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1 Why do we like symmetric spectra?

An elementary theorem in homotopy theory is the Freudenthal suspension theorem: if X, Y
are finite-dimensional pointed CW -complexes, Σ : Top∗ → Top∗ denotes the reduced suspension
endofunctor ΣX := S1 ∧ X, and [X,Y ]+ denotes the set of pointed homotopy classes of maps
between X and Y , then we have that the following sequence of sets is eventually constant:

[X,Y ]+ // [ΣX,ΣY ]+ // [Σ2X,Σ2Y ]+ // . . .

[f ] � // [Σf ] � // [Σ2f ]
� // . . .

This suggests trying to form a localized category where Σ is an isomorphism. What will be
the objects in this category? Usually we make our objects more difficult in return for having a
nice category. One approach is to look at sequences of spaces {Xn} and maps ΣXn → Xn+1. One
can form a category of topological spectra by using these sequences as object and as morphisms
the levelwise maps compatible with the suspension maps. Then there is a functor from Top∗ to
topological spectra mapping X to the sequence Xi = ∗ for i < 0 and Xi = ΣiX for i ≥ 0. We can
form a homotopy category of these spectra, where Σ is an isomorphism, when we invert the stable
homotopy equivalences. This is the stable homotopy category. For more information, see [1].

The axioms of a generalized (reduced) cohomology theory, in particular that Hn(f) = Hn(g)
for homotopic f, g and Hn(Z) ∼= Hn+1(ΣZ) naturally, implies that a generalized cohomology
theory as a functor from Top∗ to Abℤ should be closely related to the stable homotopy category.
In fact, Brown’s representability theorem tells us that every generalized cohomology theory is
representable in a stable sense: to every generalized cohomology theory we can assign a topological
spectra X such that Hn(Z) = [Z,Xn]+.

This intimately ties the study of topological spectra to many topics in algebraic topology.
One would like to do algebraic constructions of spectra. This makes sense since in the stable
homotopy category there is a smash product (just arising from the smash product in Top∗) which
is associative, commutative and unital, up to coherent isomorphism. However, a naive definition
of symmetric spectra does not have such a product; Adams [1] has a unnatural handicrafted smash
product of spectra, but it will not make you happy. Furthermore, there are some difficulties with
associativity.

A “good” category of spectra should have the following properties:

∙ It should be a model category whose homotopy category is the stable homotopy category.

∙ It should have a closed symmetric monoidal product structure compatible with the model
structure, making it a closed symmetric monodial model category.

∙ It should be elementary.

∙ It should not be hard to describe the spectra arising from generalized cohomology theories
as “good” spectra.
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Symmetric spectra are a “good” construction of spectra, in this sense, in the pointed simplicial
set context (which we know is Quillen equivalent to Top∗). In this first lecture, we will define it and
see that it has a symmetric monoidal smash product. In the second lecture, we will exhibit a model
structure on symmetric spectra giving the simplicial analog of the stable homotopy category, such
that it is a symmetric monoidal model category. There is an analogous definition in the topological
context, which we might get to in the second lecture as well.

Most spectra constructed from generalized cohomology theories automatically come with group
actions, but we just didn’t use them before. For example, look at Joachim’s construction of KO
as a symmetric spectrum [4].

There are other approaches to “good” definitions of spectra, like S-modules. Symmetric spectra
are the most elementary of these, and are defined by simply copying the definition of topological
spectra in the simplicial context and adding some symmetric group actions. It is truely remarkable
that a solution this elementary fixes the problem and took over 30 years to find.

There are two main sources for symmetric spectra: the original article by Mark Hovey, Brooke
Shipley & Jeff Smith [2] and a book-in-progress by Stefan Schwede [3]. We will mostly be following
the original article.

2 Symmetric spectra

2.1 Simplicial prerequisites

Remember that the category Δ has as objects the ordered sets [n] = {0, 1, . . . , n} for n ≥ 0
and as morphisms the order-preserving maps. Then a simplicial set is a functor Δop → Set.
This functor category we denote by S. A series of simplicial sets is given by the representables
Δ[n] := Δ(−, [n]).

A simplicial set has componentsXn, which by the Yoneda lemma are given byXn = S(Δ[n], X).
The elements of Xn are known as n-simplices.

A pointed simplicial set is a simplicial set X together with a distinguised 0-simplex ∗ ∈ X0. The
category S∗ with object pointed simplicial sets and morphisms maps of simplicial sets preserving
the basepoint is called the category of pointed simplicial sets.

A simplicial set can be made into a pointed simplicial set by adding a disjoint basepoint:
X+ := X

∐
Δ[0]. In fact, this gives us a functor (−)+ : S → S∗. This way we can define

S0 = Δ[0]+, whose importance we’ll see in a minute.
The usual product of simplicial sets induces a smash product of pointed simplicial sets X, Y ,

which is given by:

X ∧ Y = X × Y/(X × ∗ ∪ ∗ × Y )

This smash product has the following properties:

Associativity. There is a natural isomorphism (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z).

Commutativity. There is a natural isomorphism X ∧ Y ∼= X ∧ Y

Unit. There is a natural isomorphism X ∧ S0 ∼= X.

After a glance at the axioms of a symmetric monoidal category, we see that the smash product
is a symmetric monoidal product, and therefore makes S∗ into a symmetric monoidal category. In
fact, it is a closed symmetric monoidal category, since X ∧− has a right adjoint MapS∗(X,−). It
is easy to verify that MapS∗(X,Y ) is given by MapS∗(X,Y ) = S∗(X ∧Δ[−]+, Y ).

Since S∗ is bicomplete, there is a categorical sum, ∨, given by X ∨ Y = X
∐
Y/(∗X ∼ ∗Y ).
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2.2 The definition of symmetric spectra

Let S1 = Δ[1]/∂Δ[1] be the (small) simplicial circle. We denote (S1)∧p by Sp. S1 will take the
place of the topological circle in the definition of a spectrum, which is completely analogous to
the topological spectra defined in the introduction.

Definition 2.1. A spectrum is

1. A sequence of X0, X1, . . . , Xn, . . . of pointed simplicial sets.

2. A map of pointed simplicial sets � : S1 ∧Xn → Xn+1 for each n ≥ 0.

The maps � are called the structure maps of the spectrum. A map of spectra f : X → Y
is a sequence of maps of pointed simplicial sets fn : Xn → Yn such that the following diagram
commutes for all n ≥ 0:

S1 ∧Xn

id∧fn
��

� // Xn+1

fn+1

��
S1 ∧ Yn �

// Yn+1

This is called the category of spectra and is denoted by Spℕ.

An example of a spectrum is given by the sphere spectrum S = (S0, S1, S2, . . .) and connecting
maps � : S1 ∧ Sn → Sn+1 the canonical isomorphisms.

To define a symmetric spectrum, we need to introduce an action of symmetric groups to keep
tracks of twists. Let Σn denote the symmetric group of permutations of the set {1, . . . , n}. Then
we have an embedding of groups Σp×Σq ↪→ Σp+q by letting the first component work on {1, . . . , p}
and the second component work on {p+ 1, . . . , p+ q}. For example, if we have p = 2 and q = 3,
then (1 2)× (1 2 3) is mapped to (1 2)(3 4 5).

Definition 2.2. A symmetric spectrum is

1. A sequence of X0, X1, . . . , Xn, . . . of pointed simplicial sets.

2. A map of pointed simplicial sets � : S1 ∧Xn → Xn+1 for each n ≥ 0.

3. A basepointed preserving left action of Σn on Xn such that:

�p = � ∘ (id ∧ �) ∘ . . . ∘ (id∧p−1 ∧ �) : Sp ∧Xn → Xp+n

is Σp × Σn-equivariant for p ≥ 1 and n ≥ 0.

The maps � are called the strucure maps of the symmetric spectrum. A map of symmetric
spectra f : X → Y is a sequence of maps of pointed simplicial sets fn : Xn → Yn such that fn is
Σn-equivariant and the following diagram commutes for all n ≥ 0:

S1 ∧Xn

id∧fn
��

� // Xn+1

fn+1

��
S1 ∧ Yn �

// Yn+1

This is called the category of spectra and is denoted by SpΣ.

Note that only the equivariance of �2 and � is needed, since the 2-cycles generate Σn. Further-
more, there is an obvious forgetful functor U : SpΣ → Spℕ forgetting the symmetric group actions.
Hence we can consider symmetric spectra as ordinary spectra carrying additional structure.
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2.3 Examples

Let’s list some examples of symmetric spectra:

∙ The first example of a symmetric spectrum is the sphere spectrum S, with Σn acting on
Sn = (S1)∧n by permuting the factors. The isomorphism �p : Sp ∧ Sn → Sn+p are then
clearly Σp × Σn equivariant.

∙ The sphere spectrum is a special case of the symmetric suspension Σ∞K of a pointed sim-
plicial set K. This is given by (Σ∞K)n = Sn ∧K with � : S1 ∧ Sn ∧K → Sn+1 ∧K the
natural isomorphisms and the action of Σn given by permuting the factor of Sn in Sn ∧K.
Note that S = Σ∞S0. In terms of prolongation Σ∞K = S ∧ K. Hence a get a functor
Σ∞ : S∗ → SpΣ.

∙ Let A be any abelian group. Then the Eilenberg-Mac Lane spectrum HA of A is given by
(HA)n = A⊗ℤ ℤ(Sn). Here ℤ(Sn) is the pointed simplicial abelian group giving by ℤ(Sn)k
the free abelian group on th non-basepoint k-simplices of Sn. The basepoint of ℤ(Sn) is 0.
The maps � : S1 ∧ (HA)n → (HA)n+1 maps t ∧ (a⊗ s) to a⊗ (t ∧ s). The action of Σn on
(HA)n is given by permuting the n factors of the generators of ℤ(Sn).

3 Properties of the category of symmetric spectra

We’ll discuss three properties of the category of symmetric spectra:

1. It is bicomplete, i.e. complete and cocomplete.

2. It can be considered as enriched in pointed simplicial sets if we change the hom-sets. More
concretely, there is a closed S∗-action of SpΣ.

3. It is a closed symmetric monoidal category.

3.1 Prolongation and bicompleteness

There must be some way to use the enormous amount of structure in S∗ in SpΣ. One technique for
this is that of prolongation. Suppose we have a functor R : S∗ → S∗ with the following properties:

1. There is a natural transformation ℎ : (RX) ∧K → R(X ∧K) of bifunctors.

2. The composition (RX) ∧ S0 → R(X ∧ S0)→ R(X) is the unit isomorphism.

3. The following diagram commutes

(RX ∧K) ∧ L ℎ∧L //

��

R(X ∧K) ∧ L

ℎ

��
RX ∧ (K ∧ L)

ℎ
// R(X ∧K ∧ L)

Then we can extend R to a functor SpΣ → SpΣ. For a symmetric spectrum X we define the
symmetric spectrum RX by setting (RX)n = RXn, and � : S1 ∧R(Xn)→ R(S1 ∧Xn)→ R(Xn)
the composition. The action is given by applying R to the action maps. This new functor
R : SpΣ → SpΣ is called the prolongation of R.

Applying prolongation to the limit and colimit functors associated to a diagram I in the
bicomplete category S∗, we see that SpΣ is bicomplete and (limD)n = limDn and (colimD)n =
colimDn.
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3.2 Simplicial action on symmetric spectra

Fix a pointed simplicial setK, then−∧K is a functor S∗ → S∗ satisfying the properties required for
prolongation. Prolongation then gives us a functor −∧K : SpΣ → SpΣ. Similarly by prolongation
of the exponential pointed simplicial set, we get the power spectrum (−)K : SpΣ → SpΣ.

Using the prolongated smash product, we can now define a pointed simplicial set of maps
between two symmetric spectra X,Y : MapSpΣ(X,Y ) = SpΣ(X ∧ Δ[−]+, Y ). Note that these
pointed simplicial sets have as 0-th level the ordinary hom-set.

All these constructions interact exactly as you would expect them to interact:

Proposition 3.1. Let X,Y be a symmetric spectrum and K,L be pointed simplicial sets, then we
have

1. There are coherent natural isomorphisms X ∧ (K ∧ L) ∼= (X ∧K) ∧ L and X ∧ S0 ∼= X.

2. (−) ∧K ⊢ (−)K .

3. X ∧ (−) ⊢MapSpΣ(X,−).

Letting ev : X ∧MapSpΣ(X,Y ) → Y be the adjoint of the identity map MapSpΣ(X,Y ) →
MapSpΣ(X,Y ). Similarly, using adjointness we can define the composition pairingMapSpΣ(X,Y )∧
MapSpΣ(Y, Z)→MapSpΣ(X,Z) the double evaluation X ∧MapSpΣ(X,Y )∧MapSpΣ(Y, Z)→ Z.

These have the following properties, which are exactly the axioms of a category enriched in
pointed simplicial sets, if the MapSpΣ were the homs of SpΣ. In other words, there is a closed
S∗-action of SpΣ.

Proposition 3.2. Let X,Y be symmetric spectra and K a pointed simplicial set, then we have

1. The composition pairing is associative.

2. The adjoint S0 →MapSpΣ(X,X) of the unit isomorphism X ∧S0 → X is a left and unit of
the composition pairing.

3. There are natural isomorphisms

MapSpΣ(X ∧K,Y ) ∼= MapSpΣ(X,Y K) ∼= MapSpΣ(X,Y )K

3.3 Smash product of symmetric spectra

There is trick which allows you to use generalities about closed monoidal categories to construct
a closed symmetric monoidal product on symmetric spectra from the smash product of pointed
simplicial sets.

We start by reminding of the definition of a monoid and a module in a symmetric monoidal
category. There is nothing special about this definition, if you keep in mind the category of abelian
groups with the tensor product.

Definition 3.3. Let C be a symmetric monoidal category with symmetric monoidal product ⊗.
Then a commutative monoid in C is an object R with maps � : R ⊗ R → R and � : e → R with
the following properties.

Associativity. The following diagram commutes

R⊗R⊗R

id⊗�
��

�⊗id // R⊗R
�

��
R⊗R �

// R
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Commutativity. If � denotes the twist isomorphism of C, then � = � ∘ � .

Unit. The following composition is the unit isomorphisms of C:

e⊗R
�⊗id // R⊗R

� // R

Note that commutativity implies that a right unit axiom is not necessary.

Let R be a monoid, then a left R-module is an object M in C together with a map m : R⊗M →
M with the following properties.

Associativity. The following diagram commutes:

R⊗R⊗M

id⊗m
��

�⊗id // R⊗M

m

��
R⊗M m

// R

Respects unit. The following composition is the unit isomorphism of C:

e⊗M
�⊗id // R⊗M m // M

As an example, if C is the category of abelian groups, then a monoid is a ring with unit and
a module over a monoid in the category of abelian groups is a module over a ring. A very useful
fact about monoids and modules in any symmetric monoidal category is the following:

Proposition 3.4. Let C be a symmetric monoidal category with symmetric monoidal product ⊗
and let R be a monoid in C.

If C is complete, then R−mod is complete. If C is cocomplete and R⊗− preserves coequalizers,
then R−mod is cocomplete.

Note that any monoid is a module over itself and abusing notation, we replace � by m from now
on. Furthermore, there is a dual definition of right module over a monoid. If R is a commutative
monoid then any left module is a right module and vica versa, using the multiplication:

M ⊗R � // R⊗M m // M

Furthermore, since R is commutative, these actions commute, making every left or right R-
module into a (R,R)-bimodule.

Theorem 3.5. Let C be a symmetric monoidal category with symmetric monoidal product ⊗ that
is bicomplete and let R be a commutative monoid such that the functor R⊗ (−) : C → C preserves
coequalizers. Then there is a symmetric monoidal product ⊗R on the category of R-modules with
R as the unit.

If C is a closed symmetric monoidal category, then there is a function R-module HomR(M,N)
natural in M,N ∈ C, such that (−)⊗RM is left adjoint to HomR(M,−).

Proof. Symmetric monoidal product. Because R is a commutative monoid M is naturally a
(R,R)-bimodule. This means that we can consider M as a right R-module and N as a left
R-module. Hence the the monoidal product M ⊗R N of two R-modules can be given as the
colimit of the diagram:

M ⊗R⊗N
m⊗id //

id⊗m
// M ⊗N
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Since C is complete and R ⊗ (−) preserves coequalizers, we know that the category of R-
modules is cocomplete, hence the coequalizer M ⊗RN exists and will again be a R-module.
The associativity, unit and twist isomorphisms of C induce those for R−mod. Let’s do the
unit as a example: we will show that M ⊗R R ∼= M . This means we must show that M is a
colimit of the following diagram:

M ⊗R⊗R
m⊗id //

id⊗m
// M ⊗R

Consider the map m : M ⊗ R → M . By associativity, this map satifies m ∘ (m ⊗ id) =
m ∘ (id ⊗ m). What is left to show is that it is initial with this property. There exists a
section s : M ⊗ R → M ⊗ R ⊗ R given by M ⊗ R ∼= M ⊗ R ⊗ e → M ⊗ R ⊗ R where
the last map is id ⊗ �. By the unit axiom of the monoid R this satifies (id ⊗m) ∘ s = id.
Hence f ∘ (id⊗m) = f ∘ (m⊗ id) implies that f = f ∘ (m⊗ id) ∘ s. There exists a section
t : M →M ⊗R given by M ∼= M × e→M ×R where the last map is id⊗ �.

M ⊗R⊗R
m⊗id //

id⊗m
// M ⊗R

s

||
m //

f ##HHHHHHHHH M

t
yy

f̃

��
N

Note that (m⊗id)∘s : M⊗R→M⊗R is the map which adds a unit on the third component,
multiplies the first two. Hence it is equal to t ∘m, which multiplies the first two and adds a
unit. Therefore we conclude that

f ∘ t ∘m = f ∘ (m⊗ id) ∘ s = f

The fact that m ∘ t is an isomorphism, implies that f̃ is unique: f̃ ∘m = f = g ∘m implies
that f̃ ∘m ∘ t = g ∘m ∘ t hence f̃ = g.

Similarly, one can derive associativity and commutativity from the associativity and com-
mutativity of the monoid and the symmetric monoidal product in C.

Internal hom. Let HomC(M,N) denote the internal hom in C. The internal hom HomR(M,N)
of left R-modules M,N is given as the limit in C of the diagram:

HomC(M,N)
m∗

//

m∗
// HomC(R⊗M,N)

where m∗ is the induced map of multiplication m and m∗ is the composition:

HomC(M,N)
R⊗− // HomC(R⊗M,R⊗N)

m∗
// HomC(R⊗M,N)

The equalizer exists and will be an R-module since C is complete and hence R − mod is.
That − ⊗R M is left adjoint to HomR(M,−) is a consequence of the definition of ⊗R and
the fact that −⊗X is left adjoint to HomC(X,−).

Let Σ be the category with objects 0̄ = ∅ and n̄ = {1, . . . , n} for n ≥ 1, and morphisms Σn
as automorphisms of the sets n̄. Thus we have Σ =

∐
n∈ℕ∪{0} Σn. Let Sℕ denote the functor

category SΣ
∗ . This is a sequence of pointed simplicial sets with basepoint preserving left action of

Σn on Xn. This is simpy a simplicial set without the �.
Note that SΣ

∗ is a functor category, hence is bicomplete because S∗ is.
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Proposition 3.6. There is a closed symmetric monoidal product on SΣ
∗ given by:

(X ⊗ Y )n =
⋁

p+q=n

(Σn)+ ∧Σp×Σq
(Xp ∧ Yq)

Its unit is the sequence (S0, ∗, ∗, . . .) and the twist is given by �(�, x, y) = (��q,p, y, x) where
�q,p flips the first q elements of {1, 2, . . . , p+ q} with the last p. The internal hom is given by:

HomΣ(X,Y ) = MapSΣ
∗

(X ⊗ Σ[−]+, Y )

Associativity of ⊗ follows from the easy to prove natural isomorphism:

((X ⊗ Y )⊗ Z)n =
⋁

p+q+r=n

(Σn)+ ∧Σp×Σq×Σr
(Xp ∧ Yq ∧ Zr)

To be able to prove things using ⊗, we note the following lemma:

Lemma 3.7. There is a natural isomorphism

SΣ
∗ (X ⊗ Y, Z) ∼=

∏
p,q

SΣp×Σq
∗ (Xp ∧ Yq, Zp+q)

To make use of our earlier general facts, we note the following:

Proposition 3.8. S is a commutative monoid in SΣ
∗ .

Proof. The natural isomorphisms mp,q : Sp ∧ Sq → Sp+q are Σp × Σq-equivariant. By the lemma
these assemble into a map m : S ⊗ S → S given by m(�, x, y) = � ⋅ x ∧ y.

The following diagram commutes equivariantly under the action of Σp × Σq × Σr:

Sp ∧ Sq ∧ Sr

��

// Sp+q ∧ Sr

��
Sp ∧ Sq+r // Sp+q+r

By the lemma this means that m will be associative. The unit is simply the inclusion of
symmetric sequences (S0, ∗, ∗, . . .)→ S.

Finally the commutativity, which will be of vital importance:

m ∘ �(�, x, y) = ��p,q ⋅ y ∧ x = � ⋅ x ∧ y = m(�, x, y)

Notice the importance of the symmetric group actions in guaranteeing commutativity.

But if S is a commutative monoid in SΣ
∗ , what are its modules? The answer is exactly what

you would hope for:

Proposition 3.9. The category of symmetric spectra is equivalent to the category of S-modules
in SΣ

∗ .

Proof. We start by constructing a symmetric spectrum from a S-module. The pairing m : S⊗X →
X is by the lemma a collection of Σp × Σq-equivariant maps mp,q : Sp ∧Xq → Xp+q. If you let
� = m1,n : S1 → Xn → Xn+1, then by the associativity axiom of an S-module, we have that
�p = mp,n, hence they are Σp × Σq equivariant.

Conversely, if we have a symmetric spectrum, then by the lemma the Σp×Σq-equivariant maps
�p together with �0 the natural isomorphism S0 ∧Xn

∼= Xn assemble to a map m : S ⊗X → X.
The definition of �p guarantees that m is associative and respects the unit.

Since these constructions are natural and mutually inverse, we have a equivalence of categories.
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Corollary 3.10. The category of symmetric spectra is bicomplete and has a closed monoidal
product ∧ := ⊗S with internal hom HomS. That is, we have a natural isomorphism:

SpΣ(X ∧ Y,Z) ∼= SpΣ(X,HomS(Y, Z))

The reason that this construction fails for ordinary spectra is that S is not a commutative

monoid in the category Sℕ∪{0}∗ , because the twist map S1 ∧S1 → S1 ∧S1 is not the identity. The
category of symmetric spectra fixes this using the symmetric actions.
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