An Instability

 in theStandard Model of Cosmology creates the

Anomalous Acceleration

 without Dark Energy
Blake Temple, UC-Davis

Harvard University
April 8, 2016
Collaborators: Joel Smoller and Zeke Vogler

The 1999 observations of redshift vs luminosity for type IA supernovae in nearby galaxies won the Nobel Prize because they discovered the

Anomalous Acceleration:

The universe is expanding faster than the Standard Model of Cosmology (SM), based on Einstein's original theory of General Relativity, allows.

The only way to preserve the Cosmological Principle-
that on the largest length scale the universe is described by a
Friedmann Space-Time which holds no special placeis to add the
Cosmological Constant
to Einstein's equations as a source term.
Its interpretation is
Dark Energy.

A best fit among

Friedmann Space-Times
with
Dark Energy
leads to the conclusion that
the universe is a critical
$\mathrm{k}=0$ Friedmann Space-Time

with

Seventy Percent Dark Energy

$$
\Omega_{\Lambda} \approx .7
$$

2007 PI talk in Relativity Session at AMS National Meeting in New Orleans:

We proposed the idea that a Simple Wave from the

Radiation Epoch of the Big Bang

 might account for the AnomalousAcceleration of the Galaxies Without Dark Energy

Our Motivation

The Radiation Epoch:

After Inflation

 until about 30,000 years after the Big Bang is evolution byRelativistic Compressible Euler Equations
The p-system with $p=\frac{c^{2}}{3} \rho$

PURE RADIATION

Stefan-Bolzman Law: $\quad \rho=\mathrm{a} T^{4}$

$$
p=\frac{c^{2}}{3} \rho
$$

(No Contact
Discontinuities)

The p-system with:

- Enormous sound speed $\sigma \approx .57 c$
- Enormous modulus of Genuine Nonlinearity

Every characteristic field contributes to Decay in the sense of Glimm and Lax

It is reasonable to expect fluctuations
would decay to simple wave patterns by the End of Radiation

This was our Starting Assumption

Stages of the Standard Model:

Uncoupling of
Matter and Radiation
$t \approx 3 \times 10^{5}$

Inflation

Pure Radiation

(Neglect

$$
10^{-30} \text { to } 3 \times 10^{5} \mathrm{yrs}
$$

Radiation
Pressure)
$p \approx 0$

Time of CMB 379,000 yr

Pursuing this Idea...

...we discovered that there is only

one way

the Einstein equations can both perturb the Friedmann spacetimes and also
reduce to ODE' when

$$
p=\frac{c^{2}}{3} \rho
$$

...we identified a

I-parameter family of Self-Similar Waves that perturb the Standard Model during the Radiation Epoch-
And proposed that these might induce an Anomalous Acceleration at a later time.

We set out our ideas in PNAS in 2009
 and

Memoirs of the AMS in 201I

Our interest is in the possible connection between these waves and the Anomalous Acceleration.

In Fact: This family of self-similar solutions was already from a different point of view...
Cahill and Taub:
Commun Math Phys., 2I, I-40 (197I)
Extended by others, esp. Carr and Coley, Survey: Physical Review D, 62, 044023-I-25 (I999)

Around 2007:

Other research groups began exploring the possibility that the anomalous acceleration might be due to the earth lying near the center of a large region of
 Under-Density

We first saw publication in 2009

The record is clear on one thing:

No one before us
proposed this family of waves
as a
mechanism
that could account for the
Anomalous Acceleration
without Dark Energy

We have now accomplished our goal of bringing the effects of these perturbations of the SM (waves) up to present time to compare with Dark Energy.
There are several surprises...
...in this talk I present what we have found...

Bullet Points to Discuss:

- We identify a instability in the SM based on a new (closed) asymptotic ansatz for local perturbations of the critical $k=0$ Friedmann Spacetime when $p=0$.
- The instability naturally creates a central region of accelerated uniform expansion on the scale of the supernova data within
Einstein's original theory, without Dark Energy.

Bullet Points to Discuss:

- The phase portrait of the instability is universal in the sense that it describes every smooth, spherically symmetric perturbation near the center, when $\mathrm{p}=0$.
- The region of accelerated uniform expansion is one order of magnitude larger in extent than expected.

Bullet Points to Discuss:

- The instability is triggered by our time asymptotic perturbations of SM from the
Radiation Epoch when: $p=\frac{c^{2}}{3} \rho$
- Surprisingly-The perturbations at the end of radiation do not directly cause the Anomalous Acceleration as we originally conjectured in PNAS.
- Rather-It is the non-trivial phase portrait of the instability they trigger when $\mathrm{p}=0$ that creates the later accelerations.
- The phase portrait of the instability places the SM at a classic...

Bullet Points to Discuss:

- The region of accelerated uniform expansion introduces precisely the same range of quadratic corrections to red-shift vs luminosity as does the cosmological constant in the theory of DE.

$$
\begin{gathered}
H_{0} d_{\ell}=z+Q z^{2}+O\left(z^{3}\right) \\
.25 \leq Q \leq .425 \leq .5
\end{gathered}
$$

Bullet Points to Discuss:

- The results lead naturally to a testable alternative to Dark Energy within Einstein's original theory...

Without the Cosmological Constant.

- Our Proposal: The AA is due to a local under-dense perturbation of the SM on the scale of the supernova data, arising from time-asymptotic perturbations of SM from the Radiation Epoch that trigger an instability in the SM when the pressure drops to zero.

Bullet Points to Discuss:

- A calculation shows the cubic correction is of the same order, but of a different sign, than the cubic correction in DE theory...

$$
\begin{aligned}
& H_{0} d_{\ell}=z+.425 z^{2}-.180 z^{3} \quad \begin{array}{c}
\text { Dark } \\
\text { Energy }
\end{array} \\
& H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3} \quad \begin{array}{c}
\text { Wave } \\
\text { Theory }
\end{array}
\end{aligned}
$$

Bullet Points to Discuss:

- We address ONLY the anomalous acceleration... further assumptions regarding space-time far from the center would be required to connect the theory with other measurements...

INTRODUCTION TO COSMOLOGY

Edwin Hubble (I889-I953)

- Hubble’s Law (I929):
" ${ }^{\text {The galaxies are receding from us at a velocity }}$ proportional to distance"

Universe is Expanding

- Based on Redshift vs Luminosity

Universe measured to 1\% accuracy

By James Morgan

Science reporter. BBC News. Washinaton DC
Astronomers have measured the distances between galaxies in the universe to an accuracy of just 1\%.
This staggeringly precise survey - across six billion light-years - is key to mapping the cosmos and determining the nature of dark energy.

The new gold standard was set by BOSS (the Baryon Oscillation Spectroscopic Survey) using the Sloan Foundation Telescope in New Mexico, US.

BAOs are the "frozen" imprints of pressure waves that moved through the early universe - and help set the distribution of galaxies we see today.
"Nature has given us a beautiful ruler," said Ashley Ross, an astronomer from the University of Portsmouth.
"The ruler happens to be half a billion light years long, so we can use it to measure distances precisely, even from very far away."

Conclude: The universe

 appears (and is assumed) uniform on a scale of about I/20ththe distance across the visible universe

$$
\xi=\frac{r}{c t} \approx \frac{.5 \text { billion lightyear }}{13 \text { billion lightyear }} \approx .04 \leq .05
$$

10 billion light-years \approx Visible Universe
Cosmic
Length Scales

IO billion light-years \approx Visible Universe 500 million light-years \approx Uniform Density

10 billion light-years \approx Visible Universe 500 million light-years \approx Uniform Density

- 50 million light-years \approx Separation between
 clusters of galaxies

10 billion light-years \approx Visible Universe 500 million light-years \approx Uniform Density

Cosmic Length Scales

- 50 million light-years \approx Separation between clusters of galaxies
 10 million light-years \approx diameter of a cluster

IO billion light-years \approx Visible Universe
500 million light-years \approx Uniform Density

- 50 million light-years \approx Separation between
$\star \underset{*}{*} \rightarrow \rightarrow \quad$ clusters of galaxies
 a cluster
- I million light-years \approx separation between galaxies in a cluster

IO billion light-years \approx Visible Universe
500 million light-years \approx Uniform Density

- 50 million light-years \approx Separation between

K $\hat{*} \rightarrow \rightarrow \quad$ clusters of galaxies
 a cluster

- I million light-years \approx separation between galaxies in a cluster 100 thousand light-years \approx distance across Milky Way

IO billion light-years \approx Visible Universe
500 million light-years \approx Uniform Density

- 50 million light-years \approx Separation between
$\star \stackrel{*}{*} \rightarrow \quad$ clusters of galaxies
 galaxies in a cluster 100 thousand light-years \approx distance across Milky Way
- 28 thousand light-years \approx distance to galactic center

Convert: light-years to redshift factor by the relation:

$$
1+z=\frac{R\left(t_{0}\right)}{R(t)}
$$

Convert light-years to redshift factor by the relation:

$$
1+z=\frac{R\left(t_{0}\right)}{R(t)}
$$

$p=0$

Convert light-years to redshift factor by the relation:

$$
p=0
$$

$$
\begin{aligned}
& 1+z=\frac{R\left(t_{0}\right)}{R(t)} \\
& \frac{R\left(t_{0}\right)}{R(t)}=\left(\frac{t_{0}}{t}\right)^{2 / 3}
\end{aligned}
$$

Convert light-years to redshift factor by the relation:

$$
\begin{aligned}
& 1+z=\frac{R\left(t_{0}\right)}{R(t)} \\
& \frac{R\left(t_{0}\right)}{R(t)}=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
& 1+z=\left(\frac{t_{0}}{t}\right)^{2 / 3}
\end{aligned}
$$

Convert light-years to redshift factor by the relation:

$$
\begin{gathered}
1+z=\frac{R\left(t_{0}\right)}{R(t)} \\
\frac{R\left(t_{0}\right)}{R(t)}=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
1+z=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
\xi \approx .1 \longleftrightarrow c t=(.1)\left(c t_{0}\right) \approx(.1) \frac{c}{H_{0}} \longleftrightarrow z \approx .07
\end{gathered}
$$

Convert light-years to redshift factor by the relation:

$$
\begin{gathered}
1+z=\frac{R\left(t_{0}\right)}{R(t)} \\
\frac{R\left(t_{0}\right)}{R(t)}=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
1+z=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
\xi \approx .1 \longleftrightarrow c t=(.1)\left(c t_{0}\right) \approx(.1) \frac{c}{H_{0}} \longleftrightarrow z \approx .07
\end{gathered}
$$

About a tenth of the distance to the Hubble Radius corresponds to about $z \approx .07$

Convert light-years to redshift factor by the relation:

$$
\begin{gathered}
1+z=\frac{R\left(t_{0}\right)}{R(t)} \\
p=0 \quad \frac{R\left(t_{0}\right)}{R(t)}=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
1+z=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
c t=(.35) \frac{c}{H_{0}}
\end{gathered} \longleftrightarrow z=1
$$

Convert light-years to redshift factor by the relation:

$$
\begin{gathered}
1+z=\frac{R\left(t_{0}\right)}{R(t)} \\
\frac{R\left(t_{0}\right)}{R(t)}=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
1+z=\left(\frac{t_{0}}{t}\right)^{2 / 3} \\
c t=(.35) \frac{c}{H_{0}} \longleftrightarrow z=1
\end{gathered}
$$

$z=1$ corresponds to about a "third of the way across the visible universe..."

Standard Model of Cosmology

- 1922 Alexander Friedmann:

Derived FRW solutions of the Einstein equations: 3 -space of constant curvature expanding in time:

$$
d s^{2}=-d t^{2}+R(t)^{2}\left\{\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right\}
$$

- The Big Bang theory based on the FRW metric was worked out by George Lemaître in the late 1920's leading to Hubble's comfirmation of redshift vs luminoscity consistent with an FRW spacetime Hubble's Constant $\equiv H \equiv \frac{\dot{R}}{R}$

■ In 1935: Howard Robertson and Arthur Walker derived Friedmann spacetime from the

```
Copernican Principle:
"Earth is not in a special place in the Universe"
```

- R-W: Friedmann uniquely determined by condition

Homogeneous and Isotropic about every point

Any point can be taken as $r=0$

> Each $\mathrm{t}=$ const surface is a 3 -space of constant scalar curvature

Standard Model of Cosmology

Observations of the micro-wave background IMPLY

$$
k=0
$$

"Critical expansion to within about 2-percent"

The Friedmann metric when $\mathrm{k}=0$:

- $d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}$

The universe is infinite flat space \mathbb{R}^{3} at each fixed time:

(Assumed to Apply on the Largest Length Scale)

Standard Model of Cosmology

- FRW metric, $k=0$:

$$
d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}
$$

- $D=R r$ Measures distance between galaxies at each fixed t

- Conclude:

$$
\begin{aligned}
\dot{D}=\dot{R} r & =\frac{\dot{R}}{R} R r=H D \\
& \dot{D}=H D \quad \begin{array}{c}
\text { Hubble's } \\
\text { Law }
\end{array}
\end{aligned}
$$

Hubble's Constant $\equiv H \equiv \frac{\dot{R}}{R}$

- Standard Model of Cosmology

$$
d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}
$$

- Hubble's Law:

$$
\dot{D}=H D
$$

- Conclude--
"The universe is expanding like a balloon"

The Hubble "Constant" at present time

The inverse Hubble Constant estimates the Age of the Universe

$$
\frac{1}{H_{0}} \approx 10^{10} \text { years } \approx \text { age of universe }
$$

- $\frac{c}{H_{0}}$ is the distance of light travel since the Big Bang, a measure of the size of the visible universe

$$
\frac{c}{H_{0}}=\text { Hubble Length } \approx 10^{10} \text { lightyears }
$$

Measuring the Hubble Constant

(D) Measures distance from Earth to distant galaxy at present time t_{0}

$$
H_{0} D=\dot{D} \quad \begin{gathered}
\text { Hubble's } \\
\text { Law }
\end{gathered}
$$

$$
H_{0} d_{\ell}=z+\frac{1}{4} z^{2}-\frac{1}{8} z^{3}+O\left(z^{4}\right)
$$

Friedmann

$$
k=0
$$

Up until 1999, we could only measure the leading linear term:

$$
H_{0} d_{\ell}=z+\frac{1}{4} x^{2}-\frac{1}{8} z^{3}+\partial\left(z^{4}\right)
$$

Friedmann

$$
k=0
$$

$$
z \ll 1 \quad H_{0} \approx h_{0} 100 \frac{k m}{s m p c} \quad h_{0} \approx .68
$$

$m p c \approx 3.2$ million light years
' A galaxy at a distance of one mega-parsec is receding at about 68 kilometers per second..."

The 1999 supernova data tested the dependence of the Hubble constant on time, and the results don't fit standard model...

V

"Anomalous Acceleration of Galaxies" V
Introduction of
"Cosmological Const" and "Dark Energy"
Dark energy is non-classical
Negative pressure \Rightarrow Anti-gravity effect

The 1999 supernova data tested the dependence of the Hubble constant on time, and the results don't fit standard model...

$$
H_{0} d_{\ell}=z+\frac{1}{4} z^{2}-\frac{1}{8}\left(z^{3}+\partial\left(z^{4}\right)\right.
$$

Friedmann

$$
k=0
$$

This is measured at about .425 not .25

The 1999 supernova data tested the dependence of the Hubble constant on time, and the results don't fit standard model...

This is usually interpreted in terms of a Best Fit to Friedmann Universes with the Cosmological Constant

$$
\left(k, \Omega_{\Lambda}\right)>k=0, \Omega_{\Lambda} \approx .7
$$

That is: To preserve the Copernican Principle, that the Universe
on the Largest Length Scale is evolving according to a Uniform Friedmann Spacetime with $p=0, k=0$
A Cosmological Constant must be added
To Einstein's Equations
The Physical Interpretation is Dark Energy

Einstein Equations for Friedmann:

- Einstein Equations (I915): $\quad G_{i j}=\kappa T_{i j}$
$G_{i j}=$ Einstein Curvature Tensor
$T_{i j}=(\rho+p) u_{i} u_{j}+p g_{i j}=$ Stress Energy Tensor (perfect fluid)
- Einstein Equations for $\mathrm{k}=0$ Friedmann metric:

$$
\begin{aligned}
& H^{2}=\frac{\kappa}{3} \rho \\
& \dot{\rho}=-3(\rho+p) H
\end{aligned}
$$

领 Solutions determined by equation of state: $p=p(\rho)$

Incorporating Dark Energy into Friedmann

- Assume Einstein equations with a cosmological constant:

$$
G_{i j}=8 \pi T_{i j}+\Lambda g_{i j}
$$

- Assume k

$$
d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}
$$

$$
H^{2}=\frac{\kappa}{3} \rho+\frac{\kappa}{3} \Lambda
$$

- Divide by $H^{2}=\frac{\kappa}{3} \rho_{\text {crit }}$

$$
1=\Omega_{M}+\Omega_{\Lambda}
$$

- Best data fit leads to $\Omega_{\Lambda} \approx .7$ and $\Omega_{M} \approx .3$
- Implies: The universe is 70 percent dark energy

Incorporating Dark Energy into Friedmann

More slowly...

Incorporating Dark Energy into Friedmann

$$
H^{2}=\frac{\kappa}{3} \rho+\frac{\kappa}{3} \Lambda
$$

Incorporating Dark Energy into Friedmann

$$
H^{2}=\frac{\kappa}{3} \rho+\frac{\kappa}{3} \Lambda
$$

Constant in time

Incorporating Dark Energy into Friedmann

$$
H^{2}=\frac{\kappa}{3} \rho+\frac{\kappa}{3} \Lambda
$$

Decreases
to zero as

$$
t \rightarrow \infty
$$

Incorporating Dark Energy into Friedmann

$$
\frac{H^{2}=\frac{\kappa}{3} \rho+\frac{\kappa}{3} \Lambda}{H^{2}}
$$

Incorporating Dark Energy into Friedmann

$$
1=\frac{\frac{\kappa}{3} \rho}{H^{2}}+\frac{\frac{\kappa}{3} \Lambda}{H^{2}}
$$

Incorporating Dark Energy into Friedmann

$$
\begin{array}{r}
1=\frac{\frac{\kappa}{3} \rho}{H^{2}}+\frac{\frac{\kappa}{3} \Lambda}{H^{2}} \\
\Omega_{\Lambda}
\end{array}
$$

Incorporating Dark Energy into Friedmann

$$
1=\frac{\frac{\kappa}{3} \rho}{H^{2}}+\frac{\frac{\kappa}{3} \Lambda}{H^{2}}
$$

Incorporating Dark Energy into Friedmann

$$
\begin{aligned}
& 1=\left(\frac{\boxed{\pi} \rho}{H^{2}}\right)+\left(\frac{\kappa^{\frac{\pi}{3}}}{H^{2}}\right) \\
& =\Omega_{M}+\Omega_{\Lambda}
\end{aligned}
$$

Incorporating Dark Energy into Friedmann

$$
1=\frac{\frac{\kappa}{3} \rho}{H^{2}}+\frac{\frac{\kappa}{3} \Lambda}{H^{2}}
$$

Incorporating Dark Energy into Friedmann

$$
1=\frac{\frac{\kappa}{3} \rho}{H^{2}}+\frac{\frac{\kappa}{3} \Lambda}{H^{2}}
$$

$$
\mid=\Omega_{M}+\Omega_{\Lambda}
$$

$$
\Omega_{\Lambda} \approx 0 \rightarrow 1 \text { as } t \approx t_{r a d} \rightarrow \infty
$$

Incorporating Dark Energy into Friedmann

$$
1=\frac{\frac{\kappa}{3} \rho}{H^{2}}+\frac{\frac{\kappa}{3} \Lambda}{H^{2}}
$$

Best Fit. . .

Best Fit: 70\% Dark Energy 30\% Classical Energy

- m-M = "Distance Modulus"

M=absolute Magnitude
$\mathrm{m}=$ apparent magnitude

- d=distance in parsecs:
$m-M=5 \log (d)-5$
- $z=r e d s h i f t ~ f a c t o r ~$
$1+z=\frac{\lambda_{\text {emit }}}{\lambda_{o b s}}$
- $\Omega_{m}+\Omega_{\Lambda}=1$ for a flat ($k=0$) universe.

Standard Model

Composition of Universe

The Question we Explore:

"Could the Anomalous Acceleration of the galaxies be due to the fact that we are looking outward into an expansion wave that formed during the Radiation Epoch of the Big Bang?"

The Question we Explore:

"Could the Anomalous Acceleration of the galaxies be due to the fact that we are looking outward into an expansion wave that formed during the Radiation Epoch of the Big Bang?"
The Einstein equations have been confirmed without the cosmological constant in every setting except cosmology...

The Question we Explore:

"Could the Anomalous Acceleration of

 the galaxies be due to the fact that we are looking outward into an expansion wave that formed during the Radiation Epoch of the Big Bang?"The Einstein equations have been confirmed without the cosmological constant in every setting except cosmology...

Note: A general expansion wave has a center of expansion...

Summary

of our results

for the
Wave Theory

Hubbles Law :

Measured value: $\quad H_{0}=h_{0} \frac{100 \mathrm{~km}}{s m p c}$

$$
h_{0} \approx .68
$$

The I999 Supernova data was refined enough to measure the quadratic

> correction to Hubble's Relation:

Einstein's Equations: $\quad G=\kappa T+\Lambda g$

$$
\Omega_{M}+\Omega_{\Lambda}=1
$$

Cosmological
Constant 1999

$H_{0} d_{\ell}=z+.425 z^{2}+O\left(z^{3}\right)$
Friedmann
$\Omega_{\Lambda}=.7$

WE PROVE: The Friedmann Universe is UNSTABLE

WE PROVE: The Friedmann Universe is UNSTABLE
A small wave perturbation at the end of radiation will expand to create a large region of accelerated uniform expansion at the
Center of the Wave

WE PROVE: The Friedmann Universe is UNSTABLE
A small wave perturbation at the end of radiation will expand to create a large region of accelerated uniform expansion at the
Center of the Wave
This induces exactly the same range of quadratic corrections to redshift vs luminosity as does

Dark Energy

The self-similar perturbations we identified

 at the end of the radiation epoch TRIGGER this instability when $\mathrm{p}=0$The self-similar perturbations we identified at the end of the radiation epoch TRIGGER
this instability when $p=0$

This induces exactly the same range of Q as does Dark Energy:

$$
H_{0} d_{\ell}=z+Q z^{2}+O\left(z^{3}\right)
$$

Dark Energy

$$
\begin{gathered}
H_{0} d_{\ell}=z+\underbrace{.25\left(1+\Omega_{\Lambda}\right) z^{2}}_{25 \leq Q \leq .5}-.125\left(1+\frac{2}{3} \Omega_{\Lambda}-\Omega_{\Lambda}^{2}\right) z^{3}+O\left(z^{4}\right) \\
\quad \text { as } \quad \Omega_{M}+\Omega_{\Lambda}=1 \\
0 \leq \Omega_{\Lambda} \leq 1
\end{gathered}
$$

- In the case $\Omega_{M}=.3, \Omega_{\Lambda}=.7$ this gives

$$
H_{0} d_{\ell}=z+.425 z^{2}-.1804 z^{3}+O\left(z^{4}\right)
$$

Our Wave Theory

$$
\begin{array}{r}
H_{0} d_{\ell}=z+\underbrace{z_{2}^{\prime}\left(z_{2}, w_{0}\right)}_{\begin{array}{c}
25 \leq Q \leq .5 \\
\operatorname{as}
\end{array}} z^{2}+C\left(z_{2}, w_{0}, w_{2}\right) z^{3}+O\left(z^{4}\right) \\
w_{0}^{\prime}=-3 w_{0}\left(\frac{4}{3}+z_{2}\right)
\end{array}
$$

Orbit evolves to a NEW STABLE REST POINT

- A Wave with Underdensity: $\frac{\rho_{S M}-\rho_{s s w}}{\rho_{S M}}=7.45 \times 10^{-6}$
$H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}+O\left(z^{4}\right)$

Conclusion: The cubic correction is of the same order, but of a different sign, from Dark Energy... ...A Testable Prediction!

$$
H_{0} d_{\ell}=z+.425 z^{2}-.180 z^{3} \quad \begin{gathered}
\text { Dark } \\
\text { Energy }
\end{gathered}
$$

Wave
Theory

Self-Similar Solutions

The Friedmann spacetimes admit self-similar expressions when $p=\sigma^{2} \rho$

$$
d s^{2}=-B(\xi) d t^{2}+\frac{1}{A(\xi)} d r^{2}+r^{2} d \Omega^{2}
$$

$$
\xi=\frac{r}{c t} \quad \text { "Fractional Distance to the Hubble Radius" }
$$

$$
\rho r^{2}=z(\xi) \quad \text { "Dimensionless Density" }
$$

$$
\frac{v}{\xi}=w(\xi)
$$

"Dimensionless Velocity"

The $p=0$ Friedmann Universe in Self-Similar Coordinates:

$$
d s^{2}=-B_{F}(\xi) d \bar{t}^{2}+\frac{1}{A_{F}(\xi)} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2}
$$

$$
\begin{gathered}
A_{F}(\xi)=1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
D_{F}(\xi) \equiv \sqrt{A_{F} B_{F}}=1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right) \\
z_{F}(\xi)=\frac{4}{3} \xi^{2}+\frac{40}{27} \xi^{4}+O\left(\xi^{6}\right) \\
w_{F} \equiv \frac{v}{\xi}=\frac{2}{3}+\frac{2}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{gathered}
$$

The $p=\frac{1}{3} \rho$ Friedmann Universe in Self-Similar Coordinates:

$$
p=\frac{e^{2}}{3}, \quad \text { Pure Radiation } \bar{\xi} \neq \xi
$$

$$
\begin{aligned}
& z_{1 / 3}=\frac{3}{4} \bar{\xi}^{2}+\frac{9}{16} \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& v_{1 / 3}=\frac{1}{2} \bar{\xi}+\frac{1}{8} \bar{\xi}^{3}+O\left(\bar{\xi}^{5}\right) \\
& A_{1 / 3}=1-\frac{1}{4} \bar{\xi}^{2}-\frac{1}{8} \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& D_{1 / 3}=1+O\left(\bar{\xi}^{4}\right)
\end{aligned}
$$

The $p=\frac{c^{2}}{3} \rho$ Friedmann Universe extends to I-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:

The $p=0$ Friedmann Universe DOES NOT admit Self-Similar perturbations!
(Something has to give when p drops to zero!)
(The topic of our PNAS and MEMOIR)

A I-parameter family of solutions depending on the Acceleration Parameter $0<a<\infty \quad p=\frac{1}{3} \rho$

$$
\begin{aligned}
& z_{1 / 3}^{a}=\frac{3 a^{2}}{4} \bar{\xi}^{2}+\left[\frac{9 a^{2}}{16}+3 a^{2}\left(V_{0}+A_{0}\right)\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& v_{1 / 3}^{a}=\frac{1}{2} \bar{\xi}+\left[\frac{1}{8}+V_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{3}+O\left(\bar{\xi}^{5}\right) \\
& A_{1 / 3}^{a}=1-\frac{a^{2}}{4} \bar{\xi}^{2}-\left[\frac{a^{2}}{8}+a^{2} A_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& D_{1 / 3}^{a}=1+O\left(\bar{\xi}^{4}\right) \quad \\
& V_{0}=\frac{2}{3} A_{0}=\frac{1}{20}
\end{aligned}
$$

The ANSATZ that triggers the instability when $\mathrm{p}=0$:

The ANSATZ that triggers the instability:

$$
\begin{aligned}
z(t, \xi) & =\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right) \\
w(t, \xi) & =\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

The ANSATZ:

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right), \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right),
\end{aligned}
$$

$$
\xi=\frac{r}{c t}
$$

"Fractional Distance to the Hubble Radius"

The ANSATZ:

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right), \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right),
\end{aligned}
$$

$\xi=\frac{r}{c t} \quad$ "Fractional Distance to the Hubble Radius"

$$
z(t, \xi)=\rho r^{2} \quad \text { "Dimensionless Density" }
$$

The ANSATZ:

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right), \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right),
\end{aligned}
$$

$\xi=\frac{r}{c t} \quad$ "Fractional Distance to the Hubble Radius"
$z(t, \xi)=\rho r^{2} \quad$ "Dimensionless Density"

$$
w(t, \xi)=\frac{v}{\xi}
$$

"Dimensionless Velocity"

In a non-uniform spacetime:

$\xi=$ "Fractional distance to the Hubble Radius" measures (approximately)
how far out you would think you were if you believed you were at the center of a Friedmann spacetime...

The ANSATZ:

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right), \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right),
\end{aligned}
$$

Only EVEN powers of $\xi \ldots$

The ANSATZ:

$$
z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right),
$$

Uniform Density out to errors ξ^{4}

$$
z(t, \xi)=\rho r^{2}
$$

$$
\rho(t) \sim \frac{\left(\frac{4}{3}+z_{2}(t)\right)}{t^{2}}=\frac{f(t)}{t^{2}}
$$

THEOREM: The $p=0$ waves take the asymptotic form

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right) \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

where $z_{2}(t), z_{4}(t), w_{0}(t), w_{2}(t)$ evolve according to the equations

$$
\begin{aligned}
&-t \dot{z}_{2}= 3 w_{0}\left(\frac{4}{3}+z_{2}\right), \\
&-t \dot{z}_{4}=-5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
&-5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\} \\
&-t \dot{w}_{0}= \frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}, \\
&-t \dot{w}_{2}= \frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
&-\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2}
\end{aligned}
$$

Our Wave Theory

$$
\begin{array}{r}
H_{0} d_{\ell}=z+\underbrace{Q\left(z_{2}, w_{0}\right)} z^{2}+C\left(z_{2}, w_{0}, w_{2}\right) z^{3}+O\left(z^{4}\right) \\
.25 \leq Q \leq .5
\end{array} \quad \begin{aligned}
& z_{2}^{\prime}=-3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
& \mathrm{as} \\
& w_{0}^{\prime}=-\left(\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}\right)
\end{aligned}
$$

Orbit evolves to a NEW STABLE REST POINT

Our Wave Theory

$$
\begin{aligned}
& H_{0} d_{\ell}=z+Q\left(z_{2}, w_{0}\right) z^{2}+C\left(z_{2}, w_{0}, w_{2}\right) z^{3}+O\left(z^{4}\right) \\
& .25 \leq Q \leq .5 \\
& z_{2}^{\prime}=-3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
& \text { as } \\
& w_{0}^{\prime}=-\left(\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}\right)
\end{aligned}
$$

Orbit evolves to a NEW STABLE REST POINT

$$
Q\left(z_{2}, w_{0}\right)=\frac{1}{4}+\frac{24 w_{0}+45 w_{0}^{2}+3 z_{2}}{4\left(2+3 w_{0}\right)^{2}}
$$

Our Wave Theory

$$
\begin{array}{r}
H_{0} d_{\ell}=z+\underbrace{Q\left(z_{2}, w_{0}\right)} z^{2}+C\left(z_{2}, w_{0}, w_{2}\right) z^{3}+O\left(z^{4}\right) \\
.25 \leq Q \leq .5
\end{array} \quad \begin{aligned}
& z_{2}^{\prime}=-3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
& w_{0}^{\prime}=-\left(\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}\right)
\end{aligned}
$$

Orbit evolves to a NEW STABLE REST POINT

$$
\begin{gathered}
Q\left(z_{2}, w_{0}\right)=\frac{1}{4}+\frac{24 w_{0}+45 w_{0}^{2}+3 z_{2}}{4\left(2+3 w_{0}\right)^{2}} \\
\frac{1}{4}=Q(0,0) \leq Q \leq Q(M)=\frac{1}{2}
\end{gathered}
$$

Our Wave Theory

$$
\begin{array}{r}
H_{0} d_{\ell}=z+\underbrace{Q\left(z_{2}, w_{0}\right)} z^{2}+C\left(z_{2}, w_{0}, w_{2}\right) z^{3}+O\left(z^{4}\right) \\
.25 \leq Q \leq .5
\end{array} \quad \begin{aligned}
& z_{2}^{\prime}=-3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
& w_{0}^{\prime}=-\left(\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}\right)
\end{aligned}
$$

Orbit evolves to a NEW STABLE REST POINT

$$
Q\left(z_{2}, w_{0}\right)=\frac{1}{4}+\frac{24 w_{0}+45 w_{0}^{2}+3 z_{2}}{4\left(2+3 w_{0}\right)^{2}}
$$

$$
\frac{1}{4}=Q(0,0) \leq Q \leq Q(M)=\frac{1}{2} \quad(\text { Along orbit } S M \rightarrow M)
$$

Our Wave Theory

$$
\begin{aligned}
& H_{0} d_{\ell}=z+Q\left(z_{2}, w_{0}\right) z^{2}+C\left(z_{2}, w_{0}, w_{2}\right) z^{3}+O\left(z^{4}\right) \\
& .25 \leq Q \leq .5 \\
& z_{2}^{\prime}=-3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
& \text { as } \\
& w_{0}^{\prime}=-\left(\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}\right)
\end{aligned}
$$

Orbit evolves to a NEW STABLE REST POINT

- A Wave with Under-density: $\frac{\rho_{S M}-\rho_{s s w}}{\rho_{S M}}=7.45 \times 10^{-6}$
$H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}+O\left(z^{4}\right)$

Strategy: Use our equations to evolve the initial data for a-waves at the end of radiation to determine $\left(a, T_{*}\right)$ that gives the correct anomalous acceleration.

l.e., $\left(a, T_{*}\right)$ that give the observed
quadratic correction to redshift vs luminosity at present time

- In the Standard Model $\mathrm{p}=0$ at about

$$
\begin{aligned}
& t_{*} \approx 10,000-30,000 \\
& T_{*} \approx 9000^{0} \mathrm{~K}
\end{aligned}
$$

(Depending on theories of Dark Matter)

- Our simulation turns out to be entirely insensitive to the initial t_{*}, T_{*}
- l.e., we need only compute the value of the acceleration parameter that gives the correct anomalous acceleration.

THE ANSWER: The value of the acceleration for the wave perturbation of SM that produces a quadradic correction of .425 at the present value of H_{0} is:

$$
\begin{aligned}
& \underline{a}=0.99999957=1-\left(4.3 \times 10^{-7}\right) \\
& H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}
\end{aligned}
$$

This corresponds to a relative under-density of

$$
\frac{\rho_{S M}-\rho_{s s w}}{\rho_{S M}}=7.45 \times 10^{-6}
$$

- The relative under-density at the end of radiation:

$$
\frac{\rho_{S M}-\rho_{s s w}}{\rho_{S M}}=7.45 \times 10^{-6}
$$

- The relative under-density at present time:

$$
\frac{\rho_{s s w}\left(t_{0}\right)}{\rho_{S M}\left(t_{0}\right)}=.1438 \approx \frac{1}{7}
$$

Conclude:

An under-density of one part in 10^{6}

at the end of radiation produces a seven-fold under-density
at present time...

CONCLUDE:

The Standard Model is Unstable to Perturbation by this I-parameter family of Waves

Comparison with Dark Energy:

$H_{0} d_{\ell}=z+.425 z^{2}-.180 z^{3}$
Dark
Energy
$H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}$
Wave
Theory

$$
z \sim \frac{d_{\ell}}{H_{0}} \sim \frac{r}{c t} \sim \xi
$$

Measures Fractional Distance to
Hubble Radius

$$
z \ll 1
$$

Neglecting $O\left(\xi^{4}\right)$ errors:

The spacetime near the center evolves toward the Stable Rest Point

- The metric tends to Flat Minkowski Spacetime which is not co-moving with the fluid
- BUT: The evolution creates a uniformly expanding density near the center, which, neglecting relativistic corrections,

$$
\begin{aligned}
& \text { is } C E N T E R-I N D E P E N D E N T \\
& \text { (like Friedmann Spacetimes) }
\end{aligned}
$$

CONCLUDE:

The wave creates a

UNIFORMLY EXPANDING SPACETIME

with an
ANOMALOUS ACCELERATION
in a
LARGE, FLAT, CENTER-INDEPENDENT
region near the center of the wave

Neglecting errors $O\left(\xi^{4}\right)$:

$$
\begin{aligned}
& \left.z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{2 t}+24 t\right)\right\} \xi^{4}+\delta\left(v^{0}\right) \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+\partial
\end{aligned}
$$

$z \sim$ density $\quad w \sim$ velocity
$\xi=\frac{r}{t} \sim$ fractional distance to Hubble Length

THEOREM: Neglecting $O\left(\xi^{4}\right)$ errors, as the orbit tends to the Stable Rest Point:

- The Density drops FASTER than SM:
$\rho_{W A V E}(t)=\frac{k_{0}}{t^{3}(1+\bar{w})} \quad \rho_{S M}(t)=\frac{4}{3 t^{2}}$
where $\bar{w}(t)$ and $k_{0}(t)$ change exponentially slowly.
- The metric tends to FLAT MINKOWSKI:

$$
\mathrm{ds}^{2}=-d t^{2}+d r^{2}+r^{2} d \Omega^{2}
$$

Theorem: There exists a unique value $\underline{a}=0.99999956 \approx 1-4.3 \times 10^{-7}$ such that:

Theorem: There exists a unique value

$\underline{a}=0.99999956 \approx 1-4.3 \times 10^{-7}$ such that:

- The $p=0$ evolution starting from this initial data evolves to $H=H_{0}, Q=.425$ at $t=t_{0}$, in agreement with Dark Energy at $t=t_{D E}$.

Theorem: There exists a unique value

$\underline{a}=0.99999956 \approx 1-4.3 \times 10^{-7}$ such that:

- The $p=0$ evolution starting from this initial data evolves to $H=H_{0}, Q=.425$ at $t=t_{0}$, in agreement with Dark Energy at $t=t_{D E}$.
- The cubic correction is $C=0.359$ at $t=t_{0}$, while Dark Energy is $C=-0.180$ at $t=t_{D E}$.

Theorem: There exists a unique value

$\underline{a}=0.99999956 \approx 1-4.3 \times 10^{-7}$ such that:

- The $p=0$ evolution starting from this initial data evolves to $H-H_{0}, Q=.425$ at $t=t_{0}$, in agreement with Dark Energy at $t=t_{D E}$.
- The cubic correction is $C=0.359$ at $t=t_{0}$, while Dark Energy is $C=-0.180$ at $t=t_{D E}$.
- The ages of the universe are related by:

$$
t_{0} \approx(.95) t_{D E} \approx 1.38 \times t_{S M}=1.38 \times\left(9.8 \times 10^{9} y r\right)
$$

Around 2007:

Other research groups began exploring the possibility that the anomalous acceleration might be due to the earth lying near the center of a large region of Under-Density

We first saw publication in 2009

This proposal is still taken seriously in Astrophysics

Prokopek...20I3 (Astrophysicist, Utrecht University)

Some of the more important discrepancies are as follows:

- the Λ CDM model predicts more galactic satellites (dwarf galaxies) than what has been observed [11] (this can be in part cured by a large merger rate, see however Ref. [12]);
- the Gaussian model for the origin of Universe's structure has difficulties in explaining the controversial large scale (dark) flow of galaxies [13] (even though the Planck satellite has not seen evidence of such flows in its data), and outliers such as the large relative speed in the Bullet Cluster collision [14];
- our Universe is supplied with a large number of voids, whose sizes and distribution may not be consistent with the Λ CDM model; moreover the voids should be filled with dwarfs and low surface brightness galaxies [15], which is not what has been observed [16];
- there are hints [17] that the structure growth rate is somewhat slower from that predicted by the Λ CDM model (alternatively we live in a universe with the equation of state parameter for dark energy $w_{\text {de }}<-1$);
- the disagreement between the Hubble Key Project and supernovae measurements of the Hubble constant $[18,19]$ and that obtained from the Planck data could be an indication that we live in an underdense region, whose size and magnitude would be difficult to reconcile with the standard Λ CDM with Gaussian initial perturbations (see however [20]).

Details

of our
Analysis

Main Steps:

(I) Derivation of the $\mathrm{p}=0$ Einstein equations in a new coordinate system aligned with the structure of the waves.
(2) A new ansatz for the Corrections to SM such that the asymptotic equations close.
(3) Putting the Initial Data from the Radiation Epoch into the gauge of our asymptotics.
(4) The Redshift vs Luminosity determined by the Corrections.

I. A New Formulation of the $p=0$
 Einstein Equations

The Einstein equations for spherically symmetric spacetimes take their Simplest Form in
Standard Schwarzschild Coordinates
(SSC)
I.e.

I.e. A General Spherically Symmetric metric

$$
\mathrm{ds}^{2}=-D(t, \bar{r}) d \bar{t}^{2}+E(\bar{t}, \bar{r}) d \bar{t} d \bar{r}+F(\bar{t}, \bar{r}) d \bar{r}^{2}+G(\bar{t}, \bar{r}) d \Omega^{2}
$$

I.e. A General Spherically Symmetric metric

$$
\mathrm{ds}^{2}=-D(t, \bar{r}) d \bar{t}^{2}+E(\bar{t}, \bar{r}) d \bar{t} d \bar{r}+F(\bar{t}, \bar{r}) d \bar{r}^{2}+G(\bar{t}, \bar{r}) d \Omega^{2}
$$

Transforms to SSC form:

I.e. A General Spherically Symmetric metric

$$
\mathrm{ds}^{2}=-D(t, \bar{r}) d \bar{t}^{2}+E(\bar{t}, \bar{r}) d \bar{t} d \bar{r}+F(\bar{t}, \bar{r}) d \bar{r}^{2}+G(\bar{t}, \bar{r}) d \Omega^{2}
$$

Transforms to SSC form:

$$
(\bar{t}, \bar{r}) \rightarrow(t, r)
$$

I.e. A General Spherically Symmetric metric

$$
\mathrm{ds}^{2}=-D(t, \bar{r}) d \bar{t}^{2}+E(\bar{t}, \bar{r}) d \bar{t} d \bar{r}+F(\bar{t}, \bar{r}) d \bar{r}^{2}+G(\bar{t}, \bar{r}) d \Omega^{2}
$$

Transforms to SSC form:

$$
(\bar{t}, \bar{r}) \rightarrow(t, r)
$$

$$
\begin{gathered}
d s^{2}=-B(t, r) d t^{2}+\frac{1}{A(t, r)} d r^{2}+r^{2} d \Omega^{2} \\
\mathrm{SSC}
\end{gathered}
$$

The Equations
 In SSC

Standard Schwarzschild Coordinates

Four
PDE's

$$
\begin{align*}
\left\{-r \frac{A_{r}}{A}+\frac{1-A}{A}\right\} & =\frac{\kappa B}{A} r^{2} T^{00} \tag{1}\\
\frac{A_{t}}{A} & =\frac{\kappa B}{A} r T^{01} \tag{3}\\
\left\{r \frac{B_{r}}{B}-\frac{1-A}{A}\right\} & =\frac{\kappa}{A^{2}} r^{2} T^{11} \\
-\left\{\left(\frac{1}{A}\right)_{t t}-B_{r r}+\Phi\right\} & =2 \frac{\kappa B}{A} r^{2} T^{22},
\end{align*}
$$

where

$$
\begin{aligned}
& \Phi=\frac{B_{t} A_{t}}{2 A^{2} B}-\frac{1}{2 A}\left(\frac{A_{t}}{A}\right)^{2}-\frac{B_{r}}{r}-\frac{B A_{r}}{r A} \\
&+\frac{B}{2}\left(\frac{B_{r}}{B}\right)^{2}-\frac{B}{2} \frac{B_{r}}{B} \frac{A_{r}}{A} \\
&(\mathrm{l})+(2)+(3)+(4)
\end{aligned}
$$

Theorem: (Te-Gr) The equations close in a

 "locally inertial" formulation of (I), (2) \& Div T=0:$$
\begin{align*}
\left\{T_{M}^{00}\right\}_{, 0}+\left\{\sqrt{A B} T_{M}^{01}\right\}_{, 1}= & -\frac{2}{r} \sqrt{A B} T_{M}^{01}, \tag{1}\\
\left\{T_{M}^{01}\right\}_{, 0}+\left\{\sqrt{A B} T_{M}^{11}\right\}_{, 1}= & -\frac{1}{2} \sqrt{A B}\left\{\frac{4}{r} T_{M}^{11}+\frac{(1-A)}{A r}\left(T_{M}^{00}-T_{M}^{11}\right)\right. \tag{2}\\
& \left.+\frac{2 \kappa r}{A}\left(T_{M}^{00} T_{M}^{11}-\left(T_{M}^{01}\right)^{2}\right)-4 r T^{22}\right\}, \\
r A_{r}= & (1-A)-\kappa r^{2} T_{M}^{00}, \tag{3}\\
r B_{r}= & \frac{B(1-A)}{A}+\frac{B}{A} \kappa r^{2} T_{M}^{11} . \tag{4}
\end{align*}
$$

$$
\begin{aligned}
T_{M}^{00} & =\frac{\rho c^{2}+p}{1-\left(\frac{v}{c}\right)^{2}}
\end{aligned} \quad T_{M}^{01}=\frac{\rho c^{2}+p}{1-\left(\frac{v}{c}\right)^{2}} \frac{v}{c}, ~ \begin{aligned}
1-\left(\frac{v}{c}\right)^{2} & \\
T_{M}^{11} & =\frac{p+\left(\frac{v}{c}\right)^{2}}{1-T^{2}}=\frac{p}{r^{2}}
\end{aligned}
$$

$$
v=\frac{1}{\sqrt{A B}} \frac{u^{1}}{u^{0}}
$$

Setting $p=0$:

$$
\begin{aligned}
& T_{M}^{00}=\frac{\rho c^{2}}{1-\left(\frac{v}{c}\right)^{2}}, \quad T_{M}^{01}=\frac{\rho c^{2}}{1-\left(\frac{v}{c}\right)^{2}} \frac{v}{c} \\
& T_{M}^{11}=\frac{\rho c^{2}}{1-\left(\frac{v}{c}\right)^{2}}\left(\frac{v}{c}\right)^{2}, \quad T^{22}=0
\end{aligned}
$$

Everything can be written in terms of T_{M}^{00} and $\left(\frac{v}{c}\right)$:

$$
T_{M}^{01}=T_{M}^{00}\left(\frac{v}{c}\right), \quad T_{M}^{22}=T_{M}^{00}\left(\frac{v}{c}\right)^{2}
$$

Substituting into the Equations gives:

$$
\begin{aligned}
\left(T_{M}^{00}\right)_{t}+ & \left\{\sqrt{A B}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right)\right\}_{r}=-\frac{2 \sqrt{A B}}{r}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right) \\
\left(\left(\frac{v}{c}\right) T_{M}^{00}\right)_{t}+ & \left\{\sqrt{A B}\left(\frac{v}{c}\right)^{2} T_{M}^{00}\right\}_{r}= \\
& -\frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00} \\
\frac{A^{\prime}}{A}= & \frac{1}{r}\left(\frac{1}{A}-1\right)-\frac{\kappa r}{A} T_{M}^{00} \\
\frac{B^{\prime}}{B}= & \frac{1}{r}\left(\frac{1}{A}-1\right)+\frac{\kappa r}{A} T_{M}^{00}\left(\frac{v}{c}\right)^{2}
\end{aligned}
$$

Substituting into the Equations gives:

$$
\begin{aligned}
&\left(T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right)\right\}_{r}=-\frac{2 \sqrt{A B}}{r}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right) \\
&\left(\left(\frac{v}{c}\right) T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)^{2} T_{M}^{00}\right\}_{r}= \\
& \quad-\frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00} \\
& \frac{A^{\prime}}{A}= \frac{1}{r}\left(\frac{1}{A}-1\right)-\frac{\kappa r}{A} T_{M}^{00} \\
& \frac{B^{\prime}}{B}= \frac{1}{r}\left(\frac{1}{A}-1\right)+\frac{\kappa r}{A} T_{M}^{00}\left(\frac{v}{c}\right)^{2}
\end{aligned}
$$

Everything in terms of T_{M}^{00} and $\left(\frac{v}{c}\right)$

Substituting into the Equations gives:

$$
\begin{align*}
\left(T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right)\right\}_{r}=-\frac{2 \sqrt{A B}}{r}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right) \tag{I}\\
\left(\left(\frac{v}{c}\right) T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)^{2} T_{M}^{00}\right\}_{r}= \\
\quad-\frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00} \tag{2}\\
\frac{A^{\prime}}{A}=\frac{1}{r}\left(\frac{1}{A}-1\right)-\frac{\kappa r}{A} T_{M}^{00} \\
\frac{B^{\prime}}{B}=\frac{1}{r}\left(\frac{1}{A}-1\right)+\frac{\kappa r}{A} T_{M}^{00}\left(\frac{v}{c}\right)^{2}
\end{align*}
$$

Note: Equations are Singular at $r=0$

The $1 / r$ singularity reflects the fact that waves coming into $r=0$ can amplify and blowup.

Since we are only interested in solutions representing outgoing, expanding waves, we look for natural changes of variables that regularize the equations at $r=0$.

First: set $c=1$, collect v / r, and assume v / r smooth at $\mathrm{r}=0$:

$$
\begin{aligned}
& \left(T_{M}^{00}\right)_{t}+r\left\{\sqrt{A B}\left(\frac{v}{r}\right) T_{M}^{00}\right\}_{r}=3 \sqrt{A B}\left(\frac{v}{r}\right) T_{M}^{00} \\
& \left(\frac{v}{r}\right)_{t}+r \sqrt{A B}\left(\frac{v}{r}\right)\left(\frac{v}{r}\right)_{r}=-\sqrt{A B}\left\{\left(\frac{v}{r}\right)^{2}+\frac{1-A}{2 A r^{2}}\left(1-r^{2}\left(\frac{v}{r}\right)^{2}\right)\right\} \\
& \frac{A^{\prime}}{A}=\frac{1}{r}\left(\frac{1}{A}-1\right)-\frac{\kappa r}{A} T_{M}^{00} \\
& \frac{B^{\prime}}{B}=\frac{1}{r}\left(\frac{1}{A}-1\right)+\frac{\kappa r}{A} T_{M}^{00}\left(\frac{v}{c}\right)^{2}
\end{aligned}
$$

Next: use (1) to eliminate T_{M}^{00} from (2)

$$
\begin{align*}
\left(T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right)\right\}_{r}=-\frac{2 \sqrt{A B}}{r}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right) \tag{I}\\
\left(\left(\frac{v}{c}\right) T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)^{2} T_{M}^{00}\right\}_{r}= \\
\quad-\frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00} \tag{2}\\
\frac{A^{\prime}}{A}=\frac{1}{r}\left(\frac{1}{A}-1\right)-\frac{\kappa r}{A} T_{M}^{00} \\
\frac{B^{\prime}}{B}=\frac{1}{r}\left(\frac{1}{A}-1\right)+\frac{\kappa r}{A} T_{M}^{00}\left(\frac{v}{c}\right)^{2}
\end{align*}
$$

l.e.

$\left(\left(\frac{v}{c}\right) T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)^{2} T_{M}^{00}\right\}_{n}=$
(2)

$$
-\frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00}
$$

$$
\begin{aligned}
L H S=r\left(\frac{v}{r}\right) & {\left[\left(T_{M}^{00}\right)_{t}+\left\{\sqrt{A B} r\left(\frac{v}{r}\right) T_{M}^{00}\right\}_{r}\right] } \\
& +r T_{M}^{00}\left(\frac{v}{r}\right)_{t}+r T_{M}^{00} \sqrt{A B}\left(\frac{v}{r}\right)\left(r\left(\frac{v}{r}\right)\right)_{r}
\end{aligned}
$$

$$
\begin{equation*}
\left(T_{M}^{00}\right)_{t}+\left\{\sqrt{A B}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right)\right\}_{r}=-\frac{2 \sqrt{A B}}{r}\left(\frac{v}{c}\right)\left(T_{M}^{00}\right) \tag{I}
\end{equation*}
$$

Substitute (I) into (2):

Obtain:

$$
\begin{gather*}
-2 \sqrt{A B}\left(\frac{v}{r}\right)^{2} r T_{M}^{00}+r T_{M}^{00}\left(\frac{v}{r}\right)_{t} \tag{2}\\
+r T_{M}^{00} \sqrt{A B}\left(\frac{v}{r}\right)\left(r\left(\frac{v}{r}\right)\right)_{r} \\
=-\frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00}
\end{gather*}
$$

Obtain:

$$
\begin{align*}
-2 \sqrt{A B}\left(\frac{v}{r}\right)^{2} r & T_{M}^{00}+r T_{M}^{00}\left(\frac{v}{r}\right)_{t} \tag{2}\\
& +r T_{M}^{00} \sqrt{A B}\left(\frac{v}{r}\right)\left(r\left(\frac{v}{r}\right)\right)_{r} \\
=- & \frac{\sqrt{A B}}{2 r}\left\{4\left(\frac{v}{c}\right)^{2}+\frac{1-A}{A}\left(1-\left(\frac{v}{c}\right)^{2}\right)\right\} T_{M}^{00}
\end{align*}
$$

Linearity in $T_{M}^{00} \Rightarrow$ Divide by $r T_{M}^{00}$

Next: simplify and collect: $z=\kappa T_{M}^{00} r^{2}$

$$
\begin{gathered}
\left(\kappa T_{M}^{00} r^{2}\right)_{t}+\left\{\sqrt{A B} \frac{v}{r}\left(\kappa T_{M}^{00} r^{2}\right)\right\}_{r}=-2 \sqrt{A B} \frac{v}{r}\left(\kappa T_{M}^{00} r^{2}\right) \\
\left(\frac{v}{r}\right)_{t}+r \sqrt{A B}\left(\frac{v}{r}\right)\left(\frac{v}{r}\right)_{r}=-\sqrt{A B}\left\{\left(\frac{v}{r}\right)^{2}+\frac{1-A}{2 A r^{2}}\left(1-r^{2}\left(\frac{v}{r}\right)^{2}\right)\right\} \\
r \frac{A^{\prime}}{A}=\left(\frac{1}{A}-1\right)-\frac{1}{A} \kappa T_{M}^{00} r^{2} \\
r \frac{B^{\prime}}{B}=\left(\frac{1}{A}-1\right)+\frac{1}{A}\left(\frac{v}{c}\right)^{2} \kappa T_{M}^{00} r^{2}
\end{gathered}
$$

Simplify and collect: $z=\kappa T_{M}^{00} r^{2}$

$$
\begin{gathered}
\left(\kappa T_{M}^{00} r^{2}\right)_{t}+\left\{\sqrt{A B} \frac{v}{r}\left(\kappa T_{M}^{00} r^{2}\right)\right\}_{r}=-2 \sqrt{A B} \frac{v}{r}\left(\kappa T_{M}^{00} r^{2}\right) \\
\left(\frac{v}{r}\right)_{t}+r \sqrt{A B}\left(\frac{v}{r}\right)\left(\frac{v}{r}\right)_{r}=-\sqrt{A B}\left\{\left(\frac{v}{r}\right)^{2}+\frac{1-A}{2 A r^{2}}\left(1-r^{2}\left(\frac{v}{r}\right)^{2}\right)\right\} \\
r \frac{A^{\prime}}{A}=\left(\frac{1}{A}-1\right)-\frac{1}{A} \kappa T_{M}^{00} r^{2} \\
r \frac{B^{\prime}}{B}=\left(\frac{1}{A}-1\right)+\frac{1}{A}\left(\frac{v}{c}\right)^{2} \kappa T_{M}^{00} r^{2}
\end{gathered}
$$

(This is the self-similar variable in the waves from the radiation epoch!)

Final change of variables---

Final change of variables---

$$
(t, r) \rightarrow(t, \xi)
$$

Final change of variables---

$$
(t, r) \rightarrow(t, \xi) \quad \xi=\frac{r}{t}
$$

Final change of variables---

$$
(t, r) \rightarrow(t, \xi) \quad \xi=\frac{r}{t}
$$

$$
\begin{gathered}
\left(T_{M}^{00}, v\right) \rightarrow(z, w) \\
z=\kappa T_{M}^{00} r^{2}, \quad w=\frac{v}{\xi}
\end{gathered}
$$

Final change of variables---

$$
\begin{gathered}
(t, r) \rightarrow(t, \xi) \quad \xi=\frac{r}{t} \\
\left(T_{M}^{00}, v\right) \rightarrow(z, w) \\
z=\kappa T_{M}^{00} r^{2}, \quad w=\frac{v}{\xi} \\
\frac{\partial}{\partial r}=\frac{1}{t} \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial r} f(t, r)=\left(\frac{\partial}{\partial t}-\frac{1}{t^{2}} \frac{\partial}{\partial \xi}\right) f(t, \xi)
\end{gathered}
$$

Substituting into (1) and (2) we obtain the following dimensionless eqns:

$t z_{t}+\xi\{(-1+D w) z\}_{\xi}=-D w z$,
$t w_{t}+\xi(-1+D w) w_{\xi}=$

$$
\begin{equation*}
w-D\left\{w^{2}+\frac{1-\xi^{2} w^{2}}{2 A}\left[\frac{1-A}{\xi^{2}}\right]\right\} \tag{2}
\end{equation*}
$$

Where:

$$
D=\sqrt{A B}
$$

Take A and D instead of A and B :

Take A and D instead of A and B :

$$
\begin{aligned}
\xi A_{\xi} & =(A-1)-z, \\
\xi \frac{B_{\xi}}{B} & =\frac{1}{A}\left\{1-A+\xi^{2} w^{2} z\right\}, \\
\xi(\sqrt{A B})_{\xi} & =\sqrt{A B}\left\{(1-A)-\frac{\left(1-\xi^{2} w^{2}\right)}{2} z .\right.
\end{aligned}
$$

Take A and D instead of A and B :

$$
\begin{aligned}
\xi A_{\xi} & =(A-1)-z \\
\xi \frac{B \xi}{B} & =\frac{1}{A}\left\{1-A+\xi^{2} w^{2} z\right\}, \\
\xi(\sqrt{A B})_{\xi} & =\sqrt{A B}\left\{(1-A)-\frac{\left(1-\xi^{2} w^{2}\right)}{2} z\right. \\
\xi A_{\xi} & =(A-1)-z \\
\xi(D)_{\xi} & =D\left\{(1-A)-\frac{\left(1-\xi^{2} w^{2}\right)}{2} z\right\}
\end{aligned}
$$

This leads to the following
Dimensionless Formulation of the $p=0$ Einstein Equations:

Einstein Equations when $\mathrm{D}=0$

$t z_{t}+\xi\{(-1+D w) z\}_{\xi}=-D w z$,
$t w_{t}+\xi(-1+D w) w_{\xi}=$

$$
\begin{aligned}
& \quad w-D\left\{w^{2}+\frac{1-\xi^{2} w^{2}}{2 A}\left[\frac{1-A}{\xi^{2}}\right]\right\} \\
& \xi A_{\xi}=(A-1)-z \\
& \frac{\xi D_{\xi}}{D}=(1-A)-\frac{\left(1-\xi^{2} w^{2}\right)}{2} z
\end{aligned}
$$

Einstein Equations when $p=0$

$$
\begin{aligned}
& t z_{t}+\xi\{(-1+D w) z\}_{\xi}=-D w z, \\
& t w_{t}+\xi(-1+D w) w_{\xi}= \\
& w-D\left\{w^{2}+\frac{1-\xi^{2} w^{2}}{2 A}\left[\frac{1-A}{\xi^{2}}\right]\right\}, \\
& \xi A_{\xi}=(A-1)-z, \\
& \frac{\xi D_{\xi}}{D}=(1-A)-\frac{\left(1-\xi^{2} w^{2}\right)}{2} z .
\end{aligned}
$$

$$
d s^{2}=-B d t^{2}+\frac{1}{A} d r^{2}+r^{2} d \Omega^{2}, \quad D=\sqrt{A B}, \quad z=\frac{\rho r^{2}}{\left(1-v^{2}\right)}, \quad w=\frac{v}{\xi}
$$

2. The Ansatz and Asymptotics for the
 Corrections:

Our Ansatz for Corrections to the Standard Model

$$
\begin{aligned}
z(t, \xi) & =z_{F}(\xi)+\Delta z(t, \xi) \\
w(t, \xi) & =w_{F}(\xi)+\Delta w(t, \xi) \\
A(t, \xi) & =A_{F}(\xi)+\Delta A(t, \xi) \\
D(t, \xi) & =D_{F}(\xi)+\Delta D(t, \xi)
\end{aligned}
$$

Our Ansatz for Corrections to the Standard Model

$z(t, \xi)=z_{F}(\xi)+\Delta z(t, \xi)$
$w(t, \xi)=w_{F}(\xi)+\Delta w(t, \xi)$
$A(t, \xi)=A_{F}(\xi)+\Delta A(t, \xi)$
$D(t, \xi)=D_{F}(\xi)+\Delta D(t, \xi)$

- The Standard Model is Self-Similar:

$$
\begin{aligned}
z_{F} & =\frac{4}{3} \xi^{2}+\frac{40}{27} \xi^{4}+O\left(\xi^{6}\right) \\
w_{F} & =\frac{2}{3}+\frac{2}{9} \xi^{2}+O\left(\xi^{4}\right) \\
A_{F} & =1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
D_{F} & =1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

Our Ansatz for Corrections to the Standard Model

$z(t, \xi)=z_{F}(\xi)+\Delta z(t, \xi)$
$w(t, \xi)=w_{F}(\xi)+\Delta w(t, \xi)$
$A(t, \xi)=A_{F}(\xi)+\Delta A(t, \xi)$
$D(t, \xi)=D_{F}(\xi)+\Delta D(t, \xi)$

- The Standard Model is Self-Similar:

$$
\begin{aligned}
z_{F} & =\frac{4}{3} \xi^{2}+\frac{40}{27} \xi^{4}+O\left(\xi^{6}\right) \\
w_{F} & =\frac{2}{3}+\frac{2}{9} \xi^{2}+O\left(\xi^{4}\right) \\
A_{F} & =1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
D_{F} & =1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

Our Ansatz for Corrections to the Standard Model

$$
\begin{aligned}
z(t, \xi)=z_{F}(\xi)+\Delta z(t, \xi) & \Delta z=z_{2}(t) \xi^{2}+z_{4}(t) \xi^{4} \\
w(t, \xi)=w_{F}(\xi)+\Delta w(t, \xi) & \Delta w=w_{0}(t)+w_{2}(t) \xi^{2} \\
A(t, \xi)=A_{F}(\xi)+\Delta A(t, \xi) & \Delta A=A_{2}(t) \xi^{2}+A_{4}(t) \xi^{4} \\
D(t, \xi)=D_{F}(\xi)+\Delta D(t, \xi) & \Delta D=D_{2}(t) \xi^{2}
\end{aligned}
$$

- Note: Corrections only involve even powers of ξ
- The Standard Model is Self-Similar:

$$
\begin{aligned}
z_{F} & =\frac{4}{3} \xi^{2}+\frac{40}{27} \xi^{4}+O\left(\xi^{6}\right) \\
w_{F} & =\frac{2}{3}+\frac{2}{9} \xi^{2}+O\left(\xi^{4}\right) \\
A_{F} & =1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
D_{F} & =1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

Our Ansatz for Corrections to the Standard Model

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right), \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right),
\end{aligned}
$$

Reiterate:

We don't use co-moving coordinates,

but rather write the SSC eqns in (t, ξ)-coordinates.

$$
\begin{gathered}
d s^{2}=-B(t, r) d t^{2}+\frac{1}{A(t, r)} d r^{2}+r^{2} d \Omega^{2} \\
\xi=r / t \quad D=\sqrt{A B}
\end{gathered}
$$

Equations for the Corrections to SM

- When we plug into the equations a remarkable simplification occurs:

$$
A_{2}=-\frac{1}{3} z_{2}, \quad A_{4}=-\frac{1}{5} z_{4}, \quad D_{2}=-\frac{1}{12} z_{2}
$$

Equations for the Corrections to SM

- When we plug into the equations a remarkable simplification occurs:

$$
A_{2}=-\frac{1}{3} z_{2}, \quad A_{4}=-\frac{1}{5} z_{4}, \quad D_{2}=-\frac{1}{12} z_{2}
$$

- This is a coordinate gauge condition reflecting the serendipity of our (t, ξ)-coordinate system!!

Plugging Ansatz into Equations...

$$
\text { Plugging } \quad A_{2}=-\frac{1}{3} z_{2}, \quad A_{4}=-\frac{1}{5} z_{4}, \quad D_{2}=-\frac{1}{12} z_{2}
$$

and

$$
\begin{aligned}
& z(t, \xi)=z_{F}(\xi)+z_{2}(t) \xi^{2}+z_{4}(t) \xi^{4} \\
& w(t, \xi)=w_{F}(\xi)+w_{0}(t)+w_{2}(t) \xi^{2} \\
& A(t, \xi)=A_{F}(\xi)+A_{2}(t) \xi^{2}+A_{4}(t) \xi^{4} \\
& D(t, \xi)=D_{F}(\xi)+D_{2}(\xi) \xi^{2}
\end{aligned}
$$

into equations:

$$
\begin{aligned}
& t z_{t}+\xi\{(-1+D w) z\}_{\xi}=-D w z \\
& t w_{t}+\xi(-1+D w) w_{\xi}= \\
& w-D\left\{w^{2}+\frac{1-\xi^{2} w^{2}}{2 A}\left[\frac{1-A}{\xi^{2}}\right]\right\}
\end{aligned}
$$

Gives:

THEOREM: The $p=0$ waves take the asymptotic form

$$
\begin{aligned}
z(t, \xi) & =\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right) \\
w(t, \xi) & =\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

where $z_{2}(t), z_{4}(t), w_{0}(t), w_{2}(t)$ evolve according to the equations

$$
\begin{aligned}
&-t \dot{z}_{2}= 3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
&-t \dot{z}_{4}=-5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
&-5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\} \\
&-t \dot{w}_{0}= \frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}, \\
&-t \dot{w}_{2}= \frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
&-\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2}
\end{aligned}
$$

The Corrections to SM evolve according to

$$
\begin{aligned}
-t \dot{z}_{2}= & 3 w_{0}\left(\frac{4}{3}+z_{2}\right), \\
-t \dot{z}_{4}= & -5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
& -5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\} \\
-t \dot{w}_{0}= & \frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}, \\
-t \dot{w}_{2}= & \frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
& -\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2},
\end{aligned}
$$

Note: RHS is Autonomous!

We can make LHS Automomous too!

$$
\begin{aligned}
&-z_{2}^{\prime}=-t \dot{z}_{2}=3 w_{0}\left(\frac{4}{3}+z_{2}\right), \\
&-z_{4}^{\prime}=-t \dot{z}_{4}=-5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
&-5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\}, \\
&-w_{0}^{\prime}=-t \dot{w}_{0}=\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}, \\
&-w_{2}^{\prime}=-t \dot{w}_{2}=\frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
&-\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2} .
\end{aligned}
$$

$$
\tau=\ln (t) \Rightarrow t \frac{d}{d t}=\frac{d}{d \tau} \equiv \prime \Rightarrow \text { LHS Autonomous }
$$

Autonomous Eqns for Corrections to SM

$$
\begin{aligned}
-z_{2}^{\prime}= & 3 w_{0}\left(\frac{4}{3}+z_{2}\right), \\
-z_{4}^{\prime}= & -5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
& -5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\}, \\
-w_{0}^{\prime}= & \frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}, \\
-w_{2}^{\prime}= & \frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
& \quad-\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2} .
\end{aligned}
$$

$\mathrm{t}_{*} \leq t \leq 10^{14} \mathrm{yr}$
$\ln \left(\mathrm{t}_{*}\right) \leq \tau \leq 14 \cdot \ln (10)$

Trivializes the large time

 simulation problem!
The Equations for the Corrections

$$
\begin{aligned}
&-z_{2}^{\prime}= 3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
&-z_{4}^{\prime}=-5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
&--5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\} \\
&-w_{0}^{\prime}= \frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2} \\
&-w_{2}^{\prime}= \frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
&-\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2}
\end{aligned}
$$

Everything is dimensionless involving only pure numbers!

The Equations for the Corrections

$$
\begin{aligned}
& \longrightarrow-z_{2}^{\prime}= 3 w_{0}\left(\frac{4}{3}+z_{2}\right), \\
&-z_{4}^{\prime}=-5\left\{\frac{2}{27} z_{2}+\frac{4}{3} w_{2}-\frac{1}{18} z_{2}^{2}+z_{2} w_{2}\right\} \\
&-5 w_{0}\left\{\frac{4}{3}-\frac{2}{9} z_{2}+z_{4}-\frac{1}{12} z_{2}^{2}\right\} \\
& \rightarrow-w_{0}^{\prime}= \frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}, \\
&-w_{2}^{\prime}= \frac{1}{10} z_{4}+\frac{4}{9} w_{0}-\frac{1}{3} w_{2}+\frac{1}{24} z_{2}^{2}-\frac{1}{3} z_{2} w_{0} \\
&-\frac{1}{3} w_{0}^{2}+4 w_{0} w_{2}-\frac{1}{4} w_{0}^{2} z_{2}
\end{aligned}
$$

- Note: Leading order Eqns Uncouple!

The Leading Order Corrections...

$$
\begin{aligned}
& z(t, \xi)=\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+O\left(\xi^{4}\right) \\
& w(t, \xi)=\left(\frac{2}{3}+w_{0}(t)\right)+O\left(\xi^{2}\right)
\end{aligned}
$$

...And Their Equations

$$
-z_{2}^{\prime}=-t \dot{z}_{2}=3 w_{0}\left(\frac{4}{3}+z_{2}\right)
$$

$$
-w_{0}^{\prime}=-t \dot{w}_{0}=\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}
$$

- Keep in mind that ξ is on the order of fractional distance to the Hubble Length:

$$
\xi=r / c t \approx \frac{\text { arclength distance at fixed time }}{\text { distance of light travel since Big Bang }}
$$

- For example: At I/IO way across the visible universe, about I.I billion light-years out:

$$
\xi^{4} \approx \frac{1}{10,000}=.0001
$$

Hubbles Law:

$\mathrm{H}_{0} d_{\ell}=z$

\nearrow

Hubble's

Constant

Luminosity
Distance

Redshift
Factor
| 929: Linear relation between redshift and luminosity

Hubbles Law:

| 999: There is an anomalous
acceleration

In Fact: ξ is on the order of the redshift factor, and $\left(z_{2}, w_{0}\right)$ determines the quadratic correction to redshift vs luminosity
=anomalous acceleration

$$
\operatorname{Ho}_{\ell}=z+\left(d_{\ell}=z^{3}\right)
$$

- In Fact: ξ is on the order of the redshift factor, and $\left(z_{2}, w_{0}\right)$ determines the quadratic correction to redshift vs luminosity
=anomalous acceleration

$$
H_{0} d_{\ell}=z+\underbrace{Q\left(z_{2}, w_{0}\right)}_{\uparrow} z^{2}+O\left(z^{3}\right)
$$

Determined by the value
of the so-called
"Deceleration Parameter" q

- The cubic correction is

 determined by $\left(z_{2}, w_{0}, w_{2}\right)$$H_{0} d_{\ell}=z+Q\left(z_{2}, w_{0}\right) z^{2}+\underset{\left(z_{2}, w_{0}, w_{2}\right)}{ } z^{3}+O\left(z^{3}\right)$
Determined by solving
our system of four equations

$$
\text { for }\left(z_{2}, z_{4}, w_{0}, w_{4}\right)
$$

- The cubic correction is

 determined by $\left(z_{2}, w_{0}, w_{2}\right)$$H_{0} d_{\ell}=z+Q\left(z_{2}, w_{0}\right) z^{2}+{ }_{c}^{\left.C_{2}, w_{0}, w_{2}\right)} z^{3}$
$+O\left(z^{3}\right)$ A prediction
Beyond experimental precision

- The quadratic correction is determined by our equations for $\left(z_{2}, w_{0}\right)$
$H_{0} d_{\ell}=z+Q\left(z_{2}, w_{0}\right) z^{2}+O\left(z^{3}\right)$

$$
\begin{aligned}
-z_{2}^{\prime} & =-t \dot{z}_{2}=3 w_{0}\left(\frac{4}{3}+z_{2}\right) \\
-w_{0}^{\prime} & =-t \dot{w}_{0}=\frac{1}{6} z_{2}+\frac{1}{3} w_{0}+w_{0}^{2}
\end{aligned}
$$

Numerical Simulation

The $\left(z_{2}, w_{0}\right)$ phase portrait:

Thanks to: pplane Rice University

$$
\begin{aligned}
& \text { Mand } \\
& \text { Model } \\
& \text { Saddle Pt. }
\end{aligned}
$$

3. The Initial Data determined by the Self-Similar Waves from the Radiation Epoch

A SSC Self-Similar Formulation of the $\mathrm{k}=0$ Friedmann Spacetimes when

$$
p=\sigma^{2} \rho:
$$

A SSC Self-Similar Formulation of the k=0 Friedmann Spacetimes when

$$
p=\sigma^{2} \rho:
$$

FRW Co-moving: $\quad d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}$

A SSC Self-Similar Formulation of the $\mathrm{k}=0$ Friedmann Spacetimes when

$$
p=\sigma^{2} \rho:
$$

FRW Co-moving:

$$
d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}
$$

$$
\bar{t}=F(\eta) t ; \quad \bar{r}=\eta t
$$

A SSC Self-Similar Formulation of the $\mathrm{k}=0$ Friedmann Spacetimes when

$$
p=\sigma^{2} \rho:
$$

FRW Co-moving: $\quad d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}$
FRW Self-Similar: $\quad \bar{t}=F(\eta) t ; \quad \bar{r}=\eta t$,

$$
\xi \equiv \frac{\bar{r}}{\bar{t}}=\frac{\eta}{F(\eta)} ; \quad \eta \equiv \frac{\bar{r}}{t} ; \quad F(\eta)=\left(1-\frac{1-3 \sigma}{9(1+\sigma)^{2}} \eta^{2}\right)^{\frac{3(1+\sigma)}{2(1+3 \sigma)}}
$$

A SSC Self-Similar Formulation of the $\mathrm{k}=0$ Friedmann Spacetimes when

$$
p=\sigma^{2} \rho:
$$

FRW Co-moving: $\quad d s^{2}=-d t^{2}+R(t)^{2}\left\{d r^{2}+r^{2} d \Omega^{2}\right\}$
FRW Self-Similar: $\quad \bar{t}=F(\eta) t ; \quad \bar{r}=\eta t$,

$$
\begin{aligned}
d s^{2} & =-\frac{F(\eta)^{-\frac{1+3 \sigma}{3(1+\sigma)}}}{1-\left(\frac{2}{3(1+\sigma) \eta^{2}}\right)^{2}} d \bar{t}^{2}+\frac{1}{1-\left(\frac{2}{3(1+\sigma) \eta^{2}}\right)^{2}} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2} \\
\xi & \equiv \overline{\bar{r}}=\frac{\eta}{F(\eta)} ; \quad \eta \equiv \frac{\bar{r}}{t} ; \quad F(\eta)=\left(1-\frac{1-3 \sigma}{9(1+\sigma)^{2}} \eta^{2}\right)^{\frac{3(1+\sigma)}{2(1+3 \sigma)}}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=0 \\
& p=0
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=0 \\
& p=0
\end{aligned} d s^{2}=-B_{F}(\xi) d \vec{t}^{2}+\frac{1}{A_{F}(\xi)} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2}
$$

$$
\begin{aligned}
& \sigma=0 \\
& p=0
\end{aligned} \quad d s^{2}=-B_{F}(\xi) d \vec{t}^{2}+\frac{1}{A_{F}(\xi)} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2}
$$

$$
\begin{aligned}
& A_{F}(\xi)=1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
& D_{F}(\xi) \equiv \sqrt{A_{F} B_{F}}=1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=0 \\
& p=0
\end{aligned} \quad d s^{2}=-B_{F}(\xi) d \vec{t}^{2}+\frac{1}{A_{F}(\xi)} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2}
$$

$$
\begin{aligned}
& A_{F}(\xi)=1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
& D_{F}(\xi) \equiv \sqrt{A_{F} B_{F}}=1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right) .
\end{aligned}
$$

Note:

$$
\xi=\frac{\bar{r}}{\bar{t}}=\frac{\bar{r}}{c t}+O\left(\xi^{2}\right)
$$

$$
\begin{aligned}
& \sigma=0 \\
& p=0
\end{aligned} \quad d s^{2}=-B_{F}(\xi) d \vec{t}^{2}+\frac{1}{A_{F}(\xi)} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2}
$$

$$
\begin{aligned}
& A_{F}(\xi)=1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
& D_{F}(\xi) \equiv \sqrt{A_{F} B_{F}}=1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

- Note:

$$
\begin{gathered}
\xi=\frac{\bar{r}}{\bar{t}}=\frac{\bar{r}}{c t}+O\left(\xi^{2}\right) \\
\frac{\bar{r}}{c t} \approx \frac{\text { arclength distance at fixed time }}{\text { distance of light travel since the Big Bang }}
\end{gathered}
$$

Where:

- Conclude: when $\xi \ll 1$

$\xi \approx$ fractional distance to the Hubble Radius

"Fractional distance to the Hubble Radius" in a non-uniform spacetime measures approximately
how far out you would think you were if you believed you were at the center of a Friedmann spacetime...

$$
\begin{aligned}
& \sigma=0 \\
& p=0
\end{aligned}
$$

$$
d s^{2}=-B_{F}(\xi) d \vec{t}^{2}+\frac{1}{A_{F}(\xi)} d \bar{r}^{2}+\bar{r}^{2} d \Omega^{2}
$$

$$
\begin{aligned}
& A_{F}(\xi)=1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
& D_{F}(\xi) \equiv \sqrt{A_{F} B_{F}}=1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

$$
z_{F}(\xi)=\frac{4}{3} \xi^{2}+\frac{40}{27} \xi^{4}+O\left(\xi^{6}\right)
$$

$$
w_{F} \equiv \frac{v}{\xi}=\frac{2}{3}+\frac{2}{9} \xi^{2}+O\left(\xi^{4}\right)
$$

The $\mathrm{p}=0$ Friedmann Universe in Self-Similar Coordinates

Thus our equations are for the

 corrections to the Standard Model:$$
\begin{aligned}
z(t, \xi) & =\left(\frac{4}{3}+z_{2}(t)\right) \xi^{2}+\left\{\frac{40}{27}+z_{4}(t)\right\} \xi^{4}+O\left(\xi^{6}\right), \\
w(t, \xi) & =\left(\frac{2}{3}+w_{0}(t)\right)+\left\{\frac{2}{9}+w_{2}(t)\right\} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

$$
(p=0)
$$

$p=\frac{c^{2}}{3} \rho$

Self-similar coordinates for Friedmann with
Pure Radiation

$$
\begin{aligned}
z_{1 / 3} & \equiv z_{1 / 3}^{1}(\bar{t}, \bar{\xi})=\frac{3}{4} \bar{\xi}^{2}+\frac{9}{16} \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right), \\
v_{1 / 3} & \equiv v_{1 / 3}^{1}(\bar{t}, \bar{\xi})=\frac{1}{2} \bar{\xi}+\frac{1}{8} \bar{\xi}^{3}+O\left(\bar{\xi}^{5}\right), \\
A_{1 / 3} & \equiv A_{1 / 3}^{1}(\bar{t}, \bar{\xi})=1-\frac{1}{4} \bar{\xi}^{2}-\frac{1}{8} \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right), \\
D_{1 / 3} & \equiv D_{1 / 3}^{1}(\bar{t}, \bar{\xi})=1+O\left(\bar{\xi}^{4}\right) .
\end{aligned}
$$

The $p=\frac{c^{2}}{3} \rho$ Friedmann Universe admits a I-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:

The $p=\frac{c^{2}}{3} \rho$ Friedmann Universe admits a I-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:

The $p=0$ Friedmann Universe DOES NOT admit Self-Similar perturbations!

The $p=\frac{c^{2}}{3} \rho$ Friedmann Universe is embedded in

 I-parameter family of Self-Similar spacetimes that perturb the Standard Model during the Radiation Epoch:The $p=0$ Friedmann Universe DOES NOT admit Self-Similar perturbations!
(The topic of our PNAS and MEMOIR)

First Discovered by Cahill and Taub:
Commun Math Phys., 2I, I-40 (I97I)

Extended by others, esp. Carr and Coley, Survey: Physical Review D, 62, 044023-I-25 (1999)

Our interest is in the possible connection between these waves and the Anomalous Acceleration.

We extract properties of the waves from a system of ODE's we derived, that defines them:

The perturbations are describe by ODE's:

$$
\begin{aligned}
\xi A_{\xi} & =-\left[\frac{4(1-A) v}{\left(3+v^{2}\right) G-4 v}\right] \\
\xi G_{\xi} & =-G\left\{\left(\frac{1-A}{A}\right) \frac{2\left(1+v^{2}\right) G-4 v}{\left(3+v^{2}\right) G-4 v}-1\right\} \\
\xi v_{\xi} & =-\left(\frac{1-v^{2}}{2\{\cdot\}_{D}}\right)\left\{\left(3+v^{2}\right) G-4 v+\frac{4\left(\frac{1-A}{A}\right)\{\cdot\}_{N}}{\left(3+v^{2}\right) G-4 v}\right\} \\
\{\cdot\}_{N} & =\left\{-2 v^{2}+2\left(3-v^{2}\right) v G-\left(3-v^{4}\right) G^{2}\right\} \\
\{\cdot\}_{D} & =\left\{\left(3 v^{2}-1\right)-4 v G+\left(3-v^{2}\right) G^{2}\right\}
\end{aligned}
$$

$$
G=\frac{\xi}{\sqrt{A B}} ; \quad \xi=\frac{r}{t}
$$

$p=\frac{c^{2}}{3} \rho$

Self-Similar perturbations of Friedmann for Pure Radiation
(The topic of our PNAS and MEMOIR)

$$
\begin{aligned}
& z_{1 / 3}^{a}=\frac{3 a^{2}}{4} \bar{\xi}^{2}+\left[\frac{9 a^{2}}{16}+3 a^{2}\left(V_{0}+A_{0}\right)\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& v_{1 / 3}^{a}=\frac{1}{2} \bar{\xi}+\left[\frac{1}{8}+V_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{3}+O\left(\bar{\xi}^{5}\right) \\
& A_{1 / 3}^{a}=1-\frac{a^{2}}{4} \bar{\xi}^{2}-\left[\frac{a^{2}}{8}+a^{2} A_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& D_{1 / 3}^{a}=1+O\left(\bar{\xi}^{4}\right) \quad V_{0}=\frac{2}{3} A_{0}=\frac{1}{20}
\end{aligned}
$$

A I-parameter family of solutions depending on the Acceleration Parameter $0<a<\infty$

$$
\begin{aligned}
& z_{1 / 3}^{a}=\frac{3 a^{2}}{4} \bar{\xi}^{2}+\left[\frac{9 a^{2}}{16}+3 a^{2}\left(V_{0}+A_{0}\right)\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& v_{1 / 3}^{a}=\frac{1}{2} \bar{\xi}+\left[\frac{1}{8}+V_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{3}+O\left(\bar{\xi}^{5}\right) \\
& A_{1 / 3}^{a}=1-\frac{a^{2}}{4} \bar{\xi}^{2}-\left[\frac{a^{2}}{8}+a^{2} A_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& D_{1 / 3}^{a}=1+O\left(\bar{\xi}^{4}\right) \quad V_{0}=\frac{2}{3} A_{0}=\frac{1}{20}
\end{aligned}
$$

$a=1$ is the Standard Model for Pure Radiation

$$
\begin{aligned}
& z_{1 / 3}^{a}=\frac{3 a^{2}}{4} \bar{\xi}^{2}+\left[\frac{9 a^{2}}{16}+3 a^{2}\left(V_{0}+A_{0}\right)\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& v_{1 / 3}^{a}=\frac{1}{2} \bar{\xi}+\left[\frac{1}{8}+V_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{3}+O\left(\bar{\xi}^{5}\right) \\
& A_{1 / 3}^{a}=1-\frac{a^{2}}{4} \bar{\xi}^{2}-\left[\frac{a^{2}}{8}+a^{2} A_{0}\left(1-a^{2}\right)\right] \bar{\xi}^{4}+O\left(\bar{\xi}^{6}\right) \\
& D_{1 / 3}^{a}=1+O\left(\bar{\xi}^{4}\right) \quad V_{0}=\frac{2}{3} A_{0}=\frac{1}{20}
\end{aligned}
$$

The initial data created by

 self-similar wavesat the end of the Radiation Epoch depends on:
(I) The temperature T_{*} at which $p=0$
(2) The value of the acceleration parameter a

OUR GOAL NOW: Use our equations to evolve the initial data at the end of radiation to determine

$$
\left(a, T_{*}\right)
$$

that gives the correct anomalous acceleration.

$$
\begin{aligned}
& \text { l.e., }\left(a, T_{*}\right) \text { that give the observed } \\
& \text { quadratic correction to redshift vs } \\
& \text { luminosity at present time }
\end{aligned}
$$

- In the Standard Model p=0 at about

$$
\begin{aligned}
& t_{*} \approx 10,000-30,000 \mathrm{yrs} \\
& T_{*} \approx 9000^{0} \mathrm{~K}
\end{aligned}
$$

(Depending on theories of Dark Matter)

- Our simulation turns out to be entirely insensitive to the initial t_{*}, T_{*}
- l.e., we need only compute the value of the acceleration parameter that gives the correct anomalous acceleration.
- Technical Problem: The self-similar waves at the end of radiation are in the wrong gauge due to the fact that time since the Big Bang changes

$$
\text { between } p=0 \text { and } p=\frac{c^{2}}{3} \rho
$$

That is: The initial data for the self-similar waves does not meet the gauge conditions for our $p=0$ ansatz

$$
A_{2}=-\frac{1}{3} z_{2}, \quad A_{4}=-\frac{1}{5} z_{4}, \quad D_{2}=-\frac{1}{12} z_{2}
$$

- (Resolving this held us back for close to a year!)
- Resolution: We post-process the initial data by a gauge transformation of the form---

$$
t=\bar{t}+\frac{1}{2} q\left(\bar{t}-\bar{t}_{*}\right)^{2}-t_{B}
$$

- Resolution: We post-process the initial data by a gauge transformation of the form---

$$
t=\bar{t}+\frac{1}{2} q\left(\bar{t}-\bar{t}_{*}\right)^{2}-t_{B}
$$

I.e, The SSC metric form is invariant under arbitrary changes of time, (choice of gauge)--match the gauge to match the metrics

- Resolution: We post-process the initial data by a gauge transformation of the form---

$$
t=\bar{t}+\frac{1}{2} q\left(\bar{t}-\bar{t}_{*}\right)^{2}-t_{B}
$$

- I.e, The SSC metric form is invariant under arbitrary changes of time, (choice of gauge)--match the gauge to match the metrics

Check: Same change of gauge is required to match FRW metrics in SSC coordinates...

THEOREM: Let the transformation $\bar{t} \rightarrow t$ be defined by

$$
t=\bar{t}+\frac{1}{2} q\left(\bar{t}-\bar{t}_{*}\right)^{2}-t_{B},
$$

where q and t_{B} are given by

$$
\begin{gathered}
t_{B}=\bar{t}_{*}(1-\alpha), \\
q=\frac{a^{2}}{16 \bar{\gamma}}=\frac{a^{2}}{2\left(1+a^{2}\right)},
\end{gathered}
$$

where

$$
\alpha=\frac{1}{5}\left(\frac{1+a^{2}}{1.3-a^{2}}\right) .
$$

Then, on the constant temperature surface $T=T_{*}$, the initial data from the self-similar waves at the end of the radiation epoch meets the gauge conditions in $(\bar{t}, \bar{\xi})$.

- 2nd Technical Problem: The $T=T_{*}, \rho=\rho_{*}$ surfaces are distinct from the constant time $t=t_{*}$ surfaces
- 2nd Technical Problem: The
surfaces are distinct from the constant time $t=t_{*}$ surfaces
- Resolution: To get the asymptotics correct we have to pull the initial data back to

$$
t=t_{*}
$$

The initial data created by self-similar waves

on a constant temperature surface at the end of the Radiation Epoch

THEOREM The initial data for our $p=0$ evolution at time $t=t_{*}$ is given as a function of the acceleration parameter a and start temperature $\rho_{*}=a_{S B} T_{*}$ by

$$
\begin{aligned}
z_{2}\left(t_{*}\right) & =\hat{z}_{2} \\
z_{4}\left(t_{*}\right) & =\hat{z}_{4}+3 \hat{w}_{0}\left(\frac{4}{3}+\hat{z}_{2}\right) \gamma \\
w_{0}\left(t_{*}\right) & =\hat{w}_{0} \\
w_{2}\left(t_{*}\right) & =\hat{w}_{2}+\left(\frac{1}{6} \hat{z}_{2}+\frac{1}{3} \hat{w}_{0}+\hat{w}_{0}^{2}\right) \gamma,
\end{aligned}
$$

where

$$
\gamma=\alpha \bar{\gamma}=\alpha\left(\frac{2-a^{2}}{4}\right)
$$

$$
t_{*}=\sqrt{\frac{3 a^{2}}{4 \kappa \rho_{*}}}, \quad \alpha=4 \frac{2-a^{2}}{7-4 a^{2}}
$$

$$
\hat{z}_{2}=\left\{\frac{3 a^{2} \alpha^{2}}{4}-\frac{4}{3}\right\}_{z 2}
$$

$$
\hat{z}_{4}=\left\{2 \alpha^{3}(1-\alpha) \bar{\gamma} Z_{2}+\alpha^{4} Z_{4}-\frac{40}{27}\right\}_{z 4}
$$

$$
\hat{w}_{0}=\left\{\frac{\alpha}{2}-\frac{2}{3}\right\}_{v 1}
$$

$$
\hat{w}_{2}=\left\{\alpha^{2}(1-\alpha) \bar{\gamma} W_{0}+\alpha^{3} W_{2}-\frac{2}{9}\right\}_{v 3}
$$

$$
Z_{2}=\frac{3 a^{2}}{4}
$$

$$
Z_{4}=\left[\frac{9 a^{2}}{16}+3 a^{2}\left(V_{0}+A_{0}\right)\left(1-a^{2}\right)\right]
$$

$$
V_{0}=\frac{1}{20}, \quad A_{0}=\frac{3}{40}
$$

$$
W_{0}=\frac{1}{2}, \quad W_{2}=\left[\frac{1}{8}+V_{0}\left(1-a^{2}\right)\right]
$$

4. Redshift vs Luminosity as a function of our corrections

A (long) Calculation gives:

$$
H_{0} d_{\ell}=z\{1+\underbrace{\left.\frac{1}{4}+E_{2}\right]}_{\begin{array}{c}
\text { Anomalous } \\
\text { Acceleration }
\end{array}} z+\underbrace{\left[-\frac{1}{8}+E_{3}\right]}_{\begin{array}{c}
\text { Cubic } \\
\text { Correction }
\end{array}} z^{2}\}+O\left(z^{4}\right)
$$

$$
E_{2}=\frac{24 w_{0}+45 w_{0}^{2}+3 z_{2}}{4\left(2+3 w_{0}\right)^{2}}=E_{2}\left(z_{2}, w_{0}\right)
$$

$$
E_{3}=E_{3}\left(z_{2}, w_{0}, w_{3}\right)
$$

$E_{3}\left(z_{2}, w_{0}, w_{2}\right)$ is quite complicated:

$$
H_{0} d_{\ell}=z\{1+\left[\frac{1}{4}+E_{2}\right] z+\underbrace{\left[-\frac{1}{8}+E_{3}\right]} z^{2}\}+O\left(z^{4}\right)
$$

Cubic
Correction

A calculation gives:

$E_{3}=2 I_{2}+I_{3}$,

$$
\begin{aligned}
& I_{2}=H_{2}+\frac{9 w_{0}}{2\left(2+3 w_{0}\right)} \\
& I_{3}=H_{3}+3\left[-1+\left(\frac{8-8 H_{2}+3 w_{0}-12 H_{2} w_{0}}{2\left(2+3 w_{0}\right)^{2}}\right)\right], \\
& H_{2}=\frac{1}{4}\left\{1-\frac{1+9\left(\frac{2}{3} w_{0}+\frac{1}{2} w_{0}^{2}-\frac{1}{12} z_{2}\right)}{\left(1+\frac{3}{2} w_{0}\right)^{2}}\right\}, \\
& H_{3}=\frac{5}{8}\left\{1-\frac{1-\frac{18}{5} Q_{2}-\frac{81}{5} Q_{2}^{2}+\frac{9}{5} w_{0}+\frac{27}{5} Q_{3}+\frac{81}{10} Q_{3} w_{0}}{\left(1+\frac{3}{2} w_{0}\right)^{4}}\right\} \\
& Q_{2}=\frac{2}{3} w_{0}+\frac{1}{2} w_{0}^{2}-\frac{1}{12} z_{2} \\
& Q_{3}=\frac{2}{9} w_{0}+w_{0}^{2}+\frac{1}{2} w_{0}^{3}+w_{2}-\frac{1}{18} z_{2}-\frac{1}{3} z_{2} w_{0}
\end{aligned}
$$

(Each term represents a different effect...)

The initial data cuts between the stable and unstable manifold of SM

Under-densities $a<1$ are within the domain of attraction of the Stable Rest Point

3. Comparison with the
 Standard Model

- Redshift vs Luminosity for $\mathrm{k}=0$ Friedmann can be obtained from exact formulas: $p=\sigma \rho$

$$
H_{0} d_{\ell}=\frac{2}{1+3 \sigma}\left\{(1+z)-(1+z)^{\frac{1-3 \sigma}{2}}\right\} .
$$

- In the case $p=\sigma=0$, we get

$$
H_{0} d_{\ell}=z+\frac{1}{4} z^{2}-\frac{1}{8} z^{3}+O\left(z^{4}\right)
$$

- C.f. our formula:

$$
H_{0} d_{\ell}=z\left\{1+\left[\frac{1}{4}+E_{2}\right] z+\left[-\frac{1}{8}+E_{3}\right] z^{2}\right\}+O\left(z^{4}\right)
$$

Cosmology now assumes a Cosmological Constant with

Seventy Percent Dark Energy

$$
H_{0} d_{\ell}=(1+z) \int_{0}^{z} \frac{d y}{(1+z) \sqrt{1+\Omega_{M} y}} . \quad \Omega_{M}+\Omega_{\Lambda}=1
$$

Taylor expanding gives:
$H_{0} d_{\ell}=z+\frac{1}{2}\left(-\frac{\Omega_{M}}{2}+1\right) z^{2}+\frac{1}{6}\left(-1-\frac{\Omega_{M}}{2}+\frac{3 \Omega_{M}^{2}}{4}\right) z^{3}+O\left(z^{4}\right)$
In the case $\Omega_{M}=.3, \Omega_{\Lambda}=.7$ this gives

$$
H_{0} d_{\ell}=z+.425 z^{2}-.1804 z^{3}+O\left(z^{4}\right)
$$

CONCLUDE: $k=0, p=0$ Friedmann

 with and without Dark Energy$\Omega_{M}+\Omega_{\Lambda}=1$

$$
H_{0} d_{\ell}=z+.425 z^{2}-.1804 z^{3}+O\left(z^{4}\right)
$$

Standard Model with
Dark Energy

$$
\Omega_{\Lambda}=.7
$$

Standard Model Without
Dark Energy
$\Omega_{\Lambda}=0$

IN FACT: As the Dark Energy Parameter ranges from 0 to I, the Anomalous Acceleration ranges from . 25 to . 5

$$
H_{0} d_{\ell}=z+\frac{1}{2}\left(-\frac{\Omega_{M}}{2}+1\right) z^{2}+\frac{1}{6}\left(-1-\frac{\Omega_{M}}{2}+\frac{3 \Omega_{M}^{2}}{4}\right) z^{3}+O\left(z^{4}\right)
$$

Range: .25 to .5
as

$$
0 \leq \Omega_{M} \leq 1
$$

We get the Same Conclusion in the Wave Theory!

$$
\begin{array}{r}
H_{0} d_{\ell}=z\{1+\underbrace{\left[\frac{1}{4}+E_{2}\right]} z+\left[-\frac{1}{8}+E_{3}\right] z^{2}\}+O\left(z^{4}\right) \\
\text { Range: . } 25 \text { to . } 5
\end{array} E_{2}=\frac{24 w_{0}+45 w_{0}^{2}+3 z_{2}}{4\left(2+3 w_{0}\right)^{2}}
$$

along the orbit
from the Standard Model
to the
Stable Rest Point

SM

- Unstable Saddle Pt.

Stable

- Rest

Point

- Orbits

Stable Manifold

Unstable Manifold

Isoclines

The Anomalous Acceleration ranges from .25 to .5 along orbit from SM to Stable Rest Point \approx Dark Energy

5. Determination of the value

 of theAcceleration Parameter that matches the
Anomalous Acceleration

We simulate our equations starting from the self-similar wave data at the end of radiation $T=T_{*}$, to find the value of $\left(a, T_{*}\right)$ that gives the same Anomalous Acceleration as seventy percent Dark Energy when $H=H_{0}$:

$$
\begin{aligned}
& H_{0} d_{\ell}=z+.425 z^{2}-.1804 z^{3}+O\left(z^{4}\right) \text { Dark Energy } \\
& \Omega_{\Lambda}=.7 \\
& H_{0} d_{\ell}=z+\left[.25+E_{2}\right] z^{2}+\left[-.125+E_{3}\right] z^{3}+O\left(z^{4}\right) \\
& \text { Our Wave Model } \\
& E_{2}=\frac{24 w_{0}+45 w_{0}^{2}+3 z_{2}}{4\left(2+3 w_{0}\right)^{2}}
\end{aligned}
$$

THE ANSWER: The value of the acceleration for the wave perturbation of SM that produces a quadradic correction of .425 at the present value of H_{0} is:

$$
\begin{aligned}
& \underline{a}=0.99999957=1-\left(4.3 \times 10^{-7}\right) \\
& H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}
\end{aligned}
$$

THE ANSWER: The value of the acceleration for the wave perturbation of SM that produces a quadradic correction of .425 at the present value of H_{0} is:

$$
\begin{aligned}
& \underline{a}=0.99999957=1-\left(4.3 \times 10^{-7}\right) \\
& H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}
\end{aligned}
$$

This corresponds to an relative underdensity of

$$
\frac{\rho_{S M}-\rho_{s s w}}{\rho_{S M}}=7.45 \times 10^{-6}
$$

- The relative underdensity at the end of radiation:

$$
\frac{\rho_{S M}-\rho_{s s w}}{\rho_{S M}}=7.45 \times 10^{-6}
$$

Numerical Simulation gives the relative under-density at present time as:

$$
\frac{\rho_{s s w}}{\rho_{S M}}=.144 \approx \frac{1}{7}
$$

Conclude: An under-density of one part in 10^{6} at the end of radiation produces a seven-fold under-density at present time!

Conclude: The Standard Model is

Unstable to Perturbation by this family of Waves...

Comparison with Dark Energy:

$H_{0} d_{\ell}=z+.425 z^{2}-.180 z^{3}$
$H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}$

Dark
Energy

Wave
Theory

Comparison with Dark Energy:

$H_{0} d_{\ell}=z+.425 z^{2}-.180 z^{3}$
$H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}$

Dark
Energy

Wave
Theory

The Wave Theory predicts a Larger Anomalous Acceleration far from the center than Dark Energy

Comparison with Dark Energy:

$H_{0} d_{\ell}=z+.425 z^{2}-.180 z^{3}$
Dark
Energy
$H_{0} d_{\ell}=z+.425 z^{2}+.359 z^{3}$
Wave
Theory
Age of universe about the same:

$$
t_{0} \approx(.95) t_{D E}
$$

$t_{D E} \approx 13.8$ Billion years $\approx(1.45) t_{S M}$

In Fact: A slight over-density

will also create the

Anomalous Acceleration

$$
\begin{aligned}
& \bar{a}=1.0000006747=1+\left(6.747 \times 10^{-7}\right) \\
& H_{0} d_{\ell}=z+.425 z^{2}-2.756 z^{3}
\end{aligned}
$$

A different cubic correction

Conclude: The Standard Model

is
Unstable to Perturbation by this
Family of Waves,
and under-densities create an Anomalous Acceleration

Theorem: Let $t=t_{0}$ denote present time since the Big Bang in the wave model and $t=t_{D E}$ present time since the Big Bang in the Dark Energy model. Then there exists a unique value of the acceleration parameter $\underline{a}=0.99999959 \approx 1-4.3 \times 10^{-7}$ corresponding to an under-density relative to the SM at the end of radiation, such that the subsequent $p=0$ evolution starting from this initial data evolves to time $t=t_{0}$ with $H=H_{0}$ and $Q=.425$, in agreement with the values of H and Q at $t=t_{D E}$ in the Dark Energy model. The cubic correction at $t=t_{0}$ in the wave theory is then $C=0.359$, while Dark Energy theory gives $C=-0.180$ at $t=t_{D E}$. The times are related by $t_{0} \approx(.95) t_{D E}$

6. The Flat

Uniformly Expanding

 Spacetime at the
Center of the Wave

(Under-Dense Case: $\underline{a}<1$)

Consider the evolution of the spactime at the center obtained by neglecting all errors of order

$$
\mathrm{O}\left(\xi^{4}\right)
$$

The spacetime near the

 center evolves toward
the

Stable Rest Point

Neglecting $O\left(\xi^{4}\right)$ errors:

The spacetime near the center evolves toward the Stable Rest Point

- The metric tends to Flat Minkowski Spacetime which is not co-moving with the fluid
- BUT: The evolution creates a uniformly expanding density near the center, which, neglecting relativistic corrections,

$$
\begin{aligned}
& \text { is } C E N T E R-I N D E P E N D E N T \\
& \text { (like Friedmann Spacetimes) }
\end{aligned}
$$

THEOREM: Neglecting $O\left(\xi^{4}\right)$, as the orbit tends to the Stable Rest Point, the density drops FASTER than SM,

$$
\rho(t)=\frac{k_{0}}{t^{3(1+\bar{w})}}, \quad \quad \rho_{S M}(t)=\frac{4}{3 t^{2}},
$$

where $\bar{w}(t)$ and $k_{0}(t)$ change exponentially slowly. CONCLUDE: The wave creates a

UNIFORMLY EXPANDING SPACETIME

with an

ANOMALOUS ACCELERATION in a

LARGE, FLAT, CENTER-INDEPENDENT region near in the center of the wave.

7. The Universality of the

Phase Portrait

A radially symmetric function $f(r)$
is a smooth function in Euclidean coordinates x at $r=0$ if and only if

$$
g(x)=f(|x|)
$$

is a smooth function of x at $x=0$.

Equating the n 'th derivative of $g(x)$ from left and right at $r=0$ gives

Equating the n 'th derivative of $g(x)$

 from left and right at $r=0$ gives$$
f^{n}(0)=(-1)^{n} f^{n}(0)
$$

Equating the n 'th derivative of $g(x)$

 from left and right at $r=0$ gives$$
f^{n}(0)=(-1)^{n} f^{n}(0)
$$

Theorem: f is smooth iff odd derivatives vanish, i.e.,

$$
f(r)=f(0)+f_{2} r^{2}+f_{4} r^{4}+\cdots
$$

Equating the n 'th derivative of $g(x)$ from left and right at $r=0$ gives

$$
f^{n}(0)=(-1)^{n} f^{n}(0)
$$

Theorem: f is smooth iff odd derivatives vanish, i.e.,

$$
f(r)=f(0)+f_{2} r^{2}+f_{4} r^{4}+\cdots
$$

...only even powers of r.

Consider now a metric in SSC:

$$
d s^{2}=-B(t, r) d t^{2}+\frac{1}{A(t, r)} d r^{2}+r^{2} d \Omega^{2}
$$

Along radial geodesics at fixed time:

$$
\frac{d r}{d s}=A(t, r)
$$

Thus r is smooth with respect to arc-length at $r=0$ if and only if

$$
A=1+A_{2}(t) r^{2}+A_{4}(t) r^{4}+\cdots
$$

Since $\xi=\frac{r}{t}=0$ at $r=0$,
the smoothness condition is

$$
A=1+A_{2}(t) \xi^{2}+A_{4}(t) \xi^{4}+\cdots
$$

Since $\xi=\frac{r}{t}=0$ at $r=0$,
the smoothness condition is

$$
A=1+A_{2}(t) \xi^{2}+A_{4}(t) \xi^{4}+\cdots
$$

Conclude: our ansatz is just expressing smoothness at $\mathrm{r}=0$ in SSC coordinates.

Our ansatz expresses smoothness at $\mathrm{r}=0$ in SSC coordinates...

$$
\begin{array}{rlrl}
z(t, \xi) & =z_{F}(\xi)+\Delta z(t, \xi) & \Delta z=z_{2}(t) \xi^{2}+z_{4}(t) \xi^{4} \\
w(t, \xi) & =w_{F}(\xi)+\Delta w(t, \xi) & \Delta w=w_{0}(t)+w_{2}(t) \xi^{2} \\
A(t, \xi)=A_{F}(\xi)+\Delta A(t, \xi) & \Delta A=A_{2}(t) \xi^{2}+A_{4}(t) \xi^{4} \\
D(t, \xi)=D_{F}(\xi)+\Delta D(t, \xi) & \Delta D=D_{2}(t) \xi^{2}
\end{array}
$$

$$
\begin{aligned}
& z_{F}=\frac{4}{3} \xi^{2}+\frac{40}{27} \xi^{4}+O\left(\xi^{6}\right) \\
& w_{F}=\frac{2}{3}+\frac{2}{9} \xi^{2}+O\left(\xi^{4}\right) \\
& A_{F}=1-\frac{4}{9} \xi^{2}-\frac{8}{27} \xi^{4}+O\left(\xi^{6}\right) \\
& D_{F}=1-\frac{1}{9} \xi^{2}+O\left(\xi^{4}\right)
\end{aligned}
$$

Thus our phase portrait applies to any SSC solution of the Einstein equations that is smooth at $\mathrm{r}=0 .$.

Thus our phase portrait applies to any SSC $p=0$ solution of the Einstein equations

Lematre-Tolman-Bondi (LTB) coordinates are used in other under-density models...

In LTB the radial coordinate is co-moving with the fluid...

Transforming from SSC to LTB introduces a coordinate singularity at $\mathrm{r}=0 .$.

Lemma Assume that $\rho(t, r)$ is a scalar density function which extends to a smooth function $\rho(t,|x|)$ in SSC coordinates, so that it is given near $r=0$ by

$$
\rho(t, r)=f_{0}(t)+f_{2}(t) r^{2}+\cdots
$$

Let

$$
\hat{\rho}(\hat{t}, \hat{r})=\rho(t(\hat{t}, \hat{r}), r(\hat{t}, \hat{r}))
$$

denote the representation of the function $\rho(t, r)$ in LTB coordinates. Then the third partial derivative of $\hat{\rho}$ with respect to \hat{r} at $(\hat{t}, 0)$ is given by

$$
\frac{\partial^{3} \hat{\rho}}{\partial \hat{r}^{3}}=\frac{\partial \rho}{\partial t} \frac{\partial^{3} t}{\partial \hat{r}^{3}}+3 \frac{\partial^{2} \rho}{\partial r^{2}} \frac{\partial r}{\partial \hat{r}} \frac{\partial^{2} r}{\partial \hat{r}^{2}} .
$$

Conclude: In LTB coordinates its not so easy to expand about the center because coordinates can be singular with respect to the geometry at $r=0 \ldots$

When we submitted to RSPA, the editors asked us to address a long list of papers on under-density theories based on Lematre-Tolman-Bondi (LTB)

Coordinates...
. [35] M. Kowalski et al. [Supernova Cosmology Project Collaboration], "Improved cosmological constraints from new, old and combined supernova datasets", Astrophys. J. 686 (2008) 749 [arXiv:0804.4142 [astro-ph]].
[36] D. Rubin, E. V. Linder, M. Kowalski, G. Aldering, R. Amanullah, K. Barbary, N. V. Connolly and K. S. Dawson et al., "Looking beyond Lambda with the Union supernova compilation", Astrophys. J. 695 (2009) 391 [arXiv:0807.1108 [astro-ph]].
[37] T. Biswas and A. Notari, "Swiss-cheese inhomogeneous cosmology and the dark energy problem", JCAP 0806 (2008) 021 [astro-ph/0702555].
[38] V. Marra, E. W. Kolb, S. Matarrese, "Light-cone averages in a swiss-cheese Universe", Phys. Rev. D77 (2008) 023003. [arXiv:0710.5505 [astro-ph]].
[39] V. Marra, E. W. Kolb, S. Matarrese, A. Risotto, "On cosmological observables in a swiss-cheese universe", Phys. Rev. D76 (2007) 123004. [arXiv:0708.3622 [astro-ph]].
. [40] R. A. Vanderveld, E. E. Flanagan, I. Wasserman, "Luminosity distance in Swiss cheese cosmology with randomized voids: I. Single void size", Phys. Rev. D78 (2008) 083511. [arXiv:0808.1080 [astro-ph]].
. [41] W. Valkenburg, "Swiss Cheese and a Cheesy CMB", JCAP 0906 (2009) 010. [arXiv:0902.4698 [astro-ph.CO]].
[42] E. E. Flanagan, N. Kumar, I. Wasserman and R. A. Vanderveld, "Luminosity distance in Swiss cheese cosmology with randomized voids: II. Magnification probability distributions", Phys. Rev. D 85 (2012) 023510 [arXiv:1109.1873 [gr-qc]].
. [43] D. L. Wiltshire, "Exact solution to the averaging problem in cosmology", Phys. Rev. Lett. 99 (2007) 251101. [arXiv:0709.0732 [gr-qc]].
. [44] D. L. Wiltshire, "Cosmic clocks, cosmic variance and cosmic averages", New J. Phys. 9, 377 (2007). [gr-qc/0702082].
. [45] D. L. Wiltshire, "Dark energy without dark energy", [arXiv:0712.3984 [astro-ph]]. (Presented at DARK 2007, Sydney, Australia.)
. [46] B. M. Leith, S. C. C. Ng, D. L. Wiltshire, "Gravitational energy as dark energy: Concordance of cosmological tests", Astrophys. J. 672 (2008) L91-L94. [arXiv:0709.2535 [astro-ph]].
. [47] D. L. Wiltshire, "Cosmological equivalence principle and the weak-field limit", Phys. Rev. D78 (2008) 084032. [arXiv:0809.1183 [gr-qc]].
. [48] D. L. Wiltshire, "Average observational quantities in the timescape cosmology", Phys. Rev. D80 (2009) 123512. [arXiv:0909.0749 [astro-ph.CO]].
. [49] P. R. Smale, D. L. Wiltshire, "Supernova tests of the timescape cosmology", Mon. Not. Roy. Astron. Soc. 413 (2011) 367-385. [arXiv:1009.5855 [astro-ph.CO]].
[50] D. L. Wiltshire, "What is dust? - Physical foundations of the averaging problem in cosmology", Class. Quant. Grab. 28 (2011) 164006. [arXiv:1106.1693 [gr-qc]].
[51] P. R. Smale, "Gamma ray burst distances and the timescale cosmology", Mon. Not. Roy. Astron. Soc. 418 (2011) 2779 [arXiv:1107.5596 [astro-ph.CO]].
. [52] D. L. Wiltshire, "Gravitational energy as dark energy: Cosmic structure and apparent acceleration", [arXiv:1102.2045 [astro-ph.CO]]. (Presented at the "Conference on Two Cosmological Models", Mexico DF, 2010.)
. [53] J. A. G. Duley, M. A. Nazer and D. L. Wiltshire, "Timescape cosmology with radiation fluid", Class. Quant. Grav. 30 (2013) 175006 [arXiv:1306.3208 [astro-ph.CO]].
. [54] D. L. Wiltshire, "Cosmic structure, averaging and dark energy", arXiv:1311.3787 [astro-ph.CO].
. [55] M. A. Nazer and D. L. Wiltshire, "Cosmic microwave background anisotropies in the timescape cosmology" arXiv:1410.3470 [astro-ph.CO]. To appear in Physical Review D.
[56] J. D. Barrow and J. Stein-Schabes, "Inhomogeneous cosmologies with cosmological constant", Phys. Lett. A 103 (1984) 315.
. [57] S. Rasanen, "Backreaction in the Lemaitre-Tolman-Bondi model", JCAP 0411 (2004) 010 [gr-qc/0408097].
[58] D. J. H. Chung and A. E. Romano, "Mapping luminosity-redshift relationship to LTB cosmology", Phys. Rev. D 74 (2006) 103507 [astroph/0608403].
. [59] A. Paranjape and T. P. Singh, "The possibility of cosmic acceleration via spatial averaging in Lemaitre-Tolman-Bondi Models", Class. Quant. Grav. 23 (2006) 6955 [astro-ph/0605195].
[60] R. A. Vanderveld, E. E. Flanagan, I. Wasserman, "Mimicking dark energy with Lemaitre-Tolman-Bondi models: Weak central singularities and critical points", Phys. Rev. D74 (2006) 023506. [astro-ph/0602476].
. [61] S. Alexander, T. Biswas, A. Notary and D. Vaid, "Local void vs dark energy: Confrontation with WMAP and type Ia supernovae", JCAP 0909 (2009) 025 [arXiv:0712.0370 [astro-ph]].
[62] J. Garcia-Bellido, T. Haugboelle, "Confronting Lemaitre-TolmanBondi models with observational cosmology", JCAP 0804 (2008) 003. [arXiv:0802.1523 [astro-ph]].

In LTB coordinates its not so easy to expand about the center because coordinates can be singular with respect to the geometry at $r=0 \ldots$

CONCLUSIONS:

Our Proposal: The AA is due to a local underdensity on the scale of the supernova data, created by a self-similar wave from the radiation epoch that triggers an instability in the SM when the pressure drops to zero.

We have made no assumptions regarding the space-time far from the center of the perturbations. The consistency of this model with other observations in astrophysics would require additional assumptions.

CONCLUSIONS:

- This is arguably the simplest explanation for the anomalous acceleration within Einstein's original theory of GR, without requiring Dark Energy.
- It demonstrates that any local center of the Standard Model of Cosmology is unstable to perturbation by exact solutions from the Radiation Epoch.
- These perturbations are stabilized by a nearby stable rest point that generates the same accelerations as Dark Energy.
- It makes testable predictions.

QUESTIONS:

- On what scale would such waves apply?
- If these came from time-asymptotic wave patterns created in an earlier epoch, would we expect secondary transitional waves far from the center?
- How does cosmology address the instability? Can Dark Energy help? (NO!)
- Implications of a preferred center?
- Is this more fine-tuned than Dark Energy?

QUESTIONS:

- Was it reasonable to expect to observe the redshift vs luminosity relation of the SM if its unstable looking outward from any center? (Aren't unstable solutions usually considered un-observable in Physics?)
- Given that that phase portrait applies to any smooth spherical perturbation, shouldn't we expect to observe an anomalous acceleration in nearby galaxies?

We reiterate: The purpose of our paper is not to solve all the problems of Cosmology in one grand solution. Rather, our purpose is to introduce and deconstruct a new instability in the Friedmann space-time of the Standard Model of Cosmology, to identify mechanisms that trigger it, to show how it naturally could account for the anomalous acceleration within Einstein's original theory without Dark Energy, and then to derive new predictions from it.

Prokopek... 2013 (Astrophysicist, Utrecht University) There are large scale anomalies in the data indicating a lack of uniformity on the largest length scale

The main large angular scale anomalies are [4,5]:

- a high quadrupole-octupole alignment (if accidental, it would occur in about 3% cases);
- a low variance in the lower galactic ecliptic plane and a low skewness in the southern plane;
- a northern/southern ecliptic hemisphere asymmetry (the northern hemisphere correlation function is featureless and lacks power on large angular scales);
- phase correlations on large angular scales shown in figure 2, whose significance is more than three standard deviations and which imply that there are non-Gaussian features on large angular scales;

Prokopek...20I3 (Astrophysicist, Utrecht University)

- a dipolar asymmetry, which includes a dipolar modulation and a dipolar power asymmetry;
- a parity asymmetry (which is related to the dipolar modulation) that comes in two disguises: a parity reflection asymmetry and a mirror asymmetry, both of which show significant statistical evidence for low multipoles;
- a very cold spot (on angular scale of about 5° with significance of more than four standard deviations);
- a lack of power on one hemisphere on angular scales corresponding to the multipoles $\ell \in[5,25]$ that has statistical significance of almost three standard deviations.

FINAL COMMENT

Every aspect of this work came from Applied Mathematics,

Whatever its implications to Physics, it stands on its own as a self-contained model in Applied Mathematics

Mathematics is part of physics... ...the part of physics where experiments are cheap.
—Arnold, Paris, 1997

Big Bang blunder bursts the multiverse bubble

Premature hype over gravitational waves highlights gaping holes in models for the origins and evolution of the Universe, argues Paul Steinhardt.

When a team of cosmologists announced at a press conference in March that they had detected gravitational waves generated in the first instants after the Big Bang, the origins of the Universe were once again major news. The reported discovery created a worldwide sensation in the scientific community discovery created a worldwide sensation in the scientific community
the media and the public at large (see Nature 507, 281-283; 2014).
According to the team at the BICEP2 South Pole telescope, the detection is at the 5-7 sigma level, so there is less than one chance in two million of it being a random occurrence. The results were hailed as proof of the Big Bang inflationary theory and its progeny the multiverse. Nobel prizes were predicted and scores of theoretica models spawned. The announcement also influenced decisions about academic appointments and the rejections of papers and grants. It even had a role in governmental planning of large-scale projects.
The BICEP2 team identified a twisty (B-mode) pattern in its maps of polarization of the cosmic microwave background, concluding that this was a detection of primordial gravitational waves. Now, serious flaws in the analysis have been revealed that transform the sure detection into no detection. The search for gravitational waves must begin anew. The problem is that other effects, including light scattering from dust and the synchrotron radiation generated by electrons moving around galactic magnetic fields within our own Galaxy, can also produce these twists.
The BICEP2 instrument detects radiation at only one frequency, so cannot distinguish the cosmic contribution from other sources. To do so, the BICEP2 team used measurements of galactic dust collected by the Wilkinson Microwave Anisotropy Probe and Planck satellites, each of which operates over a range of other frequencies. When the BICEP2 team did its analysis, the Planck dust map had not yet been published, so the team extracted data from a preliminary map that had been presented several months earlier. Now a careful reanalysis by scientists at Princeton University and the Institute for Advanced Study, also in Princeton, has concluded that the BICEP2 B-mode pattern could be the result mostly or entirely of foreground effects without any contribution from gravitational waves. Other dust models considered by the BICEP2 team do not change this negative conclusion, the Princeton team showed (R. Flauger, J. C. Hil and D. N. Spergel, preprint at http://arxiv.org/abs/1405.7351; 2014).
The sudden reversal should make the scientific community con template the implications for the future of cosmology experimentation and theory. The search for gravitational waves is not stymied. At least eight experiments, including BICEP3, the Keck Array and Planck, are already aiming at the same goal.
This time, the teams can be assured that the
onature.com Discuss this article online at:
world will be paying close attention. This time, acceptance will require measurements over a range of frequencies to discriminate from foreground effects, as well as tests to rule out other sources of confusion. And this time, the announcements should be made after submission to journals and vetting by expert referees. If there must be a press conference hopefully the scientific community and the media will demand that i is accompanied by a complete set of documents, including details of the systematic analysis and sufficient data to enable objective verification.
The BICEP2 incident has also revealed a truth about inflationary the ory. The common view is that it is a highly predictive theory. If that was the case and the detection of gravitational waves was the smoking gur proof of inflation, one would think that non-detection means that the heory fails. Such is the nature of normal science. Yet some proponents of inflation who celebrated the BICEP2 announcement already insist that the theory is equally valid whether or not gravitational waves are detected. How is this possible?
The answer given by proponents is alarming he inflationary paradigm is so flexible that it is immune to experimental and observational tests. First, inflation is driven by a hypothetical scala field, the inflaton, which has properties that can be adjusted to produce effectively any outcome. Second, inflation does not end with a univers with uniform properties, but almost inevitably leads to a multiverse with an infinite number of bubbles, in which the cosmic and physical prop erties vary from bubble to bubble. The part of the multiverse that we observe corresponds to a piece of just one such bubble. Scanning over all possible bubbles in the multi verse, everything that can physically happen does happen an infinite number of times. No experiment can rule out a theory that allows for all possible outcomes. Hence, the paradigm of inflation is unfalsifiable. This may seem confusing given the hundreds of theoretical papers on the predictions of this or that inflationary model. What these papers typically fail to acknowledge is that they ignore the multiverse and that, even with this unjustified choice, there exists a spectrum of othe models which produce all manner of diverse cosmological outcomes Taking this into account, it is clear that the inflationary paradigm is fundamentally untestable, and hence scientifically meaningless.
Cosmology is an extraordinary science at an extraordinary time Advances, including the search for gravitational waves, will continu Advances, including the search for gravitationa waves, wil cone
to be made and it will be exciting to see what is discovered in the com ing years. With these future results in hand, the challenge for theorist will be to identify a truly explanatory and predictive scientific para digm describing the origin, evolution and future of the Universe. \quad -

Paul Steinhardt is professor of physics at Princeton University.
e-mail: steinh@princeton.edu

