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Aim: To explain the connection between a simple
ancient problem in number theory and a deep
sophisticated conjecture about Elliptic Curves
(‘arithmetic Geometry’).
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Aim: To explain the connection between a simple
ancient problem in number theory and a deep
sophisticated conjecture about Elliptic Curves
(‘arithmetic Geometry’).

Notation:
N : set of natural numbers (1, 2, 3, . . .)
Z : set of integers (. . . ,−3,−2,−1, 0, 1, 2, . . .)
Q : Rational numbers
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• Recall that a real number is rational if it can be
expressed in the form α = m

n , where m and n are in Z.

• Irrational numbers: Those which cannot be
expressed in the form m/n, m, n ∈ Z.

Example:
√

2, π = 3.1419,
1 +

√
5

2
.
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Pythagorean Triples:

• PQR is right angled triangle

• Sides have lengths a, b, c.
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Pythogoras Theorem: PQR a right angled triangle.
Then

(PQ)2 + (QR)2 = (PR)2 i.e. a2 + b2 = c2.



4

Pythogoras Theorem: PQR a right angled triangle.
Then

(PQ)2 + (QR)2 = (PR)2 i.e. a2 + b2 = c2.

Certainly known to ancient Indians (‘Sulva Sutras’ ∼
8th century BC), (Pythagoras ∼ 5th century BC).
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Pythogoras Theorem: PQR a right angled triangle.
Then

(PQ)2 + (QR)2 = (PR)2 i.e. a2 + b2 = c2.

Certainly known to ancient Indians (‘Sulva Sutras’ ∼
8th century BC), (Pythagoras ∼ 5th century BC).

Examples:

(3)2 + (4)2 = (5)2

(12)2 + (5)2 = (13)2
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• (a, b, c) is called a Pythagoras triple; (3, 4, 5), (5, 12, 13)
are Pythagoras triples.
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• (a, b, c) is called a Pythagoras triple; (3, 4, 5), (5, 12, 13)
are Pythagoras triples.

• There exist infintely many Pythagoras triples in N.
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• (a, b, c) is called a Pythagoras triple; (3, 4, 5), (5, 12, 13)
are Pythagoras triples.

• There exist infintely many Pythagoras triples in N.
• Note that the Pythagoras Theorem forces one to

come to terms with irrational numbers!
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a = b = 1, c =
√

2
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Fundamental Theorem of Arithmetic

Each integer n > 1 can be written uniquely (up to
reordering) as a product of powers of primes;

n = pα1
1 . . . pαr

r ,

pi are distinct prime numbers, αi ∈ N.
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Fundamental Theorem of Arithmetic

Each integer n > 1 can be written uniquely (up to
reordering) as a product of powers of primes;

n = pα1
1 . . . pαr

r ,

pi are distinct prime numbers, αi ∈ N.

Henceforth: Will consider only right angled triangles.
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Let T denote a right angled triangle with sides of
length a, b, c.
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Simple Exercise: Use the fundamental theorem to
show that

√
2 is irrational.
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Simple Exercise: Use the fundamental theorem to
show that

√
2 is irrational.

Of course, usually T has at least one of its sides
rational but we want to consider only triangles T

having all of its sides with rational length.
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Simple Exercise: Use the fundamental theorem to
show that

√
2 is irrational.

Of course, usually T has at least one of its sides
rational but we want to consider only triangles T

having all of its sides with rational length.

Example:

a =
40
6

, b =
9
6
, c =

41
6(

40
6

)2

+
(

9
6

)2

=
(

41
6

)2

.
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Definition:

• We say T is rational if all the three sides have rational
length.
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Definition:

• We say T is rational if all the three sides have rational
length.

• We say T is primitive if a, b, c are positive integers
and (a, b, c) = 1 (i.e. they are relatively prime which
means a, b, c have no common divisor other than 1).
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Definition:

• We say T is rational if all the three sides have rational
length.

• We say T is primitive if a, b, c are positive integers
and (a, b, c) = 1 (i.e. they are relatively prime which
means a, b, c have no common divisor other than 1).

Can clearly bring any rational triangle to be similar to
a unique primitive triangle.
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First Observation: If T is primitive, then precisely
one of its sides a or b is even.

• If 2|a and 2|b, then as a2 + b2 = c2, 2|c ⇒ 2 divides
a, b and c; contradicting that T is primitive.
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First Observation: If T is primitive, then precisely
one of its sides a or b is even.

• If 2|a and 2|b, then as a2 + b2 = c2, 2|c ⇒ 2 divides
a, b and c; contradicting that T is primitive.

• If a and b are both odd, say a = 2a1 + 1, b = 2b1 + 1;
then a2 + b2 = 4k + 2 = c2 ⇒ 2|c2 ⇒ 2|c ⇒ 4|c2.
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First Observation: If T is primitive, then precisely
one of its sides a or b is even.

• If 2|a and 2|b, then as a2 + b2 = c2, 2|c ⇒ 2 divides
a, b and c; contradicting that T is primitive.

• If a and b are both odd, say a = 2a1 + 1, b = 2b1 + 1;
then a2 + b2 = 4k + 2 = c2 ⇒ 2|c2 ⇒ 2|c ⇒ 4|c2.

But c2 = 4k + 2, hence we get a contradiction.
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Second Observation: If T is primitive, then there
exist positive integers m,n with (m,n) = 1 such that

a = n2 −m2, b = 2mn; c = m2 + n2
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Second Observation: If T is primitive, then there
exist positive integers m,n with (m,n) = 1 such that

a = n2 −m2, b = 2mn; c = m2 + n2

OR
a = 2mn, b = n2 −m2; c = m2 + n2.
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Second Observation: If T is primitive, then there
exist positive integers m,n with (m,n) = 1 such that

a = n2 −m2, b = 2mn; c = m2 + n2

OR
a = 2mn, b = n2 −m2; c = m2 + n2.

• Note that

a2 + b2 = (n2 −m)2 + (2mn)2 = (n2 + m2)2 = c2,

so we do have a Pythogrean triple.
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Let us see why the second observation is true.
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• Assume T to be primitive, then either one of a or b is
odd by our first observation.
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Let us see why the second observation is true.

• Assume T to be primitive, then either one of a or b is
odd by our first observation.

• Let us suppose that a is odd and b is even. Then
clearly c is odd, hence (b, c) = 1.
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Let us see why the second observation is true.

• Assume T to be primitive, then either one of a or b is
odd by our first observation.

• Let us suppose that a is odd and b is even. Then
clearly c is odd, hence (b, c) = 1.

Also (a, c) = 1 because a2 + b2 = c2.

• Put w1 = 1/2(c− a) w2 = 1/2(c + a).
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Let us see why the second observation is true.

• Assume T to be primitive, then either one of a or b is
odd by our first observation.

• Let us suppose that a is odd and b is even. Then
clearly c is odd, hence (b, c) = 1.

Also (a, c) = 1 because a2 + b2 = c2.

• Put w1 = 1/2(c− a) w2 = 1/2(c + a).

Clearly both w1 and w2 are positive integers.
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• We prove that w1 and w2 are relatively prime i.e.
(w1, w2) = 1.
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• We prove that w1 and w2 are relatively prime i.e.
(w1, w2) = 1.

Suppose d|w1 and d|w2; then d|w1 + w2 and
d|w + 2 = w1.

Now w1 + w2 = c1, w2 − w1 = a ⇒ d|c and d|a.
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• We prove that w1 and w2 are relatively prime i.e.
(w1, w2) = 1.

Suppose d|w1 and d|w2; then d|w1 + w2 and
d|w + 2 = w1.

Now w1 + w2 = c1, w2 − w1 = a ⇒ d|c and d|a.

Contradicts (a, c) = 1!

a2 + b2 + c2 takes the form

b2=(c2−a2);
b2

4
=

c2 − a2

4
⇒(b/2)2=(

c− a

2
)(

c + a

2
)=w1w2.
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What We Get: w1 and w2 are relatively prime and
their product is a square.
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What We Get: w1 and w2 are relatively prime and
their product is a square.

Conclusion (By the fundamental theorem of
arithmetic):
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What We Get: w1 and w2 are relatively prime and
their product is a square.

Conclusion (By the fundamental theorem of
arithmetic): Both w1 and w2 are squares.

w1 = m2
1, w2 = n2 and (m,n) = 1.

But

a = w1 − w2 = m2 − n2

c = w1 + w2 = m2 + n2

b2 = c2 − a2 ⇒ b = 2mn.
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This concludes the proof of second observation.
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Areas

Area of T = 1
2ab
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• Let N be a positive integer. There exist infinitely
many T ’s such that Area (T ) = N (choose positve
rational numbers a, b such that ab = 2N).



17

• Let N be a positive integer. There exist infinitely
many T ’s such that Area (T ) = N (choose positve
rational numbers a, b such that ab = 2N).

Key Question: Does there exist a rational T with area
(T ) = N?
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• Let N be a positive integer. There exist infinitely
many T ’s such that Area (T ) = N (choose positve
rational numbers a, b such that ab = 2N).

Key Question: Does there exist a rational T with area
(T ) = N?

(i.e. We want a right angled ∆le with all its sides
having rational length and area equal to N ).
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Definition: We say N is congruent if there exists a
rational T with Area (T ) = N .
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Definition: We say N is congruent if there exists a
rational T with Area (T ) = N .

Example:

•N = 5 is congruent (a, b, c) = (9/6, 40/6, 41/6).

Area = 1/2× 9/6× 40/6 = 5.
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Definition: We say N is congruent if there exists a
rational T with Area (T ) = N .

Example:

•N = 5 is congruent (a, b, c) = (9/6, 40/6, 41/6).

Area = 1/2× 9/6× 40/6 = 5.

• N = 6 is congruent (a, b, c) = (3, 4, 5).
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Definition: We say N is congruent if there exists a
rational T with Area (T ) = N .

Example:

•N = 5 is congruent (a, b, c) = (9/6, 40/6, 41/6).

Area = 1/2× 9/6× 40/6 = 5.

• N = 6 is congruent (a, b, c) = (3, 4, 5).

Arab Mathematicians (and Indian Mathematicians)
made tables of congruent numbers (10th century AD).
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Example:

5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, . . .

are all congruent.
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Example:

5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, . . .

are all congruent.

• If N is congruent, so is N ′ = d2N , where d ∈ Z (If
N = 1/2(ab) and (a, b, c) is a Pythagoras triple,
consider

(a′, b′, c′) = (da, db, dc); 1/2(a′b′)1/2(da)(db) = d2 N = N ′).
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• Therefore we may restrict attention to square free
natural numbers (i.e. those elements in N which are
not divisible by p2 for any prime p).
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First Obvious Question: Is 1 a congruent number?

• As it was difficult to find a Y with area 1, the
ancients tried to show that 1 was not congruent
number with many false proofs.

• The first proof that 1 is not a congruent number was
given by Fermat, a 17th century French lawyer and
government official by profession, but a polymath of
great erudition.
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Theorem (Fermat)

1 is not a congruent number.
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Theorem (Fermat)

1 is not a congruent number.

• The proof is a truly marvellous gem of a proof and
uses the idea of infinite descent.
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Theorem (Fermat)

1 is not a congruent number.

• The proof is a truly marvellous gem of a proof and
uses the idea of infinite descent.

• Basic Idea: (each time the triangles are primitive)
Start with 4T1 such that c1 = Area (T1) is a square;
then produce a T2 such that c2 = Area T2 is again a
square and c2 < c1.
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• Repeating this step, we can construct an infinite
sequence of primitive triangles Ti whose area ci is
always a square and

c1 > c2 > c3 > · · ·

But this cannot go on forever as one cannot have an
infinite strictly decreasing sequence of positive
integers!
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• Repeating this step, we can construct an infinite
sequence of primitive triangles Ti whose area ci is
always a square and

c1 > c2 > c3 > · · ·

But this cannot go on forever as one cannot have an
infinite strictly decreasing sequence of positive
integers!

• Heart of the argument uses the second observation
we made before.
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Corollary: The equation x4 − y4 = z2 has no solution
in integers x, y, z with xyz 6= 0.
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Corollary: The equation x4 − y4 = z2 has no solution
in integers x, y, z with xyz 6= 0.

Proof: Suppose a solution exists. Put

n = x2, m = y2

a = n2 −m2, b = 2mn, c = n2 + m2

so that (a, b, c) is a Pythagoras triple with

Area = (1/2)ab = nm(n2−m2) = x2y2(x−y) = x2y2z2.
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Define T ′ with sides of length (a′, b′, c′) where

a′ =
a

λ
, b′ =

b

λ
, c′ =

c

λ
, λ = xyz(6= 0)

Area(T ′) = 1/2 · a
λ

b

λ
=

ab

2λ2 =
2x2y2z2

2x2y2z2 = 1.

1 is a congruent number, contradiction!



26

In particular, this shows that x4 − y4 = w4 has no
solution in integers with xyw 6= 0. This would have led
Fermat to conjecture his famous Last Theorem that
for any integer n ≥ 3, the equation

xn = yn + zn.

has no solution in integers x, y, z with xyz 6= 0!

This is now a celebrated Theorem of Andrew Wiles .
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non-congruent N : 1, 2, 3, 10, 11, 17, 19, 26, 33, 35 . . ..
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non-congruent N : 1, 2, 3, 10, 11, 17, 19, 26, 33, 35 . . ..

Ancient Question I: Is there an algorithm for deciding
in a finite number of steps whether a given positive
integer N is congruent or not.
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non-congruent N : 1, 2, 3, 10, 11, 17, 19, 26, 33, 35 . . ..

Ancient Question I: Is there an algorithm for deciding
in a finite number of steps whether a given positive
integer N is congruent or not.

Ancient Question II: Prove that every square free
integer of the form 8n + 5 or 8n + 6 or 8n + 7
(n = 1, 2, . . .) is congruent.
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Conjecturally, there is a very simple answer to both
these Questions, but the conjecture is now a
Millennium Problem worth a million dollars!
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Elliptic Curves

This is an area of study which has connections with
different branches of mathematics like complex
manifolds, algebraic geometry, arithmetic geometry
modular forms and of course in recent years in
cryptography.
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Elliptic Curves

This is an area of study which has connections with
different branches of mathematics like complex
manifolds, algebraic geometry, arithmetic geometry
modular forms and of course in recent years in
cryptography.

Perhaps it would be no exaggeration to say that it is
an area where endless mining for problems, research
and applications is possible!
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For our purposes today, we shall satisfy ourselves
with considering elliptic curves over Q. They can then
be studied as solutions of equations of the form

E : y2 = f(x)

where f(x) is a polynomial over Q of degree 3. One
can even assume that

f(x) = ax3 + cx + d, a, c, d ∈ Q, a 6= 0.
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Its set of real points looks like
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Why are they relevant to the study of congruent
numbers?
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Why are they relevant to the study of congruent
numbers?

A natural number n is congruent if and only if the
elliptic curve over Q defined by

En : y2 = x3 − n2x

has infinitely many solutions over Q.
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• To see this equivalence is not too difficult. It follows
from Pythagoras identity and transferring one curve to
another by ‘birational isomorphisms’.
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• To see this equivalence is not too difficult. It follows
from Pythagoras identity and transferring one curve to
another by ‘birational isomorphisms’.

• Another crucial property that is useful here is that
the set of solutions E(Q) for any elliptic curve E/Q has
the structure of an abelian group.
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• To see this equivalence is not too difficult. It follows
from Pythagoras identity and transferring one curve to
another by ‘birational isomorphisms’.

• Another crucial property that is useful here is that
the set of solutions E(Q) for any elliptic curve E/Q has
the structure of an abelian group.

• The law of addition on E(Q) is not naive coordinate
addition; it involves beautiful geometric ideas.
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• One knows more about E(Q); in fact it is a finitely
generated abelian group which in simple words means
that a finite set suffices to construct all the elements in
E(Q). This is known as Mordell’s Theorem.
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• One knows more about E(Q); in fact it is a finitely
generated abelian group which in simple words means
that a finite set suffices to construct all the elements in
E(Q). This is known as Mordell’s Theorem.

• In particular, we have

En(Q) = “free infinite part”⊕ “finite part”
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Caution: It might happen that a given elliptic curve E

has only one trivial point, i.e. E(Q) is a singleton set;
this point necessarily lies in the Finite torsion part.



35

Caution: It might happen that a given elliptic curve E

has only one trivial point, i.e. E(Q) is a singleton set;
this point necessarily lies in the Finite torsion part.

x
z

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

y

n

n is a congruent number ⇔ En : y2 = x3 − n2x has
infinitely many rational points.
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Known: The “finite” (i.e. torsion) part of En(Q)
consists of 4 elements.

Thus we are now faced with the

Question: When is En(Q) infinite?
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• It is at this step that one of the most famous
conjectures of the last century intervenes. This is the
so-called Birch & Swinnerton-Dyer Conjecture (B-SD)
which relates the nature of E(Q) to something
completely different!
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• It is at this step that one of the most famous
conjectures of the last century intervenes. This is the
so-called Birch & Swinnerton-Dyer Conjecture (B-SD)
which relates the nature of E(Q) to something
completely different!

Hasse-Weil L-Functions: We shall not go into the
technical definition of this. Suffice it to say that it is a
vast ingenious generalisation of the classical Riemann
Zeta function.
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• It is “built” using information about the number of
points that E has over finite fields Fp, as p varies over
all primes.
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• It is “built” using information about the number of
points that E has over finite fields Fp, as p varies over
all primes.

Given an elliptic curve E/Q, its Hasse-Weil L-function
is denoted by L(E, s), s a complex variable.
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• It is “built” using information about the number of
points that E has over finite fields Fp, as p varies over
all primes.

Given an elliptic curve E/Q, its Hasse-Weil L-function
is denoted by L(E, s), s a complex variable.

• It has an expansion into an infinite product, the
product varying over all primes.
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• It is “built” using information about the number of
points that E has over finite fields Fp, as p varies over
all primes.

Given an elliptic curve E/Q, its Hasse-Weil L-function
is denoted by L(E, s), s a complex variable.

• It has an expansion into an infinite product, the
product varying over all primes.

• L(E, s) =
∏

p(1− 2app
−s + p1−2s)−1.
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Can expand this ‘Euler product’ to get a ‘Dirichlet
Series’, i.e. an infinite sum:

L(E, s) =
∞∑

n=0

ann
−s =

∞∑
n=0

an/ns.
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Can expand this ‘Euler product’ to get a ‘Dirichlet
Series’, i.e. an infinite sum:

L(E, s) =
∞∑

n=0

ann
−s =

∞∑
n=0

an/ns.

• Deep and important conjectures on convergence
properties of this function on the complex plane.
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Can expand this ‘Euler product’ to get a ‘Dirichlet
Series’, i.e. an infinite sum:

L(E, s) =
∞∑

n=0

ann
−s =

∞∑
n=0

an/ns.

• Deep and important conjectures on convergence
properties of this function on the complex plane.

B-SD Conjecture: E(Q) is infinite if and only if
L(E, s) vanishes at s = 1 (i.e. L(E, 1) = 0).
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So we can now reformulate our original Question and
ask:

Question: When is L(En, 1) = 0?
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So we can now reformulate our original Question and
ask:

Question: When is L(En, 1) = 0?

• Coates-Wiles(1970’s): L(En, 1) 6= 0 ⇒ En(Q) is
finite.

• Finding E(Q) for an elliptic curve E is in general very
difficult, even with computers! On the other hand,
computations with L-functions are more amenable to
calculations!
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n

n is a congruent number ⇔ En : y2 = x3 − n2x; En(Q)
is infinite ⇒ L(En, 1) = 0.

Conjecturally (BSD Conjecture) L(En, 1) = 0 ⇒ En(Q)
is infinite.
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We will connect the vanishing of L(En, 1) now to
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We will connect the vanishing of L(En, 1) now to

Modular forms

This is the next area in mathematics from which we
need to draw our artillery now!

Again, this is a vast, fascinating and technical subject
in its own right with beautiful connections to elliptic
curves.
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At its very simplest, a modular form is a holomorphic
function f(z) on the upper half plane (which is the part
of the complex plane with imaginary part > 0), such
that it has a Fourier expansion (called the
q-expansion)

f(z) =
∞∑

n∈Z

anq
n, q = e2πiz, an ∈ C.
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• We will consider special modular forms, called
“Cusp forms”; these have an expansion

f(z) =
∞∑

n=1

anq
n, q = e2πiz, an ∈ C.
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• We will consider special modular forms, called
“Cusp forms”; these have an expansion

f(z) =
∞∑

n=1

anq
n, q = e2πiz, an ∈ C.

Example

∆(z) = q
∏∞

n=1(1− qn)24

=
∑∞

n=1 τ(n)qn

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − . . .

(τ ; Ramanujan’s Tau function).
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• Given a modular form (cusp form), it has an L-
series associated to it:

L(f, s) =
∞∑

n=1

an/ns.
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• Given a modular form (cusp form), it has an L-
series associated to it:

L(f, s) =
∞∑

n=1

an/ns.

Let E ′
1 : y2 = x3 − x.

• L(E ′
1, s) related to L(f, s) for some f .
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Deep work of Shimura, Waldspurger and Tunnell then
allows us to relate L(En, s) and L(f, s); the bridge
being L(E ′

1, s). More precisely:
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Deep work of Shimura, Waldspurger and Tunnell then
allows us to relate L(En, s) and L(f, s); the bridge
being L(E ′

1, s). More precisely:

• There exist modular forms g1, g2 which are obtained
via f ;

g1 =
∞∑

n=1

a(n)qn, g2 =
∞∑

n=1

b(n)qn

such that

L(En, 1) related
; to coefficients of g1 & g2.
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Thus we can connect this to our original problem by
the following theorem:

Theorem (Tunnell, 1983): L(En, 1) = 0 if and only if
a(n) = 0 for n odd, or b(n/2) = 0 for n even. Moreover,

a(n) + b(n/2) 6= 0 ⇒ L(En, 1) 6= 0.
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Thus we can connect this to our original problem by
the following theorem:

Theorem (Tunnell, 1983): L(En, 1) = 0 if and only if
a(n) = 0 for n odd, or b(n/2) = 0 for n even. Moreover,

a(n) + b(n/2) 6= 0 ⇒ L(En, 1) 6= 0.

In particular, if a(n) + b(n/2) 6= 0, then n is not
congruent.
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We thus have:

n is a congruent number ⇔ En : y2 = x3 − n2x; En(Q)
is infinite

⇒ L(En, 1) = 0.

Conjecturally (BSD Conjecture) L(En, 1) = 0 ⇒ En(Q)
is infinite.

Finally, L(En, 1) = 0 ⇔ a(n) = 0 for n odd or
b(n/2) = 0 for n even.
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If a(n) + b(n/2) = 0, then n is congruent.

a(n) + b(n/2) = 0 ⇒ L(En, 1) = 0.

B − SD conjecture: L(En, 1) = 0 ⇒ En(Q) is infinite.
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If a(n) + b(n/2) = 0, then n is congruent.

a(n) + b(n/2) = 0 ⇒ L(En, 1) = 0.

B − SD conjecture: L(En, 1) = 0 ⇒ En(Q) is infinite.

Beauty of this result:

Conjecturally it reduces the problem of determining if
n is congruent to an algebraic computation involving
in finitely many steps (∼ n3/2 steps).
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Unconditional Results

p prime.

• p ≡ 3 mod 8, then p is not congruent.

(a(p) 6= 0; e.g. 43, 443, . . .)
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Unconditional Results

p prime.

• p ≡ 3 mod 8, then p is not congruent.

(a(p) 6= 0; e.g. 43, 443, . . .)

• n ≡ 1 mod 8, some n of this form not congruent.

E.g.: 57, 489 (a(n) 6= 0).
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• p, q primes ≡ 5 mod 8; then 2pq is not congruent.

(b(pq) ≡ 4 mod 8). eg. 754; (754 = 2.13.29).

• Eg: 157 is a congruent number.

Simplest Rational triangle with Area 157 (Computed
by D. Zagier).
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x
z

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

y

x = 6803298487826435051217540
411340519227716149383203

y = 411340519227716143983203
21666555693714761309610

z = 224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830
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I hope I have succeeded in convincing you that deep,
intricate and mysterious connections exist in number
theory between simply stated problems and areas at
the frontier of Modern Research.
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Iwasawa theory

This is a theory which provides us an effective tool
towards attacking the Birch-Swinnerton Dyer
Conjecture.
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Iwasawa theory

This is a theory which provides us an effective tool
towards attacking the Birch-Swinnerton Dyer
Conjecture.

• Unfortunately, even the basic philosophy and ideas
in this theory require a sophisticated knowledge and
background of mathematics.

• One of its spectacular applications is in the work of
Coates-Wiles stated above.
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• My own work focuses on Non-commutative Iwasawa
theory. This is a relatively young area of research,
classical Iwasawa theory mainly dealt with
commutative structures.


