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l. Introduction

e Supersymmetry, a global symmetry between bosons and
fermions, provides invaluable insights to the non-perturbative
aspects of general strongly coupled quantum field theories, and
is deeply related to various areas of mathematics.

e The Hilbert space of a supersymmetric quantum theory

H =" A

is graded by a fermion number operator F'.
e The Witten index

I=Stre?H = Tr(—l)Fef'Bﬁ

gives precise non-perturbative information about the ground
states of a supersymmetric quantum Hamiltonian H.

e [ is related to the index of the Dirac operator and is computed
by supersymmetric localization, the infinite-dimensional version
of the Duistermaat-Heckman formula.
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Classical supersymmetric system with the Lagrangian L,
Hamiltonian H and a single real supercharge @, satisfying

{Q,Q} = 2iH.

Quantization — the simplest N = 1/2 supersymmetric
quantum system with the real supercharge Q, satisfying

Q*=H,

where quantum Hamiltonian H acts in the Hilbert space 7.
The Witten index is given by the path integral

I= Tlr(fl)Fe_BH = /e_SE[x’w]Qx@@b,
where 5
Selov) = [ Loleiv. D)
0

is the Euclidean action, and Y222 is path integration
‘measure’ for the bosonic and fermionic degrees of freedom.



e The integration goes over periodic boundary conditions and
0Sg =0 and 6(Zz22y)=0.

Here § is the Wick rotated classical supersymmetry
transformation generated by a supercharge Q,

ot = {va“} = WLa &W = {Qﬂﬁ“} = —h



e The integration goes over periodic boundary conditions and
0Sg =0 and 6(Zz22y)=0.

Here § is the Wick rotated classical supersymmetry
transformation generated by a supercharge Q,

ot = {va“} = WLa &ﬁ“ = {Qﬂﬁ“} = —h

e Let Vxz, 1] be an invariant deformation, a functional of
classical fields satisfying

5V =0.

The key fact: for all real A we have

/ e B Dr P = / e BTNV 9 g




e The integration goes over periodic boundary conditions and
0Sg =0 and 6(Zz22y)=0.

Here § is the Wick rotated classical supersymmetry
transformation generated by a supercharge Q,

ot = {va“} = WLa &W = {Qﬂﬁ“} = —h

e Let Vxz, 1] be an invariant deformation, a functional of
classical fields satisfying

5V =0.

The key fact: for all real A we have

/ e B Dr P = / e BTNV 9 g

e In case Sp = §V the path integral in the limit A — oo localizes
on the zero locus of Sg. The latter is the set of constant
loops, arising from the standard kinetic term in the action.
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2. Example

M is compact, spin, Riemannian manifold and @ = v*(x)V,,
is the Dirac operator of the Levi-Civita connection V on M.
Euclidean action

B
SE = 2/0 Guv () (EHTY + PHV pap” ) dt

is supersymmetric, S = d(Q), where classical supercharge is
Q= g/w?ﬁ“ﬂb” = w“py
Quantum supercharge and Hamiltonian operator are
Q=9, H=Q
The Witten index (L(M) is a free loop space of M)
[ = Stre#H :/ e SEDr D
NITL(M)

localizes on constant loops (Witten 1982, Atiyah 1985);
explicit computation (L. Alvarez-Gaumé, 1983) gives
Atiyah-Singer formula for the index of Dirac operator.
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Il. New localization principle

e Can one compute full thermal partition function — the
trace of the Euclidean evolution operator — and not
only the supertrace?

e The answer: it could be possible when the Witten index
vanishes!

e Namely suppose that

1.

2.

Fermion degrees of freedom decouple and have zero modes

X1s---,Xn, S0 I =0.
In the Hilbert space 4% the Majorana fermions X1, ..., Xn
satisfy

SO

Str)21~-~§(ne_'8ﬁ =275 Tre P = /Xl---xne_SE@m@z/J.

e However, the path integral nontrivially depends on 3 and since
5(x1 -+ xne %F) # 0, standard localization does not apply.
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e Still, one can formulate a new localization principle by
‘saturating fermion zero modes'.

(A) dx,, does not contain fermion degree freedom ¥/,

/6X;4dXM =0, p=1...,n.

(B) deformation V' is invariant
5V =0.

(€)
/deuz/ﬂfdxuz(), p=1... n.

¢ Note that condition (A) is rather natural, condition (B) is
standard, while condition (C), the absence of fermion zero
modes in V and §V, is a completely new requirement. It is
rather constraining and forces V' to explicitly depend on the
first time derivatives of fermion degrees of freedom.
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The new localization principle is the following statement.
Let Sg be the Euclidean action of the supersymmetric
theory with fermion zero modes 1, ..., x, satisfying
conditions 1-2 and (A). Then for all A we have

/ Yo Xne—SE Dy — / Yo Xne S5 G

where V is a deformation satisfying conditions (B)—(C).
If bosonic and fermionic degrees of freedom decouple

H=H@ M and H=HpoIp+Ip® Hp,
then

Str i1+ Xne M =277/ Tr e BHE . Tryp, e PH.
If Hp =0, we have

Strxi--- )Zne_ﬁﬂ = Trp, ez

Thus we obtain a pure bosonic trace formula by localizing the
supersymmetric path integral in the limit A — oo to the zero
locus of V.
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e The Witten index I is zero due to the presence of the fermion
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1 B
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e Quantum supercharge and the Hamiltonian operator are
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The partition function is
Z(B)=Tre PH =32 g>o.
neL
Using path integral,
Z(B) = Str Xe*’BH = / xe SE Dr .
ITL(S1)

New localization principle: the path integral
/ X6_8E+)\6V.@$.@¢,
TL(SY)
where

1 /B . 1 (B
V:/ i dt, 5V:—/ (3 + Yo)dt,
2 Jo 2 Jo

does not depend on Al

In the limit A — oo the path integral localizes on the classical
trajectories & = 0, and one can compute Z([3) exactly.



e Specifically, we obtain

o0

"2 /c . — —
Z e B2 = 21 lim e 5E Sév@’:v@'@b
5700 J 1rQst

n=—oo

=2 - (2m)5(©) / e B5 ()0 PO} D D)
rQst

_ o(x —xq)
_ 9. (27)C0) / Sele0) § 0T = Tat) beasy o
- (2m) QSle IECZ det(@D) (0,)P'x

1 ﬁ]'22d Pf(a3)
= 27‘(‘ . (27-(-)((0) Ze 2J0 “el tmatg)

Tel

_ 27T i 6727r2n2/ﬁ
V B

n=-—oo

which is Jacobi inversion formula.
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e 0+ 1 supersymmetric sigma model — supersymmetric particle
on compact simple Lie group G with the Lagrangian

1. . 1 _
L= §<$,1’> + §<'¢,VI Il)>a ’(p € HTaz(t)Ga

where V™ is flat left-invariant connection on G (with torsion).

e In Cartan moving frame formalism J = ¢~ !¢ € g and
Y = Ly € Ilg, where g is the Lie algebra of G and

1 7 .
L= §<J> J)+ §<¢,¢>-
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Real supercharge

1
and classical Hamiltonian
_ 1 _ 1 ab
with the Dirac brackets on the reduced phase space
{py, 2"} =46, and {0, ¢*} = ig®.
Quantization 7 = L*(G) ®@ #,

R . . e N

[0, 9" = g%, lla la] = =i fiple and Q = *lat & faneth """
Hamiltonian operator H = Q? is given by

. 1 a0 1 | R .

H = g%y + — fape %] = - A+ —1

29 alp + 48fabcf 9 + 1277

where A is the Laplace operator on L?((G) and the second
term is the ‘notorious’ DeWitt term.
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Fermion zero modes

1 %d
a _ — at’
X ﬁ/o

Stryl... )Z"e_ﬁﬁ — e 12PR Ty e384,

SO

and )
Str! ... e PHHIT) — Y mPRE g (),

where Kg is the heat kernel, 7 = #%T;, and h € t.
Path integral representation

Strf(1 o X”e‘ﬁﬁ%wﬂ = / Xl ... X”e_sg DDy,
ITLG

where

1 1B ) 1 18
Sl = 2/0 (7, J>+<¢,w>)dt+ﬁ/o (Ady-1h, J)dt.
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e The supersymmetric deformation is

1 B o
V_—Z/O<J,1/J>dt

where
1

s

e According to the new localization principle

J"=J+ —Ady-1h

/ xt... X"e_sg.@g.@@b = / i X”e_sg_/\‘shv‘@g.@w
NTLG NTLG

and as A — oo the integral localizes to the classical solutions,
the zero locus J" = 0.

e When h € tis regular, on QG solutions are isolated geodesics
and one computes the supertrace
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and we obtain the Eskin formula for the heat kernel

38 h
e2 (h+7) iy niy)
Ka(eM) = 2L T2\ AT
(27 B)"/2 %ag sin 1(a, h +7)

where I' = {y € t : € = 1} is the characteristic lattice, which
is related to the maximal torus by 7" = t/I".

e Comparing with the spectral representation
1
B = T denale
ﬂeIrrepG

we obtain Eskin summation formula.
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3. Selberg trace formula: localization on I'\G/K

Example: G = SL(2,R), K = SO(2) and I is a discrete subgroup
of G containing —I, so X = I'\G/K is compact hyperbolic
Riemann surface (with orbifold points).

e Supersymmetric sigma model on I'\G

1 ) .
L= §<Ja J) + 5(%@
in Lorentzian time 0 < ¢ < T, using Cartan frame formalism
J =g lgand ¢ = L;\4p;
dg =1igy and 0 = —J — ).
e The Hilbert space is
S = L*(D\G, dg) ® Hpg,

but we need the Hilbert space L?(X, dppyy). It can be
obtained by gauging the right K-symmetry g — gk and
1 — Adg-19, k € K, by using a K-connection A in the
principal bundle K — Si. = R/TZ.
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Gauged sigma model on I'\G
1 i
'CO = §<JA7 JA> + §<w78t Qp))

where J4 = J — A and 9 = 9; + ad 4.

The supersymmetry is modified as

dg = igy,
6¢ = _JA - wav
0A = 0.

Since the Lagrangian Ly has no kinetic term for A, we have a
classical Gauss law

Co: J3+2ipty? =0,

which is realized quantum mechanically as the constraint on
the Hilbert space J1\.



e The main representation

Z(iT) = mg( e A
pp>T

_ 3 i [y Lodt
e / S B 99 2u 24

where domain of integration is
L(I'\G) x I1Lg x A.

Here G is the gauge group, 1,12, t3 are generators of g, t3 —
generator of £, A = A3t3,

1T
:T/O S (t)dt

is fermion zero mode and
Wii(A) = 6:l:ifOT A3(t)dt

are Wilson lines.
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g and vg, integrated over G, \G.
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e Connected components of the free loop space L(I'\G) are
parametrized by the conjugacy classes [y] of the elements
~ € T', and we obtain the ‘pre-trace’ formula

Z(iT) =Y Z,)(iT),

[]

where ‘orbital integrals’ Z,)(iT") are expressed by path
integrals over the space of paths in G' connecting points points
g and vg, integrated over G, \G.

e The new supersymmetric localization principle allows to
compute explicitly each orbital integral in the pre-trace formula
in the limit A\ — oc.

e We have 7}, (iT) = Z|_,)(iT'); computing Z,)(¢T") for the
identity, hyperbolic and elliptic elements, and performing the
Wick rotation T +— —i3, we obtain the Selberg trace formula
(with exact match of all coefficients)!
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Happy Birthday, Fedyal!




