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DISCRETIZED LIGHT-CONE QUANTIZATION: 
APPLICATION TO QUANTUM ELECTRODYNAMICS 

Andrew C. Tang, Ph.D. 

Stanford University, 1990 

In this work, a general method for solving quantum field theories, Discretized 

Light-Cone Quantization (DLCQ), is presented. The method is very straightfor- 

ward and essentially consists of diagonalizing the light-cone Hamiltonian matrix 

for the mass spectrum and wavefunctions. This method has been applied success- 

fully in the past to various one space, one time dimensional theories. In each of 

these past applications, the mass spectrum and wave functions were successfully 

obtained, and all results agree with previous analytical and numerical work. 

The success of DLCQ in l+l dimensions provides the hope of solving theories 

in three space and one time dimensions. The application to higher dimensions is 

much more involved than in l+l dimensions due to the need to introduce ultravi- 

olet and infrared regulators, and invoke a renormalization scheme consistent with 

gauge invariance and Lorentz invariance. This is in addition to the extra work 

involved implementing two extra dimensions with their added degrees of freedom. 

In this paper, I will present the application of DLCQ to 3+1 dimensional Quantum 

Electrodynamics. 

The theoretical framework of DLCQ in the context of 3+1 QED is shown in 

the first 8 sections. Issues addressed include the question of self-induced inertias 

and normal ordering, the agreement of Feynman rule and light-cone answers for 

one-loop radiative corrections, and ultraviolet and infrared regulation. Many of the 

results presented here are applicable to quantum field theory in general. Unfortu- 

nately, solving 3+1 QED in this general framework has so far proven elusive due to 
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a number of difficulties. These problems and a way around them using a truncated 

Fock space are presented in Section 7, with renormalization in this truncated space 

presented in Section 8. The next 5 sections show attempts to numerically solve 

3+1 QED in a truncated Fock space by diagonalization of the Hamiltonian and by 

a variational calculation for the positronium system. 

The numerical results shown are not competitive with state of the art calcu- 

lations for positronium, but do demonstrate that the theoretical underpinnings 

of DLCQ are sound and that applications to other field theories such as Quan- 

tum Chromodynamics should be achievable. Further improvements in numerical 

technology may provide competitive answers. 

. . . 
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1. INTRODUCTION 

Discretized Light-Cone Quantization (DLCQ) is a general method for solving 

quantum field theories for their mass spectrum and wave functions. This method 

was developed for and applied successfully to Yukawa theory, &@, in one space 

and one time dimensions by Pauli and Brodsky!” Other successful applications in 

l+l dimensions include Eller, Pauli-and Brodsky”’ to-l+; QED and the Schwinger 

model, Harindranath and Vary P1 to $4 theory in l+l dimensions, and Hornbostel, 

Brodsky and Pauli[” to l+l QCD for NC = 2,3,4. In each of these applications, 

the mass spectrum and wave functions are successfully obtained, and all results 

agree with previous analytical and numerical work. For details, please refer to the 

original papers. 

The success of DLCQ in 1+1 dimensions provides the hope of solving 3+1 

theories. The application to higher dimensions is much more involved than in 

l+l dimensions due to the need to introduce ultraviolet and infrared regulators, 

and invoke a renormalization scheme consistent with gauge invariance and Lorentz 

invariance. This is in addition to the extra work involved implementing two extra 

dimensions with their added degrees of freedom. In this paper, I will present the 

application of DLCQ to 3+1 dimensional QED. 

Sections 2 and 3 outline the general methodology of DLCQ. The results here are 

applicable to all field theories. Section 4 applies the general method to 3+1 QED. 

A variety of interesting problems are exposed and (hopefully) solved,’ including the 

. inversion of the operators id+ and (8+)2, the question of self-induced inertias and 

normal-ordering, and the derivation of the fermion mass renormalization insertion. 

With the introduction of ultraviolet and infrared regulators in Section 5 and 6, 

the general framework is outlined for 3+1 field theories. Unfortunately, solving 

3+1 QED in this general framework has so far proven elusive due to a number of 

difficulties. These problems and a way around them using a truncated Fock space 

are presented in Section 7, with renormalization in this truncated space presented 

-in Section 8. The next five sections describe attempts to numerically solve 3+l 
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QED in this truncated Fock space by diagonalizing the Hamiltonian and by a 

variational calculation for the ground state. 

Those familiar with the language of DLCQ may wish to skip Sections 2 and 3 

and continue to Sections 4 through 8 where the groundwork for 3+1 QED is laid. 

For those mainly interested in numerical results, these are in Sections 9, 10, 12, 

and 13. A variational method for finding the ground-state is described in Section 

- 11. Most of the mathematical details are relegated to various appendices. 
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2. OVERVIEW OF LIGHT-CONE QUANTIZATION 

An age old question of modern physics has been how to combine relativity 

(covariance) with a Hamiltonian formulation of dynamics. Typically, one might 

do this by specifying a particle’s dynamical coordinates, say its position and mo- 

mentum, at various time slices t = to. The system is-quan$zed by specifying 

_ commutation relations between the various dynamical quantities on these equal- 

time surfaces. The particle is then propagated forward in time by the Hamiltonian, 

H. However, as Dirac”] points out, one is not confined to specifying conditions 

on a surface of equal-time; in fact, any space-like hypersurface can be used. This 

is shown in Figure 1. The dynamics should b e independent of the hypersurface 

chosen. Three specific forms are detailed by Dirac. The instant form is the tradi- 

tional formulation given by hypersurfaces of equal time, t = to. The point form is 

described by surfaces with xPxp = K’, where K is a constant. The form that the 

rest of this paper focuses on is the front form, now commonly referred to as light- 

cone quantization. In this form, dynamical quantities are specified on surfaces of 

equal light-cone time, r = t + z/c. A comparison of these various forms is given 

in Figure 2. One advantage of the front form is immediately evident. Whereas the 

Hamiltonian in the instant form, Hinstant = dm; involves the square root 

operator, the light-cone Hamiltonian, Hfro,,t = (p”, + m2)/p+, does not. In fact, 

all other forms other than the front form involve the square root operator. This 

turns out to provide numerous simplifications, including only positive light-cone 

. momenta and a simple vacuum structure. A comparison of light-cone quantization 

with equal-time quantization is shown in Table 1 and various definitions are given 

in Table 2. 

The general method of quantizing a field theory proceeds as follows. The 

stress-energy tensor is derived from the Lagrangian in the usual fashion, 

(2.1) 
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The four plus components are conserved quantities, 

J dx-d2& T+p , (2.2) 

and correspond to the light-cone energy (p = -), light-cone momentum (cl = +), 

and transverse momentum (cl = 1,2). One can question whether the boundary 

at x- = 00 is handled correctly.. A good discussion Tbf <his matter can be found 

- in McCartor!’ He shows for massive theories that the above four quantities are 

not only conserved, but also are equivalent to the conserved quantities one would 

normally write down in an equal-time theory. That is, for massive theories, 

J 
dx-d2ZL T+p = J d3S Top . (2.3) 

The theory is then quantized by imposing equal light-cone time commutation rela- 

tions between the various independent degrees of freedom, 4, and their momenta, 

x=3&p 

[4(x+,& ++ ‘C’)] = id3)(g - g’) . (24 

The above procedure is shown in more detail for 3+1 QED in Section 4. 

A mathematically similar but conceptually different approach to light-cone 

quantization is infinite momentum frame physics. This method involves observing 

the system in a frame moving past the laboratory at the speed of light and was 

first uncovered by Weinberg!‘] It should be pointed out that though light-cone 

. quantization is similar to infinite momentum frame quantization, it differs since 

no reference frame is chosen for calculations and is thus manifestly Lorentz co- 

variant. The only aspect that “moves at the speed of light” is the quantization 

surface. Other works in infinite momentum frame physics include Drell, Levy and 

Yanrl Susskind and Frye, “I Bjorken, Kogut and Soper:“’ and Brodsky, Roskies and 

Suaya!lll This last reference presents the infinite momentum frame perturbation 

theory rules for QED in Feynman gauge, calculates one-loop radiative corrections, 

-and demonstrates renormalizability. 
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Important papers in light-cone quantization include Casher~121 Chang, Root 

and Yan!13’ Lepage and Brodskyt”] Brodsky and Ji,“” and Lepage, Brodsky, Huang 

and Mackenzie!161 Casher gives the first construction of the light-cone Hamiltonian 

for non-Abelian gauge theory and gives an overview of important considerations 

in light-cone quantization. Chang, Root and Yan demonstrate the equivalence 

of light-cone quantization with standard covariant ,lj’eynman_analysis. Detailed 

_ rules for .-&CD and applications to exclusive processes are provided by Lepage and 

Brodsky. They also present a table of light-cone spinor properties in Appendix A. 

A summary of the light-cone perturbation theory rules for QED in light-cone gauge 

and their derivation is given in Appendix B of Ref. 15 and Appendix A of Ref. 

16. The notation used in this paper will follow that used in these two references. 

A recent summary of QCD in light-cone quantization can be found in Brodsky[l” 
WI and Brodsky and Lepage. 



3. DISCRETIZED LIGHT-CONE QUANTIZATION 

An outstanding problem of modern quantum field theory is solving for bound 

states. The best available method at present is the Bethe-Salpeter formalism. 

However, calculations using this method are extremely complex and may be in- 

tractable beyond the ladder approximation. It may also not be practically possible ,- - e 
to extend the method to systems with more than a few constituent particles. 

A more intuitive approach would be to solve the equation 

for the particle’s mass, M, and wavefunction, I$). Here, one imagines that I$) is 

an expansion in multi-particle occupation number Fock states and that the oper- 

ators H and @ are second quantized Heisenberg picture operators. Unfortunately, 

this method is severely complicated by the presence of the square root. This first 

of all introduces the mathematical difficulty of interpreting the square root as an 

operator. But more importantly, it leads to a very complicated vacuum structure 

involving spontaneous particle creation from the vacuum. This problem persists 

even if the above equation is replaced by a Dirac or Klein Gordon type of equa- 

tion. Fortunately, light-cone quantization offers an avenue of escape. As already 

mentioned in Section 2, the square root operator does not appear in light-cone for- 

malism, and as we will see in Section 4, there is no spontaneous particle creation 

in this theory. 

The method of Discretized Light-Cone Quantization (DLCQ) was first devel- 

oped by Pauli and Brodsky (see Refs. 1 and 2) as a general method for solving 

field theories. They applied the method to l+l Yukawa theory and l+l QED. The 

method was later extended to numerous other field theories (see Introduction). The 

derivation of the method follows. 
- 

The mass shell condition for a particle such as a pion with 4-momentum Pp 
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written in light-cone variables is 

p-=@i+M: 
P+ (3.2) 

where P- and P+ are the light-cone energy and momentum, respectively. This 

condition is equivalent to the usual space-time expression, 
Y - e 

- po = 4 g2+M;. (3.3) 
Because the pion is an eigenstate of the system, it must satisfy this equation. 

In the spirit of second quantization, one imagines that P-, P+, $1 are Heisenberg 

picture operators and that the pion wavefunction is expanded in a complete set of 

multi-particle occupation number Fock states, 

l$n,X12 is the probability of finding the Fock state In) inside the pion. For example, 

the pion can be expanded into a quark pair Fock state, a Fock state with a quark 

pair and a gluon, and so forth, 

A single-particle state such as Iq) is defined to be a quark creation operator acting 

on the Fock state vacuum, 

Id = a; IO) 7 (3.6) 
and the many-body Fock state with n* quarks, nq anti-quarks and ng gluons is 

described by 

ln)=~1n6:41,42,...qnp; q:Q1,42,...&,; ng:g1,g2,...gn,) (3.7) 

where m is a normalization factor that keeps (nln) = 1 and qi, qi;, and gi are 

generic labels that describe all the quantum numbers of the ith component. The 
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decomposition of I?r) into its Fock basis is shown schematically in Figure 3. The 

variables are explained below. 

If one is working with a Lorentz invariant theory (i.e.: L transforms as a Lorentz 

scalar), the infinitesimal generators of Lorentz boosts, P“ and Mp” (energy-momentum 

and angular momentum), must satisfy the Poincare algebra, 

[P”,P”] =o, T - 

i [Mp’, PA] = #PV + gVAPP , 

i [M pv, MP”] = +J’“PM”= + gvPMta _ f=MPv + #flMPP . 

In particular, P +, P-, and Fl form a commuting set. One should verify this for 

the specific Lagrangian one is interested in. If the basis set In) is chosen such that 

P+ and $1 are diagonal - this can be done by choosing the set of plane waves 

- then one can replace the operators P+ and Fl by their respective eigenvalues. 

One then has 

P- x:P+,& = > 
Pj+M: 

P+ 
7r: p+,& . > (3.9) 

Assuming that the basis set In) is complete, one can project out the nth component, 

(3.10) 

+,I, is the amplitude for finding the state In) in 1~) and is therefore a Lorentz 

invariant quantity. As a result, it can only be a function of the Lorentz invariant 

_ quantities xi and Zli. xi is the light-cone momentum fraction of the ith constituent 

of In) and Zli is the momentum of the ith constituent perpendicular to the total 

momentum of the pion. One can show by Lorentz transformation that the con- 

stituent’s plus momentum and momentum perpendicular to the z direction, k+ 
and k:li, are related to the pion’s plus and perpendicular momenta, Ps, $1, by 

(3.11) 

5; is also the antilog of the ith constituent particle’s rapidity. Momentum conser- 
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vation requires 

c 
Xi = 1, c 

Cli = 6* e 

i i 

(3.12) 

The Fock state expansion for the pion now reads, 

- I 7r: p+,& ) = C tjbn/*(Xi, iii, Xi) In : XiP’y X*2* +?ii) 
n 

(3.13) 

with normalization 

(?+r) = 1 . (3.14) 

The sum is over all Fock states, momenta, and spins, and $n/rr(xiY iii, Xi) is 

the amplitude for finding the Fock state In) with constituents with momenta 

(Sip+ ,siP~- + Zli). Note that if the coefficients $,I, are determined for some 

P+ and ?l, then $,I, are known for all P+ and $1 since $,I, is independent of 

these quantities. In particular, one may as well choose Fl = 81 and Ps = M,. 
These are the values of the pion’s plus and perpendicular momenta at rest. It 

should be emphasized that this choice does not imply that further calculations are 

being done in the pion’s rest frame. The choice Fl = 61 and Ps = M, is only 

made for convenience because the coefficients $J,,, are independent of P+ and &. 

Any other convenient choice is also acceptable. 

We now define the light-cone Hamiltonian, HLC, to be P+P-. Henceforth, the 

light-cone Hamiltonian is taken to mean the product of P+ and P-. The light-cone 

bound state equation reads, 

C (4 HLC Im)d~m/,(Xi,z~,k)= Mz +n/r(Xi,zliTh) - (3.15) 
m 

If one discretizes the Fock basis by requiring periodicity or anti-periodicity of the 

quark and gluon fields along the x+ = ct - z and Zl directions, one sees that the 
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bound state equation is a discrete matrix equation 

eigenvectors, $,I,, 

for the eigenvalues, Mz, and 

_ 
Here,-Hit has been split into an interacting piece, V, and a non-interacting piece, 

HO = Ci(kii+mf/xi)s mi is the mass of the ith constituent particle. For the case 

of the pion, it is either the quark mass or the gluon mass. Diagonalization of this 

equation can now be done on a computer (after implementing ultraviolet and in- 

frared regulators) to reveal the complete spectrum of pion states and multi-particle 

scattering states with the same quantum numbers, along with their corresponding 

wavefunction expansion coefficients, $,,,. Solving field theory has now been re- 

duced to obtaining the solution to this fairly simple equation. In the next section, 

a specific application to 3+1 QED is detailed. 

- 
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4. DLCQ: APPLICATION TO 3+1 QED 

In this section, the light-cone Hamiltonian, HLC = P+P-, is derived from 

the 3+1 dimensional QED Lagrangian. The approach given here is a heuristic, 

loosely structured approach based on canonical quantization similar to that used 

in Refs. 1 and 2. A more rigorous treatment can be made using Dirac’s methods 

for handling constrained Hamiltonians. This is explored in ApFendix A. One issue 

that willarise is how to invert the operators id+ and (i8+)2. The method used 

here was suggested by Hamer’lgl and involves using the symmetrized form of the 

Lagrangian and making some simple arguments based on momentum conservation. 

We begin with the familiar form for the 3+1 QED Lagrangian, 

(4.1) 

Ffi” is the electromagnetic field tensor and is equal to $‘A” - d”Afi. We will 

assume that the system obeys periodic boundary conditions in the x’,i = 1,2 

directions with period 2Ll and periodic or anti-periodic boundary conditions in 

the x- direction with period 2L. We also choose to work in light-cone gauge, 

A+ = A0 + A3 = 0. It turns out, as will be shown shortly, that this gauge has 

the advantage of having only two, physical photons. This is very useful in the 

context of DLCQ since it makes the Fock state expansion easy to interpret. It also 

turns out that the development of light-cone gauge in light-cone quantization is 

very similar to axial gauge (A3 = 0) PO1 in usual equal-time quantization. It will be 

useful to define the projection operators 

The operators A+ and A- have the following properties, 

- Al = A* ) A&A-=1, A;=A*, A+A-=O. (4.3) 
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Using the expression for the canonical momenta for the various fields, 

results in 

where we recall that r = x- = 2’ + x3 is the light-cone time. Since the fields T+!J-, 
t $I- and A- do not have canonical momenta, they must be eliminated. This can 

be done by solving the classical equations of motion for these fields, 

i@t+h- = [-i&d + gAia’ + pm,] t+h+ , 

(i8+)2A- = 2d+diA’ + 4t~$i$+ . 

5 means the derivative acts to the left. These classical equations of motion are 

obtained from the usual Euler-Lagrange equation, d c&= $ and can be 

inverted by defining 4 = $-- to be the solution, including homogeneous terms, of 

&4 = g. This gives 

More details concerning l/id+ and l/( id+)2 will be provided later. Observe that 

the only remaining independent degrees of freedom are T/J+ and the two transverse, 

physical photons, il. Upon substituting the expressions for the dependent fields, 

12 



writing everything in light-cone variables, and partial integrating & (this is per- 

missible due to periodic boundary conditions in xi), the light-cone energy density 

(density of P-), P- = 2& r&3+4 - 2L, becomes 

T=P,-tgP,tg2P,-, 

p; = aiAi@Ai _ #AidjAi + 

,- - e 

i@idj Ai 
sym 

t2 $JL [-itkXitPm,] & 
{ 

[-iajd t h] c) , 
vm 

+ h.c. 
sym (4.8) 

pi- = 2 $1 A’a’&Ajo!++ ’ sym 

{ - - -}sym are defined to be 

{A&~}sym = ; [A&B- ($+] 7 
{A&?}*,, = Bt (&A) (&B) +($y+ (4’g) 

The system is now quantized by imposing canonical commutation relations on 

the independent fields, 

{~+~(x+,a),~~~(x+,r)) = A+agh(3)(c- g) , 
[Ai(xS,g), d+Aj(x+,g)] = i6’jd3)(g - y) . 

(4.10) 
- 

Once again, the above can also be derived rigorously using Dirac’s method for 

-constrained Hamiltonians. Recall also that the light-cone Hamiltonian, HLC, is 
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related to P- by 

HLc = P+P- = 1 [J dx+d2& P+ 
1 

2 I[ J 5 
dx+d2& P- . I (4.11) 

The extra factors of l/2 arise from the Jacobian transformation between d and 

(x+7 21). Also note that in the above development, no use irever made of the 

- relation 
L 

J 
-L 

dxA&3=-jdx (&A)5 
-L 

(4.12) 

The system is discretized by expanding the fields in terms of solutions to the 

free equations of motion (plane waves), and requiring periodic boundary conditions 

for the photon field in the x- and xi, i = 1,2 directions, periodic boundary condi- 

tions for the fermion field in the xi, i = 1,2 directions, and periodic or anti-periodic 

boundary conditions in the x- direction. The numerical results depend very lit- 

tle on this last choice, and in the remainder of this paper anti-periodic boundary 

conditions will be used. 

fermions : ki = !f? 
LI 

ni = 0, fl, f2,. . . 

k+ = y 2,4,6,. . . (periodic b.c.) 
n= 

1,3,5,. . . (anti-periodic b.c.) , 

photons : ki = ‘2 pi = 0, fl, f2,. . . 

k+ = y L p=2,4,6 ,... , 

(4.13) 

- 
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- Note that only positive k+ are allowed. This is because the mass shell condition, 

kt + m2 
‘- = k+ , (4.14) 

only allows for k+ and k- both positive or both negative. As one does in equal- 

time considerations, the modes with negative energy (in our case, negative k-) 
are re-defined to be anti-fermions. The result is that in light-cone quantization, 

one only has states with both positive k+ and positive k-. The k+ = 0 mode is 

eliminated because it turns out to be outside the range permitted by the ultraviolet 

cut-off (see Section 5). Besides which, the zero mode is not a solution to the free 

equation of motion for the fermion anyway. The canonical commutation relations 

are preserved by choosing 

{ 
bs,E, d;, ,, = 0 s ,- > (4.15) 

Before continuing, the expressions for some of the other conserved quantities 

should be written down: 

1 
Q=-J 2 

dx-d2Zl j+ = g J dx-d2& $&LJ+ , 

P+ = ; J dx-d2& T++ = J dx-d2ZL [ $i(ia+)t,h+ + $@A’)‘] 

1 Pi = 5 J dx-d2& T+’ = J dx-d2Zl [t,bi(i#)$+ + $3+Aj#Aj 

, (4.16) 

?‘he x- integrals run from -L to L and the xi, i = 1,2 integrals run from -Ll to 
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Ll. Inserting the expansions for $+ and 2~ into these expressions is straightfor- 

ward if one remembers that 

i 
J 

dx-d2 + x1 e -i&-k’)% = @;, , 

X+(s)X(s’) = &,d , 
&(A)* * &(A’) = &A,$-. - 

(4.17) 

- 

Doing so and normal-ordering to remove vacuum values results in 

Q = 9 c [b!,,&vi - d!,&,,] 7 S,E 
P+ = c k+~i,~ax,~ + c k+ [b:,,bs,E + d&&g] , 

x,p_ - - SE 

p’ = c k’a+ XPakP + c [ 
k’ b:,,bs,, + d&y&,, . ‘- - I 

kp s,n 

(4.18) 

The last two equations are just statements of k+ and zl momentum conservation: 

P+ is just the sum of the individual k+s and pl is just the sum of the individual 

ils. These expressions are especially simple, and since they are already diagonal, 

the wavefunction, I$), can immediately be chosen to be an eigenstate of them. 

Choosing the eigenvalues to be P + = 2m, and pl = 0; (recall that this choice is 

not necessary, only convenient - see Section 3) gives 

E - P’4,paQ + c ni [bLbS,E + 4,,dS&] } IN = 0 I+> 7 kg s,2 
p= 2,4,6 ,... , n = 1,3,5 ,... or 2,4,6 ,... , 

p’,n’=O,fl,f2 ,... . 
(4.19) 

From now on, only those expansion states that satisfy these equations need be 
- 

considered. In the first expression, the integer I< is defined to be the eigenvalue 
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P+ times L/x, 

p+ = F . -- (4.20) 

In the past, K has been referred to as the harmonic resolution (Refs. 1 and 2). 

Now turn to the expansion of the light-cone Hamiltonian HLC = P+P-. The 

expressions Y - I 

occur frequently and are taken to be 

n,m # 0 
n and m = 0 
otherwise , 

{I> { nm = $k,, n m # 0 , 
0 norm=0 . 

(4.21) 

(4.22) 

The derivation of these results is shown in Appendix B and makes use of k+ and 

ZJ- momentum conservation to eliminate various homogeneous solutions that arise 

from inverting id+ and (ia + 2. The value of the constant K will turn out to be ) 

irrelevant as long as it is not infinity because the quantity [O/O] never occurs with 

. the inclusion of the gauge invariant ultraviolet cut-off (see Section 5). The following 

spinor identities will also be necessary to complete the expansion of HLC: 

.jx+(s)@c&(t) = 26s,&J+Ji ) 

vjx+(s)e$&jx(t) = 26s,tS2s,-&Ji ) 

X+(s)+‘PX(q = -d5&,-t~2s,A , 
(4.23) 

x+(s)e~&3&) = d%s,-&,4 . 
- 

Using all of the above relations and normal-ordering the Hamiltonian to remove 
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vacuum values and the self-induced inert& (more on these in Section S), one finally 

obtains 
: HLC : = Ho + HI + H2 , 

HI = Vflip + Vnoflip 1 HZ = bstphot + Vinstfesm > 

Vnoflip = g J 
TLcp- 
2 L? s p,m,Lk J17 

- 

+ as phi ,bs n d3) )- I- ,- E+&m Q-29 . ($-$) +h.c. 

+ u-~ b+ b ~5~~) .%g s,m s,lk E-+&m G-29 
. ($+) +h.c. 

- ws pdi mds,n d3) t- ,- Ik+rJm Q29 . ($-%) +h.c. 

- a-z9 pd! &s,n 6ffp m I- ,- ?- G-29 - -- 
($-%) +h.c. 

- &&,fI4d--B,~ 4&,p E’;2s * (+-%) +h.c. 

t - a-2s,pbs,&-s,~ bf)m,p Chs * ($-%) +h.c.} , 

(4.24) 
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%stphot = g2 

C - b+ b+ b b ~5~~) L[k s,k t,r sat t,n k+!,r&+n 6-J -ml-Z+m] 

- d+ d+ d d ht3) I[k s,l t,l s,= tz k+l,m+E 2 -ml-Z+m] 

- b+ d+ b s,k -&I c= d- tvn tTc3) k+l m+n [k f ‘16 + nT _ -,- _ _ - 
(3) 

+ b:,~d~t,~bvEd-t7E b+La+lk [k-ml-I+n] 

+ &4,&,&t,, $i+E+n [k - mll + n] + h.c. - 

+ bi kbt &s,md-t,E @ /+m+n [k - m /l + n] + h.c. ,- ’ 2- - - , 

C + af_2s,pa--2s,qbd,mbs,?r @ m  p+,{P + m lCl + nI - -‘- 
t - a2s,pa2s,gb&&%n Qk,,+,{P - nlq - 4 

- a-2s,pa2s,pdf,mds,n b$fb+,+,(p + n1 - q + m } + kc. . - - 

-As explained before, p, q, m , n, . . . are allowed to take on the integer values 
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pi, qi, k’, I’, m i, ni = 0, f 1, f2,. . . , i=1,2, 

p,q =2,4,6,... , 
(4.25) 

k, 1, m , n = 
2,4,6,... (periodic b.c.) 

1,3,5,. . . (anti-periodic b.c.) , 

and X is a small, fake photon mass. In the above, all terms involving [OIO] have 

- been removed since these are eliminated by the gauge invariant ultraviolet cut-off. 

Also, as described above, one effectively has 

[nlm~ = :hm Trn # O 

{ norm=O, 

{ I nm }={ $iz,m n 7-n # 0 7 
0 norm=O. 

(4.26) 

One still needs to include fermion mass renormalization terms in HLC (see 
Section 8). Vflip is the spin-flip amplitude for a (anti-) fermion to emit (absorb) a 

photon and Vnoflip is the no spin-flip amplitude for this process. The familiar three- 

point Dirac QED vertex is just the sum of these two amplitudes. Two other types 

of vertices appear in light-cone quantization: a four-point instantaneous photon 

exchange, bstphot , and a four-point instantaneous fermion exchange, Vinstferm. 
These are just the graphs needed to reproduce the usual covariant Feynman S- 

matrix result for scattering amplitudes. An example of this for Moller scattering 

I (e-e- -+ e-e-) is shown in Appendix C. One can think of the instantaneous 

photon exchange graph in light-cone gauge as being analagous to the Coulomb 

exchange graph in Coulomb gauge. All the interactions conserve k+ and zl, as 

they must, and are shown schematically in Figs. 4, 5, 6 and 7. 

One very interesting feature of HLC is that it does not involve the longitudinal 
bos sire, L! This is because P+ = TIC/L is proportional to l/L, whereas it can be 

shown easily that P- is proportional to L. Recall that HLC has been defined to 

;e P+P-. 
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Finally observe that because of k+ momentum conservation and positivity of 

k+, there are no interactions involving spontaneous creation or annihilation of a 

fermion pair and a photon from the vacuum. Because of this fact, the Fock state 

vacuum (the state with no particles) is an eigenstate of the light-cone Hamiltonian 

with mass zero, 

H~c~O)=o~o) . y - s - (4.27) - 

This immensely simplifies solving for bound states because it removes the need to 

constantly recalculate the vacuum. 

We now proceed to solve the bound state equation Eq. (3.15) by implementing 

a Fock state expansion for the system we are interested in. In these considerations, 

we will focus mainly on positronium: 

IT) = C +n/rCx, iL) In> 

n 

= C$,+,- le+e-) + $ete--y le+e-y) + - -. . 
(4.28) 

The sum is over all Fock states In) with constituent momenta xi and Zli. The 

overlap of positronium with the e+e-r Fock state is shown in Figure 8. The Fock 

states are eigenstates of P+, FL, and Ho, 

P+ n : k,?, Zli 
> 

KT = - 
L 

HO In : .rC;+, Cli) = C “Ii: m’ In : k’, iii) , 
i 

(4.29) 

Tut not of the interactions, V. After implementing ultraviolet and infrared cut-offs, 

21 



the matrix equation that must be solved for the positronium mass spectrum is 

[ 

~~-~kL+mf 

i Xi 

In summary, the DLCQ procedure is fairly straightforward. One derives the 

light-cone Hamiltonian from the Lagrangian by a procedure very similar to stan- 

dard canonical quantization. The commuting operators, the light-cone momen- 

tum P+ = Kw/L, transverse momentum $1, and light-cone Hamiltonian HLC = 
P+P- are constructed by expanding in Fock states and are simultaneously di- 

agonalized. The expressions for P+ and 3~ are already diagonal if one expands 

in plane waves. The system is discretized by requiring periodic or anti-periodic 

boundary conditions in the light-cone spatial dimensions and the system is quan- 

tized by imposing canonical commutation relations between the independent fields 

and their canonical momenta. The bound state equation HLC la) = A4: IT) is di- 

agonalized to obtain the invariant mass spectrum and wavefunctions. All of these 

quantities are independent of L. To recover the continuum theory, one lets Ii’ and 

Ll approach infinity (this is equivalent to letting L, LI + 00). 
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5. COVARIANT ULTRAVIOLET REGULATOR 

Before continuing, a method of regulating the zl Fock space and other ultra- 

violet divergences is necessary. Recall that the Fock space for QED is constructed 

by choosing the set of all states with n,- electrons, n,t positrons and n7 photons 

with appropriate quantum numbers (charge, total Ic+, total z~,...). The longitu- 

dinal momenta Ic+ are taken to be odd or even multiples of x/L (depending on 

boundary conditions - see Section 4), the transverse momenta $L are taken to be 

integer multiples of n/L*, the total longitudinal momentum is taken to be Ii’w/L, 

and the total transverse momentum is taken to be 61. 

The Fock space is naturally finite in Ic+ because the total Ic+ is just the sum of 

the individual Ic+s. Combining the fact that all the individual Ic+s are positive, non- 

zero integers with the fact that there are only a finite number of ways of summing 

a set of positive, non-zero integers to form a given positive number demonstrates 

finiteness of the Ic+ space. As an example, a Fock state with one electron and 

two photons with I< = 9 can have the following quantum numbers (anti-periodic 

boundary conditions), 

Fock State 1 1 2 3 4 5 6 

Electron I 1 1 1 3 3 5 

Photon 1 2 4 6 2 4 2 I 

Photon 2 6 4 2 4 2 2 . I 

In contrast to Ic+, the Fock space is naturally infinite in $1 because il can 

take values that are positive or negative. An ultraviolet regulator must therefore 

be introduced.’ We will choose one such that the sum of the (ki + m2)/~ of each 

Fock state is less than a cut-off value, A2 (see Ref. 14): 

c 
kti+mf < ~2 

i 
Xi - * 

(54 

* A local ultraviolet regulator has been shown to give better numerical convergence in higher- 
loop perturbation theory calculations. Applying such a regulator to bound state calculations 
is under investigation. 
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The sum is over all the individual particles in the Fock state under considera- 

tion. The left hand side of this equation is just the invariant mass (for a single 

particle state, the invariant mass is the rest mass) squared of the Fock state, 

M2 = P+P- + pz. It is also the value of the light-cone Hamiltonian at zero cou- 

pling. So, the ultraviolet regulator can be stated simply as requiring the invariant 

mass squared of the individual Fock states be less than A2. Since the invariant 

mass is frame independent, this regulator is Lorentz invariant. It also turns out, 

with a modification described below, to be tree-level gauge invariant. 

The off-shellness of a certain Fock state is given by 

c 
k,T -p-=I (ZLi + Xi31)2 + rni 

i i 
XiP+ 1 

1 
=- 

P+ c 
kfi+mf-M2 

i Xi 1 
One sees immediately that the ultraviolet cut-off given in Eq. (5.1) removes Fock 

states that are far off-shell; this is a reasonable procedure because far off-shell 

states give only a small contribution to a physical wavefunction. In fact, one sees 

from Eqs. (3.15) and (3.16) that a typical wavefunction in QED will have the form 

which tends to vanish as 

c 
k:i+4M2 +oo. 

i Xi 

(5.3) 

(54 

In principle, one lets A go to infinity to recover the full theory. Practically, 

we will make all further deliberations at finite values of A and include all effects 

from A in the bare quantities o(A) and m,(A). Furthermore, since we are mainly 

interested in bound state properties, one would imagine that Fock states with large 

invariant mass squared (i.e: are far off-shell) have little effect. As a result, one can 

even calculate with fairly small values of A. 
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Cutting off the photon’s momentum il can lead to problems with gauge invari- 

ance because the various graphs involved in photon exchange are cut-off in a differ- 

ent way. That is, one can imagine a situation in Mprller scattering (e-e- + e-e-), 

for example, in which the exchange of a real, physical photon is cut-off (the relevant 

Fock state is the e-, e-, 7 intermediate state) but the exchange of an instantaneous 

photon is not (there is no intermediate state in this graph). 

We now introduce a new method to restore gauge invariance by considering 

the instantaneous photon in the instantaneous photon exchange graph to have 

quantum numbers as if it were a real photon. One then cuts it off in a manner 

similar to the Fock state cut-off for a real intermediate state. That is, one requires 

c 
“2; + rnf 

5 A2 
Xi 

(5.5) 
i 

where the sum is over the individual particles in the Fock state plus the instanta- 

neous photon. Though it does not affect gauge invariance, a similar procedure is 

taken for the instantaneous fermion interaction so the correct Feynman S-matrix 

amplitudes are restored in this sector also. As a concrete example, consider the 

graphs involved in Meller scattering shown in Figure 9. Assume that kr is larger 

than kz. In the first graph, the photon’s momenta are fixed by momentum con- 

servation, and the three particle intermediate state is cut-off by 

kil + rn: k2 + rn: 
+ 21 + 

x3 x2 

In the second graph, one assigns momenta to 

kfr - k;, & = ic’ II- &31, and then requires 

kil + mz k2 +mz + 21 + 
x3 x2 

!& < A2 . 
2q - (5.6) 

the instantaneous photon, q+ = 

2 

” 5 A2 . - 
zq 

(5.7) 

With this requirement, whenever the instantaneous photon exchange graph occurs, 

a corresponding graph with the exchange of a real, intermediate photon occurs be- 

cause both graphs are now cut-off in exactly the same way! As shown in Appendix 
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C, the sum of the graphs is simply the gauge invariant Feynman rule answer, l/q;. 

Thus, we see that this method maintains gauge invariance of the ultraviolet cut-off 

for tree-level diagrams. It is not clear if this conclusion can be carried over to loop 

diagrams. 

We have now completed the ultraviolet regulation of light-cone theory. All 

Fock states are cut-off by requiring the invariant mass squared to be less than A2, 

c 
i 

(5.8) 

Graphs involving an instantaneous photon or instantaneous fermion are treated as 

if they were real particles and cut-off in the same fashion. With this inclusion, the 

ultraviolet regulator is both Lorentz invariant and (tree-level) gauge invariant. We 

also note that this regulator is a continuum regulator: the cut-off condition is not 

changed by discretization. 
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6. COVARIANT INFRARED REGULATOR 

There are a number of potential sources of infrared singularities and divergences 

in light-cone quantized QED. These are 

1. Singularities in Ho, VL and VT from fermions at x = 0 (k+ = O), 

2. Singularities and divergences in Ho, VL and VT from photons at and near 

x = 0, 

3. Singularity in V&ferm from the exchange of an instantaneous fermion at 

x = 0, and 

4. Singularity and divergence in I&lphot from the exchange of an instantaneous 

photon at and near x = 0. 

A singularity is defined to be an expression of the form l/O; whereas a di- 

vergence is taken to be an expression that approaches infinity as x approaches 0. 

The definitions and equations for Ho, VL, VT, V&tfern and Knstphot were given in 

Section 4. 

The singularity described in item 1 can be removed by requiring anti-periodic 

boundary conditions for the fermions in the x- direction. Similarly, the singularity 

in item 3 is removed if the fermions obey anti-periodic boundary conditions and 

the photons periodic boundary conditions because the momentum exchange will 

never be zero. Recall that the instantaneous fermion interaction is proportional to 

l/q+ where q+ = kAtgoing photon - kkoming fermion’ 

The singularity arising from photons with x = 0 (point 2) is eliminated by the 

cut-off described in the previous section if & # 0; because the invariant mass 

squared of such a photon would be greater than any finite A2. That is, 

6 > A2 - 
X 

(64 

for q+ = 0. Th e case of <’ = 0; is dealt with below. The singularity from 

instantaneous photons at x = 0 (point 4) and q’ # 61 is eliminated because 
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instantaneous photons are treated for purposes of the cut-off as if they were real 

photons. As a result, they are also eliminated because 

d - x >A2 (6.2) 

where q+ and & are assigned to the instantaneous photon according to momen- 

tum conservation as explained in Section 5. Again, the situation for +” = 6~ is 

described below. 

If periodic boundary conditions had been chosen for the fermions instead of 

anti-periodic conditions, the singularities at x = 0 for real and instantaneous 

fermions would be eliminated by the same reasoning as for real and instantaneous 

photons. 

The divergence as 5 approaches 0 for real and instantaneous photons is removed 

by invoking an infrared cut-off, 
2 

QllE. 
X 

All Fock states with real photons not satisfying this condition and all instantaneous 

photon interactions not meeting this criterion are removed. Once again, q+ and 

$1 for a real Fock state photon are taken to be their actual values; q+ and & for 

an instantaneous photon are assigned according to momentum conservation as if 

it were a real photon. Similarly to the ultraviolet cut-off of Section 5, this cut- 

off is Lorentz invariant because it only involves a Lorentz invariant quantity, the 

photon’s invariant mass, and is gauge invariant (at least for tree-level diagrams) 

because it treats all photons, real and instantaneous, alike. 

Note that if c is chosen to any number smaller than (7r/L~)~ but greater than 

0, then the only effect of the infrared cut-off is to remove photons with & = 81. 

Since the effect of the cut-off is identical for all E less than (~/LL)~, one may as well 

take the limit c -+ 0 right away. Since the point @” = 0; has now been removed, 

the problem of the x = 0 singularity for real and instantaneous photons with zero 
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@‘l described above has been taken care of. Another way of removing the point 

x = 0 when $J- = 81 is to imagine that the photon has a small mass X. Then x = 0 

would be eliminated for all $” by the ultraviolet cut-off, Eq. (5.1). 

One might ask why an extra infrared cut-off is necessary. After all, the main 

problem we are interested in, the spectrum and wavefunction of positronium, has 

no infrared divergence. As compared to scattering processes that involve exposed 

charges, the positronium system’s charges are “hidden” in the bound state. There- 

fore, there should be no infrared divergence from emitting an infinite number of 

long wavelength photons. As long as any infrared singularities are removed and any 

infrared divergences are properly regulated, the various infrared divergences aris- 

ing from the fermion self-energy diagram and exchanges of real and instantaneous 

photons should cancel. 

Unfortunately, matters are not so clean numerically. Without the infrared 

photon cut-off, one would expect that the infrared behavior is controlled by the 

parameter K. Once the point x = 0 is removed, the closest point to x = 0 is 

x = l/K, wh’ h ic approaches zero as K approaches infinity. Figure 10 shows the 

behavior of the lowest energy level in a variational calculation as Ii is increased. 

Details of this calculation are described in Section 13. For now, the point is that 

the energy level diverges as K -+ cc if an infrared cut-off is not included. This 

divergence is apparently removed by the inclusion of the cut-off. An explanation 

for this behavior is that the integral that must be reproduced to obtain the ground 

state energy level, 

Wol HLC Wo) = MD” , 

has an integrand that diverges like 

1 

+I; + m2) - qi 

for small x,&. Of course, the integral itself is still finite. In the continuum, the 

points near x = 0, @‘l = 61 are a set of measure zero and give a finite contribution 
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to the integral. Unfortunately, in the discrete case, any one Fock state has a finite 

measure since there are only a finite number of Fock states. Each (e+e-7) Fock 

state contributes one point to the sum, Eq. (6.4). As a result, the Fock states with 

photon x near zero and {’ = 61 give a contribution proportional to l/x N K. In 

the absence of a better solution, photons with @” = 0; must be removed by an 

infrared cut-off such as Eq. (6.3) to keep the sum Eq. (6.4) finite as K + 00. An 

approximate form for the ground state integral is given in Eq. (F.29), Appendix 

F. 

In summary, an infrared regulator is included by requiring that all photons, 

real and instantaneous, have invariant mass squared greater that c, 

2 

QI>e. 
X (6.6) 

This Lorentz invariant, (tree-level) gauge invariant regulator ensures that all in- 

frared divergences are well defined and cancel in a charge neutral system such as 

positronium. The numerical proof for this last statement is shown in Section 13. 

Since the only effect of the cut-off is to remove photons with f’ = 61 for any 

0 < E < (+5J2, th e lmit c + 0 can be taken immediately. Also note that this 1’ 

infrared regulator is a continuum condition: the cut-off requirement is unaffected 

by discretization. 
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7. TRUNCATED FOCK SPACE 

The basic layout for solving 3+1 QED has been set: The light-cone Hamiltonian 

and bound state equation are given in Section 4, ultraviolet regulation is described 

in Section 5, and infrared regulation in Section 6. Unfortunately, there are still 

a number of outstanding problems that prevent the solving of Eq. (3.15) for the 

spectrum of 3+1 QED. These include, but may not be limited to the following. 

1. As of yet, no non-perturbative prescription is available for renormalization 

to all orders. 

2. It is not clear if one needs to keep track of Fermi statistics in instantaneous 

interactions and renormalization counter-terms. Note that these may in fact 

be points of measure zero in the continuum. 

(a) Figure 11 shows two graphs that occur in the analysis of QED. It is 

clear that the intermediate state in the first graph requires Fermi statis- 

tics because it involves real fermions. Unfortunately it is not so clear 

whether Fermi statistics is required in the second graph. Furthermore, if 

statistics is necessary in the second graph, it is not clear how one would 

assign quantum numbers to the instantaneous fermion. In particular, 

the “spin” of the instantaneous fermion would be ambiguous. 

(b) A similar situation occurs in the consideration of renormalization pieces. 

The first graph in Figure 12 shows an interaction in QED. The inter- 

mediate state obeys Fermi statistics because it is constructed by a Fock 

state expansion in photon and fermion fields that necessarily abides by 

Fermi statistics. There is some question whether this first graph should 

even obey statistics. Given that it does, the problem is whether the 

second graphs should also. This graph is needed to renormalize the pho- 

ton’s mass. As a parenthetical comment, photon mass renormalization 

is not necessary in standard Pauli-Villars regulation because it is a sub- 

tractive regulation scheme. It turns out that the subtracted piece with 
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massive Pauli-Villars particles exactly cancels the self-mass of the origi- 

nal diagram. On the other hand, our regulator is not subtractive, so an 

explicit photon mass counter-term must be constructed. More on this 

in Appendix E. 

3. Full QED has light by light scattering graphs as shown in Figure 13 that 

need to be regularized. As of yet, a method of regularizing these diagrams 

compatible with DLCQ has not been found. 

The above problems, and possibly others, need to be answered before the full 

3+1 QED light-cone Hamiltonian can be diagonalized. We will circumvent these 

difficulties by considering a truncated Fock space that allows only one extra photon. 

To be specific, for the case of & = 0, the Fock space will be limited to just (e+, e-) 

and (e+, e- , y). For Q = -1, th e only Fock states will be (e-) and (e-, 7). The 

number of interactions effectively allowed in this truncated Fock space is very much 

reduced from the full set shown in Figs. 4, 5, 6, and 7. All graphs involving pair 

creation are effectively removed because the truncated Fock space does not allow 

for extra fermion pairs (diagrams 3, 6, 9, 11, 12, 17, 18, and 19). Diagrams 14, 

16, 20, and 21 are effectively removed because they involve two photons in flight. 

Finally, diagram 10 is eliminated when it occurs in the presence of a spectator 

photon because such a situation also has two photons in flight. Taking all these 

removals into account, the only diagrams that need to be considered are 1, 2, 4, 5, 

10, 13, and 15. 

Limiting the Fock space may bring gauge invariance into question. However, we 

have carefully made sure that everytime an intermediate state with real photons is 

removed, the corresponding intermediate state with instantaneous photons is also 

removed. This restores gauge invariance because photons are thus removed from 

the theory in gauge invariant sets. For example the interaction e+e- -+ y --f e+e- 

is removed from consideration because the intermediate state with one real photon 

has been eliminated. To restore gauge invariance, we have been careful to drop 
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diagram 9 which involves the same process, but through an instantaneous photon.* 

It should be emphasized that though the Fock space is limited, the analysis 

remains non-perturbative because the allowed Fock states can be iterated as many 

times as one wishes. In particular, keeping only (e+e-, e+e-y) is similar to the 

ladder approximation in Bethe-Salpeter methods, which is an all orders calcula- 

tion. Since this approximation has been solved in Bethe-Salpeter formalism for the 

spectrum of positronium, we have reasonable hope that diagonalizing the light-cone 

QED Hamiltonian in this truncated Fock space will also reproduce the positronium 

spectrum. Recall that the full Coulomb potential is completely contained in the 

exchange of a single photon; therefore, we should be able to reproduce the Bohr 

spectrum (non-relativistic Coulomb spectrum), 

1 
En = --mred 2 , (74 

in our truncated Fock space. Also included are L - S coupling, the hyperfine 

interaction, and the part of the Lamb shift coming from the fermion’s self-energy 

diagram. 

We expect that diagonalizing HLC in the space (e+e-, e+e-y) gives back the 

positronium Bohr spectrum (actually, the muonium Bohr spectrum since the anni- 

hilation channel has been removed), plus continuum states. It should also contain 

the hyperfine splitting since this comes from the spin-spin interaction between the 

positron and the electron, and the first bit of the Lamb shift coming from Fig- 

ure 14. Obtaining the true spectrum of positronium would require putting back 

the annihilation channel (fermion pair creation diagrams). 

Diagonalizing the space (e- , e-7) gives back the “spectrum” of the electron 

in the cloud of a single photon, plus continuum states. Since the electron is an 

* Recent investigations have revealed a spurious l/q+ singularity in light-cone gauge in a 
truncated Fock space which vanishes when the full Fock space is restored. This singularity 
is eliminated in this work by the choice of wavefunction used in the variational calculation 
presented in Section 11. 
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elementary particle, there is only one state in its spectrum: diagonalization is 

actually a check that mass renormalization is being done correctly. 

All further work in this paper will be limited to solving 3+1 QED in the space 

(e-,e-7) or (e+e-, + e e-7). Solving the first case checks fermion mass renormal- 

ization; solving the second reproduces the first-order positronium spectrum plus 

some second-order corrections. 

34 



8. RENORMALIZATION: SELF-INDUCED 
INERTIAS AND MASS COUNTERTERMS 

Two issues are of concern regarding renormalization. First is the question of 

the self-induced inert& that appear in the theory if one does not normal-order 

the light-cone Hamiltonian. The second is whether the light-cone perturbation 

theory results for the one-loop radiative corrections agree with the usual Feynman 

S-matrix answers. Let us investigate the first question. 

If one begins with a Hamiltonian that is not normal-ordered and proceeds to 

normal-order, one finds extra terms arising from interchanging operators in the 

instantaneous photon and instantaneous fermion interactions. These terms have 

been referred to in the past as “self-induced inertias” (Refs. 1 and 2) and have 

been the source of much discussion concerning their role in light-cone physics. In 

3+1 QED, these extra terms would take the form 

2a 
c 

t 
L2 -l &p 

%,g%PJP ' JP = $ b-dP-- 4 - {P + m I P + 41 (8.1) 
m 

for the photon and 

In = i C {[n - m I n - m] - [n + m I n + m]} , 
E 

Kn = fc k{n-qln--q}, 
P 

for the fermion. Remember that for fermion anti-periodic boundary conditions and 
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photon periodic conditions, 

P,Q = 2,4, 6, . . . , m,n = 1, 3, 5, . . . . (8.3) 

The photon’s self-induced inertia Jp comes from interchanging fermion operators 

in the instantaneous fermion interaction Vinstferme I,, comes from interchanging 

fermion operators in the instantaneous photon interaction Vinstphot and I(,, M, 

come from interchanging photon operators in the instantaneous fermion interac- 

tion. Note that the fermion self-induced inertias are not charge conjugate invariant 

because K, # Mn. 

The question then arises: should the self-induced inertias remain in the theory 

or should they be removed? Simply starting with a normal-ordered Hamiltonian 

eliminates these inertias. A satisfactory answer for the truncated Fock space we 

are considering is that they are not needed. In fact, a procedure that properly 

renormalizes the fermion mass in the truncated Fock space requires the addition of 

mass counterterms that are equal to the one-loop light-cone perturbation theory 

mass counterterms. This will be covered shortly. It even turns out that one may 

keep the self-induced inertias in the theory if one wishes, but they just get cancelled 

by an appropriate mass counterterm. Therefore, the self-induced inertias can be 

kept, but are unnecessary. Because they will be dropped or cancelled anyway, the 

problem of the self-induced inertias being not charge conjugate invariant is moot. 

Before continuing, it should be noted that this result, which will be detailed below, 

only holds in the truncated space (e+e-, e+e-7) or (e-, e-7). A more general 

procedure that includes higher Fock states may in fact require the presence of the 

self-induced inertias. 

In our truncated Fock space, the full set of proper one-loop radiative corrections 

is shown in Figure 15 (improper graphs do not need to be renormalized). Again, 

there is no vacuum polarization because the Fock space does not allow an extra 

fermion pair to be created. Mass counterterms are needed to cancel these self-mass 
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diagrams. The discretized counterterms are 

bH;& = - 
Vb0 

n2 (h-i fil)l+g1/31 +$ (L-; n’l)? (8.4) 

n2 ( 
P- 2 <1-n nl > +92Pf+n(n-9) P7. 

and 

[ 

2 

3 ZJ* 
9 (8.5) 

n2 ( 
P- {L-~ nl >? +92Pf+n(n-9) P7 1 

I+: Le 
n-q 

n2 ( 
P- ff~-, nl I2 +92Pf+n(n--9) P7 

where 

me L-L 2 

Pf= - 
( > 

2 e2 
7 7r 

&A+- ) 
( > 

a=--, 
4Tr 

n = 1, 3, 5, . . . (anti-periodic b.c.) , 

q = 2, 4, 6, . . . , 

7-6 Q’ = 0, fl, f2, . . . . 

(8.6) 

(n, 51) are the quantum numbers for the incoming fermion and X is a small, fake 

photon mass. The sum is over 2 2 q 5 n - 1 and must satisfy both the ultraviolet 

and infrared cut-offs, 

The sum in the last equation is over the quantum numbers (m,Gl) of all the 

spectator particles (i.e.: particles that go from the initial to final state without an 

interaction). The derivation of these results is given in Appendix D. 
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Inclusion of these mass counterterms and diagonalizing the space (e-, e-7) 

reproduces the real electron mass to be one to 12 significant figures on an IBM 3090 

running 64-bit (double precision) real variables and thus verifies that this is indeed 

the correct fermion mass renormalization prescription. The numerical results are 

shown in Section 9. If self-induced inert& are retained, the mass counterterm is 

modified to include -(self-induced inert&). This just cancels the original inert& 

and diagonalizing again reproduces the real electron mass = 1.000.. . me. 

Now turn to the second question posed above, the equivalence of the mass 

counterterms derived from Feynman S-matrix theory and light-cone perturbation 

theory. A caveat must be made here: the comparison will actually be made be- 

tween time-ordered perturbation theory in the infinite momentum frame (Ref. 11) 

(TOPTh,) and S- t ma rix theory rather than between light-cone perturbation the- 

ory (LCPTh) and S -matrix theory because the mathematics is easier to extract in 

TOPTh,. It is believed that LCPTh and TOPTh, are mathematically equivalent, 

though conceptually different; therefore, it is likely that the following statements 

also hold in light-cone formulation. If not, one can for argument’s sake consider 

that all considerations up to this point have actually been made in the infinite 

momentum frame and that we are attempting to diagonalize the infinite momen- 

tum frame 3+1 QED Hamiltonian. The comparison will also be made in Feynman 

gauge rather than light-cone gauge; again, it is believed that the basic result carries 

over. 

The actual derivations for the mass counterterms are given in Appendix E; 

only the results are mentioned here. The fermion self-energy diagram shown in 

Figure 16 has the value 

. 2 

Tfi = J u(Php(ld- it + me)Tp4P) -- 
(i”,,4 ” [(p - Ic)~ - rnz + if] (k2 - X2 + if) (84 

according to the Feynman rules in Feynman gauge. Doing the numerator algebra, 

combining denominators, shifting variables to q = Ic - xp, doing the q” integral by 
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contour integration, and finally doing the q3 integral gives the result 

2 
1 Tfi = & JJ dx d2zl 

2mz (1 t x) 
0 

kt+m,2x2+X2(1-x)-it ’ (8.9) 

Note that this result diverges like In Ic: for large Icf. A regulation scheme such as 

including a heavy, negative metric Pauli-Villars particle is needed to perform the 

remaining integrations. 

The two graphs contributing to the fermion self-energy in time-ordered pertur- 

bation theory are shown in Figure 17. The expression for the first graph in regular 

time-ordered perturbation theory is 

$1 = 2 
00 

4($3 p J J dx d2& - 1 ~(Ph4kZ) ~(k2hwP) 
El& E - El - E2 + ic 

(8.10) 

-CC 

where momenta have been assigned as follows: 

p = (E, $1, p> , kl = (El, &, xp > , k2 = (E2, -&, (1 - ,,p) , 

A; = k; + X2 , rn~=k~trn~. (8.11) 

A heavy, negative metric Pauli-Villars particle must be subtracted to facilitate 

ultraviolet regulation. The correct method of evaluating this expression in the 

infinite momentum frame would be to do the x integral first and then let the 

observer’s momentum go to infinity in the --z direction by letting P + 00. In 

contrast, what is normally done is to take the limit P + 00 first and then do the 

x integral. The two are the same only if interchanging the limit and the integral 
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is allowed. Using the usual method (take limit first) gives the result 

T;;) = 92 

1 

JJ dx d2& 1 t2 - 2x - 2x2) m: - Ici 
8n3 1 - x ki + x2mz + (1 - x)X2 - ie 

_ (A j A) (8 12) 

0 

which diverges like A2 for large A. It turns out not to matter if one interchanges 

the limit and the x integral in this expression, so this answer is indeed the correct 

answer for this graph. 

Now turn to the Z-graph contribution, which is 

00 
T;;) = 2 

4&)3 p J J dx d2iL 1 -~(P>$wk2) @2MP> 
El E2 -E-El -EZ+ic ’ 

-00 

p = (E, CL, P) , kl = (El, t&, -xP) , k;! = (Ez, -il, -(l - x)P) , 

A; = k; + X2 , rn~=k~trn~ (8.13) 

in time-ordered perturbation theory. Taking the limit P + 00 first gives an answer 

of zero. The correct method is to do the x integral first and interchange the limit 

and the integral only where allowed. Doing so, one finds a non-zero contribution 

to the Z-graph from the region x near zero leading to an answer of 

Tjf) = 92 J kf + A2 
8x3 

d2il log 
“I+ X2 

g2 
1 

-X2 + 2rnz 5 
(8.14) 

= - 
87r3 JJ dx d2& 

ki $ m2x2 + (1 - xc) X2 - ie 
- (A -+ A). 

0 

Brodsky, Roskies and Suaya (Ref. 11) and Lepage and Brodsky (Ref. 14) present 

a rule for including backward moving particles in tree graphs. Naively applying 
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this rule to calculate the Z-graph gives an incorrect answer, showing that this rule 

should not be extended in this simple manner. Of course, their rule still holds for 

tree graphs. 

If this result for the Z-graph is added to the result for the usual time ordering, 

Eq. (8.12), and one is added and subtracted from the integrand, one obtains 

1 

Tj;)+Tjf) = “1 J dx d2i& 2mz(l t 2) 
8n3 k: + m2x2 + (1 - x) X2 - ie 

- (A + A) . (8.15) 

0 

which agrees with the Feynman answer, Eq. (8.9)! This demonstrates that the 

TOPTh, and Feynman rules results for the one-loop fermion self-energy in Feyn- 

man gauge are identical if one is careful to do the x integral first and interchange 

limit and integral only when allowed in the TOPTh, calculation. If one takes 

the limit first, one obtains Eq. (8.12) as the complete answer, which agrees with 

the usual LCPTh answer for the one-loop fermion self-energy, but disagrees with 

the Feynman answer. The discrepancy is found in a non-zero contribution from 

the Z-graph in TOPTh, near x = 0. In order to reconcile the LCPTh and Feyn- 

man rules answers for the one-loop fermion self-energy, an extra piece equal to the 

TOPTh, Z-graph must be added to the light-cone Hamiltonian and the LCPTh 

rules. However, since this piece is a self-mass, it is cancelled by including the 

appropriate mass counterterm. As a result, in practice the extra piece from the 

Z-graph can be ignored. 

Notice that the usual time-ordering contribution in TOPTh,, Eq. (8.12), 

diverges like A 2, but the full Feynman rules answer, Eq. (8.9), diverges like In A. 

Apparently, the leading A2 divergence in the usual time-ordering graph is exactly 

cancelled by a similar divergence in the Z-graph. 

A consideration much like the above can also be made for the vacuum polar- 

ization graph. Details are in Appendix E. 

This completes the discussion of electron mass renormalization. Due to the ab- 

sence of pair creation, there is no renormalization arising from vacuum polarization 
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in the truncated Fock space consideration. This leaves just electron wavefunction 

renormalization, which is equivalent to simply stating that the real electron’s wave- 

function is normalized. The probability of finding the bare Fock electron inside the 

real electron is given by the expansion coefficient +e- for the single electron Fock 

state shown in Eq. (4.28). Th is coefficient is just the wavefunction renormalization 

constant fi. 

To summarize, there is no photon wavefunction renormalization (charge renor- 

malization) in the truncated Fock space, (e+e-, e+e-7) or (e-, e-r), because there 

is no allowance for pair creation. Electron wavefunction renormalization is auto- 

matic because the real electron’s wavefunction is normalized. If one is careful 

about the behavior near the endpoints, x = 0, 1, the one-loop self-mass corrections 

in TOPTh, and probably LCPTH agree with the answer from S-matrix analy- 

sis. Mass renormalization is then done by inserting mass counterterms into HLC 

that exactly cancel the one-loop self-mass contributions. If one decides to keep the 

“self-induced inert&“, these are also cancelled by mass counterterms. Since the 

self-mass endpoint corrections and self-induced inertias are just cancelled anyway, 

what one effectively does is start with a normal-ordered Hamiltonian (i.e.: without 

self-induced inert&) and inserts the mass counterterms given in Eqs. (8.4) and 

(8.5) . Once again, this prescription is valid only in the truncated Fock space of 

one additional photon. If higher Fock states are included, a more general method 

is necessary which may in fact include the self-induced inertias in a crucial way. 

Since only elementary particles require renormalization, no further renormal- 

ization needs to be done. That is, there is no positronium mass or wavefunction 

renormalization. The full light-cone Hamiltonian given by Eq. (4.24) plus mass 

counterterms given by Eqs. (8.4) and (8.5) is now ready to be diagonalized. 
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9. DIAGONALIZATION: CHARGE -1 SPACE 

The prescription for diagonalizing the QED light-cone bound state equation 

Eq. (3.15) is then the following. HLC is equal to Ho + HI + H2 + H,,u where Ho, 

HI, and H2 were given in Eq. (4.24) and H,,lf is the mass counterterms given in 

Eqs. (8.4) and (8.5). The Fock space is generated by keeping all Fock states that 
F - e 

satisfy - - 

c 
kij + rnf 

5 A2 
Xi 

(94 
i 

and have photons that satisfy 
2 qe. 

X 
(9.2) 

These two cut-off conditions are also applied to the instantaneous fermion and 

photon interactions with the instantaneous particles treated as if they were real 

particles. Diagonalizing gives the full mass spectrum of bound states and scattering 

states and their corresponding wavefunctions as a Fock state expansion, 

P-3) 
n 

In principle, the true continuum theory is reproduced by taking the limits A’, LI, A + 

00 and c + 0. Recall from Section 6 that the results are identical for any choice of 

E less than (x/L~)~; therefore, one is allowed to take the limit E t 0 immediately. 

In this paper, the Fock space is limited for various reasons discussed, in Section 7 

to just (e-, e-7) for charge -1 and (e+e-, + - e e 7) for charge zero. Doing so checks 

fermion mass renormalization to one-loop and reproduces the Bethe-Salpeter lad- 

der approximation for positronium. 

Diagonalizing the light-cone Hamiltonian in the charge -1 space of (e-, e-7) 

for any value of Q, K, Ll, A and E reproduces 

M2 = 1.000. . . rnz (9.4) 

%r the ground state. Remember that as pointed out in Section 7, in this truncated 
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Fock space consideration, diagram 14 must be dropped from the full set of light- 

cone diagrams in Fig. 7 . The accuracy of this result is only limited by machine 

precision. On an IBM 3090 running 64-bit real variables, this is 12 places behind the 

decimal point. This result numerically proves that fermion mass renormalization 

is being done correctly in the truncated space (e-, e-7) because the physical mass 

of the fermion (i.e.: the ground state mass, M) is equal to the&are fermion mass, F - 
me- _ 

One also obtains the fermion’s structure function by summing the ground state 

wavefunction over all modes with a fixed x, 

f(x)dJ: = c IA& L,I” - 
n, fixed z 

(9.5) 

Typical structure functions for CY = .3 and .6 are shown in Figure 18 and Figure 19. 

As expected, the structure function is peaked at x = 1 and has a characteristic 

long radiative tail. 
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10. DIAGONALIZATION: CHARGE ZERO SPACE 

A summary of the diagonalization prescription was given at the beginning of 

Section 9. Diagonalizing the truncated Fock space (e+e-,e+e-7) omitting dia- 

grams 9, 14, 16 from Figs. 6 and 7 should return the Bohr answer 

M = 2m, - trn, 
( > 

+ZF 
2 

n = I-, 2,3,. . .- 
n 

(10.1) - 
- 

for the positronium bound state spectrum plus L - S coupling, the hyperfine split- 

ting, and the part of the Lamb shift from the one-loop fermion self-energy diagram 

(actually, the muonium spectrum is returned since the annihilation channel has 

been removed in this truncated Fock space). We should also obtain the full spec- 

trum and wavefunctions of scattering states, along with the bound states. The four 

lowest wavefunctions should be the one parapositronium and three orthopositron- 

ium states. 

To give an example of the potential power of the method, a typical spectrum 

obtained from diagonalizing is shown in Figure 20. A 420 by 420 matrix was di- 

agonalized on an IBM 3090 in 6 minutes to obtain this spectrum. Unfortunately, 

the number of Fock states is very limited by computer space (X 500 states, max- 

imum). The typical ground state wavefunction extends outward one point in the 

il direction and one or two points in the x direction. One hardly expects such a 

course ground state wavefunction to reproduce the correct mass eigenvalue. This 

is borne out by examining the convergence in I< and Ll. Figure 21 and Figure 22 

show no convergence in these parameters, or at most convergence to the free value 

A42 = 4mz. 

One can estimate how large Ii’, Ll, and A need to be for a given CY by consid- 

ering the expected ground state wavefunction, 

1 

I 

2 , MB&r = 2% - g?71eCX2 . (10.2) 

-This wavefunction has its peak at zl = o;, x = % and falls to 6 of its peak value 

45 



at 
1 

x=-, 
2 

k, or k, = &mea ; ii-= 0; . (10.3) 

If one wants the nlth point in lo and the nth point in x to lie at these points, 

then 

n.Lr 2n a -=meo, -=--‘I - -. 
LL K 2 - 

(10.4) 

One must still choose A large enough so that these points are actually included in 

the Fock space. One can estimate this A to occur when the electron and positron 

have x = % - 4, k, or k, = $meo and the photon x = cr, k, or k, = -mea. This 

gives 

A2 = ($%Q)2 + mz + ( $L2CY)2 + rn$ + (me&)’ 
--cc 1 
2 2 

i-5 CY 

= 4rnz 1+ o/4 
( ) 1-a * 

(10.5) 

Note that the largest contribution is from the last term, the photon’s invariant 

mass squared. If one wants at least five points in each of the directions x, k,, and 

k, (n,nl = 5 in Eq. (10.4)), one must choose K, Ll, and A to be at least 

For o = .3 and .6, the numerical values are 

a=.3 : K = 68 , LIZ, A = 2.5me , 
me 

cr=.6 : K = 34 , L12, A = 3.4me . 
7% 

(10.6) 

(10.7) 

These are far larger than the typical Ii’, Ll, A used above. The total number of 

Fock states for these values is 10,773,680 for K = 68, Ll = 52&, A = 2.5me and 

T, 362,468 for K = 34, Ll = 26&, A = 3.4me. 
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That the method of diagonalizing the light-cone Hamiltonian to obtain bound 

state mass eigenvalues and wavefunctions works in principle is demonstrated in 

Sections 12 and 13. If one were able to diagonalize the large matrices necessary 

by either better numerical techniques, making the matrices smaller by theoreti- 

cal considerations, or using a larger computer, one should be able to obtain the 

spectrum and wavefunctions for positronium. < - w 
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11. VARIATIONAL METHOD 

As seen in Section 10, diagonalizing the light-cone Hamiltonian directly to find 

mass eigenvalues and wavefunctions is limited numerically. The computer time 

and storage needed to handle the large matrices necessary to produce reasonable 

results are unyieldingly large using present techniques. A possible solution is to 

reduce the size of the matrices by implementing various symme%es that have been 

so far ignored. Possibilities include reflection symmetries, charge conjugation, and 

angular momentum. Another solution is to make use of the sparseness of the 

Hamiltonian matrix by implementing a Lanczos method or other algorithm to 

diagonalize. 

In lieu of diagonalization, a third alternative is to do a variational calculation to 

find an upper bound on the mass eigenvalues and approximate the wavefunctions. 

A variational ansatz is made for the ground state wavefunction in the charge zero 

sector. For example, if one restricts to the truncated Fock space (e+e-, e+e-y), 

the expectation value of the light-cone Hamiltonian is calculated to find an upper 

limit on the ground state mass squared, 

($4 HL&)= M2 > J&j , - (11.1) 

with the variational wavefunction 

I$) = $e+e- le+e-) + +e+e-y le+e-7) * (11.2) 

-Get,- and Get,--, are functions of x and il as explained in the paragraphs before 

Eq. (3.11). HLC is the expression derived in Section 4 (Eq. (4.24)) plus fermion 

mass renormalization terms (Eqs. (8.4) and (8.5)). 

Here, we choose tiete- to be 

I 2v3 (11.3) 

-T or S, s’ = +l, +l. x = k+/P+ and z~ are the electron’s plus momentum fraction 
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and perpendicular momentum and s,s’ are the electron and positron spins. or, 02, 

and us are variational parameters. This choice of $,t,- is from Brodsky and Ji”‘] 

and is the relativistic extension of the Bohr result for the ground state (with VI, 

02, and 03 set equal to one), 

- 

.G,t,- =. A' 

[ 
;2-1 2 2 1 

Zr-‘- - 

Tmea 

written in light-cone coordinates. $ete-y is chosen to be 

1c, c 
v4 

e+e--f = 
(e+e-) v5”ikhr - MZ+ e-y 

(e+e-rl HLC ) e+e-) $e+e- , 

M,2+e-r = c ‘Ti + mf . 

i=e+ Xi 
,e-,7 

(11.4) c 

(11.5) 

The meaning of this equation will be explained shortly. Mztemr is the invariant 

mass squared of the (e+e-7) state, MB& is defined to be 2m, - ame(r2, which is 

the non-relativistic Bohr answer for the ground state mass. A is a normalization 

constant chosen such that 

($I$) = C l$e+e-12 + Itie+e-T12 = l - 
e 

zi9kl.i 

(11.6) 

Such a choice of wavefunction should put a bound on the mass of the triplet 

S = 1 positronium state, orthopositronium (or more precisely, orthomuonium since 

the annihilation channel has been eliminated by restricting the Fock space to ex- 

clude pair creation). If the e+e- wavefunction had been chosen to be +$,t,- for 

s, s’ = +l, -1 and -$ete- for s, s’ = -1, +l, a mass bound for the singlet S = 0 

positronium state, parapositronium, would be found. We choose to work with or- 

thopositronium for the numerical reason that it requires only the storage of spin 

-up fermions, which reduces the computer storage requirement by f. 
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ti ete-r for an electron, positron, photon Fock state with given quantum num- 

bers is determined by looping over all (e+e-) states and -summing all non-zero 

light-cone Hamiltonian matrix elements with a factor v4/(vgM&,hr - Mzte-,). The 

first-order perturbation theory answer for $ete-r would be to multiply Gete- by a 

factor of (e+e-7lP-I e+e-)/II where D is the light-cone energy denominator (i.e.: 

difference of P-s). Since HLC = P+P- and Miohr - MzteFr = P+D, we see that e 
our choice of +,t,-? is just what one would write do&r from perturbation theory - 
(with vq and 215 set to one). 

Excited states could in principle be calculated by doing a variational calculation 

with variational wavefunctions chosen orthogonal to the ground state and any other 

lower states. 

An analagous construction can be made in the charge -1 sector. A variational 

wavefunction is chosen, 

I$) = ti, le-) + $e-y le-7) 7 (11.7) 

with 

$, = A 6(x - 1)6t2)( zl) (11.8) 

for s = +l and 

$e-y = v1 
v2rnz - M2 (e-71 HLC le-)tiL , 

e-7 

M,2-y= c k?iTmf . 
(11.9) 

i=e-,y 
I 

Again, vr and v2 are variational parameters and A is the normalization constant. 

Calculating the expectation value HLC returns an upper bound on the real elec- 

tron’s mass, M, in terms of the bare electron’s mass, me: 

(~HLc Iti> = M2 2 mf . (11.10) 

ff fermion mass renormalization has been done properly, M should equal me. 
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That the variational equation, 

is equivalent the momentum space Schroedinger equation for positronium (muo- 

nium), ,- - # 
- 

/ 

i2 
d31E I$(Z)12 m, - s/d3& d3Zf $*(Gf)$(&) ’ + 

(Zf - ki)2 
= -imea2 , 

(11.12) 

in the charge zero sector and 

M = m, (11.13) 

in the charge -1 sector in the non-relativistic limit is demonstrated in Appendix F 

and Appendix G. 
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12. VARIATIONAL METHOD: CHARGE -1 SPACE 

The variational calculation described in Section 11 is applied here to the trun- 

cated Fock space (e- , e-7). Recall that the wavefunction is chosen to be 

T&- = A S(z - l)S(2)(&J , 
- 

T& = u1 
v2rnz - M:-y -(Off-kc le-) ti, . 

(12.1) 

01 and 02 are variational parameters. The expectation value of the light-cone 

Hamiltonian 

(+IHLcW) = M2 L mi (12.2) 

is calculated to obtain an upper limit on the physical mass of the electron. HLC is 

the sum of Eq. (4.24) and the mass counterterms Eqs. (8.4) and (8.5), but excludes 

diagram 14 (see Fig. 7) since we are working with a truncated Fock space. 

Note from Appendix G that if one drops the instantaneous fermion interaction 

kstferm and its associated mass counterterm, Eq. (8.5), M2 is equal to rnz for 

all CY, K, Ll, and A with vl,v2 = 1. This is borne out numerically: for every set 

of o, I(, Ll, and A investigated, we obtained 

M2 = 1.000. . . rnz (12.3) 

to 10 places behind the decimal point. 

If Knstferm is retained, the expectation value is not minimum at VI, v2 = 1. 

Varying the parameters for (Y = .6, I< = 25, Ll = 12~, A = 3.5m,, one finds the 

minimum at vr = .99934, v:! = .99834, at which point the expectation value is 

M2 = 1.000243 1502 rnz . (12.4) 

The wavefunctions for this case is shown in Figure 23. It shows the expected 

Fhoton cloud around the bare electron at CC = 1, $1 = 0;. 
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Thus, the result from diagonalizing the charge -1 space, M = m,, has been 

reproduced as a variational calculation, once again demonstrating that choosing 

the mass counterterms given in Section 8, Eqs. (8.4) and (8.5), is the correct 

renormalization prescription to keep the fermion’s bare mass equal to its physical 

mass. Since there is no further renormalization arising from composite objects 

such as positronium (i.e.: no positronium “mass renormalizatiog”, or “wavefunction 

renormalization”), we may carry these mass counterterms over to the charge zero 

sector and proceed to calculate for positronium. 
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13. VARIATIONAL METHOD: CHARGE ZERO SPACE 

As described in Section 11, the expectation value 

(+WLC I+)= M2 > M; - (13.1) 

of the light-cone Hamiltonian given in Eq. (4.24) plus masscoun;erterms Eqs. (8.4) - 
and (8.5) is calculated in this section in the truncated Fock space (e+e-, e+e-y) 

with wavefunction 

I$> = tiete- le+e-) + $e+e-y le+e-7) , 
?fbe- = ~2+“lm2 A 

P 1 2V3 ' 

z(l-z)= - V2”L 

+e+e-y = c 

v4 

‘5 M&3hr - M,"+ e-y 
(e+e-rl HLC le+e-)A+,-- 

(e+e-) 

(13.2) 

to obtain an upper limit on the ground state of positronium. In this section, the 

variational parameters 01 through vug are set equal to one. As explained in Section 

7, since the Fock space is truncated, diagrams 9, 14, and 16 from Figs. 6 and 

7 must be dropped from HLC. Diagram 10 must also be dropped when another 

photon is present. All Fock states are required to have invariant mass squared less 

than A2, 

and photon invariant mass squared greater than E, . 

2 
Qe. 
2 

(13.3) 

(13.4) 

In these equations, instantaneous particles are treated as if they were real particles. 

Also, as explained in Section 6, the limit c + 0 can be taken immediately. Numer- 

Tally, this means c can be chosen equal to the computer’s machine precision. For 
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computational reasons, the spins of the fermions and anti-fermions are all chosen 

to be up; therefore, the bound will be placed on the ls3i2 level, orthopositronium. 

Extending to include all spin states is a simple matter given enough computer 

capabilities. 

First, we demonstrate numerically the need for an infrared cut-off on the photon 

states. This contention was made in Section 6 and requires al&photons to satisfy 

- Eq. (13.4). F’g 1 ure 24 and Figure 25 show the behavior in K for (Y = .6, Ll = 20&, 

A = 2.4me with and without an infrared cut-off, respectively. KE and PE are 

defined in Appendix F, Eq. (F.23). Quite clearly, the latter case does not converge. 

As mentioned in Section 6, this lack of convergence is due to the discrete sum 

placing too much weight on the points near x-, = 0, 21, = 0;. Barring a better 

solution, the points il, = 6~ must be removed by a cut-off such as Eq. (13.4) to 

give convergence as K -+ 00. 

Before continuing, we summarize some results first shown in Section 10. Note 

that most of the (e+e-) wavefunction given in Eq. (13.2) occurs for electrons with 

x between i-?j and i++j and k,, k, between --mea and +m,cr. The wavefunction 

has fallen to l/25 of its peak value at these points. The Coulomb binding is mainly 

due to electrons inside this binding region. If one wants 2n points in x and 2nl 

points in each of k, and k, to lie inside this region, one must choose I< and Ll to 

be at least 

To ensure that all electrons and positrons inside the binding region are indeed kept, 

one needs A at least 

A = 2m, 

which for LY = .6 is A = 3.4me. 

(13.6) 

Also note that the instantaneous fermion interaction, Vinstferm, contributes 

anly a small amount to the expectation value ($1 HLC I$). For example, at cy = .6, 
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K = 26, Ll = 20&, A = 2.8me, 

($1 Knstferm I$) = O-001196 mz , 

M2 = ($1H~,c)$)= 4.076754 rn: , 

PE = -.129765 rnz . 

(13.7) 

PE is defined in Appendix. F, Eq. .(F.23) an is approximately, the contribution d 

_ of the-potential energy to M 2. The instantaneous fermion contribution is only .03 

percent of M2 and .92 percent of PE. We therefore choose to ignore V&ferm in 

all further deliberations since the computer time needed to calculate just this con- 

tribution turns out to be far greater than the time needed to calculate everything 

else. For consistency, the mass counterterm Eq. (8.5) must also then be removed. 

So, dropping the instantaneous fermion interaction and counterterm Eq. (8.5) 

and calculating M2 = ($JI HLC I$) for a = .6 gives the results shown in Figure 26, 

Figure 27, and Figure 28. The graphs plot the quantities M2, KE, PE, PEflipy 

PEnoflip, and PEinstphot in units of rnz. M2 is equal to 4rnz + ICE + PE and 

PE = PEflip + P&of/+ + PEinstphot* ICE, PET PEflip, PEnoflip and PEinstphot 

are defined in Appendix F, Eq. (F.23) and are approximately the contribution of 

the kinetic energy to M2, the potential energy to M2, the contribution of Vf/ip 

to PE, the contribution of Vnoflip to PE and the contribution of I&tphot to PE. 

PEflip is actually zero in our case because we have chosen to keep only fermions 

and anti-fermions with spin up. 

Note that M2, KE, and PE have the following numerical values for a pure 

Bohr spectrum at (Y = .6: 

1 
EBohr = --pea2 , 

1 
IcEBohr = zVZeCY2 , PEBohr = 

1 
--??leCY2 , 

2 

M2 = (2me + E&,hr)2 = 3.648 rnz , 

ICE x (2me + KE&,hr)2 - 4rnz = .368 rnz , 

PE x (2m, + PEBohr)2 - 4rnz = -.688 rn: . 

(13.8) 

The cross term between the kinetic and potential energies of order $I” = .03 
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has been dropped to obtain the last two numbers. We see from the figures that 

KE converges to the Bohr answer rapidly, whereas PE converges rather slowly. 

Also note that PEnoflip and PEinstphot are individually infrared and ultraviolet 

divergent - they each diverge as K + 00 and A + 00 - but their sum, PE, is 

convergent. This cancellation is extremely sensitive, and is destroyed by increasing 

or decreasing the strength of &,@&ot relative to Vndlip-by the .smallest amount. 

_ This delicate cancellation increases our confidence that the correct form of the 

potential has been used in HLC. The cancellation also fails if the infrared regulator, 

Eq. (13.4), is removed. A typical wavefunction for cx = .6, K = 42, Ll = 32&, 

A = 2.5me is exhibited in Figure 29. 

Unfortunately, we find that our computer resources are exhausted before rea- 

sonable answers are realized. For example, the rightmost point in Fig. 30 is barely 

bound, 

M2 = 3.9984843235 mf , (13.9) 

but requires 1,621,435 Fock states and approximately 11 Cray YMP service units* 

to calculate. 

However, we show in Appendix F that (+I HLC I$) is approximately equal to 

where 

1c, 
A ete- = 

k: +rnz 1 2 

x(1-x) - Miohr 

(13.11) 

and the normalization A is determined by 

(13.12) 

* One service unit at the Pittsburgh Supercomputing Center is approximately .75 CPU hours 
or .375 MWordhours of CPU memory. One Word is the storage needed for one double 
precision word. 
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qiR is given in Eq. (F.25) in Appendix F. The set of points in Fig. 30 labelled 

“C” show the value of this quantity as a function of A. These data points will be 

referred to from now on as “Coulomb data”. The points labelled “V” are obtained 

by calculating the expectation value ($1 HLC I$) and will be referred to as “light- 

cone data”. The closeness of the two sets of data points in Fig. 30 demonstrates 

numerically that the approximation Eq. (13.10) for (TJJ H&c I+1 is justifiable. One 

c.an th-erefore reasonably believe that the light-cone data points, if ever calculated, 

will follow the Coulomb data points as K, Ll, A are increased. 

Now turn to a consideration of Coulomb data. From Figs. 31 and 32 we see 

that M2 converges like l/L: for reasonably large Ll and like l/K for reasonably 

large K (points at smaller values of IT, Ll have been omitted from the plots and 

are more erratic due to the smallness of K and Ll). Fitting the data to the form 

M2 = A( 1 + B/Lt)( 1 + C/K) gives 

M2 = 4.000mz - .242(I-z)(l-y)m:. 

The upper bound placed on orthopositronium from this fit is 

M2 = 3.758 rnz , 

(13.13) 

(13.14) 

which should be compared to the pure Bohr answer 

M2 = 3.648 rnz . (13.15) 

The data used to produce these fits is in Appendix I. Due to the smallness of A, we 

have been unable to fit the data to this parameter. One would expect M2 to fall 

off as A+B/A6 b ecause PE is proportional to s d2 klid2 klf 1 
kiik:f(kli-klf)’ +A A 

for large A (see Eq. (F.29) in Appendix F). 

We see that the M2 value obtained from fitting Coulomb data in I< and Ll with 

T lnstferm ignored gives a bound on orthopositronium of M2 = 3.758mz. This result 
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is at least within the ballpark from the true answer at Q = .6 which is estimated 

from the Bohr formula to be M2 = 3.648mz. This answer can be improved by 

running at larger A and then fitting in this parameter. There is also room for 

improvement from varying the variational parameters vr through vs. Restoring 

v cnstferm should change the answer by only a small amount. 

One can fairly confidently say that the light-cone variatio”a1 method does a 

- reasonabIe job of reproducing the orthopositronium state. If one had the com- 

puter resources necessary, the correct answer can most likely be obtained without 

approximating ($1 HLC I$) by Eq. (13.10) and dropping Knstfezm. 
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14. SUMMARY 

Discretized Light-Cone Quantization (DLCQ) has been presented as a fully 

relativistic discrete representation of quantum field theories and has been demon- 

strated to work in principle for Quantum Electrodynamics in three space and one 

time dimensions. Covariant, (tree-level) gauge invariant ultraviolet and infrared 

regulation were presented .in Sections 5 and 6 and-a cbmplete renormalization 

scheme in the truncated Fock space of (e-, e-7) or (e+e-, e+e-y) was outlined in 

Section 8. The numerical proof of the renormalization method is the demonstration 

that the electron’s bare mass is equal to its physical mass using diagonalization 

or a variational calculation. These were shown in Sections 9 and 12. Most of the 

positronium spectrum is contained in this truncated Fock space: the Bohr levels, 

L . S coupling, the hyperfine interaction, and the part of the Lamb shift from the 

fermion self-energy diagram are all included (the results obtained in this truncated 

Fock space will actually be for muonium because the annihilation potential is not 

present). 

The best numerical result to date for the ls3j2 state of positronium, or- 

thopositronium, is an upper bound for cy = .6 of 

MO2 5 3.758 rn: . (14.1) 

This result is from fitting what was described as “Coulomb data” in Section 13 and 

extrapolating in the parameters K and L 1. It compares with an estimate of the 

true value using the Bohr formula of MO2 = (2me - amect2)2 = 3.648mz. Two ap- 

proximations are made in this result: ($1 HLC I$) is approximated by Eq. (13.10) 

and the instantaneous fermion interaction is dropped. The validity of the first 

approximation is demonstrated mathematically in Appendix F and numerically in 

Section 13. The second approximation is shown numerically in Section 13 to have 

only a very small effect on the answers. Both approximations are not fundamental 

and are done only to reduce the amount of computer resources needed to do the 

>alculations. Given enough computer time and memory, the bound of 3.758mz can 
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be reproduced without these approximations. Calculating the ls’12 level, para- 

positronium, and finding the hyperfine splitting can be done by including all spin 

states for the electron and positron. This can be done with no modifications to the 

method described, only more computer resources or better numerical technology 

to store the added electron and positron spin states is needed. 

The success of the variational calculation has tested the foundations of DLCQ 

_ and shown them to be sound. There should be no fundamental reason why the 

light-cone bound state equation 

HLC/@) =M2W) (14.2) 

can not be diagonalized to obtain the mass spectrum and wavefunctions in the 

Fock space of (e+e-, + - e e y). A series of numerical approximations were made to 

actually solve Eq. (14.2) . These were to replace (14.2) by a variational calculation, 

(14 HLC I+> = M2 2 M,2 , (14.3) 

drop hstferm 7 and to replace ($,I HLC I$) by Eq. (13.10). Again, the only reason 

these approximations were made is lack of numerical technology or computer facil- 

ities. There is no theoretical barrier to directly solving (14.2). An estimate of the 

number of Fock states needed for reasonable answers using the methods described 

in this paper is 9,444,569 for Q = .6, K = 42, Ll = 32&, A = 3.5m,. 

A possible method of extending to include the Fock state with two photons, 

(e+e-yy), is to include mass counterterms for the fermion self-mass diagrams with 

two photons in flight. A subset of these are shown in Figure 33. Including this 

Fock state with two photons should reproduce the full Lamb shift excluding the 

Uehling term from vacuum polarization. The Uehling term can be included by 

further extending the Fock state to include (e+e-e+e-). This extension can be 

implemented by introducing photon mass counterterms for the graphs in Figure 34. 

~4s explained in Appendix E, photon mass counterterms are necessary because we 
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are using a non-subtractive ultraviolet regulation scheme. A test of whether this 

is done correctly is to check that the ground state has M2 = 0. This would verify 

that the bare photon mass remains equal to the physical photon mass. Including 

this extra Fock state also puts back the annihilation potential needed to calculate 

true positronium levels. 

Possible methods of improving the numerical technology that deserve further 

- consideration include: 

1. Implementing symmetries that have been so far ignored. These might include 

angular momentum, charge conjugation, and so forth. Choosing the Fock 

states to be eigenstates of these operators would dramatically reduce their 

number. 

2. Using a Monte Carlo method to calculate the expectation value ($1 HLC I$) 

in the framework of a variational calculation. Doing so may eliminate the 

need to store all the Fock states in computer memory simultaneously, thus 

allowing the consideration of many more states than is now permitted. 

3. Using a numerical method such as the Lanczos method to take advantage of 

the sparseness of the light-cone Hamiltonian matrix. Such a diagonalization 

routine would reduce the amount of computer time and memory needed since 

the whole matrix would not have to be stored at once as is done now. 

One or more of these improvements may yet provide the numerical accuracy needed 

to 

in 

make calculations of positronium to higher precision. 

A new ultraviolet cut-off method proposed by Paulil”’ has shown much promise 

this area. His suggestion is to only keep Fock states that satisfy the condition 

(14.4) 

The first term on the left-hand side is a sum over all the constituent particles in the 
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state. The second term is the minimum value that this sum can take for that type 

of Fock state. That is, there is one value of Main for all pock states containing 

an electron and a positron, one value for all Fock states containing an electron, a 

positron, and a photon, and so on. For example, M~i~ is equal to 4rnz for (e-‘-e-) 

Fock states (this occurs at cl = Gl, x = f) and 16mz for (e+e-e+e-) Fock states 

(at 21 = 61, x = $). I n order to maintain gauge invariance aLthe tree-level, this 

_ cut-off is--also applied to states with instantaneous particles in the same manner 

as explained in Section 5. Work is now in progress with this new cut-off and is 

showing signs of much improved convergence properties. 

The method of DLCQ h as a number of important positive attributes: 

1. The technique is straightforward, non-perturbative, and fully relativistic, and 

can be applied to quantum field theories in general, the most obvious can- 

didate being Quantum Chromodynamics. Even the truncated Fock space 

analysis is non-perturbative since the Fock states that are allowed are iter- 

ated an infinite number of times. 

2. Due to the positivity of P +, there are no interactions in the theory that create 

particles out of the vacuum. As a result, the vacuum structure is simple: the 

perturbative vacuum is the Fock state vacuum is the true vacuum, and they 

are all eigenstates of HLC with M2 = 0. 

3. Diagonalization has the potential of giving the full spectrum of bound states 

and scattering states along with their respective wavefunctions. The struc- 

ture functions needed in calculations of high-energy scattering processes are 

obtained from the wavefunctions simply, 

f(s)ds = c I&+r(~, &)I” - 
n, fixed x 

(14.5) 

4. The fermions are treated in a natural way. There are no fermion determinants 

or fermion doubling. 

5. In A+ = 0 gauge, there are only two physical photons. 
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6. As shown in Appendix F, DLCQ is equivalent to the momentum space 

Schroedinger equation in the non-relativistic limit. -- 

To emphasize once again, the framework for DLCQ has been established for 

quantum field theories in three space and one time dimensions in a truncated Fock 

space. No further theoretical considerations need to be made; better results are 

a matter of improved numerical technology and computer resources. Pauli’s new 

- ultraviolet cut-off is a promising avenue of hope in this regard. Extensions to other 

field theories such as Quantum Chromodynamics should now be possible. Though 

the numerical results presented here are not as good as one might like, hopefully 

the appetite has been whetted. 
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APPENDIX A 

In this appendix, Dirac’s method for quantizing constrained Hamiltonian sys- 

tems such as QED is briefly described and then applied to space-time QED in 

temporal gauge (A0 = 0) and light-cone QED in light-cone gauge (A+ = 0). A 

more complete discussion can be found in Dirac [231 and Hanson, Regge and Teitel- 

boim (Ref. 20). H anson et al also present specific applications of the method to 

space-time QED in a variety of gauges. Steinhardtt2” discusses the application of 

Dirac’s method to light-cone QED. Much of the application below to QED is from 

Hanson et al and Steinhardt. 

The general method is as follows: 

1. One finds the canonical momenta pn = z from the Lagrangian L(q,, &). 

This may lead to a number of constraint equations relating qn and pn (i.e.: 

equations that are independent of Qn). These equations are referred to as 

primary constraints, 

dm(P,Q) = 0 , 7-n = l,...M. (A4 

M is the number of primary constraint equations. The wiggly equal sign 

means that the equation is a weak equality because the Poisson bracket of 

4h with some of the canonical variables may not equal zero. The normal 

equal sign will be used to denoted strong equalities which have zero Poisson 

brackets with all the canonical quantities. Assume Poisson bracket relations 

between the pn and qn, 

{P”,%n} = 4; . 

The Poisson bracket is defined to be 

P-2) 
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2. The canonical Hamiltonian Hc is derived from the Lagrangian as 

Hc = ~“4, - L(!7n, 48) - (A-4) 

This Hamiltonian is not unique because any multiple of one of the primary 

constraints can be added to give 

I;r = Hc + urnbn(wd - (A-5) 

The equations of motion can be generated by taking the Poisson bracket with 

fi, 

To have a consistent system, the primary constraints must stay zero. There- 

fore, 4 = $$ must equal zero. That is, 

This new set of equations can lead to one of four outcomes. 

(a) The result may be an inconsistency. If this is so, the Lagrangian is no 

good. 

(b) These equations may provide no new information. 

(c) They may result in conditions on the coefficients u,. 

(d) The equations may cause a new condition (independent of the urn’s) on 

the pn, qn. These are secondary constraints and are collectively denoted 

$a(P, q) = 0 9 a=M+l,...T. (A4 

One then requires & z 0. This may lead to further secondary con- 

straints. This procedure is continued until all secondary constraints are 

found. T is the total number of constraints, primary and secondary. 
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3. Define first and second class constraints. If 

{d’a,~b} =o (A.9) 

for all b= l,... , T, then q!+, is first class. Otherwise da is second class. The 

first class constraints are collectively denoted 

MP,d = 0 , i = 1,...1. (A.lO) 

I is the number of first class constraints. 

4. The number of first class constraints is equal to the number of gauge degrees 

of freedom, which are eliminated by imposing gauge conditions as secondary 

constraints. These gauge secondary conditions may generate more secondary 

constraints as in point 2. The total number of gauge conditions, 

%(P,d = 0 , i= 1,...1, (A.ll) 

should equal the number of first class constraints. Upon imposing these 

gauge conditions, all constraints become second class. 

5. Now form the matrix 

C cxp = ~hY,~a~ (A.12) 

where da, &, run over all the second class constraints. This matrix is inverted 

to give Cij. Dirac has shown that if {Tit $i} is well defined and non-singular, 

then Cgj exists. 

6. Replace all Poisson brackets by the Dirac bracket, 

b%B}* = {AA - {~%$,)C,i:{4~, B} . (A.13) 

One can show that {&, A}* = 0 f or all second class constraints. As a result, 

all second class constraint equations (or all constraints if a full set of gauge 

constraints has been imposed) can now be set strongly equal to zero. 

67 



7. The total Hamiltonian is taken to be 

H = Hc + v&(P, q) (A.14) 

where the sum is over any remaining first class constraints. Since the second 

class conditions & = 0 are now strong equalities, they can be used in the 

right hand side of Eq. (A.14). If I gauge constraints had been imposed, the 

total Hamiltonian would just be Hc. The new equations of motion are 

$ = (9, H)* (A.15) 

and the Poisson bracket relations are given by {A, B}*. 

8. The system is quantized by replacing {A, B}* by -i [A, B]. 

As a first example of Dirac’s method, consider ordinary space-time QED in 

temporal gauge (A0 = 0 ). In just this example, the metric tensor gp” will be 

chosen to have diagonal elements (-1, 1, 1,l). In the rest of this paper, gpl” has 

diagonal elements (1, - 1, - 1, -1). The canonical momenta are derived from the 

Lagrangian to be 

7r”=o, $=i-f?A”, (A.16) 

from which one obtains the canonical Hamiltonian 

(A.17) 

The relationship for 7r” is a primary constraint since it does not involve the velocity 

fields Afi. This primary constraint turns out to give one secondary constraint, 

f - ii M 0. Th ese two constraints are both first class, which means that a total of 

two gauge conditions may be chosen. The temporal gauge condition A0 z 0 leads 
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to a secondary gauge constraint ‘? - x x 0. Collecting the constraints, which are 

now all second class, 

primary constraint : To X 0 

secondary constraint : h?zo 

gauge constraint : A0 x 0 

secondary gauge constraint : ~.fbO) 

(A.18) 

forming the matrix Cap between these four second class constraints, and inverting 

leads to the Dirac bracket conditions 

W, d’}* = {A”,A”}* = 0 , 
(A.19) 

total Hamiltonian 

(A.20) 

and equations of motion 

A= {,$H}* =ii, 

ir;= {Z,H}* = -~xiLv2/i. 
(A.21) 

These two equations of motion can be combined into one equation to reproduce 

the familiar result 

o&o. (A.22) 

Since the second class constraints are now strong equations, one also has ‘?-A = 0, 

which is the condition one normally writes for the Coulomb gauge. We find in 

Dirac’s formalism that Coulomb gauge and temporal gauge are equivalent! 
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Light-cone QED in light-cone gauge (A+ = 0) is considered as a second exam- 

ple. In this example only, gp”, z+ and x- are defined to be 

010 0 

10 0 0 
9 w - - x- = +(x3 - x0) , (A.23) 

which differs from the notation used in the rest of this paper given in Table 2. The 

canonical momenta and Hamiltonian are found from the Lagrangian to be 

If, = /dx-d’;, [; (T-)~ + ;(F12)2 + (r-a- + &)A- 1 (A.24) 
. 

This gives two primary constraints and one resulting secondary constraint, 

primary constraint : T+ x 0 

primary constraint : wi - &A+ + 8-A’ M 0 (A.25) 

secondary constraint : XT- + dir’ x 0 . 

Recall that the velocity fields in light-cone formalism are d+Ap. The first and third 

of these constraint equations are first class and the second second class. We are 

thereby accorded two gauge conditions. Choosing A+ x 0 leads to one secondary 

gauge constraint. The full set of constraints is 

primary constraint : T+ X 0 

primary constraint : ri - aiA+ + 8-A’ M 0 

secondary constraint : d-r- + dir’ z 0 (A.26) 

gauge constraint : A+ w 0 

secondary gauge constraint : T- + d-A- x 0 . 

All of these constraints are now second class. Again, the matrix C,p is formed and 

inverted to convert the five constraints into strong equations and give the total 
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Hamiltonian and equations of motion, 

H = J dx-d2Zl [-;(@A-)’ + i(F’12)2 - @Ai8iA-] , 

q A’=O. 

(A.27) 

The Dirac bracket conditions are given in Steinhardt (Ref. 24) on page 446. If one 

had included a current in this last example, the five constraints would have been 

primary constraint : ?r+ X 0 

primary constraint : xi - 8iA+ + 3-A’ x 0 

secondary constraint : d-W- + aiT’ + j+ X 0 (A.28) 

gauge constraint : A+ M 0 

secondary gauge constraint : T- + d-A- M 0 . 

Solving for C$ gives 

H = /dx-d2z’l [-; (a+A-)2 + $(F12J2 _ @A’&A- - j+A- _ jiAi 

I 

. 

(A.29) 

This turns out to be just the Hamiltonian that is derived in Section 4 (if one in- 

cludes the free fermion Hamiltonian). Three of the now strong constraint equations 

can be re-written 

wi = - @Ai r- = -d+A- , 

(af)2A-‘+ d+aiA’ = j+ . 
(A.30) 

One recognizes the first of these as just the definition of ri used in Section 4 (Eq. 

(4.5)) and the third equation as the constraint equation used to solve for A- (Eq. 

wm 

One important point should be noted regarding light-cone gauge. One fre- 

quently finds mentioned in the literature that A+ = 0 gauge still has residual 
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gauge degrees of freedom (i.e.: an x - independent gauge condition can still be im- 

posed). Dirac’s method for constrained Hamiltonians shows that light-cone gauge 

is actually two conditions (corresponding to two first class constraints), 

A+=O, w-+&A-=0. (A.31) 

This second condition arises from requiring that the first condition remain valid 

for all light-cone time x+ and uses up any residual gauge freedom. One also finds 

a similar phenomenon in axial gauge (A3 = 0 ): the gauge condition is really 

two conditions, which uses up any residual gauge freedom allowed in axial gauge. 

Details are in Hanson, Regge and Teitelboim (Ref. 20). 
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APPENDIXB 

The derivation of the quantities 

[n 1 m] = (5) 2 -& j dx- { e!ikzz- & e~~kkz~}sym , 

{n 1 m} = (z) &y dx- {e!ik~‘- -& .t*Az-}sym , 

-L 

(B-1) 

is given in this appendix following a method suggested by Hamer (Ref. 19). The 

definition of {. . .}sym was given in Section 4. The following two definite integrals 

occur frequently and their values are given here: 

L 

J 
dx- x- e 

-ik+Z- 
2 

-L 

= 

{ 
‘& [k+Lcos (9) + 2sin (q)] :: ; i , 

J 
dx- (x-)2 e-$k+z- 

-L 

$L3 Ic+ = 0 
= 

& [(k+L)2 sin ($&) + 4ksLcos (q) - Ssin (q)] Ic+ # 0 . 

P.2) 

We start with the most general form of &e-ikkz- and &e-ikaz-, 

1 - ,-;k$z- = -ix- + A0 m=O 

id+ +-e -ikAz- + A, m # 0 , 
m 

(B.3) 

-ik$- = 
2 

m=O 

+B,x-+C, m#O . 



This form is substituted into the definition of {nlm} to give 

f 0 n,m=O 

in b-4 = I 
n = 0,m # 0 

n # 0, m = 0 W) 

n,m#O . 

{nlm} appears in the instantaneous fermion interaction. For example, the inter- 

action shown in Figure 35 is proportional to {p + mlq + n} (see Fig. 7 in Section 

4). Since we require conservation of light-cone momentum P+, {n # O/O} and 

{Olm # 0) must equal zero. Otherwise, this interaction would not conserve P+. 

This requirement fixes A, to be 

Am = 2L 
1 k&L k$L 

- cos - - 2k$L 2 (k-&2 sin -ij- 1 7 m # ’ - P.5) 
Making use of this equality, we similarly evaluate [n/m] by substituting the general 

form, Eq. (B.3), into the definition of [nlm] to arrive at 

En I ml = 

I 

(f)” & [-+L3 + 4LCo + 2LA;] n,m#O 

(f)“$ [2LCm+2LAoAm-&sinq+4iLBoAm] n=O,m#O 

(f)” F& [ZLC-n + 2LAoA-n - 3 sin T + 4iLBoA_,] n # 0,m = 0 

$&,rn + (f)” $ [2LAmA-, + 4iLBmA-n + 4iLB-,A,] n, m # 0 . 

P.6) 
AS in the case for {nlm}, [n/m] must be proportional to Sn,m. A representative 

diagram proportional to [k - ml - I+ n] is shown in Figure 36. This gives the 

following conditions on B, and Cm for m # 0: 

Bm = :Am, 

Cm = -&Am + 
L . k$J - sm - - 2iBoAm . 

4k$, 2 

(B-7) 
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Using the values for Am, Bm, and Cm given above and defining 

K -;L3 + 4LCo -I- 2LA; 1 
gives us the final answer, 

K n and m = 0 

3&m %m#O 
0 otherwise . 

(B.8) 

P.9) 

Though K. is an undetermined quantity, its value turns out to be irrelevant in DLCQ 

as long as it is finite because the ultraviolet cut-off removes all occurrences of [OjO] 

(see Section 5). 
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APPENDIX C 

In this appendix the answer for tree-level Moller scattering (e-e- + e-e-) 

derived using Feynman’s S matrix approach is shown to be identical to that derived 

from light-cone perturbation theory (LCPTh). The rules for LCPTh are given in 

Appendix B in Ref. 15 and Appendix A in Ref. 16 and can be derived from the 

light-cone Hamiltonian HLC given in Eq. (4.24). 

The diagrams that must be considered in LCPTh are given in Figure 37 with 

light-cone time x + flowing from left to right and momenta assigned as shown. 

Using P+ and $1 momentum conservation, q and q’ are 

Note that the photon’s 4-momentum, q, is on mass shell. Remember that P- is 

not necessarily conserved, so 

q- # 1; - 1; # kT - k,: . F.2) 

Using the LCPTh rules found in Ref. 15 or 16 and performing the sum over photon 

polarizations gives the following for the three LCPTh graphs, 

$f) = e2 G(lf)ypU(li) U(kf)Yyu(ki) f$ , 

TJ?) = e2 ‘(q+) ~(l~)~pu(li) U(kf)yvu(ki) 

-gpu + vq” + rl”qp 1 1 
X 

q+ q+(lr - 17) - q+q- + ic ’ 

$9) = e2 0(-q+) U(lf)ypU(li) U(kf)ypu(ki) 

v!f + fq’l 1 1 
X -9’1” + 

q+ -q+(k,: - ki) - q+q- + ic a 

(C-3) 

where 77” = (0,2,6~). Note that 2’;:) diverges like 1/(q+)2 for small q+. The sum 
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of these three amplitudes is 

Tfi = e2A,,Bv VQ” + 77”Qc1 
q+ I 

X +I+) q+v; - 17) - q+q- + ic 
+ 

v-q+) VW 
-q+(k,F - kj) - q+q- + ic ’ 

A,, = ~(lf)‘YpU(li) 9 Bu = c(kf)y,u(ki) . 

Writing out the components ~1, v = +, -, 1,2 explicitly, one finds after some alge- 

bra, 

APB” %7’) ;b”:;2 + 1 
VQ” + fQP 1 q+ 

q+(lr - 17) - q+q- + ir 1 = A,Buy q (1, _ lf)lB q q- + 2e [q’l(li -1,)” t q”(li - lf)‘“] - (c’5) +- - + . 1 
This expression can be summed with a similar expression for the 0(-q+) term to 

give 

@I+> flkl+> 

q+(l; - 17) - qf - X2 $ ie + q+(kj - k,:) - q: - ~2 + ie 1 
+ qq+) ?(li - If)" t q"(li - If)' 1 

q+ (I+@; - 17) - qi - X2 $ ic 

te(-q+) 77'(lcf -Ici)" + f(lcf -kiP 1 

!7+ q+(kT - k,:) - qt - X2 + ir ’ 

F-6) 
This result is valid for on- or off-shell electrons and does not assume P- momentum 

conservation. Now note that this final expression for Tfi diverges only like l/q+ 

for small q+. The leading 1/(q+)2 b h e avior from Tji) is exactly cancelled by a 

similar singularity from Tji) and Tjf). 



The Feynman rules answer can be obtained by first enforcing four-momentum 

conservation (i.e.: k,: + 1,: = k; + lj), 

1 

x q+(l; 1 -gpu •t 
V(li- If)" t v"(li -If)'" 1 (C-7) 

- 17) - q: _ X2 + ie !?+ 
7 

and then requiring the electrons to be on-shell (i.e.: E(lf)(/i- ,df)u(li) = ti(kf) 

(,Zi;- ,Zf)u(ki) = . . . = 0), 

Tfi = -e2 fi(lf)ypu(li) U( kf)yuu(ki) 
9 P” 

qgR - X2 + ie ’ F.8) 

qFR is defined to be 1’ - 1; = k$f - kr . This 1 as answer is recognized as the familiar t 

answer for Mprller scattering using Feynman rules. 
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APPENDIX D 

The calculation of various self-mass diagrams is given in this appendix. The 

first to be considered is the familiar one-loop fermion self-mass diagram shown in 

Figure 38. The various momenta are 

p= XP, ( x”p: t m,2 
XP ,xL , 

> 

kl = 
( 

YP, 
CL+ Y&J2 + x2, ;* + ypi 

YP > 

, 

k2 = (a: - y)P, 
(-i~t(x-y)pi)~tmz - 

(x _ y)p 7 -h+ (J: - YE1 - 

The light-cone perturbation theory (LCPTh) amplitude for this process is 

2 1 = Tfi =9- 
JJ dy 

2’ 1 N 
167r3 P d IcLy(x-y)D+ie’ 

0 

iv = ~(PW(Jc2) W2)MP) , 

P4 

P.2) 

D= x2& t m% _ (L t y?~)~ t X2 _ (-ZL t (x - y&)2 + m,2 
XP YP (x-YIP - 

The rules for LCPTh QED are derived in Appendix B in Ref. 15 and Appendix A 

in Ref. 16. The photon spin sum can be done by making use of the relation 

which holds for the spinors given in Eq. (4.13) with qp = (0,2,cl). Doing the 

numerator algebra and simplifying the denominator produces the desired answer 

Tfi = -S99’ 92 

2 

87r3 ’ JJ 
dy d2& 

&[z2k:+y2m:]+$[z2k:+z(z-y)~2] 
z2ki+y2m?+X2z(z-y)-ic . (D.4) 

0 

SS9r is a delta function between the incoming and outgoing fermion spins. Note 

that as expected from Lorentz invariance, this answer is independent of pi. If one 
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changes variables to z = y/x, one also finds that the answer is independent of P 

and x. Since Tfi evidently does not depend on any of the quantum numbers of the 

incoming fermion, Tfi can be considered to be a pure mass renormalization. 

The quantities actually discretized are x, y, flL = ~$1 and zl = in •t ypi or 

-cl t (x - y)pi. The choice between these last two is irrelevant. Rewriting Tfi 

in terms of these quantities gives 

This answer is discretized by replacing 

, 

(D’6) 

where m/L and rn’l/Ll are the P+ and Fl of the incoming fermion, respectively, 

and q = 2,4,6 ,.... A factor of l/x is also necessary because in the continuum, 

factors of l/J-f x rom external wavefunctions are conventionally associated with the 

wavefunctions themselves; whereas in the discretized case, the factors of l/6 are 

absorbed into P-. These steps give the result 

where ,Bf = (mLl/n)2 and ,Br = (XLI/~)~. The photon mass, X, has been set 

equal to zero in the numerator in this last expression. 

Ultraviolet and infrared regulators are implemented by requiring that the in- 
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termediate state in Fig. 38 satisfy 

c kfi + mS < A2 
, 

(L-t Ypi)2 + x2 > e 
- 

Xi 
- 7 

i Y 

which in terms of the discrete variables given above reads 

P-8) 

Here, /3i is equal to (m;Ll/r)2. The sum is over any spectator particles that 

might occur during the process. The correct mass counterterm that should be 

inserted in HLC to ensure that the fermion’s bare mass is equal to its physical 

mass is the negative of Eq. (D.7) where the sum is over q’ = 0, fl, f2,. . . and 

q = 2,4,6 ,..., n - 1 that satisfy Eq. (D.9). 

The next self-mass diagram to consider is shown in Figure 39 . The momenta 

are assigned to be 

P= xc ( x2pi t mz 
xp 431 9 

> 

kz = (X-Y>& C-L + (x - YF..>2 -t m2 -zl + (x _ y)pi 
(x-Y>P ’ 

, (D.lO) 

11 = 
( 

ZP, cr; •t zlu2 + x2, c $ & 
ZP > 

, 

( 
(5 - z)P, 

(-f~ t (x - 2)s~)~ t rnz 
(x _ *)p 7 -CL + (x - 451 12 = 
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and the answer in LCPTh is 

N = ~(~>8(11)4l2) ~(12)$(11)*Y+B(kl)u(k2) +z)B(h)*u(p) , 

D= 
[ 

x22.$ t m2 _ (Z* t ~$1)~ t A2 _ (--Z-L t (5 - ~)pi)~ t mz + ie 
X Y X- Y 1 

X [ x2& t mz _ (L t ~$1)~ t X2 _ (-L t (a: - z)&)~ t 7-n: + ie I . X Y X-Z 

(D.ll) 

The numerator algebra is done by using the photon spin sum relation Eq. (D.3), 

applying symmetric integration to eliminate various terms proportional to k’ and 

1’ (upon simplification, the denominator turns out to only involve kt and Ii), and 

making use of the spinor properties shown in Appendix H. The answer for the 

numerator, 

N = 8Pmz 7 &,,I , (D.12) 

turns out to only have a contribution from the spin-flip interaction of HLC. s and 

s’ are the spins of the incoming and outgoing fermion, respectively. The complete 

answer is then 

Tfi = &,,I g 

2 

[ JJ 
2 

dy d2iL Y 
x2ki •t y2m,2 + X2x(x - y) - ic 1 . (D.13) 

0 

Again, changing variables to z = y/x demonstrates that this result is independent 

of x, P, and $1 and is therefore a pure mass renormalization. 

Next, consider the case of N one-loop fermion self-mass pieces all connected 

by instantaneous fermions shown in Figure 40. As above, momenta are assigned 

and the LCPTh answer is written down for Tfi. The numerator and denominator 
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are both factorizable, giving an answer of 

1 
N-2 

1 
k:+X2 T;;’ (D.14) 

2 

k:+m? + ie 
Y - X-Y 

where Tjf) is the answer for the diagram in Fig. 39. Using 

00 

c 

1 =- 
N=2 

l-x 

and substituting in Eq. (D.13) for Tjf) yields 

(D.15) 

(D.16) 

as the amplitude for the process shown in Figure 41. Similarly to above, this result 

is discretized by re-writing in terms of x, y, pi = xfll and p’ = zl + ypi and 

making the substitutions in Eq. (D.6) to give 

PfT2 Tfi = S,,I K - 
nLt 

(D.17) 

This answer is subject to the same regulation conditions as above, Eq. (D.9). The 

mass counterterm necessary in HLC is the negative of Eq. (D.17) subject to the 

conditions, Eq. (D.9). A combination of the mass counterterms, Eq. (D.7) and 

Eq. (D.17), provides the full mass renormalization needed in the truncated Fock 

space (e-, e-7) or (e+e-, e+e-7). 
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An added result that is not needed in this truncated Fock space but is in- 

cluded for information is the one-loop photon self-mass shown in Figure 42. The 

continuum answer for this graph is 

2 

g2x d 
JJ 

y d2& ( 
&j-t? (k~i-m,2)+2m~ 

- Tfi = -6x,,- > 
87r3 x2(k: + rnz) - X2y(x - y) - ic ’ 

(D.18) 

0 

which is a pure photon mass renormalization. The familiar answer derived from 

Feynman rules of zero is obtained because a term with massive, negative metric 

Pauli-Villars particles is subtracted that exactly cancels the original integral (more 

on this in Appendix E). Eq. (D.18) g ives a non-zero photon mass renormalization 

since subtractive regulation has not been invoked. 
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APPENDIX E 

The equivalence of answers derived using Feynman’s S-matrix analysis and 

using infinite momentum frame time-ordered perturbation theory (TOPTh,) is 

demonstrated in this appendix for the one-loop fermion self-energy diagram in 

Feynman gauge and the one-loop vacuum polarization graph in light-cone gauge. 

Since it is believed that light-cone perturbation theory (LCPTh) and TOPTh, are 

mathematically equivalent, this demonstration makes the equivalence of LCPTh 

and Feynman rules results for one-loop radiative corrections plausible. The analysis 

for the fermion self-energy is done in Feynman gauge for convenience, though the 

analysis should be similar for light-cone gauge. 

First, the Feynman rules answer for the fermion self-energy graph shown in 

Figure 43 is described briefly. We start with the familiar result 

* 2 
Tfi = -(f”,,4 

/ 
d4k 

wYpw- Y + %h4P) 

KP - q2 - m; + k] (k2 - X2 + 2) ’ (E.1) 

A factor of -i has been included to facilitate comparison with TOPTh,. Doing the 

numerator algebra, combining denominators, changing variables to qp = kp - xpp, 

and eliminating terms proportional to qp by symmetric integration gives 

1 

Tfi = -Sss, 2 &q 
J J 

da: 4mZ(l + 2) 

cw4 o [q2 - u2 + ic12 ’ P.2) 
u2 = 77-$x2 + X2( 1 - 2) . 

The delta function is between the spin of the incoming and outgoing fermion. 

Doing the q” integral by contour integration and then the q3 integral by standard 

methods results in 

1 

Tfi = 6991 92 dx 
JJ 

d245 
2mz (1 + 2) 

87r3 qf + x2mz + X2(1 - x) - if ’ (E-3) 
0 

This answer diverges like log q: for large &; it is therefore necessary to introduce 

a regulator such as subtracting a Pauli-Villars contribution. 
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Now consider the same process in TOPTh,. The TOPTh rules for QED in 

Feynman gauge are given in Ref. 11. Two graphs need to be considered, the usual 

time-ordering and the Z-graph. These are pictured in Figure 44. Momenta are 

assigned to the various legs of the usual time-ordering contribution, 

p = (E, if&, P) , kl = (El, in, xP> , k2 = (Ez, -6, (1 - ,,p) 7 

E=,/m, EI=,/~, E~=JW, 

AZ, = kf + X2 , 

The TOPTh answer for this graph is 

2 
al 

Tfi = 4(i,)3 P dx d2Zl - - 
JJ 

1 N 
El Es D + it - (A + A> 7 

A Pauli-Villars contribution has been subtracted for ultraviolet regulation. The 

TOPTh, answer is gotten by letting P approach infinity, and the numerator is 

evaluated with the help of the relation 

c 6: E;* = -g’1v , (E-6) 
x 

which is valid in Feynman gauge. This gives the result 

g2 
00 

Tfi = jFw 6,,#- 
873 J J 

dx d2gl [1(X, P) - I(A,P)] , 

-CCJ 

for the usual time-ordering in TOPTh,. Note that all the square roots are assumed 

to be positive. 
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The usual procedure is then to take the limit P + 00 inside the integral to 

simplify 1(X, P). Th is is valid as long as one is not near the points x = 0, 1, which 

are singular for P = 0;3. It is necessary to do a more detailed analysis near these 

two points. The integral is split into three regions: x < 0,O < x < 1, x > 1. 

1. In the first region, E -+ P [l + $( ~;r)“], El + -xP [l + +(&)“I, and E2 + 

(1 - xc>p [l + gc*,“] as P + 00. 1(X, P) approaches 

1 
-x(1 - x) 

a(1 -x)$ + 3(4p2 - 2s __+ o , 

2x P+oO 
(E.8) 

which is non-singular. Therefore, taking the limit before doing the x integral 

is allowed, giving the result 

T;l’) = 0 . (E.9) 

2. In this region, E + P [l + @)“], El 

(1 - xc>p [1+ &s$&‘] and 

E2 -+ 

1(X, P) + l 
(1 - x)mz + “{$ - 4rnz 

x(1 - x) mz _ ‘:Lx2 _ ‘2f+T’ + ie 

1 
= 

(1 - x)2mz + ki + rnz - 4m;( 1 - x) 
1 -x x(1 - x)mz - (1 - x)(ki + X2) - x(kf + mz) + ic 

(E.10) 

as P + 00. 1(X, P) h as a singularity near x = 1. The integral for region 2 is 

split again into two parts 

(E.ll) 

(a) In the region 0 < x < 1 - c, we are away from the singularity so the 
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limit P -+ cc can be taken inside the integral to produce the answer 

v-4 

3-C 
TC2”) = lim 6 g2 

fi c+O =qp J J 
dx d2L q&q 

(l-z)7n:+kj+~~-4171: 

k2 +X2 k2 +m2 m?- lz - 
- (A -+ A). 

0 +-z e+ic 

(E.12) 

The non-singular part of 1(X, P) is expanded in powers of (1 - x) to give 

the form 

I(‘, ‘) = J& z AdX,P) c1 - x)n cE*13) 

for 1(X, P). The contribution to Tfi is then 

1 

(2b) Tfi iI2 = ii; birnm ss9f - 
+ 87r3 J J 

dx d2& 

(E.14) 

Since X and A appear in I only as X/P and A/P, it must be that 

A,(% P> - &(A, P) app roaches zero at least like l/P as P + co. One 

can expand A, in powers of l/P to see this. As P + co, the most 

divergent x integral is 

1-; dx Je J 
=log (q) zlogz. (E.15) 

The final answer as P + oo is then 

Tgb) +flogP+O. (E.16) 

3. Finally, in the third region, x > 1, 

W,P) - p+ccl 2(1 y x) ’ 
(E.17) 

which is singular near x = 1. As above, the integral is split into two pieces, 
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one for 1 < x < 1 + c and one for 1 + E < x < co. In the first region, the 

non-singular part of 1(X, P) is expanded in powers of (x - l), similarly to 

Eq. (E.13). Again, we find that An(X, P) - An(A, P) + l/P as P + 00 and 

that the x integrals diverge at most like log P. Thus, this region gives a zero 

contribution to Tfi. The limit P + 00 can be taken inside the x integral for 

1 + c < x < 00 since we are away from the singularity to give 

Tjf) = lim 6 
Cd0 

3s’ $ fdx/d2L [x~l’x~ - x(l’x,] = o. (E.18) 

1+c 

The contributions from the three x regions are now summed to give the final answer 

for the usual time-ordering, one-loop fermion self-energy diagram, 

g2 
1 

Tfi = 6ssts dx d2gl x(ly x) 
J J 

(1 - x)mz + “i+-$ - 4rnz 

0 
mu _ k:z+X2 _ kq+~l + in - (’ ~ *) 

s g2 

1 

= &- 
JJ 

dx d2zl 1 
(2 - 2x - 2x2)mz - kt 

87r3 1 - x kf + x2mz + (1 - x)X2 - ic 
_ (x --) A) 

0 
(E.19) 

Note that this result diverges like A2 for large A. A term 

lckl+ x2mz + (1 - x)X2 
kt + x2mz + (1 - x)X2 

(E.20) 

can be added to the first term in the integrand and an analogous term with X 

replaced by A subtracted from the second term to give 

Tfi = 6991 92 dx 
JJ 

d2$l 
2rnz + X2 

87r3 kt + x2rnz + (1 - x)X2 - ic 
- (A + A). (E.21) 

0 

Now turn to the Z-graph contribution. A procedure similar to the above for 

the usual time-ordering is applied. The momenta are assigned to be 
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p = (E, &, P) , kl = (El, &, -xP) , k2 = (E2, -h., ---(I - +‘) , 

xf = k; + X2 , rni = ki+rnz. (E.22) 

The TOPTh, result for the Z-graph including Pauli-Villars regulation is 

g2 P 

00 

Tfi = lim - 
P-CO 4(2~)~ J J 

da: d2&LN- 
El E2 D + ic (A + 11) 7 

IV =-~~b4kv(kz) WW(p) , 
(E.23) 

D=-E-El-E2. 

Doing the numerator algebra gives 

g2 
00 

Tfi = jim, 6SS~- 
+ 873 J J 

dx d2zl [1(X, P) - I(A, P)] , 

(E.24) 

Again, we find potential singularities in 1(X, P) near x = 0,l. The integral is again 

split into three regions: x > 1,0 < x < 1, x < 0. 

1. For x > 1, E + P [l + ;($j2], El + xP [l + f(3)“], and E2 t 

(x - l)P [l + +((l~~)p)2] as P + cc and 

W,P) - 
1 

P-00 x(x - 1) 
3(x-1)$+~(~3Pz -2$ --f o, (E25) 

2x 

which is non-singular. The limit P + cc can be taken inside to give 

Tj;) = 0 . (E.26) 
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2. In the second region, 

I@, P) __) 1 
P-+00 x ' 

(E.27) 

which is singular near x = 0. The integral is split into two pieces, 

Tjf) = lim lim 
c+o P-00 

699f $ [jdr+jdx] J d2& [1(X, P) - I(*, P)] . 

(E.28) 

(a) The non-singular part of 1(X, P) is expanded in powers of x for the region 

0 < x < E to give 

I@, P) = g An(V) xn . (E.29) 
n=O 

Focus specifically on the contribution of the term A0 to Tfi, 

As P -+ 00, Ao(X,P) and Ao(A, P) both approach one and the log 

approaches log $$. Using these relations, we find 

$a,, = 6 g2 3s’ - 81r3 J IhI 2 
d2il log lxll = L’ $ 

J 
d2Ll log 

k; + A2 
ki + X2 ’ 

(E.31) 

Analysis of the other terms A,, n = 1,2,3,. . . reveals that their contri- 

bution to Tfi all approach zero as P + co. So, the complete answer for 
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the region 0 < x < c is 

T(?d = (j g2 
J 

k: + A2 
f: d s d2iL log 

k; + X2 ’ 
(E.32) 

(b) For E < x < 1 the integrand is non-singular, so the limit can be taken 

inside the integral to give 

3. For x < 0, the results are similar to 0 < x < 1. There is a singularity 

in 1(X, P) near x = 0. Expanding I in powers of -x for -6 < x < 0 

reveals a contribution identical to Eq. (E.32) from the term Ao. All other 

contributions vanish as P + 00. 

Summing contributions from x > 1, 0 < x < 1 and x < 0 gives the total result 

Tfi = 6,,t 92 
J 

ki + A2 
87r3 

d2& log 
‘ii + X2 

(E.34) 

for the Z-graph contribution to the one-loop fermion self-energy diagram. This 

answer can be re-written as 

Tfi = Sssl 92 

1 

JJ 
dx d2& 

-X2 + 2rnz x 
8w3 kt + x2rng + (1 - x) X2 - ic 

- (A + A) . (E.35) 

0 

Note that this answer disagrees with the Z-graph answer using a naive application 

of the tree graph rule for including backward moving particles given in Ref. 11 and 

Ref. 14. Of course, their rule continues to remain valid for tree graphs. 

Summing this result with that for the usual time-ordering Eq. (E.21) yields 

an answer identical to the Feynman rules answer Eq. (E.3), demonstrating the 

equivalence of using TOPTh, and Feynman rules for the one-loop fermion self- 

energy. The final answer in TOPTh, is just the Feynman rules answer. 
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Summarizing, the usual time-ordering graph gives an answer in TOPTh, that 

diverges like A2 and is equal to the usual LCPTh answer for the fermion self-energy. 

There are no contributions to this graph from the regions near x = 0 or 1. The 

Z-graph contribution in TOPTh, only has a contribution near x = 0 and sums 

with the usual time-ordering graph to give the familiar Feynman rules answer. 

This final answer diverges like In A because the leading A2 divergence cancels. In 

order to reconcile the LCPTh and Feynman rules answers for the one-loop fermion 

self-energy, an extra piece equal to the TOPTh, Z-graph must be added to the 

light-cone Hamiltonian and the LCPTh rules. 

Now consider the one-loop vacuum polarization graph. The answer in TOPTh, 

is dealt with first. There are two contributions, which are shown in Figure 45. Mo- 

menta are assigned to the first graph, 

p = (E, oi, p> 9 kl = 
( 

El, &, xP 
> , k2 = (E2, -ZL, (1 - x)p) , 

E=P, El = J71 x2P2 + m E~=,/B, 

mt=kf+mZ, (E.36) 

giving a TOPTh, answer for the usual time-ordering of 

Tfi = lim Jf- p 

03 

P+OO 4(2~)~ J J 
dx d2ilLL 

ElE2 D+ic ’ 
(E.37) 

The numerator algebra is shown in detail. 

N = - Tr {( btl + m&f(it2 - m&j 

= -4{(kl . c)(kz . c)* + (kl . c)*(kz . E) - (kl + ks)(c. c)* - rnz(e. c*)} . 
(E.38) 
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The light-cone gauge photon spinors are 

Zl(X) = -$ (1 ,iX) 

and satisfy 

ex * e;, = -&x - E’;y = -6xX1 . 

Returning to the evaluation of the numerator after using Eq. (E.39), 

(E.39) 

(E.40) 

N = -4{-2(C”x - zl)(&, - zl) + 6xx~ [ElE2 + k: - x(1 - x)p2 + mz]} . (E.41) 

The first term can be expanded by writing out the form of the spinor explicitly, 

(E.42) 

The rest of the integrand only depends on ki, so the symmetric integration relation 

(E.43) 

may be used to give 

($, . &)(P’,t . zl) = ; SAX, kf . (E.44) 

Substituting this result into Eq. (E.41) produces 

N = -4 6~~1 [EIE~ - ~(1 - x)p2 + m,] . (E.45) 

Using this result for the numerator yields the following expression for the usual 
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time-ordering contribution 

Tfi = J’“, 6xxt 
4 

-$ 7 dxJd2Clj? g(x) dX [I(mz, P) - I(ml+ X2,P)] , 

-00 0 

I(ml, P) = 
l-2)2+( y)2-+z)+( yq2 

1-z)2+( y)‘+ic * 
(E.46) 

The integral over g(X)dX is included as an ultraviolet regulator. 

The remainder of the analysis is similar to that for the fermion self-energy 

described above. One sees that I(m& P) is potentially singular near x = 0,l. In 

the region away from these singularities, the limit P -+ co can be taken inside the 

x integral. Near the singularity x = 0, the non-singular part of I is expanded in 

powers of x to find the contribution to Tfi from this region. A similar analysis 

is done for x near one. The answer for the usual time-ordering contribution to 

one-loop vacuum polarization has the following pieces: 

1. 

(E.47) 

from c < x < 1 - c, 

2. 

bxA, &]dxJd2i~~g(~) dX [log(ki +mz) - (m: + mz + A”)] 

0 0 
(E.48) 

from --E < x < c, 

3. and an identical contribution to Eq. (E.48) f rom 1 - E < x < 1 + c, and zero 

contribution from other x regions. 
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Summing these pieces gives the final answer for the usual time-ordering contribu- 

tion, 

Tfi = SAA’ & 2 jdx/d2&/ g(X) dX [I(d) - I(mz + x”)] , 
0 0 (E.49) 

n-2 
I(m:) = log cki + m:) - k2 + m2 - 

I e 

This answer is in fact the complete answer for one-loop vacuum polarization in 

TOPTh, because the Z-graph turns out to be zero. One can also show by doing 

the zl integral that this answer is in fact zero, which is the expected answer for 

the vacuum polarization between on-shell photons. This zero result only occurs 

because a subtracted regulator term I(mz + X2, P) has been included that exactly 

cancels the contribution from the original term I(m& P). 

The Feynman rules answer for the one-loop vacuum polarization graph shown 

in Figure 46 is 

. 2 
Tfi = -(E)4 

J 
d4k Tr[8(ld+ It+me) f(It+me)l 

[(p + k)2 - rnz + ic] (k2 - rnz + ic) ’ 
(E.50) 

The numerator algebra is done in a fashion paralleling the steps Eq. (E.38) through 

Eq. (E.44) using the light-cone spinors given in Eq. (E.39). The result after 

changing variables to q p = k” + xpp and eliminating terms proportional to qp by 

symmetric integration is 

N = Tr VW+ f t me> {( $ t me)] = 4 6~ [qi t q2 - rnz] , 

4ig2 
1 

Tfi = -6~~1 c2TJ4 o dx 
JJ 

pq ql t q2 - mz (E.51) 

[q2 - rnp + ifI ’ 

The denominators have already been combined and p2 set equal zero in this last 
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expression for Tfie The q” integral is done by contour integration to give 

g2 

1 

Tfi = beet - 
873 . I J 

da: d3 + -2qi - (12 - 2mz 
Q 

[p + rnp - ie]; ’ 0 

Invoking an ultraviolet regulator 

one-loop vacuum polarization, 

(E.52) 

and doing the q3 integral yields the answer for 

which is identical to the TOPTh, result Eq. (E.49) after adding and subtracting 

g$$. 

The numerator algebra has been done in a “non-standard” way in this analysis. 

Let’s see what happens if the numerator algebra is done the standard way, 

N = ~c(~~ Tr WY+ t Y t m,>r"( bt t me)] 
= $6; Tr hW+ (1 - 4 t+ mJr"(d-- x $ t me)] 
= 4 Qbe: { [qP t (1 - 4 PV [q” - XP”] - gpv [q t (1 - x) P] * [q - v] 

+ [q” t (1 - 5) p”] [q” - xpP] t gP”m~} 
(E.54) 

= 4 eCcet [-ig”“q2 + gPYrn2 + gpyp2x(l - x) - 2ppp”x(l - X) ] 

= (2q2 - 4m,2) 6~x1 . 

Variables were changed to qfi = k” +xpJ’ in the first step, the symmetric integration 

relations 

J 
&I oYq2) = 0 7 

J 
d4q q”q”F(q2) = a gpv 

J 
d4q qQ(q2) (E.55) 

were used in the third step, and the spinor relations E . c’ = -6xxt, c . p = 0 were 
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used in the fourth step. Using this answer for the numerator gives 

4ig2 
1 

Tfi = “” (2~)4 o dx JJ 

-3q2 + rnz 
d4q [q2 _ mu + ie12 ’ (E.56) 

which differs from the “non-standard” numerator algebra answer, Eq. (E.51). 

Doing the q” integral by contours, regulating, and doing the q3 integral gives the 

result 

Tfi = ~XX, $]dx JdZVilmg(A) dX [I(mt) -I(mz t A”)] , 
0 0 

I(m~)=log(q~$m~)+- ” 
qi+mz ’ 

(E.57) 

which is half of the result Eq. (E.49) or Eq. (E.53). Since all of these results 

are zero after doing the {’ integral, the discrepancy of 3 is a zero form, 0 = +O. 

The formal 3 difference comes from setting p2 and c . p equal to zero at different 

points in the two methods of evaluating the numerator algebra. So, the answers 

for the one-loop vacuum polarization graph using Feynman rules and TOPTh, 

are identical if one is careful to do the numerator algebra the same way. 
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APPENDIX F 

In this appendix, the approximate equivalence of the light-cone variational 

equation, 

(IcllH~cM) = M2 , (F.1) 

in the Fock space (e+e-, + - e e y) and the momentum space Coulomb Schroedinger 

equation is shown for the choice 

M = MBohr , 

Iti> = Get,- le+e-) + $e+e-y le+e-$ 7 

1c, c 
1 

be--y = 
MZte- - qt,-, 

(e+eYl HLC le+e-) A+,- 
(e+e-) 

M c 
(e+e-) 

Miohr yM;tew, (e+e-7i HLc leSe-) ‘e+e- ’ 
This demonstration establishes the correspondence principle. The definitions of A, 

MBohr, Mete-, and Me+,-, are just those given in Section 11, 

MB&r = 2772, - imecr2 , 

Mzte- = c k?ixTm? , 

i=e+,e- 
1 

M,2+e-r = c 
k~i + rnf 

i=e+,e-,y 
2; * 

(F.3) 

First, the momentum space Coulomb Schroedinger equation is derived. We 

start with the familiar expression 
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This equation is Fourier transformed according to 

to give 

(F-5) 

Note that this choice for the Fourier transform leaves the norm of the wavefunction 

unchanged, 

J d3r’ lqq12 = J d3$ ~t+@i)~~ = 1 . VW 

Making use of the equality, 

J 
d3r-E ,ifT = e2 

r p P.8) 

results in the momentum space Coulomb Schroedinger equation we are after, 

Now turn to the light-cone variational equation. The contribution from the 

instantaneous fermion exchange, I&tferm, was shown in Section 13 to be small 

compared to the other interactions so it can be ignored. $ete-y may be symbolically 

written 

D and R are defined to be 

D = PeAe- - Pe;e-r 

Cl= 

1 = p+ @t,- - M;tey , 3 
2L(2LJZ . 

(F.ll) 

The diagrams represent the light-cone perturbation theory (LCPTh) answer for 
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these interactions, gU(kf)f*u(k;) and -gti(Z,)p*v(l;). Note that whereas the in- 

coming state is usually on the left and the outgoing on the right, in these diagrams, 

we have chosen to show the incoming state on the right and the outgoing on the 

left. The upper line in each diagram will always be the electron and the lower 

line the positron. The relationship P + = TIC/L and the fact that the DLCQ an- 

swer given in Eq. (4.24) for the three-point vertex shown in Figure 47 is equal 

the LCPTh answer, gU(kf) [*u(ki), times a factor r 
L&J* 

are used. One 

also has that the DLCQ answer for the four-point instantaneous photon interac- 

tion shown in Figure 48 is r 
LilJM 

times the LCPTh answer for this graph, 

-9 2a(kf)r+U(ki)B(lf)r+2)(Ii 
(kp’y )* 

The contribution to (1c)IH~cl$) from Hz is just 

WI H21+> = c 
li skli 
"fJ,f 

Similarly, the contribution from Haelf is 

(F.12) 

(F.13) 

Once again, the diagrams represent LCPTh expressions. Now consider the contri- 

bution to ($lH~cl+) from HI. It is 

b/WlI~> = 

+ h.c. . 

+it e-y 

(F.14) 

In this and upcoming expressions, a sum over xi, xf, Zli, zl, is implied where 

appropriate. Using Eq. (F.lO) for tie+,-..,, collecting terms, and using the LCPTh 
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relationships 

(F.15) 

where D was defined in Eq. (F.ll) produces 

MHll~) =g 

(F.16) 

The factor of two comes from the hermitian conjugate term. Finally, turn to the 

contribution from Ho to ($IH~clpl~), 

($1 HOI +> = l$ete-12Me2+e- + l+ete-y12Me2+e-y * (F.17) 

A&t,- and Mete-y were defined previously in Eq. (F.3). Now add and subtract 

a term l$ete-712M~te- where Mzte- is the invariant mass squared of the (e+e-) 

states from which $ete-y is obtained (see definition of $ete-y, Eq. (F.lO)) to arrive 

at 

(41 HOI 11) = (I+ete-I2 + l+ete-y12) M,2+e- - l$ete-T12 (Mzte- - M,2,,-,) . 

(F.18) 
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Inserting Eq. (F.lO) into the second term gives 

1 M,2t e- - M,2+e-.y -- 
52 02 

(F.19) 

The relation M$,- - M$e-r = P+D has been used. If the norm of $ete- is 

redefined to include the contribution to the norm from $ete-y, 

C Itie+e-Iie, = C I+e+e-I& + I$e+e-y12 = l 9 (F.20) 
w M 

x,kl x,kl 

then first term can be approximated as 

l$e+e-I2 M,2+e- * (F.21) 

Collecting the contributions to (t,bIH~cl$) from Ho, HI, Hz, Hse/f, we find 

that the self-mass bubble completely cancels. What remains is 

(+ I HLC Iti> = C I $e+e-I2 M,2,e- 

x.1 
kg k; kc k; 

+ 
/ 
If E 

I. 
(F.22) 

Note that the real photon exchange diagrams (first two graphs in the [. . .]) come 
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from two places, H1 and Ho. For convergence studies, it is convenient to define 

P&of lip 

PEinstphot 

If k 

I Hself I$) flip 

h k 
+ 

r’ 
1: li 1 flip 

, 

+ 

= ($ I H2 I+> 

noflip 

7 

KE = C 1 Ge+e-1 2Mzte- - 4m: = (Ic, I Ho IN + f (Ic, I HI I$> - 4772: , 
x,kl 

PE =PEfrip + PEnoflip + PEinstphot 7 

M2 =4m; + PE + KE = (+ I HLc I$) . 
(F.23) 

[. . .]frip means that the spin-flip potential Vflip occurs at each of the two vertices. 

Note that the graph with Vf/ip at one vertex and Vnoflip at the other is zero. 

In Appendix C, we showed that the sum of the three LCPTh graphs in Eq. 

(F.22) is equal to 

e2 u(kf>rpu(ki) v(lf)yvv(Zi) “’ !7& + ie ’ (F.24) 

where 

f&R = 
(k; - kr)(kJ - k,‘) - ($lf - $1;)” k; > k+ 

(l; - ‘+)(ly - lr) - (Ylf - <li)” ‘r’ > I+ . 
(F.25) 

In the non-relativistic regime, the largest contribution is from p, v = 0 since 
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G(kf)r’u(ki) >> ‘ll(kf)Tiu(ki) for i = 1,2,3. So, the numerator can be approxi- 

mated as 

G(kf)r+u( k) c( lf)y’v( k) - (F.26) 

Using this relation and ii(p)r+u(q) = 2~~6,,~ from Appendix A in Ref. 14 

gives the result 

(Ic, I HLcWJ’) = C l+e+e-12M~te- + C MiLlr * 

x,kl li >;J.i 
=f Jlf 

(F.27) 

This equation can be converted to the continuum by the replacement 

F + 4 J dk+ 7 F + ( +)2 J d2gl 7 +e+e- 4 ge +(k) * (F.28) 

Making these replacements produces the light-cone equation, 

J 
dk+d2&- l+(k)12 $+$ 

2CXme 

J 

1 
(F.29) 

+- 
79 

dk+d2ZLi dkTd2Zlf $*(kf)$(ki) - = Miohr . 
&R 

The relations a = e2/47r and I-CT/L = P+ x 2m, , which is approximately true 

for non-relativistic P+, have been used to derive this answer. The kinetic energy 

can be re-written as 

kt+mi -p+ 
x(1 -x) - 

= (P,+- + P,++) (P,-_ + Pe;) 

= (Pf- + P,3- + Pft + P;+) (P$ - P,3- + P,s, - P$) 

= (P,o- + Pft) (P,o- + Pft) 

= Ezotd = 4(Z2+m$ . 

(F.30) 

In the fourth step, P:+ + Pzt = total P3 of the system equals zero was used. 

Substituting this result in Eq. (F.29) and approximating dk+ as dk3, qiR as -q 
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and MiL as 4m2 - m2a2 e e , which are valid for nonrelativistic k”, q” and small cr4 

respectively, results in 

4 
J 

d3ic’ l+(Z)12 Z2 - %$ J&s& d3Lf G*(Zf)+(&) f = -rn%ct’ , (F.31) 

which is identical to the momentum space Coulomb Schroedinger equation, Eq. 

(F.9). 
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APPENDIX G 

In this appendix, it is shown that the light-cone variational equation, 

(tiIH~cIti)= M2 , 

in the truncated Fock space (e-, e-7) is equivalent to 

M = me . 

The e- and e-y wavefunctions are chosen as in Section 11, 

I$> = tie- le-) + +e-r le-7) 7 

t,be- = A 6(1 - x) S(2)(&) , 

$e-y = m2 _$z (e-71 K32le-) tie- 7 
e e Y 

(G-1) 

(G-2) 

(G.3) 

M:sy = c 'kxTrnf . 

i=e-,y 
I 

As in Appendix F, the instantaneous fermion interaction will be ignored because 

it is numerically small compared to the rest of the interactions. Also following 

Appendix F, $J~-~ can be symbolically written 

tie-y ’ ’ = 35 q+k;k+ tie- 7 
i 

D = PeL - PI = & [rnz - ~,2_,] . e 7 

The diagram represents the light-cone perturbation theory (LCPTh) answer for 

the three-point interaction, gU( kf)$u( ki). 
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The contribution to (Ic,IH~clt,b) from H,,lf is 

(11, I HserfI$) = C l+e-I2 E - n 

x,kl [ 1 * 

k 

(G.5) 

The contribution to (Ic,lH~c[+) from HI is 

The relation that the DLCQ answer for the three-point vertex is just x 
L&J* 

times the LCPTh answer was used. As was the case in Appendix F, sums over x 

and Ll should be assumed wherever appropriate and outgoing states are shown to 

the left of a diagram and incoming states to the right. Substituting Eq. (G.4) for 

+e-r and using the LCPTh result, 

results in 

(Ic(IHll+)= C”“l$e-I’ n - 
x zl Lm+ 

, [ 1 k (G-8) 

The factor of two comes from the hermitian conjugate. Finally, the contribution 

to (+IHLcI$) from Ho is 

($ I HOI+) = I+e-12mZ + IGe--,12Mz-, . W) 

Again, as in Appendix F, a term I$J~-~I 2mz is added and subtracted to give 

(Ic, 1 HO\+) = (l$e-I” + I$e-r12> mS - l$e--y12 ( rn~-M~-, . 
> 

(G.10) 

The first term is just the norm, equal one, multiplied by rnz. The second term can 
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be written out using Eq. (G.4), 

The numerator rnz - M$7 = P+D cancels one of the Ds in the denominator. 

Using the relation Eq. (G.7) gives 

(+lH~l+> =mf- CEl+e-12 fl 
x zl Lnk+ 

. 

, [ 1 k 

Summing the contributions from Ho, H1 and Hz, we see that the one-loop 

self-mass bubble completely cancels, resulting in the final answer 

(Ic, I HLcIG) = M2 = d . (G.13) 

Note that whereas the equivalence of the light-cone variational equation and the 

momentum space Coulomb Schroedinger equation in the (e+e-, e+e-y) space shown 

in Appendix F was an approximate result, this result for the (e-, e-7) space is ex- 

act in the absence of the small instantaneous fermion interaction. 
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APPENDIX H 

A set of useful spinor properties is given in this appendix. 

t-4 t-4 

‘LL(k, 4 . . . u(k, s’) l-4 (s’ + s) l---+-T 

UU 

i i+%L 

ii+/-U 

U~-~+U 

iiy+ty’U 

i i+% 

U-p/+-/-U 

iip/++L 

ii+/+~-U 

ii-/‘-p&L 

2me 
2k” 

4me 
4% 

0 

0 

8 [w] 

4 [k’ 7 i&jkj] 

4 [ki f i&kj] 

2k+ [&ij f i&j] 

0 

0 

4 [fk’ + ik2] 

4 [Fk’ - ik2] 

2k+ [fS” + iSi 

2k+ [@ - iSi2] 

0 

4m, [f@ + iSi2] 

4m, [#il - i6’2] 

0 

C(k, s)v(k, s’) = -2meSss~ 

v( k, s)y’Lv( k, s’) = 2kVss1 

v(k,s)u(k,s’) = u(k,s)v(k,s’) = 0 

U(k, 4 hp’y”Y’ + Y~Y”Y“] u( k, s’) = v(k, s) [y’Ly”yu + y’y”y~] v( k, s’) 

= [4gp” k” - 4gp” k” + 4guu kfi] 6ssr 

v(k, s)+,J’y”v(k’, s’) = u(k’, s’)y’y”+‘u(k, s) 

i=j=1,2 ,qu,a=0,1,2,3or+,-,1,2 
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APPENDIX I 

The Coulomb data used to produce the fit, Eq. (13.13), is given below. All 

values are for cx = .6 and A = 3.5me. Ll is in units of &. 

K LI M2 - 4rnjf 
42 32 -0.03429031 
42 36 -0.04021676 
42 40 -0.04467159 
42 44 -0.04791342 
42 48 -0.05024107 
42 52 -0.05215458 
42 56 -0.05386172 
42 60 -0.05514933 
50 32 -0.05123963 
58 32 -0.06340757 
66 32 -0.07111165 
74 32 -0.07938879 
82 32 -0.08432295 
90 32 -0.08854387 
98 32 -0.09114766 

106 32 -0.09459545 
114 32 -0.09765245 
122 32 -0.09978784 
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APPENDIX J 

Two computer codes are presented in this appendix. The first is the program 

needed to implement the light-cone variational calculation described in Section 

11. The results shown in Sections 12 and 13 for the charge -1 and zero sectors 

were produced by this code. The second program included runs what is described r- - e 
in Section 13 as “Coulomb data”. That is, it numerically returns values for Eq. 

(13.10). All programs are written in Fortran. 

The variational code is run by choosing values for the various parameters in the 

file QEDVAR.DATA. A n example of this file is included. The Fortran code QED- 

VARIN is then run interactively. This program handles all inputs for the main code, 

QEDVAR. Aft er successfully running QEDVARIN, a file named FILE20.FILE 

should be created. The main code QEDVAR is now run in interactive or batch 

mode. FILE20.FILE is the input file to QEDVAR, and QEDVAR.OUTPUT and 

STATES.OUTPUT are the output files. A sample of QEDVAR.OUTPUT is given. 

The Coulomb code is run in a similar fashion: The initial parameters are chosen 

in COULOMB.DATA, COULOMB1 is run first to set up inputs to the main code, 

the main code COULOMB is run in interactive or batch mode, the input file to 

COULOMB is FILE20.FILE and the output files are COULOMB.OUTPUT and 

STATESC.OUTPUT. 
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qEDVAR.DATA 
_---------- 

26 ! start value of kplustot 
26 ! end value of kplustot 

0 ! kxtot kxtot must be = 0 
0 ! kytot kytot must be = 0 
0 ! icharge ibc = 1 to keep only odd fermion kplus 
1 ! ibc ibc = 2 to keep only even femion kplus 

.6 ! alphag 
2.500 ! start value of.alambda in uniG 0Z ele&ass 

- -- 2.500 ! end value of alambda 
20.000 ! start value of alperp units of l/elecmass 
20.000 ! end value of alperp 

.OOOl ! start value of epsilon in units of elecmass**2 

.OOOl ! end value of epsilon 
1.00 ! variational parameter 1 
1.00 ! variational parameter 2 
1.00 ! variational parameter 3 
1.00 ! variational parameter 4 (not used) 
1.00 ! variational parameter 5 (not used) 
0. ! photmass in units of electron mass 
0. ! rphomass n I, ,I 
1. ! femmass H II I, 
1. ! rfemass H n II 
1 ! femions, afemions all have spin up. 
0 ! uv cut-off only applied to femions, anti-femions 
1 ! put in states with one photon 
0 ! remove ints. w/ afermion 
1 ! turn on h0 
1 ! turn on hl 
1 ! turn on instantaneous photon interaction 
0 ! turn on instantaneous femion interaction 
1 ! turn on hself 
0 ! print variational fock states 
1 ! print output 

I 
! Notes: 1) all input in free format 
I 2) photmass occurs in h0 and hself 
I 3) rphomass occurs in the covariant regulator 
! (i.e.: in the generation of states 
! and in self-induced inertias) 
1 4) femmass occurs in ho, vertex tern and hself 
! 5) rfemass occurs in the covariant regulator 
I (i.e.: in the generation of states 
I and in self-induced inertias) 
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qEDVAR.OUTPUT 
---------_-_- 

INPUT (MASSES ARE IN UNITS OF ELECMASS): 
KPLUSTOT ICHARGE IBC = 26 0 1 
ALPHAG = 0.6000 
ALAMBDA = 2.5000 
ALPERP = 20.0000*1/ELECMASS = 12.0000*BOHR (RPERP = 15.9155) 
EPSILON = 0.0001 
PHOTMASS - 0.0000 r- - -. 
RPIiOMASS - 0.0000 

- FERMMASS--= 1.0000 
RFERMASS = 1.0000 
VARPARAMETERS = 1.0000 1.0000 1.0000 1.0000 1.0000 

# OF FOCK STATES WITH NO PHOTONS - 363 
# OF FOCK STATES = 7651 

CPU TIME TO FIND POCK STATES = 0.26 SEC 
CPU TIME TO WORK OUT VAR WF = 4.05 SEC 
CPU TIME TO FIND HO MATRIX EL = 0.05 SEC 
CPU TIME TO FIND Hl MATRIX EL = 4.76 SEC 
CPU TIME TO FIND H2 MATRIX EL = 0.42 SEC 
CPU TIME TO FIND HSELF MATRIX EL = 0.31 SEC 
TOTAL CPU TIME USED = 9.84 SEC 

CONTRIBUTION TO M**2 FROM HO = 4.3599108941 
LONG VERTEX = HlL - 0.0000000000 

TRANS VERTEX = HlT = -0.2277568924 
INSPHOT = -0.3626713082 
INSFERM - 0. oooooooooo 

LONG PART OF 1 LOOP SE = SEFlL = 0.0000000000 
TRANS PART OF 1 LOOP SE = SEFlT = 0.3518339387 

N CHAINED INST SE = SEF2 = 0. oooooooooo 
2 CHAINED INST SE = SEF3 = 0.0000000000 

LONG PHOT = .SHlL+SEFlL = 0.0000000000 
TRANS PHOT = .SHlT+SEFlT = 0.2379554926 

INST PHOT = INSPHOT - -0.3626713082 
PE = L+T+I PHOT = -0.1247158157 
KE = HO+.SHl-4 = 0.2460324479 

SUM+4 = HO+Hl+INSPHOT+SEFl = 4.1213166323 

SUM+4+INSFERM+SEF2 - 4.1213166323 
SUM+4+INSFERM+SEF3 = 4.1213166323 

FOCK STATE DECOMPOSITION: 94.19% 1 PAIR.0 PHOT 5.81% 1 PAIR,1 PHOT 
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STRUCTURE FUNCTION: 

NOTES: 1) VALUES SHOULD BE MULTIPLIED BY l/l0000 (***=lOOOO) 

X== 2692 3462 4231 5000 5769 6538 7308 
________________------------------------- 

51 463 2289 4654 2127 373 43 

_ WAVE PUNGTION SQUARED AT KY=O: 

NOTES: 1) VALUES SHOULD BE MULTIPLIED BY l/l0000 (***=lOOOO) 
2) KX IS IN UNITS OF ELECTRON MASS 

6283 1 0 0 1 1 1 0 0 
4712 1 0 3 8 9 5 2 0 
3141 1 2 14 43 62 35 9 1 
1570 I 4 34 210 461 203 31 3 

OI 5 53 475 1259 467 52 4 
-1570 I 4 34 210 461 203 31 3 
-3141 1 2 14 43 62 35 9 1 
-4712 1 0 3 8 9 5 2 0 
-6283 1 0 0 1 1 1 0 0 

_--_----------------------------------- 
KX X 2692 3462 4231 6000 5769 6538 7308 
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COlJLOMD.DATA 
------------ 

26 ! start value of kplustot 
26 ! end value of kplustot 

0 ! kxtot kxtot must be = 0 
0 ! kytot kytot must be = 0 
0 ! icharge ibc = 1 to keep only odd fermion kplus 
1 ! ibc ibc = 2 to keep only even fermion kplus 

.6 ! alphag e 
2.500 ! start value of alambda in units of elecmass 

- -- 2.500 ! end value of alambda 
20.000 ! start value of alperp units of l/elecmass 
20.000 ! end value of alperp 

.OOOl ! start value of epsilon in units of elecmass**2 

.OOOl ! end value of epsilon 
1.00 ! variational parameter 1 
1.00 ! variational parameter 2 
1.00 ! variational parameter 3 
1.00 ! variational parameter 4 (not used) 
1.00 ! variational parameter 5 (not used) 
0. ! photmass in units of electron mass 
0. ! rphomaes n n n 
1. 1 fermmass w " " 
1. ! rfemase I, ,, II 
0 ! uv cut-off only applied to femions, anti-fermions 
0 ! print fock states 
1 ! print output 

! Notes: 1) all input in free format 
! 2) photmass occurs in h0 and hself 
I 3) rphomass occurs in the covariant regulator 
I (i.e.: in the generation of states 
I and in self-induced inertiaa) 
! 4) fermmass occurs in ho, vertex tern and hself 
I 5) rfemass occurs in the covariant regulator 
I (i.e.: in the generation of states 
! and in self-induced inertias) 
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COULOMB.OUTPUT 
-----------___ 

INPUT (MASSES ARE IN UNITS OF ELECMASS): 
KPLUSTOT ICHARGE IBC = 26 0 1 
ALPHAG = 0.6000 
ALAMBDA = 2.5000 
ALPERP = 20.OGOO*l/ELECMASS = 12.OOOO*BOHR (RPERP = 15.9155) 
EPSILON = 0.0001 
PHOTMASS = o.oooo 
RPHOMASS = o.oooo r- - m 
FERMMASS~~= 1.0000 
RFERMASS = 1.0000 
VARPARAMETERS = 1.0000 1.0000 1.0000 1.0000 1.0000 

# OF FOCK STATES = 363 

CPU TIRE TO FIND POCK STATES = 0.09 SEC 
CPU TIRE TO WORK OUT WF = 0.01 SEC 
CPU TIRE TO FIND KE s 0.00 SEC 
CPU TIRE TO FIND PE s 0.54 SEC 
TOTAL CPU TIRE USED re: 0.64 SEC 

KE= 0.2829467565 
PE = -0.1481503188 

ENERGY = 0.1347964378 

WAVE FUNCTION SQUARED AT KY=O: 

NOTES: 1) VALUES SHOULD BE MULTIPLIED BY l/l0000 (***=lOOOO) 
2) KX IS IN UNITS OF ELECTRON MASS 

6283 1 0 0 1 1 1 0 0 
4712 I 0 2 6 8 6 2 0 
3141 I 1 9 36 62 36 9 1 
1570 I 3 32 211 469 211 32 3 

01 5 55 476 1261 476 55 6 
-1570 I 3 32 211 469 211 32 3 
-3141 1 9 36 62 36 9 1 1 
-4712 I 0 2 6 8 6 2 0 
-6283 1 0 0 1 1 1 0 0 

I ------------------------------------ 
KX X 2692 3462 4231 5000 5769 6538 7308 
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QEDVARIN 
------em 

C --------------------------------------------------------- 
C THIS ROUTINE HANDLES INPUT, VARIABLE PARMETERS FOR CJEDVAR. 
C IT GENERATES INPUT FILES FOR THE ROUTINE DEDVAR. 
C INPUT PARAMETERS ARE READ FRON THE FILE CEDVAR DATA. 
C MASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 
C 
C IBC = 1 MEANS KEEF ONLY ODD FERMION KPLUS fl - e 

-c _ = 2 MEANS KEEP ONLY EVEN FERNION KPLUS 
C 
C PERMIONS ASSURED TO HAVE CHARGE -1. 
C 
C CODES HAVE BEEN VECTORIZED ON AN IBM 3090 FORTRAN COMPILER. 
C--------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

C --------------------------------------------------------- 
C OPEN FILES. 
C --------------------------------------------------------- 

OPEN (UNIT=13,FILE-'qed.data',STATuS='UNKNOWN') 
OPEN (UNIT=20,FILE='file2O.file',STATUS~'UNKNOWN') 

PI = 3.141592653589793DO 

WRITE (6,900) 
900 FORMAT (' WANT TO SEE INTRODUCTION? TYPE 1 IF YES, 0 IF NO') 

READ (S,*) INTRO 

IF (INTRO .EQ. 1) THEN 
WRITE (6,901) 

901 FORMAT 
$(' / ----------------------------------------------------------- \'/ 
$ ' I WELCOME TO 3+1 VARIATIONAL QED IN DISCRETE LIGHT-CONE I'/ 
$ ' I QUANTIZATION. DO THE FOLLOWING TO RUN THIS PROGRAM. I’/ 
$ ' 1 TO RUN PROGRAM "PROGRAM" I ‘/ 
::I 

A) ON IBM, JUST TYPE "PROGRAM", 
B) ON DEC, TYFE "QPROGRAM". I:; 

$‘I 
$ s I 1) RUN HqEDvARINn (INTERACTIVE). I:; 

:: / 
THIS ROUTINE HANDLES INPUT PARAMETERS SUCH AS 
PHOTKASS, FERMMASS, G.... AND SETS UF INPUT I:; 

::I 
FILES FOR THE ROUTINE QEDVAR. INPUT PARAMETERS 
ARE READ FROM THE FILE DEDVAR DATA. I:; 

WRITE (6,902) 
902 FORMAT 

$(’ I I ‘/ 
f ' 1 2) RUN "QEDVAR". THIS ROUTINES CALLS THE SUBROUTINES, I'/ 
$'I IN ORDER, STATESNR, VARWF, HONR, HlNR, HZNR, HSELFNR, I'/ 

::I 
PRINTOUT. 

I:; 
$'I STATESNR FINDS THE POCK STATES CONSISTENT WITH THE I'/ 
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VALUES OF KPLUSTOT, ALAMBDA, ALFERF. 

::I 
VARWF FINDS THE VARIATIONAL WAVE FUNCTION FOR THE I ‘/ 
ABOVE POCK STATES, 

f:; 
I:; 

HONR FINDS THE VALUE OF HO BETWEEN THESE VAR STATES. I'/ 
$'I 

::I 
HlNR FINDS THE VALUE OF Hl BETWEEN THESE VAR STATES. I:; 

I ‘/ 

f: / 
HZNR FINDS THE VALUE OF H2 BETWEEN THESE VAR STATES. I'/ r- - e 

I ‘/ 
$-’ I- HSELFNR FINDS THE VALUE OF HSELF BETWEEN THESE 

:: / 
VAR STATES. I:; 

I ‘/ 
:: / 

PRINTOUT PRINT8 OUT THE RESULTS. 
I:; 

$ ' 1 NOTE 1: TO RUN ON DEC. UNCOMMENT SECTION FOLLOWING I’/ 
$‘I "FOLLOWING NEEDED FOR DEC" IN QEDVAR, DEDVARIN. I'/ 
$ ' 1 NOTE 2: ABOVE CODES HAVE BEEN VECTORIZED 

f : :--- 
ON AN IBM 3090 FORTRAN COMPILER. 1:; 

--------------------------------------------- -- ------ ---/') 
ENDIF 

c--------------------------------------------------------- 

C READ INPUT DATA. 
C NOTE: COVARIANT CUT-OFF SCHEME PRESENTLY ASSUMES KXTOT,KYTOT = 0. 
C CAN GET OTHER VALUES FOR KXTOT,KYTOT BY BOOSTING 
C (SEE NOTES ON BOUND STATES). 
C MASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELFCMASS. 
C --------------------------------------------------------- 

READ (13,*) KFLUSBEG 
READ (13,*) KPLUSEND 
READ (13,*) KXTOT 
READ (13,*) KYTOT 
READ (13,*) ICHARGE 
READ (13,*) IBC 
READ (13,*) AIJ'HAG 
READ (13,*) ALAKBBEG 
READ (13,*) ALANBEND 
READ (13,*) ALFERBEG 
READ (13,*) ALF'EREND 
READ (13,*) EPSILBEG 
READ (13,*) EPSILEND 
READ (13,*) PARAl 
READ (13,*) PARAO 
READ (13,*) PARA 
READ (13,*) PARA 
READ (13,*) PARAS 
READ (13,*) PHOTMASS 
READ (13,*) RFHOMASS 
READ (13,*) FERMMASS 
READ (13,*) RFERMASS 
READ (13,*) IFERMUP 
READ (13,*) IUVFERM 
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READ (13,*) IONEFHOT 
READ (13,*) NOAFERI 
READ (13,*) IHO 
READ (13,*) IHl 
READ (13,*) IHPPHOT 
READ (13,*) IH2FERM 
RF.AD (13,*) IHSELF 
READ (13,*) IPRIWF 
READ (13,*) IPRIOUT 

r- - c--------------------------------------------------------- 
-c CHECK IF VALUES OF INPUT DATA ARE O.K. 

C--------------------------------------------------------- 
IF (KPLUSBEG .LE. 0) THEN 

WRITE (6,920) 
920 FORMAT (' NSG FRON qEDVARIN: KFLUSBEG MUST BE .GT. 0') 

STOP 
ENDIF 

921 

922 

923 

924 

925 

926 

IF (KFLUSEND .LE. 0) THEN 
WRITE (6,921) 
FORMAT (' NSG FROM qEDVARIN: KFLUSEND MUST BE .GT. 0') 
STOP 

ENDIF 

IF ((IBC .NE. 1) .AND. 
$ (IBC .NE. 2)) THEN 

WRITE (6,922) 
FORMAT (' NSG FROM qEDVARIN: IBC MUST BE 1 OR 2') 
STOP 

ENDIF 

IF ((ICHARGE .NE. 0) .AND. 
$ (ICHARGE .NE. -1)) THEN 

WRITE (6,923) 
FORMAT (' NSG FROM qEDVARIN: ICHARGE MUST BE 0 OR -1') 
STOP 

ENDIF 

IF ((IBC .Eq. 2) .AND. (NOD(KFLUSBEG.2) .Eq. 1)) THEN 
WRITE (6,924) 
FORMAT(' NSG FROM QEDVARIN: KFLUSBEG MUST BE EVEN IF IBC = 2') 
STOP 

ENDIF 

IF ((IBC .Eq. 2) .AND. (NOD(KF'LUSEND,2) .Eq. 1)) THEN 
WRITE (6,925) 
FORMAT(' NSG FROM qEDVA.RIN: KPLUSEND MUST BE EVEN IF IBC = 2') 
STOP 

ENDIF 

IF ((ICHARGE .Eq. 0) .AND. (MOD(KFLUSBEG,P) .Eq. 1)) THEN 
WRITE (6,926) 
FORMAT (' NSG FROM QEDVARIN:', 

$ * KPLUSBEG MUST BE EVEN IF ICHARGE = 0') 
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STOP 
ENDIF 

IF ((ICHARGE .Eq. 0) .AND. (NOD(KPLUSEND.2) .Eq. 1)) THEN 
WRITE (6,927) 

927 FORMAT (' NSG FRON qEDVARIN:', 
$ ' KPLUSEND MUST BE EVEN IF ICIiARGE = 0') 

STOP 
ENDIF 

IF ((IBC .Eq. 1) .AND. (ICHARGE .Eq. -1) .AND.~- - e 
$_ _(NOD(KF'LUSBEG,2) .Eq. 0)) THEN 

WRITE (6,928) 
928 FORMAT (' NSG FROM qEDVARIN:', 

f ' KFLUSBEG MUST BE ODD IF IBC = 1 AND ICHARGE = -1') 
STOP 

ENDIF 

IF ((IBC .Eq. 1) .AND. (ICRARGE .Eq. -1) .AND. 
8 (NOD(KPLUSEND.2) .Eq. 0)) THEN 

WRITE (6,929) 
929 FORMAT (' NSG FROM qEDVARIN:', 

$ ' KPLUSEND MUST BE ODD IF IBC - 1 AND ICHARGE = -1') 
STOP 

ENDIF 

IF ((KXTOT .NE. 0) .OR. 
$ (~ToT .NE. 0)) THEN 

WRITE (6,930) 
930 FORMAT (' NSG FROM qEDVARIN: KXTOT AND KYTOT MUST BE'/ 

: 
' EQUAL TO ZERO. OTHER VALUES CAN BE OBTAINED'/ 
' BY LORENTZ BOOSTING.') 

STOP 
ENDIF 

IF (EPSILON .LT. O.ODO) THEN 
WRITE (6,931) 

931 FORMAT (' NSG FROM QEDVARIN: EPSIOON MUST BE .GE. O.ODO') 
STOP 

ENDIF 

IF ((IFERMUP .NE. 0) .AND. 
$ (IFERMUF .NE. 1)) THEN 

WRITE (6,932) 
932 FORMAT (' NSG FROM QEDVARIN: IFERMUP MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((IUVFERM .NE. 0) .AND. 
$ (IUVFERM .NE. 1)) THEN 

WRITE (6,933) 
933 FORMAT (' NSG FROM qEDVARIN: IUVFERM MUST BE 0 OR 1') 

STOP 
ENDIF 

121 



IF ((IONEPHOT .NE. 0) .AND. 
$ (I~NEFHOT .NE. 1)) THEN 

WRITE (6,934) 
934 FORMAT (' NSG FROM QEDVARIN: IONEPHOT MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((NOAFERI .NE. 0) .AND. 
$ (NOAFERI .NE. 1)) THEN 

WRITE (6,936) 
935 FORMAT (' NSG FROM .QEDVARIN: NOAFERI MUST BE-0 CiR 1')" 

- STOP 
ENDIF 

IF ((IHO .NE. 0) .AND. 
$ (IHO .NE. 1)) THEN 

WRITE (6,937) 
937 FORMAT (' MSG FROM QEDVARIN: IHO MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((IHI .NE. 0) .AND. 
$ (IHl .NE. 1)) THEN 

WRITE (6,938) 
938 FORMAT (' NSG FROM QEDVARIN: IHl MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((IHZPHOT .NE. 0) .AND. 
f (IH2PHOT .NE. 1)) THEN 

WRITE (6,939) 
939 FORMAT (' NSG FROM QEDVARIN: IH2PHOT MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((IHZFERM .NE. 0) .AND. 
$ (IH2FERM .NE. 1)) THEN 

WRITE (6,940) 
940 FORMAT (' NSG FROM QEDVARIN: IH2FERM MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((IHSELF .NE. 0) .AND. 
$ (IHSELF .NE. 1)) THEN 

WRITE (6,941) 
941 FORMAT (' NSG FROM IJEDVARIN: IHSELF MUST BE 0 OR 1') 

STOP 
ENDIF 

IF ((IHl .EQ. 1) .AND. 
$ (IONEPHOT .NE. 1)) THEN 

WRITE (6,942) 
942 FORMAT (' NSG FRON QEDVARIN: -IONEF'HOT MUST = 1 IF IHl = 1') 

STOP 
ENDIF 
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IF ((IH2FERM .Eq. 1) .AND. 
$ (IoNEPH~T .m. 11) mm 

WRITE (6,943) 
943 FORMAT (' NSG FROM QEDVARIN: IONEFHOT MUST = 1 IF IHPFERM = 1') 

STOP 
ENDIF 

C --------------------------------------------------------- 
C GENERATE PARAMETERS FILE. r- - I c--------------------------------------------------------- 

WRI-TE (20,954) KFLUSBEG,KPLUSEND,KXTOT,KYTOT,ICHARGE,IBC 
WRITE (20,955) ALPHAG 
WRITE (20,955) ALAMBBEG,ALAMBEND 
WRITE (20,955) ALPERBEG,ALPEREND 
WRITE (20,955) EPSILBEG,EPSILEND 
WRITE (20,956) PARAl 
WRITE (20,955) PARA 
WRITE (20,955) PARA 
WRITE (20,955) PARA 
WRITE (20,955) PARAS 
WRITE (20,955) PHOTMASS 
WRITE (20,955) RPHOMASS 
WRITE (20,955) FERMMASS 
WRITE (20,955) RFERMASS 
WRITE (20,964) IHO,IHl,IH2PHOT,IH2FERM,IHSELF 
WRITE (20,954) IFERMUP,IUVFERM,IONEPHOT,NOAFERI,IPRIWF,IPRIOUT 

954 FORMAT (618) 
955 FORMAT (2D30.22) 

STOP 
END 

123 



QEDVAR 
------ 

C --------------------------------------------------------- 
C THIS ROUTINE EVALUATES TRE HAMILTONIAN MATRIX BETWEEN 
C VARIATIONAL STATES. 
C 
C P-NINUS IS DEFINED TO BE L/PI*HAMILTONIAN. 
C 
C MASSES ARE IN UNITS DF ELECMASS. r- - 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 

-c - -- 
C FERNIONS ASSURED TO HAVE CHARGE -1. 
C --------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALwF(75555) ,AIMWF(76665), 
$ NPHOT(75555),NFERM(75555),NAFER(75555), 
$ KPH0T(75555),KXPH0T(75555),KYPH0T(75555~,1SPH0T(75555~, 
$ KFERR(7SSSS),KXFERM(755SS),KYFERN(7SSSS),ISFERM(75555), 
$ KAFER(76566),KXAFER(75555~,~~ER(75555~,1S~ER(75555~ 

C --------------------------------------------------------- 
C FOLLOWING ARRAYS NEEDED IN VARWF, HlNR, HZNR FOR VECTORIZATION. 

DIMENSION WORKl(7SSSS),WORK2(7SSS5),WORK3(7S5S5), 
$ TEMPwF(1222) 

C --------------------------------------------------------- 
C FOLLOWING ARRAY NEEDED IN SUBROUTINE PRINTOUT. 
C --------------------------------------------------------- 

DIMENSION WAVEFCN(222) 

LOGICAL TOORANY 

C --------------------------------------------------------- 
C OPEN FILES. 

-C --------------------------------------------------------- 
OPEN (UNIT=14,FILE='etates.output',STATUS='UNKNOWN*) 
OPEN (UNIT=lS,FILE='qedvar.output',STATUS='UNKNOWN') 
OPEN (UNIT=l6,FILE='qedvar.diagnoae',STATUS='UNKNOWN') 
OPEN (UNIT=20,FILE='file2O.file',STATUS='UNKNOWN') 
OPEN (UNIT=2l,FILE='longphot.file',STATUS='UNKNOWN') 
OPEN (UNIT=22,FILE='trauphot.file',STATUS='UNKNOWN') 
OPEN (UNIT=23,FILE-'instphot.file',STATUS='UNKNOWN'~ 
OPEN (UNIT=24,FILE='pe.file',STATUS='UNKNOWN') 
OPEN (UNIT=2S,FILE='ke.file',STATUS='UNKNOWN') 
OPEN (UNIT-26,FILE='energy.file',STATUS='UNKNOWN') 

1: --------------------------------------------------------- 
C DIN(REALWF,AIMWF,NPHOT,...) = NSIZE. NSIZE SHOULD BE CHOSEN 
C .GE. THE NUMBER OF FOCK STATES-(NSTATES). 
C DIN(TEKPWF) = NSIZEO. NSIZEO SHOULD BE CHOSEN 
C .GE. THE NUMBER OF POCK STATES WITH NO PHOTONS (NsTATEoP). 
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C DIN(WAVEFCN) - KPLUSMAX. KPLUSMAX SHOULD BE CHOSEN 
C .GE. KPLUSTOT. 
C ---------------------------------------------------------. 

NSIZE = 76555 
NSIZEO = 1222 
KPLUSMAX - a22 
IF (KPLUSEND .GT. Kp~usMAx) THEN 

WRITE (15,900) KPLUSMAX 
900 PORMAT(" KPLUSTOT .GT. KPLUSMAX =',IS/ 

$ ' RE-COMPILE QEDVAR WITH LARGER VALUE OF KPLUS_MA.') 
STOP ,- - 

END-IF 

PI = 3.141592653589793DO 

C READ PARAMETERS FILE (FILEPO). 
C --------------------------------------------------------- 

READ (20,904) KPLUSBEG,KPLUSEND,KXTOT,KYTOT,ICHARGE,IBC 
READ (20.9C5) ALPHAG 
READ (20,905) ALAMBBEG,ALAMBEND 
READ (20,9C5) ALPERBEG,ALPEREND 
READ (20,905) EPSILBEG,EFSILEND 
READ (20,905) PARAl 
READ (20,905) PARA 
READ (20,905) PARAS 
READ (20,9C5) PARA 
READ (20,905) PARAS 
READ (20,905) PHOTMASS 
READ (20,905) RPHOMASS 
READ (20,905) FERMMASS 
READ (20,9G5) RFERMASS 
READ (20,9G4) IHO,IHl,IH2PHOT,IH2FERM,IHSELF 
READ (20,9G4) IFERMUP,IWFERM,IONEPHOT,NOAFERI,IPRIWF,IPRIOUT 

904 FORMAT (618) 
905 FORMAT (2D30.22) 

WRITE (21,911) ALPHAG 
911 FORMAT (' ALPHAG =',F9.4/ 

: 
' KPLUSTOT ALAMBDA ALPERP EPSILON LONG PHOT'/ 
) ---,--,,,,,,,-------_______,______,,,_,_---------------~ 1 

WRITE (22,912) ALPHAG 
912 FORMAT (' ALPHAG =',F9.4/ 

: 
' KPLUSTOT ALAMBDA ALPERP EPSILON TRAN PHOT'/ 
1 ~~,~~~~~~~~~~~~~~~~~_____________,__,___~~~~~~~~~~~~~~-~ > 

WRITE (23,913) ALPHAG 
913 FORNAT (' ALPHAG =',F9.4/ 

f ' KPLUSTOT ALAMBDA ALPERP EPSILON INST PHOT'/ 
$ 9 ,~~~~~~~~~~~~~~~~~~~___________,________~~~~~~~~~~~----~ > 

WRITE (24,914) ALPHAG 
-14 FORMAT (' ALPHAG =',F9.4/ 

: 
' KPLUSTOT ALAMBDA ALPERP EPSILON PE '/ 
s ------------,-,-----_____,______________--------------D 1 

WRITE (25,915) ALPHAG 
915 FORMAT (' ALPHAG =',F9.4/ 
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: 
' KPLUSTOT ALAMBDA ALPERP EPSILON KE '/ 
* ,~~~,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-----~~~~ 1 

WRITE (26,916) ALPHAG 
916 FORMAT (' ALPHAG =',F9.4/ 

: 
' KPLUSTOT ALAMBDA ALPERP EPSILON ENERGY '/ 
8 ----,,-,,,,,,--,----_____________,__,,__---------------~ 1 

DO 100 KPLUSTOT = KPLUSBEG,KPLUSEND,4 
DO 100 ALAMBDA = ALAMBBEG,ALAMBEND,.O5 
DO 100 ALPERP = ALPERBEG,ALPEREND,2.0 
DO 100 EPSILON = EPSiLBEG,EPSiLEND,.Ol 

7- - 
- 

C DETERMINE START CPU TIME. 
C --------------------------------------------------------- 

CALL VTTIME(IVIRTIME,ITOTTINE) 
START = DFLOAT(ITOTTIME)/lDG.ODO 

C -----_-___-___------------------------------------------- 
C CALL SUBROUTINE STATESNR TO GENERATE STATES CONSISTENT 
C WITH K, ALPERP, ALAMBDA. 
C --------------------------------------------------------- 

CALL STATESNR(NSIZE,KPLUSTOT,IBC,ICHARGE,AMMBDA,ALPERP,EPSILON, 

: 
RPHOMASS,RFERMASS,IFERMUP,IWFERM,IONEPHOT, 
NSTATES,NSTATEOP,TOOMANY, 

: 
NPHOT,NFERM,NAFER, 
KPHOT.KKPHOT,KYPHOT,ISPHOT, 

: 
KFERM,KZFERM,KYFERM,ISFERM, 
KAFER,KZAFER,KYAFER,ISAFER) 

IF (TOOMANY) THEN 
WRITE (15,918) NSIZE 

918 FORMAT (' NUMBER OF STATES GENERATED BY SUBROUTINE', 

: 
' STATESNR .GT. NSIZE =',IS/ 
' RE-COMPILE QEDVAR WITH LARGER VALUE OF NSIZE') 

STOP 
ENDIF 
IF (NSTATEOP .GT. NSIZEO) THEN 

WRITE (15,919) NSIZEO 
919 FORMAT (' NUMBER OF STATES WITH NO PHOTONS GENERATED BY'/ 

: 
' SUBROUTINE STATESNR .GT. NSIZEO =',IS/ 
' RE-COMPILE GEDVAR WITH LARGER VALUE OF NSIZEO') 

STOP 
ENDIF 

CALL VTTIKE(IVIRTIME,ITOTTIME) 
TIME1 = DFLOAT(ITOTTIME)/lCG.ODO-START 

C ------------__------------------------------------------- 
C CALL SUBROUTINE VARWF TO WORK OUT VARIATIONAL WAVE-FUNCTION. 
C--------------------------------------------------------- 

CALL VARWF(REALWF,AIMWF,NSIZE,NSIZEO,NSTATES,NSTATEOP, 

: 
ALPHAG,KPLUSTOT,ICHARGE,ALPERP, 
PHOTMASS,FERMMASS,lFERMUP,NOAFERI, 

: 
PARAl,PARA2,PARA3,PARA4,PARAS, 
NPHOT,NFERM,NAFER, 
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: 
KPHOT,KXPHOT,KYPHOT,ISPHOT, 
KFERM,KXFERM,KYFERM,ISFERM, 

: 
KAFER,KXAFER,KYAFER,ISAFER, 
WORKl,WORK2,WORK3,TEMPWF) 

C************DIAGNOSTICS: PRINT OUT RESULTS FROM VARWF 

$ 
$ 

920 

: 
f 

: 

: 

: 

: 
$ 

921 
C 

: 

: 
f 

: 

: 
E 

922 

$ 

: 
t 

923 

: 

: 
924 

RPERP = ALAMBDA*ALPERP/PI 
XALPERP = ALPERP*ALPHAG 

WRITE (14,920) KPLUSTOT,ICHARGE,IBC, 
ALPHAG,~DA,ALPERP,XALPERP,RPERP,EPSILdN,PHbTMA~,'RPHOMASS, 

--FERMMASS,RFERMASS,NSTATEOP,NSTATES 
FORMAT (' INPUT (MASSES ARE IN UNITS OF ELECMASS):'/ 

' KPLUSTOT ICHARGE IBC =',314/ 
' ALPHAG =',F11.4/ 
’ MDA =',Fll.l/ 
' ALPERP =',F11.4,'*l/ELECMASS =',F8.4, 

'*BOHR (RPERP =',F8.4,')'/ 
' EPSILON =',Fll.l/ 
' PHOTMASS =',Fll.4/ 
' RPHOMASS =',Fll.l/ 
' FERMMASS =',Fll.4/ 
' RFERNASS =',Fll.4/' '/ 
' # OF POCK STATES WITH NO PHOTONS =',19/ 
* # OF POCK STATES =',IS) 

IF (IPRIWF .Eq. 1) THEN 
WRITE (14,921) 
FORMAT (' '/ 

. I 
I PHOTON 1 FERMION 1 AFERMION 1 '/ 
' STATE ', 
' K+ KX KY Sj K+ KX KY Si K+ KX KY Sl REALWF AIMWF '/ 
* -mm-,-~ I 
)-------------- --------------I-------------- l I ---------------* 1 
DO 20 ISTATE=l,NSTATES 

IF ((NPHOT(ISTATE) .Eq. 1) .AND. (NAFER(ISTATE) .Eq. 1)) 
WRITE (14,922) ISTATE, 
KPHOT(ISTATE),KXPHOT(ISTATE),KYPHOT(ISTATE),ISPHOT(ISTATE), 
KPERM(ISTATE),KXPERM(ISTATE),mFERM(ISTATE),ISFERM(ISTATE), 
KAFER(ISTATE),KXAFER(ISTATE),KYAFER(ISTATE),ISAFER(ISTATE), 
REALWF(ISTATE),A~F(ISTATE) 
FORMAT (16,3(1X,13,1X,13,1X,13,1X,12),2(1X,F7.4)) 

IF ((NPHOT(ISTATE) .Eq. 1) .AND. (NAFER(ISTATE) .Eq. 0)) 
WRITE (14,923) ISTATE, 
KPHOT(ISTATE),KXPHOT(ISTATE),KYPHOT(ISTA~),ISPHOT(ISTATE), 
KPERM(ISTA~),KXFERM(ISTATE),KYPERM(ISTATE),ISFERM(ISTATE), 
REALWF(ISTATE),AIMWF(ISTA~) 
FORMAT (16,2(1X,13,1X,13,1X,13,1X,12),15X,2(1X,F7.4)) 

IF ((NPHOT(ISTATE) .Eq. 0) .AND. (NAFER(ISTATE) .Eq. 1)) 
WRITE (14,924) ISTATE, 
KFERM(ISTATE),KXFERM(ISTATE),KVFERM(ISTATE),ISFERM(ISTATE), 
KAFER(ISTATE),KXAFER(ISTATE),KVAFER(ISTATE),ISAFER(ISTATE), 
REALWF(ISTATE),AIMWF(ISTATE) 
FORMAT (16,15X,2(1X,13,1X,13,1X,13,1X,12),2(1X,F7.4)) 
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IF ((NPHOT(ISTATR) .Eq. 0) .AND. (NAFER~ISTATH) .Rq. 0)) 

: 
WRITE (14,925) ISTATH, 
KPERM(ISTATE),KXFERM(ISTATE),KYPERM(I~TATE),ISFERM(ISTATE), 

$ REALWF(ISTATE),AIMWF(ISTATE) 
925 FORMAT (I6,15~,1~,13,1~,13,1x,13,1x,12,15x,2~1x,F7.4)) 
20 CONTINUE 

ENDIF 
c************ 

CALL VTTIME(IVIRTIME,ITOTTIME) 
TIME2 = DFLOAT(ITOTTIME)/lGC.ODO-START-TIMEl- - - - 

C --------------------------------------------------------- 
C CALL SUBROUTINES HONR, HlNR, HPNR, HSELFNR, 
C TO FIND HAMILTONIAN MATRIX ELEMENT. 
C--------------------------------------------------------- 

IF (IHO .EQ. 1) 

: 
CALL HONR(RRMSqHO,NSIZE,NSTATES,REALWF,AIMWF, 

ALPERP,PHOTMASS,FERMMASS, 
$ NPHOT,NFERM,NAFER, 

: 
KPHOT,KXPHOT,KYPHOT, 
KFERM,KXFERM,KYFERM, 

f KAFER,KXAFER,KYAFER) 

CALL VTTIME(IVIRTIME,ITOTTIMR) 
TIME3 = DFLOAT(ITOTTIME)/lGO.ODG-START-TIMEl-TIM2 

IF (IHl .Eq. 1) 
CALL HlNR(RENSqHlL,RRMSqHlT, 

NSIZE,NSTATES,NSTATEOP,REALWF.AIMWF. 
ALPHAG,ICHARGE,ALPERP,FERMMASS,NOAFERI, 
NPHOT,NFERM,NAFER. 
KPHOT,KXPHOT,KYPHOT,ISPHOT, 
KFERM,KXFERM,KYFERM,ISFERM, 
KAFER,KXAFER,KVAFER,ISAFER, 
WORKl,WORKZ,WORK3) 

CALL VTTIME(IVIRTIME,ITOTTIME) 
TIME4 = DFLOAT(ITOTTIME)/lGO.ODC-START-TIMEI-TIMR2-TIMR3 

IF ((IH2PHOT .Eq. 1) .OR. (IHZFERM .Eq. 1)) 
$ CALL H2NR(RENSqH2P,RENSqH2F, 
$ NSIZE,NSTATES,NSTATEOP,REALWF,AIMWF, 

: 
ALPHAG,KPLUSTOT,ICHARGE,ALAMHDA,ALPERP,HPSILON, 
RPHOMASS,RFERMASS,IWFERM,NOAFERI,IH2PHOT,IH2FERM, 

: 
NPHOT,NFERM,NAFER, 
KPHOT,KXPHOT,KYPHOT,ISPHOT, 

: 
KFERN,KXFERM,KYFERM,ISFERM, 
KAFER,KXAFER,mAFER,ISAFER, 

$ WORKl,WORK2) 

CALL VTTIME(IVIRTIME,ITOTTIMR) 
TIMES = DFLOAT(ITOTTIMH)/lGG.OW-START-TIMRl-TIMH2-TIMH3-TIME4 

IF (IHSELF .Rq. 1) 
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: 
CALL HSELFNR(RENSqHSL,REMSqHST,REMSQHSa,REMSqHS3, 

NSIZE,NGTATEOP,REALWF,AIMWF, 

: 
ALPHAG,KPLUSTOT,IBC,ICHARGE,ALAMBDA,ALPERP,EPSILON, 
PHOTMASS,FERMMASS,RPHOMASS,RFERMASS,NOAFERI, 

: 
IFERMUP,IWFERM,NPHOT,NFERM,NAFER, 
KPHOT,KKPHOT,KYPHOT. 

: 
KFERM,KXFERM,KYFERM, 
KAFER,KKAFER,KYAFER) 

CALL VTTIME(IVIRTIME,ITOTTIME) 
TIME6 = DFLOAT(ITOTTIME)/lO&ODG-START-TIMEl~TIMk2-TIk3-TIME4 

$- -TIMES 

RENSQHO = DFLOAT(KPLUSTOT)*RENSqHO 
RENSqHlL = DFLOAT(KPLUSTOT)*RENSqHlL 
RENSqHlT = DFLOAT(KPLUSTOT)*REMSqHlT 
RENSQHZP = DFLOAT(KPLUSTOT)*REMSqH2P 
RENSQHZF = DFLOAT(KPLUSTOT)*REMSqH2F 
RENSqHSL = DFLOAT(KPLUSTOT)*REMSqHSL 
REMSQHST = DFLOAT(KPLUSTOT)*REMSqHST 
REMSqHSP = DFLOAT(KPLUSTOT)*REMSqHSZ 
REMSqHS3 = DFLOAT(KPLUSTOT)*REMSqHS3 

C --------------------------------------------------------- 
C CALL SUBROUTINE PRINTOUT TO PRINT OUT RESULTS. 
C --------------------------------------------------------- 

IF (IPRIOUT .Eq. 1) 
8 CALL PRINTOUT(WAVEFCN,TIMEl,TIME2,TIME3,TIME4,TIME5,TIME6, 

: 
KPLUSTOT,ICHARGE,IBC,NSTATES,NSTATEOP,NSIZE, 
KPLUSMAX,ALPHAG,ALAMBDA,ALPERP.EPSILON, 

$ PARAl*PARAZ,PARA3,PARA4,PARAS, 

: 
PHOTMASS,RPHOMASS,FERMMASS,RFERMASS, 
REMSqHO,REMSqHlL,RENSqHlT,REMSqH2P,REMSqH2F, 

: 
REMSqHSL,REMSqHST,RENSqHS2,REMSqHS3, 
REALWF,AIMWF,NPHOT,NFERM,NAFER, 

f 
KPHOT,KKPHOT,KYPHOT,ISPHOT, 
KFERN,KZFERM,KYFERM,ISFERM, 

f KAFER,KXAFER,KYAFER,ISAFER) 

t 

$ 

$ 

WRITE (21,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 
.S*REMSqHlL+REMSqHSL 

WRITE (22,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 
.S*REMSqHlT+REMSqHST 

WRIm (23,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 
RENSqHZP 

WRITE (24,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 
.S*RENSqHlL+.S*RENSqHlT+REMSqHSL+RENSqHST+REMSqH2P 

IF (ICHARGE .Eq. 0) THEN 
WRITE (25,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 

REMSqHO+.S*RENSqHlL+.5*REMSqHlT-4.ODO 
WRITE (26,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 

REMSqHO+REMSqHlL+REMSqHlT~~MSqH2P+REMSqHSL~~MSqHST-4.ODO 
ELSEIF (ICHARGE .Eq. -1) THEN 

WRITE (25,930) KPLUSTOT,AWMBDA,ALPERP,EPSILON, 
REMSqHO+.S*REMSqHlL+.5*REMSqHlT-l.ODO 
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WRITE (26.930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 
$ REMSqHO+REMSQHlL+REMSqHlTt~MSQH2P+REMSqHSLt~MSqHST-l.ODO 

ENDIF 
930 FORMAT (3X,I4,2X,3Fll.4,Fl5.10) 

100 CONTINUE 

STOP 
END 

SUBROUTINE STATESNR(NSIZE,KPLUSTOT,IBC,ICHARGE, 

: 
AT&BDA,ALPERP,EPSILON, 
RPHOMASS,RFERMASS,IFERMUP,IWFERM,IONEPHOT, 

: 
NSTATES,NSTATEOP,TOOMANY, 
NPHOT,NFERM,NAFER, 

$ KPHOT.KXPHOT,KYPHOT,ISPHOT, 

: 
KFERM,KXFERM,KYFERN,ISFERM, 
KAFER,KXAFER,KYAFER,ISAFER) 

C --------------------------------------------------------- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

.C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

4 
C 
C 
C 
C 

THIS SUBROUTINE GENERATES THE POCK STATES CONSISTENT WITH 
KPLUSTOT, ALAMBDA, ALPERP. 
FOR Q--l ONLY KEEP STATES WITH 1 FERMION AND 0,l PHOTONS. 
FOR D-0 ONLY KEEP STATES WITH 1 FERMION PAIR AND 0,l PHOTONS. 

OUTPUT VARIABLES: 
NSTATES 

NSTATEOP 

TOOMANY 

NPHOT, 
NFERM, 
NAFER 

KPHOT, 
KXPHOT, 
KYPHOT, 
ISPHOT 

KFERM, 
KXFERM, 
KYFERM, 
ISFERM 

KAFER, 
KXAFER, 
KYAFER, 
ISAFER 

NUMBER OF FOCK STATES. 

NUMBER OF FOCK STATES WITH NO PHOTONS. 

LOGICAL VARIABLE. TOOMANY-TRUE IF NSTATES .GT. NSIZE. 
TOOMANY-FALSE IF NSTATES .LE. NSIZE. 

# PHOTONS, FERMIONS, ANTI-FERMIONS IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF PHOTON IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF FERMION IN THE POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF ANTI-FERMION IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

INPUT VARIABLES: 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

-C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
.C 

NSIZE 

KPLUSTOT 

ICHARGE 

IBC 

ALAMBDA 

ALPERP 

EPSILON 

RPHOMASS 

RFERMASS 

IFERMUP 

IUVFERM 

IONEPHOT 

ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EGUAL 
TO NSTATES. 

TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

TOTAL CHARGE. 

ONLY HAVE EVEN FERMION KPLUS IF IBC=2, 
ODD FERMION KPLUS IF IBC-1. 7- - e 

VALUE OF CUT-OFF MASS. 

SIZE OF KPERP GRID. 

MINIMUM PHOTON INVMASS**2. 

PHOTON MASS TO BE USED IN COVARIANT CUT-OFF. 

FERMION MASS TO BE USED IN COVARIANT CUT-OFF. 

FERMIONS, ANTI-FERMIONS ALL HAVE SPIN Up. 

UV CUT-OFF ONLY APPLIED TO FERMIONS, ANTI-FERMIONS. 

PUT IN STATES WITH ONE PHOTON. 

USAGE NOTES: 
1) POCK STATES 1 TO NSTATEOP HAVE NO PHOTONS, 

STATES NSTATEOP+l TO NSTATES HAVE ONE PHOTON. 
2) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING 

AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE 
CALCULATION OF INVARIANT MASSES. 

3) FOCK STATES ARE GENERATED WITH KPERP-0. 
4) FERMION CHARGE IS ASSUMED TO BE -1. 
5) MASSES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
6) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C--------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,• -Z) 
IMPLICIT INTEGER (I-N) 
DIMENSION 

$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(NSIZE),KFERM(NSIZE),KAFER(NSIZE), 
$ KZPHOT(NSIZE),KZFERM(NSIZE),KZAFER(NSIZE), 
$ KYPHOT(NSIZE),KYFERM(NSIZE),KYAFER(NSIZE), 
$ ISPHOT(NSIZE),ISFERM(NSIZE),ISAFER(NSIZE) 

LOGICAL TOOMANY 

PI = 3.141592653589793DO 
SHALL = l.OD-13 

C--------------------------------------------------------- 
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C INITIALIZE VARIOUS ARRAYS TO ZERO. 
C --------------------------------------------------------- 

_- - 

DO 10 I = l.NSIZE 
NPHOT(1) = 0 
NFERM(1) = 0 
NAFER(1) = 0 
KPHOT(1) = 0 
KXPHOT(1) = 0 
KYPHOT(1) = 0 
ISPHOT(1) = 0 
KFERM(1) = 0 

- KXFERM(1) -0 
KYFERM(1) = 0 
ISFERM(1) = 0 
KAFER(1) = 0 
KXAFER(1) = 0 
KYAFER(1) = 0 
ISAFER(1) = 0 

CONTINUE 

TOOMANY = .FALSE. 

C--------------------------------------------------------- 

C GENERATE STATES WITH 1 FERMION PAIR, 0 PHOTONS (ICHARGE-0). 
C RECALL THAT KPLUSTOT MUST BE EVEN FOR ICHARGE = 0. 
C --------------------------------------------------------- 

IF (ICHARGE .Eq. 0) THEN 
ISTATE = 0 

C************DIAGNOSTICS 
C WRITE (16,920) ALAMBDA** 
c920 FORMAT (' '/' 1 PAIR STATES LAMBDA**2 =',F8.3/ 
c 8' KPLUSF KPLUSA KXF KYF KXA KYA INVMASS'/ 
c $' ,,-,---------------,_,__________________-. 1 
c************ 

C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER. 
IF (IBC .Eq. 1) THEN 

IFIRSTKF = 1 
ILASTKF = KPLUSTOT - 1 

ELSEIF (IBC .Eq. 2) THEN 
IFIRSTKF = 2 
ILASTKF = KPLUSTOT - 2 

ENDIF 

DO 20 KPLUSF=IFIRSTKF,ILASTKF,2 
KPLUSA = KPLUSTOT-KPLUSF 
xF = DFL~AT(KPLUSF)/DFLOAT(KPLUSTOT) 
xA = DFL~AT(KPLUSA)/DFLOAT(KPLUSTOT) 

-e ONLY CONTINUE IF SUM(MASS**2/X) .LE. LAMBDA**2. 
AINVMASS = RFERMASS**P/XF + RFERMASS**2/XA 

C************DIAGNOSTICS 
C WRITE (16,921) KPLUSF,KPLUSA,AINVMASS 
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c921 FORMAT (3x,I4,3~,14,2lx,F8.3) 
c************ 

IF (AINVRASS .GT. ALAmDA**2+sw.L) GOTO 20 

C FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS. 
ARGUMENT = AI&DDA**P*XF*XA - RFERMASS**P 
IF (ARGURENT .LT. SMALL) THEN 

KPFMAX-0 
ELSE 

KPFMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) +'-SMALL) e 
- --ENDIF 

C 

DO 22 KXF=-KPFMAX,KPFMAX 
DO 22 KYF=-KPFMAX,KPFMAX 

KXA = -KXF 
KYA=-KYF 
AKPFSG = (PI/ALPERP)**2*(DFLOAT(KXF**2) + DFLOAT(KYF**2)) 

KEEP STATE IF INVMASS**2 .LR. LAMRDA**2. 
AINVMASS = (AKPFSG + RFERMASS**2)/XF 

$ + (AKPFSG + RFERMASS**2)/XA 

C************DIAGNOSTICS 
C WRITE (16,922) KXF,KYF,KXA,KYA,AINVMASS 
c922 FoRMAT (~~X,I~,~X,I~,IX,I~,IX,I~,IX,F~.~) 
c************ 

IF (AINVMASS .GT. ALAMRDA**2+SMALL) GOT0 22 

IF (IFERRUP .Rq. 0) IFIRSTS=-1 
IF (IFERMUP .EG. 1) IFIRSTS=+ 
DO 24 ISPINF=IFIRSTS,l,P 
DO 24 ISPINA=IFIRSTS,l,2 

ISTATR = ISTATE + 1 
IF (ISTATE .GT. NSIZE) THEN 

TOONANY = .TRUR. 
RETURN 

ENDIF 
NPHOT(ISTATE) = 0 
NFERM(ISTATR) = 1 
NAFER(ISTATR) = 1 
KFERM(ISTATR) = KPLUSF 
KXFERM(ISTATR) = KXF 
KYPERM(ISTATE) = KYF 
ISFERM(ISTATE) = ISPINF 
KAFER(ISTATE) = KPLUSA 
KXAFER(ISTATR) = KXA 
KYAFER(ISTATE) = KYA 
ISAFER(ISTATE) = ISPINA 

-24 CONTINUE 
22 CONTINUE 
20 CONTINUE 

NSTATEOP = ISTATE 
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C ---_----------------------------------------------------- 
C GENERATE STATES WITH l FERMION PAIR, l PHOTON (ICHARGE=o). 
C RECALL THAT KPLUSTOT RUST BE EVEN FOR ICHARGE = 0. 
c--------------------------------------------------------- 

IF ((IONEPHOT .Eq. 1) .AND. (IUVFERN .EO. 0)) THEN 

C************DIAGNOSTICS 
C WRITE (16,930) ALAMBDA**2 
c930 FORMAT (' '/' 1 PAIR,1 PHOTON STATES LAMBDA**2 =',F8.3/ 
c $ * KPLUSP KPLUSF KPLUSA KXP KYP KXF KYF7-KXA KYA INVRASS'/ 
c SW ’ -------------------,__,____,,________,__------------------~ 
c*******+**** 1 

C FIGURE OUT WHAT VALUES OF PHOTON KPLUS TO RUN OVER. 
IFIRSTKP = 2 
IF (IBC .EQ. 1) THEN 

ILASTKP = KPLUSTOT - 2 
ELSEIF (IBC .EO. 2) THEN 

ILASTKP = KPLUSTOT - 4 
ENDIF 

DO 30 KPLUSP=IFIRSTKP,ILASTKP,2 
XP = DFLOAT(KPLUSP)/DFLOAT(KpLUSTOT) 

C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER. 
IF (IBC .Eq. 1) THEN 

IFIRSTKF = 1 
ILASTKF = KPLUSTOT - KPLUSP - 1 

ELSEIF (IBC .EQ. 2) THEN 
IFIRSTKF = 2 
ILASTKF = KPLUSTOT - KPLUSP - 2 

ENDIF 

DO 31 KPLUSF=IFIRSTKF,ILASTKF,2 
KPLUSA = KPLUSTOT-KPLUSP-KPLUSF 
XF = DFLOAT(KPLUSF)/DFLOAT(KPLUSTOT) 
XA = DFLOAT(KPLUSA)/DFLOAT(KPLUSTOT) 

‘C ONLY CONTINUE IF SUM(MASS**P/X) .LE. LAMBDA**2. 
AINVMASS = RPHOMASS**2/XP + RFERMASS**2/XF + RFERMASS**B/XA 

C************DIAGNOSTICS 
C WRITE (16,931) KPLUSP,KPLUSF,KPLUSA,AINVMASS 
c931 FORMAT (3X,I4,3X,I4,3X,I4,3lX,F8.3) 
c************ 

IF (AINvRASS .GT. ALAmDA**a+skuLL) GOTO 31 

C FIGURE OUT WHAT LARGEST ALLOWED PHOTON KX, KY IS. 
ARGUMENT = XP*(ALAMBDA**2 - RFERMASS**P/XF 

f - RFERMASS**2/XA) 
$ - RPHOMASS**2 

IF (ARGUMENT .LT. SMALL) THEN 
KPPMAX-0 
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ELSE 
KPPMAX = INT(ALPERP/PI*DSqRT(ARGUMENT) + SMALL) 

ENDIF 

DO 32 KXP=-KPPMAX,KPPMAX 
DO 32 KYP=-KPPMAX,KPPMAX 

AKPpsq = (PI/ALPERP)**~*(DFLoAT(KXP**~) 
$ + DFLOAT(KYP**2)) 

C REMOVE PHOTONS WITH INVMASS**P .LT. EPSILON. 
IF ((AKPPSq .+ RPHOMASS**2)/XP .LT. EPSILt%J-SMALL) GOT0 32 

- 
C FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS. 

ARGUMENT = XF* (ALAMBDA** - (AKPPSq+RPHOMASS**2)/XP 

: 
- RFERMASS**S/XA) 

- RFERMASS**I 
IF (ARGUMENT .LT. SMALL) THEN 

KPFMAX-0 
ELSE 

KPFMAX = INT(ALPERP/PI*DSqRT(ARGUMENT) + SMALL) 
ENDIF 
DO 33 KXF=-KPFMAX,KPFMAX 
DO 33 KYF=-KPFMAX,KPFMAX 

KM = -KXP-KXF 
KYA = -KYP-KYF 
AKPFSq = (PI/ALPERP)**2*(DFLOAT(KXF**2) 

f + DFLOAT(KYF**2)) 
AKPASQ = (PI/ALPERP)**2*(DFLOAT(KXA**P) 

$ + DFLOAT(KYA**2)) 

KEEP STATE IF INVMASS**2 .LE. LAMHDA**2. 
AINVMASS = (AKPPSq + RPHOMASS**2)/XP 

+ (AKPPSQ + RFERMASS**2)/XF 
+ (AKPASQ + RFERMASS**2)/XA 

C************DIAGNOSTICS 
C WRITE (16,932) KXP,KYP,KXF,KYF,KXA,KYA,AINVMASS 
c932 FORMAT (22X,I4,lX,I4,lX,I4,lX,I4,lX,I4,lX,I4,lX,F~.3) 
c************ 

IF (AINVMASS .GT. ALAMHDA**2+SMALL) GOT0 33 

IF (IFERMUP .Eq. 0) IPIRSTS=-l 
IF (IFERMUP .Eq. 1) IFIRSTS=+l 
DO 34 ISPINP=-1,1,2 
DO 34 ISPINF-IFIRSTS,l,P 
DO 34 ISPINA=IFIRSTS,l,S 

ISTATE - ISTATE + 1 
IF (ISTATE .GT. NSIZE) THEN 

TOOMANY = .TRUE. 
RETURN 

ENDIF 
NPHOT(ISTATE) = lm 
NFERMCISTATE) = 1 
NAFER(ISTATE) = 1 
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KPHOT(ISTATE) = KPLUSP 
KXPHOT(ISTATE) = KXP 
KYPHOT(ISTATE) = KYP 
ISPHOT(ISTATE) = ISPINP 
KFERM(ISTATE) = KPLUSF 
KXFERM(ISTATE) = KXF 
KYFERR~ISTATE) = KYF 
ISFERM(ISTATE) = ISPINF 
KAFER(IsTATE) = KPLUSA 
KXAFER(ISTATE) = KXA 
KYAFERCISTATE) =.KYA 

- ISAFERCISTATE) = ISPINA 
34 CONTINUE 
33 CONTINUE 
32 CONTINUE 
31 CONTINUE 
30 CONTINUE 

ENDIF 

IF ((IONEPHOT .EQ. 1) .AND. WJVFERM .EP. 1)) THEN 

C************DIAGNOSTICS 
C WRITE (16,940) ALAMBDA**P 
c940 FORMAT (' '/' 1 PAIR,1 PHOTON STATES LAMBDA**2 =',F8.3/ 
c $ ' KPLUSF KPLUSA KXF KYF KM KYA INVMASS'/ 
c $ ' --------------------_______,____________-. > 
c************ 

C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER. 
IF (IBC .EQ. 1) THEN 

IFIRSTK = 1 
ILASTK = KPLUSTOT - 1 

ELSEIF (IBC .EO. 2) THEN 
IFIRSTK = 2 
ILASTK = KPLUSTOT - 2 

ENDIF 

DO 40 KPLUSF=IFIRSTK,ILASTK,2 
DO 40 KPLUSA=IFIRSTK,KPLUSTOT-KPLUSF-2,2 

KPLUSP = KPLUSTOT-KPLUSF-KPLUSA 
xF = D~~AT~~~~~~)/DFLoAT (KPLUSTOT) 
XA = DFLOAT(KPLUSA)/DFLOAT(KPLUSTOT) 
XP = DFLOAT(KPLUSP)/DFLOAT(KPLUSTOT) 

C ONLY CONTINUE IF SUM(MASS**B/X) .LE. LAMBDA**2. 
AINVMASS = RFERMASS**S/XF + RFERMASS**2/XA 

C************DIAGNOSTICS 
C WRITE (16,941) KPLUSF,KPLUSA,AINVRASS 
c941 FORMAT (3~,14,3x,I4,21~,~8.3) 

-c************ 

IF (AINVRASS .GT. ALAMBDA**2+SMALL) GOT0 40 

C FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS. 
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ARGUMENT = XF*(ALAMHDA**2 - RFERMASS**2*(l.O/XF+l.O/X.A)) 
IF (ARGUMENT .LT. SMALL) THEN 

KPFMAX-0 
ELSE 

KPFMAX = INT(ALPERP/PI*DSqRT(ARGUMRNT) + SMALL) 
ENDIF 

C FIGURE OUT WHAT LARGEST ALLOWED AFERMION KX, KY IS. 
ARGUMRNT = XA*(AIdHDA**P - RFERMASS**2*(l.O/XF+l.O/XA)) 
IF (ARGUMENT .LT. SMALL) THEN 

KPANAX-0 r- - m 
- ELSE 

KPAMAX- INT(ALPERP/PI*DSqRT(ARGUMENT) + SMALL) 
ENDIF 

DO 42 KXF=-KPFMAX,KPFMAX 
DO 42 KYF=-KPFMAX,KPFMAX 
DO 42 KXA=-KPAMAX,KPAMAX 
DO 42 KYA=-KPAMAX,KPANAX 

KXP = -KXF-KXA 
KYP- -KYF-KYA 
AKPFSq = (PI/ALPERP)**2*(DFLOAT(KXF**P) + DFLOAT(KYF**2)) 
AKPASQ = (PI/ALPERP)**2*(DFLOAT(KXA**2) + DFLOAT(KYA**P)) 
AKPPSP = (PI/ALPERP)**2*(DFLOAT(KXP**2) + DFLOAT(KYP**2)) 

C REMOVE PHOTONS WITH INVMASS**2 .LT. EPSILON. 
IF ((AKPPSq + RPHOMASS**2)/XP .LT. EPSILON-SMALL) GOT0 42 

C KEEP STATE IF INYMASS**2 .LR. LAMHDA**2. 
AINVMASS = (AKPFSq + RFERMASS**O)/XF 

$ + (AKF'ASq + RFERMASS**P)/XA 

C************DIAGNOSTICS 
C WRITE (16,942) KXF,KYF,KXA,KYA,AINVMASS 
c942 FoRMAT (15x,I4,1~,14,1~,14,1~,14,1~,~8.3) 
c************ 

IF (AINVMASS .GT. ALAMHDA**S+SMALL) GOT0 42 

IF (IFERMUP .Eq. 0) IFIRSTS=-l 
IF (IFERMUP .Eq. 1) IFIRSTS=+l 
DO 44 ISPINF=IFIRSTS,l,O 
DO 44 ISPINA=IFIRSTS,l,P 
DO 44 ISPINP=-1,1,2 

ISTATH = ISTATH + 1 
IF (ISTATE .GT. NSIZE) THEN 

TOONANY = .TRUH. 
RETURN 

ENDIF 
NPHOT(ISTATR) = 1 
NFERM(ISTATE) = 1 
NAFER(ISTATR) = 1 
KFERM(IsTATR) = KPLUSF- 
K~FRRM(IsTATE) = KXF 
KYFERM(ISTATH) = KYF 
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ISFERM(ISTATE) = ISPINF 
KAFER(ISTATE) = tiLUSA 
KXAFERCISTATE) = KM 
KYAFER(ISTATR) = KYA 
ISAFER(ISTATE) = ISPINA 
KPHOT(ISTATE) = KPLUSP 
KXPHOT(ISTATE) = KXP 
KYPHOT(ISTATE) = KYP 
ISPHOT(ISTATE) = ISPINP 

44 CONTINUE 
42 CONTINUE 

_ 40 - CONTINUE 
ENDIF 

NSTATES = ISTATE 

C END OF GENERATING STATES FOR ICHARGE = 0. 
ENDIF 

C--------------------------------------------------------- 

C GENERATE STATES WITH 1 FERMION, 0 PHOTONS (ICHARGE=-1). 
C --------------------------------------------------------- 

IF (ICHARGE .Eq. -1) THEN 
IF (IFERMUP .Eq. 0) THEN 

ISTATE = 2 
NPHOT(1) = 0 
NFERM(1) = 1 
NAFER(1) = 0 
KFERM( 1) = KPLUSTOT 
KXFERM(1) = 0 
KYFERM(1) = 0 
ISFERM(1) = -1 
NPHOT(2) = 0 
NFERM(2) = 1 
NAFER(2) = 0 
KFERM(2) = KPLUSTOT 
KXFERM(2) = 0 
KYFERM(2) = 0 
ISFERM(2) = +l 

ENDIF 
IF (IFERMUP .Eq. 1) THEN 

ISTATE = 1 
NPHOT(1) = 0 
NFERN(1) = 1 
NAFER(1) = 0 
KFERM(1) = KPLUSTOT 
KXFERM(1) = 0 
KYFERM(1) = 0 
ISFERM(1) = 1 

ENDIF 

NSTATEOP = ISTATE 

C--------------------------------------------------------- 

C GENERATE STATES WITH 1 FERMION, 1 PHOTON (ICHARGE=-1). 
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C--------------------------------------------------------- 

IF ((IONEPHOT .Eq. 1) .AND. ( IUVFERM .EQ. 0)) THEN 

C************DIAGNOSTICS 
C WRITE (16,950) ALAMBDA** 
c950 FORMAT (' '/' 1 FERMION,l PHOTON STATES LAMBDA**2 =',F8.3/ 
c $ ' KPLUSP KPLUSF KXP KYP KXF KYF INVMASS'/ 
c $ * ----------,------------------------------D 1 
c************ 

C mum our WHAT VALUES OF PHOTON Kp~us TO RUN UYER.- 
- ZFIRSTKP = 2 

IF (IBC .EQ. 1) THEN 
ILASTKP = KPLUSTOT - 1 

ELSEIF (IBC .Eq. 2) THEN 
ILASTKP = KPLUSTOT - 2 

ENDIF 

DO 50 KPLUSP=IFIRSTKP,ILASTKP,2 
KPLUSF = KPLUSTOT-KPLUSP 
XP = DFLOAT(KPLUSP)/DFLOAT(KPLUSTOT) 
XF = DFLOAT(KPLUSF)/DFLOAT(KPLUSTOT) 

C ONLY CONTINUE IF SUM(MASS**P/X) .LE. LAMBDA**2. 
AINVMASS = RPHOMASS**2/XP + RFERMASS**2/XF 

C************DIAGNOSTICS 
C WRITE (16,951) KPLUSP,KPLUSF,AINVMASS 
c951 FORNAT (3x,I4,3~,14,21~,~8.3) 
c************ 

IF (AINYMASS .GT. ALAMBDA**2+sMALL) GOTO 50 

C FIGURE OUT WHAT LARGEST ALLOWED PHOTON KX, KY IS. 
ARGUMENT = XP*XF*(AIAMBDA**2 - RPHOMASS**P/XP 

$ - RFERMASS**S/XF) 
IF (ARGUMENT .LT. SMALL) THEN 

KPPMAX-0 
ELSE 

KPPMAX = INT(ALPERP/PI*DSqRT(ARGUMENT) + SMALL) 
ENDIF 

DO 52 KXP=-KPPMAX,KPPMAX 
DO 52 KYP=-KPPMAX,KPPMAx 

KXF = -KXP 
KYF = -KYP 
AKPpsq = (PI/ALPERP)**?*(DFLOAT(KXP**2) t DFLoAT(KYFee2)) 

C REMOVE PHOTONS WITH INVMASS**2 .LT. EPSILON. 
IF ((AKPPSq + RPHOMASS**2)/XP .LT. EPSILON-SMALL) GOT0 52 

C KEEP STATE IF INVMASS**2 .LE. LAMBDA**2. 
AINVNASS = (AKPPSq + RPHOMASS**P)/XP 

$ + (AKPPSq + RFERMASS**P)/XF 
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C************DIACNOSTICS 
C WRITE (16,952) KXF,KYP,KXF,KYF,AINVRASS 
C952 FORMAT (15X,14,1X,14,1X,14,1X,14,1X,F8.3) - 
c************ 

IF (AINVRASS .CT. ALARBDA**2+SMALL) COT0 62 

IF (IFERRUP .Eq. 0) IFIRSTS=-l 
IF (IFERMUP .Eq. 1) IFIRSTS=+l 
DO 54 ISPINP=-1,1,2 
DO 54 ISPINF=IFIRSTS,1,2 

- ISTATE = ISTATE + 1 
IF (ISTATE .CT. NSIZE) THEN 

TOOMANY = .TRUE. 
RETURN 

ENDIF 
NPHOT(ISTATE) = 1 
NFERR(ISTATE) = 1 
NAFER(ISTATE) = 0 
KPHOT(ISTATE) = KPLUSP 
KXPHOT(ISTATE) = KXP 
KUPHOT(ISTATE) = KYP 
ISPHOT(ISTATE) = ISPINP 
KFERR(ISTATE) = KPLUSF 
KXFERM(ISTATE) = KXF 
KYFERR(ISTATE) = KYF 
ISFERM(ISTATE) = ISPINF 

54 CONTINUE 
52 CONTINUE 
50 CONTINUE 

ENDIF . 

_- - 

IF ((IONEPHOT .Eq. 11 .AND. (IUVFERR .Eq. 1)) THEN 

C************DIAGNOSTICS 
C WRITE (16,960) ALAMBDA** 
C960 FORMAT (' '/' 1 FERMION. PHOTON STATES LAMBDA**2 =',F8.3/ 
c f ' KPLUSP KPLUSF KXP KYP KXF KYF INVMASS'/ 
c $ ' ,,,-----------,,-------------------------, 1 
c************ 

C FIGURE OUT WHAT VALUES OF PHOTON KPLUS TO RUN OVER. 
IFIRSTKP = 2 
IF (IBC .Eq. 1) THEN 

ILASTKP = KPLUSTOT - 1 
ELSEIF (IBC .Eq. 2) THEN 

ILASTKP = KPLUSTOT - 2 
ENDIF 

C 

DO 60 KPLUSP=IFIRSTKP,ILASTKP,2 
KPLUSF = KPLUSTOT-KPLUSP 
XP = DFLOAT(Kl'LUSP)/DFLOAT(KPLUSTOT) 
XF = DFLOAT(KPLUSF)/DFLOAT(KPLUSTOT) 

ONLY CONTINUE IF SUM(RASS**P/X) .LE. LAMBDA**IL. 
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AINVMASS = RFERMASS**I/XP 

C************DIAGNOSTICS 
C WRITE (16,961) KPLUSP,KPLUSF,AINVMASS 
C961 Fofuim (3X,I4,3X,I4,2iX,F8.3) 
c************ 

IF (AINVMASS .GT. ALAKRDA**2+SRALL) GOT0 60 

C FIGURE OUT WHAT LARGEST ALLOWED FERRION KX, KY IS. 
ARGUMENT = XF*ALiMEiDA**2 .- RFERMASS**2 ‘- - e 

- IF (ARGUMENT .LT. SHALL) THEN 
KPFHAX=O 

ELSE 
KPFMAX = INT(ALPERP/PI*DSqRT(ARGURENT) + SMALL) 

ENDIF 

DO 62 KW=-KPFMAX,KPFMAX 
DO 62 KYF=-KPFHAX,KPFMAX 

KxP=-KxF 
KYP * -KYF 
AKPpsq = (PI/ALPERP)**2*(DFLOAT(KxP**2) + DFLOAT(KYP**2)) 

C REMOVE PHOTONS WITH INYRASS**2 .LT. EPSILON. 
IF ((AKPPSq + RPHORASS**2)/xP .LT. EPSILON-SMALL) GOT0 62 

C KEEP STATE IF INVRASS**2 .LE. LAMRDA**2. 
AINVMASS = (AKPPSq + RFERRASS**2)/xF 

C************DIAGNOSTICS 
C wimc (16,952) KXP,KY~,K~F,KYF,AINYRASS 
C952 Forum (15~,I4,1~,14,1x,I4,1x,I4,1x,F8.3) 
c************ 

IF (AINVMASS .GT. ALAMRDA**2+SKALL) GOT0 62 

IF (IFERRUP .Eq. 0) IFIRSTS=-1 
IF (IFERMUP .Eq. 1) IFIRSTS=+ 
DO 64 ISPINP=-1,1,2 
DO 64 ISPINF=IFIRSTS,1,2 

ISTATE = ISTATE + 1 
IF (ISTATE .GT. NSIZE) THEN 

TOORANY = .TRUE. 
RETURN 

ENDIF 
NPHOT(ISTATE) = 1 
NFERR(ISTATE) = 1 
NAFER(ISTATK) = 0 
KPHOT(ISTATE) = KPLUSP 
KxPHOT(ISTATE) = KXP 
KYPHOT(ISTATE) = KYP 
ISPHOT(ISTATE) = ISPINP 
KFERR(ISTATE) = KPLUSF- 
KxFERR(ISTATE) = KXF 
KYFERR(ISTATE) = KYF 
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ISFERR(ISTATE) = ISPINF 
64 CONTINUE 
62 CONTINUE 
60 CONTINUE 

ENDIF 

NSTATES = ISTATE 

C END OF GENERATING STATES FOR ICHARGE = -1. 
ENDIF 

-RETURN 
END 

SUBROUTINE VARWF(REALWF,AIRWF,NSIZE,NSIZEO,NSTATES,NSTATEOP, 

: 
ALPHAG,KPLUSTOT,ICHARGE,ALPERP, 
PHOTMASS,FERRMASS,IFERMUP,NOAFERI, 

f PARAl,PARA2,PARA3,PARAI,PARAS, 

: 
NPHOT,NFERM,NAFER, 
KPHOT,KKPHOT,KYPHOT,ISPHOT, 

$ KFERR,KKFERR,KYFERR,ISFERR, 

: 
KAFER,KXAFER,KYAFER,ISAFER, 
REALHlL,REALHlT,AIMHlT,TERPWF) 

C--------------------------------------------------------- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

.C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

7: 
C 
C 
C 
C 

THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION 
FOR THE INPUTTED FOCK STATES. 

OUTPUT VARIABLES: 
REALWF REAL PART OF NORMALIZED POCK STATE WAVE FUNCTIONS. 

AIMWF IMAGINARY PART OF NORMALIZED FOCK STATE WAVE FUNCTIONS. 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 

NSIZEO ARRAY DIMENSION OF TEMPWF AS DEFINED IN CALLING ROUTINE 
IT SHOULD BE GREATER THAN OR EDUAL TO NSTATEOP. 

NSTATES NUMBER OF FOCK STATES. 

NSTATEOP NUMBER OF FOCK STATES WITH NO PHOTONS. 

ALPHAG VALUE OF COUPLING CONSTANT (=G**2/4PI). 

KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

ICHARGE TOTAL CHARGE. 

ALPERP SIZE OF KPERP GRID. 
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C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

‘C 
C 
C 
C 
C 
C 

PHOTMASS 

FERRRASS 

IFERRUP 

NOAFERI 

PARAl, 
PARAZ, 
PARA3, 
PARA4, 
PARAS 

NPHOT, 
NFERM, 
NAFER 

KPHOT, 
KXPHOT, 
KYPHOT, 
ISPHOT 

KFERM, 
KXFERM, 
KYFERR, 
ISFERR 

KAFER, 
KXAFER, 
KYAFER, 
ISAFER 

TEMPWF 

REALHIL, 
REALHIT, 
AIHHlT 

PHOTON MASS IN LAGRANGIAN. 

FERRION MASS IN LAGRANGIAN. 

FERMIONS, ANTI-FERRIONG ALL HAVE SPIN UP. 

NO INTERACTIONS WITH ANTI-FERRION. 

VARIATIONAL PARAMETERS (PARAI, PARAS NOT USED). 
r- - e 

W PHOTONS, FERMIONS, ANTI-FERRIONS IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF PHOTON IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF ANTI-FERMION IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

WORKING ARRAY OF DIMENSION NSIZEO. 

WORKING ARRAYS OF DIMENSION NSIZE. 

USAGE NOTES: 

______________------------------------------------------- 

1) FERMION CHARGE IS ASSURED TO BE -1. 
2) MASSES ARE IN UNITS OF ELECMASS. 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IRPLICIT INTEGER (I-N) 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
3) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

DIMENSION REALWF(NSIZE),AIRWF(NSIZE), 
$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(NSIZE),KXPHOT(NSIZE),KYPHOT(NSIZE),ISPHOT(NSIZE), 
$ KFERR(NSIZE),KXFERM(NSIZE),KYFERR(NSIZE),ISFERM(NSIZE), 
$ KAFER(NSIZE),KXAFER(NSIZE),KYAFER(NSIZE),ISAFER(NSIZE) 
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C --------------------------------------------------------- 
C FOLLOWING NEEDED FOR V'ECTGRIZATION. 
C --------------------------------------------------------- 

DIMENSION REALHlL(NSIZE),REALHlT(NSIZE).AIMHlT(NSIZE), 
$ TEMPWF(NSIZE0) 

PI = 3.141592653589793Do 
ALPERP2 =ALPERP**2 
PHOTMAS2 = PHOTMASS**2 
FERMMAS2 = FERMMASS**P 
PERPFACT = PI**2/ALPERP2 r- - 
AMSqARED - FERMMAS2*(2.ODo - .PS*ALPHAG**2)**2 

C --------------------------------------------------------- 
C INITIALIZE TO ZERO. 
C--------------------------------------------------------- 

DO 50 ISTATE = 1,NSTATES 
REALWF(ISTATE) = O.ODo 
AIMWF(ISTATE) = O.ODo 

50 CONTINUE 

C --------------------------------------------------------- 
C PMINUS-IN = P-MINUS OF WHOLE SYSTEM. 
C--------------------------------------------------------- 

IF (ICHARGE .Eq. 0) THEN 
AKMINUSI = AMSqARED/DFLOAT(KPLUSTOT) 

ENDIF 
IF (ICHARGE .Eq. -1) THEN 

AKMINUSI = FERMMAS2/DFLOAT(KPLUSTOT) 
ENDIF 

C WORK OUT WAVE FUNC FOR STATE8 WITH 0 PHOTONS. 
C ______________------------------------------------------- 

IF (ICHARGE .Eq. 0) THEN 
DO 100 ISTATE = l,NSTATEOP 

REALWF(ISTATE) = FFBARWF(KPLUSTOT,ALPHAG, 

: 
PERPFACT,FERMMAS2,AMSqARED,PARAl,IFERMUP,' 
KFERM(ISTATE),KZFERM(ISTATE),KYFERM(ISTATE), 

8 ISFERM(ISTATE),ISAFER(ISTATE)) 
AIMWF(ISTATE) = O.ODo 
TEMFWF(ISTATE) = REALWF(ISTATE) 

100 CONTINUE 
ENDIF 
IF (ICHARGE .Eq. -1) THEN 
DO 2oo ISTATE = 1,NSTATEOP 

REALWF(ISTATE) = FERMWF(KPLUSTOT,KFERM(ISTATE), 
$ KKFERM(ISTATE),KYFERM(ISTATE),ISFERM(ISTATE)) 

AIMWF(ISTATE) = O.ODO 
TEMPWF(ISTATE) = REALWF(ISTATE) 

-200 CONTINUE 
ENDIF 

C --------------------------------------------------------- 
C WORK OUT WAVE FUNC FOR STATES WITH 1 PHOTON. 
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C DO THIS BY LOOPING OVER STATES WITH 0 PHOTONS 
C AND FINDING NON-ZERO MATRIX ELEMENTS. 
C---------------------------------------------------------~- 
C--------------------------------------------------------- 
C LOOP OVER 1 PAIR, 0 PHOTON STATES. 
C--------------------------------------------------------- 

DO 110 INSTATE = 1,NSTATEOP 
IF (REALWF(INSTATE) .Eq. o.ow) GOTO ilo 

C -------------_------------------------------------------- 
C LOOP OVER 1 PAIR, 1 PHOTON STATES. ,- - 
c - --------------------------------------------------------- 

-C INITIALIZE TO ZERO. 
DO 120 IOUTSTAT = NSTATEOP+l,NSTATES 

REALHlL(IOUTSTAT) = O.ODO 
REALHlT(IOUTSTAT) = O.ODO 
AIMHlT(IOUTSTAT) = O.ODO 

120 CONTINUE 

C --------------------------------------------------------- 
C CALCULATE DIAGRAMS 1*,4*,6*. 
C --------------------------------------------------------- 

C 
C 
C 

C 

C 

: 

: 
$ 

: 

: 
- $ 

C 

_. 

DO 140 IOUTSTAT - NSTATEOP+l,NSTATES 

CHECK IF SPECTATORS MATCH up. 
NOTE THAT KAFER, KXAFER, KYAFER, ISAFER ARE ALL 0 
FOR ICHARGE = -1. 
IF (KAFER(INsTATE) .NE. KA.FER(IouTSTAT)) GOTO 140 
IF (KXAFER(INSTATE) .NE. KXAJ~ER(IOUTSTAT)) GOTO 140 
IF (KYAFER(INSTATE) .NE. KYA.FER(I~UTSTAT)) GOTO 140 
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 140 

HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 

DIAGRAM 1* 
IF ((ISPHOT(IOUTSTAT) .Eq. +l) .AND. 

(ISFERM(IOUTSTAT) .Eq. -1) .AND. 
(ISFERM(INSTATE) .Eq. +l)) THEN 

REALH~L(IOUTSTAT) = REALHIL(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( l.ODO/DFLOAT(KFERM(IOUTSTAT)) 
-l.ODO/DFLOAT(KFERM(INSTATE))) 

ENDIF 

IF ((ISPHOT(IOUT8TAT) .Eq. -1) .AND. 
(ISFERM(IOUTSTAT) .Eq. +l) .AND. 
(ISFERM(INSTATE) .Eq. -1)) THEN 

REALHlL(IOUTSTAT) = REALHlL(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( l.ODO/DFLOAT(KFERM(IOUTSTAT)) 
-l.ODO/DFLOAT(KFERM(INSTATE))) 

ENDIF 

DIAGRAM 4* 
IF ((ISPHOT(IOUTSTAT) .Eq. +l) .AND. 

145 



: 

t 
t 
$ 

: 
$ 

: 

: 
$ 

: 
$ 

C 

: 

8 

: 

: 
$ 

: 
$ 

C 
140 

(ISFERM(IOUTSTAT) .Eq. tl) .AND. 
(ISFERM(INSTATE) .Eq. +l)) THEN 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFL~AT(KXPH~T(I~~TSTAT))/DFL~AT(KPHOT(I~UTSTAT)) 
+DFLOAT(KKFERM(IOUTSTAT))/DFLOAT(KFERM(IOUTSTAT))) 

AIMHlT(IOUTSTAT) - AIMHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KYPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFL~AT(~ERM(IOUTSTAT))/DFLOAT(KFHRM(IOUTS_TAT))) 

ENDIF 

IF ((ISPHOT(IOUTSTAT) .Eq. -1) .AND. 
(ISFERM(IOUTSTAT) .Eq. -1) .AND. 
(ISFERM(INSTATE) .Eq. -1)) THEN 

REALH~T(IOUTSTAT) = REALH~T(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KKPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFLOAT(KXFERM(IOUTSTAT))/DFLOAT(KFERM(IOUTSTAT))) 

AIMHlT(IOUTSTAT) = AIMHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KYPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFLOAT(KTFERM(IOUTSTAT))/DFLOAT(KFERM(IOUTSTAT))) 

ENDIF 

DIAGRAM 5: 
IF ((ISPHOT(IOUTSTAT) .Eq. -1) .AND. 

(ISFERM(IOUTSTAT) .Eq. tl) .AND. 
(ISFERM(INSTATE) .Eq. tl)) THEN 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) 
+ l.OW/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KKPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFLOAT(KKFERM(INSTATE))/DFLOAT(KFERM(INSTATE))) 

AIMHlT(IOUTSTAT) = AIMHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KYPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFLOAT(KYFERM(INSTATE))/DFLOAT(KFERM(INSTATE))) 

ENDIF 

IF ((IsPH~T(I~UTSTAT) .Eq. tl) .AND. 
(ISFERM(IOUTSTAT) .Eq. -1) .AND. 
(ISFERM(INSTATE) .Eq. -1)) THEN 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFLOAT(KXPH~T(I~UTSTAT))/DFL~AT(KPH~T(I~UTSTAT)) 
+DFLOAT(KXFERM(INSTATE))/DFLOAT(KFERM(INSTATE))) 

AIMHlT(IOUTSTAT) - AIMHlT(IOUTSTAT) 
+ l.OW/DSqRT(DFLOAT(KPHOT(IOUT8TAT))) 

*( DFLOAT(KYPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFLOAT(KYFERM(INSTATE))/DFLOAT(KFERM(INSTATE))) 

ENDIF 

END OF DIAGRAMS 1*,4*,6*. 
CONTINUE 
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C --------------------------------------------------------- 
C CALCULATE DIAGRAMS 2*,6*,7*. ONLY HAVE THESE IF CHARGE = 0. 

C 

C 

C 

$ 
t 

: 
$ 

: 

: 
$ 

C 

: 

: 
$ 

: 
t 

: 

t 

: 

IF (ICHARGE .Eq. -1) GOTO 165 
IF (NOAFERI .Eq. 1) GOT0 166 
DO 160 IOUTSTAT = NSTATEOP+l,NSTATES 

CHECK IF SPECTATORS MATCH up. 
IF (KFERR(INSTATE) .NE. KFERM(IOUTSTAT)) GOT0 160 
IF (KXFERR(INSTATE) .NE. KXFERM(IOUTSTAT)) GOT0 160 
IF (KYFERN(INSTATE) .NE. KYFERM(IOUTSTAT)) GOTU 160" 
JF (ISFERN(INSTATE) .NE. ISFERR(IOUTSTAT)) GOT0 160 

HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 

DIAGRAR 2* 
IF ((ISPHOT(IOUTSTAT) .Eq. +l) .AND. 

(ISA.FER(IOUTSTAT) .Eq. -1) .m. 
(ISAFER(INSTATE) .Eq. ti)) THEN 

REALHIL(IOUTSTAT) = REALHIL(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-~.oDo/DFLoAT(K~ER(I~~T~TAT)) 
+l.ODG/DFLOAT(KAFER(INSTATE))) 

ENDIF 

IF ((ISPHOT(IOUTSTAT) .Eq. -1) .Am. 
(ISAFER(IOUTSTAT) .Eq. +l) .AND. 
(ISAFER(INSTATE) .Eq. -1)) THEN 

REALHlL(IOUTSTAT) = REALHlL(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-~.oDo/DFLoAT(K~ER(I~UTSTAT)) 
+l.ODO/DFLOAT(KAFER(INSTATE))) 

ENDIF 

DIAGRAM 6* 
IF ((ISPHOT(IOUTSTAT) .Eq. +l) .AND. 

(ISAFER(IOUTSTAT) .Eq. -1) .AND. 
(ISAFER(INSTATE) .Eq. -1)) mm 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KXPHOT(IOUTSTAT))/DFLOAT(KPHOT(IOUTSTAT)) 
-DFLOAT(KXAFER(INSTATE))/DFLOAT(KAFER(INSTATE))) 

AIMHlT(IOUTSTAT) = AIMHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

~(-DFLOAT(KYPH~T(I~UTSTAT))/DFL~AT(~H~T(I~UTSTAT)) 
+DFLOAT(KYAFER(INSTATE))/DFLOAT(KAFER(INSTATE))) 

ENDIF 

IF ((ISPHOT(IOUTSTAT) .Eq. -1) .AND. 
(ISAFER(IOUTSTAT) .Eq. +i) .m. 
(ISAFER(INSTATE) .Eq. +1)) THEN 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFLOAT(KXPHOT(IOUTSTAT))/DFL~AT(KPHOT(IOUTSTAT)) 
+DFLOAT(KXAFER(INSTATE))/DFLOAT(KAFER(INSTATE))) 
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C 

C END OF DIAGRAMS 2*,6*,7*. 
160 CONTINUE 
165 CONTINUE 

AIMHlT(IOUTSTAT) - AIMHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFL~AT(KV~H~T(IOUTSTAT))/DFL~AT(K~H~T(IOUTSTAT)) 
+DFLOAT(KYAFER(INSTATE))/DFLOAT(KAFER(INSTATE))) 

ENDIF 

DIAGRAM 7* 
IF ((ISPHOT(IOUTSTAT) .Eq. -I) .AND. 

(ISAFER(IOUTSTAT) .Eq. -1) .AND. 
(ISAPER(INSTA~~Z) .Eq. -1)) THEN 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) r- - 6 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFL~AT(KXPH~T(IOUTSTAT))/DFL~AT(KPHOT(I~~T~TAT)) 
+DFLOAT(KKAFER(IOUTSTAT))/DFLOAT(KAFER(IOUTSTAT))) 

AIMHlT(IOUTSTAT) = AIMHlT(IOUTSTAT) 
+ l.ODO/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFL~AT(KTPHOT(IOUTSTAT))/DFL~AT(KPHOT(IOUTSTAT)) 
+DFLOAT(KYAFER(IOUTSTAT))/DFLOAT(KAFER(IOUTSTAT))) 

ENDIF 

IF ((ISPH~T(IOUTSTAT) .Eq. +I) .AND. 
(ISAFER(IOUTSTAT) .Eq. +l) .AND. 
(ISAFER(INSTATE) .Eq. +1)) THEN 

REALHlT(IOUTSTAT) = REALHlT(IOUTSTAT) 
+ l.ODG/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*( DFLOAT(KKPHOT(IOUTSTAT))/DFLOAT(KpHOT(IOUTSTAT)) 
-DFLOAT(KXAFER(IOUTSTAT))/DFLOAT(KAFER(IOUTSTAT))) 

AIMHlT(IOUTSTAT) = AIMHlT(IOUTSTAT) 
+ l.ODG/DSqRT(DFLOAT(KPHOT(IOUTSTAT))) 

*(-DFL~ATWPHOT(IOUTSTAT))/DFL~AT(K~H~T(IOUTSTAT)) 
+DFLOAT(KYAFER(IOUTSTAT))/DFLOAT(KAFER(IOUTSTAT))) 

ENDIF 

C --------------------------------------------------------- 
C SUM CONTRIBUTIONS TO 1 PHOTON VARIATIONAL WAVE FUNC. 
c--------------------------------------------------------- 

IF (ICHARGE .Eq. 0) THEN 
DO 180 IOUTSTAT = NSTATEOP+l,NSTATES 

IF ((REALHIL(I~UTSTAT) .NE. 0.0~0) .OR. 

f 
(REALHIT(IouTsTAT) .NE. 0.0~0) .OR. 
(AIMH~T(IoUTSTAT) .NE. O.ODO)) THEN 

REALHlL(IOUTSTAT) = REALHlL(IOUTSTAT)*FERMMASS/ALPERP 
REALHlT(IOUTSTAT) = REALHlT(IOUT8TAT)*PI/ALPERPP 
AIMHlT(IOUTSTAT) = AINHlT(IOUTSTAT)*PI/ALPERP2 

REALEL = D~~RT(AL~HAG)*(REALH~L(IOUTSTAT)+REALH~T(IOUTSTAT)) 
AIMEL = DSqRT(ALPHAG)*AIMHlT(IOUTSTAT) 

AKMINUSO 
C =(PER~FACT*DFLOAT(KKPHOT(IOUTSTAT)**~ + KY~H~T(IouTSTAT)**~) 
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+PHOTMAS2)/DFLOAT(KPHOT(IOUTSTAT)) 
+(PERPFACT*DPLOAT(KXERM(IOUTSTAT)**2 + KYFERM(IOUTSTAT)**2) 

: 
+FERMMAS2>/DPLOAT(KFERM(IOUTSTAT)) 

l (PER~FACT*DFL~AT(KXAFER(IOUTSTAT)**~ + KmER(IouTsTAT)**2) 
$ +FERMMAS2)/DFLOAT(KAFER(IOUTSTAT)) 

D = PARA3*AKMINUSI - AKMINUSO 

C************DIAGNOSTICS 
C wRm (16,9l00) IOUTSTAT,INSTATE,REALEL, 
c t AIMEL,TEMPWF(INSTATE),AKMINUSI,AKMINUSO,D 
CQIOO FORMAT (' IOUTSTATE INSTATE REALEL AIMEL ', 

-c c ~ * FFBARWF AKMINUSI AKININUSO D'/218,6F9.4) 
c************ 

REAL~F(IoUTSTAT) = REALwF(I0uTsTAT) 
$ t PARAZ*REALEL*TEMPWF(INSTATE)/D 

AIMWF(IOUTSTAT) = AIMwF(IOUTSTAT) 
$ + PARA'L*AIMEL*TEMPWF(INSTATE)/D 

ENDIF 
180 CONTINUE 

ENDIF 

IF (ICWGE .Eq. -I) THEN 
DO 185 IOUTSTAT = NSTATEOP+l,NSTATES 

IF ((REALH~L(IouTsTAT) .NE. 0.0~0) .OR. 

: 
(REALHIT(IOUTSTAT) .NE. 0.0~0) .OR. 
(AIMH~T(I~uTsTAT) .NE. O.ODO)) THEN 

REALHlL(IOUTSTAT) = REALHlL(IOUTSTAT)*FERMMASS/ALPERP 
REALH~T(IOUTSTAT) = REALH~T(IOUTSTAT)*PI/AL~ER~~ 
AIMHlT(IOUTSTAT) = AIMHlT(IOUTSTAT)*PI/ALPERPZ 

REALEL = D~~RT(AL~~G)*(REALH~L(IOUTSTAT)+REALH~T(IOUTSTAT)) 
AIMEL = D~~RT(AL~HAG)*AIMH~T(IouTsTAT) 

AKMINUSO 

: 
=(PERPFACT*DFLOAT(KXHOT(IOUTSTAT)**2 + KYPHOT(IOUTSTAT)**2) 

+PHOTMAS2)/DFLOAT(KPHOT(IOUTSTAT)) 

: 
+(PERPFACT*DFLOAT(KXFERM(IOUTSTAT)**2 + KYFERM(IOUTSTAT)**2) 

+FERM~~~)/DFLoAT(KFERM(IoUTSTAT)) 

D = PARA3*AKMINUSI - AKMINUSO 

C************DIAGNOSTICS 
C wRm (l6,9l00) IOUTSTAT,INSTATE,REALEL, 
c $ AIMEL,TEMPYP(INSTATE),AKMINUSI,AKMINUSO,D 
CQIOO FORMAT (' IOUTSTATE INSTATE REALEL AIMEL ', 
c $ ' FFBARWF AKMINUSI AKIMINUSO D'/218,6F9.4) 
c************ 

rumwF(10uTsTAT) = ~L~F~IOUTSTAT) 
$ + PARAP*!EALEL*TEMlWF(INSTATE)/D 

AIWF(IOUTSTAT) = AIM~F(IOUTSTAT) 
$ + PARA2*AIMEL*TEMPwF(INSTATE)/D 
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ENDIF 
185 CONTINUE 

ENDIF 

110 CONTINUE 

C --------------------------------------------------------- 
C NORMALIZE VARIATIONAL WAVE FUNCTION. 
C--------------------------------------------------------- 

WFNORM = O.ODO 
DO 300 ISTATE = l,NS?ATES c - 
_~FNORM = WPNORM t REAL~F(ISTATE)**~ + AIMWF(ISTATE)**~ 

300 CONTINUE 
WNORM = DSDRT(WFNORM) 
DO 301 ISTATE = 1,NSTATES 

REALVF(ISTATE) = REALwF(IsTATE)/wFNORM 
AIMVF(ISTATE) = AIMWF(ISTATE)/WFNORM 

301 CONTINUE 

RETURN 
END 

FUNCTION FFBARWF(KPLUSTOT,ALPHAG,PERPFACT,FERMMAS2,AMSQARED, 
$ PARAl,IFERMUP,KFERM,KXFERM,KYFERM,ISFERM,ISAFER) 

C--------------------------------------------------------- 
C THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION 
C FOR THE INPUTTED FFBAR STATE. 
C 
C MASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 
C --------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

AKPERPSQ = PERPFACT*(DFLOAT(KXFERM)**2+DFLOAT(KYFERM)**2) 
X = DFLOAT(KFERM)/DFLOAT(KPLUSTOT) 

IF (IFERMUP .EQ. 0) THEN 
IF ((IsFERM .Eq. +l) .AND. (ISAFER .Eq. -1)) THEN 

FFBARWF = +l.ODO/ 
$ (PARAl*AMSQARED - (AKPERPSQ+FERMMAS2)/(X*(l.ODO-X)))**2 

ELSEIF ((ISFERM .Eq. -I) .AND. (ISAFER .Eq. ti)) THEN 
FFBARWF = -l.ODO/ 

$ (PARAl*A.MSGARED - (AKPERPSQ+FERMMASP)/(X*(l.ODO-X)))**2 
ELSE 

FFBARWF = O.ODO 
ENDIF 

ENDIF 
IF ~FERMUP .Eq. 1) THEN 

- FFBARWF = +l.ODG/ 
$ (PARAl*AMSGARED - Wl'ERPSQ+FERMMASZ)/(X*(l.ODO-X)))**2 

ENDIF 

RETURN 
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END 

FUNCTION FERMWF(KPLUSTOT,KFERM,KXFERM,KYFERM,ISFERMj- 
C--------------------------------------------------------- 
C THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION 
C FOR THE INPUTTED FERMION STATE. 
C 
C MASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 
c------------------------------------------------------- - 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
iMPLICIT INTEGER (I-N) 

FERMWF = O.ODG 
IF ((KFERM .Eq. KPLUSTOT) .AND. 

: 
(KXFERM .Eq. 0) .AND. 
(KYFERM .Eq. 0) .AND. 

$ (ISFERM .Eq. 1)) THEN 
FERMWF = l.ODO 

ENDIF 

RETURN 
END 

SUBROUTINE HONR(REMSqHO,NSIZE,NSTATES,REALWF,AIMWF, 

: 
ALPERP,PHOTMASS,FERMMASS, 
NPHOT,NFERM,NAFER, 

: 
KPHOT,KXPHOT,KYPHOT, 
KFERM,KXT'ERM,KYFERM, 

$ KAFER,KXAFER,KYAFER) 
C --------------------------------------------------------- 
C 
C 
C 
C 
C 
C 

‘C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

.c 
C 
C 
C 
C 

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN 
BETWEEN THE INPUTTED VARIATIONAL STATES. 

OUTPUT VARIABLES: 
REMSqHO CONTRIBUTION TO MATRIX ELEMENT FROM HO. 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NPERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 

NSTATES NUMBER OF FOCK STATES. 

REALWF REAL PART OF POCK STATE WAVE FUNCTIONS. 

AIMUF IMAGINARY PART OF POCK STATE WAVE FUNCTIONS. 

ALPERP SIZE OF KPERP GRID. 

PHOTMASS PHOTON MASS IN LAGRANGIAN. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

_ c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FERMMASS 

NPHOT, 
NFERM, 
NAFER 

KPHOT, 
KXPHOT, 
KY'PHOT 

KFERM, 
KXFERM, 
KYFERM 

KAFER, 
KXAFER, 
KYAFER 

FERMION MASS IN LAGRANGIAN. 

# PHOTONS, FERMIONS, ANTI-FERMIONS IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY OF PHOTON IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

c - 6 

KPLUS, KX, KY OF FERMION IN THE FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY OF ANTI-FERMION IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

USAGE NOTES: 
I) MASSES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
2) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C ______________------------------------------------------- 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALWF(NSIZE),AIMWF(NSIZE), 
$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(N8IZE),KXPHOT(NSIZE),KYFHOT(NSIZE), 
$ KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE), 
$ KAFER(NSIZE),KXAFER(NSIZE),KYAFER(NSIZE) 

PI = 3.141592653589793DG 
PHOTMASZ = PHOTMASS**2 
FERMMAS2 = FERMMASS**2 
PERPFACT = PI**2/ALFERP**2 

C--------------------------------------------------------- 
C INITIALIZE TO ZERO. 
C --------------------------------------------------------- 

REMSQHO = O.ODO 

C ______________------------------------------------------- 
C LOOP OVER DIAGONAL MATRIX ELEMENTS. 
C -------------_------------------------------------------- 

DO 10 ISTATE = 1,NSTATES 

C INITIALIZE TO ZERO. 
REALHO = O.ODO 

C--------------------------------------------------------- 
C CALCULATE HO. 
C--------------------------------------------------------- 
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IF (NPHOT(ISTATE) .Eq. I) THEN 
AKPERPSG = PERPFACT*DFLOAT(KXPHOT(ISTATE)**2+KYPHOT(ISTATE)**2) 
REALHO = REALHO 

a + (PHOTMASZ + AKPERPSQ)/DFLOAT(KPHOT(ISTATH)) 
ENDIF 

AKPERPSQ = PERPFACT*DFLOAT(KXFERM(ISTATE)**P+KYFERM(ISTATE)**2) 
REALHO = REALHO 

$ + (FERMMAS2 + AKPERPSQ)/DFLOAT(KFERM(ISTATE)) 

IF (NAFER(ISTATE) .Eq. I) THEN 7- - e 
_ AKPERPSG = PERPFACT*DFLOAT(KXAFER(ISTATE)**2+KYAFER(ISTATE)**2) 

REALHO = REALHO 
$ + (FERMMASZ + AKPERPSQ)/DFLOAT(KAFER(ISTATE)) 

ENDIF 

C************DIAGNOSTICS 
C WRITE (16,910) ISTATE,REALHO 
CQIO FORMAT (' ISTATE RF&HO =',17,Fll.4) 
c************ 

REMSQHO = REMSQHO 
$ +RF~.H~*(REALWF(ISTATE)**~ + A~F(IsTATE)**~) 

C FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE. 
10 CONTINUE 

RETURN 
END 

SUBROUTINE HlNR(REMSqHlL,REMSQHlT, 

: 
NSIZE,NSTATES,NSTATEOP,REALWF,AIMWF, 
ALPHAG,ICHARGE,ALPERP,FERMMASS,NOAFERI, 

$ NPHOT,NFERM,NAFER, 

r 
KPHOT,KXPHOT,KYPHOT,ISPHOT, 
KFERM,KXFERM,KYFERM,ISFERM, 

: 
KAFER,KXAFER,KYAFER,ISAFER, 
REALHlL,REALHlT,AIMHlT) 

'C--------------------------------------------------------- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

4 
C 
C 
C 
C 

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN 
BETWEEN THE INPUTTED VARIATIONAL STATES. 

OUTPUT VARIABLES: 
REMSQHIL CONTRIBUTION TO MATRIX ELEMENT FROM LONG. VERTEX. 

REMSQHIT CONTRIBUTION TO MATRIX ELEMENT FROM TRANS. VERTEX. 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

‘C 
C 
C 
C 
C 
C 
C 
C 

NSTATES 

NSTATEOP 

REALWF 

AIMWF 

ALPHAG 

ICHARGE 

-iLPiRP 

FERMMASS 

NOAFERI 

NPHOT, 
NFERM, 
NAFER 

KPHOT, 
KXPHOT, 
KYPHOT, 
ISPHOT 

KFERM, 
KXFERM, 
KYFERM, 
ISFERM 

KAFER, 
KXAFER, 
KYAFER, 
ISAFER 

REALHIL, 
REALHIT, 
AIMHIT 

NUMBER OF POCK STATES. 

NUMBER OF POCK STATES WITH NO PHOTONS. 

REAL PART OF FOCK STATE WAVE FUNCTIONS. 

IMAGINARY PART OF POCK STATE WAVE FUNCTIONS. 

VALUE OF COUPLING CONSTANT (=G**2/4PI). 

TOTAL CHARGE. r- - -. 

SIZE OF KPERP GRID. 

FERMION MASS IN LAGRANGIAN. 

NO INTERACTIONS WITH ANTI-FERMION. 

# PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF PHOTON IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF ANTI-FERMION IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

WORKING ARRAYS OF DIMENSION NSIZE. 

USAGE NOTES: 
1) FERMION CHARGE IS ASSUMED TO BE -1. 
2) MASSES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
3) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C--------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALWF(NSIZE),AIMWF(NSIZE), 
$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(NSIZE),KXPHOT(NSIZE),KYPHOT(NSIZE),ISPHOT(NSIZE), 
$ KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE),ISFERM(NSIZE), 
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$ KAFER(NSIZE),KXAFER(NSIZE) ,KYAPER(NSIZE),ISAFER(NSIZE) 

C ____________________------------------------------------- 
C FOLLOWING NEEDED FOR VECTORIZATION. 
C- __________---------------------------------------------- 

DIMENSION 
$ REALHlL(NSIZE),REALH1T(NSIZE),AINHlT(NSIZE) 

PI = 3.141692663589793DO 
ALPERP2 = ALPERP**2 

C- _-___________-__-__--------------------------------~---- 
C INITIALIZE TO ZERO. 

RENSQIilL = O.ODO 
RENSQHlT = O.OW 

C---- ----------------------------------------------------- 

C LOOP OVER OUTGOING POCK STATES. 
C- ____________-------------------------------------------- 

DO 20 IOUTSTAT = 1,NSTATEOP 
IF ((REALWF(IOUTSTAT) .EQ. 0.0~0) .AND. 

$ ( AIMWF(IOUTSTAT) .EQ. O.ODO)) GOT0 20 

C --------------------------------------------------------- 
C LOOP OVER INCOMING POCK STATES. 
C ASSUME HAMILTONIAN IS HERMITIAN, SO ONLY NEED TO CONSIDER 
C INSTATE .GT. IOUTSTAT. 
C--------------------------------------------------------- 
C INITIALIZE TO ZERO. 

DO 30 INSTATE = NSTATEOP+l,NSTATES 
RRALHlL(INSTATE) = O.ODO 
RRALHlT(INSTATE) = O.ODO 
AINHlT(INSTATE) = O.ODO 

30 CONTINUE 

C _________------------------------------------------------ 
C CALCULATE DIAGRAMS 1,4,6. 
C ------------------------------------------------- -------- 

DO 100 INSTATE = NSTATEOP+l,NSTATES 
IF ((RRALWF(INSTATE) .EQ. O.ODO) .AND. 

t ( AIMWF(INSTATE) .Eq. O.ODO)) GOT0 100 

C CHECK IF SPECTATORS MATCH up. 
C NOTE THAT KAFER, KXAFER, KYAFER, ISAFER ARE ALL 0 
C FOR ICHARGE = -1. 

IF (KAFER(INSTATE) .NE. KAFER(IOUTSTAT)) GOTO loo 
IF (KXAFER(INSTATE) .NE. KXAFER(IOUTSTAT)) GoTo loo 
IF (KYAFER(INsTATE) .NE. KYAFER(IOUTSTAT)) GOTO loo 
IF (ISAFWINSTATE) .NE. IsAFER(I~UTSTAT)) GOTO loo 

C 

C 

HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 

DIAGRAM 1 
IF ((IsPHoT(INSTATE) .EG. +l) .AND. 
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t 
(ISFERM(INSTATE) .EQ. -1) .AND. 
(ISFERN(IOUTSTAT) .EQ. +1)) THEN 

REALHlL(INSTATE) = RF.ALHlL(INSTATE) 
$ + l.OW/DSQRT(DFLOAT(KPHOT(INSTA~))) 
$ *( l.ODO/DFLOAT(KFERM(INSTATE)) 
$ -l.ODO/DFLOAT(KFERM(IOUTSTAT))) 

ENDIF 

IF ((ISPHOT(INSTATE) .Eq. -1) .AND. 

: 
(ISFERM(INSTATE) .Rq. +1) .AND. 
(ISFERR(IOUTSTAT) .Eq. -1)) THEN 

REALHlL(INSTATE) = REALHlL(INSTATE) 

: 
+ l.ODO/DSQRT(DFLOAT(KPHOT(INSTATE))) 

*( l.ODO/DFLOAT(KFERM(INSTATE)) 
$ -l.ODO/DFLOAT(KFERM(IOUTSTAT))) 

ENDIF 

: 

$ 

: 

DIAGRAM 4 
IF ((IsPH~T(INSTATE) .EQ. +i) .AND. 

(IsFERM(INSTATE) .Eq. +1) .AND. 
(ISFERM(IOUTSTAT) .Eq. +1)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
+ l.ODO/DSqRT(DFLOAT(~HOT(INSTATE))) 

*(-DFLOAT(KIPHOT(INSTATE))/DFL~AT(K~H~T(INSTATE)) 
+DFLOAT(KJU'ERM(INSTATE))/DFLOAT(KFERM(INSTATE))) 

AINHlT(INSTATE) = AINHlT(INSTATE) 
+ l.ODO/DSQRT(DFLOAT(~HOT(INSTATE))) 

*(-DFLOAT(KYPHOT(INSTATE))/DFLOAT(K~HOT(INSTATE)) 
+DFLOAT(KTFERM(INSTATE))/DFLOAT(KFERR(INSTATR))) 

ENDIF 

IF ((IsPHoT(INsTATE) .Rq. -1) .AND. 

: 
(IsFW(INSTATE) .Eq. -1) mm. 
(I~FERR(I~UT~TAT) .Erj. -1)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
f + l.ODO/DSQRT(DFLOAT(~HOT(INSTATF.))) 

: 
*( DFLOAT(KlPHOT(INSTATE))/DFLOAT(KPHOT(INSTATE)) 

-DFLOAT(KKFERM(INSTATE))/DFLOAT(KFERM(INSTATR))) 
AINHlT(INSTATE) = AINHlT(INSTATE) 

: 
+ l.ODO/DSQRT(DFLOAT(~HOT(INSTATE))) 

*(-DFLOAT(KYPHOT(INSTATE))/DFLOAT(KpHOT(INSTATR)) 
$ +DFLOAT(KYFERM(INSTATR))/DFLOAT(KFERN(INSTATR))) 

ENDIF 

C 

$ 
$ 

: 
$ 

: 

DIAGRAM 6 
IF ((ISPHOT(INSTATE) .Eq. -1) .AND. 

(ISFERR(INSTATE) .Eq. +1) .AND. 
(ISFERR(IOUTSTAT) .EQ. +1)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
+ l.ODO/DSqRT(DFLOAT(~HOT(INSTATE))) 

*( DFLOAT(KlPHOT(INSTATE))/DFLOAT(KPHOT(INSTATK)) 
-DFLOAT(KXPERM(IOUTSTAT))/DFLOAT(KFERM(IOUTSTAT))) 

AINHlT(INSTATE) = AINHlT(INSTATE) 
+ l.ODO/DSqRT(DFLOAT(~HOT(IN8TATE))) 

*(-DFLOAT(KYPHOT (INSTATE))/DFLOAT(KPHOT(INSTATE)) 
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8 +DFLOAT(KYFERM(IOUTSTAT))/DFLOAT(KFERM(IOUTSTAT))) 
ENDIF 

t 
$ 

: 
$ 

IF ((ISPH~T(INSTATE) .Eq. +l) .AND. 
(ISFERR(INSTATE) .Eq. -1) .AND. 
(ISFERM(IOUTSTAT) .Eq. -1)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
+ l.OW/DSQRT(DFLOAT(KPHOT(INSTATE))) 

*(-DFLOAT(KXPHOT(INSTATE))/DFL~AT(K~H~T(INSTATE~~ 
+DFLOAT(KXFERM(IOUTSTAT))/DFLOAT~KFERM(IOuTSTAT~~~ 

AINHlT(INSTATE) = AINHlT(INSTATE) 
+ l.ODO/DSQRT(DFLOAT(KPHOT(INSTATE))) 

a(-DFLoAT(KYPHOT(INSTATE))/DFL~AT(~H~T(IN~TATE)) 
+DFLOAT(KYFERN(IOUTSTAT))/DFLOAT(KFERM(IOUTSTAT))) 

ENDIF 

C END OF DIAGRAMS 1.4,s. 
100 CONTINUE 

C CALCULATE DIAGRAMS 2.6.7. ONLY HAVE THESE IF ICHARGE-0. 
C--------------------------------------------------------- 

IF (ICHARGE .EQ. -1) ~0T0 206 
IF (NOAFERI .EQ. 1) GOT0 206 
DO 200 INSTATE = NSTATEOP+l,NSTATES 

IF ((~WP(INSTATE) .EQ. o.ow) .AND. 
$ ( AIMWF(INSTATE) .EQ. O.ODO)) GOT0 200 

C CHECK IF SPECTATORS MATCH up. 
IF (KFERM(INSTATE) .NE. KFERM(IOUTSTAT)) GOT0 200 
IF (KXFERR(INSTATE) .NE. KXFERR(IOUTSTAT)) ~0T0 200 
IF (KYFERR(INSTATE) .NE. KYFERR(IOUTSTAT)) GOTO 200 
IF (ISFERR(INSTATE) .NE. ISFERR(IOUTSTAT)) GOTO 200 

C HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 

C DIAGRAM 2 
IF ((IsPH~T(INSTATEJ .Eq. +l) .AND. 

: 
(ISAFER(INSTATE) .Eq. -1) .AND. 
(ISAFER(IOUTSTAT) .EQ. +l)) THEN 

REALHlL(INSTATE) = REALHlL(INSTATE) 
$ + l.ODC/DSQRT(DFLOAT(KPHOT(INSTATE))) 

: 
*(-~.oDo/DFLoAT(KAFER(INSTATE)) 

+l.ODO/DFLOAT(KAFER(IOUTSTAT))) 
ENDIF 

IF ((IsPH~T(INSTATE) .EQ. -1) .AND. 

: 
(ISAFER(INSTATE) .EQ. +l) .AND. 
(IsAFER(I~UTSTAT) .Eq. -1)) THEN 

REALHlL (INSTATE) - REALHILCINSTATEE) 
t + l.ODO/DSQRT(DFLOAT(KPHOT(INSTATE))) 

: 
*(-l.ODO/DFLOAT(KAFER(INSTATE)) 

+l.ODO/DFLOAT(KA.FER(IOUTSTAT))) 
ENDIF 
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t 
t 

$ 

: 

: 
$ 

: 

: 
$ 

: 
$ 

f 
$ 

: 
$ 

: 
t 

: 

$ 

: 

$ 

: 

DIAGRAM 6 
IF ((IsPH~T(INSTATE) .EQ. +l) .AND. 

(IsAFER(INSTATE) .EQ. -1) .AND. 
(IsA.FER(IOUTSTAT) .EQ. -1)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATEE) 
+ l.ODO/DSQRT(DPLOAT(~HOT(INSTATE))) 

*( DPLOAT(KXPHOT(INSTATE))/DFLOAT(KpHoT(INsTATE~~ 
-DFLOAT(KXAFER(IOUTSTAT))/DFLOAT(KAFER(IouTsTAT))) 

AIMHlT(INSTATE) = AIMHlT(INSTAT'E) 
+ l.ODO/DSQRT(DFLOAT(~HOT(INSTATR))) 

*( DFLOAT(KYPHOT(INSTATE))/DFLOAT(~HoT(INsTATE)) 
-DFLOAT(KTAFER(IOUTSTAT))/DFLOAT(KAFER(IouTsTAT))) 

ENDIF 

IF ((IsPHOT(INSTATE) .EQ. -1) .AND. 
(ISAFER(INSTATE) .EQ. +l) .AND. 
(IsAFER(IOUTSTAT) .EQ. +l)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
+ l.ODO/DSQRT(DFLOAT(KpHOT(INSTATE))) 

*(-DFLOAT(KXPHOT(INSTATH))/DFLOAT(KPHOT(INsTATE~~ 
+DFLOAT(KXAFER(IOUTSTAT))/DFLOAT(KAFER(IouTsTAT))) 

AIMHlT(INSTATE) = AIMHlT(INSTATE) 
+ l.ODO/DSQRT(DFLOAT(KPHOT(INSTATE))) 

*( DFLOAT(KYPHOT(INSTATEE))/DFLOAT(~HoT(INsTATR)) 
-DFLOAT(IWFER(IOUTSTAT))/DFLOAT(KAFER(IouTsTAT))) 

ENDIF 

DIAGRAM 7 
IF ((ISPH~T(INSTATI~ .EQ. -1) .AND. 

(ISA.FER(INSTATE) .Eq. -1) .AND. 
(ISAFER(IOUTSTAT) .EQ. -1)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
+ l.ODO/DSQRT(DFLOAT(~HOT(INSTATE))) 

*(-DFLoAT(KXPHOT(INSTATE))/DFL~AT(KPHOT)~ 
+DFLOAT(KXAFER(INSTATR))/DFLOAT(KAFER(INSTATE))) 

AIMHlT(INSTATE) = AIMHlT(INSTATE) 
+ l.ODG/DSQRT(DFLOAT(~HOT(INSTATE))) 

*( DFLOAT(KWHOT(INSTATE))/DFLOAT(KPHOT(INSTATE)) 
-DFLOAT(KYAFER(INSTATE))/DFLOAT(KAFER(INSTATE))) 

ENDIF 

IF ((IsPHoT(INsTATE) .EQ. +l) .AND. 
(IsAFER(INsTATE) .EQ. +1) .AND. 
(ISAFER(IOUTSTAT) .EQ. +l)) THEN 

REALHlT(INSTATE) = REALHlT(INSTATE) 
+ l.ODO/DSQRT(DFLOAT(KPHOT(INSTATE))) 

*( DFLOAT(KXPHOT(INSTATE))/DFLOAT(KPHOT(INSTATR)) 
-DFLOAT(KXAFER( INSTATE) )/DFLOAT(KAFER(INSTATE))) 

AIMHlT(INSTATE) = AIHHlT(INSTATR) 
+ l.ODO/DSQRT(DFLOAT(~HOT(INSTATE))) 

*( DFLOAT(KYPHOT(INSTATE))/DFLOAT(KPHOT(INSTATE)) 
-DFLOAT(KTAFER(INSTATE))/DFLOAT(KAFER(INSTATE))) 

ENDIF 

END OF DIAGRAMS 2,6,7. 
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200 CONTINUE 
205 CONTINUE 

C ----------------_--_------------------------------------- 
C SUM CONTRIBUTIONS TO Hl. 
C --------------------------------------------------------- 

DO 300 INSTATE = NSTATEOP+l,NSTATES 

C COMMENT OUT THIS LINE FOR CRAY. 
IF ((REALHIL(INSTATE) .EQ. 0.0~0) .AND. 

$ (REALH~T(INsTATE) .EQ. 0.0~0) .AND. 
S (AINHIT(INSTATE) .EQ. O.ODO)) GOT0 300 

RF.ALHlL(INSTATE) = REALHlL(INSTATE)*FERMMASS/ALPERP 
REALHlT(INSTATE) = RF.ALHlT(INSTATE)*PI/ALPERPZ 
AIMHlT(INSTATE) - AIMHlT(INSTATE)*PI/ALPERP2 

C************DIAGNOSTICS 
C WRITE (16,920) INSTATE,IOUTSTAT, 
c $ REALHlL(INSTATE),REALHlT(INSTATE),AIMHlT(INSTATE) 
c920 FORMAT (' INSTATE IOUTSTAT RFALHlL REALHiT AIMHlT ='/ 
c $ 217,3F11.4) 
c************ 

REMSQHlL = REMSQHlL 

: 
+ 2.O*REALHlL(INSTATE)*DSQRT(ALPHAG) 

*( REAL~F(IOUTSTAT)~ALVF(INSTATE) 
$ +AIMWF(IOUTSTAT)*AIMWF(INSTATE)) 

REMSQHlT = REMSQHlT 

: 
+ 2.O*REALHlT(INSTATE)*DSQRT(ALPHAG) 

*( REALWF(IOUTSTAT)*REALWF(INSTATE) 

: 
+AIMWF(IOUTSTAT)*AIMWF(INSTATE)) 

+ 2.O*AIMHlT(INSTATE)*DSQRT(ALPHAG) 

: 
*(-REAL~F(IOUTSTAT)*AIMVF(INSTATE) 

+AIMwF(IouTsTAT)*REALwF(INsTATE)) 
300 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE H2NR(REMSQH2P,REMSQH2F, 
$ NSIZE,NSTATES,NSTATEOP,REALWF,AIMWF, 

: 
ALPHAG,KPLUSTOT,ICHARGE,ALAMBDA,ALPERP,EPSILON, 
RPHOMASS,RFERMASS,IUVFERM,NOAFERI.IH2PHOT,IH2FERM, 

: 
NPHOT,NFERM,NAFER, 
KPHOT,KZPHOT,KYFHOT,ISPHOT, 

$ KFERM,KKFERM,KYFERM,ISFERM, 

: 
KAFER,KZ.AFER.KYAFER,ISAFER, 
REALHZP,REALHZF) 

C --------------------------------------------------------- 
C THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN 
C BETWFEN THE INPUTTED VARIATIONAL STATES. 
C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

OUTPUT VARIABLES: 
REMSQH2P CONTRIBUTION TO MATRIX ELEMENT FROM INST. PHOTON. 

REMSQHZF CONTRIBUTION TO MATRIX ELEMENT FROM INST. FERMION. 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 

NSTATES 

NSTATEOP 

REALWF 

AIMWF 

ALPHAG 

KPLUSTOT 

ICHARGE 

ALAMBDA 

ALPERP 

EPSILON 

RPHOMASS 

RFERMASS 

NOAFERI 

IUVFERM 

IH2PHOT 

IHPFERM 

NPHOT, 
NFERM , 
NAFER 

KPHOT, 
KXPHOT, 
KYPHOT, 
ISPHOT 

KFERM, 

NUMBER OF POCK STATES. 

NUMBER OF POCK STATES WITH NO PHOTONS. 

REAL PART OF FOCK STATE WAVE FUNCTIONS. 

IMAGINARY PART OF POCK STATF. WAVE FUNCTIONS. 

VALUE OF COUPLING CONSTANT (=G**2/4PI). 

TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

TOTAL CHARGE. 

VALUE OF CUT-OFF MASS. 

SIZE OF KPERP GRID. 

MINIMUM PHOTON INVMASS**2. 

PHOTON MASS TO BE USED IN COVARIANT CUT-OFF. 

FERMION MASS TO BE USED IN COVARIANT CUT-OFF. 

NO INTERACTIONS WITH ANTI-FERMION. 

W CUT-OFF ONLY APPLIED TO FERMIONS, ANTI-FERMIONS. 

TURN ON INSTANTANEOUS PHOTON INTERACTION. 

TURN ON INSTANTANEOUS FERMION INTERACTION. 

t PHOTONS, FERMIONS, ANTI-FERMIONS IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF PHOTON IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

KXFERM, ARRAYS OF DIMENSION NSIZE. 
KYFERM, 
ISFERM 

KAFER, KPLUS, KX, KY, SPIN OF ANTI-FERMION IN POCK STATES. 
KKAFER, ARRAYS OF DIMENSION NSIZE. 
KYAFER, 
ISAFER 

REALHlP, WORKING ARRAYS OF DIMENSION NSIZE. 
REALHZF 

USAGE NOTES: 
1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING 

AND OUTGOING POCK STATES IS ZERO. THIS IS NECESSARY IN THE 
CALCULATION OF INVARIANT MASSES. 

2) FERMION CHARGE IS ASSUMED TO BE -1. 
3) MASSES ARE IN UNITS OF ELFJMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
4) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

c--------------------------------------------------------- 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALWF(NSIZE),AIMWF(NSIZE), 
$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(NSIZE),KXPHOT (NSIZE),KYPHOT(NSIZE),ISPHOT(NSIZE), 
$ KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE),ISFERM(NSIZE), 
$ KAFER(NSIZE),KXAFER(NSIZE),KYAFER(NSIZE),ISAFER(NSIZE) 

C --------------------------------------------------------- 
C FOLLOWING NEEDED FOR YECTORIZATION. 
C --------------------------------------------------------- 

DIMENSION REALHZP(NSIZE),REALHZF(NSIZE) 

SMALL = l.OD-13 
PI = 3.141592653589793DO 
ALPERPZ =ALPERP**P 

BETARPHO = (RPHOMASS*ALPERP/PI)**2 
BETARFER = (RFERMASS*ALPERP/PI)**~ 
ALPHAl- (ALAMBDA*ALPERP/PI)**2/DFLOAT(KPLUSTOT) + SMALL 
ALPHA2 = (ALPERP/PI)**~*(EPsILoN/DFLoAT(K~LUST~T)) - SMALL 

C __________________-_------------------------------------- 
C INITIALIZE TO ZERO. 
C --------------------------------------------------------- 

REMSQHZP = O.ODO 
REMSQHZF = O.ODO 

C-- ___---------------------------------------------------- 
C CALCULATE DIAGRAM 13. ONLY HAVE DIAGRAM 13 IF ICHARGE-0. 
C LOOP OVER OUTGOING POCK STATES WITH 0 PHOTONS. 
c---- ----------------------------------------------------- 
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IF ((ICHARGE .EQ. 0) .AND. (IH~PHOT .EQ. 1) 
$ .AND. (NOAFERI .EQ. oil THEN 

DO 20 IOUTSTAT = 1,NSTATEOP 
IF ((REALYP(IOUTSTAT) .EQ. 0.0~0) .AND. 

$ ( AIMWF(IOUTSTAT) .EQ. O.ODO)) GOT0 20 

C --------------------------------------------------------- 
C LOOP OVER INCOMING POCK STATES WITH 0 PHOTONS. 
C ASSUME HAMILTONIAN IS HERMITIAN, SO ONLY NEED TO CONSIDER 
C IOUTSTAT .GE. INSTATE. 
C --------------------------------------------------------- 

f 

: 

: 
t 

$ 

: 

: 

: 
f 

: 

: 

DO 30 INSTATE = l,IOUTSTAT 
IF ((REALWF(INSTATE) .EQ. 0.0~0) .AND. 

( AIMVF(INSTATE) .EQ. O.ODO)) GOT0 30 

INITIALIZE TO ZERO. 
REALHlP(INSTATE) = O.ODO 

CHECK IF HAVE CORRECT SPINS. 
IF (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTO 300 
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 300 

NO MATRIX ELEMENT IF KFERM(INSTATE) = KFERM(IOUTSTAT). 
IF (KFERM(INSTATE) .EQ. KFERM(IOUTSTAT)) GOTO 300 

NO MATRIX ELEMENT IF INVMASS**2 OF INSTANTANEOUS PHOTON 
.LT. EPSILON. 
IF ( 

( (DFLOAT( (KXFERM(INSTATE) - KXFERM(IOUTSTAT))**~ 
+(KYFERM(INSTATE) - KYFERM(IOUTSTAT))**~) 

+BETARPHO)/DFLOAT(IABS(KFERM(INSTATE) - KFERM(IOUTSTAT))) 
) .LT. ALPHA2) 

GOT0 300 

IF (KFERM(INSTATE) .GT. KFERM(IOUTSTAT)) THEN 

CHECK IF INYMASS**2 OF INTERMEDIATE STATE IS 
.LE. LAMDDA**2. 
IF (IUVFERM .EQ. 0) THEN 

IF ( 
( (DFLOAT( (KXFERM(INSTATE) - KXFERM(IOUTSTAT))**~ 

+(KYFERM(INSTATE) - KYFERM(IOUTSTAT))**2) 
+BETARPHO)/DFLOAT(KFERM(INSTATE) - KFERM(IOUTSTAT)) 

+(DFLOAT(KXFERM(IOUTSTAT)**2 + KYFERM(IOUTSTAT)**2) 
+BETARFER)/DFLOAT(KFERM(IOUTSTAT)) 

+(DFLOAT(KXAFER(INSTATE)**2 + KYAFER(INSTATE)**2) 
+BETARFER)/DFLOAT(KAFER(INSTATE)) 

) .GT. ALPHAl) GOT0 300 
ENDIF 
IF (IUVFERM .EQ. 1) THEN 

IF ( 
( (DFL~AT(KXFERM(IOUTSTAT)**~ + KYFERM(IOUTSTAT)**~) 

+BETARFER)/DFLOAT(KFERM(IOUTSTAT)) 
+(DFLOAT(KXAFER(INSTATE)**2 + KYAFER(INSTATE)**2) 

+BETARFER)/DFLOAT(KAFER(INSTATE)) 
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C 

C 
C 

: 

: 

: 

: 

: 
$ 

: 

C 

a 

C 
300 

) .GT. ALPHAl) GOT0 300 
ENDIF 

HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 
REALH~P(INSTATE) = REALH~P(INSTATE) 

- l.O/DFLOAT((KFERM(INSTATE) - KFERM(IOUTSTAT))**2) 
ENDIF 

IF (KFERM(INSTATE) .LT. KFERM(IOUTSTAT)) THEN 

CHECK IF INVMASS**2 OF INTERMEDIATE STATE IS 
.LE. LAMBDA**2. 
IF (IUVFERM .EQ. 0) THEN 

IF ( 
( (DFLoAT( (KXFERM(IOUTSTAT) - KXFERM(INsTATE))**2 

+(KTFERM(IOUTSTAT) - KYFERM(INSTATE))**2) 
+BETARPHO)/DFLOAT(KFERM(IOUTSTAT) - KFERM(INSTATE)) 

+(DFLOAT(KXFERM(INSTATE)**2 + KYFERM(INSTATE)**2) 
+BETARFER)/DFLOAT(KFERM(INSTATE)) 

+(DFLOAT(KXAFER(IOUTSTAT)**~ + KwER(IouTsTAT)**2) 
+BETARFER)/DFLOAT(KA.FER(IOUTSTAT)) 

) .GT. ALPHAl) GOT0 300 
ENDIF 
IF (IUVFERM .EQ. 1) THEN 

IF ( 
( (DFLOAT(KXFERM(INSTATE)**2 + KTFERM(INSTATE)**2) 

+BETARFER)/DFLOAT(KFERM(INSTATE)) 
+(DFLOAT(KXAFER(IOUTSTAT)**~ + KTAFER(IouTsTAT)**2) 

+BETARFER)/DFLOAT(KAFER(IOUTSTAT)) 
) .GT. ALPHAl) GOT0 300 

ENDIF 

HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 
REALHlP(INSTATE) = REALHZP(INSTATE) 

- l.O/DFLOAT((KFERM(IOUTSTAT) - KFERM(INSTATE))**2) 
ENDIF 

END OF DIAGRAM 13. 
CONTINUE 

IF (REALH2P(INSTATE) .NE. O.ODo) THEN 
REALHaP(INSTATE) = 2.O*REALH2P(INSTATE)/ALPERP2 

C************DIAGNOSTICS 
C WRITE (16,920) INSTATE,IOUTSTAT,REALHZP(INSTATE) 
c920 FORMAT (' INSTATE IOUTSTAT REALH2P =',217,2Fll.4) 
c************ 

FACT = 2.ODo 
IF (INSTATE .EQ. IOUTSTAT) FACT = 1.0~0 
REMSQH2P = REMSQHZP + FACT*REALH2P(INSTATE) 

: 
~LPHAG*( REALWF(IOUTSTAT)*REALBF(INSTATE) 

+A~~F(IoUTSTAT)*A~M~F(INSTA~)) 
ENDIF 
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C FINISHED WITH THIS POCK STATE. GO TO NEXT POCK STATE. 
30 CONTINUE 
20 CONTINUE 

ENDIF 

c--------------------------------------------------------- 
C CALCULATE DIAGRAMS 16. 18. 
C LOOP OVER OUTGOING POCK STATES WITH 1 PHOTON. 
C --------------------------------------------------------- 

IF (IHOFERM .EQ. 1) THEN 
DO 40 IOUTSTAT = NSTATEOP+l,NSTATES 

IF (@EALWF(I~UTSTAT) .EQ. 0.0~0) .AND. 
t ( AIMWF(IOUTSTAT) .EQ. O.ODO)) GOT0 40 

c --------------------------------------------------------- 
C LOOP OVER INCOMING POCK STATES WITH 1 PHOTON. 
C ASSURE HAMILTONIAN IS HERMITIAN, SO ONLY NEED TO CONSIDER 
C IOUTSTAT .GE. INSTATE. 
c--------------------------------------------------------- 

DO 50 INSTATE = NSTATEOP+l,IOUTSTAT 
IF ((REALWF(INSTATE) .EQ. 0.0~0) .AND. 

$ ( AIMWF(INSTATE) .EQ. O.ODO)) GOT0 50 

C INITIALIZE TO ZERO. 
REALHPF(INSTATE) = O.ODO 

C --------------------------------------------------------- 
C GET RID OF UNNECESSARY CALLS TO HZNR. 
c --------------------------------------------------------- 

RAKE SURE THAT SPECTATOR MATCHES UP. 
Ip (ICHARGE .EQ. 0) THEN 

Ip ((KAFER(I~UTSTAT) .NE. KAFER(INSTATE)) .AND. 
$ (KFERM(IOUTSTAT) .NE. KFERR(INSTATE))) GOTO 50 

FERMION IS THE SPECTATOR. 
117 ((KFERM(IOUTSTAT) .EQ. KFERR(INSTATE)) .AND. 

$ (KAFER(IOUTSTAT) .NE. KAFER(INSTATE))) THEN 
IF MFERM(IouTsTAT) .NE. KZFERR(INSTATE)) GOTO 50 
IF (KYFERM(I~UTSTAT) .NE. KYFERR(INSTATE)) GOTO 50 
IF (ISFERR(IOUTSTAT) .NE. ISFERR(INSTATE)) GOTO 50 

ENDIF 

AFERMION IS THE SPECTATOR. 
IF ((KAFER(I~UTSTAT) .EQ. KAFER(INSTATE)) .AND. 

$ (KFERR(IOUTSTAT) .NE. KFERR(INSTATE))) THEN 
IF (KZAFER(IOUTSTAT) .NE. KZAFER(INSTATE)) GOTO 50 
Ip (KYAFER(IOUTSTAT) .NE. KYAFER(INSTATE)) GOTO 50 
IF (ISAFER(IOUTSTAT) .NE. ISAFER(INSTATE)) GOTO 50 

ENDIF 

DON'T KNOW WHICH IS SPECTATOR. 
IF ((KAFER(IOUTSTAT) .EQ. KAFER(IN~TATE)) .AND. 

$ (KFERR(IOUTSTAT) .EQ. KFERR(INSTATE))) THEN 
IF ((KZAFER(IOUTSTAT) .NE. KZAFER(INSTATE)) .AND. 

$ (KXFERM(I~UTSTAT) .NE. KXFERM(INSTATE))) GOTO 50 
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IF ((KYAFER(IouTsTAT) .NE. KYAPWINsTATE)) .AND. 
$ (KYFEW(IOUTSTAT) .NE. KYFERM(INSTATE))) GOTO 50 

IF ((ISAFER(IOUTSTAT) .NE. ISAFER(INSTATE)) .AND. 
$ (IsFERH(IouTsTAT) .NE. ISFERM(INSTATE))) GOTO 50 

ENDIF 
ENDIF 

C --------------------------------------------------------- 
C CALCULATE DIAGRAM 16. 
c--------------------------------------------------------- 
c CHECK IF HAVE CORRECT SPINS. 

IF (ISPHOT(INSTATE) .NE. ISPHOT(IOUTSTAT)) GOT0 400 
IF (ISFERM(INSTATE) .NE. ISFERN(IOUTSTAT)) GOTO 400 
IF (ISPHOT(INSTATE) .EQ. ISFERM(IOUTSTAT)) GOTO 400 

C CHECK IF SPECTATORS MATCH up. 
IF (ICHARGE .EQ. 0) THEN 

IF (KAFER(INSTATE) .NE. KAFER(IOUTSTAT)) GOTO 400 
IF (KXAFER(INSTATE) .NE. KXA.FER(IOUTSTAT)) GOTO 400 
IF (KYAFER(INSTATE) .NE. KYAFER(IOUTSTAT)) GOT0 400 
IF (IsAFER(INsTATE) .NE. ISAFER(IOUTSTAT)) GOTO 400 

ENDIF 

C HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 
REALHlF(INSTATE) = REALHZF(INSTATE) 

: 
+ l.O/(DSQRT(DFLOAT(KPHOT(INSTATE)*KPHOT(IOUTSTAT))) 

*DFLOAT(KPHOT(INSTATE) + KFERM(INSTATE))) 

C END OF DIAGRAM 16. 
400 CONTINUE 

c--------------------------------------------------------- 
C CALCULATE DIAGRAM 18. ONLY HAVE DIAGRAM 18 IF ICHARGE=O. 
C --------------------____________________----------------- 

IF (ICHARGE .EQ. -1) GOTO 500 
IF (NOAFERI .EQ. 1) GOTO 500 

CHECK IF HAVE CORRECT SPINS. 
IF (ISPHOT(INSTATE) .NE. ISPHOT(IOUTSTAT)) GOTO 500 
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 500 
IF (ISPHOT(INSTATE) .EQ. ISAFER(IOUTSTAT)) GOT0 500 

CHECK IF SPECTATORS MATCH up. 
Ip (KFERM(INSTATE) .NE. KFERM(IoUTSTAT)) GOTO 500 
Ip (KXFERM(INSTATE) .NE. KXFERM(IOUTSTAT)) GOTO 500 
IF (KYFE~(INsTATE) .NE. KYFERM(IOUTSTAT)) GOTO 500 
Ip (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTO 500 

HAVE INTERACTION. DETERMINE MATRIX ELEMENT. 
REALH2F(INSTATE) = REALHlF(INSTATE) 

: 
+ l.O/(DSQRT(DFLOAT(KPHOT(INSTATE)*KPHOT(IOUTSTAT))) 

l DFLOAT(KPHOT(INSTATE) + KAFER(INSTATE))) 

END OF DIAGRAM 18. 
500 CONTINUE 
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IF (REALHOF(INSTATE) .NE. O.ODO) THEN 
REALHZF(INSTATE) = REALH~F(INSTATE)/ALPERPZ 

C************DIAGNOSTICS 
C WRITE (16,940) INSTATE,IOUTSTAT,REALHaP(INSTATE) 
C940 FORMAT (' INSTATE IOUTSTAT REALHaP =',217,2F11.4) 
c************ 

FACT = 2.ODO 
IF (INSTATE .EQ. IOUTSTAT) FACT = l.ODO 
REMSQH2F = REMSQHSF + FACT*REALHZF(INSTATE) 

: 
*ALPHAG*( REALWF(IOUTSTAT)*RF.ALWF(INSTATE) 

+AIMWF(IOUTSTAT)*AIMWF(INSTATE)) 
ENDIF 

C FINISHED WITH THIS POCK STATE. GO TO NEXT POCK STATE. 
50 CONTINUE 
40 CONTINUE 

ENDIF 

RETURN 
END 

SUBROUTINE HSELFNR(REMSQHSL,REMSQHST,REMSQHS2,REMSQHS3, 

: 
NSIZE,NSTATEOP,REALWF,AIMWF, 
ALPWG,KPLUSTOT,IBC,ICHARGE, 

: 
ALAMBDA,ALPERP,FFSILON, 
PHOTMASS,FERMMASS,RPHOMASS,RFERMASS,NOAFERI, 

: 
IFERMUP,IUVFERM,NPHOT,NFERM,NAFER, 
KPHOT,KXPHOT,KYPHOT, 

: 
KFERM,KXFERM,KYFERM, 
KAFER,KXAFER,KYAFER) 

C--------------------------------------------------------- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN 
BETWEEN THE INPUTTED VARIATIONAL STATES. 

OUTPUT VARIABLES: 
REMSQHSL CONTRIB TO MATRIX ELEMENT FROM LONG. PART OF SEFERMI. 

REMSQHST CONTRIB TO MATRIX ELEMENT FROM TRANS. PART OF SEFERMI. 

REMSQHSZ CONTRIBUTION TO MATRIX ELEMENT FROM SEFERMP. 

REMSQHS3 CONTRIBUTION TO MATRIX ELEMENT FROM SEFERM3. 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. 

NSTATEOP NUMBER OF FOCK STATES WITH NO PHOTONS. 
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C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 

REALWF 

AIMWF 

ALPHAG 

KPLUSTOT 

IBC 

ICHARGE 

AIhiBDA 

ALPERP 

EPSILON 

PHOTMASS 

FERMMASS 

RPHOMASS 

RFERMASS 

NOAFERI 

IFERMUP 

IUVFERM 

NPHOT, 
NFERM, 
NAFER 

KPHOT, 
KXPHOT, 
KYPHOT 

KFERM, 
KKFERM, 
KYFERM 

KAFER, 
KXAFER, 
KYAFER 

REAL PART OF FOCK STATE WAVE FUNCTIONS. 

IMAGINARY PART OF FOCK STATE WAVE FUNCTIONS. 

VALUE OF COUPLING CONSTANT (=G**2/4PI). 

TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

ONLY HAVE EVEN FERMION KPLUS IF IBC=2, 
ODD FERMION KPLUS IF IBC=l. 

TOTAL CHARGE. 

VALUE OF CUT-OFF MASS. 

SIZE OF KPERP GRID. 

MINIMUM PHOTON INVMASS**2. 

PHOTON MASS IN LAGRANGIAN. 

FERMION MASS IN LAGRANGIAN. 

PHOTON MASS TO BE USED IN COVARIANT CUT-OFF. 

FERMION MASS TO BE USED IN COVARIANT CUT-OFF. 

NO INTERACTIONS WITH ANTI-FERMION. 

FERMIONS, ANTI-FERMIONS ALL HAVE SPIN UP. 

UV CUT-OFF ONLY APPLIED TO FERMIONS, ANTI-FERMIONS. 

# PHOTONS, FERMIONS, ANTI-FERMIONS IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY OF PHOTON IN POCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY OF FERMION IN THE FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

KPLUS, KX, KY OF ANTI-FERMION IN FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

USAGE N0TF.S: 
1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING 

AND OUTGOING POCK STATES IS ZERO. THIS IS NECESSARY IN THE 
CALCULATION OF INVARIANT MASSES. 

2) FERMION CHARGE IS ASSUMED TO BE -1. 
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C 3) MASSES ARE IN UNITS OF,ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 
C 4) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 
c--------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALWF(NSIZE),AIMWF(NSIZE), 
$ NPHOT(NSIZE>,NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(NSIZE),KXPHOT(NSIZE),KYPHOT(NSIZE), 
( KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE), 
$ KAFER(NSIZE),KXAFER(NSIZE),KYAPER(NSIZE) 

SMALL = l.OD-13 
PI = 3.141592653589793DO 

ALPHA= (ALAMBDA*AL~ER~/PI)**~/DFLOAT(KPLUSTOT) 
ALPHA2 - (ALPERP/PI)**2*(EPSILON/DFLOAT(KPLUSTOT)) 
BETAPHOT = (PHOTMASS*ALPER~/PI)**~ 
BETAFERM = (FERMMAss*ALPER~/PI)**~ 
BETARPHO = (RPHOMASS*ALPER~/~~)**~ 
BETARFER = (RFERMAss*ALPER~/PI)**~ 

c--------------------------------------------------------- 
C INITIALIZE TO ZERO. 
c--------------------------------------------------------- 

REMSQHSL = O.ODG 
REMSQHST = O.ODo 
REMSQHSZ = O.ODG 
REMSQHS3 = O.ODO 

c--------------------------------------------------------- 
C ONLY HAVE SELF-ENERGY CONTRIBUTION IF NO PHOTONS IN POCK STATE. 
C LOOP OVER DIAGONAL MATRIX ELEMENTS WITH NO PHOTONS. 
C --------------------------------------------------------- 

DO 10 ISTATF. = 1,NSTATEOP 
IF ((REALY~(IsTATE) .NE. 0.0~0) .OR. 

$ ( AIMWF(ISTATE) .NE. O.ODG)) THEN 

INITIALIZE TO ZERO. 
REHSFlL = O.OW 
REHSFlT = O.ODO 
REHSFS = O.ODO 
REHSF3 = O.ODO 

C --------------------------------------------------------- 
C CALCULATE HSELFNR. 
C --------------------------------------------------------- 
c--------------------------------------------------------- 
C FIND CONTRIBUTION TO HSELF FROM FERMION 
c--------------------------------------------------------- 

INPLUS = KFERM(ISTATE) 
INX = KXFERM(ISTATE) 
INY = KYPERM(ISTATE) 
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CALCULATE CUT-OFF. 
ALPHAl-ALPHA 
IP (ICHARGE .EQ. 0) THEN 

AKPERPSQ - DFLOAT(KXAFER(ISTATE)**a + KYAFER(ISTATE)**2) 
SPECINVM = (AKPERPSQ + BETARFER)/DFLOAT(KAFER(ISTATE)) 
ALPHA1 = ALPHA1 - SPECINVM 

ENDIF 
IF (ABS(ALPHA1) .LE. SMALL) ALPHA1 - O.ODO 

C SUBROUTINE SEFERM RETURNS VALUES OF SELF-ENERGIES. 
CALL SEFERM(SEFERMlL,SEFERMlT,SEFERM2,SEFERM3,IFERMUP, 

: 
ALPHAG,ALPERP,IBC,INPLUS,INX,INY,IUVFERM, 
ALPHAl,ALPHA2,BETAPHOT,BETAFERM,BETARPHO,BETARFER) 

REHSFlL - REHSFlL + SEFERMlL 
REHSFlT = REHSFlT + SEFERMlT 
REHSF2 - REHSF2 + SEFERM2 
REHSF3 = REHSFB + SEFERMS 

C FIND CONTRIBUTION TO HSELF FROM ANTI-FERMION. 
C ONLY HAVE THIS CONTRIBUTION IF ICHARGE-0. 
c--------------------------------------------------------- 

IF ((ICHARGE .EQ. 0) .AND. (NOAFERI .EQ. 0)) THEN 
INPLUS = KAFER(IsTATE) 
INX = KXAFER(ISTATE) 
INY = KYAFER(ISTATE) 

CALCULATE CUT-OFF. 
lUrPERPSQ = DFLOAT(KXFERM(ISTATE)**2 + KYFERM(ISTATE)**2) 
SPECINVM - (AKPERPSQ + BETARFER)/DFLOAT(KFERM(ISTATE)) 
ALPHA1 = ALPHA - SPECINVM 
IF (ABS(ALPHA1) .LE. SMALL) ALPHA1 = O.ODO 

C SUBROUTINE SEFERM RETURNS VALUES OF SELF-ENERGIES. 
CALL SEFERM(SEFERMlL,SEFERMlT,SEFERMZ,SEFERM3,IFERMUP, 

: 
ALPHAG,ALPERP,IBC,INPLUS,INX,INY,IUVFERM, 
ALPHAl,ALPHAZ,BETAPHOT,BETAFERM,BETARPHO,BETARFER) 

REHSFlL = REHSFlL + SEFERMlL 
REHSFlT = REHSFlT + SEFERMlT 
REHSFZ = REHSFZ + SEFERMZ 
REHSF3 = RF.HSF3 + SEFERM3 

ENDIF 

C************DIAGNOSTICS 
C WRITE (16,910) ISTATE,REHSFlL,REHSFlT,REHSF2,REHSF3 
CQlO FORMAT (' ISTATE REHSFlL REHSFlT REHSFZ REHSF3 -'/ 
c $ 17,4Fll.4) 
c************ 

REMSQHSL = REMSQHSL 
t +ALPHAG*REHSF~L*(REALWF(ISTATE)**~ + AIMWF(ISTATE)**~) 

REMSQHST - REMSQHST 
$ +ALPHAG*REHSFlT*(REALWF(ISTATE)**2 + AIMWF(ISTATE)**2) 

REMSQHSZ = REMSQHSZ 
$ +ALPHAG*REHSF2*(REALWF(ISTATE)**2 + AIMWF(ISTATE)**2) 



REMSQHS3 - REMSQHSS 
$ +ALPHAG*REH~F~*(REALWF(ISTATE)**~ + AIMWF(ISTATE)**~) 

FINISHED WITH THIS FOCK STATE. GO TO NEXT POCK STATE. 
ENDIF 

10 CONTINUE 

RETURN 
END 

SUBROUTINE SEFERM(SEFERMlL,SEFERMlT,SEFERM2,SEFERM3,IFERMUP, 
t AI.PHAG,ALPERP,IBC,INPLUS,INX,INY,IUVFERM, 
t ALPHAl,ALPHA'L,BETAPHOT,BETAFERM,BETARPHO,BETARFER) 

c--------------------------------------------------------- 
C THIS SUBROUTINE RETURNS THE VALUE FOR THE FERMION SELF-ENERGY 
C FOR INCOMING (KPLUS,KX,KY) - (INPLUS,INX,INY). 
C --------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

PI - 3.141592653589793DO 
SMALL - l.OD-13 

c--------------------------------------------------------- 

C INITIALIZE TO ZERO. 
C --------------------------------------------------------- 

SEFERMlL - O.ODO 
SEFERMlT - O.ODO 
SEFERM2 - O.ODO 
SEFERM3 - O.ODO 
ANUM2 - O.ODO 
DENOMZ - O.ODo 

C --------------------------------------------------------- 
C WORK OUT SELF-ENERGIES. 
C --------------------------------------------------------- 

ANPLUS - DFLOAT(INPLUS) 

C************DIAGNOSTICS 
C WRITE (16,920) INPLUS,INX,INY,ALPHAl 
c920 FORMAT (' '/' NPLUS NX NY ALPHA1 -',314,F8.3/ 
c $' QPLUS QX QY INVMASS'/ 
c $' --------------------__I 1 
c************ 

IF (IBC .EQ. 1) IQPLUSMX = INPLUS - 1 
IF (IBC .EQ. 2) IQPLUSMX - INPLUS - 2 
DO 20 IQPLUS - 2,IQPLUSMX,2 

AQPLUS - DFLOAT(IQPLUS) 

C CONTINUE ONLY IF AINVMASS .LE. ALPHAl. 
AINVMASS - BETARFER/(ANPLUS-AQPLUS) 

C************DIAGNOSTICS 
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C WRITE (16,921) IQPLUS,AINYMASS 
c921 FoRbuT (3X,I3,10X,F8.3) 
c************ 

IF (AINYMASS .GT. (ALPHAI+SMALL)) GOTO 20 

C FIGURE OUT WHAT LARGEST ALLOWED PHOTON KX, KY IS. 
ARGUMENT - ALPHA~*(ANPLus-AQPLUS) - BETARFER 
IF (ARGUMENT .LT. SMALL) THEN 

IQPERPMX - 0 
ELSE 

IQPERPMX = INT(DSQRT(ARGUMENT) + SMALL) 
ENDIF 
IQXMIN - INX - IQPERPMX 
IQYMIN - INY - IQPERPMX 
IQXMAX - INX + IQPERPMX 
IQYMAX - INY + IQPERPMX 

DO 30 IQX - IQXMIN,IQXMAX 
DO 30 IQY - 1QYMIN.IQYMA.X 

C REMOVE THIS POINT IF PHOTON INYMASS**2 .LT. EPSILON. 
IF ((DFLOAT(IQX**2+IQY**2) + BETARPHO)/AQPLUS .LT. 

8 ALPHAZ-SMALL) GOT0 30 

C KFEP THIS TERM IN SUM FOR SE IF INV'MASS**2 .LE. LAMBDA**. 
IF (IUYFERM .EQ. 0) 

$ AINYMASS - (DFLOAT(IQX**2 + IQY**2) + BETARPHO)/AQPLUS 

: 
+ (DFLOAT((IN~-IQX)**~ + (INY-IQY)**P) + BETARFER) 

/(ANpLus-AQPLUS) 
IF (IUVFERM .EQ. 1) 

f 
AINYMASS - (DFLOAT((INX-IQX)**2 + (INY-IQY)**2) + BETARFER) 

/ (ANPLUS-AQPLUS) 

C************DIAGNOSTICS 
C WRITE (16,922) IQX,IQY,AINYMASS 
c922 Fo~huT (8x,I3,ix,I3,i~,~8.3) 
c************ 

IF (AIN~ss .GT. (ALPHAI+SMALL)) GOTO 30 

C 

$ 

f 

: 

t 

ADD CONTRIBUTIONS TO SFFERMlL,SEFERMlT,SEFERMP,SEFERM3. 
PERPSQAR - (DFLOAT(IQX) - (AQPLUS/ANPLUS)*DFLOAT(INX))**2 

+ (DFLOAT(IQY) - (AQPLUS/ANPLUS>*DFLOAT(INY))**2 
DENOM - ANPLUS**2*PERPSQAR + AQPLUS**2*BETAFERM 

+ ANPLUS*(ANPLUS-AQPLUS)*BETAPHOT 
ANUMT - (ANPLUS**2*PERPSQAR)/ 

(~.~D~ANPL~~*(ANPLus-AQPLus)) 
+ (ANPLUS**2*PERPSQAR)/(AQPLUS**2) 

SEFERMlT - SEFERMlT + ANUMT/DENOM 
IF (IFERMUP .EQ. 0) THEN 

ANUML - (AQPLUS**2*BETAFERM)/ 
(2.ODO*ANPLUS*(ANPLUS-AQPLUS)) 

SEFERMIL - SEFERMlL + ANUML/DENOM 
ANUM2 - ANUM2 + AQPLUS/DENOM 
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DENoMa - DENoMa + (ANPLUS - AQPLUS)/DENOM 
SEFERM3 - SEFERMS + AQPLUS/DENOM 

ENDIF 

30 CONTINUE 
20 CONTINUE 

SEFERMlT - (2.O/ALPERP**2)*SEFERMlT 
IF (IFERMUP .EQ. 0) THEN 

SEFERMlL - (2.O/ALPERP**2)*SEFERMlL 
ANUM2 - (ALPHAG/PI**4)*ANUM2**2 
DENOH - 1 + (ALPHAG/PI**P)*DENON2 
SEFERM2 - -(BETAFERM*PI**2)/(ANPLUS*ALPERP**2)*(ANUMZ/DENOM2) 
SEFERM3 - -(ALPHAG*BETAFERM*SEFERM3**2)/ 

t (ANPLUS*ALPERP**2*PI**2) 
ENDIF 

C************DIAGNOSTICS 
C WRITE (16,923) SEFERMlL,SEFERMlT,SEFERM2,SEFERM3 
C923 FORMAT 
C ) (' SEFERMlL SEFERMlT SEFERMZ SEFERMS -',418.4) 
c************ 

RETURN 
END 

SUBROUTINE PRINTOUT(WAVEFCN,TIMEl,TIME2,TIME3,TIME4,TIME5,TIME6, 

: 
KPLUSTOT,ICHARGE,IBC,NSTATES,NSTATEOP,NSIZE, 
KPLUSMAX,ALPHAG,ALAMBDA,ALPERP,EPSILON, 

: 
PARAl,PARAZ,PARA3,PARA4,PARA5, 
PHOTMASS,RPHOMASS,FERMMASS,RFERMASS, 

: 
RENSQHO,REMSQHlL,REMSQHlT,REMSQH2P,REMSQH2F, 
REMSQHSL,RENSQHST,REMSQHS2,REMSQHS3, 

f REALWF,AIMWF,NPHOT,NFERM,NAFER, 

f 
KPHOT,KZPHOT,KTPHOT,ISPHOT, 
KFERM,KXFERM,KYFERM,ISFERM, 

6 KAFER,KX.AFER,KYAFER,ISAFER) 
C --------------------------------------------------------- 
C THIS SUBROUTINE PRINTS OUT RESULTS OF PROGRAM QEDVAR. 
C --------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION WAVEFCN(KPLUSMAX) 

DIMENSION REALWF(NSIZE),AIMWF(NSIZE), 
$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE), 
$ KPHOT(NSIZE),KXPHOT(NSIZE),~HOT(NSIZE),ISPHOT(NSIZE), 
$ KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE),ISFERM(NSIZE), 
$ KAFER(NSIZE),KZAFER(NSIZE),KTAFER(NSIZE),ISAFER(NSIZE) 

LOGICAL ODDKPLUS 

PI - 3.141592653589793DO 
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C************DIAGNOSTICS: RESULTS FROM QEDVAR 
RPERP = ALAMBDA*ALPERP/PI 
XALPERP = ALPERP*ALPHAG 

WRITE (15,910) 
$ KPLUSTOT,ICHARGE,IBC, 
$ ALPHAG,ALIIMBDA,ALPERP,XALPERP,RPERP,EPSILON, 
$ PHOTMASS,RPHOMASS,PERMMASS,RFERMASS, 
$ PARAl,PARAZ,PARA3,PARAI,PARAS,NSTATEOP,NSTATES 

WRITE (15,911) 
$ TIMEl,TIME2,TIME3,TIME4,TIME5,TIME6, 
$ TIMEl+TIME2+TIME3+TIME4+TIME5+TIME6 

WRITE (15,912) 
$ REMSQHO,REMSQHlL,REMSQHlT,~MSQH2P,REMSQH2F, 
$ REMSQHSL,REMSQHST,REMSPHSa,REMSQHS3, 
$ .S*REMSQHlL+REMSQHSL,.S*REMSQHlT+REMSQHST,REMSQH2P, 
$ .S*REMSQHlL+.5*REMSQHlT+REMSQHSL+REMSQHST+REMSQH2P 

IF (ICHARGE .EQ. 0) THEN 
WRITE (15,913) REMSQHO+.5*REMSQHlL+.S*REMSQHlT-4.ODO 

ELSEIF (ICHARGE .EQ. -1) THEN 
WRITE (15,914) REMSQHO+.S*REMSQHlL+.S*REMSQHlT-l.ODO 

ENDIF 
WRITE (15,915) 

$ REMSQHO+REMSQHIL+REMSQHlT+REMSQH2P+REMSQHSL+REMSQHST, 
$ REMSQHO+REMSQHlL+REMSQHlT+REMSQH2P+REMSQH2F 
$ +REMSQHSL+REMSQHST+REMSQHS2, 
$ REMSQHO+REMSQHlL+REMSQHlT+REMSQH2P+REMSQH2F 
t +REMSQHSL+REMSQHST+REMSQHS3 

910 FORMAT (' INPUT (MASSES ARE IN UNITS OF ELECMASS):'/ 
f ' KPLUSTOT ICHARGE IBC =',314/ 

: 
' ALPHAG =',Fl1.4/ 
' ALAMBDA =',Fl1.4/ 

$ ' ALPERP =',F11.4,'*1/ELECMASS =',F8.4, 
$ '*BOHR (RPERP =',F8.4,')'/ 

: 
' EPSILON =',Fll.4/ 
' PHOTMASS =*,Fll.4/ 

: 
' RPHOMASS =',Fll.4/ 
' FERMMASS =',Fll.l/ 

: 
' RFERMASS =',Fl1.4/ 
' VAR PARAMETERS =',5F8.4/' '/ 

f ' # OF POCK STATES WITH NO PHOTONS =',IQ/ 
t ' # OF POCK STATES =',IQ/' ') 

911 FORMAT (' CPU TIME TO FIND POCK STATES =',F8.2; SEC'/ 

: 
' CPU TIME TO WORK OUT VAR WF =',F8.2,' SEC'/ 
' CPU TIME TO FIND HO MATRIX EL =',F8.2,' SEC'/ 

: 
' CPU TIME TO FIND Hi MATRIX EL -',F8.2,' SEC'/ 
' CPU TIME TO FIND H2 MATRIX EL =',F8.2,' SEC'/ 

: 
' CPU TIME TO FIND HSELF MATRIX EL =',F8.2,' SEC'/ 
' TOTAL CPU TIME USED =',F8.2.' SEC'/' 

912 FORMAT (' CONTRIBUTION TO M**2 FROM HO =',Fl5.10/ 
0 

: ' 
LONG VERTEX = HIL =',F15.10/ 

TRANS VERTEX = HlT =',Fl5.10/ 
$ ' INSPHOT =',FlS.lO/ 
L ' INSFERM =',FlS.lO/ 
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1 
: ’ 
t ’ , 
: ’ 1 
: ’ 
f ’ 

913 FORMAT (' 
914 FORMAT (' 
915 FORMAT (' 

$ ' 
$ ' 

c************ 

LONG PART OF 1 LOOP SE = SEFlL =',FlS.lO/ 
TRANS PART OF 1 LOOP SE = SEFlT =',FlS.lO/ 

N CHAINED INST SE = SEF2 =',FlS.lO/ 
2 CHAINED INST SE = SEF3 -',F15.10/' '/ 

LONG PHOT = .SHlL+SEFlL =',FlS.lO/ 
TRANS PHOT = .SHlT+SEFlT =',Fl5.10/ 

INST PHOT = INSPHOT =',FlS.lO/ 
PE = L+T+I PHOT =',FlS.lO) 
KE = HO+.SHl-4 =',FlS.lO) 
KE = H0+.5Hl-1 =',FlS.lO) 

SUM+4 = HO+Hl+INSPHOT+SEFl =',F15.10/' '/ 
SUM+4+INSFERM+SRF2 =',Fl5.10/ 
SUM+4+INSFERM+SEF3 =',F15.10) 

C DETERMINE FRACTION OF EIGENSTATE THAT CONSISTS OF 
C VARIOUS DIFFERENT POCK STATES. 
C -------------------------------------------------------- 
C-------------------------------------------------------- 
C PRINTOUT FOR ICHARGE = 0. THE 2 POCK STATES ANALYZED 
C ARE 1 PAIR AND 0.1 PHOTONS. 
C -------------------------------------------------------- 

IF (ICHARGE .EQ. 0) THEN 

C INTIALIZE AFOCKl,AFOCKS 
AFOCKl = O.ODO 
AFOCKZ = O.ODO 

DO 20 ISTATE = 1,NSTATES 
IF ((NPHOT(ISTATE) .EQ. 0) .AND. 

$ (NFERM(ISTATE) .EQ. 1)) THEN 
AFOCKl = AFOCKl + REALWF(ISTATE)**2 + AIMWF(ISTATE)**2 

ENDIF 

IF ((NPHOT(ISTATE) .EQ. 1) .AND. 
$ (NFERR(ISTATR) .EQ. 1)) THEN 

AFoc~2 = AFoc~a + REALwF(ISTATE)**~ + AIMWF(ISTATE)**~ 
ENDIF 

20 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
WRITE (15,920) lDG.*AFOCKl,lDG.*AFOCK2 

920 FORMAT (' '/' '/' '/' POCK STATE DECOMPOSITION:', 
$ F6.2,'% 1 PAIR,0 PHOT',F6.2,'% 1 PAIR,1 PHOT') 

c************ 

ENDIF 

C -------------------------------------------------------- 
C PRINTOUT FOR ICHARGE = -1. THE 2 POCK STATES ANALYZED 
C ARE 1 FERMION AND 0.1 PHOTONS. 
C -------------------------------------------------------- 

IF (ICHARGE .EQ. -1) THEN 
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INTIALIZE AFOCKl,AFOCKZ 
AFOCKl = O.ODO 
AFOCK2 = O.ODO 

DO 30 ISTATE = 1,NSTATES 
IF ((NPHOT(ISTATE) .EQ. 0) .AND. 

$ (NFERM(ISTATE) .EQ. 1)) THEN 
AFOCKl = AFOCKl + REALWF(ISTATE)**2 + AIKWF(ISTATE)**2 

ENDIF 

IF ((NPHOT(ISTATE) .EQ. 1) .AND. 
8 (NFERM(ISTATE) .EQ. 1)) THEN 

AFOCK2 = AFOCK2 + REALWF(ISTATE)**2 + AIMWF(ISTATE)**2 
ENDIF 

30 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
WRITE (15,930) l00.*AFOCKl,lOO.*AFOCK2 

930 FORMAT (' */' '/' '/' POCK STATE DECOMPOSITION:', 
$ F6.2,'% 1 FERM.0 PHOT',F6.2,'% 1 FERM.1 PHOT') 

c************ 

ENDIF 

C -------------------------------------------------------- 
C DETERHINE STRUCTURE FUNCTIONS (PROBABILITY OF 
C FINDING FERNION WITH PLUS MOMENTUM FRACTION X). 
C -------------------------------------------------------- 
C 

40 

41 

C 

42 

C 

43 

FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER 
KBIG -0 
DO 40 ISTATE - 1,NSTATF.S 

K = KFERN(ISTATE) 
IF (K .GT. KBIG) KBIG = K 

CONTINUE 
KSMALL = KPLUSTOT 
DO 41 ISTATE = 1,NSTATES 

K = KFERM(ISTATE) 
IF (K .LT. KSMALL) KSMALL = K 

CONTINUE 

INITIALIZE STRUCTURE FUNCTION (WAVEFCN) TO ZERO 
DO 42 KPLUS = KSMALL,KBIG,2 

WAVEFCN(KPLUS) = O.ODO 
CONTINUE 

LOOP OVER FOCK STATE COMPONENTS 
DO 43 ISTATE - 1,NSTATES 

WAVEFCN(KFERM(ISTATE)) 
$ = WAVEPCN(KFERH(ISTATE)) 
$ + REALWF(ISTATE)**a + AIMWF(ISTATE)**2 

CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
C NOTE: IMAGEN PRINTS up TO 80 CHARACTERS ACROSS. 
C NEED TO DECLARE LRECL 84 IN FILEDEF TO DO SO. 
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WRITE (15,940) 
$ (INT(.~+~G~G~.~*(DFLOAT(~LUS)/DFLOAT(KPLUSTOT))), 
$ KPLUS-KSMALL,KBIG,2) 

940 FORMAT (' */* */* '/ 
$' STRUCTURE FUNCTION:*/* '/ 
$' NOTES: 1) VALUES SHOULD BE MULTIPLIED BY l/l0000 (***=lOOOO)'/ 
$' */* X,=*,14(1X,14)) 

WRITE (15,941) 
941 FORMAT ( 

$' ~,--~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~* 1 
$ *-------------* 1 

WRITE (15,942) 
$ (INT(.5+1GGDG.O*WAVEFCN(KPLUS)),KPLUS=KSMALL,KBIG,2) 

942 FORMAT (8X,14(1X114)) 
c************ 

C -------------------------------------------------------- 
C PLOT WAVE FUNCTION. 
C-------------------------------------------------------- 
C FIGURE OUT WHAT VALUES FOR FERMION KX TO RUN OVER 

KXBIG = 0 
DO 50 ISTATE = 1,NSTATES 

KX = KXFERM(ISTATE) 
IF (KX .GT. KXBIG) KXBIG = KX 

50 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
C NOTE: IMAGEN PRINTS Up TO 80 CHARACTERS ACROSS. 
C NEED TO DECLARE LRECL 84 IN FILEDEF TO DO SO. 

WRITE (15,950) 
950 FORMAT (' */' '/ 

$' WAVE FUNCTION SQUARED AT KY=O:'/' '/ 
$' NOTES: 1) VALUES SHOULD BE MULTIPLIED BY l/l0000 (***=lOOOO)'/ 
$' 2) KX IS IN UNITS OF ELECTRON MASS'/' ') 

c************ 

C LOOP OVER VALUES OF KX 
DO 53 KX = KXBIG,-KXBIG,-1 

C INITIALIZE WAVE FUNCTION TO ZERO 
DO 54 KPLUS = KSMALL,KBIG,2 

WAVEFCN(KPLUS) = O.ODG 
54 CONTINUE 

LOOP OVER FOCK STATE COMPONENTS 
DO 56 ISTATE = 1,NSTATES 

IF ((KXFERN~ISTATE) .EQ. KX) .AND. 
$ (KYFERM~ISTATE) .EQ. 0) ) THEN 

WAVEFCN(KFERM(ISTATE)) 

: 
= ~A~~CN(KFERM(ISTATE)) 
+ REALwF(IsTATE)**~ + AIMWF(ISTATE)**~ 

ENDIF 
56 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 

176 



WRITE (15,952) INT(1OOOO.O*DFLOAT(KX)*PI/ALPERP), 
f (INT(.5+100OO.O*WAVEFCN(KPLUS)),KPLUS=KSMALL,KBIG,2) 

952 FORMAT (1X,15; t',l4(lX,I4)) 
c************ 

53 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
wRm (15,956) 

f (INT(.~+~~OOO.~*(DFLOAT(KPLUS)/DFLOAT(KPLUSTOT))), 
$ KPLUS=KSKALL,KBIG,2) 

956 FORMAT ( 
I------ ------------ - ----------------------------------- * 

:: ------------- ', 
S' KX X',l4(lX,I4)) 

c************ 

RETURN 
END 
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COULOMB1 
-------- 

C --------------------------------------------------------- 

C THIS ROUTINE HANDLES INPUT, VARIABLE PARMETERS FOR COULOMB. 
C IT GENERATES INPUT FILES FOR THE ROUTINE COULOMB. 
C INPUT PARAMETERS ARE READ FROM THE FILE COULOMB DATA. 
C MASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECM.ASS. 
C 
C IBC = 1 MEANS KEEP ONLY ODD FERMION KPLUS 
C = 2 MEANS KEEP ONLY EVEN FERMION KPLUS 
C 
C FERMIONS ASSURED TO HAVE CHARGE -1. 
C 
C CODES HAVE BEEN VECTORIZED ON AN IBM 3090 FORTRAN COMPILER. 
C--------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,• -Z) 
IMPLICIT INTEGER (I-N) 

C --------------------------------------------------------- 
C OPEN FILES. 
C --------------------------------------------------------- 

OPEN (UNIT=l3,FILE='qed.data*,8TATUS=*UNKNOWN') 
OPEN (UNIT=20,FILE-'file2O.file',STATUS=,*UNKNOWN') 

PI = 3.141592653589793DO 

C --------------------------------------------------------- 

C READ INPUT DATA. 
C NOTE: COVARIANT CUT-OFF SCHEME PRESENTLY ASSURES KXTOT,KYTOT = 0. 
C CAN GET OTHER VALUES FOR KXTOT,KYTOT BY BOOSTING 
C (SEE NOTES ON BOUND STATES). 
C NASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 
C --------------------------------------------------------- 

READ (13,*) KPLUSBEG 
READ (13,*) KPLUSEND 
READ (13,*) KXTOT 
READ (13,*) KYTOT 
READ (13,*) ICHARGE 
READ (13,*) IBC 
READ (13,*) ALPHAG 
READ (13,*) AIAMBBEG 
READ (13,*) ALAMBEND 
READ (13,*) ALPERBEG 
READ (13,*) ALPEREND 
READ (13,*) EPSILBEG 
READ (13,*) EPSILEND 
READ (13,*) PARAl 
READ (13,*) PARA 
READ (13,*) PARAS 
READ (13,*) PARA 
READ (13,*) PARA 
READ (13,*) PHOTMASS 
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READ (13,*) RPHOMASS 
READ (13,*) FERMMASS 
READ (13,*) RFERMASS 
READ (13,*) IUVFERM 
READ (13,*) IPRIWF 
READ (13,*) IPRIOUT 

C --------------------------------------------------------- 
C CHECK IF VALUES OF INPUT DATA ARE O.K. 
C --------------------------------------------------------- 

IF (ICHARGE .NE. 0) THEN 
WRITE (6,919) 

919 FORMAT (' NSG FROM COULOMBI: ICHARGE MUST BE 0.') 
STOP 

ENDIF 

IF (KPLUSBEG .LE. 0) THEN 
WRITE (6,920) 

920 FORMAT (’ MSG FROM COULOMBI: KPLUSBEG MUST BE .GT. 0') 
STOP 

ENDIF 

IF (KPLUSEND .LE. 0) THEN 
WRITE (6,921) 

921 FORMAT (' NSG FROM COULOMBI: KPLUSEND MUST BE .GT. 0') 
STOP 

ENDIF 

IF ((IBC .NE. 1) .AND. 
$ (IBC .NE. 2)) THEN 

WRITE (6,922) 
922 FORMAT (' MSG FROM COULOMBI: IBC MUST BE 1 OR 2') 

STOP 
ENDIF 

IF ((IBC .EQ. 2) .AND. (NOD(KPLUSBEG.2) .EQ. 1)) THEN 
WRITE (6,924) 

924 FORMAT(' MSG FROM COULOMBI: KFLUSBEG MUST BE EVEN IF IBC = 2') 
STOP 

ENDIF 

IF ((IBC .EQ. 2) .AND. (MOD(KPLUSEND,2) .EQ. 1)) THEN 
WRITE (6,925) 

925 FORMAT(' NSG FROM COULOMBI: KPLUSEND MUST BE EVEN IF IBC = 2') 
STOP 

ENDIF 

IF ((ICHARGE .EQ. 0) .AND. (NOD(KPLUSBEG,O) .EQ. 1)) THEN 
WRITE (6,926) 

926 FORMAT (' NSG FROM COULOMBI:', 
$ * KPLUSBEG MUST BE EVEN IF ICHARGE - 0') 

STOP 
ENDIF 

IF ((ICHARGE .EQ. 0) .AND. (MOD(KPLUSEND,2) .EQ. 1)) THEN 
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WRITE (6,927) 
927 FORMAT (' MSG FROM COULOMBI:', 

$ * KPLUSEND MUST BE EVEN IF ICHARGE = 0') 
STOP 

ENDIF 

IF ((KXTOT .NE. 0) .OR. 
t (~IYToT .NE. 0)) THEN 

WRITE (6,930) 
930 FORMAT (' MSG FROM COULOMBI: KXTOT AND KYTOT MUST BE'/ 

: 
* EQUAL TO ZERO. OTHER VALUES CAN BE OBTAINED*/ 
* BY LORENTZ BOOSTING.*) 

STOP 
ENDIF 

IF (EPSILON .LT. O.ODO) THEN 
wRm (6,931) 

931 FORMAT (' NSG FROM COULOMBI: EPSIOON MUST BE .GE. O.ODO*) 
STOP 

ENDIF 

IF ((IUVFERN .NE. 0) .AND. (IUVFERM .NE. 1)) THEN 
WRITE (6,932) 

932 FORMAT (' NSG FROM COULOMBI: IUVFERM MUST BE 0 OR I') 
STOP 

ENDIF 

C --------------------------------------------------------- 
C GENERATE PARAMETERS FILE. 
C--------------------------------------------------------- 

WRITE (20,954) KPLUSBEG,KPLUSEND,KXTOT,KYTOT,ICHARGE,IBC 
WRITE (20,955) ALPHAG 
WRITE (20,955) ALAMBBEGgALAMBEND 
WRITE (20,955) ALPERBEGDALPEREND 
WRITE (20,955) EPSILBEG,EPSILEND 
WRITE (20,955) PARAl 
WRITE (20,955) PARA 
WRITE (20,955) PARA 
WRITE (20,955) PARA 
WRITE (20,955) PARAS 
WRITE (20,955) PHOTMASS 
WRITE (20,955) RPHOMASS 
WRITE (20,955) FERMMASS 
WRITE (20,955) RFERMASS 
WRITE (20,954) IUVFERM,IPRIWF,IPRIOUT 
FORMAT (618) 
FORMAT (2D30.22) 

STOP 
END 
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COULOMB 
---v--e 

C --------------------------------------------------------- 
C THIS ROUTINE EVALUATES THE HAMILTONIAN MATRIX BETWEEN 
C VARIATIONAL STATES. 
c 
C PJINUS IS DEFINED TO BE L/PI*HAMILTONIAN. 
C 
C MASSES ARE IN UNITS OF ELECMASS. 
C LENGTHS ARE IN UNITS OF l/ELECMASS. 
C 
C FERMIONS ASSUMED TO HAVE CHARGE -1. 
C --------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALWF(222222). 
$ KFERN(222222),KXFERM(222222),KYFERM(222222) 

C --------------------------------------------------------- 
C FOLLOWING ARRAY NEEDED IN SUBROUTINE PRINTC. 
C --------------------------------------------------------- 

DIMENSION WAVEFCN(4444) 

LOGICAL TOOMANY 

C--------------------------------------------------------- 

C OPEN FILES. 
C --------------------------------------------------------- 

OPEN (UNIT=l4,FILE='stateec.output',STATUS=*UNKNOWN*) 
OPEN (UNIT=15,FILE='coulomb.output',STATUS=*UNKNOWN') 
OPEN (UNIT=l6,FILE='coulomb.diagnoee',STATUS,=*UNKNOWN*) 
OPEN (UNIT=20,FILE='file2O.file',STATUS=*UNKNOWN') 
OPEN (UNIT=24,FILE~'ke.file*,STATUS,='UNKNOWN') 
OPEN (UNIT=25,FILE='pe.file',STATUS=*UNKNOWN*) 
OPEN (UNIT=26,FILE~'energy.file',STATUS=*UNKNOWN*) 

C--------------------------------------------------------- 

C DIM(REALWF,KFERM,...) = NSIZE. NSIZE SHOULD BE CHOSEN 
C .GE. THE NUMBER OF POCK STATES (NSTATES). 
C DIM(WAVEFCN) = KPLUSMAX. KPLUSMAX SHOULD BE CHOSEN 
C .GE. KPLUSTOT. 
C--------------------------------------------------------- 

NSIZE = 222222 
KPLUSMAX = 4444 
IF (KPLUSEND .GT. KPLUSMAX) THEN 

WRITE (15,QOO) KPLUSMAX 
900 FORMAT(' KPLUSTOT .GT. KPLUSMAX =',IS/ 

$ * RE-COMPILE QEDVAR WITH LARGER VALUE OF KPLUSMAX.') 
STOP 

ENDIF 

PI = 3.141592653589793DO 
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C--------------------------------------------------------- 

C READ PARAMETERS FILE (FILE20). 
C _--_-_-__------------------------------------------------ 

READ (20,904) KPLUSBEG,KPLUSEND,KXTOT,KYTOT,ICHARGE,IBC 
READ (2O,QG5) ALPHAG 
READ (2O,QG5) ALAMBBEG,ALAMBEND 
READ (20,905) ALPERBEG'ALPEREND 
READ (20,905) EPSILBEG,EPSILEND 
READ (20,905) PARAl 
READ (20,905) PARA 
READ (20,905) PARAS 
READ (2OgQO5) PARA 
READ (20,905) PARAS 
READ (20,905) PHOTNASS 
READ (20,905) RPHOMASS 
READ (20,905) FERMMASS 
READ (20,905) RFERMASS 
READ (20,904) IUVFERM,IPRIWF,IPRIOUT 

904 FORMAT (618) 
905 FORMAT (2D30.22) 

WRITE (24,914) ALPHAG 
914 FORMAT (' ALPHAG =',F9.4/ 

: 
* KPLUSTOT ALAMBDA ALPERP EPSILON K-E '/ 
1 ~~~~~~~~,~~~~~~~~~~~_,___,____,_,_______~~~~~~~~~~~~~~~' 1 

WRITE (25,915) ALPHAG 
915 FORMAT (' ALPHAG =',F9.4/ 

: 
' KPLUSTOT ALAMBDA ALPERP EPSILON PE '/ 
1 -------------------------------------------------------') 

wRm (26,916) AL~I~AG 
916 FORMAT (' ALPHAG =',F9.4/ 

t ' KPLUSTOT ALAMEDA ALPERP EPSILON ENERGY '/ 
$ * ~~~~~~~~~~~~~~~~~~~~______________,_____--~------------* > 

DO 100 KPLUSTOT = KPLUSBEGgKPLUSEND.8 
DO 100 ALAMBDA = AI&BBEG,ALAMBEND,.O5 
DO 100 ALPERP = ALPERBEG'ALPEREND, 4.0 
DO 100 EPSILON = EPSILBEG,EPSILEND,.Ol 

C --------------------------------------------------------- 
C DETERMINE START CPU TIRE. 
C _______-___-_-------------------------------------------- 

CALL VTTIME(IVIRTIME,ITOTTIKE) 
START = DFLOAT(ITOTTIME)/1GG.ODO 

C --------------------------------------------------------- 
C CALL SUBROUTINE STATESC TO GENERATE STATES CONSISTENT 
C WITH K, ALPERP, ALAMBDA. 
C --------------------------------------------------------- 

CALL STATESC(NSIZE,KPLUSTOT,IBC, 

f 
ALAMBDA,AL.PERP, 
RFERMASS, 

: 
NSTATES,TOOMANY, 
KFERM,KXFERM,KYFERM) 

IF (TOOMANY) QUEEN 
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WRITE (15,918) NSIZE 
918 FORMAT (' NUMBER OF STATES GENERATED BY SUBROUTINE*, 

: 
' STATESC .GT. NSIZE ,=*,15/ 
* RE-COMPILE COULOMB WITH LARGER VALUE OF NSIZE') 

STOP 
ENDIF 

CALL VTTIKE(IVIRTIME,ITOTTIME) 
TIME1 = DFLOAT(ITOTTIME)/1DG.OW-START 

C --------------------------------------------------------- 

C CALL SUBROUTINE WF TO WORK OUT VARIATIONAL WAVE-FUNCTION. 
C--------------------------------------------------------- 

CALL WF(REALWF,NSIZE,NSTATES, 
$ ALPHAG,KPLUSTOT,ALPERP, 

: 
FERMMASS, 
PARAl,PARA2,PARA3,PARA4,PARA5, 

$ KFERM , KXFERM , KYFERM) 

C************DIAGNOSTICS: PRINT OUT RESULTS FROM WF 
RPERP - ALAMBDA*ALPERP/PI 
XALPERP =ALPERP*ALPHAG 

: 
920 

: 

: 

: 

: 

: 
t 

WRITE (14,920) KPLUSTOT,ICHARGE,IBC, 
ALPHAG,ALAMBDA,ALPERP,XALPERP,RPERP,EPSILON,PHOTMASS,RPHOMASS, 
FERMMASS,RFERMASS,NSTATES 

FORMAT (' INPUT (MASSES ARE IN UNITS OF ELECMASS):'/ 
* KPLUSTOT ICHARGE IBC =',314/ 
* ALPHAG =',F11.4/ 
' ALAMBDA =',Fll.4/ 
* ALPERP =',Fl1.4,'*1/ELECMASS =',F8.4, 

'*BOHR (RPERP =*,F8.4;)*/ 
* EPSILON =',Fll.4/ 
* PHOTMASS =*,Fll.4/ 
* RPHOMASS =',Fll.l/ 
' FERMMASS =',Fl1.4/ 
* RFERMASS =',Fll.4/' '/ 
* # OF POCK STATES -',19) 

IF (IPRIWF .EQ. 1) THEN 
WRITE (14,921) 

921 FORMAT (' '/ 
$ ' STATE 1 FERMION I REALwp'/ 

: 
1 1 K+ KX KY 1 '/ 
* ---------,-----,---,_______,___( 1 
DO 20 ISTATE-1,NSTATES 

WRITE (14,925) ISTATE, 
E KFERM(ISTATE),KXFERM(ISTATE),KYFERM(ISTATE),REALWF(ISTATE) 

925 FORMAT (16,3~,13,l~,13,l~,13,4~,~7.4) 
20 CONTINUE 

ENDIF 
c************ 

CALL VTTIME(IVIRTIME,ITOTTIME) 
TIRE2 = DFLOAT(ITOTTIME)/lGO.ODG-START-TIME1 
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C --------------------------------------------------------- 
C CALL SUBROUTINES KE, PE 
C TO FIND HAMILTONIAN MATRIX ELEMENT. 
C --------------------------------------------------------- 

CALL KE(RENSQHO,NSIZE,NSTATES,REALWF, 

: 
KPLUSTOT,ALPERP,FERMMASS, 
KFERM,KXFERM,KYFERM) 

CALL VTTIME(IVIRTIME,ITOTTIME) 
TIME3 = DFLOAT(ITOTTIME>/lOO.ODO-START-TIMEl-TIM2 

CALL PE(REMSQH2,IUVFERM, 
8 NSIZE,NSTATES,REALwF, 
$ ALPHAG,KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 

: 
PHOTMASS,FERMMASS,RPHOMASS,RFERMASS, 
KFERM,KXFERM,KYFERN) 

CALL VTTIME(IVIRTIME,ITOTTIME) 
TIME4 = DFLOAT(ITOTTIME)/1W.ODO-START-TIMEl-TIME2-TIME3-TIME4 

REMSQHO = DFLOAT(KPLUSTOT)*RENSQHO 
REMSQHP = DFLOAT(KPLUSTOT)*RENSQH2 

C --------------------------------------------------------- 

C CALL SUBROUTINE PRINTC TO PRINT OUT RESULTS. 
C --------------------------------------------------------- 

IF (IPRIOUT .EQ. 1) 
f CALL PR1NTC(WAVEFCN1T1ME1,T1ME2,T1ME3,T1ME4, 

r 
KPLUSTOT,ICHARGE,IBC,NSTATES,NSIZE, 
KPLUSMA.X,ALPHAG,ALAMBDA,ALPERP,EPSILON, 

: 
PARAl,PARA2,PARA3,PARAI,PARAS, 
PHOTMASS,RPHOMASS,FERMMASS,RFERMASS, 

: 
RENSQHO,REMSQH2, 
IwLwF, 

f KFERM,KXFERM,KYFERM) 

WRITE (24,930) KPLUSTOT,AIAMBDA,ALPERP,EPSILON,RENSQHO-4.ODO 
WRITE (25,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,RENSQH2 
w~mz (26,930) KPLUSTOT,ALAMBDA,ALPERP,EP~ILON, 

$ REMSQHO+REMSQH2-4.ODO 
930 FORMAT (3X,I4,2X,3F11.4,Fl5.10) 

100 CONTINUE 

STOP 
END 

SUBROUTINE STATESC(NSIZE,KPLUSTOT,IBC, 

: 
ALAMBDA,ALl’ERP, 
RFERMASS, 

: 
NSTATES,TOOMANY, 
KFERM,KXFERM,KYFERM) 

C--------------------------------------------------------- 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 

THIS SUBROUTINE GENERATES THE POCK STATES CONSISTENT WITH 
KPLUSTOT, ALAMBDA, ALPERP. 
FOR Q=-1 ONLY KEEP STATES WITH 1 FERMION AND 0 PHOTONS. 
FOR Q=O ONLY KEEP STATES WITH 1 FERMION PAIR AND 0 PHOTONS. 

OUTPUT VARIABLES: 
NSTATES NUMBER OF FOCK STATES. 

TOOMANY LOGICAL VARIABLE. TOOMANY=TRUE IF NSTATES .GT. NSIZE. 
TOOMANY=FALSE IF NSTATES .LE. NSIZE. 

KFERH, KPLUS, KX, KY OF FERMION IN THE POCK STATES. 
KXFERM, ARRAYS OF DIMENSION NSIZE. 
KyFm* 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 

KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

IBC ONLY HAVE EVEN FERNION KPLUS IF IBC=2, 
ODD FERMION KPLUS IF IBC=l. 

ALAMBDA VALUE OF CUT-OFF MASS. 

ALPERP SIZE OF KPERP GRID. 

RFERMASS FERMION MASS TO BE USED IN COVARIANT CUT-OFF. 

USAGE NOTES: 
1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING 

AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE 
CALCULATION OF INVARIANT MASSES. 

2) FOCK STATES ARE GENERATED WITH KPERP-0. 
3) FERMION CHARGE IS ASSUMED TO BE -1. 
4) MASSES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
5) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C --------------------------------------------------------- 
IMPLICIT DOUBLE PRECISION (A-H,• -Z) 
IMPLICIT INTEGER (I-N) 
DIMENSION 

$ KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE) 

LOGICAL TOOMANY 

PI = 3.141592653589793DO 
SHALL = l.OD-13 

C ------------------__------------------------------------- 
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C INITIALIZE VARIOUS ARRAYS.TO ZERO. 
C _____________-___-_-------------------------------------- 

DO 10 I = 1,NSIZE 
KFERN(1) = 0 
KXFERM(1) = 0 
KYFERM(1) = 0 

10 CONTINUE 

TOOMANY = .FALSE. 

C --------------------------------------------------------- 
C GENERATE STATES WITH 1 FERMION PAIR, 0 PHOTONS (ICHARGE=O). 
C RECALL THAT KPLUSTOT RUST BE EVEN FOR ICHARGE = 0. 
C --------------------------------------------------------- 

ISTATE = 0 

C************DIAGNOSTICS 
C WRITE (16,920) ALAMBDA** 
C920 FORMAT (' */* 1 PAIR STATES LAMBDA**2 =*,F8.3/ 
C $' KPLUSF KPLUSA KXF KYF KXA KYA INVMASS'/ 
c $' ___~_---_~_~----_-_-~~~~~~----~~~~~~~~~~~ 'I 
c************ 

C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER. 
IF (IBC .EQ. 1) THEN 

IFIRSTKF = 1 
ILASTKF = KPLUSTOT - 1 

ELSEIF (IBC .EQ. 2) THEN 
IFIRSTKF = 2 
ILASTKF = KPLUSTOT - 2 

ENDIF 

DO 20 KPLUSF=IFIRSTKF,ILASTKF,2 
KPLUSA = KPLUSTOT-KPLUSF 
XF = DFLOAT(KPLUSF)/DFLOAT(KPLUSTOT) 
XA = DFLOAT(KPLUSA)/DFLOAT(KPLUSTOT) 

C ONLY CONTINUE IF SUM(MASS**P/X) .LE. LAMBDA**P. 
AINVMASS = RFERMASS**2/XF + RFERMASS**2/XA 

C************DIAGNOSTICS 
C WRITE (16,921) KPLUSF,KPLUSA,AINVRASS 
CQ21 FORMAT (3~~14~3~~14~21~~~8.3) 
c************ 

IF (AINVRASS .GT. ALAmDA**2+sruLL) GOTO 20 

C FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS. 
NLGUMENT = ALAMBDA**2*XF*XA - RFERMASS**P 
IF (ARGUMENT .LT. SMALL) THEN 

KPFMAX-0 
ELSE 

KPFMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) + SMALL) 
ENDIF 
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DO 22 KXF--KF’FMAX,KPFMAX 
DO 22 KYF--KPFHILX,KFFMAX 

KXA = -KxF 
KYA = -KYF 
AKPFSQ = (PI/ALPERP)**2*(DFLOAT(KXP**2) + DFLOAT(KYF**P)) 

C KEEP STATE IF INVMASS**2 .LE. LAMBDA**2. 
AINVMASS = (AKPFSQ + RFERRASS**~)/~F 

f + (AKPFsQ + ~~~~biAss**a)/xA 

C************DIAGNO8TICS 
C WRITE (16,922) KXP,KYF,K~A,KYA,AIN~SS 
C922 FORMAT (l5~,14,l~,14,lx,I4,lx,I4,lx,F8.3) 
c************ 

r~ (AINVRASS .GT. ALAh5DA**2+shmL) ~0T0 22 

ISTATE = ISTATE + 1 
IF (ISTATE .GT. NSIZE) THEN 

TOOMANY = .TRUE. 
RETUBN 

ENDIF 
KFERM(IsTATE) = KPLUSF 
KXPERM(ISTATE) = KXP 
KYFERR(ISTATE) = KYF 

22 CONTINUE 
20 CONTINUE 

NSTATES = ISTATE 
RETURN 
END 

SUBROUTINE WF(REALWF,NSIZE,NSTATES, 

: 
ALPHAG,KPLUSTOT,ALPERP, 
FERMMASS, 

: 
PARAl,PARA2,PARA3,PARAI,PARA5, 
KFERM,K)[PERM,KYFERM) 

C ----------__-___________________________----------------- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION 
FOR THE INPUTTED FOCK STATES. 

OUTPUT VARIABLES: 
REALWF REAL PART OF NORMALIZED POCK STATE WAVE FUNCTIONS. 

INPUT VARIABLES: 
NSIZE ABRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 

NSTATES NUMBER OF FOCK STATES. 

ALPHAG VALUE OF COUPLING CONSTANT (=G**2/4PI). 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

KPLUSTOT 

ALPERP 

PERMMASS 

PARAl, 
PARA2, 
PARAS, 
PARAQ, 
PARAS 

mm, 
KXFERM, 
KYFERM , 

TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

SIZE OF KPERP GRID. 

FERMION MASS IN LACRANGIAN. 

VARIATIONAL PARAMETERS (PARA4, PARA NOT USED). 

KPLUS, KX, KY OF FERMION IN THE FOCK STATES. 
ARRAYS OF DIMENSION NSIZE. 

USAGE NOTES: 
1) FERMION CHARGE IS ASSUMED TO BE -1. 
2) MASSES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
3) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C --------------------------------------------------------- 
IMPLICIT DOUBLE PRECISION (A-H,O-2) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALWF(NSIZE), 
$ KFERM(NSIZE),KXFERh!(NSIZE),KYFERh!(NSIZE) 

PI = 3.141592653589793DO 
PERPFACT = PI**P/ALPERP**P 
AMSQARED = FERMMASS**2*(2.ODO - .25*ALPRAG**2)**2 

C AMSQARED = PERtMASS** 
C $ *(2.ODO + .SDO*(DSqRT(l.ODO - ALPRAG**P) - l.ODO))**2 

C --------------------------------------------------------- 
C INITIALIZE TO ZERO. 
C --------------------------------------------------------- 

DO 50 ISTATE = 1,NSTATES 
~~~(IsTATE) = o.oDo 

50 CONTINUE 

C --------------------------------------------------------- 
C YORK OUT VARIATIONAL WAVE FUNC FOR ICRARGE-0. 
C --------------------------------------------------------- 

DO 100 ISTATE = 1,NSTATES 
AKPERPSQ = PERPFACT*( DFLOAT(KXFERM(ISTATE))**2 

$ +DFLOAT(KYFERM(ISTATE))**2) 
x= DFLOAT(KFERM(ISTATE))/DFLOAT(KPLUSTOT) 

REALWF(ISTATE) = +l.ODO/ 

: 
(( PARAl*AMSQARED 

-(AKPERPSQ+PA.RA2*FERMMASS**2)/(X*(l.ODO-X)))**2)**PARA3 
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100 CONTINUE 

C --------------------------------------------------------- 
C NORMALIZE VARIATIONAL WAVE FUNCTION. 
C --------------------------------------------------------- 

WFNORM = O.ODO 
DO 300 ISTATE = 1,NSTATES 

VFNORM = WFNORM + REALVF(ISTATE)**2 
300 CONTINUE 

VFNORM = DSQRT(VFNORM) 
DO 301 ISTATE = l,NSTATES 

REALWF(ISTAT'E) = REALWF(ISTATE)/UFNORM 
301 CONTINUE 

RETURN 
END 

SUBROUTINE KE(REMSQHO,NSIZE,NSTATES,REALWF, 
$ KPLUSTOT,ALPERP,FERMMASS, 
$ KFERM,KXFERM,KYFERM) 

C--------------------------------------------------------- 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN 
BETWEEN THE INPUTTED VARIATIONAL STATES. 

OUTPUT VARIABLES: 
REMSqHO CONTRIBUTION TO MATRIX ELEMENT FROM HO. 

INPUT VARIABLES: 
NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 

CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTATES. 

NSTATES NUMBER OF FOCK STATES. 

REALWF REAL PART OF POCK STATE WAVE FUNCTIONS. 

ALPERP SIZE OF KPERP GRID. 

FERMMASS FERMION MASS IN LAGRANGIAN. 

-, KPLUS, KX, KY OF FERMION IN THE FOCK STATES. 
KXFERM, ARRAYS OF DIMENSION NSIZE. 
KYFERM 

USAGE NOTES: 
1) NAMES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
2) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C --------------------------------------------------------- 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 
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DIMENSION RF.ALWF(NSIZE), 
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE) 

PI = 3.141592653589793DO 
PERPFACT = PI**2/ALPERP**2 

C --------------------------------------------------------- 
C INITIALIZE TO ZERO. 
C--------------------------------------------------------- 

REMSQHO = o.oDo 

C--------------------------------------------------------- 

C LOOP OVER DIAGONAL MATRIX ELEMENTS. 
C --------------------------------------------------------- 

DO 10 ISTAT'E - 1,NSTATES 
IF (REALWF(ISTATE) .NE. 0.0~0) THEN 

INITIALIZE TO ZERO. 
REALHO = O.ODC 

AKPERPSQ = PERPFACT*DFLOAT(KXFERM(ISTATE)**2+KVFERM(ISTATE)**2) 
KAFER = KPLUSTOT - KFERM(ISTATE) 
REALHO = REALHO + (FERMMASS**2 + AKPERPSQ) 

f *(~.oDo/DFLoAT(K~ERM(ISTATE)) + l.oDo/DFLoAT(KAFER)) 

C************DIAGNOSTICS 
C WRITE (16,910) ISTATE,REALHO 
c910 FORMAT (' ISTATE REALHO =',17,Fl1.4) 
c************ 

REMSQHO = REHSQHO 
$ +REALHO~ALWF(ISTATE)**~ 

C FINISHED WITH THIS POCK STATE. GO TO NEXT FOCK STATE. 
ENDIF 

10 CONTINUE 

RETURN 
END 

SUBROUTINE PE(REMSQH2,IUVFERM, 

: 
NSIZE,NSTATES,REALWF, 
ALPHAG,KPLUSTOT,ALAMBDA,ALPERP,EPSILON, 

: 
PHOTMASS,FERMMASS,RPHOMASS,RFERMASS, 
KFERM,KXFERM,KYFERM) 

C--------------------------------------------------------- 
C THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN 
C BETWEEN THE INPUTTED VARIATIONAL STATES. 
C 
C 
C OUTPUT VARIABLES: 
C REMSQHZ CONTRIBUTION TO MATRIX ELEMENT FROM INST. PHOTON. 
C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 

INPUT VARIABLES: 
IUVFERM W CUT-OFF APPLIED TO FERMIONS, ANTI-FERMIONS ONLY. 

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN 
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL 
TO NSTAT'ES. 

NSTATES NUMBER OF POCK STATES. 

REALWF REAL PART OF POCK STATE WAVE FUNCTIONS. 

ALPHAG VALUE OF COUPLING CONSTANT (=G**2/4PI). 

KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES. 

ALAMBDA VALUE OF CUT-OFF MASS. 

ALPERP SIZE OF KPERP GRID. 

EPSILON MINIMUM PHOTON INVMASS**2. 

PHOTMASS PHOTON MASS IN LAGRANGIAN. 

FERMMASS FERMION MASS IN LAGRANGIAN. 

RPHOMASS PHOTON MASS TO BE USED IN COVARIANT CUT-OFF. 

RFERMASS FERMION MASS TO BE USED IN COVARIANT CUT-OFF. 

KFERM, KPLUS, KX, KY OF FERMION IN THE FOCK STATES. 
KXFERM, ARRAYS OF DIMENSION NSIZE. 
KWERM 

USAGE NOTES: 
1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING 

AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE 
CALCULATION OF INVARIANT MASSES. 

2) FERMION CHARGE IS ASSUMED TO BE -1. 
3) MASSES ARE IN UNITS OF ELECMASS. 

LENGTHS ARE IN UNITS OF l/ELECMASS. 
4) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION). 

C --------------------------------------------------------- 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION REALVFCNSIZE), 
$ KFERM(NSIZE),KXFERM(NSIZE),KYFERM(NSIZE) 

SMALL = l.OD-13 
PI - 3.141592653589793DO 
PERPFACT = (PI/ALPERP)**2 
PPLUS = P.ODO*FERMMASS 
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C _____________-------------------------------------------- 

C INITIALIZE TO ZERO. 
C--------------------------------------------------------- 

RRMSQH2 - O.ODO 

C --------------------------------------------------------- 
C LOOP OVER OUTGOING POCK STATES WITH 0 PHOTONS. 
C--------------------------------------------------------- 

DO 20 IOUTSTAT = l ,NSTATES 
IF (REALWF(IOUTSTAT) .Eq. 0.0~0) GOTO 20 

C --------------------------------------------------------- 

C LOOP OVER INCOMING FOCK STATES WITH 0 PHOTONS. 
C ASSUME HAMILTONIAN IS HERMITIAN, SO ONLY NEED TO CONSIDER 
C IOUTSTAT .GE. INSTATE. 
C--------------------------------------------------------- 

DO 30 INSTATE = 1,IOUTSTAT 
IF (RRALWF(INSTATE) .EQ. 0.0~0) GOTO 30 

INITIALIZE TO ZERO. 
REALHZ = O.ODO 

KFERMI = KFERM(INSTATE) 
KXFERMI = KXFERM(INSTATE) 
KYFERMI = KYFERM(INSTATR) 
KAFERI = KPLUSTOT - KFERM(INSTATH) 
KXAFERI = -KXFERM(INSTATH) 
KYAFERI = -KYFERM(INSTATE) 
KFERMO = KFERM(IOUT8TAT) 
KXFERMO = KXFERM(IOUTSTAT) 
KYFERMO = KYFERM(IOUTSTAT) 
KAFERO = KPLUSTOT - KFERM(IOUTSTAT) 
KXAFERO = -KXFERhi(IOUTSTAT) 
KYAFERO = -KYFERM(IOUTSTAT) 

AKPERPSQ = PERPFACT*DFLOAT(KXFERMI**2 + KYFERMI**2) 
ALPERPSQ = PERPFACT*DFLOAT(KXFERMO**2 + KYFERMO**2) 
X - DFLOAT(KFERMI)/DFLOAT(KPLUSTOT) 
Y = DFLOAT(KFERMO)/DFLOAT(KPLUSTOT) 

IQX- KXFERMI - KXFERMO 
IQY = KYFERMI - KYFERMO 
QPERP8Q - PERPFACT*DFLOAT(IQX**2 + IqY**2) 

C _______-------------------------------------------------- 
C CALCULATEPOTENTIAL. 
C --------------------------------------------------------- 
C NO MATRIX ELEMENT IF KFERMI = KFERMO. 

IF @FERMI .EQ. KFERMO) GOT0 30 

IF (X .GT. Y) THEN 

C CHECK IF INVMASS**P OF INTERMEDIATE STATE IS 
C .LE. LAMHDA**P. 

192 



C 
C 
C 

C 
C 

C 
C 

C 

C 

C 
C 

IF (IUVFERM .EQ. 0) THEN 
IF (( (ALPERPSQ + RFERMASS**S)/Y 

+(AKPERPSQ + RFERMASS**a>/(l-X) 
+(QPERPSQ + RPHOMASS**2)/(X-Y)) 

.GT. ALAMHDA**2 + SMALL) GOT0 30 
ENDIF 
IF (IUVFERM .EQ. I) THEN 

IF (( (ALPERPSIJ + RFERMASS**2)/Y 
+(AKPERPSQ + RFERMASS**2)/(1-X)) 

.GT. ALAMHDA**P + SMALL) GOT0 30 
ENDIF 

QPLUS = (X-Y)*PPLus 
QMINUS = (AKPERPSQ + FRRMMASS**2)/(X*PPLUS) 

- (ALPERPSQ + FERMMASS**2)/(Y*PPLUS) 
QFEYNSQ = QPLUS*QMINUS - QPERFSQ 
Q3 = .s*(QPLus - QMINUS) 

CHOOSE ONE OF FOLLOWING CUT-OFFS: 
1) NO MATRIX ELEMENT IF INVMASS**2 OF INSTANTANEOUS PHOTON 

.LT. EPSILON. 
IF ((QPERPSQ+RPHOMASS**2)/(X-Y) .LT. EPSILON-SMALL) GOT0 30 

2) NO MATRIX ELEMENT IF Q_FR**2 .LT. EPSILON 
IF (AHS(QFEYNSQ) .LT. EPSILON-SMALL) GOT0 30 

3) NO MATRIX ELEMENT IF Q_VEC**2 .LT. EPSILON 
IF ((CjPERPSQ + Q3**2) .LT. EPSILON-SMALL) GOT0 30 

CHOOSE ONE OF FOLLOWING QSQ: 
QSQ = -QFEYNSQ 
QSQ = QPERPSQ + Q3**2 

REALH2 = REALHP - l.OW/(QSQ + PHOTMASS**2) 

ENDIF 

IF (X .LT. Y) THEN 

CHECK IF INV?dASS**2 OF INTERMEDIATE STATE IS 
.LE. LAMHDA**2. 
IF (IUVFERM .EQ. 0) THEN 

IF (( (AKPERPSQ + RFERMASS**2)/X 

: 
+(ALPERPSQ + RFERMASS**2)/(1-Y) 
+(QPERPSQ + RPHOMASS**2)/(Y-X)) 

$ .GT. ALAMHDA**2 + SMALL) GOT0 30 
ENDIF 
IF (IWFERM .EQ. I) THEN 

IF (( (AKPERPSQ + RFERMASS**2)/X 

: 
+(ALPERPSQ + RFERMASS**2)/(1-Y)) 

.GT. ALAMHDA**2 + SMALL) GOT0 30 
ENDIF 

PPLUS = (Y-x)*PPLus 
QMINUS = (AKPERPSQ + FERMMASS**2)/((1.0-X)*PPLUS) 
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C 
C 
C 

C 
C 

C 
C 

C 

C 

$ - (ALFERPSQ + FERMMASS**2)/((1.0-Y)*PPLuS) 
QFEYNSQ - QPLUS*QMINUS - QPERPSQ 
43 - .S*(QPLUS - QMINUS) 

CHOOSE ONE OF FOLLOWING CUT-OFFS: 
I) NO MATRIX ELEMENT IF INVMASS**2 OF INSTANTANEOUS PHOTON 

.LT. EPSILON. 
IF ((QPERPSQ+RPHOMASS**2)/(Y-X) .LT. EPSILON-SMALL) GOT0 30 

2) NO MATRIX ELEMENT IF Q_FR**2 .LT. EPSILON 
IF (ABS(qFEYNSQ) .LT. EPSILON-SMALL) GOT0 30 

3) NO MATRIX ELEMENT IF G_VEC**2 .LT. EPSILON 
IF ((QPERPSQ + Q3**2) .LT. EPSILON-SMALL) GOT0 30 

CHOOSE ONE OF FOLLOWING QSQ: 
WQ = -QFEYNSG 
QSQ - QPERPSQ + Q3**2 

REALHZ - REALHZ - l.ODO/(QSQ + PHOTMASS**2) 

ENDIF 

IF (REALHZ .NE. O.ODO) THEN 
REALH2 - (2.ODO*FERMMASS/DFLOAT(KPLUSTOT))**2*REALH2 
REALH2 - 2.O*REALH2/ALPERP**2 

C************DIAGNOSTICS 
C WRITE (16,920) INSTATE,IOUTSTAT,QFEYNSq,REALHP 
C920 FORMAT (' INSTATE IOUTSTAT QFEYNSQ REALH2 -',216,2Fl2.7) 
c************ 

FACT - 2.ODO 
IF (INSTATE .EQ. IOUTSTAT) FACT - l.oDo 
REMSGHZ - REMSGHP 

$ +FAcT*REALH2*ALPHAG*REALWF(IOUTSTAT)*REALWF(INsTATE) 
ENDIF 

C FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE. 
30 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE PRINTC(WAVEFCN,TIMEl,TIME2,TIME3,TIME4, 
t KPLUSTOT,ICHARGE,IBC,NSTATES,NSIZE, 
$ KPLUSMAX,~HAG,ALAMBDA,ALPERP,EPSILON, 

: 
PARAl,PARAZ,PARA3,PARAII,PARA5, 
PHOTMASS,RPHOMASS,FERMMASS,RFERMASS, 

t REMSQHO,REMSQHZ, 

: 
R=Lv, 
KFERM,KXFERM,KYFERM) 

C --------------------------------------------------------- 
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C THIS SUBROUTINE PRINTS OUT RESULTS OF PROGRAM COULOMB. 
C --------------------------------------------------------- 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

DIMENSION WAVEFCN(KPLUSMAK) 

DIMENSION REALWF~NSIZE), 
$ KFERM(NSIZE),KKFERM(NSIZE),KYFERM(NSIZE) 

LOGICAL ODDKPLUS 

PI - 3.141592653589793DO 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
RPERP - ALAMBDA*ALPERP/PI 
ZALPERP -ALPERP*ALPHAG 

WRITE (15,910) KPLUSTOT,ICHARGE,IBC, 
$ ALPHAG,ADA,ALPERP,XALPERP,RPERP,EPSILON, 
$ PHOTMASS,RPHOMASS,FERMMASS,RFERMASS, 
$ PARAl,PARAS,PARA3,PARA4,PARA5,NSTATES, 
$ TIMEl,TIME2,TIME3,TIME4, 
$ TIMEl+TIME2+TIME3+TIME4, 
$ REMSQHO-4.ODO,REMSQH2,REMSQHO+REMSQH2-4.ODO 

910 FORMAT (' INPUT (MASSES ARE IN UNITS OF ELECMASS):'/  

: 
' KPLUSTOT ICHARGE IBC -',314/ 
' ALPHAG -',Fll.4/ 

: 
’ ALAMBDA -',Fll.4/ 
' ALPERP -',Fll.4,'*l/ELECMASS -',F8.4, 

: 
'*BOHR (RPERP -',F8.4,')'/ 

' EPSILON -',Fll.4/ 

: 
' PHOTMASS -',Fll.l/ 
' RPHOMASS -',Fll.l/ 

t ' FERMMASS -',Fll.l/ 

: 
' RFERMASS -',Fl1.4/ 
' VAR PARAMETERS -',5F8.4/' '/ 

$ ' # OF FOCK STATES =‘,IQ/’ ‘/ 

: 
' CPU TIME TO FIND FOCK STATES =',F8.2,' SEC'/ 
' CPU TIME TO WORK OUT WF =',F8.2,' SEC'/ 

: 
' CPU TIME TO FIND KE =',F8.2,' SEC'/ 
' CPU TIME TO FIND PE -',F8.2; SEC'/ 

$ ' TOTAL CPU TIME USED -',F8.2,' SEC'/' '/ 
. 

: ' 
KE -',Fl5.10/ 
PE =' ,Fl5.10/ 

$ ' ENERGY -',Fl5.10) 
c************ 

C -------------------------------------------------------- 
C PLOT WAVE FUNCTION. 
C -------------------------------------------------------- 
C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER 

KBIG - 0 
DO 40 ISTATE - 1,NSTATES 

K - KFERM(ISTATE) 
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IF (K .GT. KBIG) KBIG - K 
40 CONTINUE 

KSMALL - KPLUSTOT 
DO 41 ISTATE - 1,NSTATES 

K - KFERM(ISTATE) 
IF (K .LT. KSMALL) KSMALL - K 

41 CONTINUE 

C FIGURE OUT WHAT VALUES FOR FERMION KX TO RUN OVER 
KXBIG - 0 
DO 50 ISTATE - 1,NSTATES 

KX - KXFERM(ISTATE) 
IF (KX .GT. KXBIG) KXBIG - KX 

50 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
C NOTE: IMAGEN PRINTS UP TO 80 CHARACTERS ACROSS. 
C NEED TO DECLARE LRECL 84 IN FILEDEF TO DO SO. 

WRITE (15,950) 
950 FORMAT (' '/' '/ 

$' WAVE FUNCTION SQUARED AT KY-O:'/' '/ 
$' NOTES: I> VALUES SHOULD BE MULTIPLIED BY l/l0000 (***=lOOOO)'/ 
$' 2) KX IS IN UNITS OF ELECTRON MASS'/' ') 

c************ 

C LOOP OVER VALUES OF KX 
DO 53 KX - KXBIG,-KXBIG,-1 

C INITIALIZE WAVE FUNCTION TO ZERO 
DO 54 KPLUS - KSMALL,KBIG,2 

WAVEFCN(KPLUS) - O.ODO 
54 CONTINUE 

C LOOP OVER POCK STATE COMPONENTS 
DO 56 ISTATE - 1,NSTATES 

IF ((KXFERM(ISTATE) .EQ. KX) .AND. 
$ (KYFERM(ISTATE) .Eq. 0) ) THEN 

WAVEFCN(KFERM(ISTATE)) 

: 
- ~AVEFCN(KFERM(ISTATE)) 
+ REALWF(ISTATE)**2 

ENDIF 
56 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
WRITE (15,952) INT(lCCOO.O*DFLOAT(KX)*PI/ALPERP), 

f (INT(.~+~~C~~.O*~AVEFCN(KPLUS)),KPLUS=KSMALL,KBIG,~) 
952 FORMAT (1X,15,' 1',14(lX,I4)) 

c************ 

53 CONTINUE 

C************DIAGNOSTICS: RESULTS FROM QEDVAR 
WRITE (15,956) 

$ (INT(.5+lCCCC.0*(DFLOAT(KPLUS)/DFLOAT(KPLUSTOT))), 
$ KPLUS=KSMALL,KBIG,2) 
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956 FORMAT ( 
--------------------------__--____,___,_---------------1 

:: ---- ---I ----- ', 1 

$' KX X1,14(1X,14)) 
c************ 

RETURN 
END 
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TABLE CAPTIONS 

1: A comparison of light-cone and equal-time quantization. 

2: Definitions in light-cone quantization. 

- - 
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TABLE 1 

Instant Form Front Form 

Hamiltonian H=dm+V p- = 
PT +m2 

P+ +v 
e 

Conserved quantities E, p’ P-, p+, FL 

Moment a P*<>O P+ > 0 

Bound state equation H$ = E$ P+P-$ = M21c, 

Vacuum Complicated Trivial 
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TABLE 2 

Variables 

- 

Covariant notation 

T = light-cone time = s+ = x0 + x3 

X- = light-cone position = x0 - x3 
r- - e 

51 = (xl, x2) 

Ap = 
( 

A+, A-, & 
> 

IO 2 0 0’ 

Metric 

Dot product X-Y = X%7puY v-1 
-2 ( x+y- +x-y+) - i?J- - yi 

Mass shell condition P+P- = Fj +w 

a+=&+, a- = - 
a:- ’ 

ai = & 

Derivative 

a+ = 2X ) a- = aa+, ai = -ai 

a: = (x-, G) , & = (k-, iL) 

Underscore notation 

k* a: = ik+x- - I&. iTl 
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FIGURE CAPTIONS 

1) The left diagram schematically describes the traditional equal-time form of 

dynamics, the right Dirac’s generalized form. 

2) These three diagrams compare the instant form, point form, and front form. 

3) The pion is expanded in a Fock basis In). P+;-Fy are rhe pion’s plus and * 
perpendicular momenta. ki , ’ 21; are the ith constituent’s plus and perpen- 

dicular momenta. 

4) Vflip light-cone diagrams. 

5) Vnoflip light-cone diagrams. 

6) V&,hot light-cone diagrams. 

7) Kndfesm light-cone diagrams. 

8) Decomposition of positronium into Fock states. 

9) Light-cone perturbation theory graphs contributing to Mtiller scattering. k: 

is assumed to be larger than kz. 

10) Comparison of ground state energy with (Y) and without (N) infrared cut-off. 

11) Intermediate states that may need Fermi statistics. 

12) More intermediate states that may need Fermi statistics. 

13) Light by light scattering contribution. 

14) Contribution to the Lamb shift. 

15) One-loop LCPTh radiative corrections to fermion line. 

16) One-loop fermion self-energy. 

17) Fermion self-energy in time-ordered perturbation theory. The right graph is 

typically referred to as the Z-graph. 
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18) Fermion structure function from diagonalization. cy = .3, K = 17, 

L1= lo;;;;, ’ A = 2.3m,. 

19) Fermion structure function from diagonalization. CY = .6, K = 15, 

Ll = Sk, A = 2.7m,. 

20) Mass squared spectrum from diagonalizing Q = .6, I( = 18, Ll = 14$, e 
_ A ..= 2.3m,. The left column of states are majority (e+e-) and the right 

column of states are majority (e+e-7). 

21) Ground state mass as a function of K for cr = .6, Ll = 14$, A = 2.3m,. 

22) Ground state mass as a function of Ll for o = .6, Ii’ = 14, A = 2.3m,. 

23) Physical electron’s wavefunction for cy = .6, I< = 25, Ll = 12&, A = 3.5m,. 

Values shown are the absolute value of the amplitude squared, and should 

be divided by 10,000. 

24) M2, KE, PE versus K for o = .6, Ll = 20&, A = 2.4m, with infrared 

cut-off. Points labelled E, K, P correspond to M2, I<E, PE, respectively. 

25) M2, KE, PE versus I< for (Y = .6, LJ- = 20&, A = 2.4m, without infrared 

cut-off. Points labelled E, K, P correspond to M2, KE, PE, respectively. 

26) M2 (E), k’ t’ me IC energy (K), potential energy (P), spin-flip (F), no spin-flip 

(N), instantaneous photon (I) in t eraction contributions to M2 as a function 

of Ll for cr = .6, K = 26, A = 2.5m,. 

27) M2 (E), k’ t’ me rc energy (K), potential energy (P), spin-flip (F), no spin-flip 

(N), instantaneous photon (I) in t eraction contributions to M2 as a function 

of K for Q = .6, Ll = 20$, A = 2.5m,. 

28) M2 (E), k’ t’ me ic energy (K), potential energy (P), spin-flip (F), no spin-flip 

(N), instantaneous photon (I) in t eraction contributions to M2 as a function 

of A for Q = .6, K = 26, Ll = 20&. 

29) Positronium wavefunction for (Y = .6, I( = 42, Ll = 32$, A = 2.5m,. 
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Values shown are the absolute value of the amplitude squared, and should 

be divided by 10,000. 

30) Light-cone data (V) compared with Coulomb data (C). 

31) M2 as a function of & using Coulomb data. 
I 

32) M2 as a function of a using Coulomb data. _ _ _ 

33) -Some fermion mass counterterms needed to include the (e+e-rr) Fock state. 

34) Photon mass counterterms needed to include the (e+e-e+e-) Fock state. 

35) Representative instantaneous fermion interaction. The incoming particles 

are on the left, the outgoing on the right. 

36) Representative instantaneous photon interaction. The incoming particles are 

on the left, the outgoing on the right. 

37) Three graphs that occur in LCPTh for tree-level Meller scattering. 

38) One-loop fermion self-mass. 

39) One-loop fermion self-mass diagrams joined by instantaneous fermion. 

40) N one-loop fermion self-mass pieces chained by N- 1 instantaneous fermions. 

41) Sum of N chained one-loop fermion self-mass diagrams. 

42) One-loop photon self-mass. 

43) One-loop fermion self-energy. 

44) Two one-loop fermion self-energy contributions in TOPTh. 

45) Usual time-ordering and Z-graph contributions to one-loop vacuum polariza- 

tion in TOPTh. 

46) One-loop vacuum polarization graph. 

47) Three-point vertex in DLCQ, LCPTh. 

48) Four-point instantaneous photon interaction in DLCQ, LCPTh. 
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