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Abstract
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Introduction

One of the oldest problems in algebraic topology is that of understanding the
homology of the infinite classical groups and their coset spaces. The structure of
the individual homology rings has long been known, but more remains to be said.
One would like to understand the Hopf algebra structure of the homology and the
action of the Steenrod and Kudo-Araki operations. One also needs to know the
effect of various maps between the spaces, and the behaviour of spectral sequences
arising from various fibrations. Ideally one would like to do this in a systematic and
efficient way, giving canonical families of generators for the homology rings which
are well related to each other via the maps in question. In this thesis, we achieve
this with the help of two new tools: Hopf rings and formal power series methods.

It is well known that many of the spaces in question can be assembled into Ω-
spectra, often equipped with a ring structure. The homology algebras of the spaces
in such a spectrum fit together to form an algebraic object called a Hopf ring. Hopf
rings have many different operations, so a small number of elements can generate a
large structure and a short list of relations can have wide consequences. We shall
find that the Hopf rings under consideration are all generated by a small number of
generators modulo a small set of relations. The operations and maps which we are
called upon to understand connect well with the Hopf ring structure, making the
answers strikingly simple. This is reminiscent of the Hopf ring calculations of Miller
and Ravenel in the complex oriented case – we discuss this further in section 2.1.

It has become clear that the most efficient and elegant way to state and ma-
nipulate the structural formulae in a large class of algebraic objects encountered in
topology is to use the language of formal power series – see [4][18][7] for example.
These methods are used extensively in this thesis, leading to many simplifications. I
include a number of restatements of standard results in this language, which appear
not to have been noticed before.

The structure which we shall reveal is rather beautiful, with many subtle and
intricate effects conspiring in unexpected ways to give a consistent result.

Another important feature of this thesis is the use of the symbolic mathematics
language Mathematica. I have written (and am happy to distribute by email) a
Mathematica program which implements many of the results proved. After running
this program one can use Mathematica to do computations in the Hopf rings under
consideration. One can simply type in expressions in a notation similar to the usual
one, and the program will attempt to evaluate them. I have used this to check
various tables etc. in the thesis for consistency. Much of the code works for Hopf
rings in general, rather than just the ones I compute.

The structure of this thesis is somewhat non-standard. It is designed to be a
useful reference. It seemed to me that this was most easily achieved by splitting
the thesis into three parts : first the results, then development of machinery, then
proofs. Chapter 1 is mainly standard material about K-theory spectra, their ho-
motopy groups and associated infinite loop spaces, and about maps between such
spectra. We shall not give detailed proofs, but some of the background machinery is
developed in section 6 and indications of proofs are given in chapter 7. In chapters 2
and 3 we set out various results about the mod 2 and torsion-quotient Hopf rings
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8 INTRODUCTION

associated to K-theory spectra, and related matters. These we prove in detail, in
sections 7.3 to 7.10, which broadly parallel 2.1 to 3.5. In addition, in sections 3.1
and 3.2 we develop a little general theory of homology mod torsion.

In chapter 4 we recall some standard facts about Hopf algebras and Hopf rings,
and how they arise in topology. Next, in chapter 5, we build up the arsenal of
spectral sequences which we need to prove the claims in earlier chapters. Some
facts about the Serre spectral sequence with twisted coefficients appear to be new.
I include an analysis of how this works in some typical cases involving K-theory
spectra.

In chapter 6 we recall some ideas about Clifford modules and Atiyah’s Real
K-theory. Chapter 7 contains partial proofs for chapter 1 based on these ideas.
It also contains full proofs for chapters 2 and 3. The input to these full proofs
is the material in chapter 1 together with the machinery in chapters 4 and 5, a
result on Kudo-Araki operations due to Priddy [19] and a few explicit geometrical
constructions.



Notes on Sources and Originality

The study of the Bott periodicity spaces is well-trodden ground. As a conse-
quence, this thesis contains a complex mixture of new results, old results presented
in new ways, and standard exposition. These notes are an attempt to unravel this.
They are placed at the front to avoid hiding anything, but they are probably best
read after the main body of the thesis.

While there is little that is original in chapter 1, I know of no source in which
all these related facts are collected together. The most useful references are [3]
and [2]. The commutative diagram 1.3.1 draws on chapter 3 of [1]. The cofibre
diagrams 1.3.2 and 1.3.3 are an elaboration of material in [2] and [23], perhaps
somewhat disguised. I have not seen octahedral diagrams drawn in this way before;
it seems to me to have much to recommend it. The entries in table 1.4.1 come
from a variety of places. Most can be proven with less effort than it takes to find a
source, particularly if one knows the descriptions of the relevant bundles in terms of
Clifford modules [3]. The best reference for section 1.5 is [8]. Table 1.5.9 contains
some folklore, none of it hard to check.

Chapter 2 contains more that is new. Most of what was previously known can
be extracted (with some labour) from [8]. Other sources include [25] and [24]. For
most of the spaces considered, the mod 2 homology is well known as a ring, often
even as a Hopf algebra. However, the generators are not easy to relate to each
other and the circle product is hard to understand from the classical description.
In the self-conjugate case, the only information previously available [23] was the
cohomology of the zeroth space Z×BT . Thus, a number of aspects of the Hopf
ring structure are original, as is the whole programme of finding a minimal set of
Hopf ring generators and relations. In order to show that the elements described by
Hopf ring methods are generators, it appears to be necessary to recalculate most of
the groups involved by Hopf ring methods. Some simplification could be achieved
by appealing to facts already known. However, to import this information one
would have to examine the structure maps of the various spectra and the unstable
components of various stable maps in much greater detail than otherwise necessary.
There would thus be little, if any, net saving. The Hopf ring proofs given in chapter 7
are mostly original. The formal power series equations (2.8.1), (2.8.10), (2.8.16),
(2.8.17) and (2.8.18) are also new, although equivalent formulae involving binomial
coefficients etc. are well known. The Bockstein homology calculations for HF∗KO∗
stated in section 2.9 are extensions of those given in [8]. Those for HF∗KT ∗ are
new.

It would surprise me if the theory in section 3.1 could not be found somewhere
in the algebra literature. I found it independently and have not looked very hard for
sources. The theory in section 3.2 is new. The description of the integral Hopf ring
for KU in section 3.3, and the fact that it is freely generated by H∗CP∞ modulo
formal group relations, is folklore. It is easy to deduce from the classical description
given in (for example) [24], but I believe it has not been written down before. In
the case of KO, rather less was previously known. The homology of all the spaces
had been computed with coefficients Z[ 12 ], but in most cases the subring H∗(X) had
not. The Hopf ring structure is all original, as is everything in section 3.5 about
the self conjugate case.

Chapter 4 is almost all standard – [17] is a good reference. The Penrose dia-
grams for Hopf ring identities are I think new in print, although Joyal has certainly
drawn them before.

Chapter 5 is not quite so standard. The Bockstein spectral sequence in sec-
tion 5.1 is folklore, but I do not know a good reference. The spectral sequence
of the same name considered in [6] for example, is somewhat different. Section 5.2
about the Rothenberg-Steenrod spectral sequence is all standard [21][26]. Similarly,
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10 INTRODUCTION

the discussion of the Eilenberg-Moore sequence in section 5.3 is based on [16]. There
are any number of sources for the basic theory of the Serre spectral sequence, but
the analysis of the local coefficients in the case of an infinite loop map (section 5.4)
is new. The analysis of specific examples in section 5.5 is also original.

Chapter 6 is essentially extracted from [3] and [2]. Some signs, choices of
generators etc. have been changed. This is part of a programme I have to tidy
up the theory and make the conventions more transparent and consistent. I have
written Mathematica code to implement the various Clifford algebras etc. involved,
but this is still in progress.

The Mathematica programs referred to above are all new.
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Notation

For convenience, we collect in this section some remarks about notation used
elsewhere in this thesis.

Miscellaneous Rings etc.:

F = Z/(2)
N = Natural numbers 3 0
H = Quaternions
O = Octonions

K,L variables taking the value R,C,H or T

(see section 1.1)

Types of Homology:

HF∗(X) = H∗(X; F)

H∗(X) = H∗(X; Z)/torsion

H̃∗(X) = reduced integral homology of X
H[ 12 ]∗(X) = H∗(X; Z[ 12 ])

Building Blocks for Hopf Algebras:

P [x] = Polynomial algebra on x
E[x] = Exterior algebra on x
D[x] = Divided power algebra on x
k[G] = Group algebra of a group G over k

k{a0, . . . an} = Free k-module on {a0, . . . an}

The base ring is to be understood from the context. Where we have an infinite
family {xk} of variables, we almost always index them so that xk lies in dimension
k. In an expression like P [x2k] or E[y4k+5] the index k is supposed to be interpreted
as a free variable running over all nonnegative integers, so we have an algebra with
infinitely many generators. There are a few exceptions to this, which should be
clear in context.

Infinite Loop Spaces:

E k = k’th space in the Ω-spectrum E

E ′k = base component in E k

(sections 1.5,4.3).

Structure Maps for Hopf Rings:

ε = augmentation
ψ = coproduct
η = unit map for ∗-product (ηk(1) = [0k] = 1k)
σ = ∗-product (ab = a ∗ b = σ(a⊗ b))
χ = antipode
θ = unit map for ◦-product (θ(10) = [1])
µ = ◦-product (a ◦ b = µ(a⊗ b))

(see chapter 4)
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Elements of Hopf Rings

e = suspension class
[a] = element of H0 E k = Z[π−kE] corresponding to a ∈ π−kE

(see chapter 4)
The following homotopy elements are defined in section 1.1:

α β γ θ λ µ ν

Finally, we list various series and the sections in which they are defined.

z(t), z(t) 2.1
z′(t), p(t1, t2, . . . ), q(t) 2.6

y(t) 3.3

ky(t), kŷ(t), ky̆(t) 3.4

kx(t), kx̂(t), kx̆(t) 3.5

We also use series called zH(t), zC(t) and so on; the subscript is often omitted and
assumed to be clear from the context. The various ring and module structures of
the K-theory spectra behave in such a way as to make this harmless. The formal
derivative of z(t) will sometimes be written ż(t) ; dashes (e.g. z′(t)) are used for
other things.



CHAPTER 1

K-Theory Spectra

In this chapter we describe the periodic K-theory spectra and various maps be-
tween them. We also describe their homotopy rings and the action of the maps on
them. Most of the facts stated in this chapter (in particular, the truth of Bott peri-
odicity) will be assumed as background. Some remarks will be made in sections 6.1
to 7.2 about how they are proved.

1.1. Spectra

We consider the spectra KU ,KT ,KO and KSp representing unitary, self con-
jugate, orthogonal and symplectic K-theory respectively. The symplectic spectrum
KSp is equivalent to Σ4KO but it will be convenient to consider it in its own right.

We shall let K denote any of the division algebras R , C or H. We write KK
for the associated K-theory and OK for the associated linear isometry group. We
also write KT = KT . Thus, if X is a finite dimensional CW-complex, then K0

KX is
the Grothendieck group of the category of (left) K-vector bundles over X of locally
constant rank. The ring KT 0X can also be described as the Grothendieck group
of a category. The objects are pairs (χ, f) where χ is a complex bundle over X
and f is a “self-conjugacy” of χ, i.e. a conjugate linear automorphism. The maps
from (χ0, f0) to (χ1, f1) are the complex linear maps g : χ0 −→ χ1 such that f0 is
homotopic to g−1f1g through self-conjugacies.

We define a partial multiplication on {R,C,H, T} by

RK = K = KR (1.1.1)
RT = T = TR (1.1.2)
CC = C (1.1.3)
TT = T (1.1.4)
HH = R (1.1.5)

There are natural pairings KK ∧KL −→ KKL corresponding to the various kinds of
tensor product of bundles. This makes KU , KT and KO into ring spectra, and
all four spectra into KO-modules. Also, the various pairings involving KO and
KSp fit together to make KO ⊕ KSp into a ring spectrum; it classifies complex
bundles with a conjugate linear automorphism f such that f4 = 1. We shall write
dK = dimR K.

We can also interpret these spectra in terms of Atiyah’s “Real K-Theory” (sec-
tion 6.2). This makes it easier to construct and understand maps and homotopy
elements in a unified way, but obscures the connection with the classical groups.

The homotopy groups are:

KO∗ = Z[α, β, λ±1]/(α3, 2α, αβ, β2 − 4λ) |α| = 1 |β| = 4 |λ| = 8
KT∗ = Z[α, γ, µ±1]/(α2, 2α, αγ, γ2) |α| = 1 |γ| = 3 |µ| = 4
KU∗ = Z[ν±1] |ν| = 2
KSp∗ = KO∗θ |θ| = 4 (1.1.6)

The KO-bilinear pairing KSp∧KSp −→ KO is given in homotopy by θ2 = λ.

13



14 1. K-THEORY SPECTRA

The elements α,ν,θ and λ correspond to the reduced canonical line bundles over
the projective lines RP 1 = S1, CP 1 = S2 , HP 1 = S4 and OP 1 = S8. Here H and
O denote the quaternions and octonions respectively.

The element β is just the underlying real bundle of θ, and µ is just θ with the
self-conjugacy u 7→ ju. To construct γ we take the trivial bundle

S3 ×H→ S3 = Sp(1) (1.1.7)

and give it the self-conjugacy

(a, z + wj) 7→ (a, (z + wj)a) (z, w ∈ C) (1.1.8)

For more information about these generators and relations, and for indications
of the proof of their completeness, see sections 6.1 to 7.2. I do not guarantee the
correctness of signs.

1.2. Maps

We list below a number of maps between our spectra. The descriptions given
are in fact descriptions of continuous functors on categories of bundles, which can be
converted to stable maps by a suitable machine; we pass over such matters. We use
ξ, χ, ζ and η for typical unitary, self conjugate, orthogonal and symplectic bundles
respectively.

c : KU −→ KU ξ 7→ ξ C-structure twisted by conjugation
lU : KU −→ KSp ξ 7→ H⊗C ξ
lO : KO −→ KT ζ 7→ C⊗R ζ with self-conjugacy z ⊗ x 7→ z ⊗ x
mU : KU −→ KT ξ 7→ ξ ⊕ cξ with self-conjugacy (x, y) 7→ (y, x)
mT : KT −→ KSp χ 7→ H⊗C χ
mO : KO −→ KU ζ 7→ C⊗R ζ
nO : KO −→ KSp ζ 7→ H⊗R ζ
fU : KU −→ KO ξ 7→ ξ considered as an R-bundle
fT : KT −→ KU χ 7→ χ with self-conjugacy forgotten
fSp : KSp−→ KT η 7→ η with self-conjugacy x 7→ jx
gT : KT −→ KO χ 7→ χ considered as an R-bundle
gSp : KSp−→ KU η 7→ η considered as a C-bundle
hSp : KSp−→ KO η 7→ η considered as an R-bundle

(1.2.1)

The scheme is that maps called f forget one piece of structure; maps called g or h
are composites of two or three f ’s. Maps called l freely add one piece of structure.
Maps called m are composites of an f and an l.

The maps c, lO, fT and mO are ring maps. All maps are KO-module maps.
Given a ring spectrum E, an E-module spectrum F , and a homotopy element

x ∈ πnE, we have an obvious map (“multiplication by x”):

ΣnF x∧1−→ E ∧ F −→ F (1.2.2)

We shall write either mx or just x for this map.
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1.3. Diagrams

In this section we exhibit various commutative and exact diagrams. For justifi-
cation, see section 7.1. The maps described above fit into the following commutative
diagram:

KU

KO

KU

KO

KSp

KT

KSp

KT
lO

lU

fU

mO

fU

fSp

mT

fSp

lO

lU

mU

mU

gSp

gT

nO

fT

hSp

hSp

1 + c

2

2

-

-

-

-

?

?

?

?

?

?

H
HHH

HHH
HHH

HHH
HHH

HHj

HH
HHH

HHH
HHH

HHH
HHH

Hj

HHH
HHH

HHH
HHH

HHH
HHHj

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�	

�
�

�
�

�

�
�

�
�

�

S
S

S
S
Sw

S
S

S
S
Sw

��
���

���
���

���
���

��

S
S

S
S
S

�
�

�
�

�/






































































�

(1.3.1)

These maps also fit into a number of cofibrations. In the next two diagrams,
f : A −→◦ B means f : A → ΣB. The diagrams are flattened out octahedra, as
in Verdier’s octahedral axiom [10, section 1.1]. All triangles in which the arrows
circulate are cofibre triangles. All other parts of the diagrams commute.
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ΣKU ΣKO KU

Σ2KO KO

KT

αΣα

α2
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ΣmO fU ν−1

mO

δT fT

ν−1(1− c)

(1.3.2)
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J
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JJ]

c

c

c
c

ΣKU ΣKSp KU

Σ2KSp KSp

KT

αΣα

α2

fSpδSp

ΣlUν−1

ΣgSp lU ν−1

gSp

δT fT

ν−1(1− c)

(1.3.3)



1.5. SPACES 17

There is an isomorphism of degree 4 from the first of these diagrams to the
second, given by

θ : Σ4KO → KSp
µ : Σ4KT → KT
ν2 : Σ4KU → KU

(1.3.4)

Note also that these diagrams involve three new boundary maps

δT : ΣKU → KT
δO : KT → Σ3KO
δSp : KT → Σ3KSp

(1.3.5)

These are most easily defined as boundary maps of exact sequences for various
pairs in Atiyah’s Real K-Theory [2]. They are again KO-linear, and δT is even
KT -linear.

1.4. Action of Maps on Homotopy Groups

The next table shows the effect of these maps in homotopy. Information not
given explicitly can be deduced from ring and module structures mentioned in
section 1.2.

c : KU → KU ν 7→ −ν
lU : KU → KSp 1 7→ λ−1βθ ν 7→ 0 ν2 7→ 2θ ν3 7→ α2θ

lO : KO → KT α 7→ α β 7→ 2µ λ 7→ µ2

mU : KU → KT 1 7→ 2 ν 7→ 0 ν2 7→ 2µ ν3 7→ 0

mT : KT → KSp 1 7→ λ−1βθ µ 7→ 2θ α, γ, µα, µγ 7→ 0

mO : KO → KU α 7→ 0 β 7→ 2ν2 λ 7→ ν4

nO : KO → KSp 1 7→ λ−1βθ α 7→ 0 β 7→ 4θ

fU : KU → KO 1 7→ 2 ν 7→ α2 ν2 7→ β ν3 7→ 0

fT : KT → KU α 7→ 0 γ 7→ 0 µ 7→ ν2

fSp : KSp → KT θ 7→ µ

gT : KT → KO 1 7→ 2 µ 7→ β α, γ, µα, µγ 7→ 0

gSp : KSp → KU θ 7→ ν2

hSp : KSp → KO θ 7→ β

δT : ΣKU→ KT 1 7→ α ν 7→ γ ν2 7→ µα ν3 7→ µγ

δO : KT → Σ3KO 1 7→ 0 γ 7→ 2 µ 7→ α µγ 7→ β

δSp : KT → Σ3KSp 1 7→ λ−1αθ γ 7→ λ−1βθ µ 7→ 0 µγ 7→ 2θ

(1.4.1)

I have converted the above table into a form usable by the symbolic mathematics
program Mathematica and used this to check that the table is consistent with the
commutativity and exactness properties of the diagrams discussed in section 1.3.

1.5. Spaces

In this section we recall the classical description of the spaces in the Ω-spectra
for our various K-theories. For any spectrum E we have infinite loop spaces E n

classifying the associated cohomology theory:

En(X) = [X, E n] (1.5.1)

This equation is supposed to refer to the unreduced E-cohomology of a space X,
and homotopy classes of unbased maps X → E n. We write E ′n for the base
component in E n. If E is one of our K-theory spectra, then the spaces E n are
periodic: E n+d = E n where d is 2, 4, 8 or 8 as E is KU , KT , KO or KSp.
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Also KSpn = KOn+4. As part of the data of any spectrum E, there are specified
homotopy equivalences

Ω E n = Ω E ′n ' E n−1 (1.5.2)
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The spaces are listed in the following diagram:

Z×BO �������1O
�
�
�
�
�
�
�
��

O/U
B

B
B

B
B

B
B
BM

U/Sp
PPPPPPiZ×BSp�������)Sp

�
�

�
�

�
�

�
�

Sp/U

B
B
B
B
B
B
B
BN
U/OPPPPPPPq

Ω

Z×BT

6
T�ΩT

?
Ω2T -

Ω

U

Z×BU �

���

�-

Ω

(1.5.3)

Thus,

KO0 = KO8 = KSp4 = Z×BO
KO−1 = KO7 = KSp3 = O
KO−2 = KO6 = KSp2 = O/U

(1.5.4)

and so on. The diagram for KT defines our notation rather than giving any real
information. The following table (from [23]) might be considered more illuminating:

BT = (BO ×BSp)/BU (1.5.5)
T = (O × Sp)/U (1.5.6)

ΩT = U/(U ⊗ C) (1.5.7)
Ω2T = U/(O × Sp) (1.5.8)

If E is KO, KU , or KSp then the equivalences Ω E n ' E n−1 are given explicitly
in [8], for example.

The various stable maps which we consider induce maps of the spaces in the
relevant Ω-spectra. If one obtained a map U → Sp (for example) in this way,
one would probably guess that it was the symplectification map. Such guesses are
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almost always correct, although verification can be tedious. We shall usually be
able to avoid worrying about such things.

For most of our spaces, the first few connective covers can also be described
classically. In the following table, each row consists of successive connective covers
of the first entry. Thus, the second column gives the base components, the third
gives the universal covers of the base components, and so on.

Z×BO ←− BO ←− BSO ←− BSpin ←− BSpin
U/O ←− U/O ←− SU/SO ←− SU/Spin
Sp/U ←− Sp/U ←− Sp/U
Sp ←− Sp ←− Sp ←− Sp
Z×BSp ←− BSp ←− BSp ←− BSp ←− BSp
U/Sp ←− U/Sp ←− SU/Sp
O/U ←− SO/U ←− SO/U ←− Spin/SU
O ←− SO ←− Spin ←− Spin
Z×BO ←− BO ←− BSO ←− BSpin ←− BSpin

Z×BU ←− BU ←− BU ←− BSU ←− BSU
U ←− U ←− SU ←− SU
Z×BU ←− BU ←− BU ←− BSU ←− BSU

(1.5.9)



CHAPTER 2

Mod 2 Hopf Rings for K-Theories

In this chapter we describe the structure of various Hopf rings related to K-
theories. The general theory of Hopf algebras and Hopf rings is discussed in chap-
ter 4, as is the Hopf ring associated to a ring Ω-spectrum. Proofs will be given in
chapter 7.

2.1. The System of Mod 2 Hopf Rings

We write F for the field Z/(2) and HF∗X for the homology of X with coefficients
in F.

The homology of the various projective spaces is given by:

HF∗KP∞ = F{zK,ld | l ≥ 0} d = dimR K (2.1.1)

There is a map KP∞ −→ 1×BOK ⊂ Z×BOK which classifies the unreduced canon-
ical line bundle. It induces an embedding in homology, and we will not distinguish
notationally between zK,k and its image. Note that zK,0 is just the basis element
of HF0(Z×BOK) = F[π0(Z×BOK)] corresponding to the component 1×BOK of
Z×BOK. We will also write [1] for this element – compare section 4.3.

It will be convenient to define zK,l = 0 if l is not divisible by d, and also to
consider the formal power series

zK(t) =
∑
l≥0

zK,dlt
l (2.1.2)

The scalar extension maps

RP∞ mO−−→ CP∞ lU−→ HP∞ (2.1.3)

induce

zR(t) 7→ zC(t2) 7→ zH(t4) (2.1.4)

We also define zT,k = lO(zR,k), and z(t) = z(t)/[1] for any of our series z.
Let E be one of the spectra KO, KU and KT , and take d = 1, 2 or 4 and z =

zR, zC or zT as appropriate. Then the Hopf ring HF∗ E ∗ contains a subcoalgebra

C∗∗ = F{zdk | k ≥ 0} ⊕ F{11, e} (2.1.5)
⊆ HF∗ E 0 ⊕HF0 E 1 ⊕HF1 E 1 (2.1.6)

ψz(t) = z(t)⊗ z(t) (2.1.7)
ψe = e⊗ 1 + 1⊗ e (2.1.8)

Here e denotes the usual fundamental class in HF1 E 1, and 11 is the unit for the
star product in HF0 E 1.

We also have a sub-Hopf ring

F[E∗] = HF0 E ∗ ⊆ HF∗ E ∗ (2.1.9)

It will transpire that in each case HF∗ E ∗ is the Hopf ring over F[E∗] generated
by the subcoalgebra C∗∗ modulo a list of relations which will be given in the next
three sections. By this I mean that we have the following universal property: the
set of Hopf ring maps φ : HF∗KO∗ → A∗∗ bijects in the obvious way with the set
of pairs (φ0, φ1) where φ0 is a Hopf ring map F[E∗] → A∗∗ and φ1 is a coalgebra

21
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map C∗∗ → A∗∗ and the images in the evident sense of the stated relations hold in
A∗∗. See section 4.2 for more discussion of this.

For a start, we have the following relations:

Proposition 2.1.1.

11 = [01] (2.1.10)
z0 = [1] (2.1.11)

z(s) ◦ z(t) = z(s+ t) (2.1.12)
e ◦ [α] = zR,1 (2.1.13)

e◦2 ◦ [ν] = zC,2 (2.1.14)

e◦4 ◦ [λ] = [β] ◦ zR,4 (2.1.15)

(e◦n)2 = e◦n ◦ zn (2.1.16)

�

This is proved in section 7.3. Note that 11 is given as an element of C∗∗ and [01]
as an element of F[E∗], so it is necessary to remark that they are the same. If we
use our knowledge of various maps and their action in homotopy to move the above
list around, we can generate all the relations in all the Hopf rings we consider.

Remark 2.1.1. Many of the Hopf rings which have been computed are as-
sociated to complex oriented ring spectra [21, 22, 26]. In this case, a complex
orientation gives rise to a map from the coalgebra

H∗(CP∞;R) = R{b2k | k ≥ 0} (2.1.17)

to H∗( E 2;R). It also gives rise [20] to a formal group law over E∗, which produces
a power series relation involving circle products of the b’s. Often, the even-space
Hopf ring H∗( E 2∗;R) with suitable coefficients R turns out to be precisely the
Hopf ring over R[E2∗] generated by H∗(CP∞;R) modulo these relations. To get
the odd spaces, we need to throw in one more primitive generator ( the fundamental
class e ∈ H1 E 1) and one more relation (e◦2 = b2). This is precisely the case with
complex K-theory. If γ denotes the tautological line bundle over CP∞, considered
as an element of K0CP∞, then the usual complex orientation is x = ν−1(γ − 1) ∈
K̃2CP∞. The formal group law is then

x+F y = x+ y + νxy (2.1.18)

giving the relation

b(s+ t) = b(s) +[F ] b(t) := b(s)b(t)([ν] ◦ b(s) ◦ b(t)) (2.1.19)

In the mod 2 case, this is related to the notation of this thesis by

b(t) = [ν−1] ◦ (z(t)/[1]) (2.1.20)

and the relation is equivalent to z(s) ◦ z(t) = z(s + t). The integral case is very
similar. In the orthogonal case, the sub-Hopf ring HF∗KO8∗ can be described in
much the same way as HF∗KU2∗. In place of the formal group relations coming from
CP∞, we have analogous relations coming from RP∞. To fill in the intermediate
spaces, we cannot get away with just one more generator and one more relation, but
a short, finite list will suffice. By contrast, in integral homology we need further
infinite families of generators and relations. Similar remarks apply in the self-
conjugate case.
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2.2. The Mod 2 Hopf Ring for KO

In this section we write z for zR and z for z/[1].

Proposition 2.2.1. The following relations hold in HF∗KO∗:

11 = [01] (2.2.1)
z0 = [1] (2.2.2)

z(s) ◦ z(t) = z(s+ t) (2.2.3)
e ◦ [α] = z1 = z1/[1] (2.2.4)

e◦2 ◦ [β] = [α2] ◦ z2 (2.2.5)
e◦4 ◦ [λ] = [β] ◦ z4 (2.2.6)
[β] ◦ z2 = 0 (2.2.7)
e ◦ z1 = e2 (2.2.8)

e◦2 ◦ z2 = (e◦2)2 (2.2.9)
(e◦3)2 = 0 (2.2.10)

�

This is proved in section 7.3.

Theorem 2.2.2. The Hopf ring HF∗KO∗ is generated by F[KO∗] and the
subcoalgebra C∗∗ of (2.1.5) modulo the relations above. Space by space it has the
following description:

HF∗(Z×BO) = P [[λ] ◦ zk][−λ]

HF∗(U/O) = P [e ◦ [λ] ◦ z2k] e ◦ [λ] ◦ z2k−1 = (e ◦ [λ] ◦ zk−1)2

HF∗(Sp/U) = P [e◦2 ◦ [λ] ◦ z4k] e◦2 ◦ [λ] ◦ z4k−2 = (e◦2 ◦ [λ] ◦ z2k−2)2

HF∗(Sp) = E[e◦3 ◦ [λ] ◦ z4k]

HF∗(Z×BSp) = P [[β] ◦ z4k][−β] e◦4 ◦ [λ] = [β] ◦ z4

[β] ◦ z2k+1 = 0 = [β] ◦ z4k+2

HF∗(U/Sp) = E[e ◦ [β] ◦ z4k]

HF∗(O/U) = E[[α2] ◦ z2k] e◦2 ◦ [β] = [α2] ◦ z2

[α2] ◦ z2k+1 = 0

HF∗(O) = E[[α] ◦ zk] e ◦ [α2] = [α] ◦ z1

HF∗(Z×BO) = P [zk][−1] e ◦ [α] = z1

(2.2.11)

�

Note that in HF∗(O) we use [α] = [α] − [0] rather than [α] simply so that all
the generators square to zero. For k > 0, we have [α] ◦ zk = [α] ◦ zk anyway. There
are two parts to the proof of the above theorem. First, we have to derive all the
relations implicit in the table from the list in proposition 2.2.1. This will show that
there is a map from the Hopf ring described in the table to HF∗KO∗. Next, we
have to show that this map is iso. The first part is done in section 7.3, and the
second in 7.6.

2.3. The Mod 2 Hopf Ring for KT

In this section we write z for zT .
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Proposition 2.3.1. The following relations hold in HF∗KT ∗:

11 = [01] (2.3.1)
z0 = [1] (2.3.2)

z(s) ◦ z(t) = z(s+ t) (2.3.3)
e ◦ [α] = z1 (2.3.4)

e◦2 ◦ [γ] = [α] ◦ z2 (2.3.5)
e ◦ z1 = e2 (2.3.6)

e◦2 ◦ z2 = (e◦2)2 (2.3.7)
(e◦3)2 = 0 (2.3.8)

[γ] ◦ z2 = (e ◦ [µ])2 (2.3.9)

�

This is proved in section 7.3.

Theorem 2.3.2. The Hopf ring HF∗KT ∗ is generated by F[KT∗] and the sub-
coalgebra C∗∗ of (2.1.5) modulo the relations above. Space by space it has the
following description:

HF∗(Z×BT ) = P [[µ] ◦ z2k][−µ]⊗ E[[µ] ◦ z2k+1]

HF∗(Ω2T ) = P [e ◦ [µ] ◦ z2k, [γ] ◦ z4k][−γ]

e ◦ [µ] ◦ z2k−1 = (e ◦ [µ] ◦ zk−1)2

[γ] ◦ z2 = (e ◦ [µ])2

[γ] ◦ z1 = 0

HF∗(ΩT ) = P [e◦2 ◦ [µ] ◦ z4k]⊗ E[e ◦ [γ] ◦ z4k]

e◦2 ◦ z4k−2 = (e◦2 ◦ z2k−2)2

HF∗(T ) = E[[α] ◦ z2k, e◦3 ◦ [µ] ◦ z4k]

[α] ◦ z2k+1 = 0

e◦2 ◦ [γ] = [α] ◦ z2

HF∗(Z×BT ) = P [z2k][−1]⊗ E[z2k+1]

e ◦ [α] = z1

(2.3.10)

�

The proof is again split between sections 7.3 and 7.6. Perhaps a word or two
more is called for about how to express the elements [γ] ◦ z4k+2 in terms of the
generators offered. If we take the circle product of the relation [γ] ◦ z2 = (e ◦ [µ])2

with z(t) and rearrange a little, we obtain∑
k≥0

[γ] ◦ z4k+2t
4k+2 =

(
[µ] ◦ z(t) ◦ t2e2

1 + t2e2

)∑
k≥0

[γ] ◦ z4kt4k
(2.3.11)

which provides the required information.

2.4. The Mod 2 Hopf Ring for KU

In this section we write z for zC.
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Proposition 2.4.1. The following relations hold in HF∗KU∗:

11 = [01] (2.4.1)
z0 = [1] (2.4.2)

z(s) ◦ z(t) = z(s+ t) (2.4.3)
e2 = 0 (2.4.4)

e◦2 ◦ [ν] = z2 (2.4.5)

�

This is proved in section 7.3.

Theorem 2.4.2. The Hopf ring HF∗KU∗ is generated by F[KU∗] and the
subcoalgebra C∗∗ of (2.1.5) modulo the relations above. Space by space it has the
following description:

HF∗(Z×BU) = P [[ν] ◦ z2k][−ν]

HF∗(U) = E[e ◦ [ν] ◦ z2k]

HF∗(Z×BU) = P [z2k][−1] e◦2 ◦ [ν] = z2
(2.4.6)

�

The proof is again split between sections 7.3 and 7.6.

2.5. The Mod 2 Hopf Ring for KSp

The title of this section is of course an abuse of language; HF∗ KSp∗ is not a
Hopf ring but rather a free Hopf module on one generator [θ] over HF∗KO∗. This
is supposed to mean that the map

HF∗KO∗ −→ HF∗ KSp∗−4 x 7→ x ◦ [θ] (2.5.1)

is iso. We are left with the task of understanding zH in these terms, and of computing
the tensor product KSp ∧KSp→ KO.

zH(t) = [λ−1βθ] ◦ z(t) (2.5.2)
[θ] ◦ [θ] = [λ] (2.5.3)

The first of these is proved in section 7.3. The second is of course equivalent to the
analogous statement in the homotopy groups, which was recorded at the beginning
of this chapter.

2.6. Primitives and Duality

In this section we look at the cohomology of the classifying spaces BOK and the
group of primitives in the dual homology ring HF∗(BOK) = P [zdk | k > 0]. Proofs
are given in section 7.4. Given a multiindex α = (α1, α2, . . . ) with αk a nonnegative
integer which vanishes for almost all k, we define

zα =
∏
k>0

zαk

dk (2.6.1)

We write ek for the multiindex with a 1 in the k’th place and zeros elsewhere, so
zek = zdk. The monomials zα for all possible α form a basis for HF∗(BOK). There
are thus elements z′dk of the dual space HF∗(BOK) uniquely characterised by

〈z′dk, zα〉 =
{

1 if α = ked
0 otherwise (2.6.2)
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We write z′(t) =
∑
k z
′
dkt

k. The structure of the cohomology is as follows:

HF∗(BOK) = P [z′dk | k > 0] (2.6.3)
ψz′(t) = z′(t)⊗ z′(t) (2.6.4)

We write pα for the element of HF∗BO dual to (z′)α w.r.t. the monomial basis
of HF∗BO, and collect these elements together into a power series in infinitely many
variables: ∑

α

pαt
α ∈ HF∗BO[[t1, t2 . . .]] (2.6.5)

We find that

ψp(t) = p(t)⊗ p(t) (2.6.6)

ψpα =
∑

α=β+γ

pβ ⊗ pγ (2.6.7)

p(s, 0, 0, . . . ) = z(s) (2.6.8)

For various purposes it is important to understand the primitives in HF∗X, i.e.
the elements x such that ψx = x⊗ 1 + 1⊗ x. See chapter 4 for general facts about
primitives.

We start by defining

qK(t) =
∑
l>0

qK,ldt
ld = tżK(t)/zK(t) = dlogzK(t)/dt (2.6.9)

The series qK and therefore the coefficients qK,ld are primitive. The first few terms
of qR(t) are as follows:

q(t) = z1t+
z2
1t

2 +
(z3 + z1z2 + z3

1)t
3 +

z4
1t

4 +
(z5

1 + z2z
3
1 + z3z

2
1 + z2

2z1 + z4z1 + z3z2 + z5)t5 +
(z6

1 + z2
2z

2
1 + z2

3)t
6 +

(z7
1 + z2z

5
1 + z3z

4
1 + z4z

3
1 + z3z2z

2
1 + z5z

2
1 + z3

2z1 +
z2
3z1 + z6z1 + z3z

2
2 + z5z2 + z4z3 + z7)t7 +

O(t8)

In fact qk = pek
, and these are all the primitives in HF∗BO. We need some

formulae for circle products:

z1 ◦ z(t) = q(t)/t (2.6.10)
z1 ◦ z(t) = q(t)/t+ z1 (2.6.11)

q(s) ◦ z(t) =
s

s+ t
q(s+ t) (2.6.12)

q(s) ◦ q(t) =
st

(s+ t)2
qev(s+ t) (2.6.13)
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2.7. The Homology Suspension

The following table gives the iterated homology suspensions e◦n ◦ x of various
elements x. See section 7.3 for justification.

[α] [α2] [ν] [γ] [β] [µ] [λ]

z1 [α] ◦ z1 . . . . .

e2 z2
1 z2 [α] ◦ z2 [α2] ◦ z2 . .

0 0 . q3 [α] ◦ q3 . .

(e◦2)2 e4 z4
1 z2

2 [β] ◦ z4

0 0 0 0 .

[α2] ◦ (z6 + z4z2)

[α] ◦ q7
z8
1

0

(2.7.1)

The dot under [γ] for example, simply indicates that we have no useful description
of e ◦ [γ] other than as e ◦ [γ]. The fact that in all cases we eventually hit zero is
a reflection of the fact that the stable integral homology of each of our spectra is
rational so that the stable homology mod 2 vanishes.

2.8. Steenrod and Kudo-Araki Operations

In this section we discuss the action of the Steenrod and Kudo-Araki1 operations
on our Hopf rings. Proofs are given in section 7.5.

The right action of the total Steenrod operation Sq(s) =
∑
k≥0 s

kSqk is as
follows:

z(t)Sq(s) = z(sdt2 + t) (2.8.1)
e Sq(s) = e (2.8.2)

[a]Sq(s) = [a] (2.8.3)
(xy)Sq(s) = (x Sq(s))(y Sq(s)) (2.8.4)

(x ◦ y)Sq(s) = (x Sq(s)) ◦ (y Sq(s)) (2.8.5)

Here z can be zR , zC , zH or zT and d is 1, 2, 4 or 1 accordingly. It is amusing
to verify that this is consistent with the Bullett-Macdonald formulation [7] of the
Adem relations:

Sq(s2 + st)Sq(t2) = Sq(t2 + ts)Sq(s2) (2.8.6)

Equivalently, we can give the coaction of the dual Steenrod algebra. We first recall
the description of this Hopf algebra:

A∗ = P [ξk | k > 0] ξ0 = 1 (2.8.7)

ξ(t) =
∑
k≥0

ξkt
2k

(2.8.8)

ψξ(t) = (1⊗ ξ)(ξ(t)⊗ 1) (2.8.9)

The pairing between A∗ and A∗ is

〈Sq(s), f(ξ(t))〉 = f(t+ t2s) f(u) ∈ F2[[u]] (2.8.10)

1We deviate here from the usual practice of calling these Dyer-Lashof operations, and adding

a footnote to explain that they are really due to Kudo and Araki.
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The coaction α : HF∗X → A∗ ⊗HF∗X is as follows:

α(z(td)) = (1⊗ z)(ξ(t)d ⊗ 1) (2.8.11)
α(e) = 1⊗ e (2.8.12)
α([a]) = 1⊗ [a] (2.8.13)
α(xy) = α(x)α(y) (2.8.14)

α(x ◦ y) = α(x) ◦ α(y) (2.8.15)

For the last equation we must interpret (ζ⊗x)◦(η⊗y) as ζη⊗(x◦y). In cohomology,
we have

Sq(st)z′(s+ t2s) = z′(ts+ t2s)z′(s+ ts) (2.8.16)

The total Kudo-Araki operation Q(s) =
∑
k≥0 s

kQk acts as follows:

Q(s)z(sd(t+ t2)) = z(sd(1 + t))z(sdt) (2.8.17)

Q(s)z(sdt) = ([1]z(sd)) ◦ z(sd
∑
k

t2
k

) (2.8.18)

Qn[1] = [1]zn (2.8.19)
Q(s)(e ◦ x) = e ◦Q(s)x (2.8.20)
Q(s)(xy) = Q(s)x Q(s)y (2.8.21)

Q(s)([a] ◦ x) = [a] ◦Q(s)x (2.8.22)

(The first of these equations is a translation into formal power series language of a
result of Priddy [19]. The second equation is equivalent to the first, and the third
is a consequence)

2.9. Bocksteins

We next record the homology of HF∗ E ∗ with respect to the action of the
Bockstein, which we write as H(HF∗ E ∗, β). The basic data are:

βz2k+2 = z2k+1 (2.9.1)
βz2k+1 = β[x] = βe = 0 (2.9.2)
β(xy) = β(x)y + xβ(y) (2.9.3)

β(x ◦ y) = β(x) ◦ y + x ◦ β(y) (2.9.4)

Proposition 2.9.1. In most of the spaces under consideration, the Bockstein
vanishes so the β-homology is just HF∗X. The exceptions are as follows:

H(HF∗(O), β) = E[[α]]⊗ E[[α] ◦ q4k+3]

H(HF∗(Z×BO), β) = P [z2
2k | k ≥ 0][−1]

H(HF∗(U/O), β) = E[e]⊗ E[h4k+1 | k > 0]

h4k+1 = e ◦ z4k + (e ◦ z2k)(e ◦ z2k−1)

H(HF∗(Z×BT ), β) = P [z2
2k][−1]⊗ E[q4k+3]

H(HF∗(Ω2T ), β) = E[e]⊗ E[h4k+5]⊗ P [[µ−1γ] ◦ z4k][−µ−1γ]

(2.9.5)

Moreover [µ−1γ] ◦ z4k+2 is a β-boundary in HF∗(Ω2T ). �

This is proved in section 7.7.



CHAPTER 3

Torsion Free Hopf Rings for K-Theories

In this chapter we develop a little theory of torsion free Hopf rings, and state
what happens in the K-theory case. Proofs are in sections 7.8 to 7.10.

3.1. Torsion Quotients

In this section we discuss the torsion quotient of an Abelian group, and give
a Künneth formula for torsion free homology. This material would be simplified if
we assumed that all connected components of the spaces considered had homology
finitely generated in each dimension, and this would cover all cases used elsewhere
in this thesis. However, the results are true without such hypotheses so it would be
a shame not to prove them that way.

Given an Abelian group A, we write

tA = {a ∈ A | ∃n > 0 na = 0} = torsion subgroup of A (3.1.1)
fA = A/tA = torsion quotient of A (3.1.2)

Note that fA is torsion free. We also write H∗(X) = fH∗(X; Z) and A∗B =
Tor(A,B). Recall that a short exact sequence

0→ A � B � C → 0 (3.1.3)

gives rise to a six term sequence

0→ A∗D � B∗D → C∗D → A⊗D → B ⊗D � C ⊗D → 0
(3.1.4)

Recall also that A∗B = 0 if A or B is torsion free. (In other words, torsion free
groups are flat).

Lemma 3.1.1. (1) A∗B is always a torsion group.
(2) f(A⊗B) = fA⊗ fB
(3) H∗(X × Y ) = H∗(X)⊗H∗(Y )

Proof. First, choose a free resolution R � F � B for B. Taking the tensor
product first by Q and then by A, we find that

0→ A⊗R⊗Q→ A⊗ F ⊗Q � A⊗B ⊗Q→ 0 (3.1.5)

is exact. On the other hand, if we take the tensor product first by A and then by
Q, we find that the following is exact:

0→ (A∗B)⊗Q→ A⊗R⊗Q � A⊗ F ⊗Q � A⊗B ⊗Q→ 0

We conclude that (A∗B)⊗Q = 0 and thus that A∗B is a torsion group.

29
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Next, we observe that the sequence tA � A � fA remains short exact when
tensored by any group D (as fA is flat). This gives us a 3 by 3 exact diagram:

fA⊗ tB fA⊗B fA⊗ fB

A⊗ tB A⊗B A⊗ fB

tA⊗ tB tA⊗B tA⊗ fB

-

-

-

>

>

>

-

-

-

-

-

-

? ? ?

∨ ∨ ∨

? ? ?? ? ?

(3.1.6)

By chasing in this diagram we find that A ⊗ B → fA ⊗ fB is epi with kernel the
torsion group tA ⊗ B + A ⊗ tB. Moreover, fA ⊗ fB is torsion free. To see this,
note that fA is flat (so fA⊗ (−) preserves monos) and n.1fB is mono (for n 6= 0)
so n.1fA⊗fB is mono. It follows easily that f(A⊗B) = fA⊗ fB.

Finally, suppose we have spaces X and Y . For brevity, set A = H∗(X), B =
H∗(Y ) and C = H∗(X × Y ). The Künneth theorem gives a short exact sequence
A⊗B � C � A∗B which splits unnaturally. Consider the following diagram:

L A∗B 0

tC C fC

t(A⊗B) A⊗B f(A⊗B)

0 0 K

-- -

-> --

-> --

- -

?? ?? ?

?

∨

?

∨

??

? ? ?

∨

�q

@
@I

��

@
@II

(3.1.7)

The groups K and L are defined as the kernel and cokernel of the evident maps.
The middle two rows are short exact by definition, and the middle column is split
exact by the Künneth theorem. It follows easily that t(A ⊗ B) → tC is mono.
The torsion group A∗B can only map trivially to fC. Using this and the splitting
C ' (A⊗B)⊕ (A∗B) we find that f(A⊗B)→ fC is epi. The snake lemma now
gives a short exact sequence K � L � A∗B. As K is a subgroup of the quotient
L of tC, it must be a torsion group. However, K is also a subgroup of the torsion
free group f(A⊗B), so it must vanish. Thus f(A⊗B)→ fC is iso. �

We refer to H∗(X) as the torsion free homology of X. By the Künneth formula just
proven, the groups H∗( E ∗) form a Hopf ring for any ring spectrum E. In the rest
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of this chapter, we shall write = for equations in H∗ or HF∗, and ≡ for equations
in H∗ or H∗(HF∗, β).

Lemma 3.1.2. Let φ : A → B be a map of graded Abelian groups such that
A[ 12 ]→ B[ 12 ] and A⊗ F→ B ⊗ F are iso. If either of the following conditions holds
then φ is iso:

(1) A and B are torsion free
(2) A is finitely generated in each dimension and B is torsion free.

Proof. Let U , V and W denote the kernel, image and cokernel of φ. As Z[ 12 ]
is flat, we then have exact sequences:

0→ U � A→ B � W → 0 (3.1.8)

0→ U [ 12 ] � A[ 12 ]→∼ B[ 12 ] � W [ 12 ]→ 0 (3.1.9)

This shows that U [ 12 ] = 0 = W [ 12 ].
As A → V is epi, so is A⊗ F → V ⊗ F. On the other hand, we are given that

the composite A⊗ F→ V ⊗ F→ B ⊗ F is iso. It follows first that A⊗ F→ V ⊗ F
is mono, and then that both A⊗ F→ V ⊗ F and V ⊗ F→ B ⊗ F are iso. We next
consider the exact sequence

B∗F = 0→W ∗F→ V ⊗ F→∼ B ⊗ F→W ⊗ F→ 0 (3.1.10)

This shows that W ∗F = 0 = W ⊗ F. On the other hand, W ∗F and W ⊗ F are the
kernel and cokernel of W 2−→ W , so we conclude that this map is iso and thus that
W is a Z[ 12 ]-module. This means that W = W [ 12 ] = 0 and so V = B. This leaves
us with an exact sequence

0→ U ∗F→ A∗F→ B∗F = 0→ U ⊗ F→ A⊗ F→∼ B ⊗ F→ 0

which shows that U ⊗ F = 0. If A is torsion free then A∗F = 0 so U ∗F = 0
and U vanishes for the same reason as W does. On the other hand, if A is finitely
generated in each dimension then the same is true of U ≤ A and it follows from
U ⊗ F = 0 = U [ 12 ] and the structure theory that U = 0. Either way, we conclude
that φ is iso. �

3.2. Divided Squares and Square Roots

All the homology rings which we have encountered so far have been polynomial
or exterior. Indeed, the structure theory of bicommutative Hopf algebras over a
field assures us that little more complication is possible. However, more subtle
phenomena can occur integrally – we investigate some of them in this section.

Let A∗ be an augmented graded commutative k-algebra. We shall mainly be
interested in the cases k = Z or F, but it could be any ring. We let I = Ã denote
the augmentation ideal.

Definition 3.2.1. A divided square operator on A is a map γ : I∗ → I2∗ satis-
fying

(1) ∀a ∈ I 2γ(a) = a2

(2) ∀a ∈ I, b ∈ A γ(ab) = (−1)1+εγ(a)b2

(3) ∀a, b ∈ I γ(a+ b) = γ(a) + γ(b) + εab

where ε = 0 if |a| and |b| are both odd, and ε = 1 otherwise.

In the cases of interest, all odd dimensional elements are annihilated by 2, so
the signs can be ignored. If A∗ is torsion free then γ depends only on the algebra
structure. In any case, if A∗ is generated by a graded subsetX∗ then γ is determined
by its action on X∗. Note that the Frobenius endomorphism of A⊗F (which sends
x to x2) annihilates I ⊗F. It follows that γ(ab) = 0 for a, b ∈ I ⊗F, but γ need not
annihilate a sum of such terms.
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Given an integer n write α(n) for the number of ones in the binary expansion and
ν(n) for the 2-adic valuation so that ν(n!) = n− α(n). We can write n =

∑
k∈S 2k

where |S| = α(n) and minS = ν(n). We write

a(n) =
∏
k∈S

γk(a) (3.2.1)

so that 2n−α(n)a(n) = an. If k is 2-local, we may define

a[n] =
2n−α(n)

n!
a(n) (3.2.2)

and this gives a divided power structure on A∗ in the usual sense.
Let B∗ be an augmented graded commutative k-algebra. By the usual methods

of universal algebra we can construct a B∗-algebra A∗ with divided squares, with
the property that maps A∗ → C∗ of divided-square algebras biject naturally with
k-algebra maps B∗ → C∗. We refer to A∗ as the divided-square envelope of B∗.
Consider the k-algebra

D[xi | i ∈ I] = P [xi,j |i ∈ I, j ≥ 0]/(x2
i,j − 2xi,j+1) (3.2.3)

This has a unique divided-square structure in which γ(xi,j) = xi,j+1. One checks
easily that D[xi] is the divided-square envelope of P [xi]. If k has characteristic 2
then D[xi] = E[xi,j ]. If k is torsion free then P [xi] ⊂ D[xi] ⊂ P [xi/2].

We need to understand the arithmetic properties of the power series√
1 + x2 =

∑
k

ckx
2k =

∑
k

1
2

(
−1
2

)
. . .

(
3− 2k

2

)
x2k

k!
(3.2.4)

First note that ν(ck) = α(k)− 2k = α(2k)− 2k < 0. Also, by squaring and arguing
inductively we see that ck ∈ Z[ 12 ]. We conclude that dk = 22k−α(k)ck ∈ 1 + 2Z.
Thus, if x(2k) is defined and y =

∑
k dkx

(2k) converges in a suitable sense, then it
satisfies y2 = 1 + x2.

Take k = Z and consider the ring A∗ = P [x2k | k ≥ 0]/(x(t)x(−t) − 1). Here
x(t) =

∑
k≥0 x2kt

k and the ideal of relations is supposed to be generated by the
coefficients of the series x(t)x(−t)− 1.

Lemma 3.2.1. A∗ = Z[x0]/(x2
0 − 1)⊗D[x4k+2 | k ≥ 0]

Proof. We first define

x̂(t) =
∑
k

x4k+2t
2k+1 = (x(t)− x(−t))/2 (3.2.5)

x̆(t) =
∑
k

x4kt
2k = (x(t) + x(−t))/2 (3.2.6)

so x̆(t)2 − x̂(t)2 = 1. By analogy, we define three series over the ring D∗ =
Z[y0]/(y2

0 − 1)⊗D[ŷ4k+2]:

ŷ(t) =
∑
k

ŷ4k+2t
2k+1 (3.2.7)

y̆(t) = y0
√

1 + ŷ(t)2 (3.2.8)
y(t) = ŷ(t) + y̆(t) (3.2.9)

The remarks before the lemma ensure that y̆(t) is indeed a series over D∗. We find
that ŷ(−t) = −ŷ(t) so y̆(−t) = y̆(t) so (as D∗ is torsion free) y̆(t) =

∑
k y̆4kt

2k say.
We also find that y(t)y(−t) = 1 so we deduce a map f : A∗ → D∗ sending x(t) to
y(t). After inverting 2 it is not hard to see that the equation x̆(t)2 − x̂(t)2 = 1 can
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be solved uniquely to give x̆(t) = x0

√
1 + x̂(t)2 and thus that our map becomes iso.

On the other hand, one sees that

F⊗A∗ = F[x0]/(x2
0 − 1)⊗ E[x2k+2] (3.2.10)

F⊗D∗ = F[y0]/(y2
0 − 1)⊗ E[y(2l)

4k+2] (3.2.11)

In F ⊗ A∗, all squares of reduced elements vanish. It follows that all squares of
reduced elements in A∗ are divisible by 2. We can use this to choose a map g : D∗ →
A∗ with fg = 1D. Indeed, we may set g(ŷ4k+2) = x4k+2 and recursively choose
g
(
ŷ
(2l)
4k+2

)
such that

2g
(
ŷ
(2l)
4k+2

)
= g
(
ŷ
(2l−1)
4k+2

)2

(3.2.12)

Using the fact that D∗ is torsion free, we see that fg = 1D as required. It follows
that f is epi mod 2 and by comparing Poincaré series, we see that it is iso mod 2.
It is also iso after inverting 2, the source is finitely generated in each dimension and
the target is torsion free. It follows by lemma 3.1.2 that f itself is iso. �

This shows that A∗ has a divided square structure, which is unique as there is
no torsion. By expanding the equation x̆(t)2 − x̂(t)2 = 1 we find that

γ(x0 − 1) = 1− x0 (3.2.13)

γ(x2m) = −
∑
k<l

k+l=2m

(−1)l+mx2kx2l (3.2.14)

3.3. The Torsion Free Hopf Ring for KU

We omit most proofs for this section, as they are very similar to the mod 2 case.
There are some remarks in section 7.8, however. In this case there is no torsion in
the integral homology, so H coincides with H.

Proposition 3.3.1.

H∗CP∞ = Z{y2k | k ≥ 0} (3.3.1)

y(t) =
∑
k≥0

y2kt
k (3.3.2)

ψy(t) = y(t)⊗ y(t) (3.3.3)
y(s) ◦ y(t) = y(s+ t) (3.3.4)

y0 = [1] (3.3.5)
e◦2 ◦ [ν] = y2 = y2/[1] (3.3.6)
e◦2 ◦ y(t) = [ν−1] ◦ dlog y(t)/dt (3.3.7)

c[ν] = [−ν] (3.3.8)
cy(t) = y(−t) (3.3.9)
ρy(t) = zC(t) (3.3.10)

�

Here c denotes the complex conjugation map and ρ the mod 2 reduction H →
HF. As in the mod 2 case we are considering the homology of CP∞ as being
embedded in that of Z×BU via the map which classifies the unreduced canonical
line bundle.
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Theorem 3.3.2. The integral Hopf ring for KU is as follows:

H∗(Z×BU) = P [[ν] ◦ y2k][−ν]

H∗(U) = E[e ◦ [ν] ◦ y2k]

H∗(Z×BU) = P [y2k][−1] y0 = [1]
(3.3.11)

�

3.4. The Torsion Free Hopf Ring for KO

The case of KO is rather more complicated. Proofs are given in section 7.9. We
write kyl for fU ([νk] ◦ yl) ∈ HlKO−2k. Note that KO-linearity gives [λ] ◦ ky(t) =
(k+4)y(t). Recall that we write ≡ for equations in H∗ mod torsion or in HF∗ mod
the image of the Bockstein β.

ky(−t) = ky(t) k even

ky(−t) = ky(t)−1 k odd

ky4l+2 ≡ 0 k even

ky4l ∈ P [ky4l+2/2][ky±1
0 ] k odd

(3.4.1)

When k is odd, it is convenient to make the following definitions (as in section 3.2
above):

ky̆(t) =
∑
l ky4lt

2l ≡ (ky(t) + ky(−t))/2
kŷ(t) =

∑
l ky4l+2t

2l+1 ≡ (ky(t)− ky(−t))/2
(3.4.2)

We find that

ky(±t) = ky̆(t)± kŷ(t) (3.4.3)

ky̆(t)2 − kŷ(t)2 = 1 (3.4.4)

ky̆(t) ≡ ky̆0
√

1 + kŷ(t)2 (3.4.5)

The square root in the second equation above is given by the usual power series.
Note that (4m+1)y̆0 = [λmα2] and (4m+3)y̆0 = [0] = 1. Below we shall give various
structure formulae in terms of the series ky(t). They can if necessary be converted
into formulae involving only the generator series kŷ(t) by means of the above equa-
tions.

The complexification map is given by:

mO(ky(t)) = [νk] ◦ (y(t)y(−t)ε) ε = (−1)k (3.4.6)

mO(kŷ(t)) =
[νk]
2
◦ y(t)

2 − y(−t)2

y(t)y(−t)
(3.4.7)

The series ky(t) are grouplike, i.e.

ψ(ky(t)) = ky(t)⊗ ky(t) (3.4.8)

We can deduce the action of ψ on the other series when k is odd:

ψ(kŷ(t)) = kŷ(t)⊗ ky̆(t) + ky̆(t)⊗ kŷ(t) (3.4.9)
ψ(ky̆(t)) = kŷ(t)⊗ kŷ(t) + ky̆(t)⊗ ky̆(t) (3.4.10)

The double suspension acts as follows:

e◦2 ◦ (k+1)y(t) = dlog(ky(t))/dt (3.4.11)

e◦2 ◦ (k+1)y̆(t) ≡ 0 (3.4.12)
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We also have:

e ◦ [α] ≡ 0 (3.4.13)
e ◦ [α2] ≡ 0 (3.4.14)

[α] ◦ ky(t) = 1 (3.4.15)
[β] ◦ ky(t) = (k+2)y(t)2 (3.4.16)

ky(s) ◦ ly(t) = (k+l)y(t+ s) (k+l)y(t− s)ε ε = (−1)l (3.4.17)

From this we can readily compute circle products of the other series we have
mentioned, using standard Hopf ring properties. For example

1ŷ(s) ◦ 1ŷ(t) ≡
1
2

(
2y(s+ t)
2y(s− t)

− 2y(s− t)
2y(s+ t)

)
(3.4.18)

The mod 2 reduction ρ : H∗ → HF∗ satisfies

ρ(0y(t2)) = z(t)2 (3.4.19)
ρ(e ◦ 0y4k/2) = h4k+1 (3.4.20)

= e ◦ z4k + (e ◦ z2k)(e ◦ z2k−1) (3.4.21)
ρ(1y(t2)) = [α2] ◦ z(t) (3.4.22)

ρ(e ◦ 1y(t2)) = [α] ◦ q(t) (3.4.23)
ρ(2y(t2)) = [β] ◦ z(t) (3.4.24)

ρ(3ŷ(t2)/2) =
∑
k

e◦2 ◦ [λ] ◦ z4kt4k+2 (3.4.25)

= [λ] ◦ (t2e◦2 + (t2e◦2)2) ◦ z(t) (3.4.26)

More precisely, for each k ≥ 0 there is a unique element a ∈ H4k+1(U/O) such that
2a = e◦0y4k and ρ(a) = h4k+1; we call this element e◦0y4k/2. Of course, the image
of a in H4k+1(U/O) is already fixed by the first of the above two criteria. On the
other hand, 3ŷ4k+2/2 lies in H4k+2(Sp/U) which is torsion free, so it is uniquely
determined by the requirement that it gives 3ŷ4k+2 on multiplication by 2.

Theorem 3.4.1. The torsion free Hopf ring for KO is as follows:

H∗(Z×BO) = P [4y4k][−λ] 4y0 = [2λ]

H∗(U/O) = E[e ◦ 4y4k/2]

H∗(Sp/U) = P [3y4k+2/2]

H∗(Sp) = E[e ◦ 3y4k+2/2]

H∗(Z×BSp) = P [2y4k][−β] 2y0 = [β]

H∗(U/Sp) = E[e ◦ 2y4k]

H∗(O/U) = D[1y4k+2]⊗ Z[Fα2]

H∗(O) = E[e ◦ 1y4k+2]⊗ Z[Fα]

H∗(Z×BO) = P [0y4k][−1] 0y0 = [2]

(3.4.27)

�

For five of the eight spaces, there is no torsion in the integral homology so
again H∗ = H∗. The complexification map mO : H∗KO∗ −→ H∗KU∗ is injective
except on O and O/U . The space O has two components SO and αSO , and ∗-
multiplication by the homotopy element α is an involution which exchanges them.
As mO(α) = 0, the composites SO mO−−→ U and SO

α−→ αSO
mO−−→ U are equal.

The homology of each component is mapped injectively, but mO[α] = [0] = 1 so
mO([α]x) = mO(x). The case of O/U is similar, with α2 replacing α.
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3.5. The Torsion Free Hopf Ring for KT

Proofs for the self conjugate case are in section 7.10. We consider the series
kx(t) = δT ([νk] ◦ y(t)). We have

ψ(kx(t)) = kx(t)⊗ kx(t)
[µ] ◦ kx(t) = (k+2)x(t)

e◦2 ◦ (k+1)x(t) = dlog(kx(t))/dt
1x0 = [γ]

kx(−t) = kx(t) k odd
2 kx4l+2 = 0 k odd
kx(−t) = kx(t)−1 k even
kx4l ∈ P [kx4l+2/2][kx±1

0 ] k even

(3.5.1)

We also denote lO(ky(t)) = mU ([νk] ◦ y(t)) simply by ky(t). We find that

[µ] ◦ ky(t) = (k+2)y(t) (3.5.2)

[γ] ◦ ky(t) = (k+1)x(t)2 (3.5.3)
e ◦ [γ] ◦ ky(t) = 2e ◦ (k+1)x(t) (3.5.4)

ky(s) ◦ ly(t) = (k+l)y(t+ s) (k+l)y(t− s)ε ε = (−1)l (3.5.5)

kx(s) ◦ ly(t) = (k+l)x(s+ t) (k+l)x(s− t)ε ε = (−1)l (3.5.6)

kx(s) ◦ lx(t) = 1 (3.5.7)

The reduction mod 2 is as follows:

ρ(0y(t2)) = z(t)2 (3.5.8)
ρ(e ◦ 0y4k/2) = h4k+1 (3.5.9)
ρ(1y4k+2/2) = e◦2 ◦ [µ] ◦ z4k (3.5.10)

ρ(e ◦ 1y4k+2/2) = e◦3 ◦ [µ] ◦ z4k (3.5.11)
ρ(0x(t2)) = [α] ◦ z(t) (3.5.12)

ρ(e ◦ 0x(t2)) = q(t) (3.5.13)
ρ(1x(t2)) = [γ] ◦ z(t) (3.5.14)

Theorem 3.5.1. The torsion free Hopf ring for KT is as follows:

H∗(Z×BT ) = P [2y4k][−µ]⊗ E[e ◦ 2x4k+2]

H∗(Ω2T ) = E[e ◦ 2y4k/2]⊗ P [1x4k][−γ]

H∗(ΩT ) = P [1y4k+2/2]⊗ E[e ◦ 1x4k]

H∗(T ) = E[e ◦ 1y4k+2/2]⊗D[0x4k+2]⊗ Z[Fα]

H∗(Z×BT ) = P [0y4k][−µ]⊗ E[e ◦ 0x4k+2]

(3.5.15)

�



CHAPTER 4

Hopf Algebras and Hopf Rings

4.1. Hopf Algebras

In this section we recall a little theory of Hopf algebras, mainly as background to
the discussion of Hopf rings in the next section. We shall only consider biassociative
bicommutative Hopf algebras. The material in this section comes mainly from [17].

Let k∗ be a graded commutative ring (commutative will always mean in the
graded sense). In the rest of this thesis, k∗ is either F = Z/(2) or Z, concentrated
in degree zero, or a ring of formal power series over one of these.

Let M∗ denote the category of graded (left) modules over k∗. Note that a
graded left module is a graded right module via mr = (−1)|r||m|rm. We can define
a tensor product onM∗ by

(M∗ ⊗k∗ N∗)n =
⊕
n=s+t

Ms ⊗Z Nt/(mr ⊗ n−m⊗ rn) (4.1.1)

and a twist map

τ : M ⊗N −→ N ⊗M m⊗ n 7→ (−1)|m||n|n⊗ n
(4.1.2)

This makesM∗ into a symmetric monoidal category. Let C∗ denote the category of
commutative comonoid objects inM∗. Such a beast is an object C ofM∗ equipped
with maps

k
ε←− C ψ−→ C ⊗ C (4.1.3)

such that the usual diagram commutes:

C C C ⊗ C

C ⊗ C C ⊗ C C ⊗ C ⊗ C

?

6 6

�

�

-

-

@
@

@
@

@
@

@I

1⊗ ε ψ 1⊗ ψ

1 ψ

τ ψ ⊗ 1

ψ

(4.1.4)

Given objects C and D of C∗, we can take εC ⊗ εD as an augmentation and the
following composite as a coproduct on C ⊗D:

C ⊗D ψC⊗ψD−−−−−→ C ⊗ C ⊗D ⊗D 1⊗τ⊗1−−−−→ C ⊗D ⊗ C ⊗D (4.1.5)

This makes C ⊗D into an object of C∗. The maps

C
1⊗εD←−−− C ⊗D εC⊗1−−−→ D (4.1.6)

are C∗-morphisms and present C ⊗D as the categorical product of C and D in C∗.
This means that given C∗-maps f : B → C and g : B → D there is a unique C∗-map
h : B → C ⊗D such that (1⊗ εD)h = f and (εC ⊗ 1)h = g.

37
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By a C-comodule we mean an object M of M∗ equipped with a coaction map
α : M → C ⊗M making the usual counit and coassociativity diagrams commute.
We shall not make this explicit here.

Let Tk denote the category of topological spaces such that H∗(X; k∗) is flat
over k∗. This is a symmetric monoidal category under the Cartesian product, and
H∗(−; k∗) is a symmetric monoidal functor Tk → C∗.

By a Hopf algebra, we shall mean a commutative group object in C∗. (The same
name is often used elsewhere for weaker concepts). A Hopf algebra A thus has

• a multiplication map σ : A⊗A→ A
• a unit map η : A→ k
• an inversion map (“antipode”) χ : A→ A

The multiplication is commutative and associative, with unit η. This is equivalent
to the commutativity of a diagram similar to (4.1.4), but with the arrows reversed.
It is supposed that σ and η are coalgebra maps, or equivalently that ψ and ε are
algebra maps. This comes down to the commutativity of the following diagram:

A

k

k

A⊗A

A⊗A A⊗A⊗A⊗A

A⊗A⊗A⊗A

6

6
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�
?
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@

σ

ψ

ψ ⊗ ψ

σ ⊗ σ

ε⊗ ε

η ⊗ η

η

ε

1 1⊗ τ ⊗ 1

(4.1.7)

Finally, the following diagram characterises the antipode:

A A⊗A A⊗A

k A

- -

-? ?

ε σ

ψ χ⊗ 1

η

(4.1.8)

To relieve the tedium of yet another exposition of this material, we can convert
the commutative diagrams above into Penrose diagrams à la Joyal [12]. These
diagrams are most easily explained by an example. If f : A ⊗ B → C and g : C →
D ⊗ E and h : D → k then the picture:
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f g
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r r#
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##r
r

r

r
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represents the map

A⊗B f−→ C
g−→ D ⊗ E h⊗1−−→ E

Coassociativity of ψ:
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Counitary properties of ε:
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Cocommutativity of ψ:
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Associativity of σ:
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Unitary properties of η:
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Commutativity of σ:
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Interaction of η and ε:
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Interaction of ψ and σ:
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Interaction of σ and ε:
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Interaction of ψ and η:
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Inverse property of χ:
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ψ σ

χ

= r r r r
ε η

If G is an H-space (which we shall take to mean: an Abelian group object in the
pointed homotopy category) and H∗(G; k∗) is flat over k∗, then H∗(G; k∗) becomes
a Hopf algebra in an evident way. The product and coproduct are induced by the
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multiplication G × G → G and the diagonal G → G × G respectively. If G is a
discrete Abelian group (which we write additively), then this is just the group ring
k∗[G], which is a free k∗-module on one generator [g] for each element g of G. The
structure maps are:

η(1) = [0] (4.1.9)
ε[g] = 1 (4.1.10)

[g][h] = [g + h] (4.1.11)
ψ[g] = [g]⊗ [g] (4.1.12)
χ[g] = [−g] (4.1.13)

Even if G is not discrete, k∗[π0G] = H0(G; k∗) is a sub-Hopf algebra of H∗(G; k∗).
Given a Hopf algebra A∗, we define various other algebraic gadgets:

Ã∗ = ker(ε : A∗ → k∗) (4.1.14)

Q∗A = Ã/Ã2 (4.1.15)
P∗A = {a ∈ A | ψa = a⊗ 1 + 1⊗ a} (4.1.16)
GA = {a ∈ A | ψa = a⊗ a} (4.1.17)

These are called the augmentation ideal, the indecomposable quotient, the submod-
ule of primitives and the group of grouplike elements, respectively. The reason for
the term grouplike comes from the example above, of course. Grouplike elements
necessarily lie in dimension zero. If Ak = 0 for k < 0 then grouplike elements are
rather thin on the ground. However, we shall often (implicitly) consider algebras
like H∗(G; F[[t]]) where dim t < 0, in which they are abundant. (Strictly speaking,
we should say something at this point about completed tensor products, but this
can safely be glossed over.) On the other hand, there is a natural Hopf algebra map
k[GA]→ A, which is mono if k is a field.

We say that an element is indecomposable if it lies in Ã \ Ã2 (and so maps
nontrivially to Q∗A).

Note that if k is an F-algebra then the Frobenius map F : a 7→ a2 is a Hopf
algebra morphism, except that it doubles degrees. In particular, it induces a map
P∗A→ P2∗A.

If A and B are Hopf algebras over k, then we can define a Hopf algebra structure
on A⊗k B in a natural way. The maps

A
1⊗η−−→ A⊗B η⊗1←−− B (4.1.18)

A
1⊗ε←−− A⊗B ε⊗1−−→ B (4.1.19)

are maps of Hopf algebras, and this presents A⊗B as the biproduct (=simultaneous
product and coproduct) of A and B. This makes the category H of Hopf algebras
over k into an additive category. The sum of two maps f, g : A→ B is the composite

A
ψ−→ A⊗A f⊗g−−→ B ⊗B σ−→ B (4.1.20)

and the negative of f is just χ ◦ f = f ◦ χ. The functors above behave as follows:

Q(A⊗B) ' QA⊕QB (4.1.21)
P(A⊗B) ' PA⊕ PB (4.1.22)
G(A⊗B) ' GA× GB (4.1.23)

Suppose we are given a diagram in H:

A
f←− B g−→ C (4.1.24)
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The tensor product A⊗B C inherits a Hopf algebra structure. It is the pushout of
the diagram. In particular, the cokernel in H of a map B → A is

A//B = A⊗B k = A/(BÃ) (4.1.25)

Note that A⊗B C is the coequaliser of the two maps:

A⊗B ⊗ C 1⊗f⊗1−−−−→ A⊗A⊗ C σ⊗1−−→ A⊗ C (4.1.26)

and

A⊗B ⊗ C 1⊗g⊗1−−−−→ A⊗ C ⊗ C 1⊗σ−−→ A⊗ C (4.1.27)

Dually, suppose we have a diagram:

A
f−→ B

g←− C (4.1.28)

We define the cotensor product byA2BC as the equaliser of

A⊗ C ψ⊗1−−−→ A⊗A⊗ C 1⊗f⊗1−−−−→ A⊗B ⊗ C (4.1.29)

and

A⊗ C 1⊗ψ−−−→ A⊗ C ⊗ C 1⊗g⊗1−−−−→ A⊗B ⊗ C (4.1.30)

This is an k-algebra, and even a Hopf algebra provided k is a field. If so, it is the
H-pullback of f and g. In particular, the Hopf algebra kernel of g : B → C is

B2Ck = {b ∈ B | (1⊗ g)(ψb) = b⊗ 1} (4.1.31)

Note that this contains all primitives b ∈ PB such that g(b) = 0.
To define M ⊗A N , we only need M and N to be A-modules. The tensor

product is right exact on the category of such modules, and the derived functors
are written TorA∗∗(M,N). Dually, if k is a field then M2AN is a left exact functor
on A-comodules with derived functors CotorA∗∗(M,N). For more details, and the
case when k is not a field, see [20, Appendix A].

Given a short exact sequence G −→ H −→ K of groups, a useful technique is
to choose a transversal to G in H, or equivalently to choose maps of sets G ←−
H ←− K which split the sequence. This gives rise to an isomorphism G×K → H
of G-sets, if not of groups. The following theorem provides a nice Hopf-algebraic
analogue. We shall assume for simplicity that k is a field, concentrated in dimension
0. A Hopf algebra A is said to be connected if An = 0 for n < 0 and η : k → A0 is
iso.

Theorem 4.1.1 (Milnor-Moore). Suppose that A � B � C is a sequence of
connected Hopf algebras, with C = B//A. (Note that A⊗C is an A-module and a
C-comodule). Then there is a bijective map f : A⊗C −→ B which is both A-linear
and C-colinear, and which makes the following diagram commute:

A⊗ C C

A B

--

->

?

∨

??�
�

�
�

�
�

�
�

��

f

(4.1.32)
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For the proof, see [17, 4.7]. It follows from the conclusion of the theorem that
A = B2Ck. This is a major step towards the proof that the category of connected
Hopf algebras is Abelian.

Suppose again that A is connected. Taking into account (ε ⊗ 1) ◦ ψ = 1 =
(1 ⊗ ε) ◦ ψ, we see that any element of minimal degree in Ã \ 0 is primitive and
indecomposable. Similarly, if f : A→ B is a map of connected Hopf algebras, then
the kernel is a subcoalgebra of Ã and a nonzero element of minimal dimension is
forced to be primitive. Thus, if Pf : PA→ PB is mono, then f itself is mono. By
a similar argument, if Qf is epi then f is.

4.2. Algebraic Theory of Hopf Rings

In this section we review the general theory of Hopf Rings. A Hopf ring is a
graded ring object in the category C∗ of coalgebras defined in the last section. To be
more explicit, it is a sequence {A∗t}t∈Z of objects of M∗, equipped with structure
maps as follows:

k∗

A∗t

A∗t ⊗k∗ A∗t

A∗,t+s

A∗t ⊗k∗ A∗s

k∗

A∗0

?

?

6

6

?

6

� �

 	6

ε η

σ ψ µ

θ

χ

(4.2.1)

The maps ψ and ε are of course just the C-structure maps of A∗t. The maps η, σ
and χ are the zero, addition and negation of the underlying graded Abelian group
object of the graded ring object A. They make A∗t into a Hopf algebra. The
multiplication and multiplicative identity of the ring object are the maps µ and θ.
In addition to the Hopf algebra diagrams for(A,ψ, σ), we require that

• µ defines a commutative and associative multiplication, with unit θ.
• µ and θ are coalgebra maps, so there is a commutative diagram analogous

to 4.1.7.
• The following diagram commutes (“distributivity”):

A⊗A A

A⊗A⊗A A⊗A⊗A⊗A A⊗A⊗A⊗A A⊗A

? ?
-

- - -

1⊗ σ σ

µ

ψ ⊗ 1 1⊗ τ ⊗ 1 µ⊗ µ
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The Penrose diagram for distributivity is:
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µ σ

τ µ

ψ

(4.2.2)

We write a ∗ b or just ab for σ(a⊗ b) and a ◦ b for µ(a⊗ b). We refer to σ and
µ as the star and circle products. Also, we write

ψ(a) =
∑

a′ ⊗ a′′ (4.2.3)

In this notation, the characterisation of χ is∑
a′χ(a′′) = ηε(a) (4.2.4)

and the distributivity law says

a ◦ (b c) =
∑
±(a′ ◦ b)(a′′ ◦ c) (4.2.5)

where the sign is the usual one for exchanging a′′ and b. Note in particular that

a ∈ GA⇒ a ◦ (b c) = (a ◦ b)(a ◦ c)
a ∈ PA⇒ a ◦ (b c) = (a ◦ b)ε(c)± ε(b)(a ◦ c)

⇒ a ◦ b = 0 if b ∈ Ã2
(4.2.6)

We have used the fact that 1 ◦ a = ηε(a) ; to prove this, construct the diagram
corresponding to the fact that 0x = 0 in a ring.

A basic example of a Hopf ring is the “ring-ring” A∗∗ = k∗[π∗] of a graded ring
π∗. In this case, A∗t is the group ring k∗[πt] of the additive group πt. The structure
formulae are:

ηt(1) = [0t] (4.2.7)
ε[a] = 1 (4.2.8)

[a][b] = [a+ b] (4.2.9)
[a] ◦ [b] = [ab] (4.2.10)
ψ[a] = [a]⊗ [a] (4.2.11)
χ[a] = [−a] (4.2.12)

For a general Hopf ring A, we write [0t] or just [0] for the identity element ηt(1)
in A0t. We also define

[1] = θ(1) ∈ A00 (4.2.13)
[n] = [1]n (n ≥ 0) (4.2.14)

[−n] = χ[n] (4.2.15)

One checks easily that these satisfy the equations given above for k[π], so we have a
Hopf ring map k[Z]→ A. If A was a ring-ring in the first place, then these elements
[n] are what you think they are. We also have

[−1] ◦ a = χ(a) (4.2.16)
[0] ◦ a = ηε(a) (4.2.17)
[1] ◦ a = a (4.2.18)

[2] ◦ a =
∑

a′a′′ (4.2.19)
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Example.
Elsewhere in this thesis we have a Hopf ring over F containing elements zk with

ψzk =
∑

k=l+m

zl ⊗ zm (4.2.20)

zk ◦ zl = (k, l)zk+l = (k + l)!/k!l! zk+l (4.2.21)
z0 = [1] (4.2.22)
εzk = δk0 (4.2.23)

We write zk = zk/z0 = [−1]zk. Note that z0 = [0] = 1. Let us compute z1 ◦ z2.
First observe that

ψz1 = ψ([−1])ψ(z1)
= ([−1]⊗ [−1])([1]⊗ z1 + z1 ⊗ [1])
= [0]⊗ z1 + z1 ⊗ [0]

so z1 is primitive. Using this, the distributivity law, and the fact that [0] ◦ z2 =
εz2 = 0, we find

z1 ◦ z2 = z1 ◦ ([−1]z2)
= ([0] ◦ [−1])(z1 ◦ z2) + (z1 ◦ [−1])([0] ◦ z2)
= z1 ◦ z2

Next, we use the equations [−1] ◦ a = χa and
∑
a′χa′′ = εa to find [−1] ◦ zk for

k = 1, 2.

χ[1] = [−1] ◦ [1] = [−1] (4.2.24)

z1χ[1] + [1]χz1 = εz1 = 0 =⇒ [−1] ◦ z1 = [−1]z1/[1] = [−2]z1
(4.2.25)

z2χ[1] + z1χz1 + [1]χz2 = 0 =⇒ [−1] ◦ z2 = [−2]z2 + [−3]z2
1

(4.2.26)

The binomial coefficient (1, 2) = 3 is odd, so z1 ◦ z2 = z3. However, (1, 1) = 2 so
z1 ◦ z1 = 0. Thus

z1 ◦ z2 = ([−1]z1) ◦ z2
= ([−1] ◦ [1])(z1 ◦ z2) + ([−1] ◦ z1)(z1 ◦ z1) + ([−1] ◦ z2)(z1 ◦ [1])
= [−1]z3 + 0 + ([−2]z2z1 + [−3]z3

1)
= z3 + z2z1 + z3

1 �

We need a few comments about another way to construct Hopf rings. Suppose
we start with a Hopf ring A and a sequence {C∗t}t∈Z of coalgebras (all defined over
k). We look for a universal example of a Hopf ring B = A[C] equipped with a
Hopf ring map A → B and a coalgebra map C → B. We can construct such a
thing by the Adjoint Functor Theorem [13] or by the methods of universal algebra.
It is horribly large; we have to take the free graded-commutative algebra on C to
serve as the module generated by the circle products of elements of C, take the
tensor product with A and finally take the free graded-commutative algebra on that
to produce star products. More generally, one can look for a universal solution
modulo a given list of relations. Many known examples of Hopf rings that arise in
topology (as explained in the next section) have a simple description in these terms
(see [21], for example). In the cases described elsewhere in this thesis, the answers
are even of a tolerable size.
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4.3. The Hopf Ring Associated to an Ω Spectrum

Let E be a ring spectrum. We write E t for the t’th space of the associated
Ω-spectrum, and E ′t for the base component in E t. Thus, if X is a space we have

En(X) = [X, E n] (4.3.1)

(this means unreduced cohomology and unbased maps). Also, we are given a spec-
ified homotopy equivalence

Ω E n+1 = Ω E ′n+1 −→ E n = ΣEn−1 (4.3.2)

One can show that

E n = π−nE × E ′n (4.3.3)

Suppose that for all n, H∗( E n; k) is flat over k. (We shall suppress the coefficients
for the rest of this section.) Then { E t}t∈Z is a graded ring object in the category
Tk. In the case of K-theory (of whatever brand)

• The addition E t× E t → E t classifies Whitney sum of bundles. It agrees
with the loop sum under the identification E t = Ω E t+1.
• The multiplication E t × E l → E t+l classifies the tensor product of

bundles.
• The unit 1→ E 0 classifies the one dimensional trivial bundle

It follows that H∗ E ∗ is a graded ring object in C, that is, a Hopf ring.
We know that π0 E n = π−nE and that H0 E n = k[π0 E n]. We conclude that

the sub-Hopf ring H0 E ∗ is just the ring-ring k[π−∗E]. We use the notation [a] for
the basis element of H0 E n corresponding to a ∈ π−nE. Note that this extends the
notation [n] for n ∈ Z defined earlier.

Given a ∈ πnE, recall that we have a stable map ma:

ΣnE a∧1−−→ E ∧ E µ−→ E (4.3.4)

This gives an infinite loop map Em → Em−n. In homology, this sends x to [a]◦x.
It follows that this is a Hopf algebra morphism, commuting with Steenrod and
Kudo-Araki operations.

The isomorphism

H1( E ′1; Z) ' π1 E
′
1 ' Ẽ1S1 ' Ẽ0S0 3 1 (4.3.5)

gives a canonical element e of H1 E 1, called the fundamental class or the suspension
class. The reason for the second name is the following fact:

e ◦ x = s∗(x− ηε(x)) (4.3.6)

where s∗ denotes the homology suspension. To prove this, one first notes that
e ◦ [0] = ηε(e) = 0. Next, recall that the circle product µ : E t× E l → E t+l comes
from a stable map E ∧ E → E. Together with a little general nonsense, this yields
the diagram

E 1 × E n E n+1 E ′n+1

E 1 ∧ E n Σ E n ΣΩ E n+1

66
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µ

e ∧ 1

eval

(4.3.7)
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Recall that s∗ is by definition the composite

H̃s−1(Ω E n+1) ' H̃s(ΣΩ E n+1)
eval∗−−−−→ H̃s E n+1 (4.3.8)

Using this, it is easy to verify the claim.
Note also that e is carried by a based map S1 → E ′1, so it is necessarily

primitive.





CHAPTER 5

Spectral Sequences

In this chapter, we assemble the arsenal of spectral sequences which we will
need to prove the claims made in chapters 2 and 3. We shall mostly use mod 2
coefficients. Much of the material can be found in [16].

5.1. The Bockstein Spectral Sequence

In this section we examine the problem of recovering the integral homology
from the mod 2 homology. This material seems to be well known, but I do not
know a good reference. The spectral sequence of the same name in [6] (for exam-
ple) is not quite the same as ours. In the notation defined below, it converges to
(H∗(C)/torsion)⊗ F, whereas ours converges to H∗(C).

Let C∗ be a chain complex of free Abelian groups, with differential d : Ck →
Ck−1. Our spectral sequence is that associated to the filtration of C∗ by the sub-
complexes {2sC∗}, but to understand it fully we need to look a little closer. Define

Zrst = {c ∈ 2sCt−s | dc ∈ 2s+rCt−s−1} (s ≥ 0)
Zrst = 0 (s < 0)
Erst = Zrst/(Z

r−1
s+1,t+1 + dZr−1

s−r+1,t−r+2) (5.1.1)

One finds that the boundary map in C induces a differential

dr : Ers,t −→ Ers+r,t+r−1 (5.1.2)

whose homology is naturally identified with Er+1
∗∗ . In other words, we have a spectral

sequence. Consider the polynomial ring P [τ ] where τ has bidegree (1, 1). It acts
on our spectral sequence by τ [c] = [2c]. Multiplication by τ gives an isomorphism
Erst −→ Ers+1,t+1 for s ≥ r−1 and an epimorphism for s ≥ 0. If s < 0 then Erst = 0.
Thus Er∗∗ is generated over P [τ ] by Er0∗.

For s ≥ 0 and r ≥ 1 we have

Z
r

st = Zrst/B
1
st = im[Ht−sC/2r → Ht−sC/2]τ s (5.1.3)

B
r

st = Brst/B
1
st = im[ann(2min(s,r−1),Ht−sC)→ Ht−sC/2]τ s (5.1.4)

Thus an element τ sx of Erst corresponds to an element u of Ct−s with du = 2rw
say. The differential is given by dr(τ sx) = τ r+s[w] ∈ Ers+r,t+r−1. Note also that
given s and t, the groups Brst are constant for r > s.

Suppose that for each k there is an integer nk such that 2nk annihilates the 2-
torsion subgroup Tk of HkC. This holds if H∗C is finitely generated in each degree,

49
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for example. We have a morphism of short exact sequences:

C C C/2

C C C/2r

-> --

-> --

? ? ?
?

2

2r

2r−1 1

(5.1.5)

Consider the resulting map of Künneth sequences when r > nt−s−1:

(Ht−sC)/2 Ht−s(C/2) (Ht−s−1C) ∗ Z/2

(Ht−sC)/2r Ht−s(C/2r) (Ht−s−1C) ∗ Z/2r

-> --

-> --

? ? ?

�
�

�
�

�
�

�
�

�
�

�
�

��+

2r−1 = 0

(5.1.6)

According to the ancient tradition, we write A∗B for Tor(A,B). The diagonal map
exists because the right hand vertical vanishes and the rows are short exact. This
implies that

Z
r

st = Z
∞
st = im[Ht−sC → Ht−s(C/2)]τ s (5.1.7)

We conclude that

E1
st = τ sHt−s(C/2) d1x = β(x)τ (5.1.8)

E2
∗∗ = ker[β : HF∗X → HF∗−1X]⊗ P [τ ] / im[β : HF∗+1X → HF∗X]⊗ τP [τ ]

(5.1.9)

E∞s,t ' Ht−sC/(2Ht−sC + ann(2s,Ht−sC))

' 2sHt−sC/2s+1Ht−sC

This is the bigraded group associated to a filtration of H∗C/(odd torsion).
Let β̃ denote the Bockstein HF∗ → H∗−1 and ρ the reduction H → HF. Then

ρβ̃ = β and ker[β̃] = image[ρ]. It follows that everything in image[β] ⊆ E2
0∗ lifts to

H∗C and is thus a permanent cycle. If the composite

H∗C → image[β] � H∗(HF∗(C), β) (5.1.10)

is epi, then it follows in turn that everything in E2
0∗ is a permanent cycle. Using

P [τ ]-linearity, we see that the whole sequence collapses. We can then read off from
the E∞-page that the 2-torsion subgroup is annihilated by 2 and that

H∗(C)⊗ F→ H∗(HF∗(C), β) (5.1.11)

is iso, where H∗(C) = H∗(C)/torsion.
On the other hand, suppose β = 0. It is elementary that there is then no even

torsion. For if not, we can find x such that 0 6= [x] ∈ HF∗C but 2[x] = 0, so 2x = dy
say. In that case, y is a cycle mod 2 with β[y] = [x] 6= 0 contrary to hypothesis.

Combining the above remarks with lemma 3.1.2, we obtain:
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Theorem 5.1.1. Let X be a space such that H∗(Y ) is finitely generated in each
dimension for each component Y of X. Suppose also that H[ 12 ]∗(X) is torsion free.

(1) If β : HF∗(X) → HF∗−1(X) vanishes then H∗(X) is torsion free and the
Bockstein spectral sequence collapses.

(2) If H∗(X) → H∗(HF∗(X), β) is epi then the Bockstein spectral sequence
collapses and H∗(X)⊗ F→ H∗(HF∗(X), β) is iso.

(3) Suppose φ : A∗ → H∗(X), where A∗ is torsion free. If A[ 12 ]∗ → H[ 12 ]∗(X)
and A⊗ F→ H(HF∗(X), β) are iso, then φ is iso.

�

5.2. The Rothenberg-Steenrod Spectral Sequence

Our next spectral sequence computes the homology of the classifying space of
an infinite loop space. It is often called the bar spectral sequence. See [26] or [22]
for more information and references.

E2
s,t = TorHF∗Ek

s,t (F,F) =⇒ HFt+s E ′k+1 (5.2.1)

dr : Ers,t −→ Ers−r,t+r−1 (5.2.2)

-
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E2
1,t = TorHF∗Ek

1,t
-- E∞1,t

H̃Ft E k HFt+1 E
′
k+1

66

?

∨

-
e ◦ (−)

σ

(5.2.3)

The E2 term can be computed using the bar resolution. Let A∗ be a Hopf
algebra (e.g. A∗ = HF∗ E k) and set

Ωs,t = (Ã⊗ . . . Ã)t (s factors ) (5.2.4)

A typical element of Ωs,t will be written as 〈a1| . . . |as〉 where ai ∈ Ãti and
∑
i ti = t.

This modifies the usual notation slightly to avoid confusion with [x] ∈ H0 E k as
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defined previously. A boundary mapping is given by:

d〈a1| . . . |as〉 =
s−1∑
i=1

〈a1| . . . |aiai+1| . . . |as〉 (5.2.5)

There is also a product on Ω, making it a DGA:

〈a1| . . . |ar〉〈ar+1| . . . |ar+s〉 =
∑
{shuffles of 〈a1| . . . ar+s〉}

(5.2.6)

The homology of Ω agrees with our E2 term TorH∗Ek
∗∗ = TorH∗Ek

∗∗ (F,F) as an algebra.
Suppose a ∈ H̃t E k. Then σ(a) = 〈a〉 is a cycle in Ω1,|a| and in fact a permanent

cycle in the spectral sequence, representing e ◦ a which lies in the bottom filtration
of Ht+1 E

′
k+1. Suppose further that a2 = 0. Then Bk(a) = 〈a| . . . a〉(k factors) is

again a cycle in Ω. It is immediate from the definitions that

Bk(a)Bl(a) =
(k + l)!
k!l!

Bk+l(a) (5.2.7)

so, defining B(s)(a) =
∑
k Bk(a)s

k we obtain

B(s)(a)B(t)(a) = B(s+ t)(a) (5.2.8)

As we are working over a field, the evident external product

TorA∗∗ ⊗ TorB∗∗ −→ TorA⊗B∗∗ (5.2.9)

is an isomorphism. The standard examples of Tor algebras are:

TorP [x]
∗∗ = E[σ(x)] (5.2.10)

TorE[x]
∗∗ = D[σ(x)] = F{Bk(x)|k ≥ 0} =

⊗
l≥0

E[B2l(x)]
(5.2.11)

There is a circle product pairing

Ωk,s,t ⊗HFr E l −→ Ωk+l,s,t+r (5.2.12)

given by

〈a1| . . . |as〉 ◦ b =
∑
〈a1 ◦ b(1)| . . . |as ◦ b(s)〉 (5.2.13)

where

ψ(s)b =
∑

b(1) ⊗ . . . b(s) (5.2.14)

is the iterated coproduct. This structure is compatible with the differentials:

dr(〈a1| . . . |as〉 ◦ b) = (dr〈a1| . . . |as〉) ◦ b (5.2.15)

It also converges to the usual circle product at E∞. Note that if b is grouplike (i.e.
ψb = b⊗ b) then

〈a1| . . . |as〉 ◦ b = 〈a1 ◦ b| . . . |as ◦ b〉 (5.2.16)

Provided that H∗ E k is torsion free, there is an analogous spectral sequence for
integral homology. One has to put in some signs, of course. We omit the details
here.



5.3. THE EILENBERG-MOORE SPECTRAL SEQUENCE 53

5.3. The Eilenberg-Moore Spectral Sequence

We next consider the Eilenberg-Moore spectral sequence. The special case in
which we are most interested is in a sense dual to the Rothenberg-Steenrod sequence
above. It runs in the opposite direction ( E k ⇒ E k−1 rather than E k−1 ⇒ E k)
and it uses the coalgebra structure via the Cotor functor rather than the algebra
structure and the Tor functor. See [16] or [9] for the construction of this spectral
sequence and its generalisations, and [20] for information about the Cotor functor.

We start with a pullback square:

Y0 Z

X Y1

-

-

? ?
p0

p1j0

j1

(5.3.1)

Suppose that at least one of p0 and p1 is a fibration. There is then a spectral
sequence:

E2
s,t = CotorHF∗Z

s,t (HF∗Y0,HF∗Y1) =⇒ HFt−sX (5.3.2)

dr : Ers,t −→ Ers+r,t+r−1 (5.3.3)

The most interesting case for us is when Z = E ′k and both Y0 and Y1 are the path
space P E ′k so that X = Ω E ′k = E k−1. If we abbreviate CotorA∗∗∗ (F,F) as just
CotorA∗∗ then we have

E2
s,t = CotorHF∗E′

k
s,t =⇒ HFt−s E k−1 (5.3.4)
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This is a spectral sequence of differential bigraded Hopf algebras. The coproduct
on E∞∗,∗ corresponds to that on H∗ E k−1, but the products need not correspond.

The Hopf algebra CotorHF∗E′
k

∗∗ depends only on the coalgebra structure of HF∗ E ′k.
It can be computed using the cobar resolution. Let A∗ be a connected Hopf algebra
over F (e.g. A∗ = HF∗ E ′k) and set

Υs,t = (Ã⊗ . . . Ã)t (s factors ) (5.3.5)

d〈a1| . . . |as〉 =
s∑
i=1

∑
〈a1| . . . ai−1|a′i|a′′i | . . . as〉 (5.3.6)

〈a1| . . . ar〉〈ar+1| . . . ar+s〉 = 〈a1| . . . ar+s〉 (5.3.7)

This makes Υ∗∗ into a homotopy commutative DGA, whose homology is CotorA∗∗∗ .
There is a Künneth theorem:

CotorA∗⊗B∗∗∗ = CotorA∗∗∗ ⊗ CotorB∗∗∗ (5.3.8)

In the rest of this section d = deg(x). The basic examples of coalgebras are:

E[x] = F{1, x} deg x = d ψx = x⊗ 1 + 1⊗ x
D[x] = F{x[k] | k ≥ 0} deg x[k] = kd ψx[n] =

∑
n=i+j x

[i] ⊗ x[j]

P [x] = F{xk | k ≥ 0} deg xk = kd ψxn =
∑
n=i+j(i, j)x

i ⊗ xj(5.3.9)

The corresponding Cotor algebras are:

CotorE[x] = P [a] a = 〈x〉 ∈ Cotor1,d
CotorD[x] = E[b] b = 〈x〉 ∈ Cotor1,d
CotorP [x] = P [ai | i ≥ 0] ai = 〈x2i〉 ∈ Cotor1,2id

(5.3.10)

5.4. The Serre Spectral Sequence

In this section we discuss the Serre spectral sequence, with particular reference
to the case of an infinite-loop fibration. Some proofs are given at the end of the
section. The rest of the material is standard.

Let U → V → W be a cofibration of spectra. We then have a fibration of
spaces:

Un −→ V n −→Wn (5.4.1)

Let W ′′n denote the image of the right hand map. As this map is a fibration, W ′′n is
the union of certain components of Wn. Let us write

F = Un (5.4.2)
F ′ = U ′n (5.4.3)
E = V n (5.4.4)
B = W ′′n (5.4.5)

so F → E → B is still a fibration. Using simplicial methods [15, 5], we may assume
that it is also a sequence of homomorphisms of topological groups (only Abelian up
to homotopy, of course). We have a bundle of Abelian groups (= local coefficient
system) H0F =

⊔
b∈B F[π0Eb] over B. In the present context, the Serre spectral

sequence is a spectral sequence of Hopf algebras, and it takes the form:

E2
s,t = HFs(B;H0F )⊗HFt(F ′) =⇒ HFt+s(E) (5.4.6)

dr : Ers,t −→ Ers−r,t+r−1 (5.4.7)
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If the boundary map π1B → π0F vanishes, then the local coefficient system
is trivial and the E2 page is just HF∗B ⊗ HF∗F . However, in the worst cases we
need two more spectral sequences to compute the initial term. Firstly, we need to
calculate the homology of the universal cover B̃ of B. We write HF∗(π1B) for the
group homology, i.e. the homology of the classifying space. We use the Eilenberg-
Moore spectral sequence of the following square:

B Bπ1B

B̃ Eπ1B

-

-

? ?

(5.4.8)

Here Bπ1B is the classifying space of the group π1B, and Eπ1B is the (contractible)
total space of the universal principal π1B-bundle.

E2
s,t = CotorHF∗(π1B)

s,t (F,HF∗B) =⇒ HFt−sB̃ (5.4.9)

dr : Ers,t −→ Ers+r,t+r−1 (5.4.10)

We can then use a Künneth spectral sequence to calculate the homology with
local coefficients.

E2
s,t = TorF[π1B]

s (HFtB̃,F[π0F ]) =⇒ HFt+s(B;H0F ) (5.4.11)

dr : Ers,t −→ Ers−r,t+r−1 (5.4.12)

This is explained in more detail at the end of the section.
Consider the two edge maps:

HFt(E) −→ HFt(B;H0F ) (5.4.13)
HFt(F )/π1B −→ HFt(E) (5.4.14)
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If the first is epi, then all differentials must vanish on Er0∗. They also vanish on Er∗0,
for dimensional reasons. Using the algebra structure and induction on r, we find
that the sequence collapses. This implies that the second edge map is mono. By
looking at the dual spectral sequence, we find similarly that if the second edge map
is mono then the sequences collapses and the first is epi. In this case, the maps

HF∗(F )/π1B −→ HF∗(E)2HF∗(B;H0F )F (5.4.15)
HF∗(E)⊗HF∗F F −→ HF∗(B;H0F ) (5.4.16)

are iso.
We shall need a few facts about the transgression. For simplicity, we shall

only consider the case in which the local coefficients are simple. The transgression
(written τ) is then the following additive relation from HF∗(B) to HF∗(F ):

HFk(B) � HFk(B, ∗)← HFk(E,F ) ∂−→ HFk−1(F ) (5.4.17)

It agrees [16, section 6.1] with the additive relation

HFk(B) � Ekk,0
dk−→ Ek0,k−1 � HFk−1(F ) (5.4.18)

Elements in the domain of τ are described as transgressive. An element x ∈ HFk(B)
is transgressive if and only if it is a cycle for each of the differentials d2, . . . , dk−1.
If so, dk(x) lies in the quotient Ek0,k−1 of HFk−1(F ) ; in particular, it is a coset in
HFk−1(F ). This coset is just τ(x). This construction is of course functorial. The
most important application of this is as follows:

Lemma 5.4.1. If s∗ : H̃Fk−1(ΩB) → HFk(B) is the homology suspension, and
∂ : ΩB → F is the usual connecting map, then s∗(x) is transgressive with τs∗(x) =
∂∗(x) .

Proof. This follows by considering the following morphism of fibre sequences:

B

PB

ΩB

B

E

F

-

-

-

?

?

?

?

(5.4.19)

One also needs to bear in mind the homotopy equivalence (CΩB,ΩB)→ (PB,ΩB)
which sends (t, ω) ∈ CΩB to the path s 7→ ω(st). �

A few of the statements above need some justification. Firstly, the Serre spectral
sequence is usually discussed under the assumption that the base is connected.
Provided that we restrict the base so that E → B is surjective (as we did) and then
take into account the transitive action of the topological group E, we can ignore
this hypothesis.

Secondly, let ω be a loop in B. To understand how it acts on F , we are required
to find a homotopy ht : F → E for 0 ≤ t ≤ 1, such that h0 is the inclusion and the
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composite

F
ht−→ E −→ B (5.4.20)

is the constant map with value ω(t); the action of ω is given by h1 : F → F . To
do this, we choose a path ω̃ : I → E lifting ω. Note that the image of ω under
the boundary map ∂ : π1B → π0F is just the component of ω̃(1). As we assume
that our spaces are topological groups and our maps are homomorphisms, we can
take ht(x) = xω̃(t). Thus, ω acts via multiplication by ∂(ω). If a ∈ F , then
multiplication by a is a homeomorphism F ′ → F ′a and F ′a is the component of a
in F . Using this one sees that HF∗(F ) = F[π0F ]⊗HF∗(F ′) as π1B-modules, where
π1B acts on the first factor via ∂ and trivially on the second factor.

Essentially by definition,

HF∗(B;H∗F ) = H∗(C∗B̃ ⊗π1B HF∗F ) = H∗(C∗B̃ ⊗π1B F[π0F ])⊗HF∗(F ′)
(5.4.21)

Let Q∗ � F[π0F ] be a free resolution over F[π1B]. Consider the two spectral se-
quences associated to the double complex C∗B̃ ⊗π1B Q∗, noting that both factors
are free. If we take homology w.r.t. the right hand factor first, then the spectral
sequence degenerates to H∗(C∗B̃ ⊗π1B F[π0F ]), so the other spectral sequence con-
verges to this also. The E2 page of the other sequence is just TorF[π1B]

s (HFtB̃,F[π0F ]),
as above. This is the Künneth-type spectral sequence mentioned previously.

5.5. Examples of Serre Spectral Sequences

We have mentioned a large number of stable cofibrations, some of which gives
rise to as many as 24 different unstable fibrations. Although unnecessary for our
computations, it is nonetheless interesting to analyse how the associated Serre se-
quences behave. Life being short, we examine only four cases, which appear to cover
most of the observed phenomena. Recall (from 1.3.2) the cofibre sequence

ΣKO α−→ KO
mO−−→ KU

fUν
−1

−−−−→ Σ2KO (5.5.1)

From this we extract our fibrations:

Z×BSp mO−−→ Z×BU fUν
−1

−−−−→ O/U (5.5.2)

Z×BU fUν
−1

−−−−→ O/U
α−→ U/Sp (5.5.3)

O/U
α−→ U/Sp

mO−−→ U (5.5.4)

U/Sp
mO−−→ U

fUν
−1

−−−−→ SO (5.5.5)

Analysis of (5.5.2).

Z×BSp mO−−→ Z×BU fUν
−1

−−−−→ O/U (5.5.6)

In homology, we have

P [[β] ◦ z4k][−β] −→ P [[ν2] ◦ z2k][−ν2] −→ E[[α2] ◦ z2k] (5.5.7)

[β] ◦ z4k 7→ [ν2] ◦ [2] ◦ z4k = [ν2] ◦ z2
2k (5.5.8)

[ν2] ◦ z2k 7→ [α2] ◦ z2k (5.5.9)

It is clear that the first map is mono and the second is epi. The local coefficients
are thus trivial and the spectral sequence collapses. �
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Analysis of (5.5.3).

Z×BU fUν
−1

−−−−→ O/U
α−→ U/Sp (5.5.10)

P [[ν2] ◦ z2k][−ν2] −→ E[[α2] ◦ z2k] −→ E[e ◦ [β] ◦ z4k]
(5.5.11)

[ν2] ◦ z2k 7→ [α2] ◦ z2k 7→ δk0 (5.5.12)

In this case the coefficients are not simple. To analyse them, we need to compute
the Cotor groups of HF∗(B) as a comodule over HF∗(BZ) = HF∗(S1) = E[a]. This
comodule structure arises from a map B → BZ whose fibre is the universal cover of
B. As e ◦ [β] is the Hurewicz image of a generator of π1B, it must map to a. Other
generators map to zero. The coaction is induced by the map

B
∆−→ B ×B −→ S1 ×B (5.5.13)

As the generators e ◦ [β] ◦ z4k are primitive, it follows that

HF∗(B) ' E[a]⊗ E[e ◦ [β] ◦ z4k+4] (5.5.14)

is an extended comodule. Thus

CotorE[a]
∗∗ (F,HF∗(B)) = CotorE[a]

0∗ (F,HF∗(B)) = E[e ◦ [β] ◦ z4k+4]
(5.5.15)

It follows that the Eilenberg-Moore sequence collapses to give

HF∗(B̃) = E[e ◦ [β] ◦ z4k+4] (5.5.16)

We next have to use the Künneth sequence

TorF[Zβ]
∗ (E[e ◦ [β] ◦ z4k+4],F[Zν2]) =⇒ HF∗(B;H0F )

(5.5.17)

The connecting map ∂ : Z×BSp = ΩB → F = O/U is mO. In particular, ∂(β) =
2ν2. It follows that F[Zν2] is a free module on two generators (viz. [0] and [ν2])
over F[Zβ]. On the other hand, Zβ acts trivially on E[e ◦ [β] ◦ z4k+4] (because this
maps injectively to HF∗(B)). We conclude that the Tor group lies on the 0-line,
and that the Serre E2 is

E[e ◦ [β] ◦ z4k+4]⊗ F[Fν2]⊗ P [[ν2] ◦ z2k+2] (5.5.18)

Using the usual relation between suspension and transgression, (lemma 5.4.1) we
find that

dr(e ◦ [β] ◦ z4k+4) = 0 (r < 4k + 5) (5.5.19)
d4k+5(e ◦ [β] ◦ z4k+4) = [ν2] ◦ z2

2k+2 (5.5.20)

The other generators are on the vertical axis, and therefore are permanent cycles.
We can now prove by induction that

E4k+5
∗∗ = E[e ◦ [β] ◦ z4l+4 | l ≥ k]⊗ F[Fν2]⊗ E[[ν2] ◦ z2l+2 | l < k]⊗ P [[ν2] ◦ z2l+2 | l ≥ k]

(5.5.21)

so

E∞∗∗ = F[Fν2]⊗ E[[ν2] ◦ z2l+2] (5.5.22)

This is concentrated on the vertical axis, so there are no extensions. The answer
agrees with what we already know as soon as we identify the image of [ν2] under
the fibre inclusion fUν−1 : Z×BU → O/U as [α2]. �
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Analysis of (5.5.4).

O/U
α−→ U/Sp

mO−−→ U (5.5.23)

E[[α2] ◦ z2k]
ηε−→ E[e ◦ [β] ◦ z4k]

ηε−→ E[e ◦ [ν2] ◦ z2k] (5.5.24)

Again, the coefficients are not simple. The Eilenberg-Moore sequence giving the
homology of the universal cover behaves much as in the previous case. We find that

HF∗(B̃) = E[e ◦ [ν2] ◦ z2k+2] (5.5.25)

with trivial action of π1(B) = Zν2. On the other hand, F[Zν2] acts on HF0(F ) =
F[Fα2] via the epimorphism Zν2 � Fα2 sending ν2 to α2. Using the obvious
minimal resolution

0→ F[Zν2]
[ν2]−[0]−−−−−→ F[Zν2] −→ F[Fα2]→ 0 (5.5.26)

We find that the Künneth E2 is

TorF[Zν2]
∗∗ (E[e ◦ [ν2] ◦ z2k+2],F[Fα2]) = E[a]⊗ E[e ◦ [ν2] ◦ z2k+2]

(5.5.27)

where a has bidegree (1, 0) and the second factor is E2
0,∗. As the differential dr

has bidegree (−r, r − 1), only d2 can be nontrivial. A nonzero element of smallest
possible degree in the image of d2 must be primitive and cannot lie on the horizontal
axis; a is the only candidate. There is nothing in bidegree (0, 2) to support a d2

hitting a, so the sequence collapses. To see what a represents, consider the following
morphism of fibrations:

O/U U/Sp U

S0 S1 S1

- -

- -

? ? ?

β ν2

2

(5.5.28)

A naturality argument shows that a = e◦[β]. We find that the Serre E2 is as follows,
with the first two factors on the horizontal axis and the third on the vertical one:

E2
∗∗ = E[e ◦ [β]]⊗ E[e ◦ [ν2] ◦ z2k+2]⊗ E[[α2] ◦ z2k+2]

(5.5.29)

By lemma 5.4.1, there are transgressive differentials

d2k+1(e ◦ [ν2] ◦ z2k+2) = [α2] ◦ z2k+2 (5.5.30)

This implies

E2k+3
∗∗ = E[e ◦ [β]]⊗ E[e ◦ [ν2] ◦ z2l+2 | l ≥ k]⊗ (5.5.31)

E[e ◦ [ν2] ◦ z2l+2 ⊗ [α2] ◦ z2l+2 | l < k]⊗ E[[α2] ◦ z2l+2 | l ≥ k]

E∞∗∗ = E[e ◦ [β]]⊗ E[e ◦ [ν2] ◦ z2l+2 ⊗ [α2] ◦ z2l+2] (5.5.32)
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The E∞ term looks like this:

-

6

s

t

1 r r r r r r r r r r r r r r

b b b b b b b b b b bb b bb b bb b bb b bb bb bb bb bb bb b b

(5.5.33)

The solid circles represent the generators e◦ [β] or e◦ [ν2]◦z2l+2⊗ [α2]◦z2l+2. They
lie on the line s = t + 1. All decomposables (the open circles) lie strictly below
this line and only 1 lies above it. By considering various bidegrees, we see that
this forces the generators to be primitive in E∞, which we recall is the associated
graded Hopf algebra corresponding to a filtration of HF∗(U/Sp) by Hopf ideals.
On the other hand, we see from the diagram that the generators lie in the bottom
filtration, so they correspond to primitives in HF∗(U/Sp) itself. Using our previous
description of HF∗(U/Sp), this implies that e ◦ [ν2] ◦ z2l+2 ⊗ [α2] ◦ z2l+2 maps to
e ◦ [β] ◦ z4k+2. It would be interesting to have a more equational proof of this,
perhaps involving the Kudo transgression theorem [16] or Kudo-Araki operations
in the spectral sequence. �

Analysis of (5.5.5).
This is much the most subtle and interesting of our examples.

U/Sp
mO−−→ U

fUν
−1

−−−−→ SO (5.5.34)

E[e ◦ [β] ◦ z4k]
ηε−→ E[e ◦ [ν2] ◦ z2k] −→ E[[α] ◦ zk+1] (5.5.35)

(fUν−1)∗(e ◦ [ν2] ◦ z2k) = [α] ◦ q2k+1 (5.5.36)

The coefficients are simple as the fibre is connected. To prove the last equation,
recall that fU (ν) = α2 (1.4.1) and that e ◦ [α2] = (e ◦ [α]) ◦ [α] = z1 ◦ [α] (2.1.13)
and that z1 ◦ zk = qk+1 (2.6.10). As the connecting map is mα : O/U → U/Sp, this
implies a transgressive differential

d2k+3([α] ◦ q2k+3) = (mα)∗([α2] ◦ z2k+2) = [α3] ◦ z2k+2 = 0
(5.5.37)

showing that [α] ◦ q2k+3 is a permanent cycle. For dimensional reasons, [α] ◦ q1 is
also.

We shall need to use different generators to understand this spectral sequence.
For brevity, we write

e4k+1 = e ◦ [β] ◦ z4k (5.5.38)
A∗ = HF∗(U/Sp) = E[e4k+1] (5.5.39)

uk+1 = [α] ◦ zk+1 (5.5.40)
B∗ = HF∗(SO) = E[uk+1] (5.5.41)
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We also set u0 = 1 and u(t) =
∑
k ukt

k. It is easy to show by induction that there
are unique elements wk ∈ Bk with w0 = 0 and

u(t) =
∏
k

(1 + wkt
k) (5.5.42)

Moreover, wk ≡ uk mod decomposables, so B∗ = E[wk+1]. The perceptive reader
will realise that these generators are the circle products of [α] with the Witt gen-
erators [4] of HF∗(BO). We shall need some notation involving binary expansions.
Recall that 0 ∈ N according to our conventions.

S(k) = the unique S ⊂ N such that k =
∑
i∈S

2i (5.5.43)

2l ∈ k ⇔ l ∈ S(k) (5.5.44)
n ⊥ m ⇔ S(n) ∩ S(m) = ∅ (5.5.45)

l = n tm ⇔ n ⊥ m and n+m = l (5.5.46)

Note that mod 2 we have

(s+ t)k =
∏
2i∈k

(s2
i

+ t2
i

) =
∑

k=ltm

sltm (5.5.47)

For k odd, we write

B(k)∗ = E[w2lk | l ≥ 0] (5.5.48)

kw(t) =
∏
l

(1 + w2lkt
2l

) (5.5.49)

=
∑
m≥0

kwmkt
m (5.5.50)

so

B∗ =
⊗
k odd

B(k)∗ (5.5.51)

w(t) =
∏

k odd
kw(t) (5.5.52)

kwmk =
∏

2l∈m

w2lk (5.5.53)

B(k)∗ = F{kwmk | m ≥ 0} (5.5.54)

Lemma 5.5.1. For k odd: (1) kw(s+ t) = kw(s)kw(t)
(2) ψ(kw(t)) = kw(t)⊗ kw(t)

Proof. First note that

kw(s+ t) =
∑
m

kwmk(s+ t)m =
∑
p⊥q

kw(p+q)ks
ptq (5.5.55)

On the other hand, using (5.5.53) and the fact that all squares of positive dimen-
sional elements in B∗ vanish, we see that

kwpk kwqk =

{
kw(p+q)k if p ⊥ q
0 otherwise

(5.5.56)

It follows directly that kw(s+ t) = kw(s)kw(t). Consider the series kv(t) = kw(t)⊗
kw(t). Clearly, this also satisfies kv(s + t) = kv(s)kv(t). Running the argument
above backwards, we conclude that

kvpk kvqk =

{
kv(p+q)k if p ⊥ q
0 otherwise

(5.5.57)
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where kv(t) =
∑
m kvmkt

m. It follows that the map

φ : B(k)∗ = F{kwmk | m ≥ 0} −→ B(k)∗ ⊗B(k)∗ (5.5.58)

sending kwmk to kvmk is a ring homomorphism. We have∏
l

(1 + φ(w2lk)t
2l

) = φ(kw(t)) = kw(t)⊗ kw(t) (5.5.59)

∏
m

(1 + φ(wm)tm) =
∏

k odd
φ(kw(tk)) (5.5.60)

=
∏

k odd
kw(tk)⊗ kw(tk) (5.5.61)

= u(t)⊗ u(t) (5.5.62)
= ψ(u(t)) (5.5.63)

=
∏
m

(1 + ψ(wm)tm) (5.5.64)

It follows by induction on m that ψ(wm) = φ(wm). �

We note also that

[α] ◦ q(t) = tdlog
∏
m

(1 + wmt
m)/dt (5.5.65)

=
∑
m

mwmt
m/(1 + wmt

m) (5.5.66)

=
∑

m odd
wmt

m (5.5.67)

so

w2k+1 = [α] ◦ q2k+1 (5.5.68)

Consider the layout of the generators on the E2 page:

-

6

s

t

1 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

e1

e5

e9

e13

rrr
PPPPPi
HHH

HHHY

(5.5.69)
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For dimensional reasons, we must have d2e4k+1 = 0 and d2u(t) = t2e1f(t) for some
series f . Moreover, we know that mO(e1) = 0, so e1 cannot survive. It follows that
εf(t) = f(0) = 1. As d2 is a Hopf algebra differential, we have

t2ψ(f(t))(e1 ⊗ 1 + 1⊗ e1) = ψd2u(t) (5.5.70)
= d2ψu(t) (5.5.71)
= d2(u(t)⊗ u(t)) (5.5.72)
= t2f(t)e1 ⊗ u(t) + t2u(t)⊗ f(t)e1 (5.5.73)

By projecting into the summand

(B ⊗B).(1⊗ e1) ⊂ (B ⊗B){1⊗ 1, 1⊗ e1, e1 ⊗ 1, e1 ⊗ e1}
(5.5.74)

we find that ψ(f(t)) = u(t)⊗ f(t). Applying 1⊗ εB , we obtain f(t) = u(t), so

d2u(t) = t2u(t)e1 (5.5.75)

In fact, essentially the same analysis applies to each factor kw. We find that

d2(kw(t)) =

{
t21w(t) if k = 1
0 if k > 1

(5.5.76)

It follows that d2 respects the decomposition

E2
∗∗ =

⊗
k≥0

B(2k + 1)⊗ E[e4k+1] (5.5.77)

and acts nontrivially only on the first factor. Using

B(1)∗ = E[w2l | l ≥ 0] (5.5.78)
= F{1wm | m ≥ 0} (5.5.79)

d2(1w1) = 0 (5.5.80)
d2(1wm+2) = 1wme1 (5.5.81)

we find that

H(B(1)⊗ E[e1], d2) = E[w1] (5.5.82)

E3
∗∗ = E[w1]⊗

⊗
k>0

(B(2k + 1)⊗ E[e4k+1]) (5.5.83)

The above chain of reasoning extends inductively to give

E4k+2 = E[w2l+1 | l < k]⊗
⊗
l≥k

(B(2l + 1)⊗ E[e4l+1]) (5.5.84)

d4k+2(2l+1w(t)) =

{
t4k+2

2k+1w(t)e4k+1 if l = k

0 if l > k)
(5.5.85)

E∞ = E[w2l+1 | l ≥ 0] (5.5.86)

This is as expected, as

w2l+1 = [α] ◦ q2l+1 = (fUν−1)∗(e ◦ [ν2] ◦ z2k) (5.5.87)

�





CHAPTER 6

K-Theoretic Machinery

In this chapter we recall without detailed proof the basic ideas of Clifford mod-
ules and of Atiyah’s Real K-theory. The Clifford theory comes from [3] and [11],
and the Real K-theory from [2].

6.1. Clifford Modules

In this section we recall some of the theory of Clifford modules and their re-
lation to the coefficient rings of various K-theories. We construct a ring A∗ and
a homomorphism A∗ → KO∗. A similar (but much simpler) procedure is possible
with complex Clifford modules and KU -theory; we omit this. All this comes mainly
from [3]. In the next section, we recall some results which can be used to prove
that this map is an isomorphism.

Let V be a finite dimensional real inner product space. The associated Clif-
ford algebra CV is the quotient of the (noncommutative) tensor algebra TV =⊕

k≥0 V
⊗k by the two sided ideal generated by elements v⊗ v+ 〈v, v〉 where v ∈ V .

The obvious map j : V → CV is injective; we usually suppress it from the nota-
tion. Thus the set of algebra maps φ : CV → A bijects with the set of linear maps
θ : V → A such that θ(v)2 = −〈v, v〉, via φ 7→ φ ◦ j.

The algebra CV can be graded over Z/(2) in a unique way such that V ⊆ C1V
. It is not commutative even in the graded sense. A nonzero vector v ∈ V is a unit
in CV with inverse −v/〈v, v〉.

By a Clifford module for V , we mean a Z/(2)-graded module M = M0 ⊕M1

over CV . Note that multiplication by a vector v ∈ V exchanges M0 and M1.
Define

SV = {v ∈ V | ‖v‖ = 1} (6.1.1)
BV = {v ∈ V | ‖v‖ ≤ 1} (6.1.2)

SV = V ∪ {∞} (6.1.3)
B′V = {v ∈ V | ‖v‖ ≥ 1} ∪ {∞} (6.1.4)

so that

BV ∩B′V = SV (6.1.5)

BV ∪B′V = SV (6.1.6)

Let M be a Clifford module for V 6= 0. We can associate to M an element αM
of the reduced orthogonal K-theory K̃O(SV ) as follows. Suppose dimM0 = m.
Then, as multiplication by a nonzero vector gives an isomorphism between M0 and
M1 , we have dimM1 = m also. Write

GM = { ungraded vector subspaces N < M0 ⊕M1 | dimN = m}
(6.1.7)

This Grassmannian manifold thus has a tautological m-plane bundle γ with

E(γ) = {(m,N) | m ∈ N ∈ GM} (6.1.8)
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We define a map η : SV → GM by

η(v) = (1 + v)M0 = (‖v‖−1 + v̂)M0 (6.1.9)

η(∞) = M1 (6.1.10)

Here v̂ = v/‖v‖. The continuity of η near ∞ follows from the second expression
for η(v) and the fact that v̂M0 = M1 for all v 6= 0. We also write η for the
corresponding bundle , i.e. the pullback of γ by η.

Over SV \ {∞} = V , we can use the projection

π0 : (1 + v)M0 'M0 (6.1.11)

to trivialise η. Similarly, we can trivialise over SV \ {0} by

π1 : (‖v‖−1 + v̂)M0 'M1 (6.1.12)

The resulting clutching function over SV is

v 7→ (M0 v−→M1) (6.1.13)

We recall that the absolute orthogonal K-theory KO(X) is the ring of for-
mal differences of isomorphism classes of real bundles over X. The reduced group
K̃O(X) is the ideal of elements of formal dimension zero. The relative group
KO(X,Y ) is defined in terms of symbols d(ζ, φ, η) where ζ and η are bundles over
X , and φ : ζ → η is a bundle map which is iso over Y .

We can define elements

η −M1 ∈ K̃O(SV ) (6.1.14)

d(η, π1,M
1) ∈ KO(SV , B′V ) (6.1.15)

d(M0, σ,M1) ∈ KO(BV , SV ) (6.1.16)

Here M0 refers to the trivial bundle with fibre M0, and σ(v,m) = (v, vm). There
are canonical isomorphisms between the three groups involved, under which the
given elements correspond to each other. We write αM for any of these elements.
If M has a complex or symplectic structure which is compatible with the grading
and action of C(V ), then αM lifts canonically to KU or KSp.

If we are given an orientation on V , or if we know that 2αM = 0, then we can
consider αM as an element of K̃O

0
Sn = πn(Z×BO).

It is clear that αM⊕N = αM + αN . We thus have a homomorphism from the
Grothendieck group of Clifford modules over C(V ) to K̃O

0
SV .

Suppose that the action of C(V ) on M extends to an action of C(W ) for some
strictly larger vector space W > V . Then αM ∈ K̃O

0
SV is the restriction of the

analogous element of K̃O
0
SW . As the inclusion SV → SW is nullhomotopic, this

implies that αM = 0.
Suppose we have two inner product spaces U and V . We can give C(U)⊗C(V )

the obvious grading over Z/(2), and make it into an algebra via the multiplication

(a0 ⊗ b0)(a1 ⊗ b1) = (−)|b0||a1|a0a1 ⊗ b0b1 (6.1.17)

Using the universal property of C(U ⊕V ) we see that there is a unique algebra map
C(U ⊕ V )→ C(U)⊗ C(V ) with

(u, v) 7→ u⊗ 1 + 1⊗ v (6.1.18)

This map is actually an isomorphism, as one can see by induction on dimV for
example. Using it we can make the graded tensor product of two Clifford modules
M over C(U) and N over C(V ) into a Clifford module M ⊗N over C(U ⊕V ). The
resulting element

αM⊗N ∈ K̃O
0
SU⊕V = K̃O

0
(SU ∧ SV ) (6.1.19)
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is just the usual external product αMαN as one sees most easily from (6.1.16) above.
Let Cn denote the Clifford algebra of Rn = R{e0, . . . en−1} with the usual inner

product, and Mn the Grothendieck group of Clifford modules over it. These groups
form a graded ring M∗. We have scalar restriction homomorphisms rn : Mn+1 →
Mn; let An denote the cokernel. As r(xy) = xr(y) = r(x)y, we have an induced
ring structure on A∗. There is thus a ring map A∗ → KO∗ sending [M ] to αM .

We can identify many of the algebras Cn and their degree zero subalgebras C0
n

in more familiar terms:

n Cn generators C0
n generators

0 R R

1 C i R

2 H j, k C i = jk

3 H2 (i,−i), (j, j), (k, k) H (k,−k), (−j, j)

4 M2H
(

0 −i
−i 0

)
,
(−i 0

0 i

)
,
(
j 0
0 j

)
,
(
k 0
0 k

)
H2

(
0 1
−1 0

)
,
(

0 −k
−k 0

)
,
(

0 j
j 0

)
5 M4C M2H

6 M8R M4C

7 M8R2 M8R

8 M16R M8R2

We have used the (ungraded) isomorphism Cn → C0
n+1 sending ek to e0ek+1. The

entry for n = 2 above (for example) means that there is an isomorphism C2 → H
sending e0 to j and e1 to k. This induces an isomorphism C0

2 → C sending e0e1 to
i. We omit this information for n > 4, as it would take up too much space. I have
Mathematica code which implements all this.

Using this, we can compute the ring M∗ and the map r. The groups Mn are
all free Abelian, and the fourth column below gives bases. Each basis element
corresponds to an irreducible graded Cn-module. The element ζ is the one dimen-
sional module over C0 = R concentrated in degree 1. It follows that ζ.[M ] = M∗,
where M∗ is M with the degrees shifted by one. If n > 0, then an = dimR M

0 is
independent of which irreducible M we consider.

n Cn an Mn r

0 R ζ, 1 = ζ2 rα = 1 + ζ

1 C 1 α = ζα rα2 = 2α

2 H 2 α2 rα3 = 2α2

3 H2 4 α3 rβ = α3

4 M2H 4 β, ζβ α4 = r4λ = β + ζβ

5 M4C 8 r3λ αβ = 2r3λ

6 M8R 8 r2λ αr3λ = 2r2λ

7 M8R2 8 rλ = ζrλ αr2λ = 2rλ

8 M16R 8 λ, ζλ αrλ = λ+ ζλ

(6.1.20)
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This table can be extended so as to be essentially 8-periodic. In fact:

Cn+8 ' M16(Cn) (6.1.21)
an+8 = 16an (6.1.22)
Mn+8 ' Mn via multiplication by λ (6.1.23)

The Clifford module β over C4 = M2H is just H2 with the obvious left action. The
grading is more subtle. The following table gives a homogeneous basis:

degree 0 : ( i1 )
(−1
i

) (
k
j

) (−j
k

)
degree 1 :

(−i
1

)
( 1
i )

(−k
j

) (
j
k

) (6.1.24)

Note that the right action of H is homogeneous. Similarly, λ is just R16, with
the obvious left action and a suitable grading which we shall not make precise.
To complete the description of the multiplication in M∗, we have β2 = 4λ. It
follows that A∗ has the same structure (in positive dimensions) as that given for
KO∗ in section 1.1. Moreover, the elements called α, β and λ here go over to the
corresponding ones in KO∗.

6.2. Atiyah’s Real K-Theory

In this section we recall the basic ideas of [2], and indicate how they help us to
prove the statements in chapter 1.

Let the cyclic group C2 = {1, τ} act on C by conjugation. We shall call a space
with C2 action a real space, and write x for τx. By a real vector bundle over a real
space X, we mean a complex bundle E

p−→ X with a given real structure on E such
that the following maps are C2-equivariant:

E
p−→ X (6.2.1)

E ×X E
+−→ E (6.2.2)

C× E .−→ E (6.2.3)

Equivalently, we insist that τ should give a conjugate linear map Ex −→ Ex for
each x ∈ X. The real bundles over X form a category in an evident way, and we
write KR(X) for the Grothendieck group. Suppose that the action of C2 on X
is trivial. Given a bundle E of R-vector spaces over X, the bundle C ⊗ E with
conjugation z⊗e 7→ z⊗e is a real bundle in this new sense. This construction gives
an equivalence of categories, showing that KR(X) = KO0X in this case.

We need some standard real spaces:

Rp,q = Rp ⊕ iRq ⊂ Cp+q (6.2.4)
Bp,q = unit ball in Rp,q (6.2.5)
Sp,q = unit sphere in Rp,q (6.2.6)

The action of C2 is by complex conjugation. We can now define

KRp,q(X,Y ) = KR(X ×Bp,q, Y ×Bp,q ∪X × Sp,q) (6.2.7)

The tensor product gives a bigraded external multiplication in the obvious way. If
we consider the reduced canonical complex line bundle as an element of

KR1,1 = KR(B1,1, S1,1) = KR(CP 1) (6.2.8)

then the induced multiplication map

KRp,q(X,Y ) −→ KRp+1,q+1(X,Y ) (6.2.9)

turns out to be iso. Atiyah gives a proof of this using Fourier series. Using this,
we define KRp(X,Y ) for all p ∈ Z, so that KRp,q ' KRp−q. This gives a C2-
equivariant cohomology theory.
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We next define KRpr(X) = KRp(X × Sr,0) for r ≥ 0. Atiyah shows that for
r = 1, 2 or 4, this is periodic with period 2r. If we restrict to the case when X has
trivial action, then

KR∗(X) = KO∗(X) (6.2.10)
KR∗1(X) = KU∗(X) (6.2.11)
KR∗2(X) = KT ∗(X) (6.2.12)
KR∗4(X) = KO∗(X)⊕KSp∗(X) (6.2.13)

Moreover KO∗(X) is periodic, with period 8. One can check from Atiyah’s proof
that the periodicity map is just multiplication by ν, µ or λ as appropriate. Equiva-
lently, these elements are invertible in the relevant homotopy rings.





CHAPTER 7

Proofs and Justifications

In this chapter we discuss how one might justify the statements made in chap-
ters 1 to 3. Proofs for chapter 1 are only sketched, and are drawn mostly from
the literature. For chapters 2 and 3, we assume the results of chapter 1 and the
machinery described in chapter 4, but otherwise give complete proofs.

It will be convenient to make the following definitions:

AU∗ = Z[ν±1] (7.0.14)
AT∗ = Z[α, γ, µ±1]/(α2, 2α, αγ, γ2) (7.0.15)
AO∗ = Z[α, β, λ±1]/(α3, 2α, αβ, β2 − 4λ) (7.0.16)

Of course, we claim that there are isomorphisms AU∗→∼ KU∗ etc.

7.1. Maps and Diagrams

The commutativity of diagram 1.3.1 is mostly obvious from the definitions of
the maps involved in terms of bundles. For a complete list of the commutativity
statements claimed, see the code for the program Claims.m The cases in which the
composite is 1 + c are not so obvious – compare [1, chapter 3]. We shall also take
as read the various ring and module properties of these maps.

Consider the following octahedral diagram of finite Real spectra:
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B10S10/S10S10 B20/S10B10 S10B10/∅

B20/S20 B20/∅

S20/∅

(7.1.1)

Here we have used the definitions 6.2.5 and 6.2.6 of Bpq and Spq, and written just
XY for the cartesian product X ×Y . The degree zero maps (those without circles)
are all inclusions or projections. If we take the smash product of this diagram
with a space X (with trivial action of C2), and then apply KR∗, we get long exact
sequences corresponding to diagram 1.3.2. Following Atiyah, I leave the details,
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the identification of the maps, and the recovery of the cofibration 1.3.2 itself to the
reader. Some help is available in [2].

We next need to justify (at least some of) table 1.4.1, which gives the effect of
various maps on the homotopy rings. We assume the material on Clifford modules
for this. The first step is to identify ν2, µ, β and θ as the same bundle in various
different guises. This can be done by direct geometrical constructions which we
omit. The same bundle serves as the periodicity generator in KR2,2, if we let C2

act on H by z+jw 7→ z+jw = −j(z+jw)j . Next, we need to show that θ⊗Hθ = λ;
this is discussed in section 7.3 below. This (together with the KO-module structure
on KSp) shows that KSp ' Σ4KO. We can now use Clifford module methods and
KO-linearity to fill in all the maps in the table which do not involve KT . More ad
hoc arguments have to be given for the remaining maps. The task is made easier by
using diagram 1.3.1 and the vanishing of composites in diagram 1.3.2. The hardest
bit is the proof that δO(µ) = α – one could first prove that KO1 = Fα, and use
exactness, although a proof by explicit construction would be more in keeping with
our general approach. Again, we omit details.

Consider diagram 1.3.3. I claimed in section 1.3 that there was a morphism of
diagrams from 1.3.2 to it, given by:

θ : Σ4KO → KSp
µ : Σ4KT → KT
ν2 : Σ4KU → KU

(7.1.2)

I define δSp : KT → Σ3KSp in the only possible way consistent with this, viz.
δSp = θδOµ

−1. There are then various other commutativity constraints to check,
but they follow easily from table 1.4.1 and KO-linearity. We thus have something
isomorphic to a cofibre diagram, so it qualifies as a cofibre diagram itself.

7.2. Homotopy Rings

We have shown, or at least indicated how to show, that there are maps AU∗ →
KU∗ etc.; we need to prove that these maps are iso.

We have also shown that the homotopy rings fit into various commutative and
exact sequences (given by diagrams 1.3.1 to 1.3.3) and that the homotopy elements
mentioned above are mapped according to table 1.4.1.

It is trivial to compute the following :

KU0 = KT0 = KO0 = Z (7.2.1)

By considering clutching functions, we also have

KU1 = π0U = 0 (7.2.2)
KO1 = π0O = Fα (7.2.3)

As KU∗ is 2-periodic, we find that AU∗ → KU∗ is iso. Consider the diagram :

KU∗+1 KU∗−1 KT∗ KU∗ KU∗−2

AU∗+1 AU∗−1 AT∗ AU∗ AU∗−2

? ? ? ? ?- - - -

- - - -

ν−1(1− c) δT fT ν−1(1− c)

ν−1(1− c) δT fT ν−1(1− c)

(7.2.4)
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The bottom row is exact because it comes from a cofibration, and we can check
that the top row is also exact. As AU∗ → KU∗ is iso, the 5-lemma tells us that
AT∗ → KT∗ is also iso.

To prove that AO∗ → KO∗ is iso, we consider the exact sequence

KO∗+1
lO−→ KT∗+1

δO−→ KO∗−2
α2

−→ KO∗
lO−→ KT∗

δO−→ KO∗−3

(7.2.5)

We have the following picture :

0? → Zµ−1γ → Zλ−1β? � 0? → 0 → 0?

Z →∼ Z →0 0? → 0? → Zµ−1γ → Zλ−1β?

Fα →∼ Fα →0 0? →0 Z →∼ Z →0 0?

Fα2? → 0 → 0? →0 Fα →∼ Fα →0 0?

0? →0 Zγ � Z � Fα2? → 0 → 0?

Zβ? → Zµ � Fα →0 0? →0 Zγ � Z
0? → Fµα → Fα2? → Zβ? → Zµ � Fα
0? → 0 → 0? � 0? → Fµα → Fα2?

0? → Zµγ → Zβ? � 0? → 0 → 0?

Zλ →∼ Zµ2 →0 0? → 0? → Zµγ → Zβ?

Fλα →∼ Fµ2α →0 0? →0 Zλ →∼ Zµ2 →0 0?

Fλα2? → 0 → 0? →0 Fλα →∼ Fµ2α →0 0?

0? →0 Zµ2γ � Zλ � Fλα2? → 0 → 0?

This uses the information aboutKT∗ which we have just proved, the periodicity,
and our determination of KO8n and KO8n+1. In particular, this shows that certain
maps are iso, which forces others to vanish or be epi or mono, as marked on the
diagram.

From the third, fourth and fifth rows respectively, we deduce that KO−2 = 0 ,
KO−1 = 0 and KO2 = Fα2. Putting this back in, we get :

0? → Zµ−1γ � Zλ−1β? → 0 → 0 → 0?

Z →∼ Z →0 0? → 0 → Zµ−1γ →∼ Zλ−1β?

Fα →∼ Fα → 0 → Z →∼ Z →0 0?

Fα2 → 0 → 0 → Fα →∼ Fα → 0

0? →0 Zγ � Z � Fα2 → 0 → 0

Zβ? � Zµ � Fα →0 0? →0 Zγ � Z
0? → Fµα →∼ Fα2 →0 Zβ? � Zµ � Fα
0 → 0 → 0? →∼ 0? → Fµα →∼ Fα2

0 → Zµγ � Zβ? → 0 → 0 → 0?

Zλ →∼ Zµ2 →0 0? → 0 → Zµγ � Zβ?

Fλα � Fµ2α → 0 → Zλ →∼ Zµ2 →0 0?

Fλα2 → 0 → 0 � Fλα � Fµ2α → 0

0? →0 Zµ2γ � Zλ � Fλα2 → 0 → 0

From the 6th row we deduce that KO3 = 0. Feeding this into the 8th row, we
see that KO5 = 0. Finally, the 6th and 10th rows show that KO4 = Zβ. This
completes the proof that AO∗ → KO∗ is iso.
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7.3. Derivation of Relations in Homology

In this section we prove the relations stated in sections 2.1–2.5. We start with
a little geometry. Suppose K = C or H.

Lemma 7.3.1. The scalar extension map

RP d −→ KP d (7.3.1)

is homotopic to the map

RP d −→ RP d/RP d−1 = Sd ' KP 1 −→ KP d (7.3.2)

Proof. Think of

RP d−1 as PRK (7.3.3)

RP d as PR(K⊕ R) (7.3.4)
KP 1 as PK(K⊗R R⊕K) (7.3.5)

KP d as PK(K⊗R K⊕K) (7.3.6)

Any real-linear embedding K⊕R→ K⊗R K⊕K induces a map RP d −→ KP d and
the space of such embeddings is connected so any two such maps are homotopic.
The two maps in question arise in this way from the two embeddings

(z, t) 7→ (1⊗ z, t) (7.3.7)
(z, t) 7→ (z ⊗ 1, t) (7.3.8)

�

Proofs for Section 2.1.
The first thing we deduce from the above lemma is that the scalar extension maps
zR,k to 0 if k < d and to zK,d if k = d. Extending this inductively using the
coproduct formula (2.1.7) (or by working in cohomology) we prove (2.1.3). The
circle product formula (2.1.12) is the only one consistent with the coproduct. This
is all very standard, of course.

Given x ∈ πnE, it is clear from the definitions that e◦n ◦ [x] ∈ Hn E 0 is
the image under x : Sn → E 0 of the fundamental class. The homotopy element
α : S1 = RP 1 → BO classifies the reduced canonical line bundle, and so carries the
class zR,1 ∗ [−1] = zR,1 as claimed in (2.1.13). The proof of (2.1.14) is essentially
the same.

For (2.1.15) we need a little Clifford module theory. Write ζ for the canonical
reduced bundle over RP 4 and π for the projection RP 4 → HP 1; the above shows
that π∗β ' H ⊗R ζ. Recall that the fourth negative definite Clifford algebra C4 is
M2H ; the module over it corresponding to β is just V = H2 with M2H acting by left
multiplication. This action commutes with the right action of H, giving the bundle
β a right symplectic structure. We can twist this by conjugation in H to get a left
structure and then form the external tensor product β⊗H β over HP 1 ∧HP 1 ' S8.
This corresponds to the Clifford module V ⊗H V over C8. This module has real
dimension 16 and so coincides with ±λ. The proof in [3] that β2 = 4λ can be
imitated to show that the sign is positive. Thus, over HP 1 ∧ RP 4 :

β ⊗R ζ ' β ⊗H (H⊗R ζ) ' β ⊗H π
∗β ' (1 ∧ π)∗λ (7.3.9)

The corresponding classifying maps HP 1 ∧ RP 4 → BO are therefore homotopic.
Considering the adjoint maps RP 4 −→ map(HP 1, BO) ' Ω4BO we find that

RP 4 ζ−→ BO
◦[β]−−→ Ω4BO (7.3.10)

agrees with

RP 4 π−→ HP 1 e◦4◦[λ]−−−−→ Ω4BO (7.3.11)
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Evaluating these maps on the top homology class, we find that [β] ◦ zR,4 = e◦4 ◦ [λ]
as claimed.

To prove (2.1.16) we quote from [19] the fact that the Kudo-Araki operations
in H∗(Z×BO) satisfy

Qn[1] = [1]zn (7.3.12)

From this we deduce (for n > 0)

(e◦n)2 = Qn(e◦n) as e◦n has dimension n
= e◦n ◦Qn[1] as Qn commutes with homology suspension
= e◦n ◦ ([1]zn)
= e◦n ◦ zn by standard Hopf ring manipulations (7.3.13)

as claimed. �

Proof of Proposition 2.2.1.
We next consider the relations (2.2.1)–(2.2.10) offered for HF∗KO∗. As mentioned
in section 2.1, we can deduce all these from proposition 2.1.1, together with our
knowledge of various maps and their action in homotopy. To prove (2.2.5) we
start with (2.1.14), take the circle product with [ν] and apply the forgetful map
fU : KU → KO. If instead we take the circle product by [ν2] and apply fU , we find

[β] ◦ z2 = 0 (7.3.14)

[β] ◦ z2 = [β] ◦ ([1]z2) = [β]([β] ◦ z2) = 0 (7.3.15)

as claimed in (2.2.7). For (2.2.10), we have

(e◦3)2 = e◦3 ◦ z3 = e ◦ (e◦2 ◦ z2) ◦ z1 = e ◦ (e◦2)2 ◦ z1 (7.3.16)

This vanishes as the circle product of a primitive (e) and a decomposable ((e◦2)2)
always does. The other relations in the list are clear or already dealt with. �

Deduction of Relations in Theorem 2.2.2.
We next have to deduce from proposition 2.2.1 all the relations implicit in (2.2.11).
Taking the circle product of (2.2.8) by [λ] ◦ z(t) (which is grouplike) we find that

e ◦ [λ] ◦ z1 ◦ z(t) = (e2) ◦ [λ] ◦ z(t) = (e ◦ [λ] ◦ z(t))2 =
∑
k

(e ◦ [λ] ◦ zk)2t2k
(7.3.17)

whence

e ◦ [λ] ◦ z2k−1 = (e ◦ [λ] ◦ zk−1)2 (7.3.18)

e◦2 ◦ [λ] ◦ z2k−1 = e ◦ (e ◦ [λ] ◦ zk−1)2 = 0 (7.3.19)

Similarly, the circle product of (2.2.9) by [λ] ◦ z(t) gives

e◦2 ◦ [λ] ◦ z4k−2 = (e◦2 ◦ [λ] ◦ z2k−2)2 (7.3.20)

e◦3 ◦ [λ] ◦ z4k−2 = 0 (7.3.21)

And from (2.2.10) we obtain

(e◦3 ◦ [λ] ◦ z4k)2 = 0 (7.3.22)

In HF∗(Z×BSp) we have

[β] ◦ z1 = [β] ◦ e ◦ [α] = [βα] ◦ e = [0] ◦ e = 0 (7.3.23)

[β] ◦ z1 = [β] ◦ ([1]z1) = [β]([β] ◦ z1) = 0 (7.3.24)

[β] ◦ z2k+1 = [β] ◦ z1 ◦ z2k = 0 (7.3.25)
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Similarly (using (2.2.7))

[β] ◦ z4k+2 = [β] ◦ z2 ◦ z4k = 0 (7.3.26)

In HF∗(U/Sp) we have

(e ◦ [β] ◦ z(t))2 = e2 ◦ [β] ◦ z(t) = e ◦ z1 ◦ [β] ◦ z(t) = 0
(7.3.27)

In HF∗(O/U) we have

[α2] ◦ z1 = [α2] ◦ e ◦ [α] = e ◦ [α3] = e ◦ [0] = 0 (7.3.28)

[α2] ◦ z2k+1 = ([α2]− [0]) ◦ ([1]z1) ◦ z2k = 0 (7.3.29)

([α2] ◦ z(t))2 = ([α]2 − [0]2) ◦ z(t) = ([0]− [0]) ◦ z(t) = 0
(7.3.30)

Note also that the relation e◦2 ◦ [β] = [α2] ◦ z2k can be circled with z(t) to obtain a
relation expressing all the elements e◦2◦ [β]◦z4k in terms of the generators [α2]◦z2k.
Moving to HF∗(O), we find

e ◦ [α2] = (e ◦ [α]) ◦ [α] = [α] ◦ z1 (7.3.31)

�
This proves that the object described in table (2.2.11) at least admits a sensible

map to HF∗KO∗. We shall prove in section 7.6 that it is an isomorphism. We repeat
the same scheme for KT .

Proof of Proposition 2.3.1
The relation (2.3.4) is the image of (2.1.13) under lO. For (2.3.5), we apply δT to
(2.1.14) :

e◦2 ◦ [γ] = δT (e◦2 ◦ [ν]) = δT (z2 ◦ [1]) = z2 ◦ δT [1] = [α] ◦ z2

(7.3.32)

Similarly,

[γ] ◦ z2 = δT ([ν] ◦ z2) = δT (e◦2 ◦ [ν2]) = e◦2 ◦ [α] ◦ [µ] = (e2) ◦ [µ] = (e ◦ [µ])2

(7.3.33)

In both the above equations we have used KO-linearity to suppress the distinction
between the various families of z’s. �

Deduction of Relations in Theorem 2.3.2.
As with KO, we now deduce from proposition 2.3.1 the rest of the relations implicit
in theorem 2.3.2. In HF∗(Z×BT ) we have :

([µ] ◦ z1)2 = [µ] ◦ α ◦ e2 = [γ] ◦ α ◦ z2 = [γα] ◦ z2 = [0] ◦ z2 = 0
(7.3.34)

([µ] ◦ z1 ◦ z(t))2 = z(t) ◦ (([µ] ◦ z1)2[µ]2) = 0 (7.3.35)

([µ] ◦ z2k+1)2 = 0 (7.3.36)

In HF∗(Ω2T ), the relation

e ◦ [µ] ◦ z2k−1 = (e ◦ [µ] ◦ zk−1)2 (7.3.37)

is proved in the same way as the analogous one in KO. Also

[γ] ◦ z1 = [γ]([γ] ◦ α ◦ e) = 0 (7.3.38)



7.3. DERIVATION OF RELATIONS IN HOMOLOGY 77

In HF∗(ΩT ), we have

(e ◦ [γ] ◦ z(t))2 = e2 ◦ [γ] ◦ z(t) = e◦2 ◦ [α] ◦ [γ] ◦ z(t) = 0
(7.3.39)

All the remaining relations are just as in the KO case. �

Proofs for Section 2.4.
In KU we need only remark that

e2 = mO(e2) = mO(e◦2 ◦ [α]) = e◦2 ◦ [0] = 0 (7.3.40)

and deduce that

(e ◦ z(t))2 = e2 ◦ z(t) = 0 (7.3.41)

�

Proofs for Section 2.5.
In KSp we have

zH(t) = nO([1] ◦ zR(t)) = (nO[1]) ◦ z(t) = [λ−1βθ] ◦ z(t)
(7.3.42)

�

Justification of Table 2.7.1.
First recall that as ψ(e) = e⊗ [0]+ [0]⊗ e and [0] ◦x = ε(x), we find that e ◦ (xy) =
(e ◦ x)ε(y) + ε(x)(e ◦ y). In particular, e ◦ x2 = 0 , and e ◦ ([a]x) = e ◦ x if ε(x) = 0.

We shall also need some cases of the circle product zk◦zl. Firstly, as x 7→ z(t)◦x
is a homomorphism, we find that

z1 ◦ z(t) = (z1/[1]) ◦ z(t) = (z1 ◦ z(t))/z(t) = ż(t)/z(t) = q(t)/t
(7.3.43)

Also, as ψz1 = z1 ⊗ [0] + [0]⊗ z1,

z1 ◦ z(t) = z1 ◦ ([1]zR(t))
= (z1 ◦ [1])([0] ◦ z(t)) + ([0] ◦ [1])(z1 ◦ z(t))
= z1 + z1 ◦ z(t)

It follows that z1 ◦ zk = z1 ◦ zk = qk+1 when k > 0.
From the relation z(s) ◦ z(t) = z(s+ t) we deduce

z(s) ◦ z(t) =
z(s)
[1]
◦ z(t)

[1]
=
z(s+ t)/z(s)
z(t)/[1]

= z(s+ t)/z(s)z(t)
(7.3.44)

It follows that

z(s)◦2 =
∑

z2
ks

2k = z(s)−2 (7.3.45)
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By expanding the above we obtain :

z1 ◦ z1 = z2
1 (7.3.46)

z1 ◦ z2 = z3
1 + z1z2 + z3 (7.3.47)

z1 ◦ z3 = z4
1 (7.3.48)

z1 ◦ z4 = z5
1 + z3

1z2 + z1z
2
2 + z2

1z3 + z2z3 + z1z4 + z5 (7.3.49)
z1 ◦ z5 = z6

1 + z2
1z

2
2 + z2

3 (7.3.50)
z2 ◦ z2 = z4

1 + z2
2 (7.3.51)

z2 ◦ z3 = z5
1 + z3

1z2 + z2
1z3 (7.3.52)

z2 ◦ z4 = z6
1 + z3

2 + z1z2z3 + z2
3 + z2

1z4 + z2z4 + z1z5 + z6 (7.3.53)
z3 ◦ z3 = z6

1 + z2
3 (7.3.54)

(7.3.55)

Using this and the relations derived earlier in this section, it is not hard to fill in
the table. �

7.4. Primitives and Duality

In this section we investigate the Hopf algebra A∗ = P [zk+1 | k ≥ 0] from a
purely algebraic standpoint. In section 7.6 we will give a Hopf ring proof that it
coincides with HF∗BO, so the dual coincides with HF∗BO. This will justify the
statements in section 2.6.

For any countably infinite index set I, we let

PI = lim
←-

JP [xi | i ∈ J ] (7.4.1)

Here J runs over the finite subsets of I. To describe the inverse system, we are
required to specify a map P [xi | i ∈ K]→ P [xi | i ∈ J ] for each pair J ⊂ K of such
sets. It is the obvious map, which sends xi to zero if i ∈ K \ J . The symmetric
group ΣI of permutations of I acts on PI and we denote the ring of invariants by
PΣ
I . It is of course a polynomial algebra on generators σIk, where∏

I

(1 + xit) =
∑
k

σIkt
k (7.4.2)

Any bijection φ : I → J induces an isomorphism PΣ
I ' PΣ

J , which is independent
of φ. The map

A∗ = P [zk+1] −→ PΣ
I (7.4.3)

z(t) 7→
∏
I

(1 + xit) =
∑
k

σIkt
k (7.4.4)

commutes with these isomorphisms and is itself iso. The evident isomorphism

PItJ −→ PI ⊗ PJ (7.4.5)

induces the usual coproduct on A∗, for which ψz(t) = z(t)⊗ z(t). There is a unique
power series

p(f) = p(f1, f2, . . . ) =
∑
α

pαf
α ∈ A∗[[fk | k > 0]] ' PΣ

I [[fk]]
(7.4.6)

such that ∏
I

f(xi) = p(f) (7.4.7)



7.4. PRIMITIVES AND DUALITY 79

for any series f(x) =
∑
k fkx

k with f0 = 1. By considering f(x) = 1 + tx, we see
that pke1 = zk. On the other hand, working mod the ideal (fk | k > 0)2 we find
that ∑

k>0

pek
fk =

∑
I

∑
k>0

xki fk (7.4.8)

Also

q(t) =
∑
k>0

qkt
k = tdlogz(t)/dt =

∑
I

tdlog(1 + txi)/dt =
∑
I

∑
k>0

xki t
k

(7.4.9)
so

pek
= qk (7.4.10)

From the description of the coproduct above, it is clear that

ψp(t) = p(t)⊗ p(t) (7.4.11)

ψpα =
∑

α=β+γ

pβ ⊗ pγ (7.4.12)

We define elements z′k ∈ A∗ by the relation

〈z′k, zα〉 =
{

1 if α = ke1
0 otherwise (7.4.13)

Suppose we choose an element 0 ∈ I. We can then define a functional PI → F
which sends xk0 to 1 and all other monomials to 0. One can check easily that this
extends the definition of z′k on A∗ = PΣ

I < PI . By using this extension, we find
that

〈z′k, p(t)〉 = tk (7.4.14)

〈z′(t), p(t)〉 = p(t, t2, t3, . . . ) (7.4.15)

Hence, using ψp(t) = p(t)⊗ p(t)

〈(z′)α, p(t)〉 = tα (7.4.16)

〈(z′)α, pβ〉 = δα,β (7.4.17)

This shows in particular that the elements (z′)α ∈ A∗ are linearly independent, and
so give a basis by counting dimensions. In other words, A∗ is a polynomial algebra
generated by the elements z′k. Similarly, the elements pα form a basis for A∗.

Using the expression above for ψpα we see that the filtration of A∗ by copowers
of the augmentation ideal is :

FsA∗ = annihilator((I∗)s+1) ⊆ A∗
= ker(A∗

ψ−→ A
⊗(s+1)
∗ −→ I

⊗(s+1)
∗ )

= F{pα | |α| ≤ s}
In particular, we find that the module of primitives Prim(A∗) = F1A∗ ∩ I is just
F{pek+1} = F{qk+1}.

Consider the associated graded algebra

G∗A∗ =
⊕
s

Fs/Fs+1 (7.4.18)

It is spanned by the images of the elements pα in G|α|A‖α‖, which we shall still
denote by pα. By considering the terms in ψ((z′)α) which are of the least possible
order of decomposability, we find that

pαpβ =

(∏
k

(αk, βk)

)
pα+β (mod F|α|+|β|+1)

(7.4.19)
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It follows that p(s)p(t) = p(s+ t) in G∗A∗ , and hence that

G∗A∗ =
⊗
k

D[qk] (7.4.20)

q[α] = pα (7.4.21)

The Frobenius map F : A∗ → A2∗ sending x to x2 is a Hopf algebra homomor-
phism. The Hopf algebra cokernel is evidently E[zk+1]. One sees easily that the
dual map in A∗ (called the Verschiebung and written V ) sends z′2k to z′k and z′2k+1

to 0. The Hopf algebra kernel of V (i.e. . the equaliser of the maps (V ⊗ 1) ◦ψ and
1⊗ η from A∗ to A∗ ⊗A∗) is thus P [z′2k+1]. This is therefore the dual of E[zk]. It
follows that the images of {pα | ∀k α2k = 0} form a basis for E[zk], and that the
primitives in this algebra are precisely the elements q2k+1.

We obtain precisely equivalent results for (our candidates for) HF∗BU and
HF∗BSp after multiplying degrees by two or four as appropriate.

The circle product formulae 2.6.10 and 2.6.11 were proved above while justifying
table 2.7.1. The further formulae 2.6.12 and 2.6.13 follow easily.

7.5. Operations

We next discuss the formulae for the Steenrod and Kudo-Araki operations given
in section 2.8. The formula (2.8.1) can be proved by expanding out and comparing
with the usual formula with binomial coefficients. A formal power series proof is
more interesting, however. One knows that

HF∗KP∞ = P [z′] |z′| = d (7.5.1)

and

Sq(s)z′ = z′ + sdz′
2 (7.5.2)

for instability reasons. We recall that the product in cohomology and coproduct in
homology interact as follows :

〈x, uv〉 = 〈ψx, u⊗ v〉 =
∑
〈x0, u〉〈x1, v〉 (7.5.3)

where ψx =
∑
x0 ⊗ x1. As ψz(t) = z(t) ⊗ z(t) and 〈z(t), z′〉 = t, it follows easily

that

〈z(t), f(z′)〉 = f(t) (7.5.4)

for any power series f (and any parameter t). Also, as Sq(s) is a ring map in
cohomology, Sq(s)f(z′) = f(z′ + sdz′

2). We deduce that

〈z(sdt2 + t), f(z′)〉 = f(sdt2 + t) = 〈z(t), f(sdz′2 + z′)〉 = 〈z(t), Sq(s)f(z′)〉
(7.5.5)

which implies that z(t)Sq(s) = z(sdt2 + t) as claimed.
All our statements about A∗ and A∗ are standard, except perhaps for the way

we express the pairing. From the definitions it is clear that

〈Sq(s), ξ(t)〉 = t+ t2s (7.5.6)

Putting this together with the coproduct ψSq(s) = Sq(s)⊗ Sq(s) we find that

〈Sq(s), f(ξ(t))〉 = f(t+ t2s) (7.5.7)

as claimed.
To understand the coaction of A∗ on HF∗RP∞, we shall define algebraically a

map

α : HF∗RP∞ → A∗ ⊗HF∗RP∞ (7.5.8)
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and then check firstly that it is a valid coaction and secondly that it is the right
one. The definition is :

αz(td) = (1⊗ z)(ξ(t)d ⊗ 1) (7.5.9)

This is a coaction because

(ψ ⊗ 1)αz(td) = (1⊗ 1⊗ z)(1⊗ ξ ⊗ 1)(ξ(t)d ⊗ 1⊗ 1) = (1⊗ α)αz(td)
(7.5.10)

It therefore induces a genuine action of the Steenrod algebra, by the following
formula (in which αx =

∑
a′ ⊗ x′′)

xR = 〈αx,R〉 :=
∑
〈R, a′〉x′′ (7.5.11)

We need only check that this is correct on the generators. We find

z(td)Sq(s) = 〈Sq(s), (1⊗ z)(ξ(t)d ⊗ 1)〉 = z(td + t2dsd)
(7.5.12)

as required.
We also need to verify the formal power series version of the Wu formula :

Sq(st)z′(s+ t2s) = z′(ts+ t2s)z′(s+ ts) (7.5.13)

We do this by pulling back to

HF∗(RP∞)n = P [z′(0), . . . z
′
(n−1)] (7.5.14)

z′(t) 7→
∏
k

(1 + z′(k)t) (7.5.15)

This is injective through a range of dimensions increasing with n. As |z′(k)| = 1, we
have

Sq(s)z′(k) = z′(k) + sz′(k)
2

Sq(st)(1 + z′(k)(s+ t2s)) = 1 + z′(k)(s+ t2s) + z′(k)
2(ts2 + t3s2)

= (1 + z′(k)(ts+ t2s))(1 + z′(k)(s+ ts))

from which the result follows.
Our first expression (2.8.17) for the Kudo-Araki operations can be checked by

expanding and comparing with the formulae in [19] although a formal power series
proof is really called for. The second formula (2.8.18) follows from the first by
substituting t+ t2 7→ t and using z(s) ◦ z(t) = z(s+ t). By taking t = 0 we obtain
(2.8.19).

7.6. Completeness of Generators and Relations

In this section we prove that the generators and relations offered for the various
mod 2 Hopf rings are complete, so that the descriptions offered in sections 2.2–
2.4 are correct. For the reasons discussed in the introduction, we present a fairly
complete calculation of the homology using only Hopf ring methods. We also give
full details of a number of spectral sequence arguments. The methods used appear
to be well known to experts, but there is a dearth of fully explained examples in
the literature.

Proof of Theorem 2.4.2.
By considering the definition of the structure map Σ(Z×BU) → U of the KU -
spectrum, we find that the composite

S1 × CP∞ −→ ΣCP∞+ −→ Σ(Z×BU) −→ U (7.6.1)

sends a point (z, L) to the linear map with eigenvalues z on L and 1 on L⊥. In
homology, it sends ΣzC(t) to e ◦ zC(t). The usual inductive argument based on
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the Serre spectral sequence of the fibration U(n)→ U(n+ 1)→ S2n+1 shows that
HF∗U = E[e ◦ zC,2k]. We next give a Hopf ring based calculation of HF∗BU . We
shall now think of U as the (−1)-space, so that HF∗U = E[[ν] ◦ zC,2k]. We need to
analyse the Rothenberg-Steenrod spectral sequence

TorH∗U
s,t (F,F) =⇒ HFt+sBU (7.6.2)

The E2-term is just

D[σ(e ◦ [ν] ◦ z2k)] = E[[ν] ◦ z(2k,l) | k, l ≥ 0] (7.6.3)

where we write z(2k,l) for σ(e◦z2k)[2
l] = B2l(e◦z2k). To understand the differentials,

we map in the Rothenberg-Steenrod spectral sequence

F⊕ F{Bk+1(e ◦ [ν])} = TorH∗U(1)
∗∗ (F,F) =⇒ HF∗CP∞ = F⊕ F{zC,2k+2}

(7.6.4)

This collapses for obvious reasons. Using

dr(B(s)(e ◦ [ν] ◦ zC(t))) = dr(B(s)(e) ◦ [ν] ◦ zC(t)) = dr(B(s)(e)) ◦ [ν] ◦ zC(t) = 0
(7.6.5)

we find that all differentials in the original spectral sequence vanish. In particular,
the primitive elements σ(e◦ [ν]◦z2k) on the 1-line all survive to E∞. We recall that
the 1-line at E∞ is isomorphic to the bottom filtration of HF∗BU with σ(x) = 〈x〉
corresponding to e ◦ x. It follows that 〈e ◦ [ν] ◦ zC,2k〉 = zC,2 ◦ zC,2k = qC,2k+2. This
shows that the map A∗ = P [zC,2k+2] → HF∗BU is injective on primitives. This
implies in the usual way that the map is injective everywhere, as a nonzero element
of minimal degree in the kernel would have to be primitive. The Poincaré series
of A∗ =

⊗
k≥0 P [zC,2k+2] and E∞ =

⊗
l≥0D[〈e ◦ [ν] ◦ zC,2l〉] are both equal to∏

k≥0(1 − t2k+2)−1. The Poincaré series of HF∗BU agrees with that of E∞. This
implies that the map A∗ −→ HF∗BU must be iso.

It is of interest to look a little more closely at the E∞ term and the asso-
ciated filtration of H∗BU . Write I∗ for the augmentation ideal in H∗BU . As
〈F1A∗, (I∗)2〉 = 0 and ψFs ⊂

∑
s=t+u Ft ⊗ Fu we see that 〈FsA∗, (I∗)s+1〉 = 0.

Thus

FsA∗ ⊆ ann((I∗)s+1) = F{pα | |α| ≤ s} (7.6.6)

and by counting dimensions we must have equality. In other words, the filtration is
precisely by copowers of the unit coideal.

I claim moreover that the induced map

θ0 : G∗A∗ = D[q2k+2] −→ D[σ(e ◦ [ν] ◦ z2k)] = E∞ (7.6.7)

is the obvious one, which maps pα = q[α] to
∏
k Bαk

(e ◦ [ν] ◦ z2k−2), and which
we refer to temporarily as θ1. Note that both θ’s are isomorphisms of bigraded
bicommutative Hopf algebras. We recall that the endomorphisms of such an object
form an Abelian group; the difference φ between θ−1

1 θ0 and the identity is given by
φ(x) =

∑
θ−1
1 θ0(x′)χ(x′′) where ψ(x) =

∑
x′ ⊗ x′′. As θi(q2k) = σ(e ◦ [ν] ◦ z2k−2)

for i = 0, 1, we see that φ(q2k) = 0. If we know that φ(q[β]) = 0 for |β| < |α| then we
deduce that φ(q[α]) is primitive. As the primitives are concentrated on the 1-line,
this shows that φ(q[α]) = 0. It follows that φ = ηε which is the zero element of our
Abelian group, so θ0 = θ1 as claimed.

We have seen that HF∗(0×BU) = P [z2k+2]. It follows that

HF∗(Z×BU) = HF∗(0×BU)⊗ Z[π0KU ] = P [z2k][−1] (7.6.8)

as claimed.



7.6. COMPLETENESS OF GENERATORS AND RELATIONS 83

As we take Bott periodicity for granted, it is not really necessary to consider
the spectral sequence passing from Z×BU to U , but it is easy and interesting to
see how it works.

TorH∗(Z×BU)
s,t (F,F) = E[σ(z2k)] =⇒ HFs+t(U) (7.6.9)

The E2-page is generated by elements σ(z2k) on the 1-line which must be permanent
cycles as there is nowhere for the differentials to go. It follows that the differentials
are zero everywhere. As E∞ is generated by elements representing e ◦ z2k and we
know that (e ◦ z2k)2 = 0, we have an epimorphism E[e ◦ z2k]→ HF∗(U). This must
be iso by counting dimensions. �

Proof of Theorem 2.2.2.
We next look at the spectrum KO. Write η for the unreduced canonical line bundle
over RP∞, and α for the reduced canonical line bundle over RP 1 = S1. We first
note that the composite

RP∞ η−→ 1×BO ⊆ Z×BO ◦[α]−−→ O (7.6.10)

is (essentially by definition) the clutching function of the bundle α⊗ η over ΣRP∞+ .
One checks that this is just the usual map RP∞ −→ O which sends a line L to
the reflection across L⊥. Again, it follows from the usual argument by induction
over the subgroups O(n) and the Serre spectral sequence that our description of
HF∗KO−1 = HF∗O is correct.

We next consider the Rothenberg-Steenrod spectral sequence

TorH∗O
s,t (F,F) =⇒ HFt+sBO (7.6.11)

We argue essentially as in the unitary case. The E2-term is just D[σ([α] ◦ zk)] and
the differentials vanish by comparison with the spectral sequence

F⊕ F{Bk+1([α])} = TorH∗O(1)
∗∗ (F,F) =⇒ HF∗RP∞ = F⊕ F{zk+1}

(7.6.12)

Just as before, we show that the map P [zk+1]→ HF∗BO is iso and thus that

HF∗(Z×BO) = P [zk][−1] (7.6.13)

as claimed.
We next consider the spectral sequence

TorH∗(Z×BO)
s,t (F,F) = E[σ(zk)] =⇒ HFt+s(U/O) (7.6.14)

As in the complex case, The E2-page is generated by the 1-line so all the differentials
vanish. As E∞ is generated by elements representing e ◦ zk and we know that
e ◦ z2k−1 = (e ◦ zk−1)2, it follows that the map P [e ◦ z2k] −→ HF∗(U/O) is epi.
Using ∏

l

(1 + t(2k+1)2l

) =
∑
m

t(2k+1)m = (1− t2k+1)−1 (7.6.15)

We see that the Poincaré series of the source and target agree, so the map is iso as
required.

We can analyse the spectral sequence

TorH∗(U/O)
s,t (F,F) = E[σ(e ◦ z2k)] =⇒ HFt+s(Sp/U) (7.6.16)

in essentially the same way, to obtain

HF∗(Sp/U) = P [e◦2 ◦ z4k] (7.6.17)

In the spectral sequence

TorH∗(Sp/U)
s,t (F,F) = E[σ(e◦2 ◦ z4k)] =⇒ HFt+s(Sp) (7.6.18)
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we again find that all differentials vanish. In this case we use the fact that (e◦3 ◦
z4k)2 = 0 to conclude that

HF∗(Sp) = E[e◦3 ◦ z4k] (7.6.19)

Our next spectral sequence is

TorH∗(Sp)
s,t (F,F) = D[σ(e◦3 ◦ z4k)] =⇒ HFt+s(BSp) (7.6.20)

We treat this in a similar way to the sequence O =⇒ BO, by mapping in the
spectral sequence

TorH∗S
3

s,t = TorH∗Sp(1)
s,t = D[σ(e◦3)] =⇒ HF∗HP∞ (7.6.21)

which clearly collapses. The image in the target is spanned by the elements [θ−1] ◦
zH,4k = [λ−1β] ◦ z4k. Using drBk(e◦3) = 0 and taking the circle product with
z(t), we find that all the differentials in the spectral sequence for Sp =⇒ BSp also
vanish. The map P [[λ−1β]◦z4k+4]→ HF∗BSp is thus injective on primitives, hence
injective, hence iso by counting dimensions. It follows that

HF∗(Z×BSp) = P [[λ−1β] ◦ z4k][−λ−1β] (7.6.22)

as claimed.
For notational convenience, we move down eight spaces to KO−4 where we find

that HF∗(Z×BSp) = P [[β] ◦ z4k][−β]
The step from Z×BSp to U/Sp is the same as from Sp/U to Sp, giving

HF∗(U/Sp) = E[e ◦ [β] ◦ z4k] (7.6.23)

To understand the next spectral sequence

TorH∗(U/Sp)
s,t (F,F) = D[σ(e ◦ [β] ◦ z4k)] =⇒ HFs+t(SO/U)

(7.6.24)

we compare it with the complex analogue

TorH∗(U)
s,t (F,F) = D[σ(e ◦ [ν2] ◦ z2k)] =⇒ P [[ν] ◦ z2k+2] = HFs+tBU

(7.6.25)

We can map the unitary version to the orthogonal one by the map fU : KU → KO
which forgets the complex structure. Using fU (ν2) = β and KO-linearity, we see
that σ(e ◦ [ν2] ◦ z4k) 7→ σ(e ◦ [β] ◦ z4k) and σ(e ◦ [ν2] ◦ z4k+2) 7→ 0. The map is thus
epi at E2 and the source spectral sequence collapses so the target one does also.
It follows that we have an epimorphism at E∞ and therefore also (by induction
over the filtration) in the abutment of the spectral sequences. Thus HF∗(SO/U) is
generated by the images of the elements [ν] ◦ z2k for k > 0, that is by the elements
[α2] ◦ z2k. We know that these elements square to zero so we have an epimorphism

E[[α2] ◦ z2k+2] � HF∗(SO/U) (7.6.26)

By comparing with the Poincaré series derived from our E∞-page, we deduce that
this is an isomorphism, and hence that

HF∗(O/U) = HF∗(SO/U)⊗ Z[Fα2] = E[[α2] ◦ z2k] (7.6.27)

as claimed.
To close the circle, we consider the spectral sequence

TorH∗(O/U)
s,t (F,F) = D[σ([α2] ◦ z2k)] =⇒ HFs+t(SO) (7.6.28)

Taking the circle product by [α] gives an epimorphism from the collapsing sequence
for O =⇒ BO to this one, which must therefore also collapse. We know that
([α]◦zk)2 = 0 from the relations we proved earlier, so we have a map E[[α]◦zk+1]→
HF∗SO. The primitives σ([α2]◦ z2k) in E∞ correspond to e◦ [α2]◦ z2k = [α]◦ q2k+1

so the elements [α] ◦ q2k+1 are nonzero. It follows that our map is injective on
primitives, hence injective, hence iso. Of course we knew that anyway. �
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Proof of Theorem 2.3.2.
We now turn to KT . We attack this by considering the fibrations coming from the
stable cofibrations in section 1.3. See section 5.4 for generalities about this sort of
situation. Firstly, we have a fibration

Sp/U
α2

−→ Z×BO lO−→ Z×BT (7.6.29)

P [e◦2 ◦ z4k]
◦[α2]−−−→ P [zk][−1] lO−→ HF∗(Z×BT ) (7.6.30)

As the fibre is connected, the local coefficient system in the Serre spectral sequence
is trivial (see 5.4). We have

[α2] ◦ e◦2 ◦ z(t) = z2
1 ◦ z(t) = q(t)2/t2 = ż(t)2/z(t)2 (7.6.31)

We see from this that the left hand map is injective and that the ideal generated
by the image in positive dimension is the same as that generated by the elements
z2
2k+1. It follows that the right hand map is epi with kernel precisely that ideal, so

HF∗(Z×BT ) = P [z2k][−1]⊗ E[z2k+1] (7.6.32)

as claimed.
We also have a fibration

Ω2T
δO−→ Z×BO α2

−→ O/U (7.6.33)

The action in π0 is as follows :

Zγ −→ Z −→ Fα2 (7.6.34)

γ 7→ 2 1 7→ α2 (7.6.35)

We therefore have a subfibration of connected spaces :

(Ω2T )′ −→ BO −→ SO/U (7.6.36)

HF∗(Ω2T ′) δO−→ P [zk+1]
◦[α2]−−−→ E[[α2] ◦ z2k+2] (7.6.37)

The local coefficients are again simple, as π1(O/U) = π3(KO) = 0. The right
hand map is visibly epi, so the left hand map is mono with image the Hopf algebra
kernel of the right hand one. This kernel is easily seen to contain the subalgebra
B∗ = P [q2k+1, z

2
2k+2]. As q2k+1 = z2k+1 (mod decomposables), we have

P [zk+1] = P [z2k+2]⊗ P [q2k+1] (7.6.38)

It follows that P [zk+1]//B∗ → E[[α2] ◦ z2k+2] is iso, and hence (via the Milnor-
Moore theorem 4.1.1) that B∗ is all of the kernel. An easy calculation shows that
δO(e◦ [µ]◦z2k) = q2k+1 and δO([γ]◦z4k) = z2

2k. Putting back the extra components,
we find that

HF∗(Ω2T ) = P [e ◦ [µ] ◦ z2k, [γ] ◦ z4k][−γ] (7.6.39)

as claimed.
To compute HF∗(ΩT ), we return to the Rothenberg-Steenrod spectral sequence

:

TorH∗(Ω
2T )

s,t (F,F) = E[σ(e ◦ [µ] ◦ z2k), σ([γ] ◦ z4k)] =⇒ HFs+t(ΩT )
(7.6.40)

This is generated on the 1-line and therefore collapses. The relations e◦2 ◦ z4k−2 =
(e◦2 ◦ z2k−2)2 and (e ◦ [γ] ◦ z4k)2 = 0 solve the algebra extension problems, giving

HF∗(ΩT ) = P [e◦2 ◦ [µ] ◦ z4k]⊗ E[e ◦ [γ] ◦ z4k] (7.6.41)

as claimed.
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Finally, we have

TorH∗(ΩT )
s,t (F,F) = E[σ(e◦2 ◦ [µ] ◦ z4k)]⊗D[σ(e ◦ [γ] ◦ z4k)] =⇒ HF∗(T )

(7.6.42)

Yet again, this collapses, as everything is generated by the 1-line and the image un-
der δT of the sequence for U =⇒ Z×BU . The usual arguments give an epimorphism
and then an isomorphism from the candidate algebra to the actual one, so

HF∗(T ) = E[[α] ◦ z2k, e◦3 ◦ [µ] ◦ z4k] (7.6.43)

as claimed. �
This completes the proof of the completeness of the stated generators and re-

lations for the mod 2 Hopf rings for KO, KT and KU .

7.7. Bockstein Homology

Proof of Proposition 2.9.1.
Where we assert (implicitly) that the Bockstein vanishes, this is clear from the given
data. We next observe that the following decompositions respect the Bockstein
action :

HF∗(O) = E[[α]]⊗
⊗
k≥0

E[[α] ◦ z2k+1, [α] ◦ z2k+2] (7.7.1)

HF∗(Z×BO) = F[Z]⊗
⊗
k≥0

P [z2k+1, z2k+2] (7.7.2)

HF∗(Z×BT ) = F[Z]⊗
⊗
k≥0

E[z2k+1]⊗ P [z2k+2] (7.7.3)

In each case it is elementary to compute the homology of each factor, and by
applying the Künneth theorem we obtain :

H(HF∗(O), β) = E[[α]]⊗ E[[α] ◦ (z2k+1z2k+2) | k ≥ 0]

H(HF∗(Z×BO), β) = P [z2
2k | k ≥ 0][−1]

H(HF∗(Z×BT ), β) = P [z2
2k | k ≥ 0][−1]⊗ E[z2k+1z2k+2 | k ≥ 0]

(7.7.4)

This is as claimed for these cases, except that we have z2k+1z2k+2 instead of q4k+3.
Let us write zod(t) =

∑
k z2k+1t

2k+1, and work in HF∗(Z×BT ) = P [z2k][−1] ⊗
E[z2k+1], so that zod(t)2 = 0. We write temporarily

g4k+3 = z2k+1z2k+2 (7.7.5)

g(t) =
∑
k≥0

g4k+3t
4k+3 (7.7.6)

f(t) =
∑

0≤k<l

z2kz2lt
2k+2l−1 (7.7.7)

(7.7.8)
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We have

q(t) =
tż(t)
z(t)

=
zod(t)

zev(t) + zod(t)
=
∑
k>0

zod(t)k

zev(t)k
=
zod(t)
zev(t)

(7.7.9)

βzev(t) = tzod(t) (7.7.10)

βq(t) = 0 = q(t)2 (7.7.11)

q(t)zev(t)2 = zev(t)zod(t) = g(t) + βf(t) (7.7.12)

q(t) =
g(t)
zev(t)2

+ β

(
f(t)
zev(t)2

)
(7.7.13)

(7.7.14)

Taking into account the fact that zev(t)2 is concentrated in degrees divisible by
4, the above shows that q4k+1 is a β-boundary and that g4k+3 lies in the image of
P [z2

2l][−1]⊗E[q4k+3] in H(HF∗(Z×BT ), β). As H(HF∗(Z×BT ), β) = P [z2
2l][−1]⊗

E[g4k+3], we deduce that

P [z2
2l][−1]⊗ E[q4k+3] −→ H(HF∗(Z×BT ), β) (7.7.15)

is epi. By comparing Poincaré series (which we know from 7.7.4), it must be iso,
which gives the claim. The same argument shows that we actually have

[α] ◦ g4k+3 ≡ [α] ◦ q4k+3 ∈ H(HF∗(O), β) (7.7.16)

We next consider HF∗(U/O) = P [e ◦ z2k]. We have an isomorphism

P [e ◦ z2k]
◦[α]−−→ P [q2k+1] ⊂ P [zk] = HF∗BO (7.7.17)

e ◦ z2k 7→ q2k+1 (7.7.18)

We can either observe from this or prove directly from the definitions that

βq2k = 0 βq2k+1 = q2k (7.7.19)

By duality we obtain an epimorphism

P [z′k] � P [e ◦ z2k]∗ (7.7.20)

I claim that this kills (z′k)
2. Indeed, we have

ψz′(t)2 = z′(t)2 ⊗ z′(t)2 (7.7.21)

〈z′(t)2, xy〉 = 〈z′(t)2, x〉〈z′(t)2, y〉 (7.7.22)

〈z′(t)2, q(s)〉 = 〈z′(t)⊗ z′(t), q(s)⊗ 1 + 1⊗ q(s)〉 = 0
(7.7.23)

〈z′(t)2, P [q2k+1]〉 = 0 (7.7.24)

which gives the claim. We thus have an epimorphism

E[z′k] � P [e ◦ z2k]∗ (7.7.25)

which is iso by counting dimensions. By reading equation 2.8.16 modulo t2, we find
that the dual Bockstein action is

βz′2k = z′2k+1 + z′1z
′
2k (7.7.26)

βz′2k+1 = z′2k+1z
′
1 (7.7.27)

If we pass to the quotient by z′1 and use the Künneth theorem we find that

H(E[z′k | k > 1], β) = E[z′2kz
′
2k+1 | k > 0] (7.7.28)
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Note that these generators are still β-cycles in E[z′k | k > 0], and consider the
following short exact sequence of complexes (with differential β).

E[z′k | k > 1]
z1′−−→ E[z′k | k > 0] −→ E[z′k | k > 1] (7.7.29)

We find that

H(E[z′k | k > 1], β) = E[z′1]⊗ E[z′2kz
′
2k+1 | k > 0] (7.7.30)

Write

h1 = e (7.7.31)
h4k+1 = e ◦ z4k + (e ◦ z2k−1)(e ◦ z2k) ∈ HF4k+1(U/O) (7.7.32)

For notational convenience we shall confuse this with its image in HF∗BO :

h4k+1 = q4k+1 + q2kq2k+1 ∈ H4k+1(BO) (7.7.33)

We find that

βh4k+1 = 0 (7.7.34)

h2
4k+1 = β(q8k+3 + q4kq4k+3) (7.7.35)

ψ(h4k+1) = h4k+1 ⊗ 1 + 1⊗ h4k+1 + β(q2k+1 ⊗ q2k+1)
(7.7.36)

We thus have a Hopf algebra map

E[h4k+1] −→ H(P [qk], β) ' (E[z′1]⊗ E[z′2k+2z
′
2k+3])

∗

(7.7.37)

In E[h4k+1], the generators (and thus only the generators) are primitive. A straight-
forward calculation gives

〈h1, z
′
1〉 = 1 (7.7.38)

〈h4k+1, z
′
2kz
′
2k+1〉 = 1 (7.7.39)

so the primitives (and thus everything) are mapped injectively. By counting dimen-
sions we find that

H(HF∗(U/O), β) = E[e]⊗ E[h4k+5] (7.7.40)

as claimed.
We can immediately deduce the result for

HF∗(Ω2T ) = P [e ◦ z2k]⊗ P [[µ−1γ] ◦ z4k][−µ−1γ] (7.7.41)

as β acts trivially on the second factor. �

7.8. The Torsion Free Hopf Ring for KU

Our analysis of the mod 2 Hopf ring for KU can be done integrally in much
the same way. We find

H∗(CP∞) = Z{y2k | k ≥ 0}

H∗(Z×BU) = P [[ν] ◦ y2k][−ν]

H∗(U) = E[e ◦ [ν] ◦ y2k]

H∗(Z×BU) = P [y2k][−1] y0 = [1]

(7.8.1)
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y(t) =
∑
k

y2kt
k (7.8.2)

ψy(t) = y(t)⊗ y(t) (7.8.3)
y(s) ◦ y(t) = y(s+ t) (7.8.4)
e◦2 ◦ y(t) = [ν−1] ◦ dlog y(t)/dt (7.8.5)

ρy(t) = zC(t) (7.8.6)

Perhaps the fourth of these requires a little comment. We know that e◦2 ◦ [ν] =
y2 = y2/[1] – the proof in section 7.3 works integrally. By reading the equation
y(s) ◦ y(t) = y(s+ t) modulo s2, we deduce that y2 ◦ y(t) = ẏ(t) and hence that

y2 ◦ y(t) = (y2 ◦ y(t))/([1] ◦ y(t)) = ˙y(t)/y(t) = dlog y(t)/dt
(7.8.7)

We also need to understand the complex conjugation map. From table 1.4.1 we see
that c([ν]) = [−ν]. Taking the circle product by e◦2, we find that

c(y2) = e◦2 ◦ c[ν] = e◦2 ◦ [−1] ◦ [ν] = −e◦2 ◦ [ν] = −y2 (7.8.8)

Also, c[n] = [n] as c is a ring map. Thus c(y2) = [1]c(y2) = −y2. Given this, the
formula cy(t) = y(−t) is forced by compatibility with the coproduct.

7.9. The Torsion Free Hopf Ring for KO

Lemma 7.9.1.

mO : H∗KO′n −→ H∗KU ′n is mono (7.9.1)
fU : H[ 12 ]∗KU ′n −→ H[ 12 ]∗KO′n is epi (7.9.2)

Proof. We know that the composite

KO
mO−−→ KU

fU−→ KO (7.9.3)

is just multiplication by 2. Let k be a coefficient ring for which H∗(KO′n; k) is free,
and therefore a Hopf algebra. (Recall that KO′n is the base component of KOn).
The induced map is as follows :

x 7→ [2] ◦ x =
∑

x′x′′
(

where ψx =
∑

x′ ⊗ x′′
)

(7.9.4)

In particular, the induced maps on the subgroup of primitives and on the inde-
composable quotient are both just multiplication by 2. As the homology algebra is
free and connected, a map which is mono on primitives is mono and a map which
is epi on indecomposables is epi. Thus, if 2 is invertible in k then our map is an
isomorphism.

If we take k = Fp, then H∗(KO′n; k) is certainly free. If p is odd, we deduce
that H∗(KO′n; k) embeds in H∗(KU ′n; k) and so has trivial Bockstein action, whence
H∗(KOn; Z) has no p-torsion. We deduce that we can take k = Z[ 12 ] and still get a
Hopf algebra. This shows that with Z[ 12 ] as coefficients, mO is mono and fU is epi.
As H→ H[ 12 ] is mono, the result follows. �

Composing the other way around, we have

fU ◦mO = 1 + c (7.9.5)

This means that C ⊗R ζ ' ζ ⊕ cζ. In homology, the Whitney sum turns into the
∗-product and the implicit diagonal (which gives two copies of ζ on the right hand
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side) corresponds to ψ. This implies

(1 + c)∗x =
∑

x′c∗(x′′)
(

where ψx =
∑

x′ ⊗ x′′
)

(7.9.6)

This can of course be proven more rigorously by writing down a suitable commuta-
tive diagram. To use this, we apply

c([νk]) = [(−1)k] ◦ [νk] (7.9.7)
c(y(t)) = y(−t) (7.9.8)

[±1] ◦ y(t) = y(t)±1 (7.9.9)

giving

mO(ky(t)) = [νk] ◦ (y(t)y(−t)) k even (7.9.10)

mO(ky(t)) = [νk] ◦ (y(t)/y(−t)) k odd (7.9.11)

where ky(t) = fU ([νk] ◦ y(t)) as before. We obtain:

k even:
{
mO(ky4l) = 2[νk] ◦ ([1]y4l) mod decomposables
mO(ky4l+2) = 0 (7.9.12)

k odd:
{
mO(ky4l+4) = 0 mod decomposables
mO(ky4l+2) = 2[νk] ◦ y4l+2 mod decomposables (7.9.13)

As y(t) is grouplike, so is ky(t). This gives equation (3.4.8). Splitting this into
parts in dimension congruent to 0 or 2 mod 4, we obtain (3.4.10) and (3.4.9).

The action of the double suspension on (k+1)y(t) follows directly from that on
y(t). Consider the double suspension of the relation ky̆(t)2 − kŷ(t)2 = 1:

0 = e◦2 ◦ 1 = e◦2 ◦ (ky̆(t)2 − kŷ(t)2)
= 2e◦2 ◦ ky̆(t) ε(ky̆(t))− 2e◦2 ◦ kŷ(t) ε(kŷ(t))
= 2e◦2 ◦ ky̆(t) (7.9.14)

This shows that e◦2 ◦ ky̆(t) ≡ 0.
For (3.4.13) and (3.4.14) we have :

2e ◦ [α] = e ◦ [2] ◦ [α] = e ◦ [2α] = e ◦ [0] = 0 (7.9.15)

For (3.4.15), we note that fU : KU → KO is a KO-module map. Here KO acts on
KU via mO : KO → KU and mO(α) = 0. Thus

[α] ◦ ky(t) = [α] ◦ fU ([νk] ◦ y(t)) = fU ([0] ◦ [νk] ◦ y(t)) = [0] = 1
(7.9.16)

Similarly, as mO(β) = 2ν2 we have

[β] ◦ ky(t) = fU ([2ν2] ◦ [νk] ◦ y(t)) = [2] ◦ (k+2)y(t) = (k+2)y(t)2

(7.9.17)

Finally, using mO(ly(t)) = [νl] ◦ (y(t)y(−t)ε (where ε = (−1)l) we deduce

ky(s) ◦ ly(t) = fU ([νk] ◦ y(s) ◦ [νl] ◦ (y(t)y(−t)ε))
= fU ([νk+l] ◦ y(s+ t))fU ([νk+l] ◦ y(s− t))ε

= (k+l)y(s+ t) (k+l)y(s− t)ε

We have already said enough to show that the earlier description of H∗KO∗
gives the right answer after inverting 2. To complete the proof, we need only put
ourselves in a position to apply theorem 5.1.1. The next step is to collect some facts
about the reduction mod 2. Using the KO-linearity of fU , we have :

ρ(ky(t2)) = fU ([νk] ◦mO(z(t))) = [fU (νk)] ◦ z(t) (7.9.18)
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In particular :

ρ(0y(t2)) = [2] ◦ z(t) = z(t)2 (7.9.19)

ρ(e ◦ 0y(t2)) = e ◦ z(t)2 = 2e ◦ z(t) = 0 (7.9.20)

ρ(1y(t2)) = [α2] ◦ z(t) (7.9.21)

ρ(e ◦ 1y(t2)) = e ◦ [α2] ◦ z(t) = [α] ◦ z1 ◦ z(t) = [α] ◦ q(t)/t
(7.9.22)

ρ(2y(t2)) = [β] ◦ z(t) (7.9.23)

ρ(e ◦ 2y(t2)) = e ◦ [β] ◦ z(t) (7.9.24)

ρ(3y(t2)) = [0] ◦ z(t) = 1 (7.9.25)

The Bockstein vanishes on HF∗(Sp/U) so the integral homology is torsion free.
As ρ(3ŷ(t)) = 0 we can uniquely divide 3ŷ4k+2 by 2 in H∗(Sp/U). If we define

yev(t) =
∑
k

y4kt
2k (7.9.26)

yod(t) =
∑
k

y4k+2t
2k+1 (7.9.27)

Then

mO(3ŷ(t)/2) = [ν3] ◦
(
y(t)
y(−t)

− y(−t)
y(t)

)
/4

= [ν3] ◦ yevyod
y2
ev − y2

od

We need to understand ρ(3ŷ4k+2/2). Just for this calculation, we write zev(t) =∑
k zC,4kt

2k and zod(t) =
∑
k zC,4k+2t

2k+1, so qC(t) = zod(t)/zev(t). We then have

ρmO(3ŷ(t2)/2) = [ν3] ◦ zev(t)zod(t)
zC(t)2

= [ν3] ◦ (qC(t) + qC(t)2)
= [ν4] ◦ (te◦2 + (te◦2)2) ◦ zC(t)

One checks easily that mO : Sp/U → Z×BU is mono in HF∗, so we must have

ρ(3ŷ(t2)/2) = [λ] ◦ (t2e◦2 + (t2e◦2)2) ◦ z(t) =
∑
k

e◦2 ◦ [λ] ◦ z4kt4k+2

(7.9.28)

The second equality here follows from (2.2.9).

ρ(e ◦ 3ŷ(t2)/2) = t2[λ] ◦ e◦3 ◦ z(t) =
∑
k

e◦3 ◦ [λ] ◦ z4kt4k+2

(7.9.29)

We can now deal with all the spaces in the KO spectrum except for U/O.
We know enough to construct a map from the structure described by table 3.4.1
to H∗KO∗. We know that it is iso after inverting 2 by comparison with KU , as
discussed at the beginning of this section. The analysis of ρ above, combined with
the Bockstein homology calculations of section 2.9 and theorem 5.1.1, assure us that
it is iso mod 2 and therefore iso on the nose.
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To deal with O/U , we have to organise our argument just slightly differently.
As ρ0y(t2) = z(t)2, we find that ρ(e ◦ 0y(t)) = e ◦ z(t)2 = 0 and thus that e ◦ 0y(t)
is divisible (nonuniquely) by 2. Consider the following commutative diagram :

E[e]⊗ E[h4k+1] E[e ◦ z2k]

E[e ◦ 0y4k/2] E[e ◦ y2k]

h4k+1 e ◦ z4k

e ◦ 0y4k 2e ◦ y4k

e ◦ y2k

e ◦ z2k

ρ ρ

mO

mO

-

->

->

-

? ?? ?

(7.9.30)

The terms on the bottom line are the Bockstein homology groups. It is easily seen
that the maps act as shown. We conclude that ρ(e ◦ 0y4k/2) = h4k+1 mod im(β)
and thus that the Bockstein spectral sequence collapses, so

H∗(U/O) = E[e ◦ 0y4k/2] (7.9.31)

and the torsion is annihilated by 2. This shows that the torsion subgroup is precisely
the image of the Bockstein β̃ : HF → H. This satisfies ρβ̃ = β. Using this we see
that we can specify a lifting of e ◦ 0y4k/2 from H to H by requiring that ρ(e ◦
0y4k/2) = h4k+1 exactly, rather than just mod the image of β. I know of no
geometric construction of these elements, however. Having got this far, we can
complete the argument for U/O in the same way as for the other spaces.

7.10. The Torsion Free Hopf Ring for KT

We next consider the self-conjugate case. Recall the definition

kx(t) = δT ([νk] ◦ y(t)) (7.10.1)

The ring map fT : KT → KU makes KU into a KT -module spectrum, and it sends
µ to ν2. With respect to this structure, δT : ΣKU → KT is KT -linear. It follows
that

[µ] ◦ kx(t) = [µ] ◦ δT ([νk] ◦ y(t)) = δT ([νk+2] ◦ y(t)) = k+2x(t)
(7.10.2)

Also

e◦2 ◦ (k+1)x(t) = δT ([νk]e◦2 ◦ [ν] ◦ y(t)) = δT ([νk] ◦ dlog(y(t))/dt) = dlog(kx(t))/dt
(7.10.3)

From diagram (1.3.2) we see that

δT ◦m−1
ν ◦ (1− c) = 0 (7.10.4)
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As ν is a unit and c(ν) = −ν we have m−1
ν ◦ (1 − c) = (1 + c) ◦ m−1

ν and thus
δT = −δT ◦ c. It follows that

kx(t) = (−δT ◦ c)∗([νk] ◦ y(t)) = [−1] ◦ δT ([(−ν)k] ◦ y(−t)) = [(−1)k+1] ◦ kx(−t)
(7.10.5)

As [−1] ◦ kx(t) = kx(t)−1, this justifies equations (3.5.1).
Recall that we denote lO(ky(t)) = mU ([νk] ◦ y(t)) simply by ky(t). To under-

stand [µ] ◦ ky(t), we observe (see diagram (1.3.1)) that mU = fSplU = lOfU . Recall
also that the maps

θ : Σ4KO → KSp
µ : Σ4KT → KT
ν2 : Σ4KU → KU

(7.10.6)

give a morphism between diagrams (1.3.2) and (1.3.3). In particular, this means
that mµ◦fSp = lO◦mθ and mθ◦lU = fU ◦mν2 . It follows that mµ◦mU = mU ◦mν2 .
(Note, however, that mU is not a KT -module map – consider for example the action
of mγ in homotopy.) This shows that

[µ] ◦ ky(t) = mU ([ν2] ◦ [νk] ◦ y(t)) = (k+2)y(t) (7.10.7)

As δT is a KO-module map, we have
[γ] ◦ ky(t) = δT ([ν]) ◦ ky(t) = δT ([ν] ◦mO(ky(t)))

= δT ([νk+1] ◦ (y(t)y(−t)ε)) = (k+1)x(t)(k+1)x(−t)ε (7.10.8)

where ε = (−1)k. On the other hand, we showed above that kx(−t) = kx(t)ε. Thus

[γ] ◦ ky(t) = (k+1)x(t)2 (7.10.9)

As homology suspension is a derivation, we conclude that

e ◦ [γ] ◦ ky(t) = 2e ◦ (k+1)x(t) (7.10.10)

We next need formulae for the circle product. The expression for ky(s) ◦ ly(t)
carries over from H∗KO∗, of course. Next,

kx(s) ◦ ly(s) = δT ([νk] ◦ y(s) ◦ [νl] ◦ (y(t)y(−t)ε))
= δT ([νk+l] ◦ (y(s+ t)y(s− t)ε))
= (k+l)x(t+ s) (k+l)x(t− s)ε

For the final case we use the KT -linearity of δT again. Note that fT δT = 0, so
fT (lx(s)) = 1.

kx(s) ◦ lx(s) = δT ([νk] ◦ y(s) ◦ fT (lx(s))) = δT ([0]) = 1
(7.10.11)

We next see what we can say about the mod 2 reduction. First note that
3y4k+2/2 is already defined in KO, and on taking the circle product by [µ−1] we
obtain elements which deserve to be called 1y4k+2/2. With this convention, the first
half of (3.5.14) is immediate. For terms involving x’s, we have :

ρ(kx(t2)) = [δT (νk)] ◦ z(t) (7.10.12)
ρ(0x(t2)) = [α] ◦ z(t) (7.10.13)

ρ(e ◦ 0x(t2)) = z1 ◦ z(t) = q(t)/t (7.10.14)
ρ(1x(t2)) = [γ] ◦ z(t) (7.10.15)

This proves the rest of (3.5.14).

Proof of Theorem 2.2.2.
We again argue using theorem 5.1.1. As in the KO case, the data above give a map
from our candidate structure to H∗KT ∗ which is iso mod 2. However, we need a
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different argument to show that it is iso with coefficients Z[ 12 ]. The real reason for
this is that 2α2 = 0, so that the cofibration

Σ2KO
α2

−→ KO
lO−→ KT

δO−→ Σ3KO
α2

−→ ΣKO (7.10.16)

splits to give

KT [ 12 ] = KO[ 12 ]⊕ Σ3KO[ 12 ] (7.10.17)

if we invert 2 geometrically. To turn this into a proper proof requires a little thought
about the relation between localisations of spaces, spectra and homology groups.
An alternative is to look at the Serre spectral sequences (with coefficients Z[ 12 ]) of
the fibrations derived from the above stable cofibration :

Z×BO lO−→ Z×BT δO−→ Sp (7.10.18)

P [0y4k][−1]→ H[ 12 ]∗(Z×BT )→ E[e ◦ −1y4k+2] (7.10.19)

U/O
lO−→ Ω2T

δO−→ 2Z×BSp (7.10.20)

E[e ◦ 0y4k]→ H[ 12 ]∗(Ω2T )→ P [−2y4k][−2λ−1β] (7.10.21)

Sp/U
lO−→ ΩT δO−→ U/Sp (7.10.22)

P [−1y4k+2]→ H[ 12 ]∗(ΩT )→ E[e ◦ −2y4k] (7.10.23)

Sp
lO−→ T

δO−→ O/U (7.10.24)

E[e ◦ −2y4k+2]→ H[ 12 ]∗(Z×BT )→ P [−3y4k+2]⊗ Z[Fα2]
(7.10.25)

In each case the connecting homomorphism π1B → π0F vanishes so the local co-
efficients are simple. Using δOδT = fUν

−1 we find that δO(kx(t)) = (k−1)y(t).
This implies that the edge map H[ 12 ]∗E → H[ 12 ]∗B is surjective, and thus that the
spectral sequence collapses. Our conclusion follows easily. �



APPENDIX A

Mathematica Code

The symbolic mathematics program Mathematica was very helpful in writing
this thesis. I used it to develop my understanding of the algebra involved, to do cal-
culations, test conjectures and check some of the more intricate statements. Much
of this was done using short, ad hoc programs. I include as an appendix some of
the better documented code. Amongst other things, this can be used to check the
consistency of the diagrams in section 1.3 with table 1.4.1, as mentioned at the end
of section 1.4. The standard reference for Mathematica is the manual [27]; for more
information about the associated programming language see [14]. The documen-
tation in the first file included below explains a number of standard Mathematica
constructs and is intended to be comprehensible to a reader with little or no fa-
miliarity with the system. The documentation in the remaining files assumes some
knowledge, however.

A.1. Formal Power Series

The following code is the file Formal.m , which sets up some basic tools for
using formal power series.

A.2. Scalars and Linearity

The following code is the file Scalar.m , which sets up convenient methods for
telling Mathematica that certain maps are linear or are ring homomorphisms.
BeginPackage["Scalar‘"]

Needs["Mod‘"]

ScalarQ::usage =
"ScalarQ[x] = True if x is a number or formal variable etc."

AssertScalar::usage =
"AssertScalar[x] asserts that x is a scalar. The assertion has to be
tied to a tag symbol. If x is not a symbol, use AssertScalar[x,tag]
e.g. AssertScalar[ x[23] , x ]"

AssertLinear::usage =
"AssertLinear[f] asserts that f is a linear function"

AssertRingMap2::usage =
"AssertRingMap2[f] asserts that f is a homomorphism of Z/2-algebras"

AssertRingMap::usage =
"AssertRingMap[f] asserts that f is a ring homomorphism"

AssertMultilinear::usage =

95
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"AssertMultilinear[f] asserts that f is multilinear and associative"

SquareQ::usage =
"SquareQ[x] = True iff x is a square mod 2"

Begin["Private‘"]

Attributes[Until] = {HoldAll}

Until[body_, test_] := Module[ {t}, For[ t=False, !t, t=test, body ] ]

StripPattern[a_] := a /.
b_PatternTest :> First[b] /.
b_Pattern :> First[b] /.
b_Optional :> First[b]

SymbolQ[x_] := (Head[x] === Symbol)

URules[x_] :=
Module[{hsl,usl},
hsl = HeldPart[#,1]& /@ Cases[x,y_Pattern,Infinity];
hsl = {#,ReleaseHold[Unique /@ Unevaluated /@ #]} & /@ hsl;
hsl = Rule @@ # & /@ (hsl /. Hold->Literal)

]

SquareQ[x_Plus] := And @@ (SquareQ /@ (List @@ x))
SquareQ[x_Times] := And @@ (SquareQ /@ (List @@ x))
SquareQ[n_Integer] := True
SquareQ[x_^n_Integer] := EvenQ[n]
SquareQ[_] := False

(* ScalarQ[x] = True if x is a number or formal variable etc. *)

{
ScalarQ[n_?NumberQ] := True;
ScalarQ[x_?ScalarQ y_] := ScalarQ[y];
ScalarQ[x_ y_] := False /; Not[ScalarQ[y]];
ScalarQ[x_^n_] := ScalarQ[x];
};

(* AssertScalar[x] asserts that x is a scalar. The assertion has to be *)
(* tied to a tag symbol. If x is not a symbol, use AssertScalar[x,tag] *)
(* e.g. AssertScalar[ x[23] , x ] *)

AssertScalar[n_,tag_Symbol] := (tag/: ScalarQ[n] = True ;)

AssertScalar[n_Symbol] := AssertScalar[n,n]

(* AssertRingMap[f] asserts that f is a ring homomorphism *)

AssertRingMap[f_] := AssertRingMap[f,1]



A.2. SCALARS AND LINEARITY 97

AssertRingMap[f_,u_]:=
Module[{head,uf,sf,ur,rplus,rtimes,rpow,rsc0,rsc1,x,n},
ur = URules[f];
uf = f /. ur;
sf = StripPattern[uf];
rplus = Hold[RuleDelayed[Literal[{x_Plus}],Map[{},x]]];
rplus = ReplaceHeldPart[rplus,uf,{1,1,1,0}];
rplus = ReplaceHeldPart[rplus,sf,{1,2,1}];
rtimes = Hold[RuleDelayed[Literal[{x_Times}],Expand[Map[{},x]]]];
rtimes = ReplaceHeldPart[rtimes,uf,{1,1,1,0}];
rtimes = ReplaceHeldPart[rtimes,sf,{1,2,1,1}];
rpow = Hold[RuleDelayed[Literal[{x_^n_}],Expand[{x}^n]]];
rpow = ReplaceHeldPart[rpow,uf,{1,1,1,0}];
rpow = ReplaceHeldPart[rpow,sf,{1,2,1,1,0}];
rsc0 = Hold[RuleDelayed[Literal[{n_?ScalarQ}],n u]];
rsc0 = ReplaceHeldPart[rsc0,uf,{1,1,1,0}];
rsc1 = Hold[RuleDelayed[Literal[{n_?ScalarQ x_}],n {x}]];
rsc1 = ReplaceHeldPart[rsc1,uf,{1,1,1,0}];
rsc1 = ReplaceHeldPart[rsc1,sf,{1,2,2,0}];
rr = ReleaseHold /@ { rplus, rtimes, rpow, rsc0, rsc1 };
If[SymbolQ[f],
DownValues[Release[f]] =
Join[DownValues[Release[f]],rr],

(* Else *)
head = sf;
While[Length[head]>0,head = Head[head]];
If[SymbolQ[head],
SubValues[Release[head]] =
Join[SubValues[Release[head]],rr],

(* Else *)
Message[AssertRingMap::badtag,head];

]
];

]

AssertRingMap::badtag = "I regret that ‘1‘ appears to be an invalid tag";

(* AssertRingMap2[f] asserts that f is a ring homomorphism *)

AssertRingMap2[f_] := AssertRingMap2[f,1]

AssertRingMap2[f_,u_]:=
Module[{head,uf,sf,ur,rplus,rtimes,rpow,rsc0,rsc1,x,n},
ur = URules[f];
uf = f /. ur;
sf = StripPattern[uf];
rplus = Hold[RuleDelayed[Literal[{x_Plus}],Map[{},x]]];
rplus = ReplaceHeldPart[rplus,uf,{1,1,1,0}];
rplus = ReplaceHeldPart[rplus,sf,{1,2,1}];
rtimes = Hold[RuleDelayed[Literal[{x_Times}],Expand[Map[{},x]]]];
rtimes = ReplaceHeldPart[rtimes,uf,{1,1,1,0}];
rtimes = ReplaceHeldPart[rtimes,sf,{1,2,1,1}];
rpow = Hold[RuleDelayed[Literal[{x_^n_}],modpE[{x}^n]]];
rpow = ReplaceHeldPart[rpow,uf,{1,1,1,0}];
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rpow = ReplaceHeldPart[rpow,sf,{1,2,1,0}];
rsc0 = Hold[RuleDelayed[Literal[{n_?ScalarQ}],n u]];
rsc0 = ReplaceHeldPart[rsc0,uf,{1,1,1,0}];
rsc1 = Hold[RuleDelayed[Literal[{n_?ScalarQ x_}],n {x}]];
rsc1 = ReplaceHeldPart[rsc1,uf,{1,1,1,0}];
rsc1 = ReplaceHeldPart[rsc1,sf,{1,2,2,0}];
rr = ReleaseHold /@ { rplus, rtimes, rpow, rsc0, rsc1 };
If[SymbolQ[f],
DownValues[Release[f]] =
Join[DownValues[Release[f]],rr],

(* Else *)
head = sf;
While[Length[head]>0,head = Head[head]];
If[SymbolQ[head],
SubValues[Release[head]] =
Join[SubValues[Release[head]],rr],

(* Else *)
Message[AssertRingMap2::badtag,head];

]
];

]

AssertRingMap2::badtag = "I regret that ‘1‘ appears to be an invalid tag";

(* AssertLinear[f] asserts that f is a linear function *)

AssertLinear[f_]:=
Module[{head,uf,sf,ur,rplus,rscl,x,n},
ur = URules[f];
uf = f /. ur;
sf = StripPattern[uf];
rplus = Hold[RuleDelayed[Literal[{x_Plus}],Map[{},x]]];
rplus = ReplaceHeldPart[rplus,uf,{1,1,1,0}];
rplus = ReplaceHeldPart[rplus,sf,{1,2,1}];
rscl = Hold[RuleDelayed[Literal[{n_?ScalarQ x_}],n {x}]];
rscl = ReplaceHeldPart[rscl,uf,{1,1,1,0}];
rscl = ReplaceHeldPart[rscl,sf,{1,2,2,0}];
rr = ReleaseHold /@ { rplus, rscl };
If[SymbolQ[f],
DownValues[Release[f]] =
Join[DownValues[Release[f]],rr],

(* Else *)
head = sf;
While[Length[head]>0,head = Head[head]];
If[SymbolQ[head],
SubValues[Release[head]] =
Join[SubValues[Release[head]],rr],

(* Else *)
Message[AssertLinear::badtag,head];

]
];

]

AssertLinear::badtag = "I regret that ‘1‘ appears to be an invalid tag";
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(* AssertMultilinear[f] asserts that f is multilinear and associative *)

AssertMultilinear[f_Symbol] :=
( SetAttributes[f,{Flat}];
f[x___ , y_Plus, z___] :=
Plus @@ (f @@ # & /@ Distribute[{x,y,z},Plus,List,List,List]);

f[x___, n_?((ScalarQ[#] && # =!= 1)&) y_., z___] :=
n f[x,y,z];

)

End[]

EndPackage[]

A.3. Stable Homotopy Theory

The following code is the file Stable.m , which sets up some basic facts about
spectra and maps between them.
(* This file contains general facts about spectra and stable homotopy *)

BeginPackage["Stable‘"]

Deg::usage =
"Deg[x] is the degree of x in some appropriate sense"

Source::usage =
"Source[f] is the source of a stable map f. f:Source[f] -> Target[f]"

Target::usage =
"Target[f] is the target of a stable map f. f:Source[f] -> Target[f]"

ZeroMap::usage =
"ZeroMap[G,F,n] is the null map G->F of degree n"

OneMap::usage =
"OneMap[G] is the identity map of G"

MultiplyBy::usage =
"MultiplyBy[x,G] is the self map of G given by multiplication by
the homotopy element x in pi_* G"

Sigma::usage =
"Sigma[n,G] is the n’th suspension of the spectrum G"

Homotopy::usage =
"Homotopy[f] gives the effect of a stable map f in homotopy"

DefineStableMap::usage =
"DefineStableMap[f,A,B] declares that f is a stable map of degree 0 from
A to B. Options can be added e.g. DefineStableMap[f,A,B,MapDeg->3].
declares that f is a map of degree 3 from A to B. Possible options are
MapDeg,MapRingQ,MapTag,MapTeX."

MapDeg::usage = ""
MapRingQ::usage = ""
MapTag::usage = ""
MapTeX::usage = ""
RingMapQ::usage = ""

Begin["Private‘"]
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(* Deg[x] is the degree of x in some appropriate sense *)
Deg[n_Integer] := 0
Deg[x_Times] := Plus @@ ( Deg /@ (List @@ x))
Deg[x_^n_Integer] := n Deg[x]
Deg[x_+y_] := If[Deg[x]===Deg[y],Deg[x],Indeterminate]

Options[DefineStableMap] =
{ MapDeg -> 0, MapRingQ -> False, MapTag -> Null, MapTeX -> Null }

DefineStableMap[f_,s_,t_,opts___] :=
Module[{tag,rm,tf},
tag = MapTag /. {opts} /. Options[DefineStableMap];
If[ tag == Null , tag = f ];
Release[tag] /: Source[f] = s;
Release[tag] /: Target[f] = t;
Release[tag] /: Deg[f] = MapDeg /. {opts} /. Options[DefineStableMap];
rm = MapRingQ /. {opts} /. Options[DefineStableMap];
If[ rm === True, (Release[tag] /: RingMapQ[f] = True)];
tf = MapTeX /. {opts} /. Options[DefineStableMap];
If[ tf =!= Null, (Release[tag] /: Format[f,TeXForm] = tf)];

]

(* ZeroMap[G,F,n] is the null map G->F of degree n *)

ZeroMap[G_] := ZeroMap[G,G,0]

ZeroMap[G_,F_] := ZeroMap[G,F,0]

DefineStableMap[
ZeroMap[G_,F_,n_],G,F,
MapDeg->n, MapTag->ZeroMap

]

ZeroMap/: Composition[f_,ZeroMap[G_,F_,n_]] :=
ZeroMap[G,Target[f],n+Deg[f]]

ZeroMap/: Composition[ZeroMap[G_,F_,n_],f_] :=
ZeroMap[Source[f],F,n+Deg[f]]

ZeroMap/: f_ + ZeroMap[G_,F_,n_] := f /;
Source[f] === G && Target[f] === F && Deg[f] === n

ZeroMap/: n_? NumberQ z_ZeroMap := z

Format[ZeroMap[G_,F_,n_],TeXForm] := Subscripted["0"[G,F]]

(* OneMap[G] is the identity map of G *)

DefineStableMap[OneMap[G_],G,G,MapRingQ -> True, MapTag -> OneMap]

OneMap/: Composition[f_,OneMap[G_]] := f

OneMap/: Composition[OneMap[G_],f_] := f



A.3. STABLE HOMOTOPY THEORY 101

Format[OneMap[G_],TeXForm] := Subscripted["1"[G]]

(* MultiplyBy[x,G] is the self map of G given by multiplication by *)
(* the homotopy element x in pi_* G *)

DefineStableMap[MultiplyBy[x_,G_],G,G, MapDeg->Deg[x], MapTag->MultiplyBy]

(* Sigma[n,G] is the n’th suspension of the spectrum G *)

Sigma[0,G_] := G

Sigma[G_] := Sigma[1,G]

Sigma[n_,Sigma[m_,G]] := Sigma[n+m,G]

(* Sigma[n,f] is the n’th suspension of the map f *)

Homotopy[Sigma[n_,f_]] := Homotopy[f]

Source[Sigma[n_,f_]] := Sigma[n,Source[f]]

Target[Sigma[n_,f_]] := Sigma[n,Target[f]]

Sigma[n_,ZeroMap[G_,F_,m_]] :=
ZeroMap[Sigma[n,G],Sigma[n,F],m]

Sigma[n_,OneMap[G_]] := OneMap[Sigma[n,G]]

Sigma[n_,MultiplyBy[x_,G_]] :=
MultiplyBy[x,Sigma[n,G]]

Sigma[n_,f_Composition] := Sigma[n,#]& /@ f

Format[Sigma[n_,x_],TeXForm] := SequenceForm["\\Sigma"^n,x]

Source[n_Integer f_] := Source[f]

Target[n_Integer f_] := Target[f]

Source[f_+g_] := If[Source[f]===Source[g],Source[f],Indeterminate]

Target[f_+g_] := If[Target[f]===Target[g],Target[f],Indeterminate]

Source/: Source[Composition[f_,g_]] := Source[g]

Target/: Target[Composition[f_,g_]] := Target[f]

Deg/: Deg[Composition[f_,g_]] := Deg[f]+Deg[g]

(* Homotopy[f] gives the effect of a stable map f in homotopy *)

Homotopy[f_][n_ a_] := n Homotopy[f][a] /; NumberQ[n]
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Homotopy[f_][n_] := n Homotopy[f][1] /; (NumberQ[n] && n =!= 1)

Homotopy[f_][a_Plus] := Homotopy[f] /@ a

Homotopy[f_][1] := 1 /; RingMapQ[f]

Homotopy[f_][a_Times] := Expand[Homotopy[f] /@ a] /; RingMapQ[f]

Homotopy[f_][a_^n_] := Expand[Homotopy[f][a]^n] /; RingMapQ[f]

Homotopy[f_+g_][a_] := Homotopy[f][a]+Homotopy[g][a]

Homotopy[n_ f_][a_] := n Homotopy[f][a] /; NumberQ[n]

Homotopy[Composition[f_,g_]][a_]:= Homotopy[f][Homotopy[g][a]]

Homotopy[MultiplyBy[a_,G_]][b_] := Expand[a b]

Homotopy[OneMap[G_]][a_] := a

Homotopy[ZeroMap[E_,G_,n_]][a_] := 0

Format[Homotopy[f_],TeXForm] := "{\\pi_*}"[f]

End[]

EndPackage[]

A.4. Code For Hopf Rings

The following code is the file Hopf.m which sets up the various operations and
identities for general Hopf rings.
(* This file contains definitions for general Hopf rings. *)

(*
BeginPackage["Hopf‘",

(* Needs *) "Scalar‘","Stable‘"]
*)

Bracket::usage =
"Bracket[x] represents the zero dimensional homology class [x]"

Tensor::usage =
"Tensor is the tensor product"

Multiply::usage =
"Multiply is the star multiplication map"

Circ::usage =
"Circ is the circle product"

Epsilon::usage =
"Epsilon is the augmentation map"

Chi::usage =
"Chi is the Hopf Algebra antipode"

Psi::usage =
"Psi is the coproduct map"

Homology::usage =
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"Homology[f] gives the effect of a stable map f in homology"
HopfTimes::usage = ""
e::usage =
"e[G] is the fundamental class in H_1 G_1 for a spectrum G"

(* Begin["Private‘"] *)

(* Bracket[x] represents the zero dimensional homology class [x] *)

{
Bracket[0] := 1;
(**)
Bracket/: Bracket[x_]^n_Integer := Bracket[n x];
Bracket/: Bracket[x_] Bracket[y_] := Bracket[x + y];
(**)
Format[Bracket[x_]] := SequenceForm["[",x,"]"];
Format[Bracket[x_],TeXForm] := SequenceForm["[",x,"]"];
};

(* Tensor is the tensor product *)

{
Tensor[x___,Tensor[y___],z___] := Tensor[x,y,z];
Tensor[x___ , y_Plus, z___] :=
Plus @@ (Tensor @@ # & /@ Distribute[{x,y,z},Plus,List,List,List]);

Tensor[x___, n_?((ScalarQ[#] && # =!= 1)&) y_., z___] :=
n Tensor[x,y,z];

(**)
Tensor/: Tensor[x0_,z0_] Tensor[x1_,z1_]:= Tensor[x0 x1 , z0 z1];
Tensor/: Tensor[x_ ,z_ ]^n_Integer := Tensor[x^n,z^n];
(**)
Format[Tensor[x__]] := Infix[Tensor[x]," O "];
Format[Tensor[x__],TeXForm] := Infix[Tensor[x]," \\otimes "];
};

(* Multiply is the star multiplication map *)

{
Multiply[x_Plus] := Multiply /@ x;
Multiply[x_Times] := Multiply /@ x;
Multiply[x_^n_] := Multiply[x]^n;
Multiply[n_?ScalarQ] := n;
Multiply[x_Tensor] := Expand[Times @@ x];
};

(* Circ is the circle product *)

{
(* Circ[x___ , y_Plus, z___] := Plus @@ (Circ @@ # & /@ Distribute[{x,y,z},Plus,List,List,List]); *)
Circ[x_Plus,y_] := Circ[#,y] & /@ x;
Circ[x_,y_Plus] := Circ[x,#] & /@ y;
Circ[x___, n_?((ScalarQ[#] && # =!= 1)&) y_., z___] :=
n Circ[x,y,z];

(**)
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Circ[1 , x_] := Epsilon[x];
Circ[Bracket[1], x_] := x;
Circ[Bracket[x_],Bracket[y_]] := Bracket[x y];
Circ[Bracket[n_Integer], x_] :=

Multiply[Circ[Tensor[Bracket[1],Bracket[n-1]],Psi[x]]] /; n>1 ;
Circ[Bracket[n_Integer], x_] := Circ[Bracket[-n],Chi[x]] /; n<0 ;
(**)
Circ[x_Tensor, y_Tensor] :=

Inner[Circ, List @@ x , List @@ y ,Tensor];
Circ[x_ ,y_?ScalarQ z_] := y Circ[x,z];
Circ[x_ ,y_ z_ ] := Multiply[Circ[Psi[x], Tensor[y,z]]];
Circ[y_ z_, x_] := Multiply[Circ[Psi[x], Tensor[y,z]]];
Circ[x_ ,y_^n_Integer] :=

Multiply[Circ[Psi[x], Tensor[y,y^(n-1)]]] /; n>1;
(**)
Format[Circ[x__]] := Infix[Circ[x]," o "];
Format[Circ[x__],TeXForm] := Infix[Circ[x]," \\circ "];
};

(* Epsilon is the augmentation map *)

{
Epsilon[x_Plus] := Epsilon /@ x;
Epsilon[x_Times] := Epsilon /@ x;
Epsilon[x_^n_] := Epsilon[x]^n;
Epsilon[n_?ScalarQ] := n;
(**)
Epsilon[Bracket[_]] := 1;
Epsilon[e[_]] := 0;
(**)
Epsilon[x_Tensor] := Expand[Times @@ (Epsilon /@ (List @@ x))];
Epsilon[x_Circ] := Expand[Times @@ (Epsilon /@ (List @@ x))];
(**)
Format[Epsilon,TeXForm]:="\\epsilon";
};

(* Chi is the Hopf Algebra antipode *)

{
Chi[x_Plus] := Chi /@ x;
Chi[x_Times] := Chi /@ x;
Chi[x_^n_] := Chi[x]^n;
Chi[n_?ScalarQ] := n;
(**)
Chi[Bracket[x_]] := Bracket[-x];
Chi[Circ[x_,y_]] := Circ[Chi[x],y];
(**)
Format[Chi,TeXForm] := "\\chi";
};

(* Psi is the coproduct map *)

{
Psi[x_Plus] := Psi /@ x;
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Psi[x_Times] := modpE[Psi /@ x];
Psi[x_^n_] := Psi[x]^n;
Psi[n_?ScalarQ] := n Tensor[1,1];
(**)
Psi[Bracket[x_]] := Tensor[Bracket[x],Bracket[x]];
(**)
Psi[x_Circ] := Psi /@ x;
(**)
Psi[0,x_] := Epsilon[x];
Psi[1,x_] := x;
Psi[2,x_] := Psi[x];
Psi[n_,x_] :=
Psi[n-1,x] /. Tensor[y__,z_] :> Tensor[y,Psi[z]] /; n > 2;

Format[Psi,TeXForm] := "\\psi";
};

(* Homology[f] gives the effect of a stable map f in the homology *)
(* of the Omega spectrum *)

{
Homology[f_][x_Plus] := Homology[f] /@ x;
Homology[f_][x_Times] := Homology[f] /@ x;
Homology[f_][x_^n_] := Homology[f][x]^n;
Homology[f_][n_?ScalarQ] := n;
(**)
Homology[f_][Bracket[a_]]:=Bracket[Homotopy[f][a]] ;
Homology[f_][e[G_]] := e[Target[f]] /; Source[f] == G ;
Homology[f_][x_Tensor] := Homology[f] /@ x ;
Homology[f_][x_Circ] := Homology[f] /@ x /; RingMapQ[f];
Homology[f_+g_][x_] :=

(Psi[x] /. Tensor[y_,z_]->Expand[Homology[f][y]Homology[g][z]]);
Homology[n_Integer f_][x_] := Circ[Bracket[n],Homology[f][x]];
Homology[Composition[f_,g_]][a_]:= Homology[f][Homology[g][a]];
Homology[MultiplyBy[a_,G_]][x_] := Circ[Bracket[a],x];
Homology[OneMap[G_]][x_] := x;
Homology[ZeroMap[E_,G_,n_]][x_] := Epsilon[x];
};

HopfTimes[0,x_] := Epsilon[x];
HopfTimes[1,x_] := x;
HopfTimes[n_Integer,x_Plus] := HopfTimes[n,#] & /@ x;
HopfTimes[n_Integer,x_Times] := HopfTimes[n,#] & /@ x;
HopfTimes[m_Integer,x_^n_] := HopfTimes[m,x]^n;
HopfTimes[m_Integer,n_?ScalarQ] := n;
HopfTimes[n_Integer,x_] :=
Expand[Multiply[Psi[x] /. Tensor[y_,z_] :> Tensor[y, HopfTimes[n-1,z]]]] /; n > 1

e/: Psi[e[G_]] := Tensor[e[G],1] + Tensor[1,e[G]]
e/: Chi[e[G_]] := e[G]
Deg[e[G_]] := 1

(*
End[]
EndPackage[]
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*)

A.5. Specific Code for K-theories

The code in this section comes from the file KTheory.m. It tells Mathematica
various specific things about the spectra KO, KU , KT and KSp. It also contains
routines to check the commutativity and exactness of diagrams. These assume that
all homotopy groups are cyclic, which is why they are in this section rather than a
more general one.
(* KTheory.m Neil Strickland *)

(* This file contains specific information about K-theory spectra *)
(* See my thesis for notation etc. *)

(* lbase, lord, and lspace are lists of bases and orders of homotopy *)
(* groups and of spaces in omega spectra. The functions base, order and *)
(* space defined below extend these lists by periodicity. *)
(* pgen[E] is an invertible element in \pi_8(E) which generates the *)
(* periodicity *)

Needs["Stable‘"]

Needs["Hopf2‘"]

{
Mod40Q[n_Integer] := (Mod[n,4] == 0);
Mod41Q[n_Integer] := (Mod[n,4] == 1);
Mod42Q[n_Integer] := (Mod[n,4] == 2);
Mod43Q[n_Integer] := (Mod[n,4] == 3);
};

(************************************************************************)

{
lbase[KO] = {1,al,al^2,0,bt,0,0,0,lm};
lord[KO] = {Infinity,2,2,1,Infinity,1,1,1,Infinity};
lspace[KO] = {ZxBO,UmO,SpmU,Sp,ZxBSp,UmSp,OmU,OO,ZxBO};
pgen[KO] = lm;
};

{
Format[ZxBO ,TeXForm] := "{\\Bbb Z}\\times BO";
Format[UmO ,TeXForm] := "U/O";
Format[SpmU ,TeXForm] := "Sp/U";
Format[Sp ,TeXForm] := "Sp";
Format[ZxBSp,TeXForm] := "{\\Bbb Z}\\times BSp";
Format[UmSp ,TeXForm] := "U/Sp";
Format[OmU ,TeXForm] := "O/U";
Format[OO ,TeXForm] := "O";
};

{
Deg[al] = 1;
Deg[bt] = 4;
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Deg[lm] = 8;
};

{
Format[al ,TeXForm] := "\alpha";
Format[bt ,TeXForm] := "\beta";
Format[lm ,TeXForm] := "\lambda";
};

{
al /: n_Integer al := If[OddQ[n],al,0];
al /: al^n_Integer := 0 /; n > 2;
bt /: bt^n_Integer := bt^Mod[n,2] (4 lm)^Quotient[n,2] /; n > 1;
bt /: al^n_. bt := 0;
};

{
zO /: n_Integer x_zO := If[OddQ[n],x,0];
S /: n_Integer x:S[zO,_] := If[OddQ[n],x,0];
};

Deg[zO[n_]] := n;

{
zO[0] = Bracket[1];
S[zO,0] = Bracket[1];
};

zO /: Psi[zO[n_]] :=
Module[{k},Sum[Tensor[zO[k],zO[n-k]],{k,0,n}]]

S /: Psi[x:S[zO,_]] := Tensor[x,x]

zO /: Chi[zO[n_]] :=
(Chi[zO[n]] =
Module[{k},
Expand[Bracket[-1] Sum[zO[n-k] Chi[zO[k]],{k,0,n-1}]]

]
)

S /: Chi[x:S[zO,_]] := 1 / x

S /: Circ[ Bracket[n_Integer], x:S[zO,_] ] := x^n

zO /: Epsilon[zO[n_]] := 0

S /: Epsilon[S[zO,_]] := 1

zObar[n_] := zO[n] Bracket[-1]

S[zObar,t_] := S[zO,t] Bracket[-1]

zO /: Circ[zO[n_],zO[m_]] := Multinomial[n,m] zO[n+m]
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S /: Circ[S[zO,s_],S[zO,t_]] := S[zO,s+t]

Circ[e[KO],Bracket[al x_.]] := Circ[Bracket[x],zObar[1]]
Circ[e[KO],Bracket[al^2 x_.]] := Circ[Bracket[al x],zObar[1]]
Circ[e[KO],e[KO],Bracket[bt x_.]] := Circ[Bracket[al^2 x],zObar[2]]
Circ[e[KO],e[KO],e[KO],e[KO]] = Circ[Bracket[bt/lm],zObar[4]]

Circ[e[KO],zO[n_?OddQ]] := Circ[e[KO],zO[(n-1)/2]]^2
Circ[e[KO],e[KO],zO[n_?Mod42Q]] := Circ[e[KO],e[KO],zO[(n-2)/2]]^2
Circ[Bracket[bt x_.],zO[n_Integer]] := 0 /; Mod[n,4] != 0

Circ /: Circ[Bracket[bt a_.],e[KO]]^n_ := 0 /; n > 1
Circ /: Circ[Bracket[bt a_.],e[KO],x_zO]^n_ := 0 /; n > 1
Circ /: Circ[e[KO],e[KO],e[KO]]^n_ := 0 /; n > 1
Circ /: Circ[e[KO],e[KO],e[KO],x_zO]^n_ := 0 /; n > 1
Circ /: Circ[Bracket[al a_.],x_zO]^n_ := 0 /; n > 1
Circ /: Circ[Bracket[al^2 a_.],x_zO]^n_ := 0 /; n > 1
Circ /: Circ[Bracket[al^2 a_.],zO[n_?OddQ]] := 0

(************************************************************************)

lbase[KT] = {1,as,0,gm,mu,mu as,0,mu gm,mu^2}
lord[KT] = {Infinity,2,1,Infinity,Infinity,2,1,Infinity,Infinity}
lspace[KT] = {BT,BBT,OT,T,BT,BBT,OT,T,BT}
pgen[KT] = mu^2

Format[ZxBT ,TeXForm] := "T"
Format[OOT ,TeXForm] := "\\Omega^2T"
Format[OT ,TeXForm] := "\\Omega T"
Format[T ,TeXForm] := "T"

Deg[as] = 1
Deg[gm] = 3
Deg[mu] = 4

{
Format[as ,TeXForm] := "\alpha";
Format[gm ,TeXForm] := "\gamma";
Format[mu ,TeXForm] := "\mu";
};

as /: n_Integer as := If[OddQ[n],as,0]
as /: as^n_Integer := 0 /; n > 1
as /: as gm = 0
gm /: gm^n_Integer := 0 /; n > 1

zT /: n_Integer x_zT := If[OddQ[n],x,0]
S /: n_Integer x:S[zT,_] := If[OddQ[n],x,0]
zT /: zT[n_?OddQ]^m_ := 0 /; m > 1

Deg[zT[n_]] := n

zT[0] = Bracket[1]
S[zT,0] = Bracket[1]
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zT /: Psi[zT[n_]] :=
Module[{k},Sum[Tensor[zT[k],zT[n-k]],{k,0,n}]]

S /: Psi[x:S[zT,_]] := Tensor[x,x]

zT /: Chi[zT[n_]] :=
(Chi[zT[n]] =
Module[{k},
Expand[Bracket[-1] Sum[zT[n-k] Chi[zT[k]],{k,0,n-1}]]

]
)

S /: Chi[x:S[zT,_]] := 1 / x

S /: Circ[ Bracket[n_Integer], x:S[zT,_] ] := x^n

zT /: Epsilon[zT[n_]] := 0

S /: Epsilon[S[zT,_]] := 1

zTbar[n_] := zT[n] Bracket[-1]

S[zTbar,t_] := S[zT,t] Bracket[-1]

zT /: Circ[zT[n_],zT[m_]] := Multinomial[n,m] zT[n+m]

S /: Circ[S[zT,s_],S[zT,t_]] := S[zT,s+t]

Circ[e[KT],Bracket[as]] = zTbar[1]
Circ[Bracket[as],zT[n_?OddQ]] := 0
Circ[e[KT],e[KT],Bracket[gm]] = Circ[Bracket[as],zTbar[2]]
Circ[Bracket[gm],zT[n_?OddQ]] := 0
Circ[Bracket[gm],zT[n_?Mod42Q]] :=
Circ[Bracket[gm] Circ[e[KT],Bracket[mu]]^2 , zT[n-2]]

Circ[e[KT],zT[n_?OddQ]] := Circ[e[KT],zT[(n-1)/2]]^2
Circ[e[KT],e[KT],zT[n_?Mod42Q]] := Circ[e[KT],e[KT],zT[(n-2)/2]]^2
Circ /: Circ[e[KT],e[KT],e[KT]]^n_ := 0 /; n > 1
Circ /: Circ[e[KT],e[KT],e[KT],x_zO]^n_ := 0 /; n > 1

(************************************************************************)

lbase[KU] = {1,0,nu,0,nu^2,0,nu^3,0,nu^4}
lord[KU] = {Infinity,1,Infinity,1,Infinity,1,Infinity,1,Infinity}
lspace[KU] = {ZxBU,U,ZxBU,U,ZxBU,U,ZxBU,U,ZxBU}
pgen[KU] = nu^4

Format[ZxBU ,TeXForm] := "{\\Bbb Z}\\times BU"
Format[U ,TeXForm] := "U"

Deg[nu] = 2

Format[nu ,TeXForm] := "\nu";
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zU /: n_Integer x_zU := If[OddQ[n],x,0]
zU /: zU[n_?OddQ] := 0
S /: n_Integer x:S[zU,_] := If[OddQ[n],x,0]

Deg[zU[n_]] := n

zU[0] = Bracket[1]
S[zU,0] = Bracket[1]

zU /: Psi[zU[n_]] :=
Module[{k},Sum[Tensor[zU[2k],zU[n-2k]],{k,0,n/2}]]

S /: Psi[x:S[zU,_]] := Tensor[x,x]

zU /: Chi[zU[n_]] :=
(Chi[zU[n]] =
Module[{k},
Expand[Bracket[-1] Sum[zU[n-2k] Chi[zU[2k]],{k,0,n/2-1}]]

]
)

S /: Chi[x:S[zU,_]] := 1 / x

S /: Circ[ Bracket[n_Integer], x:S[zU,_] ] := x^n

zU /: Epsilon[zU[n_]] := 0

S /: Epsilon[S[zU,_]] := 1

zUbar[n_] := zU[n] Bracket[-1]

S[zUbar,t_] := S[zU,t] Bracket[-1]

zU /: Circ[zU[n_],zU[m_]] := Multinomial[n,m] zU[n+m]

S /: Circ[S[zU,s_],S[zU,t_]] := S[zU,s+t]

Circ[e[KU],e[KU]] = Circ[Bracket[1/nu],zUbar[2]]
e /: e[KU]^n_Integer := 0 /; n > 1
Circ /: Circ[e[KU],x_zU]^n_Integer := 0 /; n > 1

(************************************************************************)

lbase[KSp] = {bt th/lm,0,0,0,th,al th,al^2 th,0,bt th}
lord[KSp] = {Infinity,1,1,1,Infinity,2,2,1,Infinity}
lspace[KSp]= {ZxBSp,UmSp,OmU,OO,ZxBO,UmO,SpmU,Sp,ZxBSp}
pgen[KSp] = lm

Deg[th] = 4

Format[th ,TeXForm] := "\theta";

th /: th^n_Integer := th^Mod[n,2] lm^Quotient[n,2] /; n > 1
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e[KSp] = e[KO]

(************************************************************************)

lbase[Sigma[n_,G_]] := Block[{i},Table[ base[G,i-n],{i,0,8}]]
lord[Sigma[n_,G_]] := Block[{i},Table[order[G,i-n],{i,0,8}]]
lspace[Sigma[n_,G_]] := Block[{i},Table[space[G,i+n],{i,0,8}]]
pgen[Sigma[n_,G_]] := pgen[G]

base[G_,n_] := pgen[G]^Quotient[n,8] lbase[G][[Mod[n,8]+1]]
order[G_,n_] := lord[G][[Mod[n,8]+1]]
space[G_,n_] := lspace[G][[Mod[n,8]+1]]

(************************************************************************)
(* Properties of maps *)

(* All maps considered are KO-linear *)

{
zz[KO] = zO;
zz[KT] = zT;
zz[KU] = zU;
zz[KSp] = zO;
d[zO] = d[zT] = 1;
d[zU] = 2;
};

AssertKOLinear[f_Symbol] :=
Module[{z0,z1,d0,d1},
z0 = zz[Source[f]];
d0 = d[z0];
z1 = zz[Target[f]];
d1 = d[z1];
Homology[f][Release[z0][k_]] :=
Release[Circ[Bracket[Homotopy[f][1]],z1[k]]];

Homology[f][Circ[Release[z0][k_],x_]] :=
Release[Circ[z1[k],Homology[f][x]]];

Homology[f][Circ[Release[z0][k_],x_,y__]] :=
Release[Circ[z1[k],Homology[f][Circ[x,y]]]];

Which[
d0 === d1,
(Homology[f][S[Release[z0],t_]] :=

Release[Circ[Bracket[Homotopy[f][1]],S[z1,t]]];
Homology[f][Circ[S[Release[z0],t_],x_]] :=
Release[Circ[S[z1,t],Homology[f][x]]];

Homology[f][Circ[S[Release[z0],t_],x_,y__]] :=
Release[Circ[S[z1,t],Homology[f][Circ[x,y]]]];),

(d0 === 1 && d1 === 2),
(Homology[f][S[Release[z0],t_]] :=

Release[Circ[Bracket[Homotopy[f][1]],S[z1,Frobenius[t]]]];
Homology[f][Circ[S[Release[z0],t_],x_]] :=
Release[Circ[S[z1,Frobenius[t]],Homology[f][x]]];

Homology[f][Circ[S[Release[z0],t_],x_,y__]] :=
Release[Circ[S[z1,Frobenius[t]],Homology[f][Circ[x,y]]]];),
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(d0 === 2 && d1 === 1),
(Homology[f][S[Release[z0],t_?SquareQ]] :=

Release[Circ[Bracket[Homotopy[f][1]],S[z1,Frobenius[-1,t]]]];
Homology[f][Circ[S[Release[z0],t_?SquareQ],x_]] :=
Release[Circ[S[z1,Frobenius[-1,t]],Homology[f][x]]];

Homology[f][Circ[S[Release[z0],t_?SquareQ],x_,y__]] :=
Release[Circ[S[z1,Frobenius[-1,t]],Homology[f][Circ[x,y]]]];)

]
]

(* cc is the complex conjugation map *)

DefineStableMap[cc,KU,KU,MapRingQ -> True, MapTeX -> "c"]

Homotopy[cc][nu] = -nu

Homology[cc][zU[k_]] := zU[k]
Homology[cc][S[zU,t_]] := S[zU,t]

(* lU symplectifies complex bundles *)

DefineStableMap[lU,KU,KSp,MapTeX -> "{l_U}"]

Homotopy[lU][nu] = 0
Homotopy[lU][nu^2] = 2 th
Homotopy[lU][nu^3] = al^2 th
Homotopy[lU][nu^4] = bt th
Homotopy[lU][nu^n_Integer]:=
lm^Quotient[n,4] Homotopy[lU][nu^Mod[n,4]]

Homotopy[lU][1] = bt th/lm

AssertKOLinear[lU]

(* lO complexifies real bundles, remembering the self-conjugacy *)

DefineStableMap[lO,KO,KT,MapRingQ -> True, MapTeX ->"{l_O}"]

Homotopy[lO][al] = as
Homotopy[lO][al^2] = 0
Homotopy[lO][bt] = 2 mu
Homotopy[lO][lm] = mu^2

Homology[lO][zO[k_]] := zT[k]
Homology[lO][S[zO,t_]] := S[zT,t]

(* mU adds a complex bundle to its conjugate *)

DefineStableMap[mU,KU,KT,MapTeX -> "{m_U}"]

Homotopy[mU][nu^n_Integer:1]:=
If[EvenQ[n],2 mu^(n/2),0]

Homotopy[mU][1] = 2
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AssertKOLinear[mU]

(* mT symplectifies the underlying complex bundle of a self-conjugate *)
(* bundle *)

DefineStableMap[mT,KT,KSp,MapTeX -> "{m_T}"]

Homotopy[mT][as] = 0
Homotopy[mT][gm] = 0
Homotopy[mT][mu] = 2 th
Homotopy[mT][mu as] = 0
Homotopy[mT][mu gm] = 0
Homotopy[mT][mu^n_Integer x_.]:=

lm^Quotient[n,2] Homotopy[mT][mu^Mod[n,2] x] //. Relations
Homotopy[mT][1] = bt th/lm

AssertKOLinear[mT]

(* mO complexifies real bundles *)

DefineStableMap[mO,KO,KU,MapRingQ -> True, MapTeX -> "{m_O}"]

Homotopy[mO][al] = 0
Homotopy[mO][bt] = 2 nu^2
Homotopy[mO][lm] = nu^4

Homology[mO][zO[k_]] := zU[k]
Homology[mO][S[zO,t_]] := S[zU,Frobenius[t]]

(* nO symplectifies real bundles *)

DefineStableMap[nO,KO,KSp, MapTeX -> "{n_O}"]

Homotopy[nO][x_] := x bt th/lm //. Relations

Homology[nO][x_] := Circ[x,Bracket[bt th/lm]]

(* fU forgets a complex structure *)

DefineStableMap[fU,KU,KO, MapTeX -> "{f_U}"]

Homotopy[fU][1] = 2
Homotopy[fU][nu] = al^2
Homotopy[fU][nu^2] = bt
Homotopy[fU][nu^3] = 0
Homotopy[fU][nu^n_Integer:1 x_.]:=

lm^Quotient[n,4] Homotopy[fU][nu^Mod[n,4] x] //. Relations

AssertKOLinear[fU]

(* fT forgets a self-conjugacy *)

DefineStableMap[fT,KT,KU,MapRingQ -> True, MapTeX -> "{f_T}"]
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Homotopy[fT][as] = 0
Homotopy[fT][gm] = 0
Homotopy[fT][mu] = nu^2

Homology[fT][zT[k_]] := zU[k]
Homology[fT][S[zT,t_]] := S[zU,Frobenius[t]]

(* fSp forgets a symplectic structure on a complex bundle, but *)
(* remembers the induced self-conjugacy *)

DefineStableMap[fSp,KSp,KT, MapTeX -> "{f_Sp}"]

Homotopy[fSp][x_. th] := Homotopy[lO][x] mu

AssertKOLinear[fSp]

(* gT forgets both the self conjugacy and the complex structure on a *)
(* self-conjugate bundle *)

DefineStableMap[gT,KT,KO, MapTeX -> "{g_T}"]

Homotopy[gT][1] = 2
Homotopy[gT][as] = 0
Homotopy[gT][gm] = 0
Homotopy[gT][mu] = bt
Homotopy[gT][mu as] = 0
Homotopy[gT][mu gm] = 0
Homotopy[gT][mu^n_Integer x_.]:=

lm^Quotient[n,2] Homotopy[gT][mu^Mod[n,2] x] //. Relations

AssertKOLinear[gT]

(* gSp forgets a symplectic structure on a complex bundle *)

DefineStableMap[gSp,KSp,KU, MapTeX -> "{g_Sp}"]

Homotopy[gSp][x_. th] := Homotopy[mO][x] nu^2

AssertKOLinear[gSp]

(* hSp forgets a symplectic structure on a real bundle *)

DefineStableMap[hSp,KSp,KO, MapTeX -> "{h_Sp}"]

Homotopy[hSp][x_. th] := x bt

AssertKOLinear[hSp]

(* dT is a boundary map *)

DefineStableMap[dT,KU,KT,MapDeg -> 1, MapTeX -> "{\delta_T}"]

Homotopy[dT][1] = as
Homotopy[dT][nu] = gm
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Homotopy[dT][nu^n_Integer x_.]:=
mu^Quotient[n,2] Homotopy[dT][nu^Mod[n,2] x] //. Relations

AssertKOLinear[dT]

(* dO is a boundary map *)

DefineStableMap[dO,KT,KO,MapDeg -> -3, MapTeX -> "{\delta_O}"]

Homotopy[dO][1] = 0
Homotopy[dO][as] = 0
Homotopy[dO][gm] = 2
Homotopy[dO][mu] = al
Homotopy[dO][mu as] = al^2
Homotopy[dO][mu gm] = bt
Homotopy[dO][mu^n_Integer x_.]:=

lm^Quotient[n,2] Homotopy[dO][mu^Mod[n,2] x] //. Relations

AssertKOLinear[dO]

(* dSp is a boundary map *)

DefineStableMap[dSp,KT,KSp,MapDeg -> -3, MapTeX -> "{\delta_Sp}"]

Homotopy[dSp][1] = (al/lm) th
Homotopy[dSp][as] = (al^2 /lm) th
Homotopy[dSp][gm] = (bt /lm) th
Homotopy[dSp][mu] = 0
Homotopy[dSp][mu as] = 0
Homotopy[dSp][mu gm] = 2 th
Homotopy[dSp][mu^n_Integer x_.]:=

lm^Quotient[n,2] Homotopy[dSp][mu^Mod[n,2] x] //. Relations

AssertKOLinear[dSp]

(* mth multiplies by theta *)

DefineStableMap[mth,KO,KSp,MapDeg -> 4, MapTeX -> "{m_\theta}"]

Homotopy[mth][x_] := x th

AssertKOLinear[mth]

(* Relations in homotopy rings *)
Relations=
{al^n_Integer :> 0 /; n > 2,
as^n_Integer :> 0 /; n > 1,
n_Integer al^m_. :> If[EvenQ[n],0,al^m],
n_Integer as^m_. :> If[EvenQ[n],0,as^m],
bt^n_Integer :> (4 lm)^Quotient[n,2] bt^Mod[n,2] /; n>1,
al^n_. bt :> 0 /; n > 0,
as gm :> 0,
gm^n_Integer :> 0 /; n > 1 }
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(* MapEqualQ[f,g] is True iff f&g have the same effect on homotopy groups *)

MapEqualQ[f_,g_] := (Source[f]===Source[g]) &&
(Target[f]===Target[g]) &&
(Deg[f]===Deg[g]) &&
( ((Homotopy[f] /@ lbase[Source[f]])//.Relations) ===
((Homotopy[g] /@ lbase[Source[g]])//.Relations) )

(* VanishQ[f] is True iff f induces zero in homotopy *)
VanishQ[f_] := ((Homotopy[f] /@ lbase[Source[f]])//.Relations ===

{0,0,0,0,0,0,0,0})

mod[k_,Infinity] := Abs[k]
mod[k_,l_] := Mod[k,l]

Image[f_]:=
Module[{i,x,G,F,d,im},
G = Source[f];
F = Target[f];
d = Deg[f];
im = Table[ (Homotopy[f][ base[G,i-d] ]//.Relations) , {i,0,8} ];
For[i=0, i<9, i++,
If[(x=base[F,i]) === 0,
im[[i+1]] = 0,

(* Else *)
im[[i+1]] = mod[ im[[i+1]]/x , order[F,i] ]

]
];

im
]

Kernel[f_]:=
Module[{i,j,k,x,y,z,G,F,d,ker},
G = Source[f];
F = Target[f];
d = Deg[f];
ker = Table[ 0 , {i,1,9} ];
For[i=0, i<9, i++,
x = base[G,i];
y = (Homotopy[f][x] //. Relations);
z = base[F,i+d];
If[ x === 0,
k = 0,

(* Else *)
If[ z === 0,
k = 1,

(* Else *)
j = mod[y/z,n=order[F,i+d]];
If[ j === 0,
k = 1,

(* Else *)
If[ n === Infinity,
k = 0,

(* Else *)
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k = mod[n/j,order[G,i]]
]

]
]

];
ker[[i+1]] = k

];
ker

]

ExactQ[f_,g_] := (Image[f] === Kernel[g])

ExactTriangleQ[f_,g_,h_] := ExactQ[f,g] && ExactQ[g,h] && ExactQ[h,f]

A.6. Claims about Diagrams

This section contains the code from Claims.m, which is a list of claims in
Mathematica notation about the commutativity and exactness of various diagrams
of homotopy groups.
(* This file contains lists of statements about maps between K theory *)
(* spectra. Definitions of the objects involved and Mathematica code *)
(* implementing them are in the file KTheory.m *)

(* comm is a list of claimed commutativity statements *)

<<KTheory.m

comm = {
MapEqualQ[ mU,

Composition[fSp,lU]],
MapEqualQ[ mU,

Composition[lO,fU]],
MapEqualQ[ nO,

Composition[mT,lO]],
MapEqualQ[ nO,

Composition[lU,mO]],
MapEqualQ[ mO,

Composition[fT,lO]],
MapEqualQ[ mT,

Composition[lU,fT]],
MapEqualQ[ MultiplyBy[2,KO],

Composition[fU,mO]],
MapEqualQ[ MultiplyBy[2,KSp],

Composition[mT,fSp]],
MapEqualQ[ OneMap[KU]+cc,

Composition[mO,fU]],
MapEqualQ[ gSp,

Composition[fT,fSp]],
MapEqualQ[ gT,

Composition[fU,fT]],
MapEqualQ[ hSp,

Composition[gT,fSp]],
MapEqualQ[ hSp,
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Composition[fU,gSp]],
MapEqualQ[ Composition[lO,MultiplyBy[al,KO]],

Composition[ dT,mO]],
MapEqualQ[ Composition[fU,MultiplyBy[1/nu,KU],fT],

Composition[MultiplyBy[al,KO],dO]],
MapEqualQ[ Composition[MultiplyBy[1/nu,KU],OneMap[KU]-cc],

Composition[mO,fU,MultiplyBy[1/nu,KU]]],
MapEqualQ[ Composition[fSp,MultiplyBy[al,KSp]],

Composition[dT,gSp]],
MapEqualQ[ Composition[lU,MultiplyBy[1/nu,KU],fT],

Composition[MultiplyBy[al,KSp],dSp]],
MapEqualQ[ Composition[gSp,lU,MultiplyBy[1/nu,KU]],

Composition[MultiplyBy[1/nu,KU],OneMap[KU]-cc]],
MapEqualQ[ Composition[dSp,MultiplyBy[mu,KT]],

Composition[mth,dO]],
MapEqualQ[ Composition[fSp,mth],

Composition[MultiplyBy[mu,KT],lO]],
MapEqualQ[ Composition[lU,MultiplyBy[nu,KU]],

Composition[mth,fU,MultiplyBy[1/nu,KU]]],
MapEqualQ[ Composition[gSp,mth],

Composition[MultiplyBy[nu^2,KU],mO]],
MapEqualQ[ Composition[dT,MultiplyBy[nu^2,KU]],

Composition[MultiplyBy[mu,KT],dT]],
MapEqualQ[ Composition[fT,MultiplyBy[mu,KT]],

Composition[MultiplyBy[nu^2,KU],fT]],
MapEqualQ[ Composition[MultiplyBy[1/nu,KU],

OneMap[KU]-cc,
MultiplyBy[nu^2,KU]],

Composition[MultiplyBy[nu,KU],OneMap[KU]-cc]]
}

(* ex is a list of claimed exactness statements *)

ex = {
ExactTriangleQ[lO,

dO,
MultiplyBy[al^2,KO]],

ExactTriangleQ[mO,
Composition[fU,MultiplyBy[1/nu,KU]],
MultiplyBy[al,KO]],

ExactTriangleQ[fT,
Composition[MultiplyBy[1/nu,KU],OneMap[KU]-cc],
dT],

ExactTriangleQ[fSp,
dSp,
MultiplyBy[al^2,KSp]],

ExactTriangleQ[gSp,
Composition[lU,MultiplyBy[1/nu,KU]],
MultiplyBy[al,KSp]]

}

(* The final verdict ... *)
And @@ comm && And @@ ex
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A.7. Results

The following is a transcript of a Mathematica session using the above code.
Mathematica 2.0 for HP 9000 RISC
Copyright 1988-91 Wolfram Research, Inc.
-- X11 windows graphics initialized --

In[1]:= <<Claims.m

Out[1]= True

In[2]:= Quit

Process math finished
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