THE THEOREM OF RIEMANN-ROCH

GUNTER TAMME

Introduction.

Let k be a fixed field, and V be the category of quasi-projec-
tive schemes over k. For every object X of V, there are defined
the groups KP(X), contravariant for arbitrary morphisms, and
the groups Ké(X), covariant for proper morphisms in V. The

Riemann-Roch problem is to compute the map

f, : Ké(X) - Ké(Y)

for a proper morphism f : X » Y; in case p = O this means to

compute the Euler-Poincaré& characteristic

f, : Ké(X) - Ké(Y)

[F1 » £ (-N%R% £, (M)].

If both schemes X and Y are smooth, their K'-groups can be
identified with the K-groups, and the push-forward can be read
as a homomorphism f, : KP(X) - KP(Y). The classical Grothen-

dieck Riemann-Roch theorem [BS] is concerned with



£, ¢ K_(X) > K (¥)

and computes the Chern character of f (x) for a given x, i.e.
computes the image f, (x) modulo torsion. We recall, using the
terminology of SGA 6:

For a smooth X, let Grﬁ%}ﬂﬂ denote the associated graded ring
of the Grothendieck filtration on KO(X), defined by the augment-
ed )\-ring structure of KO(X) over Ho(x,Z). Let

ch : KO(X) - Gr'KO(X)<9Q be the Chern character, and

T4 (X) eGr'Ko(X) ® Q be the Todd class of X, both defined by
means of the universal Chern classes. Then the theorem asserts:

i) f, induces a graded homomorphism

£, ¢ Gr KO(X) ®Q - Gr'KO(Y) ®Q ,

the Gysin homomorphism.

ii) The diagram

Td (X)ch - ..
K, (X) » Gr'K_(X) ®Q
f* f*
K (¥) Td(¥)ch | Gr K (Y) ©Q

commutes, i.e.

1

ch(f, (x)) = Td(¥)"' £, (Td(X)ch(x))

for x € KO(X)-

The starting point for solving the general Riemann—-Roch problem
is given by two basic results, due to Quillen and due to Soulé

([s], and see §1 for more details):



1°. Let M be a smooth scheme, and X @ M be an arbitrary closed

subscheme. Then there is a canonical isomorphism

~

' > X
KP(X) Kp(M),

where Kg(M) denotes the K-groups of M with supports in X
(Purity theorem).
2°. Let
XM = @ K ).
p20
Then KX(M) carries the structure of an augmented A-algebra over

the binomial A-ring Hy (M,Z). Let
X < X
ch : K¥"(M). » Gr X" (M) ®Q

denote the associated Chern character.

These results have two aspects. The first one is the following:
Let

X «—— M
|k
Y N

" be a commutative diagram in V, where the horizontal arrows are

—

closed immersions into smooth schemes,'and where £ : M » N is
proper. Then the push-forward for the K'-groups of X and Y

induces via purity an additive homomorphism

£, : S - KE(N).

For this homqmorphism fy, we prove as a main result and as a

direct generalization of the classical Riemann-Roch the follow-



ing Riemann-Roch theorem:

i) f, induces a Gysin homomorphism
X - X
f, : Gr K (M) ®Q -» Gr K (N) ®Q .

ii) The diagram

KX(M) Td (M) ch R Gr'KX(M) ®0

£, £,

kY () —2dMech o g¥n) @0
commutes.

The proof of this theorem is given in §3. The main step con-
cerns the case in which f : M » N is a closed immersion. In
this case, the theorem follows mainly from the Riemann-Roch
theorem without denominators, proved in §2. It describes the
effect of £, : KX(M) - KY(N) on the Adams operations, and

more generally on arbitrary natural operations of augmenta-

tion O.

The second aspect of the basic results above is the following

([BFM], [G], [S]1):

Given a scheme X. We choose a closed immersion X & M of X into
a smooth scheme M of pure dimension, say d. After identifying
K'(X) = @)Ké(x) with KX(M) via purity, one defines a lower

filtration on K'(X) ®Q by setting

d—nKX

FnK'DQ ®Q = F (M) ®Q

and a morphism



T : K'(X) > Gr_K'(X) ®Q

into the associated graded group by the commutativity of

X' (X) M. Gr K'(X) ®0Q

I I

Td (M) ch

KX (M) » Gr KX (M) ©Q -

As more or less a corollary of the Riemann-Roch theorem
above, we prove in §4 that the filtration on K'(X) ®Q and the
map T : K'(X) » Gr K'(X) ®Q are well defined, and set up a
singular Riemann-Roch theorem in the sense of Baum~Fulton-
MacPherson, thus solving the original stated Riemann-Roch
problem.

From the singular Riemann-Roch theorem we deduce in §5 that

the absolute cohomology. and homology on V, defined by

GriK.. (X) &¢
r ZJ—p() ®Q

X,j) = Gr.K' ..
Hy (X,3) = Grykl o5 (X) @0

uP (x,§)

satisfy the axioms of a twisted cohomology-homology theory
with Poincaré duality in the sense of Bloch-Ogus [BO].
Needless to say that the main reference for this article is

the beautiful paper [S].



§1. The A-ring structure and the Chern character for K-theory

with supports

In this paragraph we review the definition of algebraic K-theory
with supports, its A-ring structure, Chern classes and Chern
character. We only givé indications of proofs, if at all. We
work with the category of quasi-projective schemes over a

fixed field k; so all schemes under consideration are quasi-

projective k-schemes and all morphisms of schemes are k-morphisms.

1. Definition and functorial behaviour of K-theory with ‘supports

Let X be a scheme. Let P(X) denote the exact category of locally
free Ox—modules of finite rank. For p > O the p-th K-group

of X is defined by
KP(X) = Mo (BQP(X))

where BQP(X) is the classifying space of the Quillen category
Q P(X) associated to the exact category P(X) and the homotopy
group is formed with respect to the zero object of P(X) as

base point ([Ql, §7).
Let Y » X be a closed subscheme of X. Then the restriction
P(X) » P(X-Y) is an exact functor and induces a continuous map

BQP(X) » BQP(X-Y) of pointed topological spaces.

Definition 1.1. For p > O the group

Kg(x) = vp+1(Homotopy-fibre of BQP(X) - BQP(X-Y) over O)

is called the p-th K-group of X with supports in Y.



As the exact homotopy sequence of BQP(X) - BQP(X-Y) we get

the long exact sequence

0 Y

Y - —_— -
(1.2) - KP(X) - KP(X) - Kp(X Y) Kp_1(X) .

Let

Yl < > Xl

l |z
Y &—— X
be a cartesian diagram of schemes, where the horizontal

arrows are closed immersions. Then one gets the commutative

diagram
P(X) ——— P(X~-Y)
f*
P(X') —— P(X'-Y"')

of exact functors and hence a map from the exact sequence of

(X,Y) to the one for (X',Y'):

Y L 9 Y .
— KP(X) —_— KP(X)-—a Kp(X-Y)-————e Kp-1(X)
(1.3) lf* lf* .'If* lf*
Y'oeny o oo 1oyry 0, gY' o,
- Kp (X*) Kp(x ) Kp(x Y') Kp_1(X ) .

Let Z » Y % X be closed subschemes. Then the exact functors
P(X) =» P(X-2) -» P(X-Y)

induce as the exact homotopy sequence of a composition of maps



the long exact sequence

Z Y Y-Z 2 Z
.4 - X) » K (X) » X-Z) — K X) » .
(1.4) Kg(¥) = X () = KT 00n) 2 1)

A morphism f : X' - X induces a map from the exact sequence
of (X,Y,2) to the one for (X',f_1(Y),f—1(Z)). The exact sequence
of (X,X,Y) coincides with the exact sequence for the pair

(X,Y).

2. The purity theorem

For a scheme X we denote by M(X) the abelian category of cohe-

rent Oy-modules. For p > O the p-th K'-group of X is defined

by
KI')(;() = Toeq (B Q M(X))

where again the homotopy group is formed with respect t§ ﬁhe
zero object of M(X) as base point ([Q1, §7).

Let Y < X be a closed subscheme of X. The restriction

M(X) - M(X-Y) is an exact functor, and we consider the homo-
topy group 1Tp+.] of the homotopy fibre of B QM (X) - B QM.(X-Y)
over O.

As well known, the restriction M(X) - M(X-Y) induces an équi-
valence of the category M(X-Y) with the quotient category of
M (X) byvthe Serre subcategory S consisting of coherent OX—
modules with support in Y. Hence by Quillen's localization
theorem ([Q], §5, Th. 5), thé considered homotopy group iden-
- tifies with np+](B(23). The devissage theorem ([Q], §5, Th. 4)
implies that the direct image M(Y) - S induces a homotopy

equivélence BQM(Y) > BQS. So we get a canonical identification



(2.1) Ké(Y) = (Homotopy fibre of BQM(X) - BQM(X-Y) over O).

TTp+1

Now the commutative diagram

P(X) — P(X-Y)
(X)) ———  (X-Y)
of exact functors induces a map of exact sequences

Y - - Y -
- Kp(X) Kp(X) - KP(X Y) Kp_1(X)

N

- Kp(Y) - Kp(X) - KP(X—Y) - Kp_](Y) -

More generally, for closed subschemes 72 = Y < X one gets a
map from the exact sequence of (X,Y,Z) to.the exact K'-sequence

for (Y,Z).

Let

Y' e X!

o e

Y e—» X

be a Cartesian diagram, where the horizontal arrows are closed

immersions and the vertical arrows are flat. Then the diagram

Y £* Y' o
Kp(lx) —_— Kp ix )
. fl* . . .
KP(Y) — KP(Y )

commutes, where the lower horizontal map is induced by the



A0

exact inverse image functor f'* : M(Y) - M(Y').

For smooth schemes X the homomorophism KP(X) - Ké(x) is an

isomorphism ([Q], §7), and it follows from (2.2):

Theorem 2.4 (Purity for smooth schemes).

If X is a smooth scheme and Y < X a closed subscheme, then the

canonical map
Y
K_(X K' (Y
p( ) - P( )

is an isomorphism.

From this purity theorem we get push-forward homomorphisms for
the K-theory with supports as follows:

Given a commutative diagram

Yl < > Xl

4k

Y &&— X

of schemes, where the horizontal arrows are closed immersions,
and where £ : X' » X is a proper morphism of smooth schemes.

Then we have a homomorphism

Y' Y
(2.5) £, : K5 (X) 5 K (X)

uniquely determined by the commutativity of the diagram



Yy fx
Kp ix ) Kﬁ(X)

. L
KP(Y ) - Kp(Y)

where the homomorphism f) between the K'-groups is iﬁduced
by the proper morphism f' : Y' - Y (see [Q], §7, 2.7).

Let V, denote the category of pairs (X,Y) with X a smooth
scheme and Y < X a closed subscheme, in which a morphism

f: (X',¥Y') » (X,Y) is a commutative diagram

Y"—"—_——'X‘

|

Y &— X

with a proper morphism £ : X' - X. It is clear that the assign-~
ment f » f; is a covariant functor on V,. The smooth Riemann-
Roch for K-theory with supports will be concerned with the

push-forwards f,.

3. The A-ring structure on”KY(X)

Let X be a scheme, and Y~ X be a closed subscheme. Given E

in P(X), we have the commutative diagram
P(X) —— P(X-Y)
-®EJ - -QE /X~-Y
P(X) ——— P (X-Y)

of exact functors which induces a homomorphism
(-®E) , : KE(X) > Kg(x).‘By the addition formula ([Q], §3,

Cor. 1) we obtain a product

41



12
v v
K, (X) xKp(X) - KP(X) '
and via Kg(x) - KO(X) hence a product

Y Y o xY
KO(X) Kp(x) KP(X) .

In the following we put
KY(X) = @ KI(X) ,
- p20
and we define on K¥(X) the structure of a commutative ring
(without identity in general) by linear extension of the
products
Y Y Y
K. (X) xK_(X) » K (X
{O( p) p()

KY(X) xKY(X) -» 0 for pq # O .
b g
The ring homomorphisms

4O I SN 4
{ HY (X,2) > K (X) = K''(X)

e: kN0 ~» Kx) - BO(X, ),

give KY(X) the structure of an augmented algebra over the ring
Hg(x,z) = Ker (H°(X,2) - H°(X-Y,%)); here the maps
H) (X,2) - xg(x) and K (X) — HO(X,7) are induced by the evi-

dent map HO(X,Z) - KO(X) and the rank map KO(X) > HO(X,Z).

Hg(x,z) is a binomial ring (without identity), and as such it
carries a canonical )-ring structure, defined by the binomial
coefficients A" (x) = ( z) for n > 1 ([SGA 6], V, 2.6). Taking
the opportunity, we recall: A A-ring (sometimes called a special
A—ring);is a commutative ring K, together with a family

)

(\ of maps AR o K, such that l1(x) = x and the uni-

nelN
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versal formulas

A (x4y) = A%(x) + AP T AT (v) el +2T ()
AN (xy) = pn(x’(x),...,An(x);x1(y),...,xn(y))

MOP ) = (), .. A )

14

hold (see [Sel).

Let now X be a smooth scheme, and Y © X be a closed subscheme.
Then Soulé ([S], §4) has defined a A-structure on the ring
KY(X) by globalizing the definition of the A-ring structure

in the affine case, discussed in [Se].

The crucial point is a new interpretation of the groups K;(X)
in terms of generalized sheaf cohémology in the sense of Brown
[B]: For any commutative ring A with 1 one can define a point-
ed simplicial set BGL(A)+ in a functorial way, and one then
defines a pointed simplicial sheaf BGLT on X as the associated
sheaf of the simplicial presheaf U » BGL(P(U,OX»4-. If Z®BGLT
denotes the product of the constant sheaf Z and BGL+, then one

has a canonical isomorphism
Kg(x) —= H,P(x,7 ®BGL")

(see [G], Prop. 2.15., [BG], Th. 5). Using this cohomological

description of'Kg(X), Soulé constructs a canonical map
lim R, (GLy) - Map (K (X),K> (X))
— 7 N P P "p '

where RZ(GLN) means the Grothendieck ring of representations
of the group scheme GLy over Z, and where the projective limit

is formed with respect to the standard inclusions GLN - GLN+1'



as transition maps. The exterior powers define a A-ring struc-
ture on each RZ(GLN)’ compatible with the transition maps.

Then for every n > 1 one defines the map
Y Y
A" KI(X) - KD(X
p( ) - p( )

: . n, . .
as the image of 1lim(A" (idy~N)) under the canonical map above.

Theorem 3.1.

i) If X is a smooth scheme and Y= X a closed subscheme, then
the family (An)neni‘of maps A" : KY(X) » K'(X) defines on K’ (X)
the structure of an augmented A-algebra over the binomial
A-ring Hg(X,Z), whose associated Grothendieck filtration
(FnKY(X))n>O'is locally nilpotent.

ii) 1f

is a Cartesian diagram, where the horizontal arrows are closed

immersions into smooth schemes, then the induced map

£ V(X)) - kY (X')

is a morphism of augmented A-algebras.
iii) If 2 Yo X are closed subschemes of the smooth scheme X,

then the arrows in the long exact sequence

)

> KE(X) » KE(X) » K2 (x-2) - K% (X)

are morphisms of augmented A-algebras.



Remarks.
1) The properties i), ii), and iii) for the map KZ(X) - KY(X)
suffice to prove the smooth Riemann-Roch theorem for K-theory
with supports (see §§2,3).
2) Recall that the Grothendieck filtration on KY(X) is defined
as follows: FnKY(X) is the H?(X,Z)-submodule of KY(X) generat-
ed by the elements

n Xayee0,X_ €Ker(e)

Y2 (x,) ... v T(x.) with ] r
! ol n,+ +n_>n

. 1 * o o r=
The locally nilpotence of the filtration means: For every
X €F1KY (X) = Ker(e), there exists an N€ N, such that

n
Y 1(x) .o an(x) = O whenever ng+...+n_ >N (see [sel).

4. The Chern character and the Todd homomorphism

Let more generally K be an augmented \-algebra over a binomial
A-ring R (not necessarily with 1), let € : K » R-denote its

augmentation. Let (FnK)n>o be the .associated Grothendieck

filtration on K, and

er'k = © Fx/rx

n>0 _
be the associated graded object., The property FPR-FUK c Fn+mK

induces on Gr K the structure of a graded algebra over R.

For n > 1 the n-th Chern class on K is defined to be the map

c, : K- Gr"K

n+1K

.

X yn(x-e(x)) mod F



4

Let Nn(X1,...,Xn) denote the n-th Newton polynomial, defined by
JE o n ‘. -
Nn(x1,“.,Xn) =Y t...+Y where X. denotes the i-th elemen
tary symmetric function in the indeterminates Y1""’Yn’
Nn(x1""'xn) is isobar of weight n. For every x €K it

follows that
N (¢ (%), ...,0,(x)) € crk

and hence

-ﬁ% N_(cq (x),...,c (x)) €Gr"K@Q ,

where the tensor product is formed over Z. We put

A ]

ch(x) = e(x) + ) 3 Nn(c1(x),...,cn(x))

n>1 n!
reading this as an element in the completion TT Gr"K®Q of

. n>0
Gr K®Q. The map

ch : K» TT Gk 90
n>0

is called the Chern character on K, and as a first property

one has

Lemma 4.1.

The Chern character

ch : K-> T7T G‘rnK®Q
n>0

is a homomorphism of R-algebras.

We assume now that the Grothendieck filtration (FnK)n>o on K

is locally nilpotent. Then the Chern character takes its

values in Gr K ®Q; so we have



N7

ch : K—— Gr'keqQ ,
and we look at the induced homomorphism
ch : K®Q » Gr K®Q .
In doing so let us first recall the fundamental properties of

the Adams ‘operations wk on K®Q (see [Se]):

Theorem 4.2.

In case of a locally nilpotent Grothendieék filtration
. .
(F K)n;O on K one has:
i) For every j the kj-—eigenspace (K®Q) (3) of ka on K®Q is
independent of k> 1.
ii) For every n > O one has

F' @0 = ® (Koo)' I . -
j>n

Especially we have
KeQ = @ (kKeq) I
320
and this decomposition into eigenspaces defines on K®Q the
structure of a graded R ®Q-algebra, whose natural filtration

coincides with the Grothendieck filtration (FnKGND With

n>0"
respect to this graded structure on K®Q we have now the

following

Theorem 4.3.

If the Grothendieck filtration (FnK) on K is locally nil-

n>0
potent, then the Chern character



8
ch : K®Q » Gr K®Q

is an isomorphism of graded R ® Q-algebras; on the n-th homo-
geneous component (K® Q) (n) of K®Q, the Chern character is

given by

ch(x) = x mod Fn+1K ®Q0 .

This theorem follows from the preceding theorem in connection

with the well known formula

c, (x) = (—1)n—1(n-1)! x mod Fotlxg

for the n-th Chern class of elements x € F'K, and the formula

_ _4y 01
N, (0,...,0,X) = (-1) n X .

We will now briefly recall the definition of the Todd homomor-
phism. We assume the considered augmented A-algebra K over R
to have an identity element.
Following Hirzebruch, to every power series f(t) €1 +tQ[t]
one associates a map
tde : K'» 1+ TT Gr'K®Q
n>1

X » 2. H

(C (X),...,C (X)) 14
‘N30 1 n

f,n

where the so called Hirzebruch polynomials

_Hf'n(x1,...,xn) €Q[x1 ,...,xn]

are defined in the following way: Let g > n, and let Y1,...,Yq

be indeterminates over Q, and X1,...,Xq be their elementary

symmetric functions; then one puts



g
H (X,,...,X_) = coefficient of t™ in TT f(Y.t) .
f,n'"1 n i=1 i

Especially for line elements x € K one has tdf(x) = f(c1(x)).

Lemma 4.4.

The map

tde : K> 1+ TT Gr"k ®Q
n;1

is a homomorphism of abelian groups.

We now take the power series

(4.5)  £(t) = B(t)-e% ,

where B(t) denotes the Bernoulli series, i.e.

et"1 néo

The associated homomorphism tdf is called the Toddlhomomorphism,
and it will be denoted shortly by td. If the Grothendieck fil-
tration on K is locally nilpotént, then the Todd homomorphism

has its values in Gr'X®Q .

5. Let again X be a smooth scheme, and Y& X be a closed
subscheme. By Theorem 3.1 the ring
kN (x) = @ KL(X)
p>0 P
carries the structure of an augmented )-algebra over the bi-
nomial )-ring Hg(x,z), whose associated Grothendieck filtra-

tion (.FnKY(X))n> is locally nilpotent. Hence by Theorem 4.3

>0

the Chern character ch on KY(X)'induces an isomorphism

g
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~

ch : KY(X) ®Q = Gr K’ (X) ®Q

of graded H?(X,Q)-algebras,-where the graduation on KY(X)<®Q
is given by the decomposition
kY (x) oQ = ® (K¥(x)eq P
n>0

of KY(X3<&Q into the kn—eigenspaces of the Adams operations wk.

Denoting the Grothendieck filtration of KY(X) still by

(FnKY(X)) for all n,p > O we put

n>0’
FPRY (x) = FPRY (X) 0 KD (X) .

p P
It is not hard to see that we have the direct sum decomposition

(5.1) FRRY (X) = @® FPRE(X) .
p>0 P

Denoting the associated graded object of the filtration

(FnKig(X))n;o by'Gr°K§(X), from (5.1) we fet for every n:
ar'k¥(x) = ® GrKI(X) .
p20 P

According to this decomposition the Chern class ¢, on KY(X)
decomposes into a sum

c, = pio con
The components cp'n : KY(X) - GrnK;(X) afe also called Chern
classes; they live on KE(X), and are additive fdr p>1.
In the same way the Chern character ch on KY(X) decomposes

’

into a sum
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ch =} ch_ .
p>0 P

The components chp : KY(X) - Gr'KE(x)(®Q live on Kg(X), and for

P > 1 one has the simple formula

ch_ = ) (-nn ! c
p 1 (n-1)! “p,n °

n>

Moreover it follows from the above that each of the Chern

characters chp on KE(X) induces an isomorphism

I

Y Y
: X
chp ‘KP(X)®Q-—>Gr Kp( ) ®Q

(n)

which maps the kn-eigenspace (KE(X)(@Q) of the wk onto

n, Y
Gr KP(X) ®Q .

§2. Riemann-Roch without denominators

1. Let be given a closed immersion
i (Y,2) » (X,2')

in the category V, (§1, 2.), i.e. a commutative diagram

of schemes, where the horizontal arrows are closed immersions
into smooth schemes, and where i : Y > X is a closed immersion
too. By §1, 2.5, for‘i : (Y,2) » (X,2') there is defined the

pusheforwafdhomomorphism
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i+ KA(Y) » K2 (X) .

Let further be given a natural operatibn 4 on the category

of A-ring with augmentation 0, i.e. u(O) = 0. The Riemann-Roch
theorem without denbminators describes the effect of i, on the
operation u, acting on both of the A-rings KZ(Y) and KZ'(X).
We consider the conormal sheaf N of i : Y -» X, defined by

N = 1/1°%, where I is the coherent ideal of 0y defining i:Y-X.
The sheaf N is a locally freeOY-modﬁle of finite rank, and
hence defines an element [N] EKb(Y) of finite A-degree. We
form the element

A (IN]) = ] (—‘I)pAP[N]EKO(Y) .
: p>0

The given natural operation yu has a unique representation

b= £07,02 1,32

y+-.) as a polynomial in the A ,1A“,... with integer
coefficients and vanishing constant coefficient. Using this
well known fact, one obtains as an easy generalization of
([sGA6], V, 5.3 ) the following result about the action of

on products )\_1([N]) -y with y € KZ_(Y) :

Lemma 1.1.

For every yEZKZ(Y), there exists an element u([N],y)éEKZ(Y)
D
which is a universal polynomial in the AP[N] and the A§ with

integer coefficients, depending only on u, such that

By (IND) -y) = A_, (IN]) -u(IN],y)



In the following we write A_1(N) and u(N,y) instead of

A_y(IN]) and u(IN],y). We are now ready to state the theorem:

Theorem 1.2 (Riemann-Roch without denominators).

The diagram

k2 (y) —HIN,2) %y
i* i*
k?' (x) —E— K%' (x)

commutes, i.e.: For every yéEKZ(Y), one has

B, (¥)) = i, (u(N,¥)).

Before proving the theorem we derive a corollary. We consider
the Adams operations wk for k > 1. Then the elements wk(N,y)
for yeEKZ(Y) can be computed as follows.

For k > 1, the Botts' cannibalistic classes of N are defined

to be the elements
o ) = R, 1)

in KO(Y). Then from the identity
VEo_, My = 0vEm,y)

one obtains the formula

WLy = eX Ry

23
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Corollary 1.3 (Adams-Riemann-Roch without denominators).

The diagram

X Wk oz

K% () » K2 (¥)
i 1y
1 k 1
k2 (x) — ¥, k% (x)

commutes, i.e.: For every y(EKZ(Y), one has

v = 1,65 vEen.

2. Proof of the theorem

We begin with the following

Remark 2.1.

The given closed immersion i : (Y,2) -» (X,Z') in Vx is the
composition of the closed immersions (Y,Z) - (X,2) and

(X,2) » (X,2'). As the push-forward

Zl

K% (X) - K% (X)

for (X,2) - (X,2') commutes with the )-operations (§1, 3.1),

it suffices to prove the theorem for the closed immersion

i (Y,2) » (X,2).

Nevertheless, the more general formulation of the theorem will

be essential in the last step of the proof.

As the first step we recall an appropriate intersection formula

for excess dimension O. Let



Y ———X

be a Cartesian diagram with closed immersions of smooth schemes.

. .
Let N and N' denote the conormal sheaf of Y —— X and Y' —— Y',

respectively. Then we have a canonical surjection j'*N - N'.
Its cernel is called the excess conormal sheaf, and the rank
of the excess conormal sheaf is called the excess dimension of

the diagram.

Lemma 2.2 (Intersection formula for excess dimension O).

Assume that the above diagram has the excess dimension O. Let

-1

Z be a closed subscheme of ¥, and 2' = j' " (2). The following

diagram commutes:

k2 vy k%
jrr 3*
K2 (Y) Iy k2 (x) .

Proof.

By a well known result ([SGA6], VII, 2.5), one has

0 0
X ~ 29 X
'I‘orq (Oy,OX.) = A Tor1 (OY,OX,)

for all g, and
OX
Tor , (Oy,OX,) = Ker(j'* N - N").
So our aséumption implies

OX
'Torq (Oy,OXJ =0 for q>0 ,



2

i.e. the schemes Y and X' are Tor independent over X. Now the

intersection formula follows from [Q], §7, 2.11.

Remark 2.3.

Under the assumptions of Lemma 2.2 let us assume for a moment

that

jrr s kKZE(v) - KE (¥')

is an isomorphism. As the push-forwards i, and i, are isomor-
phisms, it follows from the intersection formula that

j* KZ(X) - KZ'(X') is an isomorphism too. Remembering that
j'* and j* are A-morphisms (§1, 3.1), the intersection formula

Zl

implies for elements y(EKZ(Y) and y' = j'*(y) €K™ (Y') the

equivalence of the formulas

U(l*(Y)) = 1*(U(Nry)) r

u(ig(y")) = ij(u(N',y")) .

That means: If the Riemann-Roch theorem holds for one of the

closed immersions

i (Y,2) -» (X,2)

it (y',z2') » (xX',2') ,

then it holds for both of them.

Using the intersection formula and the homotopy property of
K-theory, in our next steps we reduce the proof of the theorem

for the given closed immersion

i (Y,2) » (X,2Z)
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to that for the zero section
i' : (Y,Z2) » (IP(N ® OY),z)

defined by the projection NEBOY - 0,,. This happens with the

Y
famous "deformation of i : Y » X into the zero section

i' 1 Y > P(N @ OY)“.

We start with the closed immersion i : Y » X with conormal

sheaf N. The extension i : A; - A; is a closed immersion with

conormal sheaf p*N, where p : A; -» Y is the structure morphism.
Let O : ¥ » A; denote the zero section.

We consider the blowing up

1

W By

of A; along the closed immersion Y-9+A;-EAA; . The conormal

sheaf of this immersion is Niboy. Hence the exceptional divisor

1

of the blowing up, i.e. the inverse image of the center Y Ax

under W - A;, coincides with the Y-scheme IP{( N & OY). Let
P(N®O,) ~» W

denote the canonical immersion.

Now we consider the blowing up of A; along Y-geA; . As Y-SLA;
is an effective Cartier divisor, this blowing up identifies
canonically with A;. Hence the immersion A;-E*A; induces a

1 . ,
closed Ax-lmmer51on

1

Ay W

and the diagram
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il
Y ———— P (N eoY)

(2.4) o

1

A, — W

of closed immersions is Cartesian. The conormal sheaf of A;-aw
is p*N¢$0A1(Y) = p*N, and the conormal sheaf of the zero section
Y-iialP(NégOY) is N. Hence the Cartesian diagram (2.4) is of
excess dimension O.

Next we consider the one section 1 : X > A;. As the blowing up
W - A; is an isomorphism over the complement of its center,

the section 1 : X = A; lifts uniquely to a closed immersion

X - W, and the diagram

Yy —2 %

(2.5) i

S

is Cartesian of excess dimension O.
Now we look at the closed subscheme A; of A;. For every section
s : Y- A;, we. have s—j(A;) = 7. Using §1, 1.3 and the homotopy

property ([Q], §7, 4.1), it follows that the map
1
A
s¥ . x Z(A;) - KZ(Y)
is an isomorphism. Thus both diagrams (2.4) and (2.5) satisfy
the additional assumption of the remark (2.3) above. From this
it follows that the Riemann-Roch theorem is true for both of

the immersions

i (¥,2) » (X,2)

i': (Y,2) » (P(N@0y),2) ,
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if it is true for one of them.

In the last step we prove the theorem for the zero section

i' 2 (Y,2) - (P (N@OY),Z).

We put X' = E>(N<BOY). Let p : X' » Y be the structuré morphism
We consider the closed subscheme Z' = p_](z) of X'. Then the
homomorphism

kZ(x') » k2 (x")

induced by (X',Z) - (X',Z2') is injective. In fact, by §1, 2.2

the diagram

KZ(X') ——— K% (X)

l‘; l

commutes. But, since the inclusion Z -» Z' is a section of the
morphism Z' - Z induced by p : X' » ¥, the map K'(2) -» K'(2")

zl

is injective. As KZ(X') -» K° (X') is a A-homomorphism (§1, 3.1),

‘it then suffices to prove the theorem for the zero section
i (Y,2) - (X',2') .

We consider the gniversal exact sequence
O = H - P*N®0y: » 0y, (1) 5 0

on X'. The induced homomorphism H - OX' maps the universal

hyperplane sheaf H onto the ideal T' of ¢ defining the

XII

zero section i' : Y » X', and the associated Koszul complex

yields a finite locally free resolution
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d

1 .
O->AH-> ... >AH-> OX - l;OY - 0

of the sheaf i;‘OY on X. After tensoring the exact sequence
- A2H - A1H - I' >0 byvOX;/I', one gets as conormal sheaf
of i' : Y -» X' the sheaf i'*H, and from the universal exact

sequence one obtains
(2.6) it*H = N,

The Koszul resolution implies for the image of 1 €K, (Y) under

iy + K (Y) » K_(X') the formula

(2.7) iy = § =nPPHI=a_ ) .
p>0 '
Taking the closed subscheme Z' = p-](Z) of X', the morphisms
i' : (Y,2) -» (X',Z')

S (x',z2'") - (Y,2)

are both Cartesian, and we have the pull-back homomorphism
(§1, 1.3)

ivx s kK2 (x") - k2 (¥)

p* : KZ(Y) — K% (X') .

By functoriality, we have i'* . p* = id, and hence the map

itk s K2 (XYY - K2(Y)

is surjective.
Moreover, for i' : (Y,Z) - (X',Z') being Cartesian, we have

the projection formula, i.e. the commutative diagram



Using these fact, the Riemann-Roch theorem for

i' : (y,2) -» (X',2'), i.e. the formula
ML) = if(u(N,y)) for y €KZ(Y)

now comes out by the following computation:
. . 1
To a given y € K% (Y) choose an element x € KZ (X') with i'*(x) =y.

Then:

u(ig(y)) = u(ig(i'*(x)))
= p(i; (1)x)

= u_4 (H)x)

= A_](H)u(H,x)»
= i, (1) u(H,x)

= 1 (1" *u(H,x))

= i) (L *H, 1% (x)))

=il (WN,y)) .

31



§3. The smooth Riemann-Roch theorem for K-theory with supports

1. We work with the category V, introduced in §1, 2. It con-
sists of pairs (X,Y) with X a smooth scheme and Y < X a closed
subscheme, in which a morphism £ : (X',Y') - (X,Y) is a commu-

tative diagram

Yl pd 5 XI

Lk

Y &/ X

with a proper morphism £ : X' -» X.
For every morphism £ : (X',Y') - (X,Y) in V,, there is defined

the push-forward homomorphism (§1, 2.5)

£, : KX (x') » kY (x) .

For any object (X,Y) in V,, the augmented A-ring structure on

KY(X).yields the Chern character (§1, 4)
ch : KY(X) » Gr'K'(X) ®Q .

It induces an isomorphism (§1, 5)
ch : KY(X) ®0 — Gr K (X) ®0Q .

Concerning the Riemann-Roch problem for the push-forward f,

1
above, this implies: If x is an element of KY (X'), then to
compute ch(f, (x)) means to compute the image £, (x) modulo

torsion.

32
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= ' Y4
For a smooth scheme X, the tangent sheaf TX/k (Qx/k) is a
locally free Ox—module of finite rank. One defines the Todd

class of X to be

Ta(X) = td ([T DeGr'K (X) ®Q

X/k

where td denotes the Todd homomorphism on KO(X), see §1.4.»
Td(x) is a unit in Gr.KO(X)C@Q with component 1 in degree

zero.

If £ : X' » X is a morphism of schemes, then for a point x' €X'

the integer
qx'(f) = dimx,(x') - dimf(x.)(X)

is called the wvirtual relative dimension of f in x'. The func-
tion x' ~» dx.(f) is locally constant on X'.

In what follows, it is convenient to héve the Grothendieck
filtration defined for all integers, so we let F'K = K for

n < 0.

Now we state the theorem:

Theorem 1.1 (Grothendieck-Riemann-Roch).

Let £ : (X',Y') » (X,Y) be a morphism in V, of constant virtual
dimension d. Then one has:

1
i) The homomorphism f, : KY-(X') - K¥(X),has degree -d, 1i.e.

n,Y'

£, (FPKY (x') 8Q) c F* %Y

(X)®Q
for all integers n, and hence f, induces a graded homomorphism
Y

£, : Gr XY (X') ®Q - Gr KY(X) ®Q

of degree -4, the Gysin homomorphism.



ii) The diagram

kY (x') —TaXch oo -xY vy g0
£, £,
kY (X) TdX)ch | o k¥ (x) 0

commutes, i.e.: For every XGEKY (X'), one has

1

ch(f,(x)) = Td(X) £, (Td(X"')ch(x)).

Remark 1.2.

Because of the covariance of f£,, the theorem holds for a
composition gef in V,,if it holds for g and f.

A given morphism f : (X',Y') - (X,Y) has a factorization

x',vt) 2 (25, PY) B (x,y)

into a closed immersion i and a projection p from a projective

space. It suffices to prove the theorem for i and p.

2. Proof of Riemann—-Roch for closed immersion

We consider a closed immersion
i (Y,2) - (X,2'")

of constant codimension d, i.e. of constant virtual dimension
-d. Let N be the conormal sheaf of Y —ie X. N is a locally
free OYfmodule of rank d.

The crucial poiﬁt of the proof is the Riemann-Roch theorem

without denominators for the Adams operation wk (see §2, 1.3):

For every k > 1, the diagram

S



WP ) O 2

i, i,

2l
commutes.

In addition, we use the following fundamental formula, combin-
ing Adams, Bott, Chern,and Todd on KO(Y). Remember that the

Chern character
ch : K (Y¥) ®Q - Gr 'K, (¥) ®Q

is an isomorphism (§1, 4.3).

Lemma 2.1.

Let N be a locally free module of rank 4 on Y. Then in KO(Y)¢8Q

one has
o® (MK (eh™ T (ta())) = k@ en”t(ka (M) .
Proof.

Since the induced action ofbwk on GrnKo(Y) is multiplication

by kn, the diagram

ch C e
KO(Y) ®Q ————————— Gr KO(Y)_®Q
k
1% q,k
ch.

K (Y) 8Q ——— Gr K, (Y) ®Q

commutes, where @k is the graded algebra homomorphism which
is multiplication by x" on GrnKo(Yﬁtso. Hence the stated

formula is equivalent with the formula



3¢

ch (¥ (V) oX(ta (W) = k2 ta ).

Let p : D(N) » Y be the flag scheme of N oVer Y. In KO(D(N))

the class of p*N decomposes into-a sum of classes of invert-

ible modules. Since the induced map,Gr.Ko(Y) a'Gr°Ko(D(N)) is
injective ([sGA 6], VI, 5.5), it obviously suffices to prove

the formula for an invertible sheaf N.

Let a = c1(N)<EGr'KO(Y) be the first Chern class of N. Then

we have
ch(6X(N)) = ch(1+[N] +...+ [NIEYy
= 14+e24...+ekNa ,
ta(N) =2 @ ._-_za
e 2-1 1-e@
k Y] _=ka
(D (td(N)) - 1_eka r

and hence:

+e(k-])a)" -ka

a
(1+4e " + ... . ]_eka

che® W) X (td (1))

1-e
k td(N) .

We consider now the push-forward homomorphism

i, : K2V eQ - K (X) 60

induced by the given closed immersion i : (v,2) - (X,2'). As
in §1, 4, we denote by (KZ(Y) @Cn(J) the kj—eigenspace of

the Adams operations xpk on KZ (Y) Q.



From the Riemann-Roch theorem without denominators and the

formula above we deduce now as the essential fact:

Lemma 2.2.

By
y = i, (ch™)(ta(l) v)

the eigenspace (KZ(Y)<$Q)(J) is mapped into the eigenspace

(k% (x") @) (3D |

Proof.

In fact, for an element y € (k% (Y) ®Q) (3) e have

Wi, (en” T eadin vy = i, 6% ¥ en™? ea (im o® (v

= 1, &%en™ (ea (i) Ky

j+d,

k37, (eh™ T (ra () v,

and hence i*(ch_1(td(ﬁ))yq e k2 (x) @) (3D

From this lemma we shall now derive the Riemann-Roch theorem
for i : (Y,Z) » (X,2'). We use the results §1, 4.2 and 4.3,
especially the behavior of the Chern character on the eigen-

spaces of the Adams operations.

Lemma 2.3.

i) The homomorphism i, has degree 4, i.e.

i, k2 () 00 ¢ FM%E () 90

for all n.

ii) The diagram



Kz(Y) Td(Y)ch . ,Gr-Kz (¥) ®0
i, i,
KZ'(X) Td (X)ch , Gr'KZ'(x)<®Q

where the vertical map on the right is the Gysin homomorphism,

induced by i).

Proof.

We let u = ch-j(td(ﬁ)); u is a unit in KO(Y)(QQ with augmenta-
tion 1.

i) Let y€FnKZ (Y) ®Q be given. We write y = uy' with y' =

1

u y'GFnKZ(Y)~©Q. With respect to the decomposition (§1, 4.3)

FPRY(z) 80 = ® (XK2(v) @) I
j>u

we decompose

y'= 1 v¥§
>n
with yl € (k% (v) ®0) 3. Then it follows
i,(y) = dg luy") = § i,(uyl) .
j>u J

y (3+d)

By Lemma 2.2, we have i*(uy:'j) € (KZ (X) ®0Q for all j > n,

and hence

Z )(j+d) - Fn+d yA

i, (y) € ® (K% (x) @0 kK%' (X) ®Q .

jzn
ii) We first prove the commutativity of the following diagram

1

td (N) " 'ch

K% (¥) , Gr'K2(Y) ®Q

1 l*

K%' (X) b, er'x? (x) ®0
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Let y EKZ(Y) be given. We write again y = uy' with y' =

1

u yeE KZ(Y) ®Q. We have to prove

1

ch(i,(uy')) = i, (td(M)™" ch(uy")).

Now

1

i, (td (M) Teh(w)ch(y")
1

i, (td (M) " 'ch(uy"))

i, (td (M) " 'ta(Mych(y"))

ix(ch(y"))
and so we have to show: For every y €KZ (Y) ®Q one has
ch(iy (uy)) = i, (ch(y))

In view of the decomposition of KZ (Y) ®Q into the eigenspaces

(n)

(KZ (Y) ®0Q) , We may assume Yy € (KZ (Y) ®Q) (n) . Then by §1,

4.3, we have

ch(y) = y mod FnHKZ(Y) ®Q ,

and hence

(*) i,(ch(y)) = i,(y) mod FI™*! x% (x) @0 .

. , A (d+n)
On the other hand, by Lemma 2.2 we have i, (uy) € (K* (X) ®Q)

and hence again by §1, 4.3

(**) ch(i, (uy)) = iy (uy) mod Fd,+n+1 KZ' (X) ®Q .

But now, since u>= ch"1 (td(ﬁl)) EKO(Y) ®Q is a unit with augmen-
tation 1, we have

1

uy = v mod ¥ k%2 (v) @ 0

and therefore



1]
i, (uy) = i, (y) mod FP*1 ¥ (x) @0 .

So from (x) and (x*x) we get
ch(i,(uy)) = i4(ch(y)) ,

and the commutativity of the diagram above is proved.

Now the commutativity of

KZ(Y) Td(Y)Ch>'Gr.KZ(Y)(®Q
i, i,
k2" (x) —24X)ch, o k%' (x) @0

comes out as follows: For the closed immersion i : ¢ -» X, we

have the exact sequence
O—»N—ti*Q1 ->Q1 - 0
‘X/k Y/k
and therefore

i*(Td (X)) = Td(Y)td(N) .

Then for y EKZ (Y) we have:

i, (kd ()77 ch(y))
1

ch(i, (y))

i, (i*Td(X) ™
1

Td(Y) ch(y))

Td (X)

I

) i* (Td(Y) ch (Y) ) 7
and hence

Td(X) ch(i,(y)) = 1,(Td(Y) ch(y)) .



3. Proof of Riemann-Roch for (EFhfiwg) -» (X,Y).

The projection

L)

v~ (XY

p : (JP}]';,IP

is of constant virtual dimension r. In the following we write

P instead of ]Pr

X X’ etc. We prove

Lemma 3.1.

i) The homomorphism p, : KEW'CPX) - KY(X) has degree -r, more

precisely one has

py (FPKTY (P, ) € FPERY (x)

for all n.

ii) The diagram

kY () Ty Ch; Gr' kY (Py) ®0Q
P x Px
Y (X) R ek e0
commutgs.
Proof.

Let P denote the projective space of dimension r over k and

let q : Py » P be the projection. Then the canonical map

Y P
(3.2) K™ (X) @K (P) — K Y ()

X®Y — P*(x)g*(y)

is an isomorphism. In fact, since p is flat, we have the

commutative diagram (§1, 2.3)

iy



k' (y) —B, g (Py)

in which the lower map p* between the K'-groups is induced
by p : P, — Y,and now it is a result of Quillen (Iol, §7,

4.3) that the canonical map

K' (Y) ®KO(IIP) — K! (IPY)

X®Y — p*(x)g*(y)

is an isomorphism.
Using the isomorphism (3.2), the projection formula implies

the commutativity of the diagram
K (X) ®K_(P) ——— kY ()

id ®p, Py

kY (X) ®2 » K (X)

in which on the left-hand side p denotes also the structure
morphism P - Spec(k).

It is well known that t»[OIP(-1)] induces a ring isomorphism

r+1 =
—_

2lt]l/ (1-t) KO(IP) .

If we let y = 17- [0Ip (-1)], then the elements yi EFiKo(IP) ’
i=20,...,r, form a basis of KO(IP) , with the relation yr+1 = Q.
As an easy generalization of SGA6, VI, 5.3, and with the same
method of proof, one obtains for the Grothendieck filtration

on KEY (P, ) the result:

n

(Ghal

(3.2)

FPIRY (%) @ zIyt] = FPRTY ()

i=0



From this and the projection formula we get

r .
P E'KEY () ¢ T P kY(x)
2o

= T x¥(x) .

This proves the assertion i).

Furthermore, it follows from (3.3) that
r n-i _Y i = n_IP
® Gr K" (X) ®Gr K_(P) — Gr K ¥ (IPy)
i=0

and the projection formula shows that the Gysin homomorphism

px : GE"KTY () ®0 ~» o™ kY (x) @0

is induced by the corresponding
f Q for i=r

D, :,GrlKO(IP) ®Q - Grl"rKo(k) ®Q = {
O otherwise

Now the assertion ii), i.e. the commutativity of the diagram

kY (Py) Td(Px)ch , o -xPY (PPy) ® Q
Dy Dy
kY (X) Td (X) ch » GrKY (X) ®0Q

is an immediate consequence of the classical Riemann-Roch for

P/k , i.e. the commutativity of

Td (IP) ch

KO(]P) - Gr KO(IP) ® Q

p* P*

incl

k3



In fact, using (3.2), the projection formula, and Td(IEQ =

p* (Td (X)) g*(Td(TP)), it follows for x GKY(X) and y EKO(IP) :

Py (TA (Py) ch(p* (x)g* (y)) =

Py (P* (TA(X) ch(x)) g*(Td(P) ch(y))

i

Td (X) ch(x) p4 (TA(IP) ch(y))

Td (X) ch(x) px(y)

Td (X) ch(py (P*(x)g*(y)) .

§4. The singular Riemann-Roch

Througout this paragraph, we work with the category V, so

all schemes under consideration are quasi-projective schemes
over the field k, and all morphisms of schemes are k-morphisms.
For a scheme X, we put K'(X) = @ K'(X).

P :
p>0
The singular Riemann-Roch is concerned with the push-forwards

£, : K'(X) - K'(Y)

for proper morphisms f : X » Y. It is the collection of four
theorems, which will be stated and proved seperately in the

subsequent four sections.

1. The ascending filtration on K'(X) ®Q and the homomorphism T

Let X be a scheme. We choose a closed immersion X «» M of X into
a smooth“scheme M of pure dimension, say d. By the purity

theorem (§1, 2.4), X< M induces an identification

K'(X) = Ko(M) .

We then define an ascending filtration (FnK'DQ @Q)nez on

e
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K'(X) ®Q by

d

FK'(X) ®Q = F X M) ®Q

and, if Gr K'(X) ®Q denotes the associated graded group, a

homomorphism
T : K'(X) » Gr K'(X) ®Q

by the commutativity of

K' (X) —— Gr K'(X) ®Q

I [l

Td (M)ch’
—_—

KX(M) Gr'KX(M) ®0 .

The first theorem asserts that the filtration (FnK'(X)®Q)nEZ
and the homomorphism 1 : K'(X) - Gr K'(X) ®Q are independent
of the immersion X & M. This is mainly a consequenée of the
Riemann-Roch theorem for K-theory with supports (§3, 1.1). For
the proof we will need a finiteness property of the Grothen-

dieck filtration on KX(M). Recall the decomposition (§1, 5.1)

¥ ) = @ PPy .
p20 P

Proposition 1.1.

For every p > O, there exists an n(p), such that
FPKS (M) ®Q = ©

for all n > n(p).

For an even more precise result, see [S], §4, Prop. 5.



Theorem 1.2 . (Singular Riemann-Roch).

The filtration (FnK'(X)¢$Q)n€z and the homomorphism
T ¢ K'(X) - Gr K'(X) ®Q are independent of the closed immersion

X & M.

Proof.

Let M!

be two closed immersions of X into smooth schemes M and M' of
pure dimension d and 4d'. We have to show that both immersions
define the same filtration on K' (X) ®Q on the same map

T : K'(X) » Gr K'(X) ®Q.

The obvious commutative diagram

X —— MxM'

N

M

shows that we may assume the existence of a morphism f : M' -» M,

such that

comrmutes.

f : M' » M being quasi-projective, it can be faétored into an
immersion M' -» M" and a proper morphism M" - M, with M" smooth
-of pure dimension. Hence it obviously suffices to prove the

assertions in the two cases,where f is an open immersion, and

B¢
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where £ is proper.

Let £ : M' » M be an open immersion, then 4' = 4. By §1, 2.3,

we have the commutative diagram
x
o —E— o)
e IR

k' (x) —2 5 x' (x)

in which f* is a A-morphism, respecting the augmentation (§1,

3.1). Hence we have
£* (FPx¥ M) = FRRE(M')
for all n, and the diagram

KX(M) Td(M)ch | Gr'KX(M) ®0
o E
kX (M) —28Mch | o xX 1) @9

commutes, note Td(M') = f£x Td(M). This proves the assertions in

case of an open immersion £ : M' - M.

Let now £ : M' - M be proper. Then by definition (§1, 2.5),
the diagram
¥y —E k¥

il I

commutes. The morphism f is of the constant virtual dimension
d' -d. Then by the Riemann-Roch theorem we have:

1) £, FKM) 0Q) < F* 9 %X ) g9 for all n, and

ii) the diagram



k¥m') @g —2dWMch kXM 009

.| .

XM og —raMch o x¥im) o

commutes.

In this diagram, the horizontal arrows are isomorphisms (see
§1, 5, and note that the Todd classes are units), and the
left vertical arrow too. Hence the Gysin homomorphism on the

right is an isomorphism, that is for all n, the map

At
£, : GrPkKE ') ®9 » ar™T kX (M) @0

is an isomorphism.
This remains true'for the p-components on both sides. Then
using the finiteness property above (Lemma 1.1), it follows

from i) that

-A
£, (FK ') Q) = FIV R ) @0
for all n. This proves the assertions in case of a proper mor-

phism £ : M' - M, and we are done.

Remark 1.3.

If for every p > O, we define the filtration (FnK;') (X) ®Q) g

on KE')(X) ® Q and the homomorphism TP : KI'>(X) > Gr.KI')(X) ®Q in

the same way via Ké(X) = Kg(M), we have the decompositions
FK'(X)eQ = & FnKI')(X) ®Q ,
p>0
Gr K'(X)8Q = @ Gr K (X)®Q ,
P20 P
o= ) T .
| p>0 P

This follows from the corresponding decompositions for KX(M)
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and the Chern character (§1, 5.).

Definition 1.4.

For a scheme X, the twisted absolute homology is defined to be

j) := K' J.(X)® .
Hp(X,J) GrJ p_23( ) ®Q

Using this, the morphism Tp may be written as

: K! - . X,3
T ¢ KR (X) ejrpH23+p( +3)
o —
=: H2*+p(X,*)

2. The Gysin-homomorphism and the covariance of T.

We will now prove - again as a corollary of Riemann-Roch for
K-theory with supports - the essential part of the singular

Riemann-Roch, namely:

Theorem 2.1 (Singular Riemann-Roch).

Let £ : X > Y be a proper morphism. Then one has:
i) The push-forward f, : K'(X) - K'(Y) has degree O with

respect to the filtration For i.e.
fu (FnK' (X) ®Q) < FK'(Y)®Q
for all n, and hence it induces a homomorphism
fy : Gr K'(X) ®Q - Gr K'(Y) ®Q

of graded groups, the Gysin homomorphism.
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ii) The diagram

K'(X) ———— Gr K'(X) ®Q
f* l lf*
K'(Y) ——— Gr K'(Y) ®Q

is commutative.

Proof.
To the given proper morphism £ : X > Y, there exists a commu-

tative diagram

C__.______,M
|

>

H
Ko

in which the horizontal maps are closed immersions into smooth
schemes of pure dimension, and in which £ : M' - M is proper.
Such a diagram can be found by means of a factorization
r
. — -
f : X IEY Y .

By definition (§1, 2.5), the diagram

Xy —Eo k¥

Ul 1

K' (X) —f—ii‘* K' (Y)

commutes. Let d' and d be the dimension of M' and M, respec-

=

tively. Then, by the Riemann-Roch theorem for f:(M',X)-(M,Y),

being of the virtual dimension d' -d, we have:

i) £, : KX(M‘) - KY(M) has degree 4 -d', and hence

£, 7 P F ) 00) ¢ 4T ) 00 -

«

ii) The diagram



gXmry —2dMech o x¥ M) 009

| B
k¥ ) —T&Mch o x¥ (M) @0

commutes.
In view of the definitions of F, and 1, this proves the

theorem.

3. Behaviour of F_ and 1 with respect to open immersions

If f : X » Y is a flat morphism, then the pull-back homomor-

phism
£f*¥ : K'(Y) » K'(X)

is defined. It is of interest to study the behaviour of the
filtration Fn and of the transformation T under f*.
Concerning the case of an open immersion, we prove the follow-

ing trivial fact, which we nevertheless state as a theorem

Theorem 3.1 (Singular Riemann-Roch).

Let £ : X » Y be an open immersion. Then one has
£* (F K' (Y) ®Q) € F X' (X) ®Q

for all n, and the diagram

K'(Y) —— Gr K'(Y) ®Q

f*l lf*

K'(X) —— Gr K'(X) ®Q

with the induced map on the right, commutes.
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Proof.

Obviously, there exists a cartesian diagram

where the horizontal maps are closed immersions into smooth
schemes of pure dimension and where f : M' - M is an open

immersion. Then the diagram

Foy —2 . X

Ul e

commutes (§1, 2.3). The upper f* is a A-morphism, respecting

the augmentation (§1, 3.1). Hence we have
£* (FPRY (1)) < FPRE (')

for all n, and the diagram

¥ TdMch o x¥ ) g0
£x £+
gXry TdMch kX M) &0

commutes. From this the theorem follows.

Remark.

As a much more interesting result the following generalization

should be true (see [S], Th. 8, iii)):
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Theorem 3.2.

For an etale morphism f£f : X -» Y, the assertions of the pre-

ceding Theorem 3.1 remain wvalid.

We only will say some few words concerning the filtration:

The morphism £f:X o Y admits a factorization of the form

£f: X i, U —i$:E§ —EQ'Y, with i a closed immersion, j an
open immersion and p the projection. Since f is etale, the
immersion i is regular of the pure codimension r.

i is of finite Tor dimension, and so there is a pull-back
homomorphism i* : XK' (U) > K'(X), see [Q]), §7, 2.5. The mor-
phisms j and p are flat, and f* : K'(Y) - K' (X) ‘' has the facto-
rization

f£* = i%* . % . p*

It is easy to see that
. * . r
i) p (FnK (Y) ®Q) < Fn+rK' (]PY) ® Q .

In fact, this comes out with the cartesian diagram

r
IPY
|
Y

<

—

r
Py
;
M

obtained by choosing a closed immersion of Y into a smooth
scheme M of pure dimension.

It has been shown already that

c1y % ' r .

ii) 3*(F K (IPy) ® Q) ¢ FK'(U) ®Q .

It is the crucial point to prove

iii) i*(FnK' (U) ®Q) < .Fn—rK' (X)) ®Q .

The proof is clear, if i : X » U can be imbedded into a carte-

sian diagram



Vi,
A

- b'
M

i

where X< M and U M' are closed immersions into smooth

—
o 3 M!

schemes of the pure dimension d and d' = d +r. Using a lemma

of Fulton (see next section), such a diagram can easily be
obtained in the case in which i is the zero section of IP(NGBOY),

N a locally free sheaf of rank r on Y. The general proof may be

achieved by an intelligent deformation argument (see loc.cit.).

4. Chern, Riemann-Roch and the cap product

Before stating the theorem we first have to prove a result
concerning the definition of a A-structure on the ring

(§1, 3.)

K(X) = ® K (X) ,
p>0 P

X being an arbitrary scheme of our category V. For smooth

schemes, this is done (§1, 3.1).

Lemma 4.1.

For every scheme X, the ring K(X) carries a A-structure, unique-

ly determined by the following two properties:

i) The )\-structure is functorial in X with respect to pull-
backs.

ii) For smooth X, the )-structure coincides with the given one
(§1, 3.1).

With respect to the canonical maps (§1.3)



Fa

Uy
Yy

1 (X,2) - K(X)

K(X) — Ho(xrz) ’

" K(X) is an augmented A-algebra over HO(X,Z), whose associated

Grothendieck filtration (FnK(X))n€ is locally nilpotent.

/3

Remark.

For every scheme X, we now have the two homomorphisms

ch : K(X) » Gr K(X) ®0Q

T

K'(X) > Gr XK' (X) ®Q .

They will be connected by the cap product

K(X) xK'(X) -5 K'(X) .

For the proof of Lemma 4.1, let X be a scheme, and I = I(X)
be the category whose objects are morphisms X - M of X into
smooth schemes M and whose arrows are commutative diagrams
”,’/,J-M
X 4
\.M' .

The dual category 1° is filtering. We consider the functor

(X > M) » K(M) from 1° into the categor of commutative rings.
gory g

Lemma 4.2.

The canonical map

lim RK(M) - K(X)

is an isomorphism.



Since the category of A-rings admits filtered inductive limits,
this lemma implies the Lemma 4.1. The last assertion follows

from §1, 3.1.

To prove Lemma 4.2, it suffices by [Q], §1, Prop. 3 to show

that the functor
lim QP (M) - QP (X)

is an isomorphism. 1° being filtered, it suffices to prove
this for the objects and the arrows of the considered catego-
ries. In view of the definition of the Quillen category, the
wanted isomorphism follows from the following lemma, due to

Fulton ([F], 3.2.).

Lemma 4.3.

i) If E° is a short exact sequence in P(X), then there exist

an object £ : X » M in I and a short exact sequence F  in

.

P (M), such that f*F = E.

ii) If £ : X » M is an object in I, and if Fi- and F, are short
exact sequences in P(M) with f*Fi = f*Fé , then there exists

a morphism

in I, such that g*F; = g*Fé .



For later use, we will add the following facts concerning the

e

canonical isomorphism lim K(M) K(X).

Remarks 4.4.

i) Let J be the full subcategory of I = I(X) consisting of all
closed immersions X -» M into smooth schemes of pure dimension.
Let £ : X » M be any object of I. Then from a factorization

f : X aZP; -» M we get a commutative triangle

where i : X > M' is a closed immersion into a smooth M'. Sub-
stituting the connected components M& of smaller dimension by
affine spaces of suitable dimension over Ma’ we arrive at a
smooth scheme M" of pure dimension. The zero sections give a

closed immersion j : X » M", and the projections a commutative

diagram

Mll

|

X —2— M

This shows that the dual J° is a final subcategory of 1°, and

hence from Lemma 4.2 we obtain
lim K(M) = K(X)

where now the inductive limit is formed on the category J°.

ii) Since the index categories are filtering, the isomorphisms

~

lim K(M) = K(X) induce isomorphisms
—_—



~

lim FPR(M) = FPR(X)
_

for all n.

This last remark and §1, 5. imply

Remark 4.5.

Let

n _ N
F KP(X) = F K(X) ﬂKp(X)

Then one has the decompositions

FPR(X) = @& FPR_(X) ,
p20 P
Gr’K(X) = @ GrnKp(X) ]

p20

Definition 4.6.

For a scheme X, the twisted absolute cohomology is defined by

p Y .= Gpd
H¥ (X,3) := Gr sz_p(X)®Q .

The p-component chp : KP(X) - Gr'Kp(X0<2Q of the Chern charac-

ter may then be read as a homomorphism

2% =
ch  : K,(X) » H | P(x,*)
where Hz*_p(X,*) = @)sz_p(x,j)
J

For every scheme X, one has the cap product



K(X) x K' (X) - K'(X)

induced by the biexact functor P(X) x M(X) »M(X), see [G], §7.

We now state the theorem.

Theorem 4.7 (Singular Riemann-Roch).

Let X be a scheme, then:

i) The cap product K(X) x K' (X) n, K'(X) induces a composition

n ' ]
(FTR(X)®Q) x (F K'(X)®Q) » F__ K'(X)®Q
and hence a map
(Gr 'K(X)®Q) x (6r K'(X)®Q) - Gr K'(X) ®Q,

also called cap product.

ii) The diagram

K(X) x K'(X) -» K' (X)

chxt IT
. l

(Gr K(X)®Q) x (Gr K' (X)®Q) ——— Gr K'(X)®Q

commutes.
Proof.
By 4.4.i) we have K(X) = lim K(M) where the limit is over all

closed immersions i : X » M into smooth schemes of pure dimen-
sion. For such an immersion i : X » M, we have the commutative
diagram

R (M) xKS (M) — 5 ®% (M)

i* = =

K(X)xK' (X) —D, K'(X)



where U denotes the cup product for the K-groups ([S], 4.3.).

Using this and 4.4.ii), for the first assertion, it suffices to

show that the cup product K(M) xKX(M)-JLe KX(M) induces maps

(FPR (M) ®Q) x (FXX (M) ®0) -1 FPT k¥ (M) ® Q

for all n,k. But this is a result of Kratzer ([K], 6.4.) say-
ing that the filtration, defined similar to the Grothendieck
filtration but with cup products instead of products, coincides
with the Grothendieck filtration modulo torsion.

For the second assertion, it suffices to prove the formula
ch(xUy) = ch(x) Uch(y)

for x € K(M) ahd y € KX(M) . In view of §1, 4.3 this follows from
a second result of Kratzer ([K], 5.6.) saying that the Adams

operations are compatible with the cup product, i.e.

vy = o8 vt .

§5. Absolute cohomology and homology

We continue with the category V. For a scheme X, the twisted
absolute cohomology and the twisted absolute homology are de-

fined by

J
Gr 24-p (X) ®Q

X,j) = KL (X .
Hp( 3) GrJKp_ZJ( ) ®Q

mP (x,5)

It

Recall that the Chern character yields an identification of

Hp(X,j) with the kj—eigenspace of the Adams operations YK on



¢
K,. X)® .
24-p(X) ®Q
The absolute cohomology Hp(X,j) is contravariant on V. Concern-

ing the absolute homology Hp(x,j), we will now prove:

Theorem 5.1.

The absolute homology Hp(X,j) satisfies the axioms of a twisted
homology theory in the sense of Bloch-Ogus ([BO], 1.2), i.e.

i) Hp(X,j) is covariant for proper morphisms.

ii) HP(X,j) is contravariant for open immersions (and more

generally, for etale morphisms).

iii) If
gl
x' 9, x
f'l lf
y'r —9 Ly

is a Cartesian diagram in which the vertical arrows are
proper and the horizontal ones are open immersions (or

more generally, etale), then the diagram

. g'* v
Hy(%,3) —=— H_(x',3)

£y fx

H_(Y,3) g* H (Y',5)

p(¥r3) ——— H (¥',]
commutes.

iv) If 1 : Y » X is a closed immersion and j : (X-Y) - X the
corresponding open immersion, then there is a long exact

sequence

. iy ) J* .. 3 .
- Hp(Y,J) —x Hp(X,J) —_— Hp(X—Y,j) 5 H ,](Y,j)—>

p—-



v) If

is a commutative diagram in which the vertical arrows are
proper and the horizontal arrows are closed immersions, and
if g : (X'—f—1(Y))+ (X'-Y') is the induced open immersion,

then the diagram

- Hp(X',j) - Hp(X'—Y',j) - Hp_1(Y',j) -
f* f*g* f*
- Hp(X,j)-—» Hp(X—Y,j)-——» Hp_1(Y,j) —
commutes.
Proof.

i) is Riemann-Roch (§4, 2.1).
ii) is Riemann-Roch (§4, 3.1). For etale morphisms, one needs
§4, 3.2.

iii) Since g : Y' » Y is flat, the diagram

' g'* PR
Kp(X) -2, Kp(X )

g

commutes ([Q], §7, 2.11.). Using the fact that the homo-

morphisms

- ] - 1
Tp : KP(X) ®0 Gr.Kp(X) ®Q



are isomorphims, it follows from Riemann-Roch (§4, 2.1 and

3.1) that the diagram

Gr k! (X) ©0 S N Gr K!(x') @Q
£y £y

Gr K () @0 —— 6r K1 (¥') ®Q

commutes, which proves i i). If g is etale, one needs §4,
3.2.
iv) follows in the same way from the exact localization sequence

K' (X) 3, ke (X-Y) 2 K' . (Y) —
p p p-1

- K'(Y) LN
P

using the existence and commutativity of the diagram

KP(X—Y) > Kp_1(Y)

(*) Tp Tp_1

Gr K! (X-¥)@Q —— Gr K!_; (¥) ®Q

which we will prove below.

v) follows from an appropriate diagram of K'-groups.

Proof of (*). We choose a closed immersion X <+ M of X into a

smooth scheme M of pure dimension. Then the diagram

X-Y o Y

K5 l(M—y) —— K], )
K' (X-Y) —2° KJ (Y)
P p-1

commutes (§1, 2.). Since the upper 3 commutes with the A-opera-

tions (§1, 3.1), the diagram



X-Y ) Y
- » K M
Kp (M-Y) p_1( )
Td(M—Y)chp Td(M)chp
.. X-Y 3 .Y
Gr Kp M-Y) ®Q —— Gr Kp_1 (M) ®Q

commutes. From this we obtain the required commutative diagram

(%) .

By Riemann-Roch (§4, 4.7), the cap product K(X) XK'(X)-ﬂaK‘(X)

induces a cap product

. . n ..
HP (X,1) x H (X,3) — H_ (X,3-1)

Theorem 5.2.

The cap product defines a Poincaré duality theory for the
absolute cohomology and homology in the sense of Bloch-Ogus
([BO], 1.3), i.e.

i) If f : X' » X is an open immersion (or more generally, an

etale morphism), then the diagram

. . n L
uP (x,1) xH (X,3) ———— H___(X,3-1)
£* £* £*
. . n .
Hp(x',l)xHq(X',J) —— Hy_ (X',3-1)
commutes.

ii) If £ : X » Y is proper, then the diagram

. . n ..
HP (X,1) x Hq(X,]) _— Hq_p(X,J-l)

'p . . N ..
H . ey -
(Y,1) xH,(¥,3) g-p (¥r371)



commutes (Projection formula).

iii) If X is smooth of pure dimension d and if nXEEsz(X,d) de-

notes the fundamental class (i.e. the class of the struc-

ture sheaf), then the map
. yP : .
Mingy : H (X,i1) — H2d_p(X,d i)

is an isomorphism.

Proof.
These properties follow from the corresponding properties of
the cap product K(X) x K' (X) a, K' (X) by means of the isomor-

phism

db :KPM)®Q-»GrKPM)®Q

T
P

K' (X —Eﬂ K' (X
p( ) ®Q Gr p( ) ®Q

and Riemann-Roch (§4, 4.7).

From the assertions iii) of both theorems one immediately

gets:

Corollary (Gysin sequence).
Let Y& X be a closed immersion of smooth schemes and assume
that ¥ & X is of pure codimension d. Then there is a long

exact sequence

cer o> P72y, 5-q) - BP(X,5) - HP(X-Y,§) -

- Hp+1-2d(Y,j—d) S iee .



Reference s

[BFM]

[BO]

[BS]

[B]

[BG]

[F]

[FL]

[G]

[K]

[Ql]

[sel

[sGA6]

[s]

P. Baum, W. Fulton, R. MacPherson, Riemann-Roch for
singular varieties, Publ. Math. IHES 45 (1975),101-1u5.

S. Bloch, A. Ogus, Gersten's conjecture and the homo-
logy of schemes, Ann. Sci. Ecole norm. sup. (4) 7
(1974), 181-202.

A. Borel, J.P. Serre, Le théoréme de Riemann-Roch,
Bull. Soc. Math. France 86 (1958), 97-136.

K.S. Brown, Abstract homotopy theory and generalized
sheaf cohomology, Trans. Amer. Math. Soc. 186 (1974),
419-458.

K.S. Brown, S.M. Gersten, Algebraic K-theory as gene-
ralized cohomology, in Algebraic K-Theory I, Lecture

Notes in Math. 341, Berlin-Heidelberg-New York 1973,

266-292.

W. Fulton, Rational equivalence on singular varieties,
Publ. Math. IHES 45 (1975), 147-167.

W. Fulton, S. Lang, Riemann—-Roch Algebra, Grundlehren
der mathematischen Wissenschaften 277, New York-Berlin-
Heidelberg-Tokyo 1985.

H. Gillet, Riemann-Roch theorems for higher algebraic
K-theory, Adv. in Math. 40 (1981), 203-289.

C. Kratzer, A-structure en K-théorie algébrique, Comm.
Math. Helv. 55 (1970), 233-254.

D. Quillen, Higher algebraic K-theory I, in Algebraic
K-Theory I, Lecture Notes in Math. 341, Berlin-Heidel-
berg-New York 1973, 85-147.

W.K. Seilér, A-rings and Adams operations in algebraic

K-theory, this volume.

A. Grothendieck et al. Théorie des Intersections et
théoréme de Riemann-Roch, Lecture Notes in Math. 225,
Berlin-Heidelberg-New York 1971.

C. Soulé, Operations en K-théorie algébrique, Canad.
J. Math. 37 (1985), 488-550.




