi-,l , Yij G Bi',ji"

oy vig) = g'(i“-‘?_Oi it ¥ig)  Climmoi 1 - vig)
then f%g€{$iA}'CX | |

An alternative way to express uniqueness of elimination 15 to claim the following équivalent
tule which strongly resembles the n-rulé known from untyped A-calculus : '

Forany fe {x:A}Cx
Elim ... ([vi1: Bi;l]...'[yi‘ji: Bisji] 'f(ihtroi Yiil --- y;J;)') ..=fe '{x A} Cx .
Not all of these rules ex’p‘réésixig uniqueness of elimination. for the varioi]s in‘ductively defined
sets of Martin-Lo6f's exténsional Constructive Set Theory are. part: of the traditional formula-
tion as can be found e.g. in [MLZ] or [ML3]. Actually, it is sufficient to claim uniqueness of
elimination for identity sets only as this is equwalent to the ordmary Reﬂectlon Rule as shown
in the following Theorem 1.1. ' :

© Theorem 1.1

~ Ifwe add to ixﬁtcnsional- constructive set theory the following axiom e'xprcsé-ing u_niquenésé of
~ elimination for idemity sets :

A Set , C {x Al {y: A}{Z IdAxy} Set,

e {x:A)Y{y:A}{z:ldAxy}Cxyz .

- _ ' B _ , _ _
JAC(x:Alexx(tAx) =e € {x:A}{y: A} {z:ldAxy}Cxyz

theh we can derive the Reflection Rule.

Proof : Assuine uniqueness of elimination for J . Let A'e Set . Then we define a family C
=[x:Ally: A] [z IdAXY]A oftyp_e {x';,A} {y:A}{z:Hd A xy} Sét and two functions

prli= [x:Ally:A] Lz AXY] x € {x:A}{y:A} {z:ldAxy}A

p2i= [x:Al[y:Allz:JdAxy] y € {x:A}{y: A} (z:ldAxy}A .

=15




Chaptef 1

From the definition of pr-l' and pr-2L it is obvious that
[x:A]prllxx(rAx)z{x:A']rxz[x CAlpr2 xx(rAx) € (A)A
as we have
Xx:A F pr1 X X (rAx) =([x:A] [y cAllz:1d Ax‘y] XIXXTAX)=X
and
XA F przxx(rAx)z([i(:_A] fy: Al {z:__IdAx;%] ¥Y)XX(rAx)=x
Thﬁs we get bf/ symmetry'-and transitiﬁfity that | | |
| J'.A C(x _:.A} pri x ‘x.(rA X)) =1J AC (x:A]pr2xx(rAx))
But from u_niqueness of elirr'xinatiodn for I we get that
prl =J A C([x . ATprl XX (A X)) € {x LA}y 1A {z: A yl A
| pr.Z. :JAC.([x:A].prZXX(rAx)) e (x Al {y:Al(z:ldAxy] A
and theref;)re again by trﬁnsitivity ang symimetry we gé't that
pri=pr2e (x:A}{y A {z:IAXY)A .
- Now assume that tre' A and se A and p.e Id A ts. Then we get immediately that
'prl tsp‘.: pr2tsp € A
but according :torthe d‘e.ﬁ.hiti.on of prl and pr2 we get that
pritsp=teA and pr2tsp =5 €A
and therefor¢ by symmetfy and tiansitivity ﬁnally that
t=s 'e. A . o

" The inverse direction claiming that the Reflection Rule implies the uniqueness of elimination

is quite standard and follows from the fact that from the Reflection Rule one can prove uni- *
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quéness of elimination for arbitrary eliminators for non-circular inductive sets.

The proof idea is as follows. Let f and g be functions which are defined on an inductive set
A and assume that their results are judgementally equal when applied to objects in set” A -
which are in constructor form. Then by elimination over the inductive set under consideration
one can prove that f and g when applied to arbitary objects x in set A give results f(x)
and g(x) which are equal in the sense of propositional equality. Now by the Reflection Rule
" one can conclude that f(x) and g(x) are judgementally equal for arbitrary objects x in the.
. set A . From this we can conclude that [x : A} f(x) and [x:A] g(x) are judgementally equal -
and by the n-rule of the logical framework we finally get that f and g are judgementally
equal. - '

Thu_s we have shown that - suprisingly - the Reﬂeét:‘on Rule can be expressed in a purely
equational way by an 1j-like for the eliminator J . We know that in case of the type--ffee or the
simply typed A- calculus the n-rule does not destroy the Church-Rosser property of the rewrite
system prov:dmg the operational semantics of these. functional languages. Therefore, at first
sight, one might imagine that one can give a well-behaved operational semantics for the
underlying functional langnage of intensional set theory as well because we only add some-

thing like an n-rule to the rewrite system. On the other hand we have seen that some computa— 7 '

tion steps in extensional set thcory require proving arbitrarily complex equality propositions.
In principle it might be the case that although some computation steps are very c_ompiex
" adding the m-like rule for J nevertheless gives rise to a well-behaved operational semantics. -
But this is not the case as the n-like rule for J leads to a non- conﬂuent term rewriting system
for the underlying functlonal language.
This can be seen from the following counterexample.
- Consider again the function
prl = [x:Al{y:AMz:IdAxy] x € {x: A} {y: A} {z:IdAxy} A
| from the proof of Theorem 1.1 . Then due to the n-like rule for J |
JAC(x:Alexx(TAx) ==>.¢
and by putting C :="[x_:_ Ally:Alfz: IdA Xxy] A and e :=prl we get
TA C(x:Alprlxx(tAx)) ==> prl

Due to the deﬁniti_on_ of prl we get by applying B-reducﬁon to the redex prl x x (r A x) that

CJAC(x:A]lprl xx (TAX) ==> JAC(x:A]x)
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. But, obviously, pri,ie. [x:Ally:-Al[z:IdAxy] x ,and JAC ([x: A] X) -are different
normal forms. ) : : '

An_altemative - maybe easier - way of showi.ng that adding the m-like rule for J to the rewrite
system does not lead to a confluent and strongly normalizing rewrite system is the following.
If one adds the - Alike rule for J then one can derive the Reﬂectlon Rule which in turn allows
to denve '

prl=pr2e {x:A}{y:A}{z:ldAxy} A

Therefore if the extended term rewriting 'sy.sten.l were confluent the terms "prl and pr2 would
have to reduce to a common normal form. But both prl and pr2 themselves are already in
: normal fonn and different. '

Thus there is no chance to add‘ the m-like rule for J _ to the rewrite system and to keep at the -
same time the meta—mathematical property of confluence. For the same reason it is impossible
to keep the even stronger property of strong normaltzatxon whtch is. badly needed when one
“wants to. make type checkmg de01dable :

The conclusion we have to draw is that adding n -like rules {6 a rewrite system for a func’"tiolnal '

language 1s very problemanc 1t only works well for the classxcal case of dependent product'.
_ types : .

Therefore we are forced to accept that there 18 a pnnc:pal dlfference between B—hke and n—

like rules. The P-like rules are necessary for computation and therefore harmless whereas the

n-like rules in almost all cases lead to a non- conﬂuent rewrite - system ie. to a very badly '-

behaved, non-deterministic notion of computatlon :

On the other hand n~like rules allow to prove the Jjudgemental equality of functions defined

over a non-circular inductive set simply by checking that they behave the same way on objects

in constructor form or - in case of real circularity of the inductive deﬁ'nition - that they satisfy
' the same recursion scherme. Therefore if one insists on the ldentlﬁcanon of propositional and

- Judgemental equality there is no way 1o avoid these n-like rules and therefore one gets as a

- consequence that one cannot interpret proofs as programs because the notion of computatton :
for proofs is not. weIl behaved namely h]ghly nondeterministic. : '

'Thus if one wants. to keep the paradigm of proofs as pmg:ams one has to gzve up the
reﬂecnon rule and stick 1o mrenswnal Iype rheorv : : o

- Of course, now the problem an’ses to understand the difference between judgemental and pro-

positional equality - a subtle distinction not very common- place even in constructtve mathe-
matics. -
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For a semantically oriented person this, of course, can be achieved in the best way by conside-
" ring models where these two different notions of equality do not coincide, i.e. to study non-
" extensional models of constructive set theory. The investigation of such models will be a cen-
tral subject of this work and will be treated in the subsequent Chapters 2 and 3 .

But before we want to improve the intuitive understanding of the difference between judge-
‘mental and propositional equality. ' '

" The best way to understand it - I believe - is to consider the identity type Id A'ts as a propo-
‘sition stating a relation between the objects denoted by the terms t and s, respectively, whe-
reas the judgement t='s € A is a statement of a relation between the terms t and s, ' namely
that one can prove their cquahty by purely equatxonal reasomng using only the rules of the
logical framework and the B-like rules for the eliminators. ‘
' Now the point of view of intensional constructive set theory is that closed terms which are
well formed, i.e. have a type, denote equal objects iff the terms are convertible. That surely is
‘evident for simple basic sets such as natural numbers, enumeration types, lists, trees etc., but
for higher types ase.g. N’ — N it is a topic of debate whether functions should be con51dered _
as equal only if they are convertible. E.g. if we consider the functlons

t=[xN]x and SE{X:N]RO([x:N][y:N].succy)x

of tSfpe N — N of our original example which both compute the identity function on natural
-‘numbers then it might seem hard to accept that they are different. On the other hand when
“considered as algonthms they are different as their tlme complexity is different (constant vs.
linear 1). :
Anyway in intensional type- theory the situation is that the Judgement t=se N - N isnot
provable and there cannot be a term p of type Id (N—=N)ts as thlS would by the Idennty
Reflection Lemma entail the judgement t=se N—=N. ' _
Nevertheless it is also zmposs:ble to derive the negation of the proposmon Id (N—-}N) ts,ie.
" to exhibit a term of type (Id (N—N) ts) — Ng . The reason is that there is a model, namely
_ the naive set-theoretical one, where t and s get the same interpretation and therefore the type
(Id (N—N) t $)— No is empty. Similarly this holds for the various realizability models based
- on w-Set as studied e.g. in [Str1] and more generally in- any model of extensmnal CST which
is consistent in the sense that N is.empty. :
Obviously, as. intensional CST snnply is a restriction of extens1onal CST less sequents become
provable in the intensional variant. Therefore it might be better to use the more negative word
“non-extensional” instead of the more positive word “intensional” which misleadingly sug-
T gest that one can speak about intensional aspects of objects which cannot be expressed in the
‘extensional theory. As we do not want to violate a well established terminoiogy we neverthe-
“less stick to the word “intensional” although we only mean “non- -extensional”.
o One might call a CST monglv intensional if it would allow to derive some proposition as
inhablted which are empty in some model of extensmnal set theory. E.g. one might postulate
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some constant p of type (Id (N —= N) ts) - Ny which in extensional CST - where one can
find an object q of type Id (N — N) t s - would have the,_consequcnce that p(q) € Ny. -
This surely could be done in a consistent way but it seems to be impossible to find intuitive
and correct computation rules for the constant p . Therefore - if one wants to do this at all - it
would be sufficient to. reason reiauve to a context where p is declared as a variable of type
(Id(N-—>N)ts)—Ny. - _
‘Anyway, it does noi seem very worthwhile to have a version of CST where one can prove that
functional objects are intensionally different although one can also prove that they are pomt-
wise equal (as e.g. for our terms t and s where one can find a term of the propositional type -
(Id (N = N) t s) = Ny as one can ﬁndatermoftype te ITN ([n:N] IdN(tn) (s n) ). The
reason is that the notion of intensional or judgemental equality i is heavily syntax-dependent -
and therefore ad hoc , 1.e. one might think of an alternative syntactic representation system for
~ abstract objects like functions or snnply of additional conversion rules where terms which pre-
viously were not convertible get convertible by adding new computation rules.

But surely it is a questlon of phﬂosophlcal debate whether one wants to make a distinction
“between a term and the object it denotes. The point is that the assumption of the existence of
-abstract mathematical objects (as e.g. functions) independent from syntax may be considéred

‘as a quite idealistic attltudc Nevertheless, at least for people trained in Tarskian model-theore- .

tic semantics the dlstmcnon between syntactic representations and the abstract objects they
denotc is very helpful in orvamzmg their thoughts.

Summing up the considerations above the situation to our opinion is the following. -

Even if one would like to speak about extensional equality in the framework of Martin-L6f's
© constructive set theory it is not possible to do so as long as one wants to keep meta-mathema-
~ tical properties of the underlying functional language such as confluence and strong normali-
sation. As long as one wantsto extract programs from proofs one cannot give up such
constraints as well-behavedness of the operational semantics of the (functional) prbgrams.
This leads to the conclusion that one cannot identify programs and constructive proofs 1o such
an extent as intended originally without either exrending' ones notion of functional program in
an unreasonable way or restricting ones notion oj'marhematics' to a non-extensional one.
Intensional constructive set theory seems to be of great importance, especially from a practical -
point of view, but it is ‘not yet very well understood from a semantical point of view. Therefore '
- we are mainly interested in .understanding intensional constructive set theory- by studylng
 models which refute a lot of judgements for which heuristic considerations have suggested
that they are not derivable in intensional constructive set theory.

But before starting sernantics we want to expand on some considerations about the strength of '

current formulations of intensional constructive set theory thereby suggesting and studying a
natural and quite powerful new eliminator for identity sets.
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1.2 Limitations of Current Formulations of Intensional CST and
How to Avoid Them by the New Eliminator K

Quite genetally in consi_:ructive set theory a basic assumption is that any object of an inductive
set is “equal” to an.object in constructor form, i.e. objects of dependent product sets are fun-
-~ ctional abstractions, objects of sum sets are pairs, objects of identity sets are of the form rAa
etc. .But; of course, there immediately arises the question which sense of equality‘ismem;t
"'This question is relevant w.r.t. nonempty contexts only as otherw1se both notions of equahty
" do coincide. :

Later on we shall see that there are models where not any typable term (in a non-empty con-
text) is judgementally equal to a term in constructor form. This is due to the fact that in ‘these
models uniqueness of elimination i not valid in the sense.of judgemental equality. Neverthe-
less we will show that in the sense of propos1t10nal equality any term is equal to a term in con-
structor form by proving that uniqueness of elimination holds in the sense of proposmonal
equahty

For illustrating the general scheme we ﬁfs_t will construct a term p proving that any object of
product type is propositionally equal to an object in constructor form, i.e.

. A:Set,B:{x:A}Seﬁ,c:HAB_
pe d(ITAB)c(LAB([x:Alapply ABcx))

Due to F-elimination it is enough to prove the propositional equality for most general objects
~ in constructor form of the type TIAB .

From the converszon rule for F we immediately g get the denved conversion rule for apply
A:. Set,'B-: {x': A}l Set,- f:_{}.(':A} Bx,x:A'
apply ABLABfHx=fx € Bx~
Therefore we get by funcﬁonal abstraction that
A:Se_t,B: [x:A}Set, f:{x:A}Bx
= | o _ - |
[x:Alapply AB(AABDx=[x:AJfx € {x:A}Bx

| .As T}-conversion ho.lds. bn the leyél of the logical framework we further get that

A:Set.B:{A}Set, f:(x:A}Bx
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b 3 |
[x:A}lfx =f e {x:A}Bx

and by equality resoning we then get

A:Set,B:{x:A}Set, f:{x:A}Bx
= [x:A]_a’ppl’yAB._(?x’AB_f) € {x:A}Bx ~

_ Further by applying A-abstraction we get |

_.A:'-Set_,B':.{x:A}Set_,f:.{x:A}BX
'(xABﬂ;xAB([x:__A]applyAB(xABf)‘x)e:HA-B'

From this and the following instance of the intrdduct_iori rule for identity sets

 A:Set.B:{x:A)Set, f:{x:A}Bx
 r(AB)(\ABH ¢ HUITAB)LABD(AABD

we get that - B

. A:Set,B:{x,:A}Set, f:{x:A}.'B\x :
r(ITAB)(AABD € IdITAB)(AABDH(AAB ((x: Alapply AB(LABDX)

Finally by F-elimination we get

= A_:_Set.,B- :‘.{x:'A} Set,c:ITAB.
FAB([c:[1ABJId(TTAB)c(A AB ([x : A} apply A Bcx))
([f:(x:A}BxIr(MAB)(AABD) _
IdJITAB)c(AAB ([x: A] applyABc-'x))_j :

_ Following the same pattern of proof we can also show that any object of a sum type is propo-
sitionally equal to an object in constructor form , i.e. that there is aterm p with

gyl
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A:Set,B: (x:A}Set,c:EITAB)
;._ .
pe Id(EAB)c(parAB(ngABc)(m ABc)).

where 1y and m; are the projections on the first and second component, respectively, and are
defined as follows '

= [A:Set][B:{x:A}Set][c:ZAB]
EAB([z: E:AVB] AY(x:A]lly:Bxlx)c

oftype TA : Set} {B: {x:A} Set} {c:Z AB} A and

“1 = [A Set] [B {x A} Set] [c: ZAB]
EAB([Z EAB]B(ROABZ))([X A][y Bx]y)c

of type [A : Set} {B: (x L AJ Set] {c_:EAB} _B(vtOABc) .

For these projection operatiorns one can derive the scquents
A:Set,B:{x:A}Set,a:A,b:Ba }-'rcOAB(paifABab) =ae A
A:Set,B:{x:A)Set, a:A,b:Ba - mAB(pairABab) =b e Ba

from which_w: get_that ‘

A:Set,B:{x:A}Set,a:A,b:Ba

pair ABab = pair AB (np A B(pair ABab)) (t; AB(pairABab)) € £AB

From this and the follo’Wing_ instance of the Id-introduction rule
A:_Set, B:{x:A}Set,a:A,b:Ba .

r(ZAB)(pair ABab) € Id(ZA B)(pair ABab)(pair ABab)

'we'get‘

A Set, B:-{x.:A}Set', a:A,b:Ba

l_.
r(Z A B) (pair ABab)

X
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€ _ : : : _
1d (£ A B) (pair A B ab) (pair A B (my A B(pair A B ab)) (n; A B(pair AB ab)))

Finally by E-elimination we get

,A:Sct,B:{xI:A}Set ,. c:XAB

Lo
EAB
(f[c: X AB] Id(ZAB)c(pmrAB(nOABc)(nlABc)))
([a: A] [b.Ba]r(ZAB)(paerBab))
c ‘ _
e

1d (S A B) ¢ (pair AB (mg A B 6) (oA B ©)

"Of course, one would like to denve a similar result for 1dent1ty sets. But in this case the -
questmn is a bit more involved as Id is not simply an inductive set'but an inductive family of

sets int the sense of [Dyb] . In the presence of sums of families of sets a good approximation
to an inductively defined family can be obtained by replacing the family by its (iterated) sum.
This can be done quite generally but we will need this only for the special, but typlcal case of
* the inductively deﬁned famlly of 1dent1ty sets. '
Instead of the family of sets I_d € [x Al ly Al Set we consider the set

Ag = TA(X:AIZA(y:AlldAxy)
representing the iterated disjoint union of Id and instead of r the function we consider
= [x:A] triple A x x (T A x)

where

triple = [A: Set] [x: A] [v:Allz:Id Axyl] \ .
pairA([x:A]ZA([y:A]IdAxy))x(pair.A({y:A] IdAXy)yz)

Now we will show that ‘Ag together with the constructor rg carries an inductive structure.
Let Ce {t: Ag) Set and d & {x: A} C(rs x) then the term

t1, '=--JA([x:A]{jf:A][z:IdAxﬂC(tripleAXyz))‘dxyi

-24 -
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satisfies the sequent

x‘:A_., YA, z:IdAxy F il e.C(tripleAxy_z).
andtheterm

@2 =EA Iy : A]IdAxy)([z EA([}’ A]IdAXY)]C(IﬂpICAX).’Z).)
(y:Allz: IdAxy] ﬂ)
v :
.satis_ﬁes the sequeht

x:A,v:ZA([y:AlldAxy) Fi2 e.‘C(pairA([y ~AJIdAXY)xV)
Then the term | -

t=EA (x:A]ZA([y:A]ldAxy) C _
" (x:AlIV:ZA(y:AlIdA xy)]12)

sgtisﬁes the _séq.uent

u:TA(x:AlZA(y:AlldAxy) Ftue Cu
ie.

u:Ag Ftue Cu
‘and by straightforward applicatibn of the reduction rules we get t'hat

X:A [(er)-:'dx' e Clrgx)
Next we will derive that for the inductive type Ag every object c € AS/ is propositionaliy
equal to gt for some term t of type A . It is sufficient to show that for arbitrary x 1 A,y
A,z:IldAxy the objects triplex v z and rg x of type Ag are propositionally equal. This
proposxtlonal equality is exhlbxted by the term

p= J A ([x A][y A][Z Id A x y] Id AS (triple A Xy Z) (rs x)) ([x AlrAg (rS X))

" which is of type

{x:A}{y:A}{z: Id A x v} Id Ag (triple A XYyz) (rs"x-)

-25-
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| asthe term [x: A] rAg (rg x) ‘is of type {x 1 A} Id Ag (rg x) (rg x) which i is deﬁmtlonally :
equalto {x:A}Id As (tnple Axx(rAx)) (rg x) .

By applymg E-ehmmatmn twice one can ﬁnplly _get from P a proof tertn_ g such that
c:Ag Fqc e ldAge(rg(mpA([x: ATZA (Iy: A]JldAxy))c)

* After having shown that relative to the context x:A,y:A,z:IdAxy the objects  triple x
~yz and triple x X (r A x) of type Ag are propositionally equal one ‘might think that it is’ easy

to show that also z and r A x are propositionally equal. But this is impossible as the terms z -

and rAx are of types Id A xy and IdAXx, respectlvely, which are not convertible
" because x and y are not convertible | From the point of view of intensional constructlve set

theory this has to be accepted as quite natural as it Séems to be an intrinsic feature of intensio-

~ nality that Id A Xy -and Id A x x- are not Judgementally equal and therefore neither the type '

Id (Id A xy) z {r'A X) nor the type Id (Id Axx) z(rAx) are well defined. '

But under the stronger assumption that the object z .is of type Id A x x one might hope to

show that 'z is propositionaily equal to the object r A x . This is a meaningful question as -

~ due to the assumption about z-both r Ax and z are terms.of the same type [d A x x.

- Inwitively, this claim should be valid for intensional type theory as for any variable free type

expression A, any term t of type A and anyterm p of type Id Attt - due to strong nor--
~-malization - ‘the term p reduces to a term of the form rA't wherc A converts to A and t .

' converts o t. '

. Thus one would expecr that in mfenszona! type theory one can 1 derive the corresponding pro-

position, i.e. find a terim ofrype x:A}{z:IdAxx}1d(d A xx) z(r AX). '
Unfortunately, this seenis to be impossible ! We will discuss several attempis of finding a term
ofype {x: A} {z:ldAxx}Id(IdAxx)z(r Ax) and explam why theyfatl '

Fi urzhermore we shall introduce a new el:mmator K for Id-types which appears quite natu-

_ rally and Soives fhe problem. :

_A ﬁrst most natural attempt would be to deﬁne a C of type { X: A}{y A}{z Icl Axy} Set'
st [x:Allz: IdAxx] Cxx(rAx) converts to {x "A] [z IdAxx] Id (IdAxx)z(rAx)
In:that case the term .

[x A][z IdAxx]JAC([x A]r(IdAxx)(rAx))xxz

.would be of type {x: A} {z id A x x} 1d (Id A X X)Z (r A x) but unfonunateiy such a C
~ does not s seem to exist as the most 1mmed1ate candidate

[x': Ally: Al [z :-IdAXy] 1d ('I.dAx:X)z(r'A'x) , .-

gl
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is not typable as z is of type . Id Ax y which does not convert to the :xp:cted type IdAXxy.

Anothér attempt would be to prove the prolpositional equzﬂity of z and r A x from the propo-
sitional equality of triple A x x z and -triple A x x (r A x) . But in order to perform this step
we would have to rely on the validity of the sequent

A Set, B: {A} Set,

a:A, bl: Ba b2:Ba, c: Id(EAB)(paerBabl)(pmrABab2)
|_

p € Id (B a)blb2

Whgse derivation - whi'_ch will be given later on as the prdof of Theorerh 1.5 - cssential_ly
makes use of the eliminator K which allows to solve the original problem more directly.

But before we will go to technicalities let us discuss what is the impact of this apparent incom-

pleteness of the current formulation of intensional constructive set theory.

It is not surprising that there must appear incompleteness phenomena as - due to Godel’s
Incompleteness Theotem - for any nontrivial formal system containing arithmetic there must
- be a gap berween formal provability and validity. But what is surprising is that the apparently

“underivable proposition {x : A} {z:IdAxx}Id({d A X x) z(rAx) isof sucha sn'nplc form
and so evident intuitively. : : :

- A possible "phllOSOpthEll" explanation seems to be that the proposmon under con31derat10n :
‘states the propositional equality of objects which usually do not belong to the ontology of
even constructive mathematics - namely of proof objects. in everyday mathemancs such
objects appear as meta- -objects about which nothing can be expressed inside the object lan-
guage. That is not the case for type theory as there one does not speak about formal proofs but
- about proof objects. But as proof objects are a kind of "quasi-meta-objects” which allow to
speak about some meta-aspects in the object language - necessarily in an approximative way
in order to keep cons1stency they are very llkely to cause 1ncomp1eteness phenomena whlch
is a behaviour typICﬂl for meta- staternents

~ Now one might think that this is an over—mterpretatlon as in its purest form the kind of incom-
pleteness we are discussing shows up aiready ina formulatlon where the proposmon which
seems to be unprovable does not at all refer to proof objects : find a proof term p such that

A:Set, B: {A}Set _ '
a:A, bl Ba b2:Ba, c Id(EAB)(paxrABabl)(pairABabZ)
Lo

p € Id(Ba)bl_b2

,._27_
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Here the proposition 1d (B.a) b1 b2 does not refer to any proof objéct - nevertheless it seems
to be impossible to prove the proposition as we do not know how to construct from proof
- object € - establishing that the objects, (palr ABabl) and (pair AB a b2)- are propositio-
nally. equal - a. proof object establishing that their second projections are propositiohally :
- equal, to0. S :

- Nevertheless, I'do not think that the “philOsophical" discussion above is an over-interpretation

because finding a proof term P with

a:A,bl:Ba,b2:Ba, -
¢:IdEAB) (pair A B abl) (pair A B ab2)
[ S ~ :
p e 1d(Bayblb2

is a problem only if the family B is not constant ./ But the only way of introducing non-con-

stant families of sets 18 by using Identity Types !

Therefore - I think - one can draw the conclusion that incompleteness phenomena for proposi-'

tions of simple form do arise due to the fact that ordinary mathematical types and 'pfopdsitioﬂ

nal types - L.e. Lypes of "meta-objects” - are not carefully separated and live in the same
con_cepruél wor{d. : : _ _ ~

But as we think that this mixture of data types and propositional types - though a bit strange

from the point of view of main stream mathermatics - 18 very appealing and challenging we

shall propose a new construct-which allows 10 cope with the incompletenéss phenomena

discussed above. o ' ' '

The _vcry reason for these apparent incompleteness phenomena is that we lack a co_ncept

which allows us to prove in a straightforward way that objects. z and r A X of type Id Axx
are _propositionally" equal relative to the context X 1 A, Z! IdAXX. ;

The usual way to express in type-theoretic Janguage that for any set A and any object a of.
type A the type IdAaa contains exactly the object T A a is to claim that for any family of
ets Ce {x:A}{z:1d A x'x} Set and de {x:A}Cx(r A x) there is a natural extension
of d toan fe (x:AHZ :'IQAxx}.C x z with fa(rAa):da'e'Ca(rAa). forall a€ A.
To express that this natural extension can be chosen uniformly in 'A,C and d we denote it
by KACd £ . S ‘ -
The intuition pehind this formulation is the fo_llow_ing. 1f for some object 2 € A there were an
" object ce€ IdA aa different from tAa then for any family C e {x: Al{z: 1d A x x} Set -
with C ac empty there could notexistan f oftype {(x:A) {z:ldAX x} Cx z evenif there
were an object d € (x:A}Cx(r A x) asthenwe would have fac e Cac contradicting the
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- assumption that Cac is empty. But, of course, the family C with Ca(r A a) the singleton

“type and C ac the empty type for Ob_]CCtS c oftype IdAaa different from r A a is such a
family and nevertheless due to the assumptlon thereisan fe {x: A} {z:1dAxx}Cxz as
there is a function d € {x: A} C x (r Ax) with d a the unigue object of the singleton type
forany a € A . Thus there cannot exist an object ¢ of an identity type Id A a a such that c
" is different from r A a. : | :

" More formally, the rules governing the use of 'K can be stated in a way following the well
known pattern for elimination operators.

Definition 1.2
There is a constant

K e {A:Set} {_C:{x:A} {z': IdAxx} Set} {d: {x:A}Cx(rAx).}
{x*A}{z:ldAxx}Cxz '

satisfyiﬁg the conversion mlé

A:Set,C:{x:A){z:1dAxx}Set, d: {x:A} Cx(rAx),a:A

KACda(tAa) =dae Ca(rAa) o

Using the terminology of inductive types, see [Dyb} , one can rephrase the definition above
mformally as follows. For any set A not only the family of sets Id A € {a,b: A} Set carries
an inductive structure (expressed by the eliminator J) but also the subfamily [a: A]ld Aaa
carries an inductive structure as given by the constructor r A and the eliminator K .
Compared with the traditional approach to inductive types it seems a bit unorthodox to endow_

one and the same family of sets with two different inductive structures. But isn't it the case that -
identity sets themselves are a Iittle bit unOrthodox N

Next we will show that usmg our new eliminator K it is quite easy to prove that any object of
an 1dent1ry type IdAaais proposmonaily equal to the object r A a in constructor form.

' _The'orem 1.3
Let C = [A:Set][x:Al[z:1dAxx] M(dAxx)z(rAx) then forthe term
prfl = [A:Set] KA(CA)(x:Alr(IdAxx) (rAx)

it holds that
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| pril e {A CSet)(x: ANz TdAxx} 1d (Id A x x) 2t AX) -
'F'urthel‘-mor.é a K-eliminator can be defined from any' hypothetical h.arm_.
prf_ € {A:Seti{x: A}{z: I_dA xx} 1d ('Id'A X X) z'(_r.Ax)-. . |
satisfying the conv.e-.rsic;n rﬁle_ - |

A:Set,a: A
T F

Proof : | Fi_rst wc; construct an zipprdpriéte term prf 1 using K - As
: 'A._: Set I— 'fx :IA} .r (I_d A.x X)(TAX) € {x:A}C A (rAx)(r A.-x) ..
we ‘have due to the aef_i_nition of K that the term | |
o i)r'fi- s (A set]_'KA (C A) (fx: Alr (d A').c.xj ,(.rA X))
s thypé | | -
| (A" Set} {x: A}z A x x} C AzGAx)
which by expandihg the deﬁlflit;l.'().[_l of C éénvgrts té.
B {A:Set} {x: A:}'{:z‘ : I_ci A..x x} -id'(ld'A-x -x) z .(r_ A x) '~
Fbr pfov__ing thé second part of thé tﬁeorem assume: that -
'p}f e {A: .Set.} {x:AHz o A " x} 1d (dAxX)z( A x)
S'atisfying thg-co'm‘f'ers;ion‘ru.ie o | |
A.: Set ,.a A 7' _
prf A a (rAa) =r(Id Aaa)(rA a) =3 Id (Id..-A aa){rA a) (rAa)

First we define the auxiliary terms sub. and sym (see alo Appendix).

.

pfAaCAa) =r(dAaa) @A) € dUdAan) fA)(fAD)
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The term
-aux = 7
[A:Set] [B:{x:A} Set]-_ | |
I A o | -
([x:Ally:AJ[z:1d Ax yiIIBx)([u:B }_(] B ¥))
([x: Al fun (B x) ([u: B x]Bx)([u:B x] u))
isof type |
(A Set} (B (x: A} Set} {x:A} (y: A} {z:1d Axy} TI(B x) ([u:Bx]By)
‘and therefore the ten.n. | |
sub = |

[A:Set] [B:{x:A}Set] [x:Ally: Al[z:[dAxy][u:Bx]
apply Bx)(fu:Bx]By)(aux ABxy Z}u .

is.oftype ‘
{A: Set} {B ‘: {x:.: A} Set} {x: A} {y: A} {z:IdAf(-Sf} {u:B x}.By
and from the ConverSi‘oh ruieé it _t;ollox;.fs that |
| A:Set;B:{x:A}Set,x:A,u:B){
s_ubABxx'(rA.x)u —ue Bx
Thetérm
sym = :[A  Set] J A ([x : Al [y - Al [z : A xylId A y-.x). (Ip: 1d A x x] p)
isof.t._ype | |
. {A Set} {x_:A} [y A} {z:Id_Axy}..idAy;(l

and from the conversion rules it follows that -

-31 -
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A:Set,a:AF symAXX(FAX)=rAxe [dAXxX
‘Then the term
KL =
[A:Set} [C: {x:A}{z: IdA X x] Set] [d {x A} Cx (rAx)]
fa:Ajf[c:IdAaa]
sub (Id A aa) (C a) (rAa)c(symAaa(pranc)) (d a)
is of tj/pe
{A Set} {C: {x: A} {z IdAxx} Set} {d {x: A} Cx(rA x)}
{fa: A} {c:1d A a a}
- Cac
and by expanding definitions and applying conversion rules we ‘get that
A:Set,C:{x:A} {z:IdAx_x}Set,d:{x:A}Cx(rAx),a:A -
KlACda(rAa) =da € Cac
Therefore K1 saﬁéﬁes the characte:izing properties of thé K-eliminator . &
Remark An immediate, but important consequence of the previous theorem is that we can
define the term ' ' '
irrell .=
[A Set} [B: {x A} Set]
KA([aA] {c IdAaa] H(B a) ((b:Ba}Id (B a) (subA Baacb)b))
(fa: A] fun (B a)
(Ib:Ba]ld (B a) (subA B aa(rAa)b)b)

([b :Balr (gB a) b))

with
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el € {A:Set}{B: {x:A} Set} {a:A) (c:IdAaa)

I1(B ) ([b : B a] Id (B 2) (sub A Baacb)b)

expressing that sub ABaac b is propositionally equal. to b forany ce IdAaa. .
‘But, of course, subABaach and b are not judgementally equal unless ¢ is judgementally

equalto rAa.

Next we will show that using the eliminator K one can prove that all objects of an identity |

" tvpe are propositionally equal.

Thebrem 1.4

~ There is a term per with -

prf2 € '{A_: Set}{x :_A}{y t A}u :-Id A_ab-}(vI : I(i Axy}Hd(d AF}Ac yyuv
Furthermore émploying prf2.'theré iéatcrm | |
.irrel €
{A: SetH{B: {){:A} Set} {al,a2: A} {b:Bal} {pgq: Id Aala2)

Id (B a2) (sub A B al a2pb) (sub A B alraz'q b)

' cstabhshmg that the result of subsututmg along the proof of some proposmonal equahty is
' mdependent up to propositional equality - from the chmce of this proof object.

Proof ;- For the term (where prfl is as in Theorem 1.3)
prf;aux_ =

([x : Ally : Allz: IdAxy}H(IdAxy)([u IdAxy] Id(IdAxy}uz))

([x : A] fun (Id A X X) ([u IdA xx]1d (IdAxx) u{rAx))([u: [dAxx]prfl Axu))

we have that
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A Set
prf_aux € {x: A}y A}{u: Id.A X y} OAdAxy)(v:IdAablld(dd A"x yyvuy
- due toi-the_deﬁnitiOn of the eliminator J as tile' fe_fm
[x:Alfun ([ A x ) ((u: 1 Axx] 1d (1d Ax x)u (c Ax)) ([u: 1d A x x] prfl Axv)
is oftypc
{x Al H(IdAxx)([u IdAxx] Id(IdAxx)u(rAx))

Therefore the term :

priz = [A: Set] [x : Al [y : A][u IdAxy}[v dAxy]
) apply(IdAxy)([u IdAxy]Id(IdAxy)uv)(prf auxAxyv)u _

i_.s.of _tyi;_é '
| (A Set}{'x CAMy : A}_{_.u :Id A X:Y}{v :1d A’x y}Id(Id A Xy)u v: :
* For the.'S§cbhd pért o=f the theo.f.f.:n'l consider £he term .. | )
Cmel = |
[ArSeB: (x:A} Set] [al,a2: A] [b: B al] [f};'q dAat 2]
| I (IdAa_ll az)-' | | | |
([b;q :. IdAal a2] o 'Id-'(Id A :_'1.1 a2ypql
1B m_ts:um B al 22 p b) (sub -A'B ai_@'q_b)) .
(1 AaT a2l s(Ba) (sub A'B al a2 p b)) |
| pq - | |
| (prfﬁAqi ai_ﬁq)

~ whicthi is of the desired type :
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[A:Set}{B:(x:A) Set} {al,a2: A} {b:Bal} {p.g:IdAala2}
Id (B a2) (sub A B al a2 pb) (sub AB al a2 g b)
as
[p:ldAala2lr(Ba2)(subABala2pb)
is of the typc R | ' - B - ‘
Id(Ba2)(subABala2pb)(subABala2gb)[p,p,r(ldAala2)p/p,q,u]
and
(pri2 Aala2pq) e Id(IdAala2)pq
Next we show that the eliminator K allows to prove a theorem which allows to derive
- (without using K ) the proposmonal equahty of z and r A x from the proposmonal equahty .
of triple Axxz and. triple Ax X (r A'x).
Theorem 1.5
~ Assuming K one can Construct a term
prf3 € {A:Set} (B:{x:A}Set}{a: A} {b1:B a}{b2:B al
{p:Id (£ A B) (pair ABabl) (palr A Bab2)}
Id (B a)bl b2
 Proof : First we consider the term
eq_fst = [A Set] [B: {x:A} Set]
T (ZA B)

([u TAB][v: iAB]{w Id(ZAB)uv]IdA(?tOABu)(nOABv))
({u: EAB]rA(nOABu))

of '.typc

{A Set} {B {x A}Set}
{u:TAB} {v: TAB} {w: Id(ZAB)uv}ldA(nOABu)(noABv)
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and the term
~eq_snd =

[A:Set] [B: {x:A) Set]

[u: EAB][V ZAB]lw: Id(ZAB)uv]
J(ZAB)
([u:ZABJ[Vv:ZAB][w: Id(EAB)uv]

Id(B(nOABv))
(subAB(nOABu)(T{OABv)(eq__fstABuvw)(nlABu))
(TEIABV)) -

([u ZAB]r(B(nOABu))(n:]ABu))

ofty.per- o

{A:Set) (B:{x:A}Set} {u:ZAB} (v:ZAB){w:Id(EAB)uv}
1A (B (mgABV) -
' (subAB(nOABu)(?tOABv)(eq_fstABuvw)(nlABu))
(tyABV))

- The term

aux =
[A : Set] [B {x A} Set]
[a:A][bl:Ba] [b2 Bal[p:ld(ZAB)(pairABa bl) (Palr AB ab2)]
eq_. snd A B (paerB abl)(pau’AB ab2)p
is oftype
{A : Set} {B {x A}Set} -
{a: A} {bl: B a} {b2:Ba} {p:1d(ZAB)(pairAB abl) (pmr A B ab2)}
Id (B a} (sub AB aa (eq_fst A B (pair A B abl) (pair A B ab2) p) bi) b2
Then the term (where prfl is the term constructed in the proof of Theorem 1.3 )

prf3 =

[A:Set] [B: (x:A]Set]

§.36-
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[a: A] [bl BalJb2:Ba][p:1d(X AB) (paer B abl) (paer B ab2)]
sub
(Id A aa)
(f[q:1d Aaa] Id(Ba)(subABaaqbl)bZ) '
(eq_fst A B (pair A B.abl){pair AB ab2)p)
_(r(IdAaa)(rAa)) '
(prfl A a (eq_fst A B (pair A B abl) (palr A Bab2) p))
(aux A B abl b2 p)

is of typé .

{A Set} {B {x: A} Set}
“{a:A} {bl:Ba}{b2:Ba}{p: Id(EAB) (paerBabl)(pmrABabSZ)}
Id(Ba)(subABaa(rAa) bl)b2

which converts to

- {A:Set} {B:{x:A} Set}
{a A} {bl:Ba}{b2:Ba){p: Id(ZA B)(panrABabl)(pmrABaM)}
Id (B a) bl b2

By lengthy, but. stralghtforward expansion of deﬁmtions and application of conversion rules
we ﬁnally get that _

A:Sét,‘B:{x:A}Set
‘a:A,b:Ba

- ' 3 S
prf3ABabb(r(SAB)(pairABab)) = r(Ba)b € Id(Ba)bb

The theorems above - 1 think - have demonstrated that it is worthwhile to add an elimination -
operator K guaranteemg that - up to proposmonal equality - any type of the form ldAaa
contains exactly the object rAa. ‘

We will subsequently give an altemative, but equivalent axiomatization of identity types uSiﬁg

the eliminators id_elim_ess and id_elim_ uni which express the essence of identity and the
umqueness of proof ()bjeCFS of zdenmy type, respectively.

Definition '1.6

Suppose that we have

- .37-




Chapter 1
id_elim_ess & (A:SetH{C: {x:A}{y:A}Set}{d: (x: A} Cxx}
{a:AH{b:A}{c:IdAab}Cab
* together with the conversion rule
A:Set, C:{x:A}y:A}Set; d: {x:A}Cxx, a:A
- id_elim_essACdaa(rAa) =da ¢ Caa
o and.'

id ehm wni- € {A: Set} {a AYC: {z: IdAaa} Set}{d C(rAa)} '
{c: IdAaa}Cc : _ .

together with the conversion rule
A:Set,a:A, C:{z:ldAaa}Set,d:C(rAa)

| id_,eum__u'm _AéC;d(rA'a) =d é'C(r-A D

We wﬂl now show that this new altematwe deﬁmtlon of ldentlty types 1s equivalerit to the ch-

a minators J and K.

| Theorem 177

The eliminators id_elim_ess and id_elim=-uni can be déﬁnec_i in terms of J and K and Vi_cc
versa. . ' o .

Proof : Th'e'elliminator-id_elir’n_ess can _be deﬁned from the_ eliminator J és

[A:Set] [C: {x: A}y A} Set [d {x :A} Cxx]
TA(x: A’}_{y tAlfz : IdAxylCx y)_;d o

'Next we define the eliminator id_elim_ess from the eliminators J and K in'several steps. *
First notice that the term

aux =

{A:Setlfa: AI[C: {z:1d Aaa) Set] [d:C(r A )]
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J(dAaa)
(u:ldAaalv:Id Aaallp: Id(IdAaa)uv]H(Cv)([x CviCu).
(u:ldAaa]lfun(Cu) ([x:Cul Cu)([x:.Culx)) '
is of type
{A:Set}:{,a A {C: -{z id Aaa} Set} {d: C(rAa)}'
{u:IldAaa}{v:IdAaa} {p: Id(IdAaa)uv}
H(Cv)([x CvlCu)
Recall that the term
prfl = [A:Set] KA(CA)([x:A]r(dA x x) (r A x)
from Theorem 1.3 is of type
A Set}{x:A'}{z:IqA‘xx}Id(IdAxx)z‘(rAx)

Then the term

[A: Set] fa: AJ[C: {z: IdAaa} Set] [d : C(rAa)] [c IdAaa]
auanCdc(rAa)(prfIAac)

isof type

{A: Se.t} {a: A}' {C:{=z :'Id A aa} Set) {dC {rA a)}.
{c:ldAaa) MCrAa)(x:CrAa)]Co)

" But then .the term
=

[A :Set][a: A] [C: {z Id Aaal Set] [d CirAa)l [c IdAaa]
appiy(C(rAa))([x C(rAa)]Cc)(auanCdc(rAa)(prfIAac))d

isoftype ' ' _ o
{~A:Set}{a:A}{C-:{z:_IdAaa}Se_t}{d:C_(rAa)}{c:IdAaa}Cc _

- and using the definitions and the conversion rules one gets that

A:Set,a:‘A,C:'{z:IdAaa} Set,d:C(rAa)
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- |
ttAaCd(rAa)=d & C(rAa).
'fheféfor_e the tef_n‘x tl satisfies the deﬁniqg conditions for id._elim_ess .
| Next We shbw how td define J frqm id_eiirn_ess ‘and éd_clim_uni in several stqpé.
First notice that

S;A_:'Set,C:{x:A} {y:A}{z:IdAxy}'Set,d:{X':A}'Ckx(rAx),x\:A
id_elim_wni Ax (Cxx)(dx) € {ziIdA-xx}Cxx_z

“and therefore the term

[A'Set][C"{x'A} {yv:A} {Z'IdAxy}Set][d‘{X'A}Cxx(rAx)]
1d _elim _ess A{[x:A][v: A}H(IdAxy)({z IdAxy}nyz))
([x: Al '
fun(IdAxx)([z IdAxx]Cxxz)(xd elim umAx(Cxx)(dx)))_

is of type .

{A:Set) (C:{x:A} (y: A {z: ldAxy}Set}{d (x:A}Cxx(rAx)}
{x: A} {y:A}{z:ldAxy} - '
H(IdAxy)([z._.ldAxy}nyz)

Therefore the term

t] =
[A:Set] [C: (x: A}{y A} (z: 14 A Xy} Set] {d (x: A}Cxx(rAx)] -
©oapply

- (IdAxy){z: IdAxy]nyz)

C(d_elim essA([x Al [y A]H(IdAxy)([z IdAxy]nyz))

([x: A ‘

fun(Id Axx)([z: IdAxx]Cxxz)(ld ehm umAx(Cxx) (dx)))
is of type :

‘.{A:Se_t}:{C {x: A} {y: A {z Id Axyj Set} {d {x:A}Cxx(rAx)}'
[x A} {y: A} {z: IdAxy}ny;)_ : _
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Straightforward equality reasoning shows that

A:Set,C:{x:A}{y:A} {z:ldAxy}Sei,d:{x:A}CXx(rAx),x':A
o _ ,
t2ACdaa(rAa)=de Caa(rAa)

Thus the term 2 fulfills the defining conditions of J .
Finaily, the_ eliminator K can be defined from the eliminator id__élim_,uni sirﬁpiy as

'.['A 2 Set] [C: {x: A&}{rz (Id A xx}'} [d c{x A} Ci (r-IA x)] ,
[a:A] id_elim_uni A a(C a) (d a) e 0

The only difference of id_elim_ess to the traditional elimination operator J is that the family
C must not depend on a proof obiject of identity type. This definitely is no real restriction in
the practice of formalizing constructive mathematics as there one usually does not speak
about proof objects.

The elimination operator id_elem_ess is a type theoretlc version of the followmg proof rule
characterizing equality in e.g. first order logic

I—P'(xk, x) Ciff x=y. FP(x,y)

"This proof rule may- seem somewhat unconventional but it directly corresponds to the catego-
- rical explanation fbr the semantics of equality as given in the framework of hyperdoctrines by
'F W. Lawvere, see [Lawl]. He explains equality on type A as the predlcate 3§ (truep)
where 8: A > AXA i3 the diagonal morphism and 3§ is the left adjomt to the remdexmg ‘
functor & . ' '

' _Inmltlvely, the ehmmator id ehm uni expresses that an identity type dAaa contams
exactly the object r A a. Suppose that there were an object ¢ in 1d A aa different from the
canonical object r A a then one could construct an object of the empty type No as follows
let C be the family of sets indexed over Id Aaa w1th C(rAa)= Nl and Cc=Np the_n .
id-elim umAaCnoce Np-
~ In some sense it is conceptually clearer to base identity types on the ehmmanon operators- '
id_elim_ess and id_elim_uni as the first eliminator expresses exactly the logzcal essence of
equality as needed for formalizing constructive mathematics whereas the second eliminator is.
just used for proving propositions expressing properties of proof objects such as the proposi- -
tion there is at most one proof object for-identity types. This kind of propositions is not really.
part of constructive mathematics but belongs to a kind of restricted meta-reasomng which i is
p0531ble in constructive set theory but not in traditional Ioglcal systems.
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The reason why we nevertheless use the equivalent formulation based on J and K is that this
definition fits more nicely into the scheme for defining elimination operatlons for (families of)
inductive sets as exposed in [Dyb] . ' _

We finish this section by'proving that thg: eliminator- K- is deﬁfxable _from.the eliminator J in .
intensional constructive set theories where for all A € Set and families‘ B e A - Set if al -
and a2 are proposmonally equal ob_;ects of set A then B al and B a2 are already judge-

| L mentally equal as sets.

This latter condition is sausﬁed for the type theory studled by Jan Smlth in his The81s, see _
[Sml] Models vahdatmg this condmon will be studled in Chapter 2 of the present work.

- The_orem 1.9

Assuming Fhe,sequeﬁf '
‘A:Set,B:{a:A}Set,al:A,a2:A,b:Bal,p:IldAala2

Bal = Ba2 € Set

one can define the eliminator K in terms of the eliminator -J .

Proof : . From the a.s'sumptioln it follows immediately that
A:Set,al :A,a2:A,p:ldAala2 - I1dAalal = [dAala2 e Set
‘and therefore
A Se’t_','al tA,a2:A,p:ld Aala2 +p € 1d Aalal
~From th}s; it follows that
A Set, C :'{-a:: A} {c: Id Aaa} Set
“altA,a2:A,p:ldAala2
Calp e Set
. and therefore we get'.th;'it
A:Set,C:{a:A} {.c : Id A aa} Set
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.[Al:A] [a2: Al{p:Id Aata2]Calp
e _
{al : A} {a2: A} {p:Id A al a2} Set

X

From this and ffom :

A:Set,C:{a:A} {.c:IdAaﬁ}_Sgt,d:{a:A}Ca(rAa)"
d e ([al tA}[a2:A]{p:IdAala2]Calplaa(rAa)

it follows due to the deﬁ_nition_ of J that

A:Set,C:{a:A}{crldAaa)lSet,d:{a:A)Ca(rAa)

 JA([al:Al[a2:A][p:Id Aala2]Calp)d
P | |

{al:A}{a2:A}{p:1dAala2}Calp

‘But from this we get

CA:Set,C:{a:A}{c: IdAaa}Set d: {a A}Ca(rAa)
a:A,c: IdAaa

o | |

: JA([al':A]{aQ:A]fp:'IdAaIaZ]Calp)d_aac e Cac

and therefore the term

Ko = [A:Se] [C {a:A] [c IdAaa} Set] [d {a:_A}‘Ca(rA.z;)] '-

[a:A][c:IdAaa]
JA (fal : A][a2 Allp: IdAalaz]Calp)daac

is of the mtended type
{A: Set} {C:{a:A} {c: IdAaa} Set} {d: {a A}Ca(rAa)}
{fa:A}{c: ldAaa}Cac :
and due to the conversion rule for 1 we also have

A":Set,C:{a;A} {c:IdAa’a} Set,d:‘{a:A}Ca(rAa),a:A:
JA ([al : A][a2 : A] [p:IdAal a2] Cal p)daa(rAﬂ)::da € Ca(rAa)

i.e. we have
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A:Set,C:{a:A}{c:IdAaa}Set,d:{a:A}Ca(rAa),a: A
o |
KyACdaa(rAa)=da € Ca(rAa)

‘Therefore the term Ky, satisfies all the defining conditions for the eliminator X ...... 0

1.3 Paulin-Mohring’s Eliminator for Ide'ntity Types

As a further application of the eliminator K we show that it allows to define another elimina-
tor for identity types which ofiginally has been introduced by Ch. Paulin-Mohring. In deriving
Paulin-Mohring’s eliminator. it is very helpful to rely on the auxﬂu'y ehmmator 1d ehm um
- which has been defined in terms of J and K in the previous Theorem 1.7.

Afterwards we prove a theorem due to Th. Altenkirch and H. Goguen telling that Paulin-
, Mohnng s eliminator is definable from J only provided that Set is a universe closed under :
1mpredxcat1ve universal quantification. ‘

Paulin- Mohnng s ehmmator is the canomcal ehmmator for the famﬂy ‘

B Ide {A:Set] {a: A} {b: A} Set

- when A€ Set and ae A are considered as parameters and b is considered as an index in
. the sense of [Dyb] . _ - :

Theorem 1.8

Using the eliminators 1d elim_ess and id ellm uni or equlvalently using the elumnators J
and K one can deﬁneaterm PM with C : '

PMe {A: Set} {a'A} {C ly:Al{z: IdAay}Set} {d: Ca(rAa)}
_ - {b:A}{c: ldAab}Cbe
- satisfying the conversion law

A:Set,a:A, C:(y:A}{z:1dAay}Set, d: Ca(rAa)

F .
PMAaCda(rAa)=d € Ca(rAa)

Proof : Theterm .
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auxl =

[A:Set][a: A]J[C:{y:A}{z:ldAay} Set][d: Ca(rAh)i '
id_elim_uni Aa{[z:IdAaa]Caz)d

 is of type

{A: Set} {a: A} {C {y: A}{z IdAay}Set} {d Ca(rAa)}
{c:ldAaa}Cac

"The term '
aux2 =

- [A:Set][a: A][C:{y:A}{z: [_dAa-y.} S_et:] [d: Cﬁ(an)]
fun(Id A a a) ([z :ldAaajCaz)y(auxl AaCd)

is of typ.e '

(A:Set} {a:AJ(C:{y:A}{z:1dAay) Set) (d: Ca(rAa))
M{ddAaa)((z:ldAaalCaz) : S

Thentheterm.
aux3 =
[A:Set][a: A][C:{y:A}{z:I1dAay) Set] [d: Catrao)

[b: Alfc: Id Ab]
subA({y A}H(IdAaa)([z IdAay]Caz))abc(auxZAaCd))

is of type
A Set} {a: A} (C :{y:A}-{zzldAay}Se;} (d: Ca(r"Aa)

"{b:A}{c:1d Ab)
H(IdAaa)([z dAaalCaz) — MdAab)(z; IdAab]Caz)

and the term
aux4d =

[A:Set][a: AJ[C: (y: A} [z:1dA ay} Set] [d: Ca(rAa)]
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- [b:A]fc:IdADB]
~ apply . '

- (JI(ddAaa)(z: IdAaa}Caz))

([f:MT(ddAaa)([z: !dAaa]Caz)]H(IdAab)([z IdAab]Caz))

(aux3AaCdbc) .

(aux2 AaCd)

. '_1s oftype
“ {A: Set} {a A} {C {y A} {z IdAay}Set} {d: Ca(rAa)

{b:A} {c:IdAb)
' l'I(IdAab)({z IdAab}Caz)

Fi'n.ally we get the term
PM =
[A Set}{a A] [C: {y A} {z IdAay}Set][d Ca(rAa)]
- b:Alle: IdAb] L
apply{IdAab)([z ldAab]Caz)(aux4AaCdbc)c -
‘of.i.:ype
C{A:Set}(a:A}{C:{y:A)(z:1dAay)Set) (d: CarAa)
{b:A} {c:Id Ab} ' B ' _
Che
and stroightforward, but tedious appli’cation of cohversior_l rules gives
A.:'Se't.a:'A. c:'{y'-:A} 'z:.IdA.ay}Set,d: Ca@rAa)
PMAaCda(rAa)-derc RS

_ Itis remarkable that the eliminator PM ‘is definable from J without using K if one assumes - -

that Set is closed under products of a.rbltrary families of sets, i.e. if the product ofa fannly of .
- sets is: aset even if thc index set is not a set but an arb1trary type

-Theorem 1.9' (Th. Altenkirch,_H. Goguen)'

| If - Set is closed under products of arbltrary fam1hes of SEts not necessanly mdexe:d by a set
- then the chmmator PM: is deﬁnable in terms of J without usmg K.
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Proof : To facilitate reading we employ the following conventions. We write (IIx : A) B[X]
for IIA (Ix : Al B{x]), (A x : Ayt for fun A ([x : A] B[x]) ([x: A]t) (provided that t is of
type B[x] if x isof type A) and finally we simply write fa for applyA([x A]lB[x]fa -
(prowded that f is of type [T A ([x Al B[x})).

The term
help =
T [A Set}
I A
([x Ally: A][z IdAxy](HC (IdAxy)—)Set)(Cx(rAx))—-—)Cyz))
([x:Al(AC: (1dAxy)—>Set)(?Lp Cx{rAx)p)
is of_'type '
{A:Set} {x:A}{y: A} {z:IdAxy} (IN.C:(Id A x y) - Set) (Cx(rA_x))—}Cyz)
and therefore the term-
= [A:Set] [x:A][C:(ldAxy)— Set] [d: Cx (rAx)]
[v:Allz:1d A xy]
" helpAxyzCd
is oftype'
{A: Set} {x A} {C: (IdAxy)——}Set} {d: Cx(rAx)}
{y: A} {z:IdAxy}
Cyz
By straightfomzird ap'p_l_ication of conversion rules one gets the conversion law
ArSet,x:A,C:(IdAxy) = Set,d:Cx(rAx)
= - ]
tAaxCdx(rAx) =d e Cx(rAx)

Thus the term t ful]ﬁlls the 'de\ﬁning properties of PM . ' ' o

-47-




Chapter 1

1.4 Identity Sets for Contexts
Finaily we want to define a notion of identity set for arbitrary set contexts instead of single
sets only . For these generalized 1denuty sets we deﬁne eliminators generalizing the elimina-

“tors J and K :

More precisely, for any natural number n with identity sets for set contexts of length n there
are assoc:ated n+l ehmmators Jn,i (=0,...n). -

In the presence of S-types it is sufﬁcwnt to use only Id;, rl »J1,1 and J; o which correspond
to the usual Id, r,J and K studied above -

Definition 1.10

For any natural number n there is a type c.onstrulc_tor

Id, € {A;:Set] [Ag:Aj = Set) ... {Aq: (X1 Aq} o (Xy: Ap X oo Xgq} Set)
| {xp A7) {xp: A1} AXp T Ap Xy Xpd {Vn T An YL e Yoot )
Set '

and a constructor
I, €

{Aq:Set) {As: Ay —->Set} AAR {Xp T A} L {Xn T Ag X)L X} Set)
Axpr A Xt A xy -_ Xp-1} |
Id A} A X1 Xy - n Xn

- and for any natural number i with 0<i=n there is an ehmmator Joi (see Table 1) toge-
. ther with the conversion rule

‘ Jn,iAl ‘AnCdXI con X Xj4] X o-- X Xﬁ (l‘Ai'... An X1 .- Xn) = dxl e X
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Jn,i [

(A :.Set}. {Ay:rAp—Set) .. {Ag i {xptAr) . (Xt Agxg . Xp.1} Set}
{C:{xp: A} | |

{x; Ay xq ...xi_;}' _
{(Xist 2 A1 X o X} Yier 2 Ajer Xp o Xi)

{Xn 1 ApXp oo Xpot} {Yn 2 A X 2o X Yiep oo Yo-1)
{Z:1dAp .. Ag XXy oo XX Xig] Yigl - Xn Yol
Set } '
{d: {x1: A}

{Xp: Ap Xy .. Xpip . :
) C X1 oo X X1 Xiel ..._Xn Xn (r AI An Xp--- Xn) }
{XI:AI}V

{Xi3AiX1'---,xi~1} 3
{Xip1 T A X X1 a1 P A X X5

(X  ApX) oo Xgo1} (Y0t An X oo Xi Yigl oo Va1l
{z:Id Ay .o Ap Xy Xp oo XX Xig] Yigl -« Xn Ynl |
Cxy ... Xj Xisl X1 -+ Xn Xp (PA] AR Xp o Xg) -

Tablé 1
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1.5. All Proof ObjECtS of Identlty Types Are Proposntnonally Equal
~ In All Models Satlsfymg the Umformxty Prmcnple

L We have seen prev1o'usly that in the tradmonal formulatlon of ICST without K, as presented-
e.g. in [NPS], it seems very unhkely that one can find a term which provably is of type :

NIQUE {A'Set}{a:A} {p: IdAaa}Id(IdAaa)p(rAa)

. But there is a recent a:gument of Th. Altenkirch showing that in any reasonable model of _

ICST, ie. any model sansfymg the so called Uniformity Principle, the type, UNIQUE is pro~ -

~ vably inhabited by a term. As all mathematical models we know satisfy this uniformity prin-

ciple this is. a further mdlcatlon that refuting UNIQUE requires-a subtle argument and cannot .. B

'bc done semantlcally

= We first p_res_cnt an argunierit dueto Th.‘Altenkirch providing a tentative proof of UNIQUE.

: ..T'helor.em. 111 (Th: Altenkirch)

| Tﬁeré afe terms ti and t2.3 With
t1 c {A Set}{aA {p IdAaa} id (IdAaa)(subA({u Al IdAua)aapp)(rAa) '
t2 € {A Sct}{a A}{p Id Aaa} Id(IdAaa) (sub A([u: A] 1d Aaa)aapp)p

_*If there were a term t3. for Wthh one can den.ve .' | | |

t3 € {ASet}{aA {p: IdAaa} 7
Icl(ldAaa)(subA([uA]IdAua)aapp)(subA([uA]IdAaa)aapp)= _

then on'e could con‘s:'t_ruct aterm -t _for which one can derive

t e {AsSet){aA} {p:1d Aaajld(dAan)prAa)

. Proof : Recall that

 sub = [A:Seti[B:(x:A)}Set] (x: Al[y:Al[z:1d Axy] [u:Bx]
' apply (B x) ({u: Bx]By)(auxABxyz)u'

where
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Caux = [A:Sef] [B: {x:A} Set]
I A
((x:Al[ly:Al[z:ldAxy]TI(Bx)([u:Bx]By))
({x : A} fun (B x) ({u : B x] Bx) ([u: B x] w))
Then‘“for the térrn

= {A:Set} J A
. ([x:Ally:Allz: 1d A X Y]
Id(IdAyy)(SubA([uA]ldAuy)xyzz)(rAy))
r[x Alr{ldAxx)(rAX)) '
we have
sl € {A:Set}{a:A}{b:A}{p:IdAab} Id(IdAbb)(subA([u:A] IdAub)abpp)(r-A‘b):
as it holds that |
A:Set,x:lA + subA(-[u:A}VIdA-urx)xx(rAx) (rA.xl)) =TAX € IdAxx

and for the term

= {A:Set} JTA »
- ([x:Ally:Al[z: IdAXY]
_ Id(IdAyy)(subA([uA]IdAxy)xyzz)z) '
([xA]r(!dAxx)(rAx))

- we have
§2 € '.{A;Set} {a:A}{b:A}{p:IdAab} Id(IdAab) (‘sub A([w:A]ldAab)abpp)p .
_ as it holds that

-'A:_.Set,x:.A F sub A ([u:A} ldAxx)xx(rA_-x)?(rA_x)) =rAx e ldAxx

Now by pumng

tl = [A Set] [aA] p: IdAaa] slAaap

li

| 2 [A:Set} [a:A][p:1dA aa]l s2A aap
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- we get that

tl € {A:Set}{a:A} {b IdAaa} 1d(Id A a a)k(‘sub A (u:A]Id A u.a) aa php) (fA a)
e {A:Set}{a:A}{p: .Id'A aa) 1d(Id A aa) (sub A (u:A] Id A.a 2)aapp)p
Ne{N if there were a term (3 for which one can derive B

13 e {A: Set}{aA {p: ldAaa} : ,
Id(IdAaa)(subA([uA]IdAua)aapp)(subA({uA]IdAaa)aapp)-

then s_imply using symmet.ry_ and transitivity of proposmonai equality one could construct

from t1,t2,t3 aterm t of type {A:Set}{a:A}{p:IdAaa}Ild(IldAaa)p(rAa).

The importance of Altenkirch’s observanon is that it reduces the derlvabxhty of inhabitedness
of UNIQUE to the denvablhty of '

A:S_et,_a:A,p_:IdAaa
1d (Id'A' a a) (_sub A(wAlld A u a) aapp)(subA ([u:A’] idAaa)aapp)

“ Now although the formal denvatlon of this sequent seems to requn'e agam our new eliminator
K it is nevertheless the case that the terms

subA([u:A}I'dAub_)abpp and ‘sub'A([u:.A]IdAab)abp'p_ -

are almost convertible. They are only d1fferent w.r.t. the second argument of sub which is of
type {x A} Set

Now it is obvious that anv algomhm wluch can be expressed by a term in ICST does not

“depend on those argumenis which are ezther sets or families of sets. The reason is that these
types do not carry an ma’ucnve structure. This suggests the following new proof rule:

Uniformity P_rincip[e

ke A [hHte A stipt] =stipls] € A -

THt=s e A
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‘where for any term t the term strip{t] is obtained from t by throwing away all subterms
which are either sets or families of sets.

The next theorem tells that assuming the Uniformity principle on can derive UNIQUE.
T_heorem 111
Under the assumpfion of the Uniformity Pri_nciplé one can derive

A:Set,a:A,p :'IdAaa
sub A ([u:A]ld Aua)aapp = subA (u:AlldAaa)aapp € IdAaa
_and therefore find a term which pfovablj/ is of type

© UNIQUE = {ASet}{a:A) (p:[dAaa}[d(IdAaa)p(rAa)

Proof : Due to the Uniformity Principle it is sufficient to show that
strip[sub A (fu:A}ld Aua)aapp] = strip[sub A.([u:A.} IdAaa)aap p]

Unfolding the d¢ﬁnitioris of sub and aux we get that

sub A (w:A]ldAua)aapp =

apply Id Aaa)([u:ldAaajldAu a)

da | - - S
C(x:AjlyAl[z - IdAxy]II{IdAxa)(u: Id Axalld Ay a))
{([x: Al fun (Id Axa) ([u:Id A x a] IdAxa)([u:_IdAXa] u))

aap)
p

and that
sub A ([u:A]_Id Aaa)aapp =
apply Id Aaa)(u:IldAaal]ld Aaa)

J A , . ‘
([x:A)[y:Al[z:ldAxy][TddAaa)(fu:ldAaa)lld Aaa))
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([x: A]fun(ldAaa)([u ldAaa}IdAaa)([u IdAaa}u))
aap)
p

But in both cases by stripping we obtain the, same term
Capply J(x] fun (ulw)aap)p o

One s_houldjremarl( here that in a formulation of ICST where already in the definition of terms
‘sets or families of sets cannot appear as subterms the Uniformity Principle is automatically
valid. Such a forinulation has been called “polymorphic” in [NPS] as opposed to the formula-
- tion 1n51de a loglcal framework, which we have employed and in [NPS] 1s called “monomor-
phic”. ' :
Furthermore in all the models we know the Umfornuty Prmcxple is semantlcally vahd The
_ reason is that it seems rather impossible to endow the type Set with a non-uniform structure.
Typically in the case of realizability models the type Set always carries the tr1v1al reallzabl-
ity structure (any number realizes any set n. o : E
Our i 1mpressxon is that models where the type Set carries a nontrmal reahzablhty structure
one would have to introduce codes for sets and then one gets structures whlch are already as -
complicated as term models ! * : o
. Therefore we think that any proof showmg that the type UNIQUE is not znhabzted must be of
_ syntactzcal nature’ : : '

1.6. Conclusion

 Finishing our syntactic considerations we would like to say as a conclusion that the currens
formulation of intensional constru_ctive sel theory seems 1o be open to extensions. When dea-
ling with specific problems one has to extend the theory by a new construct as e.g. our new eli-
minator K (which has been invented independently from us by Th.. Allt'enkirch in Edinburgh).
~_ For other applications other new extensions might be useful. A quite powerful extension of the

‘ deﬁnluon rnechamsm has been descnbed by Th. Coquand in [Coq] and has been 1mplemented

" in ALF. o : T -

In this. paper there are studled general schemes for deﬁmng functlons by comp[ete and non-

- _overlappmg case analysxs on the possible constructor forms of the arguments of the function

to be defined. This general definition scheme together with a check for temunatlon has been

lmplemented in the ALF system developped at the Umversuy of Gotenburg ' B

We think that any naniral model (e.g. those studied in Chapter 2-and 3) of intensional con-

" structive set theory must be d model also for all of these extenszons The use of these models

- should be to use them.as a test tool in the sense that when one wants to mtroduce a new con- :
cept one ﬁrst should check whether it can be interpreted in one of these models '
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| Chapter 2

Semi-Intensional Models of Constructive Set Theory -

~ In this chapter we introduce and discuss the first non-extensional model of ICST. It satisfies
most of the requirements for intensionality with one single exception discussed in section 6 .
Nevertheless it is a model for a rather established_semiQintensional type theory studied by J.
Smith i m his Thesis (cf. [Smi]). : - _

In the section 1 we recall the basics of the sernantics of extensional type theory as studled e.g. o
in [Str1]. Based on this material we construct a first non- -extensional model which is inade-
quate in the sense that all sets are inhabited (i.e. we have logical inconsistency). '
In section 2 we give a motivatiori for the crucial distinction between potential and actual reali-
zers which allows to dlstmgmsh between mtensmnal and extensional equallty of functlons and

~ originates back to Kreisel's notion of modified realizability. :

In section 3 we describe the category IRS of intensional reahzablhty sets obtained from an

arbitrary category of domains by the process of sconing which in category theory is also

known as Freyd coverof a category or more generally as glueing (cf. [FS],LS]). |

In section 4 we show that from the category IRS one can construct a contextual category with

" dependent products (cf. [Str1]) serving as a model for the ambient logical framework

In section 5 sve show how to interpret the type  Set and the usual concepts of ICST such as I,

Z,Id; N, Np.Nj etc. and the associated constructors and ehm'nators An important point is
that our new eliminator K can be interpreted straightforwardly in a way quite similarto J-.

In section 6 we show the first independence results for ICST as e.g. the non-validity of n-rules
and of the extensmnahty principle for (number—theoreuc) functions. Thus the models of this
chapter are intensional in many aspects. But we ‘'show that, nevertheless, they are only semi-

intensional as for a family of sets B indexed over a set A the sets B(t) and B(s) are

already }udgementaliy equal even if t and s are only propositionaily equal w.r.t. A .

In section 7 we summarize our discussion of the models based on scomngs of categories of
domams and conclude that they are sultable for refutmg sequents which are derivable in

extensmnai but not in intensional CST.. ‘ : : a

2.1 Semantical Backgrournd and a First Simple Nen;Exfensional Model

In the last years there has emerged a lot of work on the semantics of Martin-Lof's extensional
constructive set theory. A detailed account of one of these approaches‘ namely contextual
categones, can be found e.g. in the author’s book [Strl] together with a discussion of related
work.
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In this and the next chapter we definitely want to build on this work and extend it to get an
improved semantic 'unders'tanding of Martin-L3f’s intensional constructive set theory (ICST).

- First we will recapitulate the definition of semantics for ICST which - as far as the formulation
without a logical framework is concerned - can be found already in Cairtmell’-s Thesis [Cart]. .
- Anyway, to defining the semantics of ICST, i.e. to define an appropriate notion of model for
ICST, requires only a few modlﬁcatwns of the work in [Str1]. _
The notion of a contexrual category with products of families of types as deﬁned in [Strl] and
originally due to J. Cartmell, is the adequate notion of semantics for LF, the Logical Frame-
work, see also [Pyrn} Remember that at this level there is no need to worry about intensiona-
lity as for the Loglcal Framework one assumes that the n-rule for functional abstraction is
valid. » ' : o : :
We know that ICST appears as a spec:al rheory in  the Logtcal Framework there is a type con--
stant Set together with a generic family of types El and a lot of other constants for the usual
type and object forming operations and for the elimination operations. '
Therefore we will not define formally what our notion of model for ICST is as there is hardly -

anything new in it. Obv:ously, a model for ICST is a contextual category C with products o

- families of types together with an interpretation of Set , El and the constants for the nsual
‘type and object forming operations and for the elimination operations such that w.r.t. the inter-
pretation in' C all the laws of ICST (see Appendlx) are valid. '
Instead we concentrate on the constr: uction. of spec:f ¢ models for ICST which are natural in
the sense that they exhibit a rich mathematical structure but nevertheless are not models of
extensional constructive set theory, ie. do not validate the n—like rules for the elimination
operarions and satisfy the three criteria for intensionality given below, :
" But - as all interesting models - they will validate much more sequents than are formally pro-
* vable in ICST. Typically they allow to interpret the new eliminator K' which has been discus-
sed at length in Chapter 1 . We: consider this as a justification of this new eliminator. In the
same way these models can be ‘used as a first semantical check whether an attempt of intro-
ducing an extension of ICST is consistent. Of course, if one finds thdt the suggested extension
can be mterpreted in one of the models thlS does not yet guarantee that this extension is also
computationally meaningful ! . -
For extensional constructive set theory realtzabzhzy models have proved to be useful if not
‘even to be the intended models. We will use slight modifications of these realizability models
in order to obtain intensional models of ICST , i.e. models which do not validate the n-like
ruies typlcal for extensional constructive set theory. :
First we consider a model for intensional constructive set theory which is obtained from the

~well kno_wn w-Set _model by interpreting ‘Set by a suitable subcollection of PER®w .We as-

sume that the underlying coding has a special behaviour w.r.t. 0, namely that <0,0>=0
, and {O}(n) 0 forall ne ®.Let" PER-O denote the set of all partial equivalence relations
on- @ with ORO. ' : ' :

The logical framework is interpreted in the category o-Set. of @-sets and reallzable mor-
phisms. That this constitutes a model of extensional dependently typed A-calculus has been
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shown in [Strl]. :
The type Set is interpreted as the ®-set with a trivial reahzablhty relation whose underlymg
collection of objects is PER-0 . For any object R e Set, i .. for any partial equivalence rela-
tion R on o with 0RO, its associated type EI(R) will be interpreted as the w-set whose -
underlying set of elements is @/R , the set of equwalence classes modulo R, and whose rea-
 lizability relation is simply membership, i.e. n realizes A € wR iff ne A . In [Str2] it has
been shown that PER-0 is closed under products of families indexed over arbitrary @-sets
" and strong sums of families which are indexed over w-sets originating from pers in PER-0 .
In the paper [Str2] it has been shown that in this model it is impossible to interpret extensionat
identity types. The reason simply is that any type of the from EI(R) is nonempty and there-
fore it is impossible to interpret Id Aab if a and b are different objects of type A .

“But we will see that it is possible to interpret intensional identity sets in this model in a rather
simple way. Let ‘A be an arbitary type, 1.e. @-set,and a,be A then Id A ab will be inter- -
preted by the per { (0,0),(1,1)} if a=b andastheset { (0,0)} if a=b . Forany.
object ae A the object r A a will be interpreted as the object {1} & El (Id A a a). Notice
that any identity set contains the object {0} playing the role of a kind of “error element".
For defining theinnterpretation of the elimination operation J we shall use the fact that for
any A € Set,iec.any A€ PER-O, the w-set corresponding to EI(A) contains a dummy or
default object realized by 0, namely the equivalence class of 0 modulo R. '

Now if C isan object of the type {x: A} {y:El A} {z:TdAxy} Set and d is an object of
{x:A}Cxx(rAx) and a and b are objects of type A and c is an object of dAab
then we define JA Cdabc as follows : , '

1 if cis réalized by. 0 then we puf
JACdab c = the unique clement of Cabc realized i)y 0.
(ii) if ¢ is realized by 1 then a=b and c=rAa qnd theh we put
J'ACd.ab.‘c _dac Cabe

“The function J is realizable as there is an algorithm chécking whether the realizer for ¢ is 0
and then gwes the reallzer 0 as result and otherwise applies the realizer for d to the realizer

. -for a.

It is obvious from this definition that for all A, C d,a of appropnate type the model valida-
‘testhat JACdaa(rAa)=da.
_ But the 1-like rule for J is not valid in this model as for functtons f,g of type {x Al {y:
ElA}{z:IdAxy}Set with faa rA a) ga af(r Aa) for all a€ A it does not neces-
sarily hold that f=g as f and g may’give different results when applied to arguméﬁts which

are not of constructor form. -
This is demonstrated by the following. counterexample Take for A the type N of natural
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numbers i.e. the w-set whose underlymg setis @ and for which n realizes m iff n=m,
and for- C the constant family with value N . Let f and g be the functions correspondmg to
the’ pro;ectlon on the first and second argument, respectively, ie. fxyz=x and gxyz=y
forall x,ye N and ze IdNx y . The functions f and g are obviously different as N
“contains more than one element but neverrheless it hoIds that fxx (N x) X=gXxx(rNx)
forall xe N. : - -
‘Thus the followmg sequent is not vahd in the model under consxderatlon

ASet,x:A,y:A,z:ldAXy F_-—x'-_-y'eA
| But also the sequent_"
o A‘:Set;B‘“:A—f‘Set,};:A,y:A,z:_IdAxy I%x#yeB(x) =B(j"()-e'Set.' |

" is not vahd as 1f for A we take the type N of natural numbers and for B we take the farmly
fx :N]Id N O x then IdN 00 and I[N 01 are different objects of type Set although there
is an object of type _Id NO 1 namely the default object reahzed by 0. :

" Thus th]s model is very intensional as it v1o]ates the axioms of extensional type theory in a rat-
her strong sense : relative to a nontrivial context proposmonally equal objects need not be
judgemenrally equal and the elements of a famzly of types need not be equal even if their
indices are propositionally equal. This is very pleasing also as it shows that the 1-like rules
 forId- -types - typical for extensional type theory - cannot be derived from the rules of i mtensm-

nal type theory in some miraculous- way ' ' |

So we could be quite' happy but there is something very unpleasant about the modei discussed
" above : any identity type is nonempty as it is inhabited at least by the- object realized by 0.
This means that for all sets A and all objects a, be A -evenif a and b are different - the -

set Id A ab is inhabited, L.e. true according t0 the paradigm of propositions as tvpes But
this contradicts the Equahty Reﬂectlon Prmmple dlscussed in Chapter | . '

Therefore we w1ll next study models of ICST where the Equahty Reﬂectlon Pnnc;lple is valld '
Alas, these models will valxdate the sequent :

A:Set,'B_:_A-—éSet,‘_x:A,y:A.,z'.:IdAx_y Fx=y e B(x) = B(y)é Set

i wﬂl take until Chapter 3 that we will see mode!s sausfymg the Equahty Reﬂectlon Pnnc1ple
_ and refutmg the sequents- :

'A:Set','x:A,-y;A',_z:'IdAxy Fx=yeA
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and

A:Set,B:A—>Set,x:A,y:A,z:IdAxy Fx=y e B(x) = B(y)  Set

2.2 The 1ntuitj0n Behind Intensional Realizability Sets

The models for ICST of this chapter will also be based on the idea of realizability - but a SIig-'
“htly refined one. We will not allow that an object has several different realizers or in other
words : realizers won’t be forgotren but are visible ingredients of a function between intensio-

nal realzzab:lny sets. :

Techmcally.our model constructions will be _based on the notion of F. re‘yd cover or sconing of
~ some category of domains(cf. [FS]). The structures obtained by taking the Freyd cover of a

~ cartesian closed category are very’ natural from the point of view of categorical logic which
provides additional confidence in the naturality of the construction. Neverthelcss this. categorl-
cal aspect is not the key point to motlvate these structures. -

More intuitive and less techmcal motivation can be prov1ded by the followmg purely loglcal :
cormderanons ' : :
Let D be a domain theoretic model of untyped A-calculus, i.¢. that [D—}D] is a retract of D
maybe with some additional structure which allows to interpret extensions of the pure A-cal-
-culus. The objects-of D will serve as realizers for objects of Set . To be closer to computa-
tion one might claim that D is an effectwely given domain instead of sm}ply being a domain
~ in the purely order theoretic sense which in general contains a lot of non-computable objects.
According to the original 1dea of P. Aczel, see [Acz], the sets of ICST can be conceived
simply as collections of algorithmic objects, i.e. as subsets of- D in the usual set- theoretlc '
sense, where D appears as an untyped universe of algorithmic objects. '
‘Based on this idea one obtains a model for the formulatlon of ICST not using an ambient
Logical Framework in the following way. If A and B are subsets of D then amap from A
~ to B simply is a domain morphism f: D — D such that f(d) € B forany d € ‘A The crucial.
'pomt now is the notion of equality for maps fiom A to B. Th_mkmg extensionally, the imme-
diate choice would be to say that maps f and g from A to B are equal as maps from A to
" B iff f(d)=g(d) forall de A . But thinking inter.sionally, two maps { and g are equal iff
they give the same result when applied to a most genera[ object ! Now the idea is to replace
the somewhat metaphorical, vague condition " f and g give the same result when applte_d to .
. a most gerieral object” by the more precise (according to modern set-theoretic mathematics)
one that f and g give the same result when applied to an arbitrary obje_éct d e D. Here we
have replaced the vague intuitive notion of most general object by the mathematically precise
‘notion of an arbitrary object of D which actuaIIy is the most general notion of algonthmlc

object (in our context). _ .
" Thus we have defined a non-extensional notion of equality for maps from A .to B asthereis
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a lot of examples of maps f and g such that f(d)=g(d) forall de A, ie. fand g are
extensiondlly equal as maps from A 1o B although for some, often actually for almost all,
objects de D\A: f(d)=g(d).
Nevertheless it is immediate how to define composition of maps in a way such that composi-
tion s associative : if f isamap from A to B and g isamapfrom B to C then g-f ,the
_ composxtlon of f and g, is the unique map h with h(d) = g(f(d)) for all d € D . Thus com-
position of maps between set types is inherited from the composmon of domain morphlsms :
from D to D which is trivially known to be assocmuve _
If one would start from an arbitrary pamal combmatory aigebra (pca) as e.g. the chcnc pca
then often there i$ no way to define composition of algorithmic operations in an associative
~way. But associativity is indispensible for getting categorical models and therefore we have to
be more specific in our requireménts for the underlying space of algorithmic objects !
Another point is that, if one looks at the formulation of ICST inside a Logical Framework,
there arises the question of how to interpret types which are not sets as e.g. the type Set .
According to the discussion above the underlymg collection of objects for Set is ’P(D) the
powerset of D, which'i in no way can be cons:dered as (1somorph10 to) a subset of D for rea-
sons of cardmahty ' _
Thus big types like Set are of quate a different nature than the small set types. Typlcally, in
order to express umformttv of operations which map sets to objects of sets, one would like the
type Set to a carry a trivial realizability structure guaranteeing the desired uniformity. That.
- means that we would like the type Set to be represented in the following way : the under-
lying set of the type Set is (D) and any object A e PD) is realized by the unique objéct
of theidomain 1 which is the terminal object in the category of domains under considera-.
tion. 7
Thus for our puposes it seems to be adequate to con51der arbitrary domains as co!!ecnons of
potential realizers in contrast to the traditional work on realizability sets where a fixed partial
combinatory algebra is assumed as an exhaustive collection of all possible realizers.
These considerations suggest the following general shape of what we call intensional realiza-
- bzlzty sets and morphisms berween mtenszonal realizability sets. We start from a well behaved
category of domains refered to as. Dom . For this one can take any of the many notions of
domain currently in use or their effective versions. Then an intensional realizability set will
consist of a ser X of underlymg ObJECtS together with a domain A of potential realizers and
. afunction r: X — A associating with any object x € X its actual realizer r(x) in A . Thus
what is different from ordinary realizability sets such as o>-sets is that any object comes toge-
 ther with its own unique distinguished realizer and not with maybe several of them. This
~ choice is motivated by the very idea of mtensnonahty maybe two different abstract objects
are realized by the same algonthrruc object but if abstract ob}ects have different realizers then
they must be mtensmnaily different ! :
' In this setting it is most natural to define a morphism from (X,A.,r) to (Y,B,s ) as a pair
(f,a) where f 1sa(set-theoret1c) function from X to Y and a :sadomam morphism from
A 0 B such that a simulates f on the level of realizers, i.e. a(r(x)) =s(f(x)) forany x €
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- X, or more concisely tac r=so f. The category obtained in this way is known as the Freyd
cover or the sconing of Dom , see e.g. [LS] and [FS] -

Before_ giving the official definition of the-category of intensional realizability sets we discuss
to some more detail our requirements for the category Dom .The general framework will be a
cartesian closed category C together with a terminal object 1 which is a generator, i.e. the

functor C (1, _): C — Set is faithful . Cartesian closed categories where the terminal

- object is a generator will be called extensional . This is a stronger notion than the notion of so
called concrete (cartesian closed) categories which are {cartesian closed) categories C whieh
come as equipped with a functor U : C — Set which is faithful and reflects identity mor-

_ phisms. Of course, concrete cartesian ciosed categories nezd not have a terminal objects (as

e.g. the category of infinite sets).

‘Beyond the category Set itself, typlcal and for our purposes more mterestmg examples of |

- such extensional cartesian closed categories are the category of. directedly complete partlal
.~ orders - not necessarily with a bottom element - and Scott continous ‘maps and its prominent
full subcategones SFP objects, consistently complete co-algebrzuc cpos (the so called Scor
domains) or the coherently complete w-algebraic cpos. Especially mterestmg are the effectlve'
versions of these subcategories as discussed e.g. in [Plo].

Of course, one could equally well take one of the more recently mtrodueed more general cate-
gorlcs of effective domain such as the category of complete extensional pers, see [FMRS], or

© Martin Hyland’s category of Z-replete pers. Those appear as full subcategories of the category -

PER® (of partial equivalence relations on ® ) and reatizable morphisms between them, often

~ also called the category of modest sers, which itself constltutes a very rich extensional carte- .

sian closed category.
The choice of extensional cartesian closed category is motivated by their followmg property :

functions which are. deﬁned in a sufficiently constrictive way appear as morph:sms in the. .

extensional cartesian closed category. _
Anyway the definitions and constructions given below will be independent from the spemﬁc
choice of the underlying category Dom of domains and domain morphisms. But whenever
we need specuﬂ properties of Dom we will exphcnely state them !

23 The Category IRS of Intensional R_ealizability Sets

" Now we shall give a precise definition of the category IRS of intensional realizability sets, -
introduce some terminology for further reference and study some of its categorical properties. -

In the sequel' we shall use my and m; to denote the projections on the first and second com-
ponent, respectively; both in the category of sets and in the underlying category of domains.
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Deﬁnit‘ion 1.1

The category IRS of intensional realzzab:l:ty sets and mtensmnai reahzable maps is-given by
~_ the following data, :

: ObJects of IRS are triplées X = (X,A, r) where X isaset, A 1sadorna1n and I: X—)A o
is a set-theoretic function associates with any object x € X its reahzer (x) e A. "
_Objects of IRS are also called mtensxonal realtzabzlzty sets or irs-s.

-For an intensional reahzabﬂlty set X = (X,A,r) wecall X the underlymg set of X.

_'Which will be denoted by Set(X) ‘and we call A the underlymg domain of potennal realizers .

of X which will be denoted by Dom(__) and we call r the underlymg reahzabzhty functzon

o _ _. of X whlch w1lI be denoted by r(_J

. For intensional realizability sets Xl =(X;,Ap,r;) and X3 =( Xy, Ay, 1) the mbrphisms
- from X to X, are the pairs a=(f,a) where f:X; — X, is an arbitrary set-theoretlc fun-- .
ction and a: A1—> A, is a domain morphlsms such that o f=ao ry . T
Morphisms o =(f, a) and B=(g,b) are equal.as morphisms from X; to X, in IRS iff -
f and g are equal as set-theoretic functions and a and b are equal as domain. morphxsms
Morphisms in the category IRS will also be called intensional realizable maps.. s
* For an intensional realizable morph1srn a=(f,a) wecall f the underlying funcnon of the
‘morphism a which will be denoted by fun(a) and a the underlymg reahzer of a which. will
be denoted by real(oc) -

Composition of morphisms in IRS is defined by eomposition of the components, i.e.

'-(g,b)~?ff;a):m (gef,bog)

o For an mtensxonal reahzabzhty set = ( X,A,r) the 1dent1ty morphlsm 1dx is glven by o

the pair (idy ; id ). _
It is straightforward to check:that these data de_ﬁne a _category. o

'Remark The extensional quotient of this category is obtalned by 1dent1fymg those morphlsm RN
~ which dlffer at most in the second component - L '

- Now we shall prove some important categorical properties of IRS . For th‘i's-purpose we first
need the definition of dlsplay map which, intuitively speakmg, is that kind morphism in IRS '

which represents or dzsplavs a famzltes of tvpes

Defimtlon 1 2

A morph1sm oY — X in IRS isa dlsplay map 1ff real(a) Dom(__) - Don1(X_)_- is_'a_:pro-
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jection map, i.. there is a domain A such that 7ty : Dom(X) x A — Dom(X) is isomorphic - |
to real{a): Dom()_;'_)-aaDomQ() in Dom / Dom(X) . o

Remark. Inturtlvely, dxsplay maps w1th codomain X correSpond to those families of inten-
sional realizability sets where all elements of the family have the same underlymg domain of
potential realizers. :

A slight generalization of the deﬁmt1on of dlsplay map can be obtained by relaxing the condi-
tion that real(o) is a projection map to the more. general COI]dltIOI] that real(a) is a con-
tinuous ﬁbratlon in the sense of [PSH} :

-

Theorem 2 3

In the category IRS display rnaps are stable under pullbaeks along arb1tary morplusms and
whenever o ¥ = X and B Z — Y are display maps then the functor :

IRS‘/"_{_ (a*_,B): (IRS/X)OP — Set
is -represehtable by adisplaymap y:P—>X .

Proof : The proof is essentially the same as the proof in the next sectlon that ICont is a con-
textual category w1th products of famlhes of types 0

: The"'only obstac_le preventing IRS from being locally cartesian closed is that in general IRS
does not have equalizers. But if the underlying category Dom itself has equalizers - as it is
the case for cpos(not necessarily having a bottom element) and continuous maps, complete -
extensional pers and Z-replete pers - then the category IRS is guaranteed to have all equali-
zers and, furthermore to be locally cartesian closed. This will be shown in the next theorem:

Theorem 2.4 -

_If- the underlying category Dom of domains has equalizers then the category IRS itself is
IOCally ca'rtesian closed.

-Proof It is a ‘well known fact that the Freyd cover of a category having all finite limits has
also all finite limits. -

Thus it remains to show is that the category 'IRS is locally cartesian closed.

'Let o0:Y—=X and B:Z— Y be morphisms in IRS .

For reasons of notational conveniénce we will write X, Y and Z for Set(X), Set(_\_’) and
Set(Z) , respectively, and A, B and C for Dom(X), Dom(Y) and’ Dom(2), respecuvely,
and r,s and t for r(X), r(Y) and r(Z), respectively. Furthermore for the same reason we
will write f: Y= X and g:Z—Y for fun(a) and fun(p), respectlvely and a:B—o A
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and b:C— B for real(c) and real(P) , respectively.

The morphism -n:aB P --> X -is described as follows. The undérlyihg set Set(P) - which we
temporarily call P - is defined as the set of all triples (x,h,c) such that

-xe X
hIf‘,l({X})‘*Z with gh(y)) =y for all y with f('y):'k

c:B -C is a domain morphism satisfying
t(h(y)) = c(s(y)) for all y with f(y) =X

The underlymg domain Dom(_) is deﬁned as A X {B—)C} and thc underlymg rcahzablhty
‘map r(P): P = A x[B—C] is defined as :

(@) (x,h,c)=(r(x),c) forall (x,h,c)eP
Next we deScribe the morphism [Ty which we temporarily call 7y:
forall (x,h.c)eP :
fan(y)(x, b’ c) =
forall (d,c)e Ax[B—C] :
real(y)( d.c)=d
Finally, the evaluatlon morphism is descnbed as follows,
Objects (x,h,c)ePand ye Y with f(y) = x are mapped by the underlymg function of
the evaluation morphism to h(y) . The realizer for the evaluation morphism is the domain
. morphlsm mapping (d.c)e Ax[B—C] and b & B to c(b) ' 0
" Based on these categorical propertles we shall deﬁne in the next section a contextual category

with products of families of types which will serve as a (n extensmnal) model for the Logical
Framework containing enough structure to tnterpret ICST .

24 An.'Intens'io_n:al Contextual Category with Depe;r_nd_ent Products

We shall deﬁné a'coht_éxtual categbry‘ ICont based on the Catégory [RS of intensional reali-
zability sets. This means that there is a full and faithful functor DEN forgetting ICont to
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" IRS.Fora detailed eXplanatior_l of the notion of contextual categoy see e.g. [Stri].

We inductively define a class ICONT of contexts together with an interpretation function
DEN : ICONT — Ob(IRS) assoc1at1ng with every context an initensional realizability set and
a mappmg Iength ICONT — @ associating wnth every context its length.

(D The empty context € is an element of ICONT and length[s} =
DEN[g]=({*}.,1,ry)

. where {*} is the underlying setof £,
1 is the terminal object in the category of domains’
' and rq is the unique function from {*} tol.

2y ifle ICONT with Iength[l'] n and DEN[T] =(X,A,r)
' and B is adomain and F:X — Ob(IRS)
such that for all x € X the underlying domain of potential realizers of F(x) is B.,
i.e. Dom(F(x))=B for all xe X, ‘
. then '

(T,B,F)e ICONT -
Iength[(I“,B,F.).] =n+1
DEN [(,B,F)] =, AxB. ) where
s—..z'{‘(x,y) | xeX and y € Set(F(x))} and
F(x,y) = ( r(x),_real(ﬁ(x))(y))e forall x & X and y € Set(F(x))
The objects of the contextual category ICo.nt are th_e elements of ICONT .\i.fhi'ch_a.ré'often

simply called conrexis.

The morphisms from cbr_ite‘xt I' to context A are the morphiéms in IRS from DEN'[I"]' to
| DEN[A] and we simply write .o : ' — A instead of o : DEN(I] ~» DEN{A] .-

Composition of morphisms and identity morphisms are inherited from IRS.

A context T is the father of the context A iff A is of the form (T, B, F).

We write T <l A to indicate that context T is the father of the context A .
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Of course, the relatlon <] mducesatree structure on ICONT where € is the root of the tree
and a terminal object in ICont
| If I'<i A then the canonical pro;ecnon p(A) A->Tis deﬁned as follows. - -
" Let. DEN[I"]—(X A,r). As T< A weknowthat A=(I,B,F) forsomedomam B

‘and some F: X — Ob(IRS) such that Dom(F(x)) B forall xe X . Then p(A) xs defined
as the rnorphlsm Whose components '

: ‘real(p(A)) ‘AXB A .
fun(p(A)) : Set(DEN[A]) - Se_t(DEN[rj) :
are Simpiy the p_fo’je.ctiens l'on_ the 'ﬁret_eompdﬁenté,' e
funié(A))(XQ&) =x - forall xe X .y € Sé?(F_(x))
. feal(p'(A))(a,b) = for all a.e .A' , bé B

) We employ the notat:on o: A —I>T in order to mdlcate that o.: A — T is a canonlcal pro-
: ;ecnon ie. o = p4). ' ' S

For any context morphlsm o G) =T and any context A= ( F B, F ) thereis a dlstmguls-
: hed context :

a*A :_= ( 8,B, Fyfun(q) )

and a elisfinéuished_context xj;e;phism ;
.q(a,.A)' ':j‘l oa*A— A

w1th cempoeents _

 fun(glos A)) : Se:(a*A.) R Set(A)
o _reall(q(a, A : Dom(a";A) - Do_m({_\_‘)

" -iv‘hich are deﬁned as follows- . |

fun(q(a A))(z y) (fun(a)(Z)) y)

for all z e Set(DEN(@)) y e Set(F(fun(oc)(z)))‘ a
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real(g(a, A))(c,b) = (real(a)(c)), b)

forall ¢ € Dom(DEN(E)),be B
Next we show that these data actually define a contextual catégdry, cf. [Str1].
First we show that for any context morphlsm a:T1—T and any context A= (T, B F) the

" morphisms p(a*A) and q(a A) constltuteapuilback cone. . -

‘Let @_ be a context and B; © ——>_1"l and y: @ — A be m_orphisrﬁé with oteP=p(A)-7.
Then there exists a unique morphism g : © — o*A such that

pas)yep=p  and g A)ep=y
where. |
fun(u)(z) = "-(fun(s)ké),- nlc-fun(v)(é))j |
forall 2 é'Set(DEN(é)) |
and
_ féal(u)(c) = (real('B)(c),_ m(réél(’.:/)(VC)))'
for-ali ce b_bm(DEN(@))

Next we shall define some further mgredlents needed in order to have depcndcnt products of

families of types S : .
Let T, A, © be contexts with I'<tA< G) Then there exist domains’ A and B and fun- _
ctions F: DEN [1"] - Ob(IRS) G DEN{A] —> Ob(IRS) such that -

A= (T A.F) and- ® =(A,B. G)
Obviously, by definition of what a context is, for F and G it must hold that Dom(F(x)) A
forall x € Set(DEN[I]) and Dom(G(z)) =B for all z € Set(DEN[A]).

Then there is a distingiished context
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® = (I, [A—>B],P)
_ whefe P: Set(DEN[l’“_I) —> Ob(IRS) is defined as follows. For ény x € Set(DEN(I]) let

Dom(P(x)): =[A — B] and Set(P(x)) be the set of all pairs ( S, a) where a: A—B is a
. ~domain morphlsm and - '

5 1 Set(F(x)) — U { Set(d(i,y)) l\yle Set(F(x)) }
.such that for all ye Set(F(X)) : |
s(j.) e Set{(G(x,y)) and
 areal(Fx))(y) = real( GEx.Y)Ns(Y)
and fhe__réalizaﬁility .fun'ction r(P(X)) is the p}‘ojection-_on the second component, i.q._r '

KP@)s.a)=a  forall (s,a) & Set(P(x))

Furthermore tﬁere isa distingui.s'hed morphism.
eval(@) : 'p(Aj*H(e) ~© over A
which r_neﬁﬁs that itjéétisﬁes thé condition
P(@ de eval(e) p(P(ATI(O)) |
where the components of :val(@) are de_ﬁngd as follows :
fun(eval@)( (x.y) . (a.5)) = ((x,y )50
for all X € Set(DEN[T‘]) y € Set(F(x)) (a, E ) € Set(P(x))
.' real(evai(@))( (¢,d), a) = ( ( c,d), a(d) )
for aIl ce Dom(DE_N[l"]) ,de A ,ae [A— B]

N Now we show that these’ addmonal ingredients satlsfy the conditions requlred for dependent
product types '

Whenever T is a secrion of @ ,ie. T:A—© and p(@)+ T = idy , then there is a unique
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- morphism ¢ : T - II(©) which is a section of [I(©) and furthermore sat_iéﬁes the condition
eval(@) o plAY*G =1
We first descnbe a section G satlsfylng the charactenzmg equatxon and then prove its umque-
. ness. - ' . '
The morphism o s given by its c;ompo_nems
fun(o) : Set(DENITT) — Set(DEN[TI(©)})
‘ real(c'r) Dom(DEN[I‘]) - Dom(DEN [1"]) x{A - B]

~ which are defined as foliows Let a: Dom(DEN[F]) —[A = B] be the umquc domam mor-
phlsm such hat for all ce Dom(DEN{l"]) and de A

real(*t)(c d)=(c,d,a(c)d))
Forﬁarb;trary cCE Dom(DEN[I’]) we pu[
real(o)(©) = (c,a())
'an;i for ar_b-itrary X e set(DEN[r'}) we put
an@)(0 = (x. (5. A(:(DENITDG) )

where s : Set(F(x)} — U { Set(G(( x, y ))) | y & Set(F(x)) }
is the unique function such that for all 'y € Set(F(x))

fun(m)(x.y) = ((x,y),sy))
1t is straightforward, but tedious to check fha't o satisfies the equation eval(®) . p(A)*G T. |

~ For showing uniqueness suppose that ¢ isan arbitrary section of 3 (C)) satzsfymg the condl-

tion eval(@).p(A)*o'=T. . o
We ﬁrst show that real(c') = real(c) . As both o' and G are sections of I[I{®) there are :
domain morphisms a', a : Dom(DEN{I']) — [A—B] such that for all ce DOom(DEN[I]):

_:real(c‘)(é) =(c, a'(c) ): and real(o)c) = ( c,afc))

and therefore it is sufficient to show that a’ =a. - ‘
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As eval(@)e pld)ie' = we dlso have _~
real(eval((f)))crgal(‘p(A-)*o") = real(f)'
V_Tha‘t iﬁcan’s that fc)r_. all '.c € Dorr;(DEN [F]).» and d €A :
'. ‘ _ré.al(e'\./al(@))(.real(p(A)*q')(.6.,_d)) = real(t)( ¢ ,d)"_
- and as we khow; tﬁat real(p(A)-*G‘j(_ c d) = (. (c,d 'j‘,'a'(c) ) wé é_et__
real(eval(@))( (¢ ', & ), 5'(&) ) =real(t)(c,d) - -
and as we l;now that féal(e‘;/al-('é))( { c, d ), é’(c)) = (.c,.'a':(c)(d') ) we get :
(c. a(c)(d)) —real('r)(c d) | o
‘Thus we have shown that for all c € Dom(DEN[l"]) zind de A
real(‘c)(c d)y = (c a(c)(d))
| But from the deﬁmtlon of G we know that for all ce Doﬁ(DEN{ﬂ) and.d e A
real('c)( _c,d.) = (c,a(c)(d)) o
' Thus by transitiVity _of equali_ty .we have t_ﬁat .fo.:_z'ill cie D_om(DEN[i"]) and de A
(e a0 = ( ¢ ’.f"'(c':)(d_)--) A " _
: B'ut'z._ts .tf}e 'cat'c._ago_ry of domains is a fnodel for l—caicul_us with ﬂ-rﬁle ﬁhis i:mplies that
) Ar‘aalogously,.one can prdvé that fun(cr‘)% .fun(.c)‘ ..

After having. found a model of the Loglcal Framework we ‘shall turn to the task of: mterpretmg -
ICST in 1t ' ; :

=70 -




Chapter 2

| 2.5 A Model of Intensional Constructive Set Th’eory in {Cont

In order to interpret ICST in” ICont we first havc to define an ob]ect Set and an ob]ect El
with Set <t El . '

~ The idea for 1nterpretmg Set is that it should be a collection of small types. Now, what is a
good criterion of smallness for intensional realizability sets ? In the case of the usual PER®
" model in ©-Set the criterion was that every object is determined uniguely by its realizer. If we
transfer this idea to intensional relizability sets then the condition of smallness for (X, A, r)
is that for all X, x'e X if r(x) =1(x") then x =x’, in other words, that r is injective and the-
refore essentially X is a subset of A . But we have to be careful as in the case of w-Set we
have only one collection of realizers, namely @ . Now in the case of intensional realizability
sets any domain serves as a-collection of realizers. For small types the underlying domain of
potential realizers should be a domain of algorithmic objects fixed in advance.

For the purposes of interpreting intensional constructive set theory we assume that this fixed
domain of algorithmic objects - which we call from now on D - satisfies the followmg domain
equatlon ' '

D = [D—D], w[DxD], W[D+D] D, w{0}, D

Here W denotes th'e coalesced sum of two domains where the bottom elements of each sum
are identified and. + denotes the separared sum where a new bottom element is added to the-

disjoint union. : :
Obvu)usly, thls domain equatlon is the one su1table for interpreting the underlying functional .
language of intensional constructive set- theory when lazy evaluation is assumed {see e.g.

[MLAD).

‘Now we will give the inetrpretation of ICST in ICont.

2.5.1 Interpretation of Set and El

The intcrpretationlof Setis (£€,F) v;rith F(x)=(P(D), 1.r) where r is.the unique fun-
ction from ’P(D) to {=},the underlying‘set of 1: , :

. The object El with Set <t El 1s (Set D,G) with G(* A)=(A,D,iny) forany A€

P(D) where ing : A—-> D denotes the embeddmg of Arinto D .

' In the sequel quite slopplly_we do not dlstm_gmsh between Set and F(+x), El and G,and
inStead_ of G( %, A) we simply write EI{A) or even El A . :

Similarliz, when (s, a) is a morphism from £ to some I of lengfh 1 then we always omit
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the trivial argument =, i.e. we write s for s(*) and a for a(«). .

2.5.2 Interpretation of TT ,fui_n and F
If Ae Set and Be {x :El A} Set then -
HAB —{map(h) ! he [D — D] and h(d)e B(d) for all de A}

where map [D—= D] — D is the embeddmg into D of the first summand D —=D] of the
nght hand side of the domain equation charactensmg the algonthrmc universe D .

If (s,h)e {x-El A} EI (B x) then
funAB(s,h) = map(h)

. and fun is realized by the domam morphlsm m: (1x [1 — 1hpx[D—-D]—=D descmbed
by the equation m ( ( 1d1 ), h) = map(h) for all he [D — D]

Next we will describe the ehmmatlon operator F.
If Ce {p: El (ITAB)) Set and de {f: {x:El A} EI(B x)} El (C (fun A B f)) then the _
_ interpretation of FA B Cd is defined as follows. If ¢ € El (IT A B) then ¢ =map(h) for
some h € [D - D] suchthat (s,h)e {x:ElA}El (B x) for aunique s whichin factis -
the restriction of h to- A . Of course, ¢ is realized by itself. Then we put
_ ﬁ.m(FABCd)c = fun({d) (s, h)
and‘
_ _real(F AB C d) ¢ = real(dyh if.c = map(h) for some he [D— D}‘
feal(F ABCdyc= 1p otherwise
Itis obvious from this definition of F that in our model the'equation
FABCd(funABf)=df
is valid for all admissible objects A ,B,C,d,f. .
. Obviously, this is not the only way to define feal(F A B' C d) as there is a lot of other diffe-

rent domain morphisms m : D — D satisfying the condition that forall he [D-—D]
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m (map(h)) = real(d) h = fun(F A B C d) (map(h)) =
- For example for any arbxtrary dye D ‘we can put m(c) do for all ce D .with c¢.LD and
c#map(h) forall he (D — DJ. : -
Therefore uniqueness of elimination fails in a very strongly asif ee {c: El (H A B)} El(Cc¢)
~with real(e)(c) = dO forall ce D with ¢ #l1lp and c# map(h) forall he [D— D] then
in our modcl 1t holds that e is different from : _ _ :
e:=FABC(f ;'_{_x L El A_'} Bl B x)] e (fun A B f))

as for all ce D with ¢ #1lp and c‘%_maﬁ(h) forall he [D - D]

_ real(c)(.c) = ip '_vvhe'reas real(e')(c) =dg -

and for almost all choices dp is different ffom L1py.

- 253 Interpretatmn of . Z pair and E

If A € Set and B e {a EIA} Set’ then ZA B is the subset of b cons;stmg of all ob}ects _
pr(d1,d2) € D such that dl e E1 A and d2 ¢ El(B d1y . _ : '
- Of course, the rnappmg pr. is the embedding info D of the second summand D X D of the '
- right hand side of the domam equation characterlsmg the algonthxmc universe D ' '

The underlymg function of the morphlsrn palr maps any dI € El A and d2 e EI(B d1) to
- the object pr(d1,d2) in X AB. .
- Iti is realized by the domam morphlsm mappmg any di d2 e D to pr(dl d2)e D.

The ehrmnatlon operation E is defined as tollows : _
If Ac Set,Be {a:ElA}Set and de {a:El A}{b:El (B a)} Ei(C(pzur(A B.a,b))) then -
the denotation of E A B Cd is described as follows. Its underlying function maps any object
of the foxm pr(dl,d2)e Z AB to dd1d2. If f is any realizer for d then the realizer for the -
~object EABCd isthe domain morphism mapping any argument of the form pr(dl d2) to
the object fd1'd2 and any other argumient to 1p.

Obv1ously, E satisfies the correspondmgB like rule. -

But unigueness of elimination does not hold because instead of EAB Cd we can take a mor-
phism with the. same | .underlying functionas EAB Cd but wrth a realizer which on argu- .
“ments of the form- pr(d1, d2) behaves like the realizer of EABCd but gives 1 as result if
the argument is ip. and some arbitrary fixed Ob_]CCt dg e D in aIl other cases.
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254 Interpretation of Id, r and J and K

If A< Set and a,be ElA thentheset IdAab—{ld(d)I a=d= b} where id:D—D
is the embedding into D of the 4th component of the right hand side of the characterizing
domain equation for D . -

" Ofcourse, Id A ab is the ernpty set tif 2% b and otherwwe [dAaa={id(a)}.

The mapping r associates with any set A and any a € A the object ‘id(a) eldAaa.
The morphism r is reahzed by the domain morphism which forany d € D gives the element
1d(d) 1= D :

: Next we shall descnbe the interpretation of the elimination operanon J.
Let Ae Set,;Ce {a:ElA}{b: EIA}{C El'(ld Aab)} Set and de {a: EIA}El(Caa(r
A a)) . Then there is only one poss1ble choice for the underlying set theoretic function of the

-~ object JACd: if a,be A and c e El(Id Aab) then ¢ —;d(a) and a=b and therefore
it must hold that

funJAC d) abe = fun(d) (a)
as required by the conversion rule for the eliminator J .

But there are a lot of d:fferent choices of how to deﬁne real(J A C d) Our canomcal choice
is the foIlowmg

-tealJACd abid(x) = real(d)x
reald ACd)abc = Ip  if c#id(x) forall xe D
Under this interpretation the B-like rule for J is satisfied but not the n-like rule.

The reason is that for any given d € {a:El A} El (Caa(rAa) there are several mappings |
ee {a EI A) {b ElA}{c:El{(Id Aab)} EI(C ab¢) which extend d but are different from

. JACA.

Of course, the underlying functlon fun(e) must always be equal to fun(J AC d) in order to
validate _

JAC.da_a (r A a)_'.:
the conversion law for the eliminator J .

But for fﬁn(e) there is plenty of choice as shown by the following examples.,
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Let dye D be arbitrary and define

| real(e).a bid(0 = real(d) x = realJ A C a) abid(x)
real(e) ab ._!_D =dp = realJACd)a b ;LD

but for afguments a,b, c with ¢ ;& ip .and' c# id(x) for all xe€ D we put |
reai(e) abc¢ = .do | |

Then for any arbxtrary choice of d as Iong as dg = 1p we. have for aIl cE b with ¢ = _LD |
and c¢1d(x) forall xe D that - :

reaI(e) ab¢ =dy #1p = reald ACdyabec
 There are two further examples illustrating that one may define real(e) in a way that it shows
a behaviour different from real(J A C d) even for arguments a , b, ¢ where c= = 1d(x) for
some xe D.
~ Either one puts forall a,b,c € D
real(e) a bc = real(d)a
or one puts for all a, b.ce D - |
real(¢)abc = real(d) b
Then"for boﬂz definitions of e one has
real(e) aa 1d(a) = real(d) a= real(J AC d) aa 1d(a)
guaranteemg that also on rhe level of T eallzerv the deﬁmng equatlon
JACdaa(rAa) = da
for J isvalid in the model. -
Although the model under con51derat10n is very intensional in the sense that that it strongly
refutes the n-like rule for J, it is nevertheless possﬂ)le to interpret our new elimination opera-

tor K in a natural way which is ‘very similar to the mterpretatlon of J. This is a further indi-
'~ cation of the naturality of our new eliminator K.
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If A is aset,Ce {a:ElA) {c:El (Id A'aa)} Set and de {a:El A} El (Ca(rAa) then
- KA Cd is defined as follows. For anyae A and ce El(IdAa a) it necessarily holds that
¢ =id(a) and therefore we have '
i fun(K ACd)ac = fun(d) (a)
A natural choice for defining the realizer parf of KA Cd isthe folIQWing
. real(K ACd)aid(x) = real(d)x
real(KACd)ac = Ly if c#id(x) forall xe D
which strongly resembles the interpretation of J .
Again, as in the case of I, under this interpretation the -like rule for K is satisfied but not
the m-like rule. The reason is that for any given d e {a: ElL. A} El(Ca (r A a)) there are
several mappings e € {a: El A}{c: El (IdAaa)} El (Cac) whichextend d but are diffe-
rent from our chosen interpretation of K A C d . ' 7 _ _
- Of course, the underlying function’ fun(e) must always be equal to fun(X A C d) in order to
validate : '
KACda(rAa):da : ' _ _ ' |
the conversion law for ouf new eliminator K .

But, again, for fun(e) there is plenty of choice as shown by the following examples.
Let dge D be arbitrary and define ' ' : '

real(e) a id(x) = real(d) x = real(K A C.d)a id(x)

o re'al(e).aJ_D = lp =reallKACd)aly

‘but for arguments a, ¢ with ¢ % Lp and c#id(x) forall xe D we put
- realie)ac = do'

Then for any arbitrary choice of dy as long as do # _Lb- we have forall ¢ € D with c 2 Ip
and ¢ #id(x) forall x e D that I

~real(e)ac = dO‘ #lp = réal(KACd)ac
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_And there is a further example itlustrating that one may define real(e) in.a way that it shows '
a behaviour different from real(K A Cd) even for arguments a, ¢ where ¢ =id(x) for some
XxeD.

Simply put forall a,b,c & D

real(e)ac = real(d) a
“and one gets that
real(e) aid(a) =real(d)a = real(K A C d) a id(a)

' guaranteeing that also on the level of realizéri_t'he deﬁnin_g equation

' KA_Cda(xjAa) =da
for K is valid in the model, ~
2.5.5 ‘Interpretation of N, 0, succ and R and dther inductive types .
-Flnally we show how to 1nterpret the mductlve type ‘N of natural numbers The set N is the
- least subset of D contamlng 0 and closed under the operation- incr . Here incr denotes the_
embedding into D of the last summand of the right. hand side of the domam equation cha-
-ractenzmg D. . ' -
. The interpretation of zero is 0 and the interpretation of succ is incr .
Next we desctihg the s "**‘rpretatlon of the prlmztlve recursor. R . _
For any family -~ . ix — Set,d € A zero and e: {n:N} (A n) — A (succ’ n) we define the
realizer part real(R A de) of the object R A d e € {mN} An as the /east domain mor--
.phlsm I satisfying the followmg two equatlons . o ' ' ' ' '

fO=4d
f (in_ef x_) = real(e) x (f x)

'By its realizer part the object RA d e is determined umquely as A 1$ a rarmly of setsand -~ - -
_'ob_]ects of sets are uniquely deterrnmed by thelr 1eahzers : '

One can see immediately that the 'd(')main morp_hism real(R A d.e) gives ip ns result whe- =~ . ]
- never it is applied to an argument which is different from. O and not of the form incr x for o f

|
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some xe b .

There exist other objects he {n:N} An with real(h) different from real(R A de) although -

funth) = fun(R A d e} which is necessary for making h satisfy the equations
ho = d
h(succn) =en (hn)

typical for RAde. = _ _
Such h can be obtained by taking for reai(h) any non-minimal solution of the equations

f0 = d
f(incr x5 :. real(e) x (fx) -
‘as e.g. the'least g satisfying the equations
' gb=d
! g (incrx) = real(e) x (g x)
ge = .do ' whenéyer c ;ﬁb and c#incrx for ;'11] xe D
where dy is an arbitrary element of D’ diff.e'réﬁt frorﬁ —LD .
AS both. R' A d e 'an.d such 'hl satisfy the typical equations for R A 'd.e and ne\.fert'hele‘ss' are

different this demonstl'ates that the eliminator R does not satisfy the nj-like rule for R .’

Of course, other inductive types can be interpreted in our model as well provided that the
domain - D- is chosen appropriately. This can be achieved by adding for any constructor an
appropriate sumsmand to the right hand side of the domain equation characterizing D).

E. g. if one wants to interpret Martin-Lof’s W-types (Wellfounded Trees) in order to interj)ret
the constructor sup one needs a further summand of the form (D x [D—D) i '
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2.6 The Models Obtained as Freyd Covers of Categories of Domains
Are Semi-Intensional But Not Fully Intensional

.Next we will check which of our criteria for mtensmnahty (cf 2.1) are Vahd in thlS model and
which are refuted :

Theore_m 2.5
The sequent
A:Set,x:A,y:A,z:IdAxy Fx=y € A )
~ - expressing that propositional equality reflects to judgemental equality -  is not valid. -
Proof : let T temperarily be a name for the context A 7Set X A LY A,z:IdAx v.
The realizer part of the interpretation of x relative to the cc)ntext I" is the domain morphlsm f
charactenzed by the equation

fudld2d3 = dI-

and the realizer part of the interpretation of y relative to the context I'is the domain mor-
phism g charactenzed by the equation

gudld2d3 = a2

- As f and g are different domain morphisms the mterpretat]ons of x and y relatlve to the
context I' are dlfferent S 0

_ There is an important strengthening of the previbus theorem expressihg that for any set A and |
‘any object a € A the objects z e Id A aa are not uniformly Judgememauy equal to the
. canonical object rAae Id Aaa.
‘Theorem 2.6
For any A e Set and any a€ A the foilow 7 sequent is not vahd
z:ldAaa,p:1d(Id Aa'a) (r-A‘a)z_ FrA a=z*é IdAaa’
Proof : Let T .temporari]'y be a name for the cont’ext z:ldAaa,p:Id{IdAaa)(rAa)z.

‘The realizer part of the interpretation of r A a. relative to the context I' is the domain mor-
- phism f satisfying the followmg characterizing equation
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fdl d2 = id(a)

- and the realizer part of the mterpretaﬂon of z relatwe to the context T is the domain mor-
phlsm g satisfying the following characterlzmg equatlon ' '

- gdld2=dl

1Th1$ shows that the mterpretatlons ofrAa and z relatwe to the context F are dlfferent in
their reahzer parts. o

Theqre_m 2.’7

The 1dent1ty reﬂectlon prmc1ple is also valid in our medel : for'any ‘A € Set and t.se Aif

there is an object pe Id Ats then t and s are equal Ob_]CCtS of type A

Proof : If pe Id Ats then the type Id A’ ts is non- empty and t and s must be equal as
otherw:se the type Id Ats would be ernpty due to our definition (c £.254).

- But the models obtained as Freyd covers of some category of domains are semi- intensional in

the sense that it holds w.r.r. arbitrary contexts that if t and s are propositionally equal
objects of set A then for any family of sets B mdexed over A it holds that B(s) and B(t)
are judgementally equal as sets.

Theorem 2.8
The sequent
'-_A Set,B: A—)Set X:A,y: A/z IdAxy FB(x) = B(y) e Set

18 vahd

Proof : Accordmg to our definition (cf: 2.5.1) the type Set cames the tr1v1al realizability
structiire, i.e. the domain of potential realizers of Set is 1 . :
Therefore even relative to the context A :'Set, B : A — Set XAy A z: IdAxy the
1nterpretat10ns of B(x) and B(y) have the same realizer part.

But also the function part of their interpretation is equa} as whenever ze Id A xy then accor-
ding to the definition of Id the objects x and y must be equal - as otherwise Id A xy were
empty and therefore also B(x) and B(y) are equal T

Expectedly also the extensionality principle for functions is -wrbng in our model(s) as shown
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by the followtn g theorem.
Theorero 2.9
The seqﬁent
A : Se_t ,_.B': A-> S_et , fg HAB ,p .'{-JII(:A} I(i (B xj (f x_) (g X) !-.. Id: (IT AB)fg
-~ isot valid. | |
Proof : This set;uent is ztot valid already for very simple iﬁstoﬁeee of A and B e.g. if .one :

ehoses for A the set {0} and for B the constant famﬂy with value A’ then there are (many
- examples of) two’ dlfferent functions f and g both mappmg 0 to O butbehaving drfferently--

at arguments different form 0. But for all such f and g the type {x: A} Id(B x)({f x) (g x) is -

inhabited although the set IddIA B) fg is empty. R

~"As a further illustration of the power of our models we show that two very simple terms of -
“type N—N have different denotations in our. models although one can formally prove then"
_ pointwise propositional équality. ' '

'.Aetually it are the two terms of type N—N whlch have been mtroduced at the begmmng of o

" Chapter 1 to 111ustrate the dlfference between extensional and. mtensmnal equahty of fun- _
© ctions. ‘ ' '
Theorem‘ 2.10

In all models constructed as Freyd covers of Some category of domams the followmg two .
terms have a drfferent denotatlon :

L 'E_. [X' : N] X. Cand s = [x:N] R ([x:N]N) 0 ([x : Nily : N] succ y) -
_alt_hough their po'.intw-i:‘se propos:itional 'equz_llity-' canbe deri_ved formally. |
_ Proof Obviously, we have real.(t) - = idp blit real(s) 'is a 'dornain morphism which accor-- -
- “ding to our 1nterpretatton of R (cf.2.5.5) maps any . d € D with d ¢O and d=# mcr{x) for all B
- X€ D to -LD Therefore we have e. & :

| r_eal(t_)(m;tp(idD_)) - map(idD) # J-]j l—-'.real'(s)(rﬁap('idﬂ))

' ehowing that real(t) = real(s) o0

S TURS




Chapter 2

Of course, this last result could also serve as a (less economical) prorof of Théorern 2.9,

2.7 Conclusion

Based on Freyd covers of arbitrary appropriate categories of domains (S_Ubsumin'g all the well
~ known examples) we have defined a class of models for intensional type theory which allow to
refute most of the sequents which are provable in extensional ICST but are not derivable in
intensional ICST. ' : ‘ ‘ :

- All these models are semi-intensional in the sense that they validate the sequent

ArSet,B:A = Set,x:A,y:A,z:1dAxy FB(x) = B(y)e Set

which is also assumed as an axiom in the type th'edry which was studied by 1. Smith in his
Thesis (cf. [Smi]) at the end of the seventies. - ' , . -
Although he used a variant without an ambient logical framework his work 1s related to our
semantics for Set in the sense that he interpreted sets as predicates on an axiomatically given
algorithmic universe whereas we interpret sets as arbitrary subsets of the fixed algorithmic
universe D.. _ ' E ‘ : :

Both his and our approach are based on the semninal work of P.Aczel (cf. [Acz]). The work of
~ 1. Smith uses the method of interpreting type theory by translating it to another constructive
theory (a type-free logical theory of constructions) whereas we have chosen a purely semanti-
cal, model-theoretic api)roach. _ _ : :

- What is new in our approach is that we can also interpret the ambient logical framework.
Techn’ically speaking, this has been achieved by shifting to the more complex category IRS of
intensional realizability sets whereas the model-theoretic counterpart of J. Smith’s account
stays within the full subcategory of those intensional realizability sets X where Doin@(_) =
D and r(X) isinjective. - ' o

The drawback of being only semi-intensional will be remedied in the next Chapter 3 where we
introduce a model which allows to refute the crucial sequent above and furthermore arises as a
slight vartation of the well-known realizability model for extensional type theory as studied
e.g.in [Strl]. - - ' '
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Chapter 3
Fully Intensional .M\;odel_s of Constructiue Set'Theory' |

In this chapter we describe and discuss a fully interlsional model of ICST whtch also refutes

the semi-extensional sequents which ‘were still valid in the models of Chapter 2. A pleasant -

aspect of these fully intensional maodels is that they are obtained by only a slight modification
from the well known realrzabﬂlty models for extensional type theory based on KIeene reahza— -
bility. : : '
In section 1 we introduce and motivate the coneeptual dlS[lnCtIOI] between potent1a1 and actual 2
' Ob_]CCtS We argue that in order to avoid semi-extensional phenomena in (realizability) models

one must shift the distinction ‘between potentlal and actual from the level of realizers to the
level of objects of the underlying set. ' : _
In section 2 we define the category ‘mr-Set of so- called mod:f ed Jealzzabtllty sers from the

category r-Set of ordinary realizability sets. Objects of mr-Set are objects of r-Set together -
with a distinguished chosen subset-of actual objects and morphisms are required to preserve

actual objects. We discuss the categoncal properties of mr-Set and find that they are suf- -

- ﬁc:1ent to interpret extensional type theory and therefore the ambient logical framework. We |

further show that mr-Set appears as the full subcategory of ~elosed objects of an appro-
priate realizability topos. ‘ : _
~ In section 3 we identify a small full subcategory of mr- Set which is lnternally closed under
arbitrary products and will be used for i interpreting impredicative ICST. In section 4 we inter-
pret Martin-Lof’s 1dent1ty sets together with our new eliminator K in this (mtemal) subcate-
gory and show that the resulting model is fully intensional. In secuon 5 we give mtensmnal
mterpretauons of dependent product and sum types. o
In section 6 we give intensional interpretations of N, the empty set and the smgleton set and
demonstrate that a lot of properties valid in the extensional theory fail in the model and there-
~ fore are not derivable in ICST. In section 7 we show that agam extensmnahty pnnmples for -
functions are refuted by the model. , » :
In section 8 we study the relauonshlp between Martin- Lof’s 1dent1ty sets and Leibniz equahty‘
~ We show that both notions of equality - although loglcally equivalent - are not- 1somorph1c
Furthermore we show that Leibniz equality sets cannot be endowed with an eliminator J in
~our model - and therefore not uniformly by a syntactic definition - as the mterpretanons of
~ both notions of equality are qualitatively different :5 a ‘topological’ sense. -
- In section 8 we define another small full subcategory of mr-Set mtemally closed under
arbltrary products whose underlying realizabilty sets correspond to effective domains. For this
- new model of Set we show that dependent sums cannot be interpreted.
- Finally in section 8 we discuss the relevance of our models for obtaining mdependence results
and checking the adequacy of suggested extensions of ICST.
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| 3.1 Full Intensionality and Actual vs. Potentiai Objeéts

In this chapter we shall study a model of ICST which satisfies the following three
Crifer_i_a of Intensionality

(C1)  itis not valid that

A:Set,x:A,y:A,z:ldAxy Fx=ye A

(C2)  itis not valid that

A:Set,B:A—>Set,x:A y:A,z: IdAxy F B(x) = B(y) € Set

- (C3) for any set A

FpeldAts implies Fi=se A

Criteria (C1)-and (C3) are already satisfied in the models presented in Chapter 2, but criterion
(C2), obviously is not satisfied as identity types are either empty or singleton and Set carries
a trivial ‘réalizability structure (there is only one potential realizef).

Thus two morphisms B C: A ~—» Set are equal iff their underlying functions are equal.

A first attempt to avoid this drawback would be to look for a nontrivial realizability structure
on Set, but that seems to be fairly impossible as that would amount to introducing codes for
sets and then we already would be quite close to term models which we want to avoid as they
are quite untractable due to their purely syntactical nature. o

Therefore one needs a new idea of how to'qapture- on the semantical level the very idea of
intensionality. Our approach is based on an adaptation of Kreisel’s idea of modified.realizabi-
lizjz_ with its distinction between potential and actual objects. (This idea has come up again
quite recently in the work of Burstall and McKinna on the so called deliverables, see e.g.
[McK]). ' o

We first will give an intuitive explanation of the idea behind the distinction between potential
and actual objects. : '

-84 :




Ch_apter 3

Accordmg to ancrent tradmon in logic provmg a universal statement of the form (vx:A) P(x)
amounts to demonstrating that P(a) holds for the "most general object a of type A" . Of
course, the most general object is different from all concrete, i.e. most specific, objects. Typi-

~cally, if A isthe type of natural numbers then, of course, any specific natural number is dlffe-

rent from the most general natural number as it has a property not shared by -all natural
numbers. Of course, if predicate P_ is true for the most general object of type” A then it must
be true for all concrete objects of type A but there is no evidence that if P is valid for all con-
crete. objects of " A that it must be necessanly the case that P is true also for the most
‘general object ot iype A . ' : SR .

Thus a proposition of the form (vx:A) P(x) may be true mdmdually for every concrete object_
of type' A although it need not be true for the most. general object of type A . : .
Of course, the idea of a most general object (of a certain type) seems to arise from a confusmn
‘between syntax and semantics. In contemporary ‘formulations of logic, e.g. m natural

" deduction style, this idea of a most general object is reflected on the formal level by the

-~ variable conditions in the introduction rule for the universal quantifier : in order to prove the
-sequent T F (Vx:A) P(x) it is"sufﬁ.cient toprove ' +P(x) where x does not occur freely in
- I'ste.in T there are ma‘d'e no assumptions about the most general object as referred to by x.

- AIthough this 1dea of .a most generai object of a eertam type is qulte vague and cannot be
" made precise accordmg to standards of modern mathematical logic, it motivates the followmg

point of v1ew vahdlty of (Vx A) P(x) means more than valldlty of P(c) for all concrete

object ¢ of type A

Therefore it seems to be natural to assume that besrdes the actual concrete ObjBCtS there are

also potennal ideal objects for WhICh the predtce e P has to hold as welI in order to be uni- -

o versally valid.

For motivation just consider the situation oné has e.g.in nonstandard models of Peano arith-
‘metic. If a universal statement  (Vx: N) P(x) “is true in the standard model but not derivable
from the axioms of Peano arithmetic then there exists a nonstandard model of Peano arithme-
tic’ contammg an element which is not denotable by a term, i.e. a so-called nonstandard ele-
'ment for which the predlcate P does-not hold. Thus semantically speaking accordmg tothe ~
completeness theorem a proposmon (¥x:A) P(x) is dérivable or umversally valid iff for all

-models (in our case of Peano anthmetlc) the predlcate is not only true for standard elements =

but also for-all nonstandard elements. :

Therefore we consu:ier atype A to be a collection of pm‘enna[ or hyporhettcal ob_]ects toge-:
ther with a dlstmgulshed subcollection of actual or concrefe objects Of course, a- function .
from a type A toa type B is assumed to preserve actual OUJEL:’S o

. As thlS dlstrnctton between actual and potentlal ObjBC{S is not present in the well- known -

Kleene reahzablllty models for type theory we will next give an extension of this notion of :
model in a way that in these extended models there will be such a d1st1nctron '
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3.2 The Category mr-Set of Modified Realizability Sets

We assume to be known the caregory 1-Set of Jea[fzabz!zry sets, see e.g. [Str1,2], where it was
called -Set. We. adopt to this new notation as it is in accordance with the notation mr-Set for
the category of modified ;ea!zzabzlzfy sets which will be defined next.

_ Deﬁnition 3.1

A modified reaéiéabil;'ty sern(mr-set) ie a .triple X=(X,Xg, I~ ) .sech that
-(i) UX)=(X,|l-x) isan r-set
(i'i) XO is a,subset of X

The objects of X are called the porential elements and the ObjECtS of the subset X, are called
actual, defined or standard.

A morphism of modified ;ealzzabzlzfy sets from X=(X.Xq,l~x) to Y=(Y Yo J[——Y ) is
a (set- theomc) function f: X - Y such that

(1) . f is a morphism fro_m 11(}9 o llf(i) in r-Set
(i) f preserves actual objects, i.e. x e XO implies f(x) €Yy .

We write mr-Set for the category whose objects are modlﬁed reallzabﬂlty sets and whose
morphisms are morph:sm of modified realizability sets. - o

For the more categorically 1nchned reader we just remark that the category mi-Set can be
obtamed by a rather simple categorical construction : consider regular subobjects in r-Set
fibred over r-Set . Then the total category of this fibration is just mr-Set . Actually, this fibra-
tion is glven by the forgetful functor 11 : mr-Set — r-Set.

It seems to be remarkable that this functor has both a left’ adjoint £ and a right adjoint R
~which-are both right inverses of 11 . These functors . £ and N are defined as follows : for an
r-set X =(X, l-x) we have EX-(X {1 l-x) and. ‘T\‘X—(X X “—X) and for a
morphism f in r-Set we have 2 =f=N(hH). :

" Thus r-Set appears as a full subcateomy of mr-Set in a rather strong way usually called
essential localization or UlQ (Unity and Identity of Opposites), see [L.aw]. That means that
1-Set appears as a full subcategory of . mr-Set ‘in two different ways : once negarively as the
image under & as the full subcategory of mr-Set con51st1ng of all those mr-sets. having no .
actual objects and once positively as the image under N as the full subcategory of mr-Set
con31st1ng of all those mi-sets where all potential (ijeus‘ are also actual. Of course, the posi-
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tive and the negative appearance of r-Set in mr-Set have a trivial intersection which con-
tains exactly the initial object ( {}, {}, {}) of mr-Set . Of course, ¥(r-Set) is a coreilective
subcategory of mr-Set and R(r-Set) is a reflective subcategory of mr-Set . For any r-set X
=(X, |~x ) the fibre LIX (i.e. the set of all mr-sets mapped to X by ) is in one-to-one
correspondence with the powerset R(X) ordered by set inclusion. This fibre IIX is a com-
plete lattice whose elements can be understood as degrees of actuallness descrlbmg how b1g a

part of potential objects has become actual. '

Before describing the logical propemes of the categor m.r-Set we. descnbe how it can be
obtained as the full subcategory of double negation separated Objé’CIS of some realizability
topos. ThlS realizability topos arises - by the well known construction of a topos from a tripos,
see [HIP] - from the followmg tripos based on Set . '

A proposition is a pair ( P, p)sit. p CPCoandif p is non- empty then p=P . An object
in the fibre over I is a family ( P . Pidier st.(Pj,p;) isa proposition forall ie I.
Given objects (Pi.piicr and (Q;,qj )i in the ﬁbre over 1 then

(Pi Pidier F1 @il Qe
iff
there exists n € ® s.t. for all_ ie I

if me P; then {n}(m) is defined and {_n‘}(m) eQ

and '

if m e'-pi then {n}(m) is deﬁned and -{n}(m)‘ €q;

A genenc object for this hyperdoctnne is given by the 1dent1ty functlon on the set of all propo-
_ smons (as described above). :

ThlS tripos construction can be understood as the glueing of Kleene reaimablhty and Boolean
logic as it is isomorphic to the tripos over Set where proposmons are pairs (P, b ) with P '
C w and b e Bool = { true , false } such that M = {} implies b = false . This intuitively -
means that if a proposition (M, b) istrue, i.e. b=true, then it must be realizable, i:e. M is
non-empty. Thus truth is more restrictive than reahzablllty, 1e. there are false pr0p031t10ns
which are realized. ' : :

Notice that this tripos constmctlon is dual to van Qosten’s notion of g- 1eahzab111ty, see [vOI.
There proposmons are defined as palrs (M.,b) with PC ® and b e Bool = { true , faise }
s.t. b= false implies M = {} . This condition intuitively means that if a proposition (M, b)
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is realizable, i.e. M is non—efnpty, then it must be true, i.e. b = true . In this case one claims
that realizable propositions are true and admits propositions which are true but not realizable.

We want to emphasize that our category mr-Set is not equivalent to the full subcategory of -

- double negation separated objects of Hyland’s modified realizability topos Mod , see [vO].
The full subcategory of separated objects of Med is equivalent to the category which can be
described quite elementarily as follows : | ' ' '

objects are pairs ( _2(_ »A) with X anr-set and A Cw
st. 0e A and njl~x x implies ne A for all xe X
morphisiné from (_)_g,A) fo (Y.B) are'sé:t-theoretic. fﬁnctions f: X —%Y
for which there exis‘ts ne st
> n realizes f as a morphism from X-t.o Y in ‘mr—Set
and
"forany m erA:. {n}{m) is deﬁngd and {n}(m)e B

This category does not serve our purposes as there is no distinction between actual and poten-
tial objects but only a distinction between actual and potential realizers. '
But, of course, the idea behind Hyland’s definition of Mod is a different one, namely to build
a topos from a tripos whose propositions are propositions in the sense of Kreisel’'s modified
realiiabiiity_with the typical distiction between actual and potential realizers. The propositions
© of this underlying tripos are pairs (P,p) with p CP C @ and O e P . Of course, the pro-
positions of this tripos do nor appear as objects of the modified realizability topos. '
In contrast the intention of our definition of mr-Set is to define a category where the objects
- themselves appear as propositions in the sense of modified realizability. ‘
Anyway, we do not consider it to be too important that mr-Set appears as the category of
~ double negation separated objects for some realizability topos as we consider type theory as
more fundamental than topos logic. " \ :

Next we will prove some unportant categorical properties of mr-Set guoaranteeing that it is a
- model of quite a strong extensional type theory. '

‘Theorem _ 3.2 -

The category mr-Set is locally.caftesian closed (Icc) and regular.
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Furthermore the forgetful functor 1 : mr-Set — r-Set preserves the structures of locally-car-
tesian-closedness and regulanty ' ' ,
‘The terminal Ob_]E:Ct 1s not a generator, but the object ( {=}, {}, { (0, *)}) isa generator.'
Proof : First we show that mr-Set is left exact,‘i.e.‘ has all finite limits.

Obviously, in mr-Set ({*}; {+), | (0, %)})is aterrnmal object ‘
I £:X>2Z and g: Y > Z are morphlsms in mr-Set then their pullback exists in rnr-Set
‘and is decribed as follows. . ' S
Thetopofthc hrmtmgcone is P= (P Py, H—p) where P= {(x,y) lxeX,yeY and
_ fix) = g(y) }, PO ={(x,y)ePlxe XO and y € Yg}and n [-p (x y). 1ff ng(n)n—-X
x.and m(n) -y y .

- The edges of the hmmng coné are grven by the morphrsms p: P — X and q P - Y whlch
project objects of P on their first and second component, respectlvely Obvrously, P and q
are reahzable and preserve deﬁnedness of objects. : :

It remains. to descnbe the most important part of the Icc- structure : the r1ght adjoints to pull- ,

' 'back functors. If f: Y- X and g:Z— Y are morphlsms in mr-Set then the morphism -
Hf(g) P — X is- descmbed as follows, The obJect P=(P, Po H-p) consists of

= { (x, s) I ..x e X .and s f'l({x}) — Z. such that
g(s(y)) =y for all y € Y- with f(y)=x |
' |
there _exis_ts ne.o so_ch tnat forall y _e-Y With fty)%'x .
and me co wrtn m i|—~y .y E { n}(m) I_terrninates and{ n}(m) |!'—ZIS(y) )

and Py is that subset of P contarnmg exactly those pairs where the first component is deﬁned
~and the second component preserves definedness, i.e. for all (x,s ) € P_ we have

'l . (.x . S)EVPO iff xe XQ and s(y)-e ZO_ forall y e Yo- with f(y) =X
and
ni—p(x,s) iff | () [|-x X 7_ and

for all‘ yey with f(y) =x and me€ ® with m I~y y *
wp(n) {{m) : terminates and {no(n)}(m) |-z s(y)
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The morphism IIg(g): P — X' is given by the projection on the first Component of pairsin P
which, obviously, is realizable and preseves definedness of objects.

Finally the counit of the adj'uncti,on * A Ilf is given for any morphism g with codom.ain Y
by the evaluation morphism ev(g) : f*llp(g) — g defined as follows : '

evi(g) (v, (x.p))) = s(y). forany (x,s)e P and ye 1({x})
,which, obviously, is realizable and preserves deﬁ.nedness‘

In order to show regularity consider an arbitrary morphism f: K—)X_ in mr-Set .
Then the initial epi-mono factorization is constructed as follows: let [=(I, In, I-1) where

I=im®={ye Yl y=£x) forsome x e X |
Ip={ye Y| y=1f(x) forsome x Xp}
- n |-y iff n |—x x forsome x € X with y:f(X) ..

The epi e is given by e(x) = f(x) and realized by An.n and the inclusion m is given by
m(y) =y and realized by any realizer for f It is straightforward to show that these initial epi-
mono factorizations are preserved up to isomorphism by pullbacks along arbitrary morphisms
in mr-Set, see [Strl]. A ' _ '
Looking at the constructions described above and comparing them with the. analogous con-
© structions for r-Set (see e.g. [Str1]) shows that théy sirmply-extend th_é constructions for r—Se't_
- by specifiying which objects are defined. ' ‘

Of course, by the terminal object ({#},{*},{ (0, =) }) onecan separate only those mor-
phism which are different at some actual argument because any morphism s from the termi-
nal object to some mr:set X must map * Lo an objectin X,,1ie. a defined object. -

On the other hand the mr-set ({15 {}, {(0, ¥)}) clearlyisa separating object : if f.g
: X— Y are distinct morphisms then for some x e X (but not necessarily x e 'XO) we have
f(x) # g{x) and therefore fos % gos where s(x)=x and s is well defined as + is not defi-
ned and therefore x need not be defined. - ' 4

Thus the category mr-Set in fact is a miodel for extensional Martin-L5f's type theory and ther-
fore provides a model! for a Logical Framework. - 4 '
We have not yet achieved our goal of providing a fully intensional model of Impredicative
Martin-L6f type theory. This will be done on the next paragraph.
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3.3. A Small Full Subcategory of mr-Set Closed Under Arbltrary Products

As indicated aboce’ the way we proceed in order to bl.llld a quy intensional model for impredi-
cative Martin-Lof type theory 1s to take mr-Set as a model for the ambient Logical Frame-
work - which has to be extensional , see e.g. [NPS] - and then to define a small full internal
category of sets which is closéd under arbitrary products and on which level all the intensio-
. nal features will show up. : ,

The paradigmatic way of how to ﬁnd small full internal categories in mr-Set which are inter-
nally closed under arbitrary products is to start from such a category inside r—Set and then'to-
perform again the modified realizability construction. Of course, there is an abundancy of
such categories in r-Set , see e.g. [Str1]. ' .
-Wewill first explain this construction in some generality but then concentrate on the exarnples
arising from the followmg two small full internal categories in r-Set : the category 'PER-0 of |
all partial equivalence relations R on ® such that ORO and the category CExPerl of com-
plete extensional pers with bottom (realized by any code for the partial recursive function -
" which nowhere terminates) as deﬁned in [FMRS]. The characteristic feature of these catego-
‘ries is that they are ali internally closed under arbitrary products but not under equahzers This
latter condition is important in order to avoid the existence of extensional identity types.

If oné chooses any of these categories as interpretations of the type Set (where the: amblent
logical framework is interpreted as r-Set ) then one gets a model of intensional constructive
set theory where it is impossible to interpret extensional identity types (due to the lack of
empty types) but there is an interpretation of intensional identity types satisfying the criteria -
(Cl) and (C2) but not the essential cntenon (C3) (cf Chapter 2,82.1)..

In all these categories any type is inhabited which guarantees the vahdlty of criteria (Cl) and
(C2). But exactly this property makes (C3) fail as any type and therefore also any any 1dent1ty
type 1d A ts is inhabited even if it does not hold that t=se A ! ‘

But if we choose mr-Set instead of simply r-Set for the 1nterpretat10n of the amb1ent Logl-

cal Framework the we can have the benefits of both emptyness and non- -emptyness at the same

time, as there are types which at the same time are nonempty w.r.L. potential objects and empty
w.rt. actual objects. The fact that in some sense types can be empty and nonempry at the same
rime has been the essential motivation for us to change from r-Set to mr-Set .
‘Next we will describe how to hft the full 1ntemalIy complete subcategory PER of r-Set toa
- full mternally complete subcategory of mr-Set .
Definition 3.3

Let Set =( Set, Sety, li—gq; ) be the mr-set Where
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Set ={(R,P) I Re PER and PC wR } -
Setg = Set

l-Set = ® X Set

Let El =(El, Ely, i—g; ) be the mr-set where
El ={(R,P.M) | (R.P)e Set and M e /R }
~ Elp = {(R,P,M) e Set | Me P}

1 = {(n,(R.P,M)) I.(R,P,M) € El and ne M)

Let ext:El — Set be the morpl}is_m in mr-Set with ext(R,P, M) = (R,P) .

We call a family of sets any morphis‘m which can be obtained as a pullback of ext along some - -
. morphism in mr-Set and let © denote the class of all families of sets. 0 ' '

From Theorem 3.2 and the facts we know about PER . sée e.g. [Strl], the following Theorem |
follows immediately. ' ' L

Theorem 3.4

The class © of display maps represents a small full internally complete subcategory of r-Set
where the class © is closed under composition, o '

In the full subcategory as given by & itis still possible to interpret extensional identity types
because the full subcategory is closed under equalizers. o ' -
Therefore in order to obtain fully intensional models we have to 're'strict the 'subcategory given
by & to subcategories which are closed under internal products but not under equalizers and
still allow to Interpret intensional identity types. o '
For this p_urposé we need the foii'oWing aiixiliary definition.
Definition 3.5 .

For any subset £ of PER. Jet Set(£) denote the regular subobject of Set given by
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Set(@) {(R P)e Set | Re @} = Sety(Q)
Let @(LD) denote the class of all morphlsms which can be obtamed by pullmg back the gene—
~ric morphism ‘ext : El — Set along some morphism which factors through the 1nciusmn of
Set(@) into Set . =
Let EI(Q) (El(@) Elo(@) I~E1cy ) be the mr-set where

EID) = { (R,P,_M)-l (R,P)€El and Re O}

.Elo_(@) = '{‘('_R ,'P,M_>e BND) | MeP }-“

‘||—E'](1 {(n (R PM))I(RP M)EEI( ) and neM}
Let. ext(@) EI( )ﬁSet (6‘\) be the morphlsm in mr—Set with ext(R P M) (R P)'
Wthh 0bv10usly, isa generxc morphlsm for @(b) o
The first and most 1mportant ‘model we WlIl study is obtamed by choosmg for &) the coI-_

_ lectlon of all partlal equwalence relatlons contammg ¢ in 1ts carrier.

Tn order to ‘guarantee closure under all 1ntemal products for the rest ‘of this chapter we make -'
the followmg ' : '

Assumption about Goedel Numberings -
{0} =0 forall ne @
:<OO>-O',' o _ o

V,Actually this assumption is a very mxld resmctlon as < O 0> =0 is satlsﬁed anyway forthe

- standard bljectlon between natural fumbers and pairs of natural numbers and addmlss,lble-r

Goedel numbermgs for the partlal rccurswe functions are umque up to 1somorphlsm (seeeg. :
[Ro]) and clearly there is one such in the whole isomorphism ¢lass satlsfymg the: claun that 0 .-

. isa code for the constant zero function. : '

| Deﬁnition 3.6

Let PER 0=1 Re PER 10 R 0} be the coliccnon of all pers havmg Oinits camer

We mtroduce the followmg abbrevmtlons
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Set; = Set(PER-0)
El; = EPER-0)
®; = &(PER-0)

exty = ext(PER—O) - 0

- Theorem 3.7

The qu'subcategory of mr-Set represented by &, is internally closed under arbitrary pro-
ducts but fibrewise diagonals of non-monic display maps are not contained in &y and there-
fore extensional identity types cannot be interpreted. '

Proof:: Given any family F of persin PER-0 indexed over an r-set X 'then the product of

this family contains an object realized by O : the function f.which maps any x € X to the

unique object of F(x) realized by 0. - _ _ o

Any display map in & is an epimorphism as the underlying map always is surjective because

aﬁy fibre contains at least one element realized by 0. But on the other hand for any display *
map a which is not monic the equalizer of the kernel pair of a is not epic and therefore can-

~notbe in & . 0 ‘ o '

Next we will show that intensional identity types can be intelpréted very naturally in Set; .

In order to interpret the logical ﬁ'a,mework in mr-Set and ICST in the full subcategory given

- by exty it woyld be necessary to turn the whole structure into a contextual category of the

appropriate form. For the ca_&e of 1-Set this has been performed in all details in [Strl]. But
as these details do not add to a better uhdersranding when showing that a model is fully inten-
sional we prefer to work infm-hzally, but f'igb_rouﬂy, in the model described above and the
" other ones we will employ in this cha‘pre:f.' o "

We now turn to the interpretation of intensional identity types in Set; .

Definit_ion 3.8

For any set (R.,P) € Set; and x,ye &R we define Id ('R' ,Pixy e S'etl according to
the following case analysis: o
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- if x=y then
M(R.P)xy = ({(0,0),(1. 1)}, {(1})
: if x #y then |
R, PYxy = (1€0,0)).1)

ie if x=y the corresponding identity set contains the actual object {1} repreécnting_ the
actual proof object of the set expressing the propositional equality of 'x and y and the non-
actual, only potential object {0} andif x #y then the corresponding identity set contains
only the potential, non-actual object {0} . :

The constructor r is interpreted as foll_QWs: forany set (R, P) € S'etl. and x GOJ/R

r(R,'P)x = (1} & (R, P)xx

and, obviously, the functlon ris reahzable and it tnvmlly preserves deﬁnedness as the result

'{l} € Id(R P)xx is always defined. '
_ g

The ehmmator T is deﬁned as fo]iows given (R,P) e Setj,a famﬂy C of sets, ie.

objects in ‘Sety indexed over x ,y € o/R and ze Id (R,P)xy and a realizable mapping

d which for any x € /R chooses an object dx € Cxx {1} then_ J(R,P)Cd is defined

by the following case analysis : i | '

- for x"e ‘o/R

1
=
>

J(R,P)YCdxx{1}
- for x,ye R~
J ( R P)C dxy {0} = the unique object of Cxy {0.}' rea.lized by 0

The morphlsm J ( R, P ) C d isrealized e. g. by thc algorlthm which looks at the reahzer for
the last argument (which is of type Id (R ,P)xy and therefore it can be realized only by 0 '
or 1)andin the case that it is 1 applies the realizer of d 1o the realizer of X, and in the case -
thatitis O terminates with-value O and in all other cases dlveiges
- The preservation of defincdness i is gualanteed because if the third argument is {0} then it is -
undefined and therefore there are no constraints on the output and if the the third argument is _
{1} then J(R,P)YCdxx { } = dx is defined if x is defined under the assumption that d
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is defined, i.e. fnéps defined objects to deﬁnéd objects.
Simﬂaﬂy one can interpret the eliminator K givén (R,P) € Set;,afamily C of sets,
i.e. objects in Set; -indexed over. xe wR,and ze Id(R,P)xx anda realizable mapping
d which forany x € @/R chooses an object dx € Cx {1} then K(R,P)Cd is defined
by the following case analysis : ' o '

- K(R,PYCdx{l} = dx

- K(R,P)Cdx (0} = the unique object of Cx {0} realized by 0
- forall xe w/R. 0
After having given the -int'erpretation of identity sets we are 'ready to prove that this model is
fully intensional. ~ . - '
3.4. The Model Given By &, Is Fully Intensional -
Next we shall prove that this intérpretation of intensional identity types satisfies the three cri- '
teria of intensionality mentioned at the beginning of this chapter. We moreover provide more
specific examples of sequents (making heavily use of identity sets) which allow to refute the
condition (C1) - {(C3). '
Theofem 3.9
In the model given by &) the three criteria (C1) - (C3) are satisfied.
. Furthermore we have that

(1) Forany set A the sequent

_'é-:A,x:IdAaa,y:IdAaa_;z:Id ddAaa)xy F x=y e IdAaa
-is not valid in the model and whenever a is an objectin A then the sequent

.x:IdAa'a,y:Id_'Aaa,zt Id_(IdAaa)xy Fx=y é'IdAaa
is not valid in the model..

(2).- If A is aset then
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a:_A,x.:'IdAaa,y : Id'A.aa,o:Id(IdA-aa)xy
- ;(IdAoa)(rAa)X= ldddAaa)(rAa)y c Set
is not valid .in the model and if a is an obj_oct-_of | A then thé sequon.,t -
| x : Id A“a.a_,y :__Id Aaa, z:1d (fd Aaa)xy
;'(Id_ Aa a) (A 2)x -1 (1d A aa) (r A'a) y € Set

- is not".va_lid in the rnodel: :

_Proof - The criterion (CI) is fulfilled as the seque_nt
-"A_:_S'et,lx:A,y,:A,z:IdAxy Fx=yeA
is not valid as if we choose for A a set containing at least two different-(pOtential) objecto X

and y and for z the potential object {0} then it does not hold that x =y . Here, of course, it
Cis 1mportant that mor, phzsms must be equal also ar non-actual argumenrs o

Whenever A is a set zmd a isa potentlal object of A (there aiways must exist at least one 1)
. theset Id A aa contains the two dlfferent objects {O} (potentxal) and {1 } (actual) . There-' )
fore the scquent : ‘

C x:ldAaa.y:ldAda,z:ld(dAaa)xy F x=y € IdAaa

_ is not valid in_ the.n.;lodel. This provesour claim (1).

The c_riterion_ (C;Z) is fulﬁ'll‘ed-:is the sequent . -

_ ~A:Set,B: A-—:-Set XA, y A z: IdAxyé—B(x) B(y)c—:Set

- 18 not valid as if we choose for A a setcontaining at least two different (potential) Ob_]CCtS X
and. y and for z the potcnt:al object {0} and for B a family of sets with B(x) # B(y) then
“the consequence of the sequent is obviously false The point is that there always exists a

family of sets B with B(x) # B(y). prowded x #y as all set- theoretic functions from the‘.‘..'-'
'underlymg set of A to Set; corrcspond to a mmphlsm in our model. . '

- For any set A and a_ny objeCt ain A consider the t}_fpe Id A a a and the family
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[z:1d Aaalld(Id A a a) (rAz;)z e (IdAaa)—> Set
Then the sets
BrAw)=1d(dAa é) TA2)(rAa)  and
B(.{O}) ~1d d A a8)(r A a) (0)
are -obviogsly different..as. rA a# {0} and therefore the sequent

x:IdAaa,y:IdAaa,z:Id(Id'Aaa)xy
Id@dAaa)(rAa)x = Id(JdAaa)(rAa)y e Set

is not valid in the model. This proves our claim (2). _

‘The criterion (C3) is fulfilled as the interpretation of the empty context is the terminal object
in" mr-Set . Suppose that + p € Id A ts is valid in the model then the interpretation of  t is a
morphism f from the terminal object in mr-Set to the interpretation of the type- Id Ats. As
' the terminal object is ( {1, {=},{ (0, +)})and f preserves definedness of objects we have
that f(-*) is a defined object in the interpretation of Id At s . As there is at most one defined
dbject in IdAts it follows that f(+)={1} e Id Ats and therefore the 'interpretat_ions of ¢
and s are equal and therefore the judgement t=se A is valid in the model. 0.

- Remark. Although the model satisfies our three criteria of intensionality it still validates some
'sequents which are not derivable syntactically as e. g. '

AiSet,x:A,y:A FIdAxy = IdAyx e Set

We just indicate how by a slight modification of the definition of identity types our model can
be adjusted to refute also the sequent above expressing the symmetry of identity types.

 Instead of having just one undefined object in all identity types one might introduce for some -
identity types another undefined object realized only by the number 2 . ' ' :
- A possible interpretation of intensional identity types refutin g symmetry would be the follo- -

. wing :
- ifx=y then

CH(R,P)Xy = ({(0,0),(1, 1)), ({1}}
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- if x#y and xe P thén

(R, P)xy = ({(0,0).,(2,2)],{})
- if x#y and x EEf’ tﬁen_

d(R,P)xy = ({(0,0)},{})

Thenif a and b are different objects of a type A where one of them is actual and the other
is only potential then the interpretations of the types Id Aab and [dAba are different as -
~one contains two potential objects and the other one only one potential object. '

The definitions of the constructor r and the eliminators J and K can be extended in a straig-
htforward way (no changes in thc definition of r and K are necessary, and, provided {2} is
a potential objectin [d Axy,weput JACdxy {0} = JACd xy {2})..

Furthermore under this 1n[erpretat10n the canonical proof of Id(R,P )Xy = 1d (R,P)yx’
‘is not an xsomorphism anymore as the object realized by 2 will be mapped to the object reall- '
zedby 0. - '

Anyway we can conclude that if one drops the condition of uniqueness of elimination then
‘ mterpretatlons of identity types (m the same model structure) are not unique up to isomor-

~ phism anymore.

3.5. Intensional Product a.nd Sum Types

Next we will give the interpretation of the less crucial set fbrming operations such as II and
% . The interesting aspect is that whereas it is impossible to interbret identity sets in an exten-
sional way, seeTheorem 3.6 , it is very well the case thag T1 and T can be interpreted in a
way that they satisfy the axioms expressing uniqueness of elimination * namely that the n-
rule and: surjective pairing is valid even on the level of Judgemental equality. But, as we will
show, there is also a lot of non-isomorphic interpretations for I1 and X (provided that uni-
queness of ehmmatlon is not claimed for them).

" Theorem 3.10

In the model where the type of sets is given by Set; the extensional product of familiy of sets _
indexed over an arbitrary type is canomcally isomorphic to a set and the extenszonm strong "
*- sum of a family of sets indexed over a set is canonically 1somorph1c to set. '
: Obv1ous1y, under this interpretation the n rule for A- abstractlon and surjectlve pairing are
valid. '
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‘Proof : As 0 codes the function An.0 and any set contains an object realized by 0 the
number 0 realizes that object in the extensional product of a family of sets which maps any
argument to the unique object realized by 0 . : o |

As any index set contains an object realized by 0 and the set indexed by this argument also
contains an object realized by O the strong extensional sum of such a family contains an
object realized by O as well. - _ :

In both cases the constructions give rise to mr-sets where objects are uniquely determined by
their realizers and therefore they are isomorphic to (the extension of).a set where both parts of
the canonical isomorphism are realized by An.n o ‘ '

Now we turn to non-extensional interpretations of products and sums of familics of sets which
are obtained from the extensional ones by adding (discretely) an arbitrary number of nonstan-
‘dard “error” elements. '

Theorem 3.11

In the model where the type of sets is interpreted by Set 1 the notions of product and sum of a

family of sets can be interpreted in a non-extensional way as follows.

One first interprets the notions extensionally as described in Theorem 3.10 obtaining, say,' a
per R together with a subset P of w/R . Then one constructs from this the per S defined as
follows : )

nSm - iff " n and m are both odd
or . . - .
there-exist k and | with kR! andn=2k and m=21.

Then oné gets an émbedding in from R into S which is realized by the algorithm Ai.2 i
and is not surjective as the object realized by an odd number is not in the image. -
~ Thesubset Q of /S is defined as the image of P under the embedding in .

Thé resulting pair ( S, Q) then is the new interpretation.

The new interpretation of constructors is obtained by first interpreting the constructor for the '
extensional version and afterwards applying in .

- The eliminators are in'terpreted in the following way : given a family C indexed over the
object (S, Q') and a function d prescribing the behavior on the image under in then the
extension to the whole of (S, Q) is defined by mapping any object which is nof in the image
of in to the unique object realized by 0 . ' '

- For these eliminators the cdrresponding n-rules fail.
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Proof One oniy has to show that the ehmmatlon is realizable. But as realizers for objects in
the image of in can only be even numbers and realizers for the objects in the complement
‘can only be odd numbers the followmg algorithm realizes the ehrmnatlon of d where n de-
notes the realizer for the ehmlnatlon of d w.rt. the extensional interpretation : first check
whether the realizer m- is even or odd, then If n is even apply the realizer n to m/2 and 1f
~ In is odd then give 0 as result. _ : '

- As all the objects realtzed by odd numbers.are undeﬁned the ehrmnatlon of d preserves defi-
nedness of objects. -
Eliminations are not umque as for a.given.d prescribing the behawour on objects reahzed by
even numbers the extension d’ of d can be defined for the argument reahzed by the odd
' numbers in an arbitrary way. Therefore the n-rules fail. o ' : ' :

| 3;6. -_1ntens}onéit i.nterpretations of N, lNOI, N; and Th‘eir. Preperties

Now let us tum to the 1ntensmnal 1nterpretat1en ef some non-logical data types We W111 show_
“that a lot of sequents which were already suspected to be underivable in ICST are actually
not valid i 1n out model

'I_‘he_o_rem 3.12 ‘.

The natnrel nurnbers can be interpret_e_d in= an extensional way by

({(n n)ine ), {{ }I ne w})
A more intensional interptetatidn is obtained by taking for N
Wmineorg (2n}| "n'e'co})

_where the. odd numbers realize the undeﬁned error elements and for any natural nurnber n the'
*even number 2n reahzes the n-th natural number.

S Of course' iero is the object realized by 0.

" The successor operatlon succ is the functlon realized by An n+2. _

~ Thus we- have the ordinary: natural number structure both on the standard and on the nonstan- o
dard part: ' ' B

The eliminator R is deﬁned on the standard part as usual and on the nonstandard part also as

usual but with choosmg for the initial value of the 1terat10n the unique object reahzed by 0 in
the ﬁbre over {1}.
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The el:mmator R does not satlsfy the corresponding - rule which would allow to prove the
Judgemental equahty of functlonais by mductlon

Proof : We }ust have to prove that R-elimination is not unique. It follows from the fact that in
our definition of R the behavior on the nonstandard part is defined by choosing for the initial
value (of the iteration) the unique object realized by O in the fibre over {1} . If there is ano-
. ther (potential) object in the fibre over {1} then one can choose this as initial value (of the
. iteration) and thus obtains another elimination which is different from the one given by R at
least at the argument {1} . R '

Now we turn to the interpretation of the singleton set N 1.

Theorem 3.13
The s1ngleton set ..Nl can be interpreted in an ektensronal way as
({ (0 0) 1. {1{0} '}")
A nonéext&énsion'al iﬁterpretation is the set
| ({('OQOJ,(i,l)},{'{O} b

contammg one actual object realized by 0. and one only potential object realized by 1.

The eliminator R1 assigns to a family C indexed over N; and an object d in C({0}) a
function f mapping the defined object {0} of N 1 1o the object d and the undefined object
{1} to the unique ObjCC[ of type C([l]) realized by O .

The ehmmatlon is not unique in general as a function on NI is not umquely determined by its
behavior on {0} . Typically, the ehmmatlon 18 not unique if the type C{1} contzuns nmore

than one potential object.

If Cisa famﬂy of sets mdexed over' Ny then there is a canonical map f from C({ 0}) to

{x:N7} C(x) given by the eliminator - R, and a canomcal map g from {x:N;} C(x) to . -

C({0}) given by evaluatwn at {O} . The composition g« f is equal to 1dent1ty (whlch must . |
hold at it is derivable in the calculus 1). , '
But the composition fo g is not Judgcmentally equal to Idenmy if C({ 1 }) contains more than

one potential object. - i
If, furthermore, C({1}) contains at least one actual object then f o g is not even proposmo-_
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1

nally' pointwise equ_al to identity. |

' 'Proof The function fog is not Judgementally equal to identity under the assumptlon that
C({1}) contains more than one potential object as forany s in {x;N;} C(x) thereisa t in
| {x:N3} C(x) suchthat s({0})=t({0}) but s({1})#t({1}). : :
If, furthermore, one assumes that C({0}) contains at least one defined object then the set
{x:N1} C(x) contains at least one defined object s such that s({1}) is different from the
unique object'rgalized by O and therefore - as f{g(s)({1}) is equal to_the unique object rea-

lized by 0 we have that s #f(g(s)) . Thus fog and the identity are different already at some
actual object and therefore the proposition expressing the pointwise'propositional'equality'o'f '
f-g and the identity does not contain an actual object. . 4

Now we turn to the mterpretatlon of the empty ser No which in our model admiits only an

: 1nten31onaI 1nterpretat10n The reason is that any set in our model contains at least one poten-

tial object and therefore for any set A ‘there exists a set B such that there is more than one -
morphlsm from A to B. '

Theorem 3..14

.Thel: empty set-Ng can be Vinterpréted in. our modre']_by'
({€0,0)} . {h)

~ containing oﬁé. pbtentiél -6bject and no actaul iject.

The eliminator R, associates with any family C of sets indexegl over Ny the function Ry C
in {x:Ng} Cx mapping {0} in Ny to the unique object realized by 0 in C({O}).

Furthermore, for any set A=(R,P ) the set NOAA is 1somorph1c: to the set (R, cofR)
Therefore in general A and Ny — A are not isomorphic anymore. -

- More premsely, A and. Ng - A are 1somorph1c iff alI potential ob]ects of A are actual.
The (syntactically deﬁnable‘ function from- A to N0—>A mappmg A constantly to the
object Ro ([x:Ng]' A} in Ng—A is an isomorphism if and only if the set A contains exactly '
one object and this object is actual. '

-Another possible but non—isom_orphic interpretation of Ng is - |

((n.n)lnew},(})
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In this case the eliminator Ry can be defined as follows :if Cis a family of sets indexed over
~ Np then the canonical extension obtained by the eliminator Rg is the function which map-
ping any {n} in Ny to the unique object realized by 0 in A({n}. _ B

Under this -ihterpretation Np and Ny —> A are not isomorphic even if all potential objects of
A are actual. ' : ‘

Proof : -Under the first intérpretation-of Np. forany set A=(R ., P ) the set Ny—A isiso-

- morphic to the set (R, @/R ) because there is an obvious I-1-correspondence between pot-
 ential objects of Ng—A and potential objects of A . Therefore if' all objects of type A are
actual then A and Np — A are isomorphic as . - '
As the only object of Ny is undefined all potential objects of Ng—A are actual (as the maps
have nothing to preserve !). Therefore as soon as A- coOntains at least one object which is not
actual A and No—A cannot be isomorphic as in Np—A all objects are actual.

‘Let f in r-Set be the underlying morphism of the function from A to ‘Np—A mapping the
set A 'cohstanﬂy_to__ Rg ([x:Np] A) . Obviously. f is a constant realizable fpn_ction; It is an iso-
morphism if and only if A contains exactly one potential object (as otherwise it would not be .

_onto). But this unique objectin A must be actual as all'objects in Ng—A are actual and f
must reflect the property of being actual. '

For the second interpretation of the empty type in general. NO and Ny — A afre not isomor-
phic even if A contains only actual objects. Take for A e.g. a set containing only finitely
‘many objects which' are all actual then the set Np — A conatins infinitely many defined’
-objects. ' '

Set-theoretic intuition tells us that there exists exactly one function from the empty set to an
arbitrary set. That would suggest that for any set A there is an isomorphism between N 1 and

Ng—A.. . . _ - . o -
The next theorem shows that for intensional type theory this intuition is misleading in many
respects. '

Theorem 3.15

Assume that we interpret the singleton set N in a non-extensional way by

(£00,0).(1.1)},{{0}])

and the empty set N 'al'lso in a non-extensional way by

({(0,0)).0))
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then for any set A ‘the sets Ny and Ny — A are not isomorphic.

For any set A the syntactlcally deﬁnable canonical map f from N; to Np—A sends all -
objects of type N, to the object Ry ([x:Np] A) in Ng—A which is realized by 0.

- There is exactly one map g from Ng—A to Nl and this map is syntacttcal]y deﬁnable

The composition g o f is pointwise proposttionally equal to 1dent1ty (this can already be pro-
: ved in the calculus as all objects of N are provably proposmona]ly equal)

' If A contains more than one potentlai object then f °g is not even pomtmse proposmonally
.-equal to tdentlty S : : :
If A contains exactly one potential objectthen fog is the identity on NO——>A Therefore thei
sets A and Ng—A are weakly isomorphic by f and g. : . R
: Therefore under the current interpretation the sets Ny and Ng— NO are weakly 1somorph1c

. But the sets NI and N0-> Ny are > not even weak]y 1somorphlc tf we mterpret NG asthe set
_;({(n n}lneco} {1). a

'Proof : As Np contams a potenttal object which is not actual whereas for any set A all -
ob]ects of No—A are aotual itis 1mpos31ble that N; and Np— A are 1som0rph1c

- Asall objects of Ng—A are actual and N; contains exactly one actual oject there is a unique
map g sendmg all objects of - N0-+A to the actual object of Nj. This map g is syntacti-
‘cally deﬁnabI as [f Ng—Al cG where ¢ is the constant denotmg the umque actual object
of N; . '

Suppose that set A contams more than one potennai object. Then the set N0—>A contains
- more than one object and they are all actual. Now if fog were pointwise. proposrttonally
_ -equal to identity then for all (necessanly actua{) objects h of N0—>A the set -

Id (NO—->A)_ h (f(‘g h)) '

would contain an actual object whlch would imply that h and f(gh) are equal {as tdentlty set -

~*. contain an actual object only if their second and then third argument are. really equal). Butitis - - .

impossible that h and’ flg h) are really equal for all h in NU——>A as f is a constant map
and Np—>A -contains more than one actual ob}ect (due to the assumptlon that A contams
: more than one potential object). . ‘ _
If A contams exactly one potenttal Ob_]f:Ct then N0—>A contalns exactly one object and thls
s actual. ‘Therefore the map fo.g is equal to the identity map on Ng—A. T
As one can (even syntacttcally) prove that g-f is pointwise proposmonally equal to 1dent1ty
the morphisms f and ¢ constitute a weak isomorphism between the sets A and Np—A ..

o - Thus as in our mterpretaﬂon the st NO contains exactly one potennal Ob_]BCt the sets Ny and.
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No — Ny are weakly isomorphic .
If Ny is interpreted as the set ({ (n,n Jinewl},{}) _theh the set N —>'N{j contains infi-
nitely many actual objects whereas ‘N 1 contains only one actual object. But then - as the fun-
' ction g is constant - the function fog is not pointwise propositionally equal to identy as this
would entail that ali objects h in Ny — Np were equal to the single object figh).

An intcresﬁng consequence of the last theorem is that in the model under consideration a cer-
tain proposition is wrong which has attracted some interest by type theorist recently.
In extensional type theory the inductive type of natural numbers N is isornorphic to the W-
type (Wx:N;) A(x) where A(cg) =Ng and Alep = NII. Y '
‘The isomorphism is given by a syntactically definable map f from N to- (Wx : N») A(x)'_
mapping zero to sup(ng ,[x : Np] Ry (Wx : Ny) A(x)) and the syntactically definable map g
from (Wx : Ny A(x) to N'mépping any object of the form sup(ng , f) to zerc.
Now if f and g are interpreted in our model they would establish an isombrphis'rn between
N; and Ny — (Wx : N»y) A(x) ‘which cannot exist as (Wx : N») A{x) contains more than one
‘object. B . . _ : _ _
‘More precisely, ail objects of the form sup(ng , h) with B in Ny — (Wx : Ny) A(x) are defi-
ned and mapped to zero by g. Therefore g is not 1-1 even for actual objects and therefore
the proposition stating that o g is pointwise propositionally equal to the identity function
must be wrong. : , ' :
" Thus in our modef;a proposition which has been considered as 'unprovable in ICSTactually
does not contain an actual object which means that there cannot be a proof term for this propo-
- sition. We do not know of any syntactical proof for the underivability of this proposition (as it-
- practically seems to be almost impossible). Nevérthelessj a lot of people have been believing
that this proposition is not formally provable in ICST. :
We think that employing our model one can transform quite a lot of informal cbnsi_deijations
on why a certain proposition is 'unpro__vable toa mathem_a_tic_:al argument by showing that in the

model the proposition does nor contain an actual object.

3.7. Extensionality Principles for Functions Are Refuted in the Model
As.a'furthér illustration of this use of semantical methods we next will show that the exté_nsio-
nality principle for functions is refuted in our model and-this even for number-theoretic fun-
ctions. B ' B

Theorem 3,16

In the model where the type of sets is given by Sety the proposition
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EXT = {A:Set}{B: A~ Set}{f,g:TTAB)
(x:A) 1 B x) 0 PP 1) @pp ¢ )~ 14 (TAB) g

__(expressmg that if funcnons are pointwise proposmonally equal then they are prop031t10nally :
equal as functions) does not contain an actual ob_]ect :

~ Proof : Suppose that the proposition EXT ¢ontains an’ actual object. We assume that IT is
1nterpreted extensionally and therefore the type {x:A} B(x) and the set IT A B .may be iden-
tified (as they are equal as mr-sets up to renaming of the elements of the underlying sets).
Take for A the set N and for B the set N constantly indexed over. Np.
We assume that Ny is intérpreted by theset ({(0,0)},{}) and that N 1 18 interprete_d by
theset ({(0,0),(1,1)},{{0}}). _
Then all objects of IT A B' are actual and there are exactly two of them Wthh we call, say,
and g . Then - as ‘Np does not contain any actual object - we know that all objects of the type
{x - A} Id (B x) (app f x) (app g x). are actual and there exists-at least one (namely the one
realized by 0 ). Asby assumption there is an actual object in EXT there exists also an actual
object in the set 1d (II A B) f g . But due to our interpretation of identity type if Id(ITAB)f 4
'g contains a total object then f and g must be equal contradlctmg the assumption that they
are dlfferent s

Next we will show that even if A contains only actual objects the correspondmg mstance of
EXT is not be valid in the model.

~ More precisely, we will show that for functions between natural numbers the extensmnahty
- principle does not hold.

Theorem 3.17

~ In the model where the type of sets is given by Set; and the type N of natural numbers 1$
mterpreted by ({(n,n)Ine o}, { {n}I ne w}). the proposition

EXT-N = {f,g:N-5Nj ({x : N} Id N (app Fx) (appgx) =1 (NSN)fg
' .does riot contajn émy actual object. .

Proof : We will show. thatzthe assumptioh that the pxoposm;m EXT-N is 1nhab1ted by an -
actual object entails that it would be decidable whether total recursive functions are equal. But

. this problem is known to be undecidable due to the Kreisel- Lacombe Shoenﬁeld Theorem,
‘see e.g. [Rol. ' '
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For any total recursive functions f and g let h(f,g) ih {x 1N} Id N (app f x) (app g x) be

defined as follows :
if f(n}=g(n) then h(f,g)(n)= {1}
if f(n)#g(n) then h(fg)(m)={0}
Obviously, a realizer for h can be computed from codes for f and g.
- Itis clear from the definition of h that the object h(f,g) in {x:N}IdN (app f x) (app g x) is
actual if and only if f and g are equal. ' : ' ;

Now if we assume that EXT-N "contains an actual object p then the function

‘e = [f,g:N-N] prghfg) -

- has the following property : if f=g then h(f,g) is actual (as all objects in N—N are actual) |

and therefore e f g is an actual objectin Id (N —N) f g which therefore is realized by 1 and

if f#g then the object ¢ fg in Id (N —N) fg must be realized by 0 ‘as due to the assump-

tion f# g the only object in Id(N-N)fg is {0} .

Therefore any realizer for e providesa Gédel number for a decision procedure for the exten-
sional equality of total recursive functions. o

3.8. On the Relation Between Identity Sets and Leibniz Equality

Now we turn our our attention to.the study of the relations between Martin-Lof's identity sets
and Leibniz equality. We will establish some positive and some negative results wir.t. to deri-

vability in ICST. Just to remember the Leibniz equality on a type A is defined as the predi--

cate

EqA = [Xy: Al {P: A = Set} (f’x)—)_(Py) c {x,y:A} Set

- where we assume that Set is closed under impredicative unversal quantification, i.e.that the
product of a family of sets indexed over an arbitary set again is (isornorphic to) a set. Thus

- - Leibniz equality types are always in Set .

. We now will discuss problems of equivalénce'ﬁnd isomorphism between identity rypes and
 Leibniz equality types.
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Of course, one always can prove that [d Axy Imphes Eq A X y usmg the J- ehmmator as
shown by ‘the following Lemma. :

" Lemma 3.18

~ The term
f = '[A;:S.et.] J A
([x,y:{A]{z;Id_A-xyj_EqAxy)
| (Ix :' .A] [P A — Set].[p_ : ?.X] .p)
is of type |
'-.‘{_'A:se;}' {x,_y.:_A}_(_Id.Ax_y)-.—}:EqA.xy o

N_ext we will discuss the more e problematic 'converse direction.

" In the LEGO system, see e.g. {LP] if one deﬁnes 1dent1ty types on the level of Type(O) then .
it IS 1m90331ble to prove that Eq A x y implies 1d A x y because one may interpret the type
Prop -trivially (that is where Leibniz equality types live !) and identity sets in an extensional

- way. By atrivial i Interpretation of Prop we mean that there exists only one object in - Prop and -

this unigue propositional type contains: exactly one object. Then if one chooses x # y then
Eq Ax y is inhabited but Id A X y ‘is not and therefore there cannot exist a map from the

' type EqAxy tothetype [d Axy.

There also exists a nontrivial model for this situation. Interpret Prop by Setl and Type(O)-
- by Set{see Def. 3.3) and interpret identity types extensmnally Then again for dlstmct objects
xand y of fype A there cannot exist a morphism from EqA xy to Id A x y as EqAxy

~ contains at least one potential object (e.g. the one 1ea11zed by 0 ) and the empty type IdA Xy
" does not even contam a potentlal ob;ect : . : :

' .The snuatzon is qmte different :f data types and therefore also 1dent1ty types live on the level'

- of Prop Wthh from now on again will be called Set .

‘Then one can prove the equwalence of both' notlons of equahty in the followmg way.
- Lem‘ma 3.19
The term

= [A:Serl[x,y Al [p-EqAxylp(Id A x) (r A x)
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15 of type
(A : Set] {X,?:A}(EqAﬁy)—%IdAxy
It holds that | | |
A:Set,x:A F gAxx(f.Axx(.rAx)) = rAx € _IdAxx
and therefore the tCIfI;'l _ | |

[A:Set] JA ([x,y:'A][z:Id A’xy}-ld (Id-'Axy)‘z(g..Agy(foyz)))'
- ((x:Alt(Id A x %) (FA X)) . -
i '{A:Se‘t}‘{x,y:A}-{z:IdAxy}Id(IdAx'y\)z(gAXy(f.AxyZ))

ie. for any set A and o‘bje'cts x and 'y in A for the functions l
fAxy e IdAxy - EqAXxy gAxy e EQAxy — IdAxy

itholds that (g Axy)-(fAx y) s polin't'wisé propositionally e?;lual to identity. _
Thus in a weak sense identity types appear as retracts of Leibniz equality types.

Proof : Straightforward, but tedicus, by applying ‘thga conversion rule. 4 _ :
Of course, then there immediately arises the question whether (g A x y) - (f A x y) might
convert to the identity function on Id A x y . This question will be answered negatively by
semantical methods. o : T . IR L
Furthermore we will show that (f A x Y)e (g AX y)' is not even pointwise propositioha_lly
équal to the identity on Eq A x y. and that Eq ‘cannot be éndowed with an eliminator J .. '

But before this we have to look more carefull what Leibniz equality types look like when

' interpreted in the model where Set is interpreted by Set; .
Theorem 3.20

In the model where Set is interpreted by Set; Leibniz equality types can be characterized in -
the following way. - . - : ~ ; - -

~For any set A and ain A the type Eq A aa is canonically isofhorphic to the set (R,P)
where ‘ ' : : '

nRm iff both n and m are éode_s.for the same total recursive function
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“and . :
for all natural numbers K it holds that {n}(k)=k or {n}k)=0

P={{nl{n}x)=k forall ke o})

Foranyset A and a,b in A with a#b the type EQAab is canomcally 1somorph1c to the
set({(n m)l{n}—{O}—{m}},-{})._ S | , )

The map f A ab maps any non- actual object to the object realized by 0 and it maps the uni-
que actual object - if it exists - to the equivalence class consisting of all codes for the identity
_funcnon on natural numbers.

- Themap gAa b maps the equiifalehce class {n} to the object realized by {n}(1).

Proof : - A realizable (potential).object oftype EQAab={P: A — Set} (P a)—(Pb) must
necessanly be uniform as A — Set carries a trivial realizablity structure.

Therefore a potentlal objectof EqAaa is-upto evxdent 1somorphlsm determmed by a par-
tial recursive function which for any R € PER-0 realizes an endofunction on R . Clearly
such an {n} maps any natural number. kK either to 1tself orto O (if {n}(k) #k and {n}k) =
O then it does not realize an endofunctlon on a per having. besides 0 only k inits carrler)
and any such n clearly realizes an endofunction for any any R € PER-0. :

Only codes for the total identity function on natural numbers can realize an actual endofun-
ction for all sets as for any different natural numbers k and 1 one always can find a sét where
ok reahzes an actual object and 1 realizes a non-actual object '

If a'and b are different objects in A then an object of Eq A a-a i1s-upto ev1dent 1somor—
N phlsm determined by a partial recursive functlon which forall R, S e PER-0 realizes a fun-
ction from R to S . Clearly any code for the constant function with value 0 realizes a°
function from-R to S for all R,'S € PER-0 . Any natural number n- reahzmg a function
from R to S for all R, S € PER-0 clearly must code the constant function with value 0
(choose for R = @x o and S={(0,0)7}) '
Of course, the constant function with value 0 does not always realize an actual object"
‘because one may take (R, P) and (S,Q) where [OJS is not in Qand P is non-empty

Due to the deﬁmtzon of the ehmmator I the mapping f A ab maps any non~actual object of :
the set Id A ab tothe ObjGCt in Eq A ab realized by 0. :
Due to the definition of. f the function f A a a maps the actual object of type Id A aa tothe

acmal object of Eq Aa a realized by a code for the total 1den1ty function on natural numbers.

By. definition the map ¢ Aab applies an object of type Eq A ab (after applying it to the
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fanﬁly' IdAa )_to the canonical object r A a of ty'pe Id Aaa. Asthe object r A a is realized
by 1 an object in (the canonically isomorphic copy) of EqA ab realizedby n is mapped by
g A ab to the object realized by {n}(1). o '

T'heoreni 3.21

For any set A and object a in A the composition (gAaa).(f Aaa) is not equal to the
identity on Id A a-a if we interpret identity sets in a way.such that idenity sets always contain
a non-actual object different from the one realized by 0, ' '
. Therefore (gAaa)-(fAaa) cannot be convertible to the'identity function.

- For any set A and object a in A the set corresponding to-the proposition stating that the = -
composition (fAaa)e(g A aa) is pointwise propositionally-equal to identity does not con-
tain an actual object: = : - ' '

, Therefore_ this proposition cannot be proved in the calculus, -

Proof :  Any non-actual object of type Id A a a not realized by 0 is mapped by fAaa to _
the objectin Eq A a a realized by 0 and therefore (according to Theorem 3.20) this object is
mapped by g A aa to the object of Id A aa realized by 0 (as 0 codes the function with
' éonstant value 0). Thus (g Aaa)-(fA aa) is different from the identityon IdAaa.

~ We now consider the interpretation where identity sets contain exactly one non-actual object
and this object is realized by 0. ' ' , e
Suppose that there were an actual object in the set corresponding to' the proposition that the
composition (fAaa)-(gAaa) is pointwise propositionally equal to identity. 7

Then - due to the interpretation of identity sets - a realizer for this proof object wéuldp'rovide
a partial recursive function h which terminates for all arguments in the set

D={ne o i {n}k)=k or {n)(k)=0 foralike o}

| and whose behaviour for ne D 'i,s speciﬁed by the fol]oWing case'analysi's :

" hin)=1 if nis éode for the total identity function’
h(n) € {0,1} if n is a code for the total function with constant value O
~h(m)=0 ~ otherwise

But the existénce of such a partial recursive function h would make the halting problem deci-
dable as shown by the following argument.
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Let s be a total recursive function which for any natural number n computcs a code of the
total recursive functlon t(n) deﬁned as foHows '

| t(n)(m) =m " if'm=1 or T(n,n,K) is false for all k<m
tny(m)=0 | btherwise .
(where T is of course Kleene $ T—predtcate) _ S _
. Then' t(n) is the total identity function if T(n, n k) is false for all k i.e. the computation of

{n}(n) dlverges, and’ t(n) is different from the 1dent1ty function and from the total functlon
_with constant value 0 if the computatlon of {n }(n) termmates But then

: h(s(n)) = 1_ - if {rt}(n) does not ter_'minate_
h('s(n")) =0 T, {n}(n) te’rmi’n'ates..ﬁ "

_ As this would make the haltmg problem dcc1dable there cannot exits an actual proof object for
 the proposition expressing that (f Aaa)-(gAa a) is pomtwme proposrtlonally equal to iden-

tlty R

_ Thus we can conclude that the natural candidates f and g for estabhshmg an 1somorphlsm
between identity sets and Leibniz equahty sets don’t do this JOb as (FAa a) o(gAa a) is not
even pomtw1se proposmonally equal to the 1dent1ty on Eq Aaa.

_ We will ﬁmsh our comparison of Martin-L6f’s tdenttty sets and Leibniz equahty sets by sho-
- wing that in the model where Set is interpreted by Set; such an isomorphism never can emst
as itis tmpossable to endow Leibniz equality types with the structure of 1dent1ty types.

The proof of this theorem will contain a rather sharp characterization of how 1ntcrpretat10ns of
zdentlty types rnay look like in this’ model.
' i‘hgorerﬁ 3.22

~For any mterpretatton of 1dent1ty sets in the model where Sct is 1nterpreted by Setl the fol--
' lowmg condltlons are satlsﬁed for all sets A and actual objects a, b in A ‘
(@ ifldAa 1b contains an actual object then a=b

(b) there can be at most one actual object in 1d A ab

(c) the realizers of the utlique_ztt:tual object. rA'a in IdAaa N
can be separated effectively from the realizers for the non-actual objects
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Furthermore, Leibniz equality sets cannot be endowed with the structure required for identity
sets as for all sets A and actual objects a in A the realizers for the unique actual object in
the Leibniz e‘quali'ty set EqQ A aa cannot be separated effectively from the realizers for the
non-actual dbjects. | ' :

Proof : Let A-beasetand C afamilyin {x,y: A} {z:Id A x y} Set such that for al]
potential objects x,y in' A and z in IdAxy : Cxyz=N; if x=y and z=rAX and-
Cxyz = .NO otherwise. S ' _ _
Then d = [x: A] cp is ém_ actual objectin {x: A} Cx x '(r A x) and J A C is an actual
~ object in {x,y:A}{z:ldAxy}Cxyz. o o '

‘As JAC is actual it maps actual objects to actual objects.

Let a and b be actual objects in ‘A .

Now if there were an actual object ¢ in Id-Aab then J A Cdabc were an actual object in
Cabc.Butas Np does not contain an actual objéct it follows that a = b.. '

If thére were an actual object ¢ in Id A aa with c#r A athen JACdaa ¢ were an actual
obj_ect in Ng . But as this is impossible there cannot be an actual objectin Id A aa different -
~fromrAa. 3 ' '

The actual object J A Cdaa mapsthe actual object r A a to the actual object ¢y realized
by 1 and all other objects in Id A aa to the no_n—zictua} object in Nj which is realized by 0 .
" Therefore a realizer for J A C d aa maps realizers for rA a to 1 and realizers for other
objectsto 0. . S : _
Thus these two disjoint sets of realizers can be separated effectively.

From the proof of Theorem 3.20 it follows immediately that the realizers of the actual object
in Eq Aaa cannot be separated effectively from the réalizers of the non-actual objects in the
- set EqAaa as this would give rise to a decision procédure for the halting problem.

“Therefore it is impossible to endow -Eq with the structure required for identity sets because
forany set A containing an actual object a the interpretation of the actual object rAa must
be equal to the unique actual object of type Eq A a a whose realizers cannot be separated
effeétively from the realizers for the other non-actual objects. - 0

Remark. Notice that the theorem above does not say anything about the definedness of the
object rAa if a is a non-actual object of type A . - '

-
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In fact one can modify any mterpretatlon of identity sets in the model where Set is interpre-

ted by Set; to another correct interpretation simply by eliminating for any non-actual object

a inaset A the object rAa from the actual objects of set Id A aa but still keepingitasa-
potentlal object. -

We conclude our mvestlgaoons of the model Where Set is 1nterpreted by Set;: by the foIlo-
wing theorem

_Theoreni 3.23

For any mterpretatlon of identity sets in the, model where Set is interpreted by Set1 it holds .
that for any set A | family C in {x,y: A} {z:Id A x y} Set, potential objects 2, b in A -
“and for any object ¢ in Id A ab different from rAa the object JACda b cinCabec is .
realized by 0. : :

Proof : The types Set and {x,y: A} {z Id Axy} Set carryatrlvml realizability structure -
-and therefore the eliminator J is uniform in A and C. Suppose that n is a realizer for J
and let ny, ny,n3,ng,n5, ng be reahzers for A, C,d,a,b,c, respectively, then n
. applied to nj - ng realizes the object J ACdab ¢ . Assume that ¢ is different from the .
object r A a. Then consider the family D in {x,y:A}{z:1dAx y} Set such. that for all
potential objects X,y in A and z in IdAxy: nyzquyz if x=y and z—rAx
and D Xy z =Ny otherwise. As the number n, realizes also D the result of n applied to
0} - Ng realizes the object JADdabc in Ny which is realized only byOo.

This defect can be av01ded by workmg relative to anew Godel numbenng ¢ of partial recur-
~ sive functions where forall n,me ®: ¢(2n)(m) 2n and 6(2n+1)(m) = {n}(m) and inter-
preting the type Set by Set({ Rl R isa per with 2n R 2n for all n € ® }). Then for any
even number n one can interpret J asfollows: JACdabc =da if a=band c=rAa
and otherwise J A Cdabc isthe unique objectin Cab ¢ realized by n . Similarly one can
interpret K . Of course, for different even numbers n this gives nse to dlfferent mterpretan—
onsof J and K.

- '3.9. A Model Based on Ef_fective Domains

Next we will discuss models where the ambient toglcal framework still is interpreted in the
category mr-Set but the type Set will be interpreted as the mr-set ‘with trivial realizability
- structure whose potential objects are effective domains together with a distinguished subset of
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actual objects and where all objects are actual. . _ _
E Using a result from [Str2] we will show that this provides a model of where i is impossible to
interpret strong sum types. The impossibility of interpreting strong sum types hinges on the
fact that the suim of a family of effective domains indexed over an effective domain need not be
an effective domain again.
Let us quickly review the notion of complete extensional per with bottom as originally intro-
duced in [FMRS]. | : | |
An extensional per R is characterized by a set D of natural numbers together with a col-
lection © of subsets of ‘D such that for any A € © there exists a natural number n such
that for all m e D: {a}{m)=0if me A and {n}(m) diverges if m& A (the collection of '
all such numbers n is denoted as real(D,A) ). Given such D and D the associated pér )
exper(D,®) is described as follows : n.exper(D,®) m iff forsome Ae ® both nand m-
are contained in real(D,A) . It is easy to see that for any extensional per R there exist unique
D and D suchthat R= exper(D,2).. | : ' _ )
A complete _exte'nsional per is an extensional per closed under sﬁprema of effective increasing
chains. Moré precisely, an extensional per R = exper(D,®) i$ closed under suprema of effec-
tive chains iff for any total recursive function f such that for all n € ®: fin)R f(n) and for
all m>n and ke D if {fin)}k) =0 then {f(m)}(k) = 0 it holds that real(D,A) € /R
where A={ k | {fin)}(k)=0 forsome ne o). o '

A complete extensional per with bottom is a complete extensional per containing all codes for
the totally undefined partial recursive function in its carrier, S :
In [FMRS] it has been shown that complete extensional pers with bottom form an inte_rn‘aIly

complete full subcategory of r-Set

Theorem 3.24
Let CE)(‘P-er-l be the collection of all complete extensional pers with bottom., Tf one interprets

the type Set by Set(CExPer,) then this gives a model of impfedicative universal quantifi-
cation, intensional identity types but it is impossible to interpret intensional strong sums.

Proof : It has been shown in [FMRS] and in {St:2] that CExPer, is closed under arbitrary
products internal to. r-Set . Products internal to mr-Set are computed as in r-Set and actual
objects are characterized as those realizable functions which preserve actual objects.

Intensional identity types can be interpretéd as follows.
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Let i be a code for the empty function which nowhere terminates and let i) bea code for
the constant function with value 0. R '
Wefurtherput Io- {nl {n}= {10}} and Ii = { n{ {n}-: {ii} }.

- For any set A and ObjECtS a b in A we deﬁne the set dAab accordmg to the followmg -
- case analysis :. ‘

_if a=b then
| Id Aab= ( (Ih X Io) U (11-?;:1.1) , ‘{IO}'):
-_': if_'ka ¢b ther‘," | |
[dAab= (IgxITy,{))

' Thus intutively, if a=b then the Correspondmg 1dent1ty set contams the actual object II and

the non-actual, only potent:al ObjCCt Ip and if asb then the correspondmg 1denuty set con- ~ -

- tains only the potential object IO
The constructor r is interprete_d as’follows. For any set A and object a in A
'rAa=IléIdAad

and 0bv1ously, the functlon r is realizable and it preselves actual objectts as the object 1 1 €
. Id Aaa 1s always actuai - o

" The eliminator J is defined as follows. Given aset A ,a family C of sets indexed over X,y
€ A and ze Id Axy and apotentlal object d e {x:A} Cxx (r A x) then JTAC:d is deﬁned'

accordlng to the folIowmg case analy51s

- for x in _A'

TR
=9
>

CJACdxxI;"
- for x)y in A
JACdxy Io = the _unique object of Cx y’I-O realiied by io'

The morphlsm J A C d is reahzed by'an appropnate currymg of the followmg algonthm let
e be a realizer for d then given realizers n, m, k for x,y,z; respeenveiy, and an arbitrary
' Vnatural number 1 then a(n,mk,I) = {{e}C)}(1) if { {k}(0) terminates and undefined other-
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wise.

‘Similarly orie can interpret the eliminator K .

- In order to prove that one cannot interpret intensional strong sums in Set(CExPer ;) we have
to explain the notion of Z-separability, see [Str2]. ' s
Let Z be exper({0},{{}.{0}}) whichis a complete extensional per with bottom pr‘ovidihg
an effective version of the Scott domain with two objects (sometimes called the “schizophre-
' nic object”). . - D . . | : :
We say that a per R’ is Z-separable iff for any two different objects x and y in (the r-set
‘represented by) R there is a realizable p: R — X such that p(x) = p(y). Clearly, ariy exten-
sional per is Z-separable. B L R
By declaring all objects of X as actual objects we can cénsider X as an object in the cate-
gory mr-Set and the morphisms from an mr-set X to ¥ are exactly the realizable mor-
phisms between_ their,ﬁnderl’ying r-sets. Then the notion of Z-separablity can be defined for
the category mr-Set in an analogous way. Therefore an mr-set is 2-separable in the category:.
mr-Set iff its underlying r-set is Z-separable in the category r-Set . '

- Now suppose we had an, interpretation of in_ténsional strong sums, i.e. an interpretation of z,
pair and E satisfying the corresponding judgemental equalities. ' '

‘Then for any set A and any family B : A — Set the object pair A B would be an injective -

realizable function from the context x : A .Y B(x) to the set X A B. The injectivity of the -

* function pair AB follows from the fact that even in the sense of Judgemental equality it holds
that pro(pair ABab)=a e A and pry(pairABab)=b e B(prg(pair AB ah)) .

- As shown in [Str2] (Theorem 2 (1)) there is a special choice for A and B such that the con-
text x A, y:B(x) is not S-separable whereas the set L A B is X-separable (as its under-
lying per is extensional). But as pair A B is an injective realizable function from the context
XA,y :B{) tothe set TAB it follows that x - A , ¥ 1 B(x) is also 2-separable in contra-
diction to our choice of A and B . ' ' ' v o

Thus strong sums cannot be interpreted in this model. 0

Another 'modef refuting the interpretation of intensional strong sums is provided by interpreQ
. tingthe type Set by Set({ R -5 A(®) | Re PER}) where Al)={(n,n) I ne }.
‘In [Str3] it has been shown that { R —Alw) | Re PER} givesrise to a full subcategory of -
1-Set which is internally closed under arbitrary products but not closed under small strong
sums. Therefore the same argument as for Set(CExPer 1) can be performed in order to show
that strong sums cannot be interpreted in the model where Set is interpreted by the mr-set
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Set({ R — A(w) | Re PER}). _

This latter interpretation allows to interpret also (extensional) natural numbers as the type
associated with the set ( Ry, @/Ryn ) with Ry:={(0,0) } — Alm®) is a natural number
object in mr-Set . : '
This seems to be an advantage of this particula'r model as not éven for the intensional version
of the natural number type it is clear how it can be interpreted in Set(CExPer)) .

3.10 Conclusioh-

In this last chapter we have demonstrated that by a shght modification of the well- known rea-
lizability model for extensional Constructive Set Theory it is possible to define mathematical,

- non-syntactical models of ICST which are fully intensional. We have shown that these. models
are suitable for refuting most of the Sequents which are derivable in extensional Constructive
Set Theory but not in ICST. ' : ‘
More generally we suggest the following 1nforma] method for checking the appropnateness of
some proposed extension,of ICST. First try to interpret it in the fully intensional mathematlcal'_ ‘
model(s) studied in this chapter. If this is easy - and experience tells that if the extension is
sound then the interpretation is straighforward - then make a more refined syntactic analysis
checking whether the added conversion rules do not violate the required meta-mathematical
properties as conﬂuence and strong normalization. But as these syntactlc checks can be consi-
derably hard and therefore time comsuming it is better to first do the “semantic check” which
is easier and faster and allows to rule out wrong suggestlons '

An interesting such application would be e. g. to interpret the extensmn of ICST suggested by
Th. Coquand in [Coq] . -
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Appendix 1

The -Logical Framework

We first give a presentation of the so called Logical Framework where (hlgher order) rules can
be expressed. It is a dependently typed A-calculus which also provides the corner stone of the
vanous languages of the AUTOMATH family developed by N. deBruijn startmg in the 60s.

To start with we give .the raw synt'ax of t_h_e logical framework.

- We assume an a priori given syntactic category Var of object variables and based on it we
define the syntactic categories TyExp of raw type expressions and ObExp of raw ob]ect
expressions in a BNF-like manner :

TyExp = (Var:TyExp} TyExp
(ObExp := Var | [Var: TyExp] ObExp | ObExp(ObExp) |

- We use A B,C poss1bly decorated with primes or md1ces as meta vanables ranging over_

objects of the syntactic category TyExp and t,s. possibly decorated with primes or 1nd1ces

as meta variables rangmg over objects of the syntactic category ObExp .

Raw type expressmns of the form {x: A} B are called raw product type expressions, raw

object expressions of the form x are called raw variables, raw object expressions of the form

[x : E] t" are called raw functional abstractions and raw object expressmns of the form t (s)

. are called raw function apphcarzons ' :

A raw context s a syntactic expression of the form

Xp iAo :'A_i, s Xyt Ag

whose intended meaning is that of a declaration of variables. Of course, proper contexts will

~ satisfy the condmon that for any i with 1 =i =<n the free variables of A; are contained in = -

the listxy, ..., xl_ We use capital Greek letter T', A ... to range over raw contexts. -
In type theory there are four different forms of so called judgements (germ.Urte'il Yo
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' A - A isa yveli fbnned type _
~A=B A émd B are we;l formed _ahd eq1;al types -
teA | t is a.Well_fo'rmed 0bj¢¢t §f _tﬁe jw'elll 'f_orrr-l,ed type._ A
o t# se A . 't and s are .v‘v'ell f(;rm.ed and éq_uai obj.'ect:‘s of fhe well f.o_rmed.typ.e A

Th_esc forms of j-udgeme'nts wilfi be rangéd 0vér by'thé rﬁe’tavaﬁable J. |

 Araw sequent isa syntacm expressnon of the form 'k or of the form T F- j W1th the fol- °
lowing intuitive meamngs ' :

C+ Tis a well formed context

r+=Jg the judgement. 7 is valid w.r.t. the well for__me_d context I" o

Now we are going to state the- rules of our dependently typed l—calculus called LF (Logical
_Framework) They 1nduct1vely define the collectlon of all formally provable sequents
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Context Formation Rules

EMPTY
i_
CONT-INTRO
A - TF'kA
" Ix:AL,AF

CONT-SUB

(i x §VarT) U Var(d))

Fx:A,AF TFteA

T,A[Ux] -
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Structural 'Ruies

'ASS
Cx:A.AF
Ix:A,A I—’xé A
THIN
I''A+FJ TFRA _ _
. { xg¢ Var(I") u Var(A))
Lx:A,A =T ' '

SUB

Tx:A,AFJ7 T Ftea

T A[Ux] + J[tx]
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Equali‘ty Rules

" REFL-TYP

TFA

TrA=A

REFL-OBJ

Thrte A

I' -t=te A

SYMM-TYP

''A=B

I'EFB=A

SYMM-OBJ

I Ft=se A

I Ft=se A

" TRANS-TYP

T+A=B TI'FB=C

T'FA=C
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TRANS-OBJ

‘THt=eA TFu=tzeA

T ht=te A

REPLI

Trt=seA T,x:A,AFB

LA - Bl =Bisi]

 REPL2

‘Trt=teA TF,cAA FseB

T, Altx] + s'.[t/X']:_:,:" s[t/x] & Blux] R

CONV 1 .

FFA=B T irteA

I+teB -
CONV 2

‘THA=B T Fi=seA

- T E[.:SE B _.
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Rules for Products of Types

PROD-FORM

Ix: A }—'B

I'F{x:A]B
PROD-EQU

T ’__Alr-_—Az .r',XZAri l‘B_]ZBz :

T F{x:A]}B; = {x:Ay} B,

PROD-INTRO

Ix:A FteB

I [x:Alt € {x:A)B

'PROD-INTRO-EQU

IMx:A Ft=seB

I Hx:A]t :..[;( : A]s'é {x:A}lB

PROD-ELIM

Ix:AFB T rte(x:AlB TrseA

T+ t(s) e Bls/x]
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PROD-ELIM-EQU

Ix:A FB T'Fi=te{x:A}]B T Fs=secA

['+t(s) = t'(s") € Bls/x].

. B-RULE

I'x:A FB Tx:A rteB T Fse A

I & ([x: AT (s) = t[s/x] € Bls/x] -

n-RULE -

Lx:AFB Thte{x:A}lB

M- [x:Alt() =t e {x:A}B
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Appendix 2
Cehstructive .Set Theory' in the Logical F_ramev{fork

Martin-L6fs CST {Constructive Set Theory) can Be formulated inside LF by assurrung a
type Set of sets. But we also want to consider objects ‘A of type Set as types which is done -
by postulating a famlly El of types indexed over Set which associates with any A € Set its
- type EI(A) of elements of set A . '
Sets as Types
- Set- A : Set - EI(A)

The other sets of CST are deﬁned by constants for set fo:manon constants for constructing

canonical elements and constants for elimination operations which allow to define functions 4
from a prescription of their behaviour on canonical elements. Furthermore . conversion rules

are stated which describe how functions obtained by elimination operations evaluate when
given canomcal objects as arguments. :

, _‘3 Products of Families of Sets

ITe "{A:Set}"{B : {x:Ei(A)} Set } Set’
fun e {A:Set} {B:{x: El(A)}Set} £ {x BI(A)}EI(B(X))} EI(H(A)(B))
Fe {A Set}{ : {x : EI(A)} Set) {c {z EI(H(A)(B))}Set}

{d: (f: {x El(A)} BI(B(x))} ENCAABXD)) } (c: ETI(AXB))}
El(C(c))

- together with the conversion rule
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A:Set, B: {X EI(A)}Set C: {Z ENII(A)(B))} Se
d:{f: {X EI(A)}EE(B(X))} EI(C(MA)(B)(f))) f: {x EI(A)}EI(B(X))
b

F(A)(B)(C)(d)(K(A)(B)(f)) Ef(ﬂ € EI(C(X(A)(B)(Q))
A fan'ly useful deﬁned notion is funcnon applicanon whlch in terms of F can be defined as' o
follows '

~apply = [A Set] [B: {x:El(A)} Set][c: EI(H(A)(B))] [a: EI(A)]
: F AB([Z Ei(H(A)(B))I B(a)) ([f {X El(A)} EI(B(x))] f(a)) ¢ _

~ for which one can derive _

F a.pply € (A :-.Set'} {B: _{'x 1 EI(A)} S"elt} {c :.E'!'(II{A)(B))}‘ {_a_:. El(A)} .‘E.I(.B.(a)) :
~and t_ﬁé following judge’__menlté.l equality d'eg.cri.bin.g ﬁbw to eval_uat_e'aip.pli.cat_jion'tetms
A.:_‘Set', B:{x: El(A)}Sét., £: {x: El(A)} ENB(x)) ,.a' :..El'(A)' '.

!_ . ) . _\' .
- apply(A)BYMAXB)(D)(@) = f(a) € EI(B(a))

| Sums of Faliliiies of Scts

e {A:Set} (B: {x : ElfA)l} Set) Set
'pair € {A:Set} (B:{x:ElA)) Set) (a: El(A)}{b El(B(a))} EICX(A, B)).
Ee {A:Set} (B: {x:EI(A)] Set) {C: (2: EI(Z(A)BY)] Set]
{d: {a El(A)} {b: El(B(a))} EI(C(PHIF(’:\)(B)(Q)(b)))}

 {e 1 ENZ(A)B))
EI(C(e))

- toge_tﬁér with the conversion rule
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CAsSet, B:{x:EI(A))} Set , C: (z: BIS(A)XB)) Set
d:{a:EI{A)} {b: El(B(a)} EI(C(PHIF(A)(B)(a)(b)))
aEl(A), b : EI(B(@)

E(A)(B)(C)(d)(Paif(A)(B)(ﬂ)(b)) = d(a)(b) € EI(C(pair(A)(B)(a)(b))) __

~t

A fairly useful defined notion are first and second pro;ecnon Wthh in terms of Ecanbe deﬁ
ned as follows

il

[A: Set} B:{x: El(A)} Set]
EAB([X El(A)] [y : EIB(xN] A) ([X ElA)] [y : El(B(X))] X)

Ly

of type'
{A:Set} (B {x: ENA)) Set} {c : BICS(A)B))) EI(A)

and

m, = [A:Set] [B:{x:EIA)} Set] | |
E A B ([x : E(A)] [y : B(B(x))] B(x)) ([X tEA)] [y : EB(x)]y)
of type

A : Set} (B : {x: EI(A)) Set] -{.c - EIE(A)B)) EI(B(::O(AXB)@)S
 and satisfy the éonversi_oﬁ rules |
A:Set, B:{x:EI(A)} Set ,a:EI(A),b : El(B(a))
%(A)(B)@)(_b)_:_ ae A |
and :
A:Set, B: (x: ENA)) Set , a: EI(A), b BIB()
: ;(A)(B)(a)(b)_ =be EI(B(TEO(A_)(B)(a)(b)))

respectively.
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Identit_y Sets

1d & {A:Set] {a:EI(A)} {b:El(A)} Set
r e {A:Set} {a:El(A)} El(ld(a)(a))

Je {A:Set} {C:(x:EIA)} {y:EI(A)} (z: El(Id(A)(x)(y))}Set}
{d: {x: EMA)} EICH)((AYX))) }
{a: EHA)} {b: EI(A)} {c : EI(Td(A)(a)(b)))
El(C(a)(b)(c))

together with the conversion rule

‘A Set, c. {'x- EI(A)} {y : EI(A)} Iz El(Id(A)(x)(y))}Set
d:{x: EI(A)}EI(C(X)(X)(r(A)(X))) a: El(A)
J(A)(C)(d)(a)(a)d(r(A)(a))) = d(a)_E' EI(C(H)(a)(r(A)fa)))

According to the intuitive semantics of constructive set theory and also in all known “mathe-
matical”, i.e. models which are not term models, one can define an eliminator not only for the
family [x: ElA)] [y : EI(A)] Id(A)(x)(y) but also for the family [x : El(A)] T1d(AY)(x) .
This new eliminator 1ntu1t1ve1y cxpresses that for any a e A the type Id(A)(a)a) contains
exactly one object, namely r(A)a). '
~“We will call this eliminator X and it is axiomatized as

K e {A:Set} {C: {x:E(A)] {z: EId(AYX)(x))] Set} |
C{d s {x: EI(A)}EI(C(X)(I(A)(X)))}
{a: EIA)} (c: Eldd(A)a)(@)} EIClc))

together with the conversion rule’

A Set, C:{x:EIlA)} {z: EIJdAXX)(x)) Set,
d: {x: El(A)} EN(C(r(A)x)) ,

a: El(A) '

- - : } .
KAXCOHD(@)((ANa)) = d(a) e ENC(a)(r(A)a))) -
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Of course, these two eli'minators- are not unrelated at all and the following relation between
them can be proven by straightforward application of conversion rules for J and K:

A Set s Co{x : El(A)}{y : ElA)}{z : EXId(A)Y(x)(y))} Set,
d: {x: El(A)} EAC)(x)(r(A)x))),
a: El(A) :
- T _
JANCHE @) (@)((A)@) = KA)([x : EI(A)] COO())(d)(a)(r(A)(a))
€ El(C(a)a)(r(A)a))) ‘ :
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Appendix 3
A More Readable Presentation of ConstmciiVe Set Theory

s As the syntacuc presentatron in Appendlx 2 has been a httle bit bureaucratlc we adopt the fol—
'iowmg notanonal conventlons in orcfer to improve readablhty

For any set expression A we may sunply write X : A mstead of x: EI(A) Slmllarly whene-
ver B is a set.expression then we may-simply write { X A} B instead of {x: A} El(B)

Instead of t(s) we may simply write ts and assume this juxtaposition is left assoczatlv Le. .
the expression tsy ... sy stands for t(sl) C(sy) o

. Then we get the foilowmg more readable forrnulanon of constructive set theory in the loglcal
framework

Products '(')f. Fa_miﬁes of Se_ts R
. H.e' {A:Set}'{B:'{A}S’et}_Set '
| fun € {A; sét} {B: {A} Set} _{f: .{-x : A} B(x)} .P A B
F e {A Set} {B:{A }Set} {C {HAB)}Set}
Ad:{f:{x: A} B(x)) C(funABf)}
_{c HAB}
Cc .
tdgerher with Vtheeon_ver;ion. ru]e '
A:Set, Bi {x:A}Set | C: (MAB}Set ,
.d:_l{fl:{x':A}B(x)} CALABD, f: {x A}B(x)

R , :
~FABCd (funABf) = ‘df_ e_C(funABf-).

A fairly _useful defined notion is function application which in terms of F can be defined as
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_follows

apply = [x:A][B:{x A} Set] [c:.HAB].[a:A]
' FAB([z:IIAB]Ba)[f: {x: A} Bx]fa)c

for which one can derive

ap.ply. e."{x LA} {B:{x:A}Set} {c:TTAB) (x:A) Bx .
satisfying the conversion rule | |

A:Set, B: {x:A} Set
fi{x:A}Bx),a: A |

oo |
apply AB(funABfa = fae Ba

“Sums of Families of Sets
T e {A:Set} (B:{x:A} Set} Set
pair € {A:Set}{B:{x:A}Set}{a:A}{b:B(a)} ZAB
pair € {A: Set} {B:{x:A} Set} {C: {c:ZAB} Set)
{d: {x:A}{y:B(x)} C(pair ABx v)}
{c:ZAB) ' ' .
Ce.
._t-o'gethe'r with the conversion rule'.
A 'Set',' B: {x.: A} Set , Crfce: Z:A:.'B} Sét ,
d:{x:A}{y:Bx)} C(pair ABxy)
“a: A, b:B{a) ‘
= - ~
EABCd (pair AB ab) = dab e C(pair ABab)

First and second projection are defined as -
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my = [A: Sét].[B {x:A} Set] EAB ([x: A] [y': Bx]A)([x: A] [v :Bx]x)
oftype_

{A: Set} {Br.: {x ;A} Set} {c:ZAB} A

and
7 = [A:Set] [B: {x-A} Sef] __ |
EAB([x:Ally :Bx]B(x) ([x: Al [y: Bxly)
_ of type

o {A': Set} {B: {); A} Set} {c :.ﬁA B} B(m, A Bc)
“satisfying the conversion rules
' A Set , B;: {X.; A} Set _,a:A,‘b B I—-‘rcOA_B(pairAB.ab): ﬁ-e A
and |
A :Set, B:‘{x-:'Al} Sét La:A,b:B F myAB (pqirABab)% b-e Bé

respectively. |

Idenﬁ{y Sets

Id € {A:Set} {a: A} {b: A} Set

re {A:Set) {a: A) WAna

J e {A:Se) (C:{x:A}{y:A) (214 Ay} Set)
{d: {x:A}Cxx(rAx)} -

fa:A} (b:A}{c:IdAab)
Cabec ' :
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together with the conversion rule

A:Set,C:{x:A}{y:A}{z:1dAxy} Set,d:{x:A}Cxx(rAx) ,a:A
»
JACdaa(rAa) =dae Caa(rAa)

and the addi_tionai eliminator
Jo& {A:Set} {C:{x:A)(Id Axx} Set}
{d: {x:A}Cx(rAx)}

fa:A}{c:IdAaa)
Cac

‘ togéth’er With the elimination rule
A:Set,C:{x:A} {ldAxx}Set,d: {x:A}Cx(AX), a: A
+ | |
KACda(rAa)=dae C(rAa)
Obviously J and K are related in the following way
| _A:Set; Cofx:AHy AHIdAxy}Set, d: {x:A}JCxx(rAx), a: A

'_
- JACdaa(rAa) = KA(Ca)da(rAa) e Caa(rAa)
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Appendix 4

Some Auxiliary Operations on Identity Sets

Substitution
sub =
[A:Set}[B: {x: A) Set] [x A][y Allz: IdAxy][u Bx] |
apply(Bx)(u Bx]By)
o ([x:Ally: A] (z: IdAxy]ﬁ(BX)([u Bx}By))
([x 1 A] fun (B x) ([U BX]BX) ([U BX] U))
Xy | o
| oftypek
{A: Set) {_B_ C{x A} Set) (x : A}'_{y ;A} {_z;IdAg_y} _{u_:B}_g} By'
with the derived conversion rule B | |
-A;set,B_:.{x_:A}Set,a-:A,biB‘_a;
- :uEA.Baa(rA'a}b_%.B' €  Ba
Symmetry
- _syiﬁ = (A Se0JAQ: ATl AT WA XY A Y O (0 W Axx] )
_. {A=: Set} {x:A} {y:':' A-}-{z_-: iany.}'Id;{yg :

with the derived conversion rule
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~ A:Setaa:Al symAaa(rAa)=rAa ¢ IdAaa

Trénsi_tivity
trans = [A :.Set] [abc: A} [p: Id A abl[q:1d A b f
| éub A(x:AlldA ax) b-c q‘p |
- of type |
{A :__Set_}._{a,b,c “A}{p:ldAab){q:IdAb c} Id A alc
with thé derived ‘c_onveréioln. fule

A:Set,a:A,b:A,p:IdAab F.trans Aabbp(rAb) = p € IdAaa
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Addendum

The results of 1.3 on Paulin- Mohnngs Ehrmnator for Identity Types have been superseeded
by a recent result of Martin Hofmann who could show the following

Theorem (M. Hofmann) '

‘Paulin-Mbhring’s eliminator PM is definable from Martin-L&fs canonical eliminator J .

- Proof : First observé that the term

= [ASet] _
' _'JA([x,y A}[z IdAxy]
Id(Z A (Al Id Ax ) .
(pair A (fu:A]JldAxuwx(rA x))
{(pair A ([wA]IdAxu)yz)
A([x:Alr (Z A ([u:A] 1 A x u)) (pair A ([wA)JIdA xu)x(rAX)))

1s of type

{A:Set}'{x-,y:.A}{z:Icl A :;'y}
Id (EA(wA]IdA xu). o
(pair A ([w:A]Id A x ) x (r A x))
(pair A ([u:A] Id A:x wyz .
It is obvious from the definition of t that
A S_e{t,'.k A |
tAXX{rAXx) = r(ZA([u A] IdAxu)) (paer({u A] IdAxu)x(r X))
e Id (XA (Ju:A] IdAxu)) '

(pair A (Ju:A] 1d Axuyx (‘r'A X))
(pajr A ([u:A] HAxwWx (A x))

: _Suppose A Set x:A,C: {y A} (IdAxy)Set d: Cx(rAx)
Then we may deﬁne the aux:hary famlly

D= [p:ZA(u:A]ld A xu)] C (7:0 A [u:A] id Ax u).) (1; A ({U'A] Id A x u))-

' Ifwefurtherassumethat d: Cyz-D(pmrA([uA]IdAxu)yz) and y: A z: IdAxy
then

s = sb(TA ([u:A] IdAx'u)) D
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(pair A ([w:A]Id Axu)x (r A x))
(pair A ((w:A]Id'A xu)yz)

T (tAXyz)
d

is of type - _
- D(pair A ((wA]ldAxu)yz) =Cyz .
Thus -We have proved that

A:Set,x:A,C:{y:A}(IdAxy)Set,'d:Cx(rAx);d:-Cyz y:A,z:ldAxy
- : ‘

sub (Z A ([u:A] IdAxu))D

: (paer([u A] IdAxu)x(rAx))
_(paer([u Al IdAxu)yz)
-(tAxyz)

_. d

= Cyz

Fuﬁhermore we have _

‘A Set,x: A, C: [y A} (IdAxy)Set d: Cx(rAx)
I_ .
sub (ZA ([u:AlId A x up D
(pair A (Ju:A]Id A xu) x (rA_x))
(pair A ([u:A] Id A x u) x (r A x))
{tAXX(rAx))
=d
eCyz
as ‘tA’x_x(rAX) = r'(EA({u:Aj Id A x u)) (pair A ([u:A]Id A x u) x (r A x)) (shown above)

and

sub CA(wA]IldAxu)D
(pair A (fu:AJId A x u) X (r A X))
(pair A (fu: AlldAxu)x (rAXx)) -
r(EA([u AJId A xu) (paer([u A] Id A x u)x(rAx))
d

~ converts with d (cf. 'Appendix 4).. 0
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