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I. Introduction

• Supersymmetry, a global symmetry between bosons and
fermions, provides invaluable insights to the non-perturbative
aspects of general strongly coupled quantum field theories, and
is deeply related to various areas of mathematics.

• The Hilbert space of a supersymmetric quantum theory

H = H + ⊕H −

is graded by a fermion number operator F .
• The Witten index

I = Str e−βĤ = Tr(−1)F e−βĤ

gives precise non-perturbative information about the ground
states of a supersymmetric quantum Hamiltonian Ĥ.

• I is related to the index of the Dirac operator and is computed
by supersymmetric localization, the infinite-dimensional version
of the Duistermaat-Heckman formula.
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I = Str e−βĤ = Tr(−1)F e−βĤ
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1. N = 1/2 supersymmetry

• Classical supersymmetric system with the Lagrangian L,
Hamiltonian H and a single real supercharge Q, satisfying

{Q,Q} = 2iH.

• Quantization — the simplest N = 1/2 supersymmetric
quantum system with the real supercharge Q̂, satisfying

Q̂2 = Ĥ,

where quantum Hamiltonian Ĥ acts in the Hilbert space H .
• The Witten index is given by the path integral

I = Tr(−1)F e−βĤ =

∫∫∫
e−SE [x,ψ]DxDψ,

where

SE [x, ψ] =

∫ β

0
LE(x, ẋ;ψ, ψ̇)dt

is the Euclidean action, and DxDψ is path integration
‘measure’ for the bosonic and fermionic degrees of freedom.
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• The integration goes over periodic boundary conditions and

δSE = 0 and δ(DxDψ) = 0.

Here δ is the Wick rotated classical supersymmetry
transformation generated by a supercharge Q,

δxµ = {Q, xµ} = ψµ, δψµ = {Q,ψµ} = −ẋµ.

• Let V [x, ψ] be an invariant deformation, a functional of
classical fields satisfying

δ2V = 0.

The key fact: for all real λ we have∫∫∫
e−SEDxDψ =

∫∫∫
e−SE−λδV DxDψ

• In case SE = δV the path integral in the limit λ→∞ localizes
on the zero locus of SE . The latter is the set of constant
loops, arising from the standard kinetic term in the action.
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2. Example

• M is compact, spin, Riemannian manifold and /∂ = γµ(x)∇µ
is the Dirac operator of the Levi-Civita connection ∇ on M .

• Euclidean action

SE =
1

2

∫ β

0
gµν(x)(ẋµẋν + ψµ∇ẋψν)dt

is supersymmetric, S = δQ, where classical supercharge is

Q = gµνψ
µẋν = ψµpµ

• Quantum supercharge and Hamiltonian operator are

Q̂ = /∂, Ĥ = Q̂2.

• The Witten index (L(M) is a free loop space of M)

I = Str e−βĤ =

∫∫∫
ΠTL(M)

e−SEDxDψ

localizes on constant loops (Witten 1982, Atiyah 1985);
explicit computation (L. Alvarez-Gaumé, 1983) gives
Atiyah-Singer formula for the index of Dirac operator.
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is supersymmetric, S = δQ, where classical supercharge is

Q = gµνψ
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Atiyah-Singer formula for the index of Dirac operator.



II. New localization principle

• Can one compute full thermal partition function — the
trace of the Euclidean evolution operator — and not
only the supertrace?

• The answer: it could be possible when the Witten index
vanishes!

• Namely suppose that

1. Fermion degrees of freedom decouple and have zero modes
χ1, . . . , χn, so I = 0.

2. In the Hilbert space H the Majorana fermions χ̂1, . . . , χ̂n
satisfy

χ̂1 · · · χ̂n = 2−
n
2 (−1)F ,

so

Str χ̂1 · · · χ̂ne−βĤ = 2−
n
2 Tr e−βĤ =

∫∫∫
χ1 · · ·χne−SEDxDψ.

• However, the path integral nontrivially depends on β and since
δ(χ1 · · ·χne−SE ) 6= 0, standard localization does not apply.
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• Still, one can formulate a new localization principle by
‘saturating fermion zero modes’.

(A) δχµ does not contain fermion degree freedom χµ∫
δχµdχµ = 0, µ = 1, . . . , n.

(B) deformation V is invariant

δ2V = 0.

(C) ∫
V dχµ =

∫
δV dχµ = 0, µ = 1, . . . , n.

• Note that condition (A) is rather natural, condition (B) is
standard, while condition (C), the absence of fermion zero
modes in V and δV , is a completely new requirement. It is
rather constraining and forces V to explicitly depend on the
first time derivatives of fermion degrees of freedom.
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• The new localization principle is the following statement.

• Let SE be the Euclidean action of the supersymmetric
theory with fermion zero modes χ1, . . . , χn satisfying
conditions 1-2 and (A). Then for all λ we have∫∫∫

χ1 · · ·χne−SEDxDψ =

∫∫∫
χ1 · · ·χne−SE−λδV DxDψ

where V is a deformation satisfying conditions (B)–(C).
• If bosonic and fermionic degrees of freedom decouple

H = HB ⊗HF and Ĥ = ĤB ⊗ IF + IB ⊗ ĤF ,

then

Str χ̂1 · · · χ̂ne−βĤ = 2−n/2 TrHF
e−βĤF · TrHB

e−βĤ .

• If ĤF = 0, we have

Str χ̂1 · · · χ̂ne−βĤ = TrHB
e−βĤB

Thus we obtain a pure bosonic trace formula by localizing the
supersymmetric path integral in the limit λ→∞ to the zero
locus of V .
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e−βĤF · TrHB

e−βĤ .
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III. Examples
1. Poisson summation formula: localization on U(1)

• Free supersymmetric particle of mass m = 1 on S1 = R/2πZ
with the Lagrangian, the real supercharge

L =
1

2
(ẋ2 + iψψ̇), Q = iẋψ

and the Hamiltonian

H =
1

2i
{Q,Q} =

1

2
p2.

• The Witten index I is zero due to the presence of the fermion
zero mode

χ =
1

β

∫ β

0
ψ(t)dt.

• Quantum supercharge and the Hamiltonian operator are

Q̂ = ψP and Ĥ =
1

2
Q̂2 =

1

2
P 2.
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• The partition function is

Z(β) = Tr e−βĤ =
∑
n∈Z

e−βn
2/2, β > 0.

• Using path integral,

Z(β) = Strχe−βĤ =

∫∫∫
ΠTL(S1)

χe−SEDxDψ.

• New localization principle: the path integral∫∫∫
ΠTL(S1)

χe−SE+λδV DxDψ,

where

V =
1

2

∫ β

0
ẍψ̇ dt, δV = −1

2

∫ β

0
(ẍ2 + ψ̇ψ̈)dt,

does not depend on λ!
• In the limit λ→∞ the path integral localizes on the classical
trajectories ẍ = 0, and one can compute Z(β) exactly.
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∫∫∫
ΠTL(S1)

χe−SEDxDψ.

• New localization principle: the path integral∫∫∫
ΠTL(S1)

χe−SE+λδV DxDψ,

where

V =
1

2

∫ β

0
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• Specifically, we obtain

∞∑
n=−∞

e−n
2β/2 = 2π lim

s→∞

∫∫∫
ΠTΩS1

e−SE−sδV D ′xD ′ψ

= 2π · (2π)ζ(0)

∫∫∫
ΠTΩS1

e−SEδ(ẍ)δ(ψ)Pf(∂3
t )D ′xD ′ψ

= 2π · (2π)ζ(0)

∫∫∫
ΩS1

e−SE [x,0]
∑
xcl

δ(x− xcl)
det(∂2

t )
Pf(∂3

t )D ′x

= 2π · (2π)ζ(0)
∑
xcl

e−
1
2

∫ β
0 ẋ2cldt

Pf(∂3
t )

det(∂2
t )

=

√
2π

β

∞∑
n=−∞

e−2π2n2/β

which is Jacobi inversion formula.



2. Eskin summation formula: localization on G

• This summation formula was first obtained by L.D. Eskin
(Л.Д. Эскин “Уравнение теплопроводности на группах Ли”,
Сб. памяти Н.Г. Чеботарева, Изд. КГУ, Казань, 1964; см.
также Л.Д. Эскин “Уравнение теплопроводности в теории
компактных групп”, УМН, 19:2(116) (1964), 200–202), and
rediscovered later by I. Frenkel and J.-M. Bismut.

• 0 + 1 supersymmetric sigma model — supersymmetric particle
on compact simple Lie group G with the Lagrangian

L =
1

2
〈ẋ, ẋ〉+

i

2
〈ψ,∇−ẋψ〉, ψ ∈ ΠTx(t)G,

where ∇− is flat left-invariant connection on G (with torsion).
• In Cartan moving frame formalism J = g−1ġ ∈ g and
ψ = Lg−1ψ ∈ Πg, where g is the Lie algebra of G and

L =
1

2
〈J, J〉+

i

2
〈ψ, ψ̇〉.
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• Real supercharge

Q = 〈ψ, J〉+
i

6
〈ψ, [ψ,ψ]〉

and classical Hamiltonian

H =
1

2i
{Q,Q} =

1

2
gablalb

with the Dirac brackets on the reduced phase space

{pµ, xν} = δνµ and {ψa, ψb} = igab.

• Quantization H = L2(G)⊗HF ,

[ψ̂a, ψ̂b] = gab, [l̂a, l̂a] = −if cab l̂c and Q̂ = ψ̂a l̂a+
i

6
fabcψ̂

aψ̂bψ̂c.

• Hamiltonian operator Ĥ = Q̂2 is given by

Ĥ =
1

2
gab l̂a l̂b +

1

48
fabcf

abcÎ =
1

2
∆ +

R

12
Î ,

where ∆ is the Laplace operator on L2(G) and the second
term is the ‘notorious’ DeWitt term.
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• Fermion zero modes

χa =
1

β

∫ β

0
ψa dt,

so
Str χ̂1 . . . χ̂ne−βĤ = e−

1
12
βR Tr e−

1
2
β∆.

and
Str χ̂1 . . . χ̂ne−βĤ+i〈h,r̂〉 = VGe

− 1
12
βRKβ(eh),

where Kβ is the heat kernel, r̂ = r̂aTa and h ∈ t.

• Path integral representation

Str χ̂1 . . . χ̂ne−βĤ+i〈h,r̂〉 =

∫∫∫
ΠTLG

χ1 . . . χne−S
h
E DgDψ,

where

ShE =
1

2

∫ β

0
(〈J, J〉+ 〈ψ, ψ̇〉)dt+

1

β

∫ β

0
〈Adg−1h, J〉dt.
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• The supersymmetric deformation is

V = −1

2

∫ β

0
〈J̇h, ψ̇〉dt

where
Jh = J +

1

β
Adg−1h

• According to the new localization principle∫
ΠTLG

χ1 . . . χne−S
h
EDgDψ =

∫
ΠTLG

χ1 . . . χne−S
h
E−λδhV DgDψ

and as λ→∞ the integral localizes to the classical solutions,
the zero locus J̇h = 0.

• When h ∈ t is regular, on ΩG solutions are isolated geodesics
and one computes the supertrace
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•

Str χ̂1 . . . χ̂ne−βĤ+i〈h,r̂〉

=
VG

(2πβ)n/2

∑
γ∈Γ

∏
α∈R+

1
2〈α, h+ γ〉

sin 1
2〈α, h+ γ〉

e
− 1

2β
〈h+γ,h+γ〉

and we obtain the Eskin formula for the heat kernel

Kβ(eh) =
e

1
2
β〈ρ,ρ〉

(2πβ)n/2

∑
γ∈Γ

∏
α∈R+

1
2〈α, h+ γ〉

sin 1
2〈α, h+ γ〉

e
− 1

2β
〈h+γ,h+γ〉

,

where Γ = {γ ∈ t : eγ = 1} is the characteristic lattice, which
is related to the maximal torus by T = t/Γ.

• Comparing with the spectral representation

Kβ(eh) =
1

VG

∑
π∈IrrepG

dπ χπ(h)e−
1
2
βC2(π),

we obtain Eskin summation formula.
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3. Selberg trace formula: localization on Γ\G/K

Example: G = SL(2,R), K = SO(2) and Γ is a discrete subgroup
of G containing −I, so X = Γ\G/K is compact hyperbolic
Riemann surface (with orbifold points).
• Supersymmetric sigma model on Γ\G

L =
1

2
〈J, J〉+

i

2
〈ψ, ψ̇〉

in Lorentzian time 0 ≤ t ≤ T , using Cartan frame formalism
J = g−1ġ and ψ = L−1

g ψ;

δg = igψ and δψ = −J − iψψ.

• The Hilbert space is

HΓ\G = L2(Γ\G, dg)⊗HF,g,

but we need the Hilbert space L2(X, dµhyp). It can be
obtained by gauging the right K-symmetry g 7→ gk and
ψ 7→ Adk−1ψ, k ∈ K, by using a K-connection A in the
principal bundle K → S1

T = R/TZ.
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• Gauged sigma model on Γ\G

L0 =
1

2
〈JA, JA〉+

i

2
〈ψ, ∂At ψ〉,

where JA = J −A and ∂At = ∂t + adA.

• The supersymmetry is modified as

δg = igψ,

δψ = −JA − iψψ,
δA = 0.

• Since the Lagrangian L0 has no kinetic term for A, we have a
classical Gauss law

C0 : J3
A + 2iψ1ψ2 = 0,

which is realized quantum mechanically as the constraint on
the Hilbert space HΓ\G.
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• The main representation

Z(iT ) = TrL2(X)[e
−iT∆/2]

=
e−

i〈ρ,ρ〉T
2

vol(G)

∫∫∫
1

W−1(A)−W1(A)
ψ3

0e
i
∫ T
0 L0dtDgDψDA,

where domain of integration is

L(Γ\G)×ΠLg×A.

Here G is the gauge group, t1, t2, t3 are generators of g, t3 —
generator of k, A = A3t3,

ψ3
0 =

1

T

∫ T

0
ψ3(t)dt

is fermion zero mode and

W±1(A) = e±i
∫ T
0 A3(t)dt

are Wilson lines.



• Connected components of the free loop space L(Γ\G) are
parametrized by the conjugacy classes [γ] of the elements
γ ∈ Γ, and we obtain the ‘pre-trace’ formula

Z(iT ) =
∑
[γ]

Z[γ](iT ),

where ‘orbital integrals’ Z[γ](iT ) are expressed by path
integrals over the space of paths in G connecting points points
g and γg, integrated over Gγ\G.

• The new supersymmetric localization principle allows to
compute explicitly each orbital integral in the pre-trace formula
in the limit λ→∞.

• We have Z[γ](iT ) = Z[−γ](iT ); computing Z[γ](iT ) for the
identity, hyperbolic and elliptic elements, and performing the
Wick rotation T 7→ −iβ, we obtain the Selberg trace formula
(with exact match of all coefficients)!
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Рис.: Тянджинь, Нанкай, 1989



Рис.: Вена, 2004



Рис.: Женева, 2009

Happy Birthday, Fedya!


