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1. Introduction

These notes are intended to give graduate students in algebraic topology an overview of the
range of examples that are understood. I have also added a long list of other examples which I have
not had time to write anything about as yet. It takes quite a lot of theory to justify everything
that I say about the examples I discuss, but I hope that it will not take too much theory to
understand most of it.

These notes are new and not yet thoroughly debugged. Any comments, suggestions or correc-
tions would be gratefully received.

1.1. Background Reading. In this section, we list some sources which provide the theory nec-
essary to justify the examples which follow.

Maunder’s book [27] is a pleasant introduction to general homology and homotopy theory.
Dold’s book [13] contains more information about homology, and Whitehead’s book [44] is a
very good reference for the more classical parts of homotopy theory. Simplicial methods are an
indespensible tool in much of algebraic topology; the canonical reference is [28]. The book [19]
also contains a good treatment of simplicial sets and CW complexes, together with a lot of useful
background material from point-set topology. Another indespensable tool is the theory of spectral
sequences, which is explained in a pleasant and approachable way in [31]. Lie groups crop up
in topology in a number of ways; Adams’ exposition in [1] is very elegant. His book [3] also
provides an excellent survey of the theory of infinite loop spaces. For some purposes, one needs to
approach homotopy theory from a more abstract point of view (to clarify the relationship between
the homotopy theory of spaces and that of chain complexes, for example). One way to do this is
to use Quillen’s theory of closed model categories; there is a nice exposition in [16]. (There are a
number of other useful survey articles in the same collection.)

For stable homotopy theory, the student should start by reading about the S-category in [21,
Chapter 16] (actually, the whole book is highly recommended) and then read Adams’ Chicago
lecture notes [2, Part III]. Adams’ construction of the smash product should be ignored, however,
for reasons to be explained shortly. The first part of Margolis’ book [26] is a very good treatment
of the formal properties of the stable homotopy category, although it is almost entirely devoid of
geometry. Kochman’s new book [23] looks very promising, although I have not seen a copy yet.
One of the most important themes in stable homotopy theory is the interection with the algebraic
theory of formal groups via complex cobordism. This is explained in [2], and taken further in
Ravenel’s book [36]. The latter also contains valuable surveys of a number of areas of topology (as
well as some large and elaborate calculations of stable homotopy groups). Another important (and
related) theme is the exploitation of the Nilpotence Theorem of Hopkins, Devinatz and Smith.
This is explained in another book by Ravenel [37], which does a remarkably good job of presenting
a very deep result in a way which is comprehensible with a minimum of prerequisites.

There are now ways of setting up the foundations of stable homotopy theory which are more
satisfactory in a number of ways than those known to Adams. In particular, Elmendorff, Kriz,
Mandell and May have costructed a category whose homotopy category is the same as the one
considered by Adams, but which has much better properties before passage to homotopy. This
is explained in [17], which is unfortunately not light reading. The rather easier construction
described in [30, Chapter XII] is just as good for most purposes. Incidentally, the book [30] also
contains a wealth of other fascinating material.
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2. Wedges of circles

Let W be a wedge of n circles, W = S1 ∨ . . . ∨ S1. We shall show that W is the quotient of

a contractible space W̃ by a free action of the free group G on n generators. It will follow that
�kW = 0 unless k = 1, and that �1W = G. For this and related material, see [41, Chapter 2].

The inclusion im : S1 −→W of the m’th wedge summand in W can be thought of as an element
sm ∈ �1W (for m = 0, . . . , l − 1). Recall the definition of the free group G generated by the
elements sm: an element g of G is a sequence (t1, . . . , tr) (possibly empty) in which each term tj
is either an sm or an s−1

m for some m, and sm never occurs next to s−1
m . Thus () and (s3, s

−1
2 , s1)

are elements of G but (s1, s
2
3, s2) and (s2, s

−1
2 ) are not. The group operation is defined by joining

sequences together and discarding adjacent pairs of the form (sm, s
−1
m ) or (s−1

m , sm) until there are
none left. There is an obvious homomorphism G −→ �1W sending a sequence (t1, . . . , tr) to the
product t1t2 . . . tr.

We next define W̃ to be the (infinite) simplicial complex with vertices G and edges joining g to
gsm for each m. More explicitly, write S = {s0, . . . , sl−1} and

W̃ = (G∐ (G× S × [0, 1]))/ ∼
(g, s, 0) ∼ g (g, s, 1) ∼ gs.

We take the element () ∈ G as the basepoint of W̃ .

We now define a “truncation map” k : W̃ −→ W̃ as follows. The map k : G −→ G of vertices sends
(t1, . . . , tr) to (t1, . . . , tr−1) (and 0 = () to itself). Clearly, if g and ℎ are joined by an edge then

the same is true of k(g) and k(ℎ), so k extends to give a simplicial map W̃ −→ W̃ . Moreover, it

is easy to see that k is homotopic to the identity, so we have a family of maps ℎt : W̃ −→ W̃ with
ℎ0 = 1 and ℎ1 = k. We may also assume that ℎt(0) = 0.

We now extend this and define ℎt(w) for all 0 ≤ t ≤ ∞ by the formula ℎt(w) = ℎs(k
m(w)),

where t = m + s with m ∈ ℕ and 0 ≤ s ≤ 1, and ℎ∞(w) = 0. One can check that this gives a

continuous map ℎ : [0,∞]×W̃ −→ W̃ , where [0,∞] is topologised as the one-point compactification
of [0,∞). Using a homeomorphism [0, 1] ≃ [0,∞] (sending t to t/(1 − t), say), we conclude that

ℎ0 = 1 is homotopic to ℎ∞ = 0, so that W̃ is contractible as claimed, and thus �kW̃ = 0 for all k.

We now define a map p : W̃ −→ W . To do this, think of W̃ as (G ∐ G × S × [0, 1])/ ∼ and W
as (0 ∐ S × [0, 1])/ ∼, where in the latter case (s, 0) ∼ (s, 1) ∼ 0 for all s ∈ S. In this picture, p
sends G to 0 and G×S× [0, 1] to S× [0, 1] by the projection. One can check that this is a bundle

projection, and in fact it displays W as W̃/G, where G acts on the left on W̃ in an obvious way.

It follows from the long exact sequence of the fibration G −→ W̃ −→W that �1W = G. (As yet, we
have only proved that this is a bijection, not an isomorphism of groups, but that is also true). It
also follows that �kW = 0 for k > 1.
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3. The configuration spaces Fkℂ and Bkℂ

Define

Fkℂ = { injective maps z : {0, . . . , k − 1} −→ ℂ}

= {(z0, . . . , zk−1) ∈ ℂk ∣ zi ∕= zj for i ∕= j}

We take the usual inclusion {0, . . . , k − 1} −→ ℂ as the basepoint in Fkℂ.
Let Σk be the group of permutations of the set {0, . . . , k − 1}. This acts on Fkℂ on the right

by composition (i.e. � ∈ Σk sends z ∈ Fkℂ to z ∘ �). We define

Bkℂ = Fkℂ/Σk = { subsets of ℂ of order k}.

Clearly Fkℂ is a noncompact open submanifold of ℂk and thus has real dimension 2k. The
finite group Σk acts freely (i.e. z ∘ � = z implies � = 1), which implies that the orbit space Bkℂ
is also a manifold, and that the projection Fkℂ −→ Bkℂ is a covering map.

Another nice description of Bkℂ is as follows. Let M be the set of monic polynomials of degree k
over ℂ in one variable t. This can be identified with ℂk in an obvious way. Define a map Fkℂ −→M
by sending (z0, . . . , zk−1) to the polynomial

∏
i(t− zi). This is clearly independent of the order of

the zi’s, so it induces a map j : Bkℂ −→M . One can check that this is a homeomorphism of Bkℂ
with an open subset of M .

Now write ℂl = ℂ ∖ {0, . . . , l − 1} (with l as the basepoint). It is not hard to see that ℂl is
homotopy equivalent to a wedge of l circles, so that �kℂl = 0 for k ∕= 1 and �1ℂl is a free group
on l generators.

3.1. Fibrations. We next consider the map q : Fk+1ℂ −→ Fkℂ defined by

q(z0, . . . , zk) = (z0, . . . , zk−1).

We claim that this is a fibre bundle projection with fibre ℂk, in other words that we can cover
Fkℂ with open sets U and find homeomorphisms f : q−1U ≃ U×ℂk such that �f = q : q−1U −→ U
(such an f is called a local trivialisation). First, note that this is at least plausible; the preimage of
a point z ∈ Fkℂ under q is just the set of pairs (z, w) with w ∈ ℂ ∖ {z0, . . . , zk−1}, which certainly
looks rather like ℂk.

To make this precise, we first let U be the set of k-tuples (z0, . . . , zk−1) such that zj = xj + iyj
and x0 < x1 < . . . < xk−1 (so U ⊂ Fkℂ). Given a point z ∈ U , define a homeomorphism
�z : ℂ −→ ℂ as follows. The map �z will send vertical lines to vertical lines, it will send the point
zj to j, and it will send the vertical band xj ≤ x ≤ xj+1 to the band j ≤ x ≤ j + 1. Explicitly, for
x ≤ x0 we define �z(x+ iy) = x+ iy−z0, for x ≥ xk−1 we define �z(x+ iy) = x+ iy−zk−1 +k−1,
and for xj ≤ x ≤ xj+1 we define t = (x− xj)/(xj+1 − xj) and

�z(x+ iy) = j + t+ i(y − (1− t)yj − tyj+1).

Next, observe that q−1U is the set of pairs (z, w) where z ∈ U and w ∈ ℂ∖{z0, . . . , zk−1}. Define
f : q−1U −→ U × ℂk by (z, w) 7→ (z, �z(w)). This is a bijection, with inverse (z, v) 7→ (z, �−1

z (v)).
With a bit more work, one can check that it is a homeomorphism, as required.

So far, we have only trivialised q over the open set U ; we need to do the same over a covering
family of open sets. For each permutation � of {0, . . . , k − 1} and each complex number � with
∣�∣ = 1, write U(�, �) = {z ∈ Fkℂ ∣ �z ∘ � ∈ U}. Define g : q−1U(�, �) −→ U(�, �)× ℂk by

g(z, w) = (z, ��z∘�(�w)).

One can check that this gives a trivialisation over U(�, �), so we need only check that these sets
cover Fkℂ. For any z ∈ Fkℂ, choose any angle � that does not occur as arg(zi−zj) for any i, j < k,
and set � = ie−i�. The real parts of the numbers �z0, . . . , �zk−1 are then all distinct, so there is a
unique permutation � such that ℜ(�z�(0)) < . . . < ℜ(�z�(k−1)). We thus have z ∈ U(�, �), so the
sets U(�, �) cover Fkℂ as claimed.

This implies that the projection q : Fk+1ℂ −→ Fkℂ is a fibration with fibre ℂk. The resulting
long exact sequence shows (by induction on k) that �mFkℂ = 0 for m > 1.
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3.2. Cohomology. Recall that

[X,S1] = [X,ℂ×] = H1X.

Thus, for each i ∕= j we have a class aij ∈ H1Fkℂ corresponding to the map z 7→ zi− zj . Because
the map −1: ℂ× −→ ℂ× is homotopic to the identity, we see that aij = aji.

To find some relations among these classes, consider a triple i < j < k. This gives a map
Fkℂ −→ F3ℂ by z 7→ (zi, zj , zk). Clearly aij , ajk and aki are in the image of this map in cohomology.
There is a homeomorphism

F3ℂ = ℂ× ℂ× × ℂ ∖ {0, 1}
given by

(u, v, w) 7→ (u, v − u, (w − u)/(v − u)).

It follows that F3ℂ ≃ S1 × (S1 ∨ S1). Using this, one can check that

aijajk + akiaij + ajkaki = 0.

In fact, we have

H∗Fnℂ = E[aij ∣ 0 ≤ i < j < n]/(aijajk + akiaij + ajkaki ∣ i < j < k)

and this has a basis consisting of the monomials ai1j1 . . . airjr such that i1 < i2 < . . . ir and ik < jk
for all k. This is proved by making a similar statement for H∗Fkℂl and verifying it inductively
using the Serre spectral sequences of the evident fibrations

Fk−1,l+1 −→ Fk,l −→ Fk−1,l.

3.3. The action of the symmetric group. The first stage in computing H∗Bnℂ is to under-
stand the action of Σn on H∗Fnℂ. The character of this representation of Σn is the map

� : � 7→
∑
k

trace(�∗ : HkFnℂ −→ HkFnℂ).

Let � : Fnℂ −→ Fnℂ be the complex conjugation map. This has �∗aij = −aij and thus �∗ = (−1)k

on HkFnℂ. It follows from the Lefschetz fixed point theorem that

�(�) =
∑
k

(−1)k trace(�∗�∗ : HkFnℂ −→ HkFnℂ) = �( fixed point set of ��).

To understand the right hand side, suppose that �� has a fixed point, say z ∘ � = z for some
z ∈ Fnℂ. We then have z∘�2 = z and thus �2 = 1, so that � is a product of disjoint transpositions,
say k of them. It is not hard to check that the fixed-point set of �� is homeomorphic to a disjoint
union of 2k copies of Fk(U)×Fn−2kℝ, where U is the upper half plane, which is homeomorphic to
ℂ. Using our earlier calculation of H∗Fkℂ we conclude that when k > 1, we have �(Fk(U)) = 0
and thus �(�) = 0. From this we conclude that

�(�) =

⎧⎨⎩
n! if � = 1

2(n− 2)! if � is a transposition

0 otherwise.

From this it is easy to check that � = 2 indΣn

Σ2
(1). It follows that there is an isomorphism of

ungraded ℚ[Σn]-modules

H∗(Fnℂ;ℚ) = ℚ[Σn]⊗ℚ[Σ2] (ℚ⊕ℚ).

More delicate analysis shows that Mn = Hn−1Fnℂ is a module over ℤ[Σn] that is free of rank
one as a module over the subring ℤ[Σn−1]. We can also describe the rest of H∗Fnℂ as a direct
sum of modules of the form ℤ[Σn]⊗ℤ[G] (M�1

⊗ . . .⊗M�r
).

Using this and the covering spectral sequence

H∗(Σn;H∗Fnℂ) =⇒ H∗Bnℂ
one can show that H∗(Bn;ℚ) = E[a] and H∗(Bp;Fp) = E[a], where a ∈ H1(Bnℂ;ℤ) maps
to
∑
i<j aij in H1(Fn;ℤ). The groups H∗(Bn;Fp) are in principle known for all n, but are

complicated.
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3.4. References. Most of the material here is originally due to Fred Cohen [11]. His later survey
article [10] does many things more cleanly, and also gives further references. I first learnt the above
calculation of the character of H∗Fkℂ as a Σk-module from Erich Ossa, although apparently a
similar approach had been independently discovered by Atiyah and Jones some time previously. I
have also written but not published an exposition with more details.
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4. Projective spaces

Let V be a complex vector space of finite dimension n, equipped with a Hermitian inner product.
The group ℂ× acts by multiplication on V ∖{0}, and the subgroup S1 = {z ∈ ℂ ∣ ∣z∣ = 1} preserves
the sphere S(V ) = {v ∈ V ∣ ∥v∥ = 1}. The associated projective space ℙV is defined as

ℙV = (V ∖ {0})/ℂ× = S(V )/S1.

This is a compact complex manifold of complex dimension n− 1. Clearly, the points of ℙV biject
with one-dimensional subspaces of V via [v] 7→ ℂv. We can also identify PV with the space

P ′V := {� ∈ Endℂ(V ) ∣ �2 = � = �† , trace(�) = 1} :

an endomorphism � ∈ P ′V corresponds to a line L = ℂv ∈ PV if L = �(V ) or equivalently
�(x) = ⟨x, v⟩v/⟨v, v⟩ for all x. We write ℂPn−1 for ℙ(ℂn).

There is a “tautological” line bundle L −→ ℙV with total space

E(L) = {(u, [v]) ∈ V × ℙV ∣ u ∈ ℂv}.
If dim(V ) ≤ dim(W ), then the space of linear embeddings V −→ W is connected, so we get a

canonical homotopy class of maps ℙV −→ ℙW .
If V is an infinite-dimensional vector space (topologised as the colimit of its finite-dimensional

subspaces) then we also define ℙV = (V ∖0)/ℂ×, and topologise it as the colimit of the ℙW ’s, where
W runs over finite-dimensional subspaces. In particular, we will consider the infinite-dimensional
projective space ℂP∞ = lim

−→n
ℂPn. However, in the rest of this section we shall assume that V

has finite dimension unless we explicitly state otherwise.

4.1. (Generalised) Cohomology. For any linear embedding j : ℂ2 −→ V , we get an embedding

ℙj : S2 = ℂP 1 −→ ℙV . There is a unique element x ∈ H̃2PV such that ℙj∗x is the usual generator

of H̃2S2 = ℤ, for every such j. Moreover,

H∗ℙV = ℤ[x]/xn+1.

Dually, we have
H∗ℙV = ℤ{�k ∣ 0 ≤ k < n}

with ⟨�k, xl⟩ = �k,l.
In the limit, we get

H∗ℂP∞ = ℤ[[x]]

H∗ℂP∞ = ℤ{�k ∣ k ≥ 0}.
If we use coefficients Fp (with p > 2) then the action of the Steenrod algebra is

P kxl =

(
l
k

)
xl+(p−1)k �xl = 0.

We can also describe the complex K-theory of PV (compare [4]). We have an element y =

[L− 1] ∈ K̃0ℙV , in terms of which we have

K0ℙV = ℤ[y]/yn

K∗ℙV = K∗[y]/yn = ℤ[�±1, y]/yn � ∈ K−2.

The action of the Adams operations is  k[L] = [Lk] and thus  k(y) = (1 + y)k − 1.
Let E be a multiplicative generalised cohomology theory. A strict complex orientation of E is

a class x ∈ Ẽ2ℂP∞ such that the image of x in Ẽ2ℂP 1 = Ẽ2S2 is the usual generator. We say
that E is complex-orientable if it admits such an orientation; one can show that this is the case if
E∗ is torsion-free or concentrated in even degrees. We say that E is complex-oriented if we have
chosen an orientation. In particular, H and K (with x = y/�) are complex-oriented. See [2, 36]
for more information about such cohomology theories.

If E is complex-oriented, then we have

E∗ℙV = E∗[x]/xn

E∗ℂP∞ = E∗[[x]]
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E∗ℙV = E∗{�k ∣ 0 ≤ k < n}
just as with ordinary homology.

4.2. Differential geometry. Let W be a one-dimensional subspace of V , corresponding to a
point of ℙV . Let UW be the set of lines that are not orthogonal to W , which is an open neigh-
bourhood of W in ℙV . There is a homeomorphism

�W : Hom(W,W⊥) ≃ UW
defined by

�W (�) = graph(�) ≤W ⊕W⊥ = V.

The maps �W are charts for a holomorphic atlas on ℙV , making it a complex manifold.
This construction also shows that the tangent bundle of ℙV is given by

TWℙV = Hom(W,W⊥) = Hom(W,V −W ) = V ⊗W ∗ − ℂ

(using the fact that End(W ) is canonically isomorphic to ℂ). As V is a trivial bundle of rank n,
this gives

TℙV = nL−1 − 1 ∈ K0ℙV.
Note also that this isomorphism gives a natural Riemannian metric on the tangent bundle.

There is a natural embedding of ℙV in a Euclidean space by the map

� : ℙV = S(V )/S1 −→ End(V )

�([v])(w) = ⟨w, v⟩v.
This gives a homeomorphism of ℙV with the set

{� ∈ End(V ) ∣ �2 = � = �∗ and trace(�) = 1}.

4.3. Bundles, fibrations and Thom spaces. The fibration S1 −→ S(V ) −→ ℙV can be easily
identified with the evident fibration S1 −→ S(L) −→ ℙV , where S(L) is the circle bundle associated
to the line bundle L.

More generally, let Lk denote the k’th tensor power of L. There is thus a fibration

S1 −→ S(Lk) −→ ℙV.

This can be identified as follows. Let Ck be the cyclic subgroup of S1 generated by exp(2�i/k).
Let S1 act on S(V )/Ck by z.[v] = [z1/kv]. We then have a fibration

S1 −→ S(V )/Ck −→ S(V )/S1 = ℙV,

which is isomorphic to the fibration above.
Next, we claim that the Thom space ℙV L is homeomorphic to ℙ(ℂ ⊕ V ). Indeed, the Thom

space is obtained from the disc bundle

D(L) = {(u, [v]) ∈ V × ℙV ∣ u ∈ ℂv and ∥u∥ ≤ 1}

by collapsing out S(L). We define a map

D(L)/S(L) −→ ℙ(ℂ⊕ V )

by

(u, [v]) 7→ [⟨v, u⟩,
√

1− ∥u∥2v].

It is easy to check that this is a homeomorphism.
A more general result can be obtained in a slightly different way; we claim that

ℙV L
−1⊗U = ℙ(U ⊕ V )/ℙU

or equivalently (using the conjugate-linear isomorphism L ≃ L−1 given by the metric, and taking
V = ℂn+1 and U = ℂm)

(ℂPn)mL = ℂPn+m/ℂPm−1.

This space is often called a stunted projective space and written ℂPnm.
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4.4. Cell structure. The main result is that ℂPn has a cell structure

ℂPn = S2 ∪ e4 ∪ . . . ∪ e2n.

Indeed, we have seen above that ℙ(ℂ ⊕ V ) is the cofibre of a map S2n+1 = S(V ) −→ ℙV , so that
ℂPn+1 = ℂPn ∪ e2n+2 as required. Note that this also gives a cell structure

ℂPnm = S2m ∪ e2m+2 ∪ . . . ∪ e2m+2n.

(However, ℂPn+k
m+k is not usually homotopy equivalent to Σ2kℂPnm, as one sees by examining the

action of the Steenrod algebra on the mod p cohomology.)
The cell structure on ℂPn can also be obtained by Morse theory (compare [32, Section I.4]).

Define a map

f : ℂPn −→ ℝ f [z] = (

n∑
k=0

kz2
k)/∥z∥2.

One can show that this is a Morse function on ℂPn, in other words that all of its critical points
are non-degenerate. The critical points are precisely the basis vectors [ek] (for k = 0, . . . , n). The
map �(u) = [ek + u] is a diffeomorphism of e⊥k with a neighbourhood of [ek], and

f�(u) = f [ek] +
∑
i ∕=k

(i− k)∥ui∥2

to second order in u. This shows that the (real) Hessian of f at [ek] has 2k negative eigenvalues
(and none of the eigenvalues are zero, which is what nondegeneracy means). Thus, [ek] has index
2k. Morse theory tells us that ℂPn has a cell structure with one cell of dimension d for each
critical point of index d, just as before.

4.5. Product structure. We can regard ℂn+1 as the space of polynomials of degree at most n,
via the bijection (z0, . . . , zn) 7→

∑
i zit

i. With this identification, multiplication of polynomials
gives a bilinear map ℂn+1×ℂm+1 −→ ℂn+m+1, which in turn induces a map ℂPn×ℂPm −→ ℂPn+m

(using the fact that a product of nonzero polynomials is nonzero).
In particular (using commutativity of ℂ[t]) we get a map

(ℂP 1)m/Σm −→ ℂPm.
The fundamental theorem of algebra implies that this is a bijection (and hence a homeomorphism,
as the source is compact and the target Hausdorff).

We also get a map � : ℂP∞ × ℂP∞ −→ ℂP∞, which makes ℂP∞ into an Abelian topological
monoid. Up to homotopy, this also has inverses, given by the map � : ℂP∞ −→ ℂP∞ sending
[
∑
i zit

i] to [
∑
i zit

i].

4.6. Homotopy groups. Using the fibration S1 −→ S(V ) −→ ℙV and the fact that �∗S
1 = ℤ

concentrated in degree 1, we see that

�kℂPn =

{
ℤ if k = 2

�kS
2n+1 if k ∕= 2

In particular, we have �kℂPn = 0 for k = 1 or 2 < k < 2n+1 and �2n+1ℂPn = ℤ. In the limiting
case we get

�kℂP∞ =

{
ℤ if k = 2

0 otherwise

4.7. References. The material in this section is all well-known, and can mostly be found in [44]
or [21] (for example).
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5. Grassmannians and flag varieties

We again let V be a complex vector space of finite dimension n. We let GkV denote the set
of subspaces W ≤ V such that dim(W ) = k (so PV = G1V ). If we let J (ℂk, V ) denote the
space of inner-product preserving linear maps j : ℂk −→ V , then the construction j 7→ j(ℂk) gives
a bijection J (ℂk, V )/U(k) −→ GkV , and we topologise GkV so as to make this a homeomorphism.
We can also identify PV with the space

G′k(V ) := {� ∈ Endℂ(V ) ∣ �2 = � = �† , trace(�) = k} :

an endomorphism � ∈ G′kV corresponds to a subspace W = j(ℂk) ∈ GkV if W = �(V ) or
equivalently � = j†j.

There is a “tautological” bundle T −→ GkV with total space

E(T ) = {(u,W ) ∈ V ×Gk(V ) ∣ u ∈W}.

If dim(V ) ≤ dim(W ), then the space of linear embeddings V −→ W is connected, so we get a
canonical homotopy class of maps GkV −→ GkW .

If V is an infinite-dimensional vector space (topologised as the colimit of its finite-dimensional
subspaces) then we also define

GkV = {W < V ∣ dim(W ) = k} =
∪

U<V , dim(U)<∞

GkU

In particular, we consider the spaces

BU(k) = Gk(ℂ∞) = J (ℂk,ℂ∞)/U(k).

One checks that the space J (ℂk,ℂ∞) is contractible and that U(k) acts freely on it, so BU(k) is
indeed a classifying space for principle U(k)-bundles, as indicated by the notation.

5.1. Schubert cells. Given 0 ≤ k ≤ n, we let D(n) denote the set of sequences

0 = i0 ≤ . . . ≤ in = k.

We define d : Gkℂn −→ D(n) by unfinished.
Given V ∈ Gkℂn, we define

5.2. Infinite Grassmannians.

5.3. Fock spaces. Let U be a complex universe. Given subuniverses L,L′ ≤ U we write L ∼ L′

iff L/(L∩L′) and L′/(L∩L′) are both finite-dimensional. This is easily seen to be an equivalence
relation. We say that L is standard if both L and L⊥ are infinite-dimensional, and U = L⊕ L⊥.
If L is standard and L′ ∼ L then L′ is also standard. A polarisation of U is an equivalence class
of standard subuniverses. Let G be a polarisation.

Note that if L,L′ ∈ G then L+ L′ and L ∩ L′ also lie in G.

Definition 5.1. Given M,N ∈ G with M ≤ N , we put

G(M,N) = {L ∈ G ∣M ≤ L ≤ N}.

This is naturally identified with the Grassmannian of subspaces of N/M . The set G can thus be
regarded as a filtered colimit of projective varieties.

Definition 5.2. Given L,L′ ∈ G we define dim(L,L′) = dim(L′/N)− dim(L/N), for any N ∈ G
with N ≤ L ∩ L′. This is easily seen to be independent of N , and to satisfy dim(L,L) = 0 and

dim(L,L′) + dim(L′, L′′) = dim(L,L′′).

Definition 5.3. Given a vector space V , we write �kV for the k’th exterior power. We also write
�WV = �dim(W )V , for any finite-dimensional vector space W . Finally, we write det(V ) = �V V .
We note that when W ≤ V there is an isomorphism det(V ) = det(W ) ⊗ det(V/W ), which is
natural in the pair (V,W ).
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Definition 5.4. Given L,L′ ∈ G we define

det(L,L′) = det(L/(L ∩ L′))∗ ⊗ det(L′/(L ∩ L′)) = Hom(det(L/(L ∩ L′)),det(L′/(L ∩ L′)))
(which is a one-dimensional complex vector space).

Proposition 5.1. The set G can be made into a category, with det(L,L′) as the morphisms from
L to L′. Moreover, the composition map

det(L′, L′′)⊗ det(L,L′) −→ det(L,L′′)

is an isomorphism.

Proof. First, for any N ≤ L ∩ L′ we put

det(L,L′;N) = Hom(det(L/N),det(L′/N)).

IfM ≤ N then we have canonical isomorphisms det(L/M) = det(L/N)⊗det(M/N) and det(L′/M) =
det(L′/N)⊗ det(M/N). As det(M/N) is invertible, these induce an isomorphism det(L,L′;N) ≃
det(L,L′;M). These isomorphisms compose in the obvious way. Thus, we can replace det(L,L′)
by det(L,L′;N) for any convenient N . Now take N ≤ L∩L′ ∩L′′, and put Q = L/N , Q′ = L′/N
and Q′′ = L′′/N . We have

det(L′, L′′)⊗ det(L,L′) = det(Q′′)⊗ det(Q′)∗ ⊗ det(Q′)⊗ det(Q)∗

= det(Q′′)⊗ det(Q)∗

= det(L,L′′).

This identification is easily seen to be independent of N , and to be associative. □

Definition 5.5. For any L ∈ G, we define the Fock space F∗(L) = F∗(U,L) as follows. For any
N,M with N ≤ L ≤M , we put

Fd(L;N,M) = det(L/N)∗ ⊗ �d+L/N (M/N) = Hom(det(L/N), �d+L/N (M/N)).

Now suppose we have N ′ ≤ N ≤ L ≤ M ≤ M ′. On the one hand, we have det(L/N ′) =
det(L/N)⊗ det(N/N ′). On the other hand, the ring structure of �∗(M ′/N ′) gives a map

� : det(N/N ′)⊗ �d+L/N

(
M

N ′

)
= �N/N

′
(
N

N ′

)
⊗ �d+L/N

(
M

N ′

)
−→ �d+L/N ′

(
M ′

N ′

)
.

Let I be the ideal in �∗(M/N ′) generated by N/N ′ ≤ �1(M/N ′). Then det(N/N ′)I = 0 and
�∗(M/N ′)/I = �∗(M/N). Our map � thus induces a map

� : det(N/N ′)⊗ �d+L/N

(
M

N

)
−→ �L/N

′
(
M ′

N ′

)
,

and thus a map

Fd(L;N,M) = Hom(det(L/N), �L/N (M/N))

≃ Hom(det(N/N ′)⊗ det(L/N),det(N/N ′)⊗ �L/N (M/N))

≃ Hom(det(L/N ′),det(N/N ′)⊗ �L/N (M/N))

�∗−→ Hom(det(L/N ′), �L/N
′
(M ′/N ′))

= F (L;N ′,M ′).

It is easy to see that these maps are injective, and that they compose together in the obvious way.
We can thus define

F∗(L) = lim
−→
N,M

F∗(L;N,M).

Proposition 5.2. There are natural isomorphisms

F∗(L
′) = det(L′, L)⊗ Σdim(L′,L)F∗(L)

for all L′, L ∈ G.
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Proof. Put m = dim(L′, L). It will suffice to give compatible isomorphisms Fd(L
′;N,M) ≃

det(L′, L)⊗ Fd−e(L;N,M) for all N,M with N ≤ L ∩ L′ and M ≥ L + L′. Put n = dim(L/N),
so dim(L′/N) = n− e. We then have det(L′, L) = det(L′/N)∗ ⊗ det(L/N), so

Fd(L
′;N,M) = det(L′/N)∗ ⊗ �d+n−e(M/N)

= det(L,L′)⊗ det(L/N)∗ ⊗ �d+n−e(M/N)

= det(L,L′)⊗ Fd−e(L;N,M)

as required. □

Definition 5.6. Given L ∈ G, we put G0(L) = {L′ ∈ G ∣ dim(L,L′) = 0}. Given N,M with
N ≤ L ≤M we put

G0(L;N,M) = G0(L) ∩G(N,M) = {L′ ∣ N ≤ L′ ≤M and dim(L,L′) = 0}.

We also let D(L) denote the line bundle over G0(L) with fibre det(L′, L) at L′

Proposition 5.3. There is a natural isomorphism

Γ(G0(L;N,M);D(L)) = F0(L;N,M)∗

(where Γ(−,−) denotes the space of algebraic sections).

Proof. Put d = dim(L/N), so dim(L′/N) = d for L′ ∈ G0(L). Let T be the bundle over G(N,M)
with fibre L′/N at L′. The restriction of D(L) to G0(L;N,M) is det(L/N)⊗ det(T )∗, so

Γ(G0(L;N,M);D(L)) = det(L/N)⊗ Γ(G0(L;N,M); det(T )∗).

On the other hand, we have

F0(L;N,M)∗ = det(L/N)⊗ �d(T )∗.

The claim now follows from Lemma 5.4 below. □

Lemma 5.4. Let V be a finite-dimensional complex vector space, and let T be the tautological
bundle over Grassk(V ) (the Grassmannian variety of subspaces of V ). Then Γ(Grass(V ); det(T )∗) =
�k(V )∗.

Proof. Suppose we have an element � ∈ �k(V )∗. For W ∈ Grassk(V ) we let �(�)W denote the
restriction of � to det(W ) = �kW ≤ �kV , so �(�)W is an element of det(W )∗, which is the fbre
of the bundle det(T )∗ at the point W . Thus, we can regard �(�) as a section of �k(T )∗, which is
easily seen to be algebraic. Thus, we have a map

� : �k(V )∗ −→ Γ(Grassk(V );�k(T )∗).

If k = dim(V ) then Grassk(V ) = {V } and � is obviously bijective. We therefore suppose that
k < dim(V ).

Now suppose we have s ∈ Γ(Grassk(V );�k(T ))∗. Let X be the set of linearly independent lists
v = (v1, . . . , vk) in V k. Given v ∈ X, we define

W = span(v) ∈ Grassk(V )

�(s)(v) = sW (v1 ∧ . . . ∧ vk).

One checks that V k ∖ X has codimension n − k + 1 ≥ 2 in V k. As �(s) is a rational function
that is regular away from a closed subvariety of codimension at least two, it extends uniquely as
a globally defined polynomial function. We also see from the definition that

�(s)(�1v1, . . . , �kvk) =

(∏
i

�i

)
�(s)(v1, . . . , vk)

�(s)(v�(1), . . . , v�(k)) = sgn(�)�(s)(v1, . . . , vk),

showing that �(s) is alternating and multilinear. It can thus be regarded as an element of (�kV )∗.
It is easy to see that the maps � and � are mutually inverse isomorphisms. □
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5.4. Flag varieties. For I ⊆ {0, . . . , n}, put

FlagI(V ) = {W ∈
∏
i∈I

GiV ∣Wi < Wj whenever i < j}.

If I = J ∐ {i} for some i, then FlagI(V ) is the projective space associated to a certain vector
bundle over FlagJ(V ).

Note also that the space Flag(V ) = Flag{0,...,n}(V ) is a fibre bundle over Gk(V ), with fibre

Flag(ℂk)× Flag(ℂn−k).

5.5. Presentations as homogeneous spaces. The group U(n) acts freely and transitively on
the space J (ℂn, V ). Given a set

I = {i1 < ⋅ ⋅ ⋅ < ir} ⊆ {0, . . . , n},
we put

UI(n) = {� ∈ U(n) ∣ �(ℂit) = ℂit for t = 1, . . . , n},
which is the stabiliser of the point

(ℂi1 < . . . < ℂit) ∈ FlagI(V ),

and is isomorphic to

U(i1)× U(i2 − i1)× ⋅ ⋅ ⋅ × U(ir − ir−1)× U(n− ir).
We find that there is a canonical homeomorphism

FlagI(V ) = J (ℂn, V )/UI(n).

If V = ℂn we have J (ℂn, V ) = U(n) and so FlagI(ℂn) = U(n)/UI(n). In particular, we have

GkV = Flag{k}(V ) = U(n)/(U(k)× U(n− k))

PV = G1V = U(n)/(U(1)× U(n− 1)).

5.6. (Generalised) Cohomology. Let E be an even periodic cohomology theory

5.7. Bott periodicity.

5.8. References. The material in this section is all well-known, and can mostly be found in [44]
or [21] (for example).
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6. Milnor hypersurfaces

The Milnor hypersurface Hmn (where m ≤ n) is the complex variety

Hmn = {([z], [w]) ∈ ℂPm × ℂPn ∣
m∑
i=0

ziwi = 0}.

There are two evident line bundles over ℂPm × ℂPn:

L([z],[w]) = ℂv
M([z],[w]) = ℂw.

We write x = e(L) and y = e(M) for the Euler classes.

Theorem 6.1. We have

H∗Hmn = ℤ[x, y]/(xm+1, yn − yn−1x+ . . .+ (−x)n).

We now outline a proof of this. It is easy to see that xm+1 = 0. Consider the bundle L0 over
ℂPm × ℂPn with fibres

L0
([z],[w]) = {u ∈ ℂn+1 ∣

m∑
i=0

ziui = 0}.

Over Hmn, the identity map gives an inclusion M −→ L0 and thus a nowhere-vanishing section of
Hom(M,L0) = Hom(M,n+1−L∗) = (n+1)M∗−M∗⊗L∗, or dually a nowhere-vanishing section
of (n+1)M−M⊗L. It follows that the Euler class e((n+1)M−M⊗L) maps to zero in H∗Hmn.
To compute this Euler class, we work with the evident analogous bundles over ℂPm×ℂP∞. Here

yn+1 = e((n+ 1)M) = e((n+ 1)M −M ⊗ L)(x+ y).

As x+ y is not a zero-divisor in H∗(ℂPm × ℂP∞) and

(x+ y)(yn − yn−1x+ . . .+ (−x)n) = yn+1 − xn+1 = yn+1,

we can conclude that e((n+ 1)M −M ⊗ L) = yn − yn−1x+ . . .+ (−x)n. We thus get a map

A∗ = ℤ[x, y]/(xm+1, yn − yn−1x+ . . .+ (−x)n) −→ B∗ = H∗Hmn,

and the claim is that this is an isomorphism. To see this, consider the Serre spectral sequence for
the evident fibration ℂPn−1 −→ Hmn −→ ℂPm. This has the form

H∗(ℂPm;H∗ℂPn−1) = ℤ[x, z]/(xm+1, zn) =⇒ H∗Hmn.

The E2 term is concentrated in even bidegrees, so all differentials must be zero, and E∞ = E2.
Thus, the associated graded ring of B∗ under the Serre filtration is ℤ[x, z]/(xm+1, zn).

We can now filter A∗ by

F sA∗ = (ℤ[x]/xm+1){1, y, . . . , y⌊s/2⌋}.
We find that the associated graded ring is just ℤ[x, y]/(xm+1, yn). The Serre filtration on HkE
always stops with F kHkE, so trivially y ∈ H2Hmn has Serre filtration at most two. We thus get
a filtration-preserving map f : A∗ −→ B∗ and a resulting map of associated graded rings. It is easy
to see that this sends y to z, and thus that it is an isomorphism. From this we can conclude that
f : A∗ −→ B∗ is an isomorphism, as required.
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7. Unitary groups

Let V be a complex vector space of finite dimension n, equipped with a Hermitian inner product.
We define

U(V ) = { unitary automorphisms of V } = {� ∈ End(V ) ∣ ��† = 1}

u(V ) = { antihermitian endomorphisms of V } = {� ∈ End(V ) ∣ � + �† = 0}.

It is not hard to see that U(V ) is a subgroup and a closed submanifold of Aut(V ), and thus a
Lie group.

7.1. Differential geometry. The map � 7→ � exp(�) ≃ � + �� gives a diffeomorphism of a
neighbourhood of 0 in u(V ) with a neighbourhood of � in U(V ), and thus an isomorphism
T�U(V ) ≃ u(V ). This shows that the tangent bundle of U(V ) is trivial (which is in fact true
for any Lie group). Note also that

dimU(V ) = dim u(V ) = n2.

We also write

SU(V ) = {� ∈ U(V ) ∣ det(�) = 1}
su(V ) = {� ∈ u(V ) ∣ trace(�) = 0}

We again have T�SU(V ) = su(V ) and

dimSU(V ) = dim su(V ) = n2 − 1.

7.2. Complex reflection maps. Given a line L ∈ ℙV and z ∈ S1 < ℂ× we define

r(z, L) = z ⊕ 1 ∈ End(L⊕ L⊥) = End(V )

or equivalently
r(z, [v])(w) = w + (z − 1)⟨w, v⟩v

(when v ∈ S(V ) = {v ∈ V ∣ ∥v∥ = 1}). It is easy to see that r(z, L) ∈ U(V ) and that det(r(z, L)) =
z. Given a chosen basepoint L0 ∈ ℙV we define

r(z, L) = r(z, L)r(z, L0)−1 ∈ SU(V ).

These constructions give continuous maps

r : Σ(ℙV+) −→ U(V )

r : ΣℙV −→ SU(V )

Moreover, the map z 7→ r(z, L0) gives a splitting of the extension SU(V ) ↣ U(V )
det−−→ S1 and

thus a homeomorphism U(V ) = SU(V )× S1 (which does not respect the group structure).
There is a commutative diagram as follows.

ΣℂPn−1
+ ΣℂPn+ S2n+1

U(n) U(n+ 1) S2n+1

u
r

v w

u
r

ww

u
=

v w ww

ê0

Here ê0(�) = �(e0), where e0 is the first basis vector in ℂn+1. The top copy of S2n+1 should be
thought of as S1∧ (ℂn∪∞) and the bottom one as {u ∈ ℂn+1 ∣ ∥u∥ = 1}. The right hand vertical
map sends z ∧ w to e0 + (z − 1)(e0 + w)/(1 + ∥w∥2). Its inverse sends (x+ iy, u) to (c+ is) ∧ w,
where

w = u/((x− 1) + iy)

c = (1 + ∥w∥2)x− ∥w∥2

s = (1 + ∥w∥2)y.

The top line of the diagram is a cofibration, and the bottom one is a fibration.
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7.3. Cell structure. The top cell of ℂPn gives a map D2n+1 −→ ΣℂPn+
r−→ U(n + 1), which in

turn gives a homeomorphism D2n+1/∂D2n+1 ≃ S2n+1.
From this we get a map D2n+1×U(n) −→ U(n+ 1) sending S2n×U(n) to U(n). By induction,

we get a cell structure on U(n+ 1) with cells indexed by the evident basis for the exterior algebra
E[a1, a3, . . . , a2n+1].

7.4. (Generalised) cohomology. For any complex-oriented multiplicative homology theory A
(in particular, for A = H) we have

A∗U(V ) = E[Ã∗ΣℙV+] = E[a1, . . . , a2n−1]

A∗SU(V ) = E[Ã∗ΣℙV ] = E[a3, . . . , a2n−1]

A∗U(V ) = E[Ã∗ΣℙV+] = E[x1, . . . , x2n−1]

A∗SU(V ) = E[Ã∗ΣℙV ] = E[x3, . . . , x2n−1]

All these rings are actually Hopf algebras, because U(V ) and SU(V ) are groups. All the generators
are actually primitive, in other words the coproduct is  (ai) = ai ⊗ 1 + 1 ⊗ ai and similarly for

xi. Here Ã∗ΣℙV+ is embedded in A∗U(V ) by r∗, and Ã∗ΣℙV+ is embedded in A∗U(V ) by the

inverse of isomorphism PrimA∗U(V ) ↣ Ã∗U(V )
r∗−→ Ã∗ΣℙV+.

The Steenrod operations in mod p cohomology (with p > 2) are given by

P kx2l+1 =

(
l
k

)
x2(l+(p−1)k)+1

�x2l+1 = 0.

7.5. The infinite unitary group. Write U = lim
−→n

U(n). This has

A∗U = E[Ã∗ΣℂP∞+ ] = E[a2k+1 ∣ k ≥ 0]

A∗U = E[Ã∗ΣℂP∞+ ] = E[x2k+1 ∣ k ≥ 0]

�∗U = (0,ℤ, 0,ℤ, 0,ℤ, . . .)

This shows that �∗U = �∗+2U = �∗Ω
2U . In fact, we have a homotopy equivalence U ≃ Ω2U ; this

is called Bott periodicity.

7.6. The Miller splitting.

7.7. References. Most of the above can be found in [39, Chapter IV]. The homology ring is also
calculated in [44, Section VII.4]. For the theory of Lie groups in general, see [1].



A BESTIARY OF TOPOLOGICAL OBJECTS 17

8. Projective unitary groups

Lemma 8.1. PU(n) fits into diagrams as follows, in which each square is a homotopy-pullback:
The second diagram maps in an obvious way to the first.

Corollary 8.2. PU(n) is the homotopy fibre of the map ℂP∞ −→ BU(n) classifying nL∗, or
equivalently the frame bundle Vn(nL∗).

This means we can approach E∗PU(n) using the tower

PU(n) = Vn(nL∗) −→ Vn−1(nL∗) −→ ⋅ ⋅ ⋅ −→ V1(nL∗) = ℂPn−1 −→ V0(nL∗) = ℂP∞.
One can also check that Vk(nL∗) = PVk(ℂn) = Vk(ℂn)/S1. This has an evident action of PU(k),
with orbit space Gk(ℂn).

The pullback of nL∗ to Vk(nL∗) has a k-dimensional trivial summand, and we write Wk for its
orthogonal complement; then Vk+1(nL∗) is the sphere bundle in Wk.

If we have a complex orientation x ∈ E2ℂP∞ then the Chern polynomial of nL∗ is (t − x)n.
In E∗Vk(nL∗) this becomes divisible by tk, and the Chern polynomial of Wk is (t− x)n/tk, so the

Euler class is ±
(
n
k

)
xn−k. Now put

A(k) = A(E,n, k) = E∗Vk(nL∗).

We deduce that there are short exact sequences

A(k)/

(
n
k

)
xn−k −→ A(k + 1) −→ Σ2n−2k−1 ann(

(
n
k

)
xn−k, A(k)).

Note also that Cn acts on SU(n) by translation, and SU(n) is connected, so each element of Cn
acts by a map homotopic to the identity. It follows that the projection p : SU(n) −→ PU(n) and

the associated transfer p! : Σ∞PU(n)+
Σ∞−−→ SU(n)+ satisfy p!p = n.1SU(n) and pp! = n.1PU(n).

Thus, if n is invertible in E∗ then the map

p∗ : E∗PU(n) −→ E∗SU(n) = �∗E∗Ẽ
∗ΣℂPn−1

is an isomorphism.
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9. Lens spaces and BCp

Fix an integer n and an odd prime p. Write U = ℂn and P = ℙU = ℂPn−1. Regard Cp as

the subgroup {� ∣ �p = 1} of ℂ× generated by e2�i/p = !. The lens space B = Bn is the quotient
S(U)/Cp = S2n−1/Cp. The action of Cp on S2n−1 is free, so B is a manifold.

Let L be the tautological line bundle over P , with fibres L[v] = ℂv. We can also regard B as

the sphere bundle of L⊗p via the map B −→ S(L⊗p) sending [u] to ([u], u⊗p).

9.1. Cell structure. We now describe a cell structure on S(U) that is compatible with the action
of Cp and thus induces a cell structure on B. This comes from [39, Section V.5] or [44, Section
II.7]. Write

A = {z ∈ ℂ ∣ ∣z∣ ≤ 1 and 0 ≤ arg(z) ≤ 2�/p}

e2k = {(z0, . . . , zk, 0, . . . , 0) ∣ zk ∈ [0, 1]}

e2k+1 = {(z0, . . . , zk, 0, . . . , 0) ∣ zk ∈ A}

One can check that ei is a closed i-cell and that the cells �ei with � ∈ Cp and 0 ≤ i < 2n give a
CW structure on B. The differential in the cellular chain complex is

∂(e2k) =
∑
�∈Cp

�e2k−1

∂(e2k+1) = !e2k − e2k.

This gives a cell structure B = e0 ∪ . . . ∪ e2n−1 with ∂(e2k) = pe2k−1 and ∂(e2k+1) = 0. It follows
that

H∗(B;Fp) = Fp{e0, . . . , e2n−1}.

9.2. Generalised cohomology. As B = S(L⊗p), the cofibre of the evident projection B −→ P is

the Thom space PL
⊗p

. With this identification, the natural map from P to the cofibre becomes

the zero-section P −→ PL
⊗p

. For any generalised cohomology theory A, this cofibration gives us a
long exact sequence

Ã∗+1PL
⊗p

←− A∗+1P ←− A∗B ←− Ã∗PL
⊗p

.

If A∗ is a complex-oriented multiplicative theory then Ã∗PL
⊗p

is a free module over A∗P =

A∗[x]/xn generated by the Thom class u(L⊗p). Under the zero-section P −→ PL
⊗p

, this Thom
class pulls back to give the Euler class e(L⊗p) = [p](e(L)) = [p](x).

In particular, if A∗ = H∗(−;Fp) then [p](x) = 0. Putting this into our long exact se-
quence we find that the restriction maps H2k(P ;Fp) −→ H2k(B;Fp) and the coboundary maps
H2k+1(B;Fp) −→ H2k+2(P ;Fp) are isomorphisms. From this, we conclude that

H∗(B;Fp) = Fp[x]/xn ⊗ E[a],

where x ∈ H2(B;Fp) is the image of the usual generator of H2P , and a ∈ H1(B;Fp) is the unique
class with �(a) = x, or equivalently the unique class whose Bockstein is �(a) = x.

The Steenrod action is

P kxl =

(
l
k

)
xl+(p−1)k

�xl = 0

P ka = 0

�a = x.

It follows that the Milnor Bockstein operations Qk are given by

Qkx = 0

Qka = xp
k
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We can also be more explicit in the case of complex K-theory. Write y = L − 1 ∈ K0P ; it is
not hard to check that

K0B = ℤ[y]/(yn, (1 + y)p − 1)

K1B = ℤ

9.3. Homotopy groups. Using the evident fibration Cp −→ S2n−1 −→ B, we find that

�0B = 0

�1B = Cp

�kB = 0 for 1 < k < 2n− 1

�2n−1B = ℤ.

9.4. The infinite case. Write B∞ = lim
−→n

Bn = S∞/Cp. As S∞ is contractible, the long exact

sequence for the fibration Cp −→ S∞ −→ B∞ gives

�kB∞ =

{
Cp if k = 1

0 otherwise.

In other words, we see that B∞ is a model for the classifying space BCp. We have

H∗(BCp;Fp) = Fp[x]⊗ E[a]

H∗(BCp;ℤ) = ℤ[x]/px

K0BCp = ℤ[y]/((1 + y)p − 1) ≃ ℤ[Cp].

9.5. The intermediate case. It is also useful to consider the space B′n = Bn ∪ e2n, so that
Bn ⊂ B′n ⊂ Bn+1. This has cohomology

H∗(B′;Fp) = Fp{1, a, x, . . . , x2n} = Fp[x]⊗ E[a]/(x2n+1, ax2n).

9.6. Thom spectra. We next consider the Thom spectrum BmLn for m ∈ ℤ. When m ≥ 0 this
is a space, and it has a nice alternative description: there is a homeomorphism

BmLn = Bn+m/Bm = e2m ∪ . . . ∪ e2(n+m)−1.

To see this, observe that a point in the total space E(mL) over Bn has the form ([u], v1, . . . , vm),
with u ∈ S2n−1 and vi ∈ ℂu for each i. We define a map � : ℂn+m ∖ 0 −→ S2(n+m)−1 by �(w) =
w/∥w∥, and a map � : E(mL) −→ Bn+m ∖Bm by

�([u], v1, . . . , vm) = [�(u, ⟨u, v1⟩, . . . , ⟨u, vm⟩)].
One can check that � is a homeomorphism. By passing to the one-point compactifications, we
obtain a homeomorphism BmLn = Bn+m/Bm as claimed. This naturally identifies H∗(BmLn ;Fp)
with the subquotient Fp{xm, xma, . . . , xn+m−1, xn+m−1a} of H∗(BCp;Fp) = Fp[x]⊗ E[a].

In fact, for all m ∈ ℤ there is a similar identification of H∗(BmLn ;Fp) as a subquotient of
Fp[x, x−1]⊗E[a]. There is a unique action of the Steenrod algebra on Fp[x, x−1]⊗E[a] compatible
with this, given by

P kxl =

(
l + pm

k

)
xl+(p−1)k for m≫ 0.

The spectra BmLn also have an interesting periodicity property:

Proposition 9.1. B
(m+k)L
n ≃ Σ2kBmLn whenever pn−1 divides k.

Proof. It is enough to show that pn−1L is stably isomorphic to the trivial bundle pn−1ℂ over
Bn, or equivalently that pn−1y = 0 in K0Bn = ℤ[y]/(yn, (1 + y)p − 1). In this ring we have
py + p(p− 1)/2y2 + . . .+ yp = 0 so py ∈ (y2) so pn−1y ∈ (yn) = 0 as required. □

Note that we really only needed pn−1(L − 1) = 0 as stable spherical fibrations rather than as
vector bundles, or in other words that pn−1(L − 1) = 0 in Adams’ group J(Bn) rather than in
K(Bn). See [21] for more about the groups J(X).
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9.7. Lin’s theorem. One can assemble the spectra BmL∞ into a tower

B∞ ←− B−L∞ ←− B−2L
∞ ←− . . . .

By applying the functor H∗(−;Fp), we get a sequence of inclusions

R↣ R.x−1 ↣ R.x−2 ↣ R.x−3 ↣ . . . ,

where R = Fp[x]⊗ E[a] and thus every term is a subgroup of R̂ = Fp[x±1]⊗ E[a]. If we let B̂ be

the homotopy inverse limit of the tower, we might thus expect that H∗(B̂;Fp) = R̂. However, R̂
contains many elements that are in the image of the Steenrod operation P k for an unbounded set

of k’s, and this cannot happen in the cohomology of a spectrum, so we cannot have H∗(B̂;Fp) =

R̂. Instead, we have the celebrated theorem of Lin, which says that B̂ = (S−1)∧p , and thus

H∗(B̂;Fp) = Fp{ax−1}. For a modern proof in its proper context, see [30, Corollary XX.6.2].
(The notational conventions in force there are that G = (ℤ/p)r and that all spectra are implicitly
completed at p.)

9.8. Stable splitting. Another interesting phenomenon is the stable splitting of B∞ = BCp.
Note that B∞ is homotopy equivalent to (ℂ[t]∖0)/Cp, so we take this as our model. For any k ≥ 0
we define �k : B∞ −→ B∞ by �k[f ] = [fk]. If k = l (mod p) then the map �t[f ] = [tfk + (1− t)f l]
is well-defined, so �k ≃ �l. It is also clear that �k�l = �kl. Thus, the maps �k give an action of
Aut(Cp) = F×p on B∞.

One can check that the spectrum X = S0
p ∨ Σ∞B∞ is p-complete, so we get an action of the

p-adic group ring ℤp[F×p ] on X. For each k ∈ F×p there is a unique “Teichmüller representative”

k̂ = limi→∞ kp
i ∈ ℤ×p such that k̂ = k (mod p) and k̂p−1 = 1. The elements

ei =
1

p− 1

∑
k∈F×p

k̂−i[k] ∈ ℤp[F×p ]

are orthogonal idempotents with
∑p−2
i=0 ei = 1, so we have a stable splitting X =

⋁p−2
i=0 eiX.

Moreover, we have
H∗(eiX;Fp) = Fp{xja� ∣ j + � = i (mod p− 1)}.

In particular, we have
H∗(e0X;Fp) = Fp[xp−1]⊗ E[xp−2a],

and in fact there is a homotopy equivalence e0X = (Σ∞BΣp+)∧p .
It is a very common phenomenon for classifying spaces of finite groups to split stably as a wedge

of simpler pieces. See [7] for a survey.
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10. Fermat hypersurfaces

Fix an odd integer n and an odd prime p. Write U = ℂn+1 and P = ℙU = ℂPn. Let � : U −→ ℂ
be the map �(z) =

∑n
i=0 z

p
i . We shall study the Fermat hypersurface

V = {[u] ∈ P ∣ �(u) = 0}.

Proposition 10.1. V is a smooth complex manifold.

Proof. Suppose that u ∕= 0 and �(u) = 0. Note that the map u⊥ −→ P sending v to [u + v] is an
open embedding. It is thus enough to check that {v ∈ u⊥ ∣ �(u + v) = 0} looks like a manifold
near 0 ∈ u⊥, and thus enough to show that �(u+ �v) ∕= 0 to first order in �, for some v ∈ u⊥. Let

v be the vector (up−1
0 , . . . , up−1

n ), so that

⟨u, v⟩ =
∑
i

upi = �(u) = 0

and thus v ∈ u⊥. One can check directly that �(u+�v) = p�∥v∥2 to first order in �, as required. □

Proposition 10.2. The normal bundle to V in P is L−p.

proof?

10.1. Morse theory. Consider the function f : P −→ ℝ defined by

f [z] = ∣
∑
i

zpi ∣/
∑
i

∣zi∣p.

It is clear that 0 ≤ f ≤ 1, and that f(a) = 0 if and only if a ∈ V .
We next consider the space

E = {z ∈ S2n+1 ∣ zpi ∈ [0, 1] for 0 ≤ i ≤ n}.

This has a free action of Cp, and we write B = E/Cp. It is not hard to see that the evident map
B −→ Ssn+1/S1 = P is injective, so we think of B as a subspace of P . Explicitly, it is the subspace
of all points [z0 : . . . : zn] such that all the numbers zpi have the same argument. By the triangle
inequality, we thus have

B = {[z] ∈ P ∣ f [z] = 1}.
We next claim that f is continuously differentiable on P ∖V , with no critical points in P ∖(V ∪B).

To see this, note that for any u, v ∈ ℂ with u ∕= 0 we have ∣u + �v∣ = ∣u∣ + Re(�uv/∣u∣) to first
order in �. Thus, when f [z] ∕= 0 we have

f [z + �w] =
∣
∑
zpi ∣+ p�∣

∑
zpi ∣−1 Re(

∑
zpi
∑
zp−1
j wj)∑

∣zi∣p + p�Re(
∑
∣zi∣p−2ziwi)

(to first order). To simplify this, write

zp−1 = (zp−1
0 , . . . , zo−1

n )

z∣z∣p−2 = (z0∣z0∣p−2, . . . , zn∣zn∣p−2)

� =
∑
∣zi∣p

� =
∑

zpi .

We find that

f [z + �w] = f [z] + p�Re

(
�

�∣�∣
⟨w, zp−1⟩ − ∣�∣

�2
⟨w, z∣z∣p−2⟩

)
.

This shows that f is continuously differentiable. If [z] is a critical point then the real part of the
expression in brackets must vanish for all w. As we can replace w by iw, we see that the expression
in brackets must itself vanish for all w. It follows that zp−1 and z∣z∣p−2 must be linearly dependent,

say �pzp−1
i = zi∣zi∣p−2∣ for some � and all i. It is easy to see that ∣�∣ = 1, and multiplying by zi

gives (�zi)
p = ∣zi∣p ≥ 0. This means that z ∈ B, as required.
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We now apply the ideas of Morse theory. Write M = f−1{ 1
2} ⊂ P . By standard results on

the solution of differential equations on manifolds, there is a continuously differentiable function
� : (0, 1)×M −→ P with �( 1

2 , a) = a and

d

dt
�(t, a) =

(
∇f
∥∇f∥2

)
(�(t, a)).

It follows that f(�(t, a)) = t, and that the map �t : a 7→ �(t, a) gives a homeomorphism M ≃
f−1{t}.

For small t > 0, one expects that f−1{t} should be homeomorphic to the sphere bundle of
the normal bundle to V = f−1{0} in P . This can be made precise, and in fact we obtain a
homeomorphism between the total space of the normal bundle and P ∖B. After recalling that the
normal bundle is L−p and adding a point at infinity, we obtain a homeomorphism

V L
−p

= P/B.

Note that V is homotopy equivalent to the total space of L−p, which is obtained from P by
removing B. It is easy to see that B has codimension n in P , and so transversality arguments
show that the map �kV −→ �kP is an isomorphism for k < n−1 and an epimorphism for k = n−1.

10.2. Cohomology. We need to consider the following three maps:

i : ℂP (n−1)/2 −→ V i[w] = [w : −w]

j : V −→ P (inclusion)

q : V −→ ℂPn−1 q[z0 : . . . : zn] = [z0 : . . . : zn−1].

The definition of q is legitimate because whenever (z0, . . . , zn) ∕= 0 and
∑
i z
p
i = 0 we must have

(z0, . . . , zn−1) ∕= 0. Write x for the usual generator of H2ℂP d, for any d > 0. It is easy to see
that qi and ji are homotopic to the usual inclusions, so that i∗q∗x = i∗j∗x = x. We also write x
for q∗x ∈ H2V .

Next, observe that i is a smooth embedding of real codimension 2n − 2 − (n − 3) = n + 1, so
we have a Gysin map i! : H

∗ℂP (n−3)/2 −→ H∗+n+1V , using which we define y = i!(1) ∈ Hn+1V .
More explicitly, we can collapse out a tubular neighbourhood of ℂP (n−3)/2 in V to get a map
from V to the Thom space of an (n + 1)-dimensional complex bundle, and we define y to be the
pullback of the Thom class.

Note that i! is a map of modules over H∗V , so we have x(n−3)/2y = i!(x
(n−3)/2). On the other

hand, x(n−3)/2 is the fundamental class in H∗ℂP (n−3)/2, so it is equal to k!(1), where k is the
inclusion of a point in ℂP (n−3)/2. It follows that x(n−3)/2y = i!k!(1) is the fundamental class in
H∗V .

Using this, Poincaré duality, and the fact that i is (n− 1)-connected, we conclude that

H∗V = ℤ{1, x, . . . , x(n−3)/2, y, xy, . . . , x(n−3)/2y} ⊕Hn−1V.

Using the fact that q has degree p, we see that xn−1 is p times the fundamental class x(n−3)/2y,
and thus that x(n+1)/2 = py.

10.3. The middle dimension. We now analyse the middle-dimensional cohomology Hn−1V .
For this, we need to understand the cohomology of B.

Proposition 10.3. There is a stable splitting B = Sn/Cp∨Z, where Z is a finite wedge of copies
of Sn.

Proof. Recall that B = E/Cp, where

E = {z ∈ S2n+1 ∣ zpi ∈ [0, 1] for 0 ≤ i ≤ n}.

We can identify E with the (n+ 1)-fold join Cp ∗ . . . ∗ Cp, so the usual formula H̃m(X ∗ Y ) =

(H̃∗X ⊗ H̃∗Y )m−1 shows that H̃∗E = H̃0(Cp)
⊗(n+1), concentrated in degree n.

Note that both E and Sn are n-dimensional, (n−1)-connected CW complexes with a free action
of Cp. The usual proof of the essential uniqueness of BCp gives canonical (n− 1)-connected maps

B
f−→ BCp

g←− Sn/Cp, and non-canonical maps B
r−→ Sn/Cp

s−→ B compatible with f and g.
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As g∗ : H∗BCp −→ H∗Sn/Cp is surjective, we conclude that (rs)∗ : H∗Sn/Cp −→ H∗Sn/Cp is
the identity and thus that rs is a homotopy equivalence. After replacing s by s(rs)−1 if necessary,
we may assume that rs = 1. It follows that there is a stable splitting B = Sn/Cp ∨ Z for some
Z. Because f , g, r and s are (n− 1)-connected and B is n-dimensional, we see that the homology
of Z with any coefficients is concentrated in dimension n and thus that Z is a wedge of copies of
Sn. □

Proposition 10.4. The number of spheres in Z is N = ((p− 1)n+1 − 1)/p.

Proof. In this proof, all cohomology has coefficients Fp. It will be enough to show that the rank
of HnB is N + 1.

We will need a little structure theory of modules over the ring A = Fp[Cp]. Write u = [e2�i/p]−
[1]. One can check that A = Fp[u]/up and that

∑
�∈Cp

[�] = up−1. It follows that the reduced

cohomology of the discrete space Cp is isomorphic to I = A/up−1 as an A-module, and thus that

the reduced cohomology of E is H̃nE = I⊗(n+1). By applying Schanuel’s lemma to the short

exact sequences Fp
up−1

−−−→ A −→ I and I ⊗ I −→ A⊗ I −→ I we find that

I ⊗ I ⊕A ≃ A⊗ I ⊕ Fp = (p− 1)A⊕ Fp.
By the Krull-Schmidt theorem, we can cancel to get

I ⊗ I ≃ (p− 2)A⊕ Fp.
(In fact, it is not too hard to just write down an isomorphism here.) It follows easily that
HnE = I⊗(n+1) is the direct sum of Fp with a free module F over A. By counting dimensions,
the rank of F must be N = ((p− 1)n+1 − 1)/p.

Now consider the covering spectral sequence

Hs(Cp;H
tE) =⇒ Hs+tB.

The line t = 0 is just H∗BCp = Fp[x] ⊗ E[a]. The line t = n is a free module of rank one
over H∗BCp on one generator b ∈ E0n

2 , together with the group FCp (which is also located in
E0n

2 and is annihilated by a and x). All other lines are zero, so the only possible differential is
dn+1. The image of FCp must be annihilated by x, which acts regularly on H∗BCp, so we must

have dn+1(FCp) = 0. Because B has dimension n, the element x(n+1)/2 must be hit, so dn+1(b)
must be a unit multiple of x(n+1)/2. From this it is easy to see that the E∞ page consists of
Fp{1, a, . . . , x(n−1)/2a} on the bottom line, together with FCp in E0n

∞ . It follows that HnB has
dimension N + 1, as required. □

Corollary 10.5. The group Hn−1V is free Abelian of rank N + 2.

Proof. Our earlier study of the cohomology of V showed that it is concentrated in even degrees,
and it is easy to see that this is valid with any field coefficients. This implies that H∗V is a free
Abelian group concentrated in even degrees, so we need only check that Hn−1(V ;Fp) has rank
N + 2. For the rest of this proof, all cohomology has coefficients Fp.

The cofibration B −→ P −→ V L
−p

together with the Thom isomorphism H̃∗V L
−p ≃ H∗−2V

gives an exact sequence

0 = HnP −→ HnB −→ Hn−1V −→ Hn+1P −→ Hn+1B = 0.

Here the first term is zero because n is odd, and the last is zero because B has dimension n. It
follows easily that Hn−1V has rank N + 2. □

10.4. References. Most of the material here comes from [24]. The fact that the inclusion V −→ P
is (n − 1)-connected is a special case of the Lefschetz hyperplane theorem in complex algebraic
geometry. For a Morse-theoretic proof, see [32, Section I.7].
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11. Two-dimensional manifolds

In this section we consider compact connected closed oriented smooth manifolds of dimension
two (which we shall refer to as surfaces). For more discussion, see [41, Chapter I]. It is well-known
that surfaces are classified by their genus, which is a nonnegative integer. A surface of genus zero
is homeomorphic to S2, and a surface of genus one is homeomorphic to the torus S1 × S1.

The simplest model of a surface of genus g > 0 is given by identifying sides in a polygon. Let
P = Pg be a 4g-gon in ℝ2. We give each edge a label and a direction. The labels are

a1, b1, a1, b1, a2, b2, a2, b2, . . . , ag, bg, ag, bg

The first edge with each label is oriented anticlockwise, and the second one is oriented clockwise.
We illustrate the scheme in the case g = 2.

u

[
[[̂

w

�
���

u

[
[[]

u

�
���

[
[
[
[[

�
�
�
��

[
[
[
[[

�
�
�
��

a1

b1

a1

b1

a2

b2

a2

b2

Let M = Mg be the quotient space of P where edges with the same label are identified together
(and thus all the vertices of P are identified to a single point, which we take as the basepoint). It is
trivial to check that each point of P other than the basepoint has a neighbourhood homeomorphic
to a disc, and only a little harder to check that this holds for the basepoint as well. This means
that M is a topological manifold, and one can easily give it a smooth structure.

Note that the image of each edge ai or bi in M is a closed loop passing through the basepoint,
so we can regard it as an element of �1M . One can show that

�kM =

{
⟨a1, . . . , ag, b1, . . . bg ∣ [a1, b1] . . . [ag, bg] = 1⟩ if k = 1

0 otherwise.

This shows that the universal cover of M is contractible; in fact, it is homeomorphic to ℝ2.
Moreover, we have

HkM =

⎧⎨⎩
k = 0 ℤ
k = 1 ℤ{�1, . . . , �g, �1, . . . , �g}
k = 2 ℤ

The multiplicative structure is as follows: we have �i�i =  for all i, and all other products of �’s
and �’s vanish.

Let W2g be a wedge of 2g circles, so that pi1W2g is a free group on 2g generators, which we can
call a1, . . . , ag, b1, . . . , bg. Write

c = [a1, b1] . . . [ag, bg] ∈ �1W2g = [S1,W2g].

It is not hard to see that there is a cofibration

S1 c−→W2g −→Mg −→ S2.

Note that any smooth Riemann surface is a surface of the type we are considering, so it will be
homeomorphic to Mg for some g. Every Riemann surface of genus g is holomorphically isomorphic
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to a projective complex variety of the form

V = {[x : y : z] ∈ ℂP 2 ∣ y2zg =

g+1∏
i=0

(x− �iz)},

for suitable complex numbers �0, . . . , �g+1 (with no two the same).
One can also tesselate the open unit disc D with 4g-gons whose sides are geodisics in the

hyperbolic metric, and let G be the group of holomorphic automorphisms of this tesselation. This
can be done in such a way that each polygon in the tesselation is a fundamental domain and D/G
is holomorphically isomorphic to V .
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12. Three-dimensional manifolds

In this section we consider compact connected closed oriented smooth manifolds of dimension
three, which we refer to simply as 3-manifolds. Most of the material here comes from John
Hempel’s book [20].

Let M be such a thing, and write � = �1M , which is a finitely-presented group. Using Poincaré
duality and the Hurewicz theorem, we have

H0M = H0M = ℤ
H1M = H2M = �/[�, �] = H1�

H2M = H1M = Hom(�,ℤ) = H1�

H3M = H3M = ℤ.

Note that H2M is a finitely generated free Abelian group.

12.1. Finite fundamental groups. If � = 0 then the above shows that H1 = H2 = 0 and
�3 = H3M = ℤ (by the Hurewicz theorem). It follows that the generator of �3M is a homotopy
equivalence S3 −→M . In fact, in this situation M is always homeomorphic to S3. This was origi-
nally conjectured by Poincaré and eventually resolved as a consequence of Perelman’s celebrated
work on Thurston’s geometrization conjecture.

Now suppose instead that � is merely finite. Then the universal cover M̃ is a simply connected
compact closed 3-manifold, and is therefore homeomorphisc to S3 as above. It is interesting to
ask which groups � can occur like this. If a finite group � admits a map � −→ SO(4) such that
the resulting action on S3 ⊂ ℝ4 is free, then we can take M = S3/�. Let P be the set of groups
which admit such a map. The identification of P is a problem in classical representation theory,
which is completely understood; we will not give the details here.

It is not the case that every 3-manifold with finite fundamental group arises as a quotient of
S3 by a linear action of a finite group, as discussed above. Nonetheless, it is conjectured that P is
the same as the set of finite fundamental groups of 3-manifolds. To see how one might approach
this, let M be a 3-manifold with finite fundamental group � and consider the covering spectral
sequence

H∗(�;H∗M̃) =⇒ H∗M.

As M is oriented, the action of � on H3M̃ = ℤ is trivial. The spectral sequence therefore looks
like this:

w

u

H0� H1� H2� H3� H4� H5�

H0� H1� H2� H3� H4� H5�4
4
4
4
4
4
4
4
4
446

d4

The only possible differential is d4. The target ring H∗M is concentrated in degrees less than or
equal to 3 (because M is a 3-manifold); it follows that d4 : Hk� −→ Hk+4� must be an isomorphism

for all k > 0. Let u be the generator of E0,3
2 = H0� = ℤ, and write v = d4(u) ∈ H4�. Using the

multiplicative properties of the spectral sequence, we see that multiplication by v is an isomorphism
Hk� −→ Hk+4� for k > 0. The existence of such an element v is a strong constraint on the structure
of the finite group �. For example, one can show quite easily that for each odd prime p the Sylow
p-subgroups of � are cyclic.
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12.2. Connected sums. Given two 3-manifolds M and N , we can form their connected sum
M#N by cutting small open 3-balls out of M and N to get two manifolds with boundary S2,
and gluing them together along the boundary in a way that respects the orientations. It turns out
that the result is well-defined up to diffeomorphism. It is easy to see that S3#M = M .

We say that a 3-manifold M is prime if it cannot be written as a connected sum of two
manifolds not diffeomorphic to S3. It is natural to try to decompose an arbitrary 3-manifold M
as a connected sum M = M1# . . .#Mn, where each Mi is prime. It turns out that this is always
possible, and that the decomposition is essentially unique. Moreover, we have

H1M = H1M1 ⊕ . . .⊕H1Mn

H2M = H2M1 ⊕ . . .⊕H2Mn

�1M = �1M1 ∗ . . . ∗ �1Mn.

We next attempt a crude classification of prime 3-manifolds. It is easy to see that if �1M is
finite and the Poincaré conjecture holds then M is prime. If �1M = ℤ then it can be shown that
M = S1 × S2, which is prime.

Now suppose that M is prime and that � = �1M is infinite and not cyclic. We claim that M̃

is contractible. Indeed, M̃ is a simply-connected non-compact 3-manifold, so H1M̃ = H3M̃ = 0,

so the only possible reduced homology is H2M̃ = �2M̃ = �2M . If �2M ∕= 0 then a result called
the Sphere Theorem tells us that there is an embedding S2 −→ M which represents a nontrivial
element of �2M . It is at least plausible that we could cut M along this embedded sphere and
thus write M as a connected sum. The example of S1 × S2 shows that this is a little too naive,
but it turns out that that is essentially the only counterexample, and we have excluded it by our

conditions on �1M . Thus, we must have �2M = 0 and thus H̃∗M̃ = 0 and thus M̃ is contractible
as claimed. This implies that M is homotopy equivalent to the classifying space B�.

We now return to the case of a general 3-manifold M , decomposed as M1# . . .#Mn say, with
each Mi prime. It is no longer the case that the higher homotopy groups of M vanish, but we can
still calculate �2M . For simplicity, we assume that each group �1(Mi) is infinite and not cyclic.
Note that �2M has a natural action of � = �1M , so it is a module over the group ring ℤ[�]. For
each i we can choose a based embedding �i : S

2 −→ M which separates Mi from the other Mj ’s,
and we also write �i for the corresponding element of �2M . It turns out that

�2M = ℤ[�]{�1, . . . , �n}/(�1 + . . .+ �n).

For a proof, see [42].

12.3. Swarup’s homotopy classification. Let ℳ be the category of 3-manifolds with a given
basepoint. The morphisms from M to M ′ are homotopy classes of pointed maps which have degree
one (in other words, we require that f∗[M ] = [M ′] ∈ H3M

′).
Let G be the category of pairs (�, u), where � is a group and u ∈ H3B�. The morphisms from

(�, u) to (�′, u′) are homomorphisms f : � −→ �′ such that (Bf)∗u = u′.
Given a manifold M ∈ ℳ, there is an obvious map q : M −→ B�1M , and we can define

�M = q∗[M ] ∈ H3B�1M . We thus get an object FM = (�1M, �M ) of G, and it is easy to see that
this gives a functor F : ℳ−→ G. Swarup proved that this functor is full [43]. It follows that FM
is isomorphic to FM ′ if and only if M is homotopy equivalent to M ′, by an orientation preserving
equivalence. In other words, FM is a complete invariant of the homotopy type of M .

12.4. Heegaard splittings. An important way of constructing 3-manifolds is via Heegaard split-
tings. Let F be an oriented surface of genus g > 0, and T the usual solid with ∂T = F . Write j
for the inclusion F −→ T , and let f : F −→ F be an orientation-preserving diffeomorphism. We can
then form a pushout diagram

F T

T M.

w

j

u
jf

u
w
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It is not hard to check that M is a 3-manifold. Such a decomposition of a given 3-manifold M is
called a Heegaard splitting of genus g. It can be shown that any 3-manifold admits such a splitting
for some g.

Note that

�1F = ⟨a1, . . . , ag, b1, . . . bg ∣ [a1, b1] . . . [ag, bg] = 1⟩
�1T = ⟨b1, . . . , bg⟩ (and j∗ai = 0)

�1M = ⟨b1, . . . , bg ∣ (jf−1)∗(ai) = 1⟩.

12.5. Surgery on knots. Another important construction of 3-manifolds is by surgery on knots
and links. We explain a version which creates homology 3-spheres, in other words manifolds M
with H∗M = (ℤ, 0, 0,ℤ) = H∗S

3. (It is equivalent to say that �1M is perfect.)
Let K be a knot in S3 (that is, a smoothly embedded copy of S1). Let N be a tubular

neighbourhood of K. Then ∂N is an oriented S1-bundle over K ≃ S1, so that ∂N ≃ S1 × K.
Write L = S3 ∖N , which is homotopy equivalent to S3 ∖ K. By Alexander duality we have

H̃kL = H̃2−kK, so H̃∗L = ℤ concentrated in degree one. Moreover, the Mayer-Vietoris sequence

0 = H2S
3 −→ H1∂N −→ H1N ⊕H1L −→ H1S

3 = 0

shows that H1∂N = H1K ⊕H1L = ℤ2. There is thus a basis H1∂N = ℤ{�, �} such that � 7→ 0
in H1L and � 7→ 0 in H1K. Here � is parallel to K, and � is a fibre of ∂N −→ K, so it winds once
around K.

For any integer n, there is an automorphism f of ∂N ≃ S1 × S1 that fixes � and sends � to
�+ n�. We can form a pushout diagram as follows:

∂N ∂N L

N M.

w

f

v

u

v w

j

u
w

In other words, M is obtained from S3 by removing the solid torus N , twisting it n times around
K and gluing it back in. As j∗f∗ = j∗, the Mayer-Vietoris sequence for M = N ∪∂N L shows that
H∗M = H∗S

3 as claimed.
Any 3-manifold may be obtained from S3 by a related procedure in which K is allowed to be

a link and more general twisting is permitted.

12.6. Hyperbolic 3-manifolds. Write this

12.7. Other constructions. Other important classes of 3-manifolds include fibre bundles F −→
M −→ S1, with F a surface (so M = F × [0, 1]/((x, 0) ∼ (fx, 1)) for some automorphism f of
F ). Similarly, one has bundles S1 −→ M −→ F , which are classified by H2F ≃ ℤ. More generally,
one can start with such a bundle and perform a certain kind of surgery on a finite set of fibres to
obtain a so-called Seifert-fibred manifold.
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13. Simply-connected four-dimensional manifolds

In this section we consider compact connected closed oriented topological manifolds of dimension
four, which we refer to simply as 4-manifolds. The following result gives a complete classification
of simply-connected 4-manifolds up to oriented homotopy equivalence. It is essentially the same
as [22, Theorem 2.1].

Theorem 13.1. Let M be a simply-connected 4-manifold. Then

H0M = H4M = H0M = H4M = ℤ

H1M = H3M = H1M = H3M = 0.

Moreover, H2M is a finitely-generated free Abelian group. There is a natural unimodular sym-
metric bilinear form b on H2M . The set of oriented homotopy types of 4-manifolds bijects with the
set of isomorphism classes of finitely-generated free Abelian groups equipped with a unimodular
symmetric bilinear form.

We now sketch the proof of this fact. Let M be a simply-connected 4-manifold. By Poincaré
duality and the Hurewicz theorem we have

H0M = H4M = ℤ
H1M = H3M = 0

H2M = H2M.

We next consider the universal coefficient sequence

Ext(Hk−1M,ℤ) ↣ HkM ↠ Hom(HkM,ℤ).

Using this we find that

H0M = ℤ
H1M = 0

H2M = Hom(H2M,ℤ)

It follows that H2M is a finitely-generated torsion-free Abelian group, and thus isomorphic to ℤd
for some d. We have already seen that H2M = H2M , so H2M = ℤd also.

The intersection form b is defined by b(u, v) = ⟨uv, [M ]⟩. This is easily seen to be a symmetric
bilinear form, and the Poincaré duality isomorphism H2M ≃ H2M tells us that b is unimodular.
Clearly, if f : M −→ N is an orientation-preserving homotopy equivalence of simply-connected 4-
manifolds then f induces an isomorphism (H2M, bM ) ≃ (H2N, bN ). We thus get a map from the
set of oriented homotopy types of simply-connected 4-manifolds to the set of isomorphism types
of free Abelian groups with a unimodular form.

Now let M ′ be the result of removing a small open ball from M . We have a cofibration

S3 v−→M ′ −→M −→ S4,

in which the last map has degree one. It follows that H̃∗M
′ is concentrated in degree 2, where

it is isomorphic to �2M = H2M = ℤd say. Choose maps u1, . . . , ud : S2 −→ M ′ giving a basis for
this group. It is easy to see that the resulting map u : X = S2 ∨ . . . ∨ S2 −→ M ′ is a homotopy
equivalence. Using this, we conclude that

�3M
′ = ℤ{[ui, uj ] ∣ i < j} ⊕ ℤ{ui ∘ �}.

Here [ui, uj ] denotes the Whitehead product, and � : S3 −→ S2 is the Hopf map. In particular, we
have

v =
∑
i<j

aij [ui, uj ] +
∑
i

aiiui ∘ �

for some integers aij . One can show that the matrix (aij) is the same as the matrix of the bilinear
form b written in terms of the basis dual to {ui}. It follows that b determines the homotopy type
of M .



30 N. P. STRICKLAND

Conversely, suppose that we start with a unimodular form b on ℤd. We can then let ui denote
the inclusion of the i’th summand in X = S2 ∨ . . . ∨ S2 and define a map v =

∑
i<j bij [ui, uj ] +∑

i biiui ∘ � : S3 −→ X. We let M be the cofibre of v. It is easy to check that M is a finite CW
complex which looks homologically like a simply-connected 4-manifold with intersection form b.
It can be shown that there is a topological manifold homotopy equivalent to M . This essentially
completes the proof of the theorem.

It turns out that there are far fewer smooth 4-manifolds than topological 4-manifolds. Work of
Seiberg and Witten (which simplifies an earlier proof due to Donaldson) shows that the symmetric
bilinear forms arising from smoothable 4-manifolds are all diagonalisable over ℤ, which rarely the
case for an arbitrary form. This is the end of a long story, which starts by considering how
quantum electrodynamics would work if spacetime were diffeomorphic to a given 4-manifold M .
For Donaldson’s theory, see [15]. I don’t know an appropriate reference for the Seiberg-Witten
theory.
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14. Moore spectra

Let p be an odd prime. Let ℳ be the category of p-local spectra X such that �kX = 0 for
k < 0 and HkX = 0 for k > 0. Such spectra are called Moore spectra. Note that if X is a Moore
spectrum then the Hurewicz theorem gives �0X = H0X and HkX = 0 for k ∕= 0. Let A be the
category of p-local Abelian groups, so that �0X ∈ A.

Theorem 14.1. The functor �0 : ℳ−→ A is an equivalence of categories. If X,Y ∈ℳ then

[X,Y ] = Hom(�0X,�0Y )

[X,ΣY ] = Ext(�0X,�0Y )

[X,ΣkY ] = 0 for k > 1.

To prove this, let A be a p-local Abelian group. Choose a set {aj ∣ j ∈ J} of generators of A, and
thus an epimorphism F =

⊕
J ℤ(p) ↠ A, with kernel R say. As R is a subgroup of a free module

over ℤ(p), it is free. (This is well-known if F is finitely-generated. Essentially the same proof works
in general, except that one has to choose a well-ordering of J and use transfinite recursion.) We
may therefore choose an isomorphism R =

⊕
i∈I ℤ(p) and thus a short exact sequence⊕

I

ℤ(p) ↣
⊕
J

ℤ(p) ↠ A.

Define SF =
⋁
J S

0
(p) and SR =

⋁
I S

0
(p), so we have given isomorphisms �0SF = F and

�0SR = R. For any p-local spectrum Y , the universal property of the wedge gives

[SR, Y ] =
∏
I

[S0
(p), Y ] = Hom(R, �0Y ).

In particular, we have a map SR −→ SF whose effect on �0 is the given map R ↣ F . Write SA
for the cofibre of this map. It is not hard to see that SA ∈ ℳ and that there is a canonical
isomorphism �0SA = A. This shows that the functor �0 : ℳ−→ A is essentially surjective.

From the defining cofibration and the fact that �1S = ℤ/2, we find easily that �1SA = A⊗ℤ/2,
which is zero because A is p-local and p is odd.

Consider again an arbitrary p-local spectrum Y . As above, we have [SR, Y ] = Hom(R, �0Y )
and similarly [SF, Y ] = Hom(F, Y ) and [ΣSR, Y ] = Hom(R, �1Y ) and [ΣSF, Y ] = Hom(F, �1Y ).
Using this and the cofibration

SR −→ SF −→ SA −→ ΣSR −→ ΣSF,

we obtain a short exact sequence

Ext(A, �1Y ) ↣ [SA, Y ] ↠ Hom(A, �0Y ).

In particular, if X ∈ℳ then there exists a map S(�0X) −→ X inducing the identity on �0 = H0,
and thus on all homology groups (because the other ones are zero). The map is thus an equivalence.
It follows that all spectra in ℳ have the form SA for some A ∈ A.

Given that �1SB = 0, the above short exact sequence shows that [SA, SB] = Hom(A,B), and
thus that [X,Y ] = Hom(�0X,�0Y ) for all X,Y ∈ ℳ. This shows that the functor �0 : ℳ −→ A
is also full and faithful, and thus an equivalence of categories. The other claims are now easy to
check.

14.1. References. For this and much other material, the books [26] and [2] are good references.
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15. Eilenberg-MacLane spaces

Consider an integer n > 1 and write

Cn = { pointed CW complexes X such that �mX = 0 for all m ∕= n }.

We make this into a category, with homotopy classes of maps as morphisms. We also consider the
category A of Abelian groups.

The following theorem is proved in [44, Section V.7] (for example):

Theorem 15.1. The functor �n : Cn −→ A is an equivalence of categories. If X is a CW complex
and Y ∈ Cn then there is a natural isomorphism [X,Y ] = Hn(X;�nY ). □

It follows that for any Abelian group A there is an essentially unique CW complex K(A,n)
equipped with an isomorphism �nK(A,n) = A. This is called the Eilenberg-MacLane space of
type (A,n). We also have

[X,K(A,n)] = Hn(X;A)

[K(A,n),K(B,n)] = Hom(A,B).

There are a number of ways of constructing K(A,n).

(a) Let G be a topological group which is a CW complex. Then Milgram’s classifying-space
construction [25, Chapter 1] gives a CW complex BG which is a covariant functor of G,
together with a natural map G −→ ΩBG which is a homotopy equivalence. Moreover, there
is a natural homeomorphism B(G×H) = BG×BH.

If A is an Abelian topological group then the addition map � : A × A −→ A is a group

homomorphism so we can apply B to get a map of spaces BA×BA = B(A×A)
B�−−→ BA.

It is easy to see that this makes BA into an Abelian topological group with ΩBA = A.
Thus, given a discrete Abelian group A, we can define K(A,n) = BnA; it is straight-

forward to check that �∗K(A,n) = A concentrated in degree n, as required.

(b) For any pointed space X, we define the k’th symmetric power SPkX = Xk/Σk. The

map Xk −→ Xk+1 sending (x1, . . . , xk) to (x1, . . . , xk, 0) induces an inclusion SPkX −→
SPk+1X, so we can define SP∞X = lim

−→k
SPkX. This is also the free Abelian topological

monoid generated by X modulo one relation, which sets the basepoint equal to the iden-
tity. In other words, for any Abelian topological monoid A we have a bijection between
continuous monoid maps SP∞X −→ A and pointed maps X −→ A.

The Dold-Thom theorem [14] says that if X is a connected CW complex then there is
a homotopy equivalence

SP∞X =
∏
n>0

K(HnX,n).

In particular, we have

K(ℤ, n) = SP∞(Sn).

We outline a proof of the Dold-Thom theorem. There is a well-known homeomorphism
SPnℂ = ℂn, which sends [z1, . . . , zn] to the list of coefficients of the polynomial

∏
i(t−zi).

This restricts to give a homotopy equivalence

SPn S1 ≃ SPn ℂ× ≃ ℂ× × ℂn−1 ≃ S1.

In the limit we get SP∞ S1 = S1 = K(ℤ, 1) (which is a special case of the theorem). One
can also show that the functor SP∞ converts cofibrations to quasifibrations, and thus that
the functor X 7→ �∗ SP∞X is a homology theory. The rest is general nonsense.

(c) There is an essentially unique space Snℚ equipped with a map Sn −→ Snℚ that induces
an isomorphism �∗(S

n)⊗ℚ ≃ �∗(Snℚ). If n is odd then a theorem of Serre tells us that
ℚ⊗ �∗Sn = ℚ, concentrated in degree n. Thus Snℚ = K(ℚ, n) when n is odd.

We recall the construction of Snℚ: it is the telescope of the sequence

Sn
2−→ Sn

3−→ Sn
4−→ Sn −→ . . . .
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Here we write k : Sn −→ Sn for any map of degree k. The telescope of any sequence

X0
f0−→ X1

f1−→ . . . is the space
∐
k[k, k + 1] × Xk/ ∼, where (k + 1, x) is identified with

(k + 1, fkx) for all x ∈ Xk. One can show that H∗Tel(Xk) = lim
−→k

H∗Xk, and that

�∗Tel(Xk) = lim
−→k

�∗(Xk).

There is a well-developed and satisfying theory of spaces whose homotopy groups are
all rational vector spaces. The original reference is [35], and there are some more recent
survey articles in [18].

(d) By methods similar to those of Section 14, one can construct a simply-connected space
SnA with H∗S

nA = A, concentrated in degree n. It follows that �kS
nA = 0 for k < n,

and that �nS
nA = A. However, SnA is not an Eilenberg-MacLane space, because the

homotopy groups �kS
nA for k > n will not vanish in general. Nonetheless, these higher

homotopy groups can be killed off by attaching extra cells of dimension greater than n,
and after doing this we are left with an Eilenberg-MacLane space. This sort of procedure
is explained in [44, Section V.2].
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16. Wilson spaces

Let p be an odd prime, and k > 0 an integer. In this section we discuss the properties of certain
space Yk which was first studied by Steve Wilson [45, 46]. See also [8, Sections 22-23].

The space Yk is a (k − 1)-connected p-local H-space, such that for all m the groups HmYk
and �mYk are finitely generated free modules over ℤ(p). Moreover, the first nontrivial group is
�kYk = HkYk = ℤ(p).

The space Yk is also atomic: if f : Yk −→ Yk is such that f∗ : Hk(Yk;Fp) −→ Hk(Yk;Fp) is nonzero,
then f is a homotopy equivalence. It follows that Yk is indecomposable: it cannot be written as
V ×W with V and W both not contractible.

Wilson proved that the above facts characterise Yk uniquely: if Z is an indecomposable (k−1)-
connected p-local H-space of finite type such that �∗Z and H∗Z are free over ℤ(p) and �kZ = ℤ(p),
then Z is (noncanonically) homotopy equivalent to Yk.

One construction of the spaces Yk is that Yk = Ω∞ΣkBP ⟨n⟩, where n is characterised by
∣vn∣ < (p− 1)k ≤ ∣vn+1∣, where ∣vm∣ = 2(pm − 1).

It follows that the space ΩkYk can be made into a ring up to homotopy, and we have

�∗+kYk = �∗Ω
kYk = ℤ(p)[vi ∣ 0 < ∣vi∣ < (p− 1)k].

16.1. Bipolynomial Hopf algebras. The Hopf algebras H∗Y2k and H∗Y2k (with coefficients
ℤ(p)) are both polynomial rings; in other words, H∗Yk is a bipolynomial Hopf algebra. The
structure theory of such Hopf algebras is known [38]; we will give a brief outline.

There is a unique Hopf algebra structure on W = ℤ(p)[xk ∣ k ≥ 0] such that the elements

wk =
∑
i+j p

jxp
i

j are primitive. Indeed, we have ℚ⊗W = ℚ[wk ∣ k ≥ 0], so it is clear that there
is a unique coproduct  on ℚ⊗W such that the elements wk are primitive. We need only check
that the elements  (xk) ∈ ℚ⊗W ⊗W actually lie in W ⊗W . This can be done by induction on
k. We call W with this coproduct the Witt Hopf algebra. It can be shown that W is self-dual,
and thus bipolynomial.

Given any integer i > 0, we can make W into a connected graded Hopf algebra by putting
xk in degree 2pki. We call this graded algebra W (i). It can be shown that any connected
graded bipolynomial Hopf algebra of finite type is noncanonically isomorphic to a tensor product⊗

i>0W (i)⊗di for certain (uniquely determined) integers di ≥ 0.
In the case of H∗Yk, the integers di are implicitly given by∑

i

dit
i = f(t)− f(tp)

where
f(t) = tk

∏
j

(1− tp
j−1)−1,

where the product runs over all j > 0 for which pj − 1 < (p− 1)k.

16.2. Torsion-free spaces. Let X be a connected p-local CW complex of finite type, and suppose
that �∗X and H∗X are free over ℤ(p) (or equivalently, torsion-free). Suppose also that Xℚ is a
product of Eilenberg-MacLane spaces (which follows from the other assumptions if X is an H-

space). Then it can be shown that X ≃
∏
k>0 Y

dk
k for certain uniquely determined integers dk ≥ 0.

Using this, we find that the connected components of the infinite loop spaces in the spectra
KU , MU , BP , BP ⟨n⟩, and E(n) are all p-locally products of Wilson spaces.
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17. The building for GLnFp
Let P be a finite partially ordered set. Recall that a subset C ⊆ P is called a chain iff it is

totally ordered, in other words for all u, v ∈ C we have either u ≤ v or v ≤ u. Given a map
x : P −→ [0, 1], we write supp(x) = {u ∈ P ∣ x(u) > 0}. Write

∣P ∣ = {x : P −→ [0, 1] ∣ supp(u) is a chain }.
This is a simplicial complex with vertex set P . It has one k-simplex for each chain of length k+ 1.
For more details, see [6, Chapter 6].

Let V be a vector space over Fp of finite dimension n, and write

Sub(V ) = { proper nonzero subspaces of V }.
This is a partially ordered set under inclusion, so we can form the simplicial complex ∣Sub(V )∣.
This is called the Bruhat-Tits building for the group Aut(V ) ≃ GLnFp.

The following theorem is due to Quillen, and is also proved as [6, Theorem 6.8.5].

Theorem 17.1. ∣Sub(V )∣ is homotopy equivalent to a wedge of pn(n−1)/2 copies of the sphere
Sn−2.

Note that Aut(V ) acts on Sub(V ) and thus on M = Hn−2(∣Sub(V )∣;ℤ(p)). Thus M is a module
over the group ring R = ℤ(p)[Aut(V )], called the Steinberg module. It crops up in a number of
places in topology: see [30, Section XX.6] for a connection with the Segal conjecture, and [33] for
an application to the stable homotopy theory of finite complexes.

Before discussing the properties of M , we recall some facts about GLnFp. Let U be the subgroup

of matrices with ones on the diagonal and zeros below it (so ∣U ∣ = pn(n−1)/2). Equivalently, g ∈ U
if and only if g(Fkp) = Fkp and g acts as the identity on Fkp/Fk−1

p , for 1 ≤ k ≤ n.
It is well-known that

∣GLnFp∣ = (pn − 1)(pn − p) . . . (pn − pn−1) = pn(n−1)/2(pn − 1)(pn−1 − 1) . . . (p− 1).

(Consider the number of possible choices for g(ek) after g(e1), . . . , g(ek−1) have been chosen.)

Theorem 17.2. (a) M is free of rank one as a module over ℤ(p)[U ].
(b) M is an indecomposable projective module over ℤ(p)[GLnFp]; in fact, there is an idempo-

tent e ∈ ℤ(p)[GLnFp] such that M ≃ ℤ(p)[GLnFp]e.
(c) Fp ⊗M is a simple module over Fp[GLnFp].

Proof of Theorem 17.1. The claim is trivial when n = 2, so suppose that n > 2. Choose a line
L < V , and let ℋ be the set of hyperplanes H < V such that V = L ⊕H. If H0 ∈ ℋ then any
H ∈ ℋ is the graph of a unique map H0 −→ L, and thus ∣ℋ∣ = ∣Hom(H0, L)∣ = pn−1.

Next, observe that a map f : P −→ Q of finite posets induces a map ∣f ∣ : ∣P ∣ −→ ∣Q∣. Explicitly,
we have

∣f ∣(x)(v) =
∑

f(u)=v

x(u).

If f0, f1 : P −→ Q are two such maps and f0(u) ≤ f1(u) for all u ∈ P then there is an obvious way
to construct a map of posets {0, 1} × P −→ Q, and one can check that ∣{0, 1} × P ∣ = [0, 1] × ∣P ∣,
so ∣f0∣ and ∣f1∣ are homotopic.

Now take P = Sub(V ) ∖ ℋ. Define f, g, ℎ : P −→ P by

f(W ) = W

g(W ) = W + L

ℎ(W ) = L.

We then have f ≤ g ≥ ℎ, so the identity map ∣f ∣ is homotopic to the constant map ∣ℎ∣, so ∣P ∣ is
contractible. We thus have a homotopy equivalence ∣Sub(V )∣ ≃ ∣Sub(V )∣/∣P ∣.

For each H ∈ ℋ, write XH = {x ∈ ∣Sub(V )∣ : x(H) > 0}. These spaces are disjoint, and their
union is ∣Sub(V )∣∖ ∣P ∣. Moreover, one can see that XH = (0, 1]×∣ Sub(H)∣/ ∼, where all points of

the form (1, x) are identified together. Using this, we see that ∣Sub(V )∣/∣P ∣ =
⋁
H∈ℋ Σ̃∣Sub(H)∣.
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Here Σ̃Y denotes the unreduced suspension [0, 1]× Y/ ∼, where all the points (0, y) are identified
to one point, and all the points (1, y) are identified to a different point. By induction, we know

that ∣Sub(H)∣ is a wedge of p(n−1)(n−2)/2 copies of the sphere Sn−3. As Σ̃Sn−3 = Sn−2 and
∣ℋ∣p(n−1)(n−2)/2 = pn(n−1)/2, we see that ∣Sub(V )∣ is a wedge of pn(n−1)/2 copies of Sn−2, as
claimed. □

We now take V = Fnp , and write Vi for the evident copy of Fip in V , so we have a flag 0 =
V0 < . . . < Vn = V . Let C be the chains W1 < . . . < Wn−1 such that V = Wi ⊕ Vn−i for all
i. By examining carefully the induction in the above proof, we see that ∣Sub(V )∣ is homotopy
equivalent to the space obtained by collapsing out all simplices not contained in C. Moreover,
C and its complement are invariant under the subgroup U . It follows that M is U -equivariantly
isomorphic to ℤ(p){C}. On the other hand, one can check that U permutes C freely and transitively,
so that ℤ(p){C} ≃ ℤ(p)[U ]. This proves the first part of Theorem 17.2. For the second part, we
simply record the formula

e =
1

∣GLnFp : U ∣
∑
�,g

�(�)[�g] ∈ ℤ(p)[GLnFp].

Here � runs over Σn < GLnFp, and g runs over the group B = {g ∈ GLnFp ∣ g(Vk) = Vk for all k}.
We shall not check here that this has the properties claimed.
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18. Looped spheres

Let n > 0 be an integer, and consider the loop space ΩS2n+1.

18.1. Homology and cohomology. The adjunction [ΣX,Y ] = [X,ΩY ] shows that �kΩS2n+1 =
�k+1S

2n+1. In particular, the identity element of �2n+1S
2n+1 gives a map � : S2n −→ ΩS2n+1;

explicitly, we have �(x)(t) = t ∧ x. The Hurewicz image of � is a class x ∈ H2nΩS2n+1.

Proposition 18.1. x is a primitive element, and H∗ΩS
2n+1 = ℤ[x] (as an algebra under the

Pontrjagin product).

Proof. Write u for the usual generator of H2n+1S2n+1, so that H∗S2n+1 = E[u]. The fibration
ΩS2n+1 −→ PS2n+1 −→ S2n+1 gives a Serre spectral sequence

E[u]⊗H∗ΩS2n+1 =⇒ ℤ.

The E2 term is concentrated in columns 0 and 2n+ 1, so the only possible differential is

d2n+1 : E0,m
2 −→ En+1,m−2n

2 .

As E2n+2 = E∞ = H∗PS2n+1 = ℤ, this differential must be an isomorphism for m > 0. By
induction on degree, we see that H∗ΩS2n+1 = ℤ{x′k ∣ k ≥ 0} with ∣x′k∣ = 2nk and x′0 = 1 and
d2n+1(x′k) = x′k−1u for k > 0.

As dn+1 is a derivation, we see by induction on k + l that x′kx
′
k = (k, l)x′k+l, and thus that

H∗ΩS2n+1 is the divided-power algebra D[x′1]. Moreover, x′1 is primitive for dimensional reasons,
so that

 (x′k) =  (x′1)k/k! =
∑
k=i+j

(x′1)i/i!⊗ (x′1)j/j! =
∑
k=i+j

x′i ⊗ x′j .

We next consider the dual Hopf algebra H∗ΩS
2n+1. By the Hurewicz theorem, we know that

H2nΩS2n+1 is freely generated by x, so we must have ⟨x, x′1⟩ = ±1. It follows easily that ⟨xk, x′l⟩ =
�kl, and thus that H∗ΩS

2n+1 = ℤ[x]. □

We could also have proved the above theorem using the Eilenberg-Moore spectral sequence [31]

TorH
∗S2n+1

s,t (ℤ,ℤ) =⇒ Ht−sΩS2n+1.

To compute the Tor groups, we consider the differential graded algebra C∗ = D[x′1] ⊗ E[u] with
differential

d((x′1)[k]) = (x′1)[k−1]u

d((x′1)[k]u) = 0.

(Note that this is a derivation.) There is an evident augmentation � : C∗ −→ ℤ. Clearly C∗ is a

resolution of ℤ by free E[u]-modules, so TorE[u]
∗∗ (ℤ,ℤ) is just H∗(C∗⊗E[u] ℤ) = D[x′1], with (x′1)[k]

in bidegree (k, (2n+1)k). As the E2 page is so sparse, there is no room for differentials. As before,
we conclude that H∗ΩS2n+1 = D[x′1].

18.2. The James model. Let JS2n be the free monoid generated by the set S2n, modulo the
relation that identifies the basepoint of S2n with the identity element of the monoid. There is an
evident map (S2n)k −→ JS2n, and we write JkS

2n for its image. We topologise JkS
2n as a quotient

of (S2n)k, and JS2n as the colimit of the spaces JkS
2n. This makes JS2n into the free topological

monoid generated by S2n modulo the basepoint, so that for any topological monoid M there is a
natural bijection between maps JS2n −→M of monoids, and pointed maps S2n −→M of spaces.

We would like to apply this with M = ΩS2n+1, but unfortunately this is only a monoid up to
homotopy. Th fix this, we consider instead the measured loop space

Ω∗S2n+1 = {(t, !) ∣ t ≥ 0, ! : [0, t] −→ S2n+1, !(0) = !(1) = ∗}.
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See [44, Section III.2] for more detailed discussion of this space. It can be given a topology in a
natural way. It is a topological monoid with product (s, �).(t, �) = (s+ t, ), where

(u) =

{
�(u) if 0 ≤ u ≤ s
�(u− s) if s ≤ u ≤ s+ t.

One can also show that Ω∗S2n+1 is homotopy equivalent to ΩS2n+1. The unit map � : S2n −→
ΩS2n+1 ≃ Ω∗S2n+1 thus extends to give a map JS2n −→ Ω∗S2n+1 ≃ ΩS2n+1 of H-spaces.

It is not hard to see that JS2n = S2n ∪ e4n ∪ . . . and thus that H∗JS
2n = ℤ[x] = H∗ΩS

2n+1,
and thus that our map JS2n −→ ΩS2n+1 is a weak equivalence. In fact, it can be shown that
ΩS2n+1 has the homotopy type of a CW complex, and thus that our map is an actual homotopy
equivalence. All this is discussed in more detail in [44, Section VII.2].

18.3. The James-Hopf maps. We can use the James model to construct maps out of ΩS2n+1

by combinatorial means. The most important example is the James-Hopf map jm : ΩS2n+1 −→
ΩS2nm+1. Consider an element x1 . . . xr ∈ JS2n, so xi ∈ S2n (we allow xi = ∗). For any set
S = {i1 < . . . < im} ⊆ {1, . . . , r} of order m, we write xS = xi1 ∧ . . . ∧ xim ∈ S2nm. We order the
collection of all such subsets lexicographically, to obtain a list S1, . . . , St say. Write

jm(x1 . . . xr) = xS1
. . . xSt

∈ JtS2nm.

One can check that this is well-defined (it does not change if we drop some xi’s with xi = ∗) and
that it gives a continuous map JS2n −→ JS2nm. It is easy to see that jm sends Jm−1S

2n to the
basepoint, and that the induced map S2nm = JmS

2n/Jm−1S
2n −→ JS2nm is the usual inclusion.

It follows that j∗mx
′
1 = x′m ∈ H2nmJS2n, and thus that

j∗mx
′
k =

(mk)!

k!(m!)k
x′mk ∈ H2nmkJS2n.

The James-Hopf maps are discussed in [5, Section II.2]; this book also contains much other
material of the same kind.

18.4. Fibrations. We can use the James-Hopf maps to construct some interesting p-local fibra-

tions. Let p be an odd prime, and let f : ΩS2n+1 −→ ΩS2npk+1 be a map which induces a injection
in mod p cohomology. The formulae of the previous section show that this applies when f = jpk ,
or more generally when f = jpk1 ∘ . . . ∘ jpkr with k1 + . . .+ kr = k.

Proposition 18.2. There is a p-local fibration Jpk−1S
2n −→ ΩS2n+1 f−→ ΩS2npk+1.

Proof. Let F be the homotopy fibre of f . Because Jpk−1S
2n = S2n ∪ . . .∪ e2n(pk−1) is (2npk − 1)-

connected, we see that f is null on Jpk−1S
2n. Thus, the inclusion Jpk−1S

2n −→ ΩS2n+1 factors
(uniquely) through a map g : Jpk−1 −→ F . We claim that g is a p-local equivalence.

To see this, consider the Eilenberg-Moore spectral sequence (with mod p coefficients)

TorH
∗ΩS2npk+1

st (Fp, H∗ΩS2n+1) =⇒ Ht−sF.

Note that H∗ΩS2npk+1 = D[x′1], with ∣x′1∣ = 2npk. It is well-known that such a divided power
algebra over Fp is isomorphic to a tensor product of truncated polynomial algebras T [y] = Fp[y]/yp.
Specifically, we have

H∗ΩS2npk+1 =
⊗
i≥0

T [x′pi ] with ∣x′pi ∣ = 2npk+i

and similarly

H∗ΩS2n+1 =
⊗
i≥0

T [y′pi ] with ∣y′pi ∣ = 2npi.

As f∗ is injective, we see that f∗x′pi is a unit multiple of y′pi+k . It follows that

H∗ΩS2n+1 = H∗ΩS2npk+1 ⊗
k−1⊗
i=0

T [y′pi ] = (H∗ΩS2npk+1){y′j ∣ 0 ≤ j < pk}.
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As this is a free module over H∗ΩS2npk+1, we see that the E2 page of the Eilenberg-Moore spectral
sequence is concentrated on the line s = 0, where we just have Fp{y′j ∣ 0 ≤ j < pk}, which is

isomorphic to H∗Jpk−1S
2n. It follows easily that our map Jpk−1S

2n −→ F is an equivalence in
mod p cohomology, as required. □

Related methods give a p-local fibration

S2n−1 −→ ΩJp−1S
2n −→ ΩS2np−1.

I think that this is explained in [34]. These fibrations, together with the ones in the proposition,
give a maze of interlocking exact sequences relating the homotopy groups �kS

m
(p) and �kJp−1S

m
(p),

which can be assembled into the so-called EHP spectral sequence. This is an effective tool for
calculating �kS

m
(p). For more discussion, see [36].
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19. Doubly looped spheres

We now consider the double loop space Ω2S2n+1. Let p be an odd prime. All our (co)homology
groups will have mod p coefficients.

19.1. Homology. We will outline a proof of the following theorem:

Theorem 19.1. There are elements xk ∈ H2npk−1Ω2S2n+1 (for k ≥ 0) and yk ∈ H2npk−2Ω2S2n+1

(for k > 0) such that

H∗Ω
2S2n+1 = Fp[yk ∣ k > 0]⊗ E[xk ∣ k ≥ 0].

We remark that much stronger results are known; in fact, Fred Cohen has described H∗Ω
kΣkX

as a functor of H∗X (see [11]). Our discussion follows Cohen’s, but is much simpler because we
restrict attention to the case n = 2 and X = S2n−1.

There is an evident unit map � : S2n−1 −→ Ω2S2n+1, which carries a homology class x0 ∈
H2n−1Ω2S2n+1.

We next need to define a certain natural (nonadditive) operation � : H2k−1Ω2X −→ H2kp−1Ω2X,
which will help us to produce all the algebra generators for H∗Ω

2S2n+1.
Consider a list z1, . . . , zp of distinct points in ℂ, and write � = mini ∕=j ∣zi− zj ∣/3. Consider also

a list �1, . . . , �p of pointed maps S2 −→ X, for some space X. We define a new map � : ℂ∪{∞} =
S2 −→ X as follows. Let Bi be the closed disc of radius � about zi. Define �(z) = 0 for all z
outside

∐
iBi, and let the restriction of � to Bi be the evident composite

Bi ↠ Bi/∂Bi ≃ S2 �i−→ X.

One can check that this gives a continuous map

� = �(z1, . . . , zp;�1, . . . , �p) : S2 −→ X,

and moreover that this construction gives a continuous map

� : Fpℂ×Σp
(Ω2X)p −→ Ω2X.

This construction is probably due to Boardman, but has been elaborated and extended by many
people. See [3] for a pleasant survey of these ideas.

We next need to construct a certain singular chain e ∈ Cp−1Fpℂ. Consider the point x =
(0, 1, . . . , p − 1) ∈ Fpℝ, and let D be the convex hull of its orbit under the action of Σp. This is
a cell of dimension (p − 1), contained in the hyperplane

∑
i yi = p(p − 1)/2. Of course, D is not

contained in Fpℝ. However, it turns out that one can choose a map f : D −→ ℝp with f(∂D) = 0

such that the map g(x) = x+ if(x) gives an embedding g : D ↣ Fpℂ. Moreover, if D is obtained
from D by identifying points in ∂D that lie in the same orbit under Σp, then the natural map

D −→ Bpℂ is a homotopy equivalence. All this can be done completely explicitly, using a certain
combinatorial triangulation of D. In particular, one can show that the degree of � ∈ Σp acting on
∂D = Sp−2 is the signature �(�).

We let e denote the image of D under the map g mentioned above. Consider a cycle a ∈
Z2k−1Ω2X. One can consider e⊗Σp a

⊗p as a chain on Fpℂ×Σp (Ω2X)p. The action of Σp on ∂D
is free, so we have ∂e =

∑
�∈Σp

�(�)�.e′ for some chain e′ ∈ Cp−2Fpℂ. It follows that

∂(e⊗Σp a
⊗p) =

∑
�

�(�)e⊗Σp �.a
⊗p = pe⊗Σp a

⊗p = 0 (mod p).

Here we have used the fact that �.a⊗p = �(�)a⊗p, because ∣a∣ is odd.
This shows that e⊗Σp

a⊗p is a cycle, defining a homology class in dimension (p−1)+p(2k−1) =
2kp− 1. We can thus define

�(a) = �∗[e⊗Σp
a⊗p] ∈ H2kp−1Ω2X.

One can check that this only depends on the homology class of a, so we get a well-defined operation

� : H2k−1Ω2X −→ H2kp−1Ω2X.
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We will need to know how this interacts with the homology suspension map �∗ : H̃k−1ΩY =

H̃kΣΩY −→ H̃kY , which is induced by the evaluation map ΣΩY −→ Y . A special case of the Kudo
transgression theorem says that for any a ∈ H2k−1Ω2X we have

�∗�(a) = �∗(a)p ∈ H2kpΩX.

Recall that x0 was defined as the obvious generator of H2n−1Ω2S2n+1. For k > 0 we define

xk = �kx0 ∈ H2npk−1Ω2S2n+1

yk = ��kx0 ∈ H2npk−2Ω2S2n+1.

Note that �∗(x0) is the usual generator z of H∗ΩS
2n+1 = Fp[z], so the Kudo theorem tells us that

�∗(xk) = zp
k

. The usual relation between �∗ and differential in the Serre spectral sequence for

the fibration Ω2S2n+1 −→ PΩS2n+1 −→ ΩS2n+1 shows that zp
k

survives to the 2npk’th page and

that d2npk(zp
k

) = xk. Related arguments show that d2npk(p−1)(z
pk(p−1)xk = yk. We can thus set

up a model spectral sequence Êrst with

Ê2npk

∗∗ = Fp[zp
k

]⊗ E[xj ∣ j ≥ k]⊗ Fp[yj ∣ j > k]

d2npk(zp
k

) = xk

Ê
2npk(p−1)
∗∗ = Fp[zp

k+1

⊗ E[xj ∣ j > k]⊗ Fp[yj ∣ j > k]{1, zp
k(p−1)xk}

d2npk(p−1)(z
pk(p−1)xk) = yk.

If Erst denotes the Serre spectral sequence, then we get a map Ê∗∗∗ −→ E∗∗∗ of first quadrant spectral
sequences. This is an isomorphism on the bottom line at E2, and also on the whole E∞ page. A
standard comparison result now tells us that it is an isomorphism on the whole E2 page, and we
conclude that

H∗Ω
2S2n+1 = Fp[yk ∣ k > 0]⊗ E[xk ∣ k ≥ 0]

as claimed.

19.2. The Snaith splitting. In this section, we outline a proof that Ω2S2n+1 splits stably as
a wedge of finite spectra. Our proof follows [12]. We start with the following combinatorial
approximation to Ω2S2n+1. Let CkS

2n−1 denote the set of (discontinuous) maps x : ℂ −→ S2n−1

such that there are at most k points z ∈ ℂ for which x(z) is not the basepoint. There is an
evident surjective map Fkℂ ×Σk

(S2n−1)k −→ CkS
2n−1: it sends a point [z1, . . . , zk; a1, . . . ak] of

Fkℂ to the map x : ℂ −→ S2n with x(zi) = ai and x(z) = 0 for all points other than the zi’s. We
topologise CkS

2n−1 as a quotient of Fkℂ ×Σk
(S2n−1)k. We also write CS2n−1 =

∪
k CkS

2n−1,
and we topologise this as the direct limit.

The map �k : Fkℂ ×Σk
(Ω2X)k −→ Ω2X that we discussed earlier, together with the unit map

� : S2n−1 −→ Ω2S2n+1, gives a map �k : CkS
2n−1 −→ Ω2S2n+1, and in the limit a map � : CS2n−1 −→

Ω2S2n+1. It can be shown that this is a homotopy equivalence [29].
We next write Dk for the quotient CkS

2n−1/Ck−1S
2n−1. One can see directly that

Dk = (Fkℂ)+ ∧Σk
S(2n−1)k.

This is also the Thom space (Bkℂ)(2n−1)V , where V is the vector bundle Fkℂ×Σk
ℝk over Bkℂ.

Moreover, the bundle 2V = ℂ ⊗ V = Fkℂ ×Σk
ℂk is trivial. To see this, let W be the space of

complex polynomials of degree at most k, and note that the map Bkℂ×W −→ Fkℂ×Σk
ℂk sending

([z1, . . . , zp], f) to [z1, . . . , zp; f(z0), . . . , f(zp)] is an isomorphism (by Lagrange interpolation, for
example). We conclude that

Dk = Σ2(n−1)k(Bkℂ)V .

We next show that the filtration of CS2n−1 by the spaces CkS
2n−1 is stably split. We first

generalise the definition of CS2n−1: for any space U and any pointed space X we let C(U,X)
denote the set of discontinuous maps x : U −→ X such that x(u) = 0 for all but finitely many points
u ∈ U . Thus CS2n−1 = C(ℂ, S2n−1). The same procedure that gave our map CS2n−1 −→ Ω2S2n+1

gives maps C(ℝn, X) −→ ΩnΣnX. After some minor adjustments we can make these compatible
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as n varies, and thus get a map C(ℝ∞, X) −→ QX = lim
−→n

ΩnΣnX in the limit. (The cleanest

way to make these adjustments is to use the constructions in [40].) It can be shown that this is a
homotopy equivalence when X is a connected CW complex.

We now define a map jk : CS2n−1 −→ C(ℝ∞, Dk) as follows. We take the polynomial ring ℂ[t]
as our model for ℝ∞, and ℝ2n−1 ∪ {∞} as our model for S2n−1. There is a natural identification

Dk = {(A, z) ∣ A ⊂ ℂ, ∣A∣ = k, z : A −→ ℝ2n−1} ∪ {∞}.

Suppose that x ∈ CS2n−1, and let B be the finite set of points z ∈ ℂ such that x(z) ∕= ∞. For
each subset A ⊆ B with ∣A∣ = k, we define gA(t) =

∏
z∈A(t − z), so that gA ∈ ℂ[t]. We then

define a map y : ℂ[t] −→ Dk by setting y(gA) = (A, x∣A) for each subset A as above, and y(f) =∞
for all other polynomials f . Thus y is a point of C(ℝ∞, Dk), and we define jk(x) = y. One can
check that this gives a continuous map jk : CS2n−1 −→ C(ℝ∞, Dk).

If we identify C(ℝ∞, Dk) with QDk and take adjoints, we get a map of spectra

j′k : Σ∞CS2n−1 −→ Σ∞Dk.

It is easy to see that jkCk−1S
2n−1 = 0 and that the induced map

j′k : Σ∞Dk = Σ∞CkS
2n−1/Ck−1S

2n−1 −→ Σ∞Dk

is just the identity. Using this, it is not hard to conclude that

Σ∞Ω2S2n+1
+ ≃

⋁
k≥0

Σ∞Dk.

(We need to observe here that the connectivity of Dk = Σ2(n−1)k(Bkℂ)V tends to ∞ as k does,
so that the wedge of the spectra Σ∞Dk is the same as their product.)

19.3. More about homology. One can show that the loop sum map Ω2S2n+1 × Ω2S2n+1 −→
Ω2S2n+1 splits stably as a wedge of maps Dk ∧ Dl −→ Dk+l, and that the � operation sends

H̃∗Dk to H̃∗Dpk. This is enough to tell us how the Snaith splitting splits the homology ring
H∗Ω

2S2n+1 = Fp[yk ∣ k > 0] ⊗ E[xk ∣ k ≥ 0]. Explicitly, we can define a weight function on
monomials by ∥xi∥ = ∥yi∥ = pi, and ∥uv∥ = ∥u∥ + ∥v∥. It follows easily from the above that

H̃∗Dk is the span of those monomials u such that ∥u∥ = k. Note that this is zero unless k is 0 or 1

mod p, and that H̃∗Dpk+1 = x0H̃∗Dpk. In fact, there is a p-local equivalence Dpk+1 = Σ2n−1Dpk

and Dj is p-locally stably contractible unless j ∈ {0, 1} (mod p). The lowest degree generator on

H̃∗Dpk is yk1 ∈ H2(np−1)kDpk.

We can also determine the (co)action of the (dual) Steenrod algebra on H∗Ω
2S3. There is a

general formula for P k∗ �(a) (for a ∈ H2k−1Ω2X), which involves the so-called Browder bracket
operation �(−,−). In the case X = S2n+1 one can show that � vanishes. Given this, the formula
reduces to

P k∗ �(a) =

{
�P

k/p
∗ a if p divides k

0 otherwise.

If we write x(s) =
∑
i≥0 xis

pi and y(s) =
∑
i>0 yis

pi then we find that

(�P (t))∗x(s) = x(s)

(�P (t))∗y(s) = y(s) + ty(s)p

�x(s) = x(s)− (��)(y(s))

�y(s) = (��)(y(s)) = �−1(y(s)).

One can also show that

H̃∗Dpk = A/(�(��P j) ∣ pj + � ≥ k)upk,

as modules over the Steenrod algebra A. Here upk ∈ H2(np−1)kDpk is dual to yk1 . If p does not

divide k then we have H̃∗Dpk = A/(�(��P j) ∣ j > ⌊k/p⌋), which means that Dpk is a so-called
Brown-Gitler spectrum. A great deal is known about these [9].
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The element y1 ∈ H2(np−1)Dp is carried by a stable map S2(np−1) −→ Dp, which we also call y1.
Multiplication by y1 gives maps

D0 −→ Dp −→ D2p
...−→ .

It turns out that the telescope of this sequence is just the Eilenberg-MacLane spectrum HFp.
Now take n = 1, so we consider Ω2S3. The evident map S3 −→ K(ℤ, 3) gives a map f : Ω2S3 −→

Ω2K(ℤ, 3) = S1 of H-spaces, whose composite with the unit map � : S1 −→ Ω2S3 is the identity.
Using this, we see that the fibre W of f is an H-space, and that Ω2S3 is homotopy equivalent
to S1 ×W (but not as H-spaces). It can be shown that there is a p-local sphere bundle over W
whose Thom spectrum is the Eilenberg-MacLane spectrum Hℤ(p).

19.4. References. A very important application of the above theory is to the proof of the nilpo-
tence theorem of Hopkins, Devinatz and Smith. See [37] for a discussion of this.
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20. Homology of Eilenberg-MacLane spaces

Let p be an odd prime. In this section, we discuss the mod p homology of the Eilenberg-MacLane
spaces K(Fp, n). The key to an efficient computation of these groups is to fit them together into
an elaborate algebraic object called a Hopf ring and compute them all simultaneously. This is
discussed in more detail in [47].

20.1. The Hopf ring H∗H∗. We will write H for the Eilenberg-MacLane spectrum with �∗H =
Fp. The k’th space in this spectrum is Hk = K(Fp, k). We will need to consider the following
maps:

� : Hk ×Hk −→ Hk

� : Hk ×H l −→ Hk+l

� : Hk −→ Hk ×Hk

� : Hk −→ 1

The map � induces the addition map in the group HkX = [X,Hk]. The map � induces the
multiplication map

HkX ×H lX = [X,Hk ×H l] −→ [X,Hk+l] = Hk+lX.

The maps � and � are the diagonal map and the constant map.
These maps induce

(a) A product

�∗ : HiHk ⊗HjHk −→ Hi+jHk,

written �∗(a⊗ b) = a ∗ b or just ab.
(b) Another product

�∗ : HiHk ⊗HjH l −→ Hi+jHk+l,

written �∗(a⊗ b) = a ∘ b.
(c) A coproduct

 = �∗ : HiH l −→
⊕
i=j+k

HjH l ⊗HkH l.

(d) An augmentation

� = �∗ : HkH l −→ Fp.
Note that H∗H0 = Fp[Fp] = Fp{[i] ∣ i ∈ Fp}. It is easy to see that

[i] ∗ [j] = [i+ j]

[i] ∘ [j] = [ij]

 [i] = [i]⊗ [i]

�[i] = 1.

Next, we consider H∗H1 = H∗BCp. It is well-known that H∗BCp = E[x]⊗Fp[y], where ∣x∣ = 1,
∣y∣ = 2, and both x and y are primitive. It follows that H∗H1 = E[e] ⊗D[a]. The second factor
here is a divided-power algebra, spanned by elements a[k] (to be thought of as ak/k!) with

a[k]a[l] =

(
k + l
k

)
a[k+l]

 (a[k]) =
∑
k=i+j

a[i] ⊗ a[j].

If we write ai = a[pi] then D[a] is isomorphic as an algebra to
⊗

i≥0 T [ai], where T [a] means the

truncated polynomial algebra Fp[a]/ap.
Similarly, we find that

H∗K(ℤ, 2) = H∗ℂP∞ = D[b] =
⊗
i≥0

T [bi],
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where bi = b[p
i] ∈ H2piℂP∞. We also write bi for the image of bi in H∗K(Fp, 2) = H∗H2.

We can combine the elements e, ai and bj using our two products ∗ and ∘ to get many more
elements of H∗H∗; in fact, it turns out that we get all of H∗H∗ this way. To keep this process under
control, we need to understand some of the properties of these products. The relevant properties
can be summarised by saying that they make H∗H∗ into a graded ring in the category of graded
coalgebras (otherwise known as a Hopf ring). More explicitly: ∗ and ∘ are both associative
products, with units [0] and [1] respectively. The ∗-product is graded-commutative, but we have

a ∘ b = (−1)ij [(−1)kl] ∘ b ∘ a
if a ∈ HiHk and b ∈ HjH l. Both products are compatible with  and �, in the sense that

 (a ∘ b) =
∑

(−1)∣b
′∣∣a′′∣a′ ∘ b⊗ a′′ ∘ b′′

�(a ∘ b) = �(a)�(b),

and similarly for a ∗ b. The first equation is written in the usual Hopf algebra notation, with
 (a) =

∑
a′ ⊗ a′′ and  (b) =

∑
b′ ⊗ b′′. Finally, we have a distributivity formula

a ∘ (b ∗ c) =
∑

(−1)∣b∣∣a
′′∣(a′ ∘ b) ∗ (a′′ ∘ c).

(Note that the “obvious” formula a∘ (b∗ c) = (a∘ b)∗ (a∘ c) is both dimensionally inconsistent and
nonlinear in a. Instead of the “obvious” diagonal map a 7→ a ⊗ a, we need to use the coproduct
map  , which is induced by the diagonal map of spaces.)

For any sequence of integers � = (�0, �1, . . .) with 0 ≤ �i < p and �i = 0 for i≫ 0, we define

b∘� = b∘�00 ∘ b∘�11 ∘ . . . .
It is convenient to set b∘� = [1]− [0] if � = 0. This ensures that (b∘�)∗p = 0 and �(b∘�) = 0 for all
�. Similarly, given a sequence � = (�0, �1, . . .) with �i ∈ {0, 1} and �i = 0 for i≫ 0, we define

a∘� = a∘�0

0 ∘ a∘�1

1 ∘ . . . .
The main result is that⊗

k

H∗Hk =
⊗
�,�

T [a∘� ∘ b∘� ]⊗ E[e ∘ a∘� ∘ b∘� ].

The subring H∗Hk consists of those factors T [a∘� ∘ b∘� ] for which
∑
�i + 2

∑
�i = k, together

with those factors E[e ∘ a∘� ∘ b∘� ] for which
∑
�i + 2

∑
�i = k − 1.

The proof uses the Rothenberg-Steenrod spectral sequence (also called the bar spectral se-
quence)

Tor
H∗Hk
∗∗ (Fp,Fp) =⇒ H∗Hk+1.

The E2 term is easy to compute (given that H∗Hk is as claimed) using the formulae

TorA⊗B(Fp,Fp) = TorA(Fp,Fp)⊗ TorB(Fp,Fp)

TorE[e](Fp,Fp) = D[b] =
⊗
k≥0

T [b[k]] with b ∈ Tor1,2∣e∣

TorT [a](Fp,Fp) = E[c]⊗D[d] with c ∈ Tor1,∣a∣ and d ∈ Tor2,p∣a∣ .

With more work, one can show that the spectral sequence always collapses, and deduce that
H∗Hk+1 is as claimed.

20.2. Stable homology. We next consider the homology of the spectrum H, in other words the
ring

H∗H = lim
−→
k

H̃∗+kHk.

This is called the dual Steenrod algebra. The colimit implicitly uses a map

�∗ : H̃k+lHk −→ H̃k+l+1Hk+1.

This is just the homology suspension map, which is the same as the map x 7→ e ∘ x. This kills ∗-
decomposable elements, which implies that HkH is spanned by the images of the elements a∘�∘b∘�
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and e ∘ a∘� ∘ b∘� . It turns out that we do not need the latter elements, because e ∘ e = b0. Let

�k ∈ H2pk−2H and �k ∈ H2pk−1H be the images of bk ∈ H̃2pkH2 and ak ∈ H̃2pkH1 respectively.
It turns out that �0 = 1 and that

H∗H = Fp[�k ∣ k > 0]⊗ E[�k ∣ k ≥ 0].

This ring has a natural Hopf algebra structure, arising from the map

H∗H = �∗(H ∧H)
�∗(1∧�∧1)−−−−−−−→ �∗(H ∧H ∧H) = H∗H ⊗H∗H.

For more discussion of this, see [36, Section 2.2] or [2, Part III, Section 12]. It turns out that the
coproduct is

 (�k) =
∑
k=i+j

�p
j

i ⊗ �j

 (�k) = �k ⊗ 1 +
∑
k=i+j

�p
j

i ⊗ �j .

20.3. Automorphisms of the additive group. The Hopf algebra Fp[�k ∣ k > 0] < H∗H can
be described in the following more conceptual way. For any Fp-algebra A, write

Ĝa(A) = { nilpotent elements of A},

considered as a group under addition. Define

Aut(Ĝa)(A) = { isomorphisms f : Ĝa(B) −→ Ĝa(B), natural for A-algebras B }.

One can show that any f ∈ Aut(Ĝa)(A) has the form f(b) =
∑
i aib

pi for uniquely determined

coefficients ai ∈ A, with a0 ∈ A×. We write Aut1(Ĝa)(A) for the subgroup where a0 = 1.

Given a map � : Fp[�k ∣ k > 0] −→ A, we obtain an element f : b 7→
∑
i≥0 �(�i)b

pi of Aut1(Ĝa)(A).
This clearly gives a bijection

Rings(Fp[�k ∣ k > 0], A) = Aut1(Ĝa)(A).

The coproduct on Fp[�k ∣ k > 0] makes the left hand side into a group, the right hand side is a
group under composition, and the coproduct is the unique one for which these two group structures
coincide.

If Z is a space and A is an Fp-algebra, we can define XZ(A) = Rings(H∗Z,A). Because of the

above relationship of Fp[�k] with H∗H and Aut1(Ĝa), it turns out that there is a natural action

of the group Aut1(Ĝa)(A) on the set XZ(A). It turns out that for many popular spaces Z, there

is a simple and conceptual description of XZ(A) as a set with action of Aut1(Ĝa)(A).

20.4. Cohomology. We can dualise the above calculation to describe H∗H and H∗H∗. Firstly,
we let P (�) ∈ H∗H be dual to �� =

∏
i>0 �

�i
i with respect to the obvious monomial basis, and let

Qi be dual to �i. It follows that ±Q�P (�) is dual to � ���, and that these elements form a basis
for the Hopf algebra H∗H (which is called the Steenrod algebra). The coproduct is given by

 P (�) =
∑

�=�+

P (�)⊗ P ()

 Qi = Qi ⊗ 1 + 1⊗Qi.

There is an explicit but elaborate formula for the product P (�)P (�). See [26] for a discussion of
this, and an extensive structure theory of modules over H∗H.

Let �m be the tautological generator of HmHm. It can be shown (I think) that H∗Hm is the free
graded-commutative algebra generated by the elements Q�P (�)�m for which

∑
k>0(�k+2�k) < m

(note that �0 does not contribute). This element has degreem+
∑
k≥0(2pk−1)�k+

∑
k>0(2pk−2)�k,

and it generates an exterior (resp. polynomial) algebra if the degree is odd (resp. even). The algebra
H∗Hm is the tensor product of all these exterior and polynomial algebras.
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An alternative basis for H∗H is given by the so-called admissible monomials [39]. Write � = Q0

and P k = P (k, 0, 0, . . .). These elements satisfy the Adem relations:

P aP b =

⌊a/p⌋∑
t=0

(−1)a+t

(
(p− 1)(b− t)− 1

a− pt

)
P a+b−tP t

P a�P b =

⌊a/p⌋∑
t=0

(−1)a+t

(
(p− 1)(b− t)

a− pt

)
�P a+b−tP t+

⌊(a−1)/p⌋∑
t=0

(−1)a+t−1

(
(p− 1)(b− t)− 1

a− pt− 1

)
P a+b−t�P t.

A sequence I = (�0, s1, �1, . . . , sk, �k, 0, 0, . . .) is said to be admissible if �i ∈ {0, 1} and si ≥
psi+1 + �i for all i. We write

P I = ��0P s1��1P s2 . . . P sk��k ∈ H∗H.
It can be shown that these elements form a basis for H∗H, as I runs over the set of all admissible
sequences. Moreover, we have

⟨P I , �k⟩ =

{
1 if P I = P p

k−1

P p
k−2

. . . P 1

0 otherwise

⟨P I , �k⟩ =

{
1 if P I = P p

k−1

P p
k−2

. . . P 1�

0 otherwise

20.5. References. Find a more precise reference for E∗E being a Hopf algebroid. Add a reference
for free unstable modules.
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21. Things left to do

(1) Spaces of long knots
(2) The Kummer surface.
(3) Brieskorn manifolds.
(4) The dodecahedral manifold.
(5) Knot complements, the Massey product in the complement of the Borromean rings.
(6) Grassmannians, Stiefel manifolds, (bounded) flag varieties.
(7) Buhstaber-Ray manifolds representing generators for MU∗ and MU∗MU
(8) Matrices of bounded rank, intersection loci.
(9) Projective unitary groups.

(10) Loop groups, algebraic loops, central extensions, representations.
(11) Toric varieties.
(12) Moduli of stable marked curves of genus zero.
(13) Manifolds of isospectral tridiagonal matrices. (See papers by Gaifullin, Tomei, M. Davis

(’Some aspherical manifolds’). Fix a monic polynomial p(t) of degree n+1 with n distinct
real roots. Let M be the space of (n+ 1)× (n+ 1) real symmetric matrices A such that
Aij = 0 when ∣i − j∣ > 1 and det(tI − A) = p(t). Then M is a K(�, 1) and a compact
oriented n-manifold. It can be written as a union of 2n permutahedra.)

(14) Springer varieties
(15) ℤ×BU .
(16) Projective unitary groups
(17) Spaces related to degeneracy loci
(18) The connective covers BU⟨m⟩.
(19) General things about BG; some stable splittings.
(20) Stable retracts of BV , U(ℂ[V ])/V , (Mitchell’s complexes with cohomology free over A(n))

and (ℂPn)m (Jeff Smith’s examples for the smash product theorem).
(21) Stable retracts of U and BU .

(22) The spectra M(k), L(k), D(k), Spp
k

S0 occuring in Nick Kuhn’s work on the Whitehead
conjecture.

(23) Bruhat-Tits building for PGLnℚp.
(24) The contractible spaces S∞, Fnℝ∞, and the quotient space Bnℝ∞ = BΣn.
(25) The space ℒ(U ,V) of linear isometries, and the associated operad.
(26) Spaces of embeddings of manifolds. I seem to remember that Goodwillie and/or Wald-

hausen have some stuff about this. Contractibility of the space of embeddings in ℝ∞.
(27) Some generalities about topology of manifolds: Atiyah duality, Morse theory, connected

sums, handlebodies, elementary ideas about surgery.
(28) Brown-Gitler spectra.
(29) The Brown-Comenetz spectrum I.
(30) Map(BV,X).
(31) Generalised Moore spectra V (n), S/I.
(32) Spectra realising small A-modules.
(33) KU , kU .
(34) MP , MP ∧MP .
(35) BTop, BPL, SF , MTop and all that.
(36) Surgery spectra, Waldhausen K-theory
(37) BP , P (n), B(n), E(n), K(n) etc.
(38) Tate spectra PGH, PGMU , PGS.
(39) X(n), T (n), and the nilpotence theorem.
(40) Spectra associated with the Adams conjecture and etale homotopy theory.
(41) Spaces occuring in unstable vn-periodic homotopy theory and Brayton Gray’s theory of

cospectra.
(42) BP ⟨n⟩ and stuff about the projective dimension of BP∗X.
(43) Elliptic spectra, tmf , TMF and so on.
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(44) K(kU) and related objects.
(45) Spectra occuring in the disproof of the telescope conjecture.
(46) LM−T , string topology, the cactus operad.
(47) Floer pro-spectra.
(48) Seiberg-Witten and Yang-Mills moduli spaces.
(49) Teichmüller space, and compactifications.
(50) Spaces of representations of discrete groups in PSL2(ℂ).
(51) Calabi-Yau manifolds.
(52) Examples from rational homotopy theory.
(53) Groups of homotopy spheres.
(54) Fuchsian groups.
(55) Something about Goodwillie calculus.
(56) Something about Π-algebras.
(57) ℂP∞−1, Madsen-Weiss
(58) Aut(Freen), outer space, associated K-theory spectra.
(59) p-compact groups. U(n) as a homotopy colimit of p-toral groups, Sullivan’s classifying

spaces for S2p−3, p-compact groups with Weyl group Σn ≀ Cp
(60) Anick spaces, Gray’s delooping of the fibre of the double suspension.
(61) Examples from the theory of LS-category.
(62) Simultaneous conjugacy spaces (U(n)ad)k/U(n).
(63) Hom(ℤn, U(m))
(64) The space of maximal tori in U(n).
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