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It is well known that every simply connected flat Riemannian

manifold is parallelizable. The object of this paper is to improve this

result by weakening the assumption of simple connectivity.

Given an orientable flat Riemannian manifold X we find a condi-

tion on the holonomy group of X sufficient to guarantee paralleliza-

bility. This condition is satisfied, for example, whenever the holon-

omy group is cyclic. If X is a flat Hermitian manifold, the condition

is satisfied if the holonomy group is abelian.

If we omit the orientability assumption on X we find that the

same condition is sufficient to insure (« —l)-parallelizability, i.e., the

existence of a field of orthonormal (« — l)-frames on X, where « is the

dimension of X.

1. Recall that a Lie group G is said to be monothetic if there exists

an element g<EG, called a monothetic generator, whose powers are

dense in G. We shall say that a Lie subgroup Xi of a Lie group G is

submonothetic in G if there exists a monothetic subgroup H' of G con-

taining H. Every abelian subgroup of the group of unitary trans-

formations on a complex Hermitian vector space is submonothetic

since each such is contained in a maximal torus.

Let X be a smooth (i.e., C°°) Riemannian manifold, let x(£X, and

let H be the holonomy group of Xatx.H is then a subgroup of the

group of orthogonal transformations on the tangent space X(x) to X

at x and we shall say that H is submonothetic if it is submonothetic

in this group.

Our main theorem, to be proved in §3, is as follows. By "flat" we

mean "with zero curvature."

Theorem 1. Let X be a flat Riemannian manifold of dimension «

with submonothetic holonomy group. Then X is (n — 1)-parallelizable.

If further X is orientable, then X is in fact parallelizable.

A description of a class of compact manifolds satisfying the hy-

potheses of this theorem, namely those with holonomy group cyclic

of prime order, has recently been given by L. S. Charlap [3].
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Corollary. Let X be a flat Hermitian manifold with abelian holon-

omy group. Then X is parallelizable.

Proof. Since X is Hermitian, it is orientable. Further, the holonomy

group 77 at x G X is then a subgroup of the group of unitary trans-

formations on X(x) and since 77 is abelian it is submonothetic in this

group. If we regard X now as a flat Riemannian manifold, the unitary

transformations on X(x) form a subgroup of the group of orthogonal

transformations and hence 77 is submonothetic here. Applying the

theoiem completes the proof.

2. In order to prove Theorem 1, we need the following result about

arbitrary Riemannian manifolds with submonothetic holonomy

groups.

Theorem 2. Let X be Riemannian with submonothetic holonomy

group. Then the tangent bundle of X admits a decomposition as an

orthogonal Whitney sum of invariant (under parallel translation)

orientable 2-plane bundles and invariant line bundles. The line bundles

in the decomposition are trivial except possibly one, which is trivial if

and only if X is orientable.

Proof. Let g be a monothetic generator of the monothetic group

containing the holonomy group 77 of X at x G X. Relative to an ap-

propriate orthonormal frame at x, g is represented by a matrix of the

form

0"

L0 ±1

where each * is a 2 X 2 matrix of the form
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cos 0       sin 01

— sin 0   cos 0 J

and where the sign of the last entry is + or — depending on whether

X is orientable or nonorientable. (Note that in the usual canonical

form there may be several — l's on the diagonal but we prefer to

group them by pairs into a * with 6 = it.) Thus the tangent space to X

at x admits an orthogonal decomposition as a sum of oriented two-

dimensional subspaces, oriented lines, and possibly an unoriented

line, which are invariant under g, hence under H. Thus parallel trans-

lation of these subspaces is well defined on X and gives rise to the

required Whitney sum decomposition of the tangent bundle of X.

Corollary. Let X be Riemannian of dimension n with submono-

thetic holonomy group. Assume that the second integral cohomology group

H2(X; Z) of X is zero. Then X is (n — l)-parallelizable. If further X is

orientable, then X is in fact parallelizable.

Proof. It suffices to show that each of the 2-plane bundles in the

decomposition of Theorem 2 is trivial. But an orientable 2-plane

bundle £ is trivial if and only if its Euler class is zero. Since the Euler

class is an element of H2(X; Z), it is zero by assumption.

3. Proof of Theorem 1. We shall use the well-known fact that the

null-holonomy group of a flat manifold is trivial, i.e., the only element

of the holonomy group arising from curves homotopic to zero is the

identity element. This is an immediate consequence of the holonomy

theorem [l], using the fact that the null-holonomy group is the arc-

wise connected component of the identity in the holonomy group.

Thus, for X flat, parallel translation over simply connected domains

is well defined, independent of curve.

Now let the orientable 2-plane bundles in the decomposition of

Theorem 2 each be given a definite orientation. It suffices to show

that for each 2-plane bundle £ we can define a continuous field of

orthonormal 2-frames which at each xÇ.X spans the fiber p(x) of £

at x. (Such a field may then, of course, be approximated by a smooth

one.) Note that p: X-^d(X) is a section of the Grassmann bundle

Gz(X) of oriented 2-planes tangent to X.

We may assume (cf. [4]) that X is given a smooth triangulation.

For each vertex ea, let f(ea) be any orthonormal 2-frame spanning

p(ea) and determining its orientation. We now extend / to a con-

tinuous section, also denoted by/, in the bundle F2(X) of orthonormal

2-frames on X in such a way that p of—p, where p: F2(X)-^G2(X) is

the natural projection. For this, let a be an «-simplex of X, with
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vertices e», • • • , en say. For xC<r, let X,(x) (O^i^n) denote the

barycentric coordinates of x in a, i.e., x = ]C?_0 Xi(x)e¿, X¿(x) = 0, and

XXo X¿(x) = 1. Now let /'(x) be the parallel translate to x of the

frame f(eo), along any curve in <r.f'(x) is well defined since <r is simply

connected and X is flat. Now, since £ is invariant under parallel trans-

lation, p(/'(e,)) =p(ei) =p(f(ei)) for Ogt^w. Thus, for Ogi^M, there

exists an angle 0¿ with O^0<<27r such that

f(e%) = R(0i)f(ei),

where 7?(0.) denotes rotation in the oriented plane £(et) through the

angle 0,. For xG<r we define

Clearly/, agrees with/on the vertices of a. Further,/, is smooth on a

and satisfies p of„ = p.

We claim that the definition of /„ is independent of the vertex ea

used in defining it. In fact, suppose we follow the same procedure

using another vertex of a, which we may without loss of generality

assume is «1. For xEv, letf"(x) be the parallel translate to x of f(e{)

and let ß( (O^i^n) be such that 0^ßi<2ir and

f(et) - R(ßi)f"(ei).

Then j8,- = 0<-0i (0;S*á«) and/"(íc)=P(01)/'(3c) for xGff so that

RŒ */<*)&)/"(*) = *(E Xy(*)9i - e1)R(61)f'(x)

for all x£<r, completing the proof of the claim. Since the definition

of/„ is symmetric in e%, • • • , e„ it now follows that/, is independent

of the choice of labelling for the vertices of a.

We now show that if Ci and <r2 are w-simplexes with a common

face t, then the definitions of f„x and /„, agree on r. In fact, by the

above argument, we may assume that the first n vertices both of

cri and of <r2 are the vertices e0, ■ • • , en_i of r. Then, for xEt, the

(w-fT)st barycentric coordinates of x in <r\ and 0"2 are zero and

/„,(*) = * (!>,(*)«<)/'(*) -/„(*),

where the X,(x) may be regarded as the barycentric coordinates of

x in t. Thus the /„ agree on common faces and define a continuous

section /: X—*F2(X) with p of=p, completing the proof.
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Remark 1. As L. Charlap has pointed out, the proofs of Theorems

1 and 2 extend easily to prove the following. Let X be a flat Rie-

mannian manifold. Let Tc(X) denote the complexification of the

tangent bundle of X. Then the holonomy group H of X is in a natural

way a subgroup of the structural (unitary) group of Tc(X). If H is

submonothetic as a subgroup of this unitary group then the bundle

Tc(X) is trivial. As a consequence, all Pontrjagin classes (with arbi-

trary coefficients) of such an X are zero. This remark applies in par-

ticular to all flat Riemannian manifolds with abelian holonomy

groups.

Remark 2. It is well known that flat Riemannian manifolds and

solvmanifolds (homogeneous spaces of solvable Lie groups) have

many properties in common. In this direction it is interesting to com-

pare the above results with those recently obtained for solvmanifolds

by L. Auslander and R. H. Szczarba [2].
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