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Reader’s Advisory

This is a draft copy of portions of Three-dimensional geometry and topology.
It is not for duplication or distribution, as it 1s still being actively revised.

This book began with notes from a graduate course I gave at Princeton
University on the geometry and topology of three-manifolds, over a period of
two or three years; starting in 1978. The notes were duplicated and sent to
people who wrote to ask for them. The mailing list grew to a'size of about one
thousand before a version was frozen. Much of the original draft was written
by Steve Kerckhoff and Bill Floyd. These notes are still available from the
Princeton math department.

The notes were originally aimed for an audience of fairly mature mathe-
maticians, and presented material not in the standard repertoire. A number
of seminars worked through these notes. Some of the feedback from seminars
and individuals convinced me that it would be worth filling in considerably
more detail and background; there were several places where people tended to
get stuck, sometimes for weeks. I embarked on a project of clarifying, filling
in and rearranging the material before publishing it.

Much more time has elapsed since than I intended or anticipated. The
present text is based roughly on the first seven chapters of the original notes,
but with substantial rearrangement and interpolation. Dick Canary, David
Epstein, Silvio Levy, and Yair Minsky have contributed extenswely to this
revision.

The style of exposition in this book is somewhat experimental. -
~ The most efficient logical order for a subject is usually different from the

best psychological order in which to learn it. Much mathematical writing is
based too closely on the logical order of deduction in a subject, with too many
definitions before, or without, the examples which motivate them, and too
many answers before, or without, the questions they address. In a formal and
logically ordered approach to a subject, readers have little choice but to follow
along passively behind the author, in the faith that machinery being developed
will eventually be used to manufacture something worth the effort.

Mathematics is a huge and highly interconnected structure. It is not linear.
As one reads mathematics, one needs to have an active mind, asking questions,
forming mental connections between the current topic and other ideas from
other contexts, so as to develop a sense of the structure, not just familiarity
with a partlcular tour through the structure.

viii
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The style of exposition in this book is intended to encourage the reader
to pause, to look around and to explore. 1 hope you will take the time to
construct your own mental images, to form connections with other areas of
mathematics and interconnections within the subject itself. :

Think of a tinkertoy set. The key is the pieces which have holes, allow-
ing you to join them with rods to form interesting and highly interconnected
structures. No interesting mathematical topic is self-contained or complete:
rather, it is full of “holes,” or natural questions and ideas not readily answered
by techniques native to the topic. These holes often give rise to connections
between the given topic and other topics that seem at first unrelated. Mathe-
matical exposition often conceals these holes, for the sake of smoothness—but
what good is a tinkertoy set if the holes are all filled in with modeling clay?

In the present exposition, many of the “holes” or questions are explicitly
labeled as exercises, questions, or problems. Most of these are not walking-
the-dog ezercises where the dog follows behind on a leash until the awaited
event. You may or may not be able to answer the questions, even if you
completely understand the text. Some of the questions form connections with
ideas discussed more fully later on. Other questions have to do with details
that otherwise would have been “left as an exercise for the reader”. Still others
relate the material under discussion to topics which are neither discussed nor
assumed in the main text. _

It is important to read through and think about the exercises, questions
and problems. It should be possible to solve some of the more straight{orward
questions. But please don’t be discouraged if you can't solve all, or even
most, of the questions, any more than you are discouraged when you can’t
immediately answer questions which occur to you spontaneously.

There are other ways in which the order of development deviates from the
order of logical deduction. For instance, manifolds and geometric structures
on manifolds are discussed intuitively in the first two chapters, even though
the formal definition and basic properties are only presented in chapter 3.
These definitions are somewhat heavy until one has seen some good examples.
The concept of an orbifold is defined only in chapter five, even though it is
significant for the material in chapter four.

'On the other hand, for purposes of reference, the logical order is some-
times chosen over the psychological order. For example, chapter 2 contains
a fuller treatment of hyperbolic geometry than is motivated by the examples
and applications which have been given up to that point. The reader may
wish to skip some of it, and refer back only as needed for later reference.

Often a beginner gives up reading a book, or parts of it, when he or she
hits a morass of unknown terms and notation. Given the non-linear method
of exposition used in this book, it is likely that you’ll encounter unfamiliar
terms that are not explained in the text. Don’t let that discourage you: all
but the most elementary of these terms are defined in the Glossary, and the
first occurrence of each one is flagged by a dagger (f) for ease of reference.
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On the other hand, it may happen that the definition of a word doesn’t
help you much, because it involves other, still unfamiliar, concepts. In that
case you may want to forge ahead and return to the sticky passage later, or
consult the reference given for the word in the Glossary to supply yourself with
some background. :

Any suggestions and corrections, concerning style as well as content, are
welcome. Be a critical reader.

William P. Thurston
January 1990
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Chapter 1

What is a manifold?

Manifolds are around us in many guises.

As observers in a three-dimensional world, we are most familiar with two-
manifolds: the surface of a ball or 2 doughnut or a pretzel, the surface of a
house or a tree or a volleyball net. ..

Thiee-manifolds may seem harder to understand at first, But as actors
and movers in a three-dimensional world, we can learn to imagine them as
alternate universes,

Mathematically, manifolds arise most often not as physical entities in
space, but indirectly: the solution space of some set of conditions, the pa-
rameter space for some family of mathematical objects, and so on. Translat-
ing such abstract descriptions, where possible, into our concrete imagery of
three-dimensional space is generally a big aid to understanding.

Even when we do this, however, it is often not easy to recognize the iden-
tity of a manifold: the same topological object can have completely different
concrete descriptions. Furthermore, manifolds may have mherent symmetry
that is not a,ppa.reut irom a concrete description.

How can we know a manifold?

r _ . 1

whichmanifold

Figure 1.1. Which manifold is thls7 '
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1.1. POLYGONS AND SURFACES : ‘ 2

1.1. Polygons and surfaces

The simplest and most symmetric surface, next to the sphere, is the torus, or
surface of a doughnut. This surface has symmetry as a surface of revolution
in space, but it has additional “hidden” symmetry as well. The torus can be
described topologically by gluing together the sides of a square. If the square is
reflected about its main diagonal to interchange the e and b axes, the paitern

- of 1dentification is preserved.

a
S
a ! I_l ’ |
b b
(I | i 7 -1

agiorus

Figure 1.2. The square torus. A torus can be obtained, topologically, by
gluing together parallel sides of a square. Conversely, if you cut the torus on
the left along the two curves indicated, you can unroll the resulting figure into
the square on the right. '

Problem 1.1.1 (square torus in space). The onc-ﬁoint _odmpactiﬁcatio-n R® of
R™ is the topological space obtained by adding a point oo to R™ whose neighbor-
hoods are of the form (R™\ B) U oo for all bounded sets B.

(a) Check tha,t the one-point compactification of R” is homeomorphlc to the sphere
Sﬂ

(b) Consider an ordinary torus in §2 = R3, and show that the interchange of
curves a and b in figure 1.2 can be achieved by moving the torus in $° (without
necessarily preserving its geometric shape). (This question will become much
easier after you read section 2.7.)

(c) Show that this cannot be done in R3.

Curiously, a torus is also obtained by identifying parallel sides of a regular
hexagon (figure 1.3). This alternate description has six-fold symmetry which
is not compatible with the symmetry of the previous description.

Problem 1.1.2 (reconciling the symmetries of a torus). We’ve seen three
concrete descriptions for a torus: as a physical surface in space, as a square with
identifications, and as a hexagon with identifications. Can you reconcile them to
your satisfaction? :

{a) Check that gluing the hexagon does yield a torns. Draw the curves needed to
cut a torus into a hexagon.

(b) What transformation changes a hexagon with identifications to a quadrilateral
with identifications?

Revision: 1.31 Date: -90/10/25 22:40:47
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()

hextorus :

Figure 1.3. The hexagonal torus. Here is another gluing pattern of a polygon
which yields a torus. This pattern reveals a different kind of symmetry from
the first.

Is it possible to tembed the torus in R3 or in §3 in such a way that the six-fold

 symmetry extends to a symmetry of the Tambient space?

(d)

One can divide the torus into seven countries in such a way that every country
has a (non-punctual) border with every other. In other words, a political map
of a torus-shaped world may require up to seven colors. Construct such a seven--
colored map. Can it be done symmetrically?

These two descriptions of the torus are closely related to common patterns

of ttilings of the 'Euclidean plane E%. Take an infinite collection of identical
squares, all labeled as in figure 1.2, or of hexagons, labeled as in figure 1.3.
Begin with a single polygon, then add more polygons layer by layer, identifying
edges of the new ones with similarly labeled edges of the old ones. Make sure
the local picture near each vertex looks like the local picture in the original
pattern, when the edges of a single polygon were identified: if you follow this
rule, each new tile fits in in exactly one way. The result is a tiling of the
Euclidean plane by congruent squares or hexagons..

IF : ' =

L= =
torustiles

Figure 1.4. Tiling the plane with toruses. These tilings of the plane arise
from the two descriptions of the torus by gluing polygons. They show the
universal covering space of the torus, obtained by “unrolling” the torus around
both axes.
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These tilings show that the plane is a Tcovering space for the torus: the

- tcovering map for the square tiling {say) is the map that identifies correspond-

ing points in each square, taking them all to the same point on the glued-up
torus. Since the plane is 'simply connected, it is the funiversal cover of the
torus. The covering map singles out a group of homeomorphisms of the plane,
namely those that take any point into another point that has the same image
on the torus under the covering map. For the square tiling, for instance, these
fcovering transformations are the translations that preserve vertices. The torus
is the Tquotient space of the plane by the Taction of this fcovering group.

Since the covering transformations are Euclidean isometries, we can give
the torus a Fuclidean structure, that is, a metric that is locally isometric to
Euclidean space. This is done as follows: . given a point £ on the torus, we
choose a neighborhood U of x small enough that the inverse image of U in
the plane is made up of connected components homeomorphic to U under the
covering map p. By shrinking U further, we can make sure that the diameter
of these components is less than the distance separating any two of them.
Then we declare p to be an isometry between any of these components and U
it doesn’t matter which component we choose, because they’re all isometric
{(figure 1.5). :

This locally Euclidean geometry on the torus is not the same as the geom-
etry it has as a surface of revolution in space, because the former is everywhere
flat, whereas the torus of revolution has positive Gaussian curvature at some
places and negative at others (section 2.1). '

D (DD |
D|DL|
D ||| =
Dlolw|

L ) -l
torusmetiic . '

Figure 1.5. Transferring the geometry from the plane to the torus. Asa

quotient. of the plane by a group of isometries, the torus has a locally Euclidean

geometry, in which a small open set U/ is isometric to any component of its

inverse image under the covering map p. [n this geometry the images of straight

LG [6

lines are Tgeodesics on the torus. They're not geodesics in the geometry of the
torus of revolution.
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1.2. Hyperbolic surfaces .

- Just like the torus, the two-holed torus or genus-two surface (sectioﬁ 1.3) can

be obtained by identifying the sides of a polygon. Most familiar is the pattern
shown in figure 1.6, in which we cut along four simple closed curves meeting
in a single point, to get an octagon. The four curves can be labeled so that
the resulting octagon is labeled aba=tb6"tedc1d 1.

r ' ' ' 1

L -

genuea2

Figure 1.6. A genus-two surface. A two-holed torus, or surface of genus
two, can be cut along curves until the result is topologically a polygon. Here
we see the most common cutting pattern.

Are there tilings of the plane by regular octagons, coming from the gluing
pattern in figure 1.67 The answer is clearly no in the Euclidean plane: the
interior angle of a regular octagon is (8 — 2) - 180°/8 == 135°, s0 not even three
octagons fit around a vertex, whereas eight would be needed.

But that’s not the end of the story: if we don’t insist that our plane satisfy
TEuclid’s parallel axiom, there is nothing to force the sum of the angles of a
triangle to be 180°, and we could perhaps clioose regular octagons with 45°
angles, so they fit nicely eight to a vertex. We will soon describe a concrete
construction to do exactly that.

Until the late eighteenth century the va.hd1ty of the parallel axiom was
taken for granted, and in fact much work was invested in frustrated attempts to
prove its redundancy by deriving it from Euclid’s other axioms and “common
notions,” all of which seemed much more intuitive. By the 1820s, however,
three people had independently come to realize that a self-consistent geometry,
with lines, planes, and angles otherwise similar to the usual ones, does not
have to satisfy the parallel axiom: they were Janos Bolyai in Hungary, Carl
Friedrich Gauss in Germany and Nikolai Ivanovich Lobackevskii in Russia.
Gauss was there first, but he chose not to publish his conclusions, and Bolyai
received no recognition until long after his death; and so it is that this non-
Euclidean geometry became known as Lobachevskiian geometry until Felix
Klein, at the turn of this century, introduced the term h},rperbohc geometry,
the most current today.

'The denial of one of Euclid’s axioms rema,med a profoundly dlsturbmg idea,
and although continuing work by Lobachevskii and others not only failed to
lead to a contradiction but showed that hyperbolic geometry was remarkably
rich, it was a matter of debate throughout most of the nineteenth century
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whether or not such a geometry could exist. Such doubts lasted until Eu-
genmio Beltrami, in 1868, constructed an explicit model of hyperbolic space—
something like a map of hyperbolic space in Euclidean space. Actually, Georg
Friedrich Riemann seems to have reached this level of understanding much ear-
lier, for he exhibited a metric for any space of constant curvature in his famous
“Lecture on the Hypotheses That Lie at the Foundation of Geometry” (1854),
and in general he wrote about lines and planes in such spaces in a manner
that indicates a clear grasp of their nature. However, this understanding only

entered the general mathematical consciousness with Beltrami’s work.

Later other models were introduced, each with its advantages and disad-
vantages. These model_s, or maps, are helpful in the same way that maps of
the earth are helpful: they are perforce distorted, but with some imagination
one can develop a feelmg for the true nature of the landscape by studying
them.

Hyperbolic geometry will be an essential tool for us throughout this book,
so it’s good to get more or less familiar with it right away, at least in the two-
dimensional case. Our initial study of hyperbolic geometry will be based on a
particular model, but it’s best to keep in mind from the start that the same ge-
ometric construct—hyperbolic space H*—can be represented in many different
ways. We first give a characterization of hyperbolic lines {geodesics), and of
certain line-preserving transformations; from this we derive many other prop-
erties of hyperbolic space, including the metric. As we go along we’ll develop
a “dictionary” to translate between hyperbolic objects and their representa-
tions in the model, and as we become ﬂuent we'll start doing this translatmn
automatically.

The hyperbolic plane H? is homeomorphlc to R?, and the Pomcare disk
model, introduced by Henri Poincaré around. the turn of this century, maps
it onto the open unit disk D in the Euclidean plane. Hyperbolic straight
lines, or geodesics, appear in this model as arcs of circles orthogonal to the
boundary 8D of D, and every arc orthogonal to D is a hyperbolic straight
line (figure 1.7). There is one special case: ‘any diameter of the disk is a limit of
circles orthogonal to D and it is also a hyperbolic straight line. For simplicity,

from now on we will mclude diameters when talking about arcs orthogona.l to

ab.

A hyperbolic reflection in one of the lines represented by a diameter of the
disk translates, in our model, into a Euclidean reflection in the same diame-
ter. How about hyperbolic reﬂectlons in lines not represented by diameters?
They translate into certain Euclidean transforma.tlons ca.lled inversions, that
generalize reflections: -

Definition 1.2.1 (inversion in a circle). If C is a circle in the Euclidean

- plane, the inversion ic in C is the unique map from the complement of the

center of C into itself that fixes every point of C, exchanges the interior and

exterior of C' and takes circles orthogonal to C to themselves.
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Figure 1.7. Straight fines in the Poincaré disk model. Straight lines in the
Poincaré disk model appear as arcs orthogonal to the boundary of the disk or,
‘as a special case, as diameters.

Exercise 1.2.2 (inversions are well-defined}. (a} Show the following standard
result from Fuclidean plane geometry: If A4 is a point cutside a circle C'and [is a
line through A intersecting C at P and P’, the product AP - AP’ is independent

of ! and is equal to AT?, where AT is a ray tangent to C at T. This product is
the power of A with respect to C. '

(b) Use this to show that definition 1.2.1 makes sense. (Hint: see figure 1.8, left.)
(c) Prove that if C' has center O and radius r, the image P’ = i¢(P) is the point
- on the ray OP such that OP - OP' = rZ,

£,
%

~

| _ 1

-
P
' L - R _

-

tnveesion : o

5 Figure 1.8. Inversion in a circle. All circles orthogonal to a given circle and
passing through a given point P also pass through a point P/. We say that
P’ is the image of P under inversion in the circle. Inversion interchanges the .

interior and exterior of the circle.

VT e

Inversions have lots of neat properties, and none neater than the following,
which we will use time after time: ' '

Proposition . 1.2.3 (properties of inversions). If C is a circle in the Fu-
: clidean plane, ig is conformal, that is, it preserves angles. Also, ic takes
L /; circles not conlaining the center of C to circles, circles containing the. center
- to lines, lines notl containing the center to circles. containing the center, and

- lines containing the center to. themselves.
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Proof of 1.2.3: Given two vectors at a point not in C' we can construct a circle
tangent to each vector and orthogonal to the circle of inversion, and these
circles, which are preserved by the inversion, meet at the same angle at their
other point of intersection. This shows conformality everywhere but on C.
The case of a point on € can be handled by continuity.

Next we show that circles and lines tangent to C' are taken to such circles
and lines {disrespectively). For the rest of this proof, we let “circle” stand for

“circle or line”. For any point z on C the plane is filled by a family Fp of

circles orthogonal to €' at z and similarly by a family Fr of circles tangent

to C at z (see figure 1.9). Any circle from Fr meets any circle from Fg

orthiamilies

Figure 1.9. Orthogonal families of circles through a point. The circles
tangent to a circle C at a given point z are the orthogonal trajectories of the
family of circles orthogonal to C at z.

perpendicularly at both their intersection points, and thus Fr forms the set
of forthogonal trajectories of Fo. We already know that Fo is preserved by
i¢, s0 since the inversion is conformal the family of orthogonal trajectories of
Fo is preserved, and thus any circle tangent to C is taken to another circle
tangent to C. _ _

Any circle not passing through the center of C can be blown up or shrunk
down to a circle tangent to C by means of a thomothety centered at the center
of C. The circle’s image under inversion suffers exactly the opposite fate, by
exercise 1.2.2(c): it shrinks down or blows up by the same factor. Since the
image of the tangent circle is a circle, so is the image of the original circle.

As a special case, straight lines and circles through the center of C are sent
to each other because points closer and closer to the center are sent further
and further away. =~ - [1.2.3

Example 1.2.4 {mechanical linkages). Around the middle of the nine-
teenth century, with the rapid development of the Industrial Age, there was
great, interest in the theory of mechanical linkages. An important problem, for
a time, was to construct a mechanical linkage that would transform circular
motion into straight-line motion, that is, maintain some point on the linkage in
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VY minverser f' a straight line as another point described a circle. In the 1860s Lippman Lip- _
fwerions - kin and Peaucellier independently found a solution to the problem—the same sivio: cheer thie
H tRiemannian maetric . . . . . . . . . better.

i % The invarsive solution, in fact, involving inversion in a circle. It turned out to be of little use

% banana because in practice the relatively large number of moving components (seven

{ : bars and six joints) made the linkage wobble more than simpler linkages that,
; mathematically speaking, only approximated straight-line motion.

Exercise 1.2.5. (2) Prove that the linkage of ﬁgure 1.10 perfdrﬁ;s ag advertised in

center of the circle indicates an anchor point for the linkage. If point P is moved
around a figure, P’ moves around the image of the figure under inversion in
* the dotted circle. ' '

its caption.

- :

P

L .

o Figure 1.10. A mechanical inversor. This mechanical linkage performs an
RS inversion in the circle of radius r = /(22 — y?). The small triangle near the
i :

(b) Construct a mechanical linkage that achieves straight line motion.

Back to the Poincaré model. If a hyperbolic line appears in the model
as {an arc of) a circle orthogonal to @D, the hyperbolic reflection in this line
appears as (the restriction to I of) the Euclidean inversion in this circle. This
is plausible because, by proposition 1.2.3, such an inversion maps D into itself
and preserves hyperbolic lines. We will presently see that it also preserves
distances, if distances are defined the right way, so the word “reflection” is
fully justified. :

How then should distances be defined in the hyperbolic plane? Answering
this question boils down to describing the 'Riemannian metric of the hyper-
bolic plane, that is, to assigning each point an inner product for the tangent
space at that point. In section 2.2 we will write down a formula, but for now
we can learn a whole lot just from geometric constructions. The driving idea
1s that hyperbolic reflections should preserve distances, that is, they should be
isometries. This is enough to pin down the metric up to a constant factor. -
R -+ We start with figure 1.11. Consider two orthogonal hyperbolic lines L
; ~ and M, seen in the model as Euclidean arcs of circles orthogonal to 8D, and
' another Euclidan circle €' that intersects 8D in the same two points as L. The
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hyperbolic reflection in M leaves L invariant and, by the definition of inversion,
also . H this reflection is to preserve hyperbolic distances, corresponding
points of C on both sides of M must be equally distant from L. In fact,
by varying M among the lines orthogonal to L, we see that all points of C
must be equally distant from L, that is, C' must be an equidistant curve. The
banana-shaped region between I and € can be filled with segments orthogonal
to L, all having the same hyperbolic length. -

banana

Figure 1.11. Equidistant curve to a line. All points on the arc of circle C
lie at the same hyperbolic distance from the hyperbolic line L.

Now apply any hyperbolic reflection to the whole picture. The angle a
at the tips of the banana doesn’t change, because inversions preserve angles;
neither does the width of the banana—the hyperbolic length ! of the transversal
segments—since we want reflections to be isometries. This means that { should
be a function solely of a! Moreover, this function has a finite derivative at
a = 0, because the Euclidean length Ir of any particular transversal segment
is roughly proportional to a for « small, and Euclidean and hyperbolic lengths
should be proportional to first order. We may take the derivative dl/da at
a=10tobel. .

We're now equipped to go back and define the Riemannian metric by means
of this construction (figure 1.12). To find the length of a tangent vector v at a
point z, draw the line L orthogonal te v through z, and the equidistant circle
C through the tip. The length of v (for v small) is roughly the hyperbolic
distance between C and L, which in turn is roughly equal to the Euclidean
angle between C' and I where they meet. If we want an exact value, we
consider the angle a; of the banana built on fv, for ¢ approaching zero: the
length of v is then de,/dt at ¢ = 0.

Actually things are even simpler than that, because two vectors at z having
the same Euclidean length also have the same hyperbolic length. This follows
from the existence of a hyperbolic reflection fixing z and taking one vector to
the other, and from the fact that the derivative of an inversion at a point on the
the inversion circle is an orthogonal map (by the remark after definition 1.2.1).
Since Euclidean and hyperbolic vector lengths at a point are proportional, so
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-

L -

vectorlength

Figure 1.12. Hyperbolic versus Euclidean length. The hyperbolic and
" Euclidean lengths of a vector in the Poincaré model are related by a constant
that depends only on how far the vector's basepoint is from the origin.

are the inner products. In particular, the Poincaré model is conformal, because
Euclidean and hyperbolic angles are equal.

We can now get back to our tiling of the hyperbolic plane using regular
octagons. Remember that we need a tile with hyperbolic angles equal to 45°:
but since the Poincaré model is conformal, the Euclidean angle between the
arcs that form the edges will be the same. Now imagine a small octagon
centered at the origin; since its edges (in the model) bend just a little, its
angles are close to 135°. By moving the vertices away from the origin we can
make the angles as small as we want. By continuity (or, more pedantically, the

Yintermediate value theorem), there 1s some octagon in between whose angles
are exactly = /4 (figure 1.13).

r L 1 r " 1

L (a) 1oL (b) 4L () J

Joctagons

Figure 1.13. Bigger octagons in hypetbolic space have smaller angles.
Between a tiny, Euclidean-like octagon with large angles (a) and ‘a very large
one with arbitrarily small angles (¢) there must be one with angles exactly 11'/4

(b).

-Once we've found the octagon we want, we take identical copies of it and
place them on the hyperbolic plane respecting the identifications prescribed by
figure 1.6, to give the pattern shown in figure 1.14(a). The copies look different
depending on where they are in the model—in particular, they quickly start
looking very small az we move away from' the origin—but they can all be
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obtained from one another by a hyperbolic isometry. For example, the two.
copies in figure 1.14(b) are mapped to one another by a reflection in L, followed
by a reflection in M.

J L J

octatiles

Figure 1.14. A tiling of the hyperbolic plane by regular octagons. (2) A
tiling of the hyperbolic plane by identical regular octagons, seen in the Poincaré
disk projection. (b) To get the small octagon from the big one, reflect-in L,
then in A, :

This tiling of the hyperbolic plane shows that a genus-two surface can be
given a hyperbolic structure, a geometry such that the surface looks locally like
the hyperbolic plane. The construction exactly parallels the one we saw for the
torus at the end of section 1.1: again we have a covering space, the hyperbolic
plane, with a Riemannian metric preserved by all the covering transformations,
so we can fransfer that metric to the quotient space.

It is not an accident that we were able to cover the torus with the Euclidean
plane, and the genus-two surface with the hyperbolic plane: all surfaces can
be given simple geomeiric structures, as we’ll see in section 1.3.

Problem 1.2.6 (genus-two symmetry) How much symmetry does a surface of
genus two have?

(a) Show how to embed a genus-two surface in space so as to have three-fold sym-
metry.

(b) Show that a surface of genus two may be obtained. from either a regular octagon
or a regular decagon by identifying parallel sides. Draw pictures of the curves
needed to cut the surface into an octagon, or.a decagon.

(c) Let Ty be the rotation of forder 8 of the octagon, and T}o the rotation of order

10 of the decagon. These transformations go over to homeomorphisms of order

. 8 and 10 of the surface of genus two. How many fixed points do T and Tio
have? How many periodic points of order less than 8 or 107

-(d) Isit possible to embed a genus-two surface in space so as to admit a symmetry of

- order 8?7 of order 10?7 What if you consider fimmersions instead of embeddings,
that is, if you allow self-intersections? : -
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1.3. The totality of surfaces

Gluing edges of polygonal regions in dimension two, in the way we have been
doing, always gives rise to a two-dimensional manifold. To be precise, let
Fi, ..., Fy be toriented Tpolygonal regions, and suppose that the total number

- of boundary edges is even. Give the edges the orientations tinduced by the

orientations of the regions. A gluing pattern consists of a pairing of edges and,
for each such pair, a choice of 4 or ~ indicating whether the pair should be
identified by an torientation-preserving or forientation-reversing homeomor-
phism. For example, the gluing pattern shown in figure 1.2 pairs opposite
edges and assigns to each pair the symbol —, since both gluing maps reverse
orientation. (Notice that the arrows in the figure indicate matching directions,
rather than edge orientations. See also figure 1.15.)

Exercise 1.3.1 (homeomorphisms of an interval). Prove that two homeo-
morphisms of an interval to itself are fisotopic if and only if they both preserve
orientation, or both reverse orientation. (Write down a formula that works.)

Exercise 1.3.2 (gluings in two dimensions). (a) Using exercise 1.3.1, show
that a gluing pattern determines a unique topological space.
(b) Show that this space is always a two-dimensional manifold.

{c) Show that the manifold is oriented if the gluing pairs edges with opposite ori-
entations. :

(d) Figure 1.15 shows three gluing patterns that identify opposite edges of 2 quadri-
lateral. What two-manifold is obtained according to each of them?

a _ a - e
‘_1 [ I ! | il
b b b b b b
[ . ¥
a " a - a
L a— b- a— b4 at b+ 2
3Igluings

Figure 1.15. Three square gluings. Three possible gluings for a square.
The signs associated with each pair of edges indicate whether the gluing map
preserves or reverses orientation; the arrows convey the same information,

{e) Explain a necessary and sufficient condition for the two-manifold to be ori-
entable, that could be read off by a computer from the gluing pattern.

It is not easy to visualize directly what surface is obtained when you glue
a many-sided polygon, or several polygons, in a given paitern. However, there
is an easily computed numerical invariant, the Fuler aumber of a surface, that
enables one to recognize surfaces quickly. If ¥ is the number of constituent
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polygons (or faces} and £ and V are the numbers of their edges and vertices
after identification, the Euler number x(5) of the glued-up surface S is given
by F-E+V.

For instance, when a torus is formed by gluing a square as in figure 1.2, we
have one polygon, two edges (the sides of the square identified in pairs) and one
vertex (all four vertices identified into one). Therefore x(T2)=1—-2+1=0.
For the hexagonal torus of figure 1.3, we get three edges and two vertices,
since the vertices are identified in triples; so again ¥(T?) =1-3+2 = 0.

The sphere §? can be divided into four triangles, to form a tetrahedron with

six edges and four vertices, so x(5?%) =4 — 6 +4 = 2; if it is divided into six
squares to form a cube, the computation is x(8%) =6 - 12+ 8 = 2,

Cutting up a surface into polygons and their edges and vertices, as above,
is an example of cell division. A cell is a subset ¢ C X, where X is any
Hausdorfl space, homeomorphic te an open disk of some dimension, with the
condition that the homeomorphism can be extended $o a continuous map from
the closed disk into X, called the cell map. A face is a two-cell, an edge is a

- one-cell, and a wertex is a zero-cell. A cell division of X is a partition of X

into cells, in such a way that the boundary of any n-cell is contained in the
union of all cells of dimension less than n.

If X is a tdifferentiable manifold, we will generally assume that our cell
divisions are differentiable: this means that, for each cell C, the cell map can
be realized as a differentiable map from a convex polyhedron onio the closure
of ', having maxirmal rank everywhere. (The idea of differentiability at a point
requires that the map be defined on a neighborhood of the point in R*. So if
X € R™ is not an open set, we say that a map X — R™ is differentiable if it
is the restriction of a 'differentiable map on an open neighborhood of X.)

Differentiable cell divisions correspond closely to our intuitive idea of cut-
ting a surface into polygons. Occasionally we will encounter cell divisions that
are not of this type—for example, in problem 1.1.1(a) a sphere is expressed as
a union of a vertex and a face. '

The Euler number of a space X having a finite cell division is defined as the
sum of the numbers of even-dimensional cells, minus the sum of the numbers of
odd-dimensional cells. It is natural to ask: Is the Euler number independent
of the cell division? The answer is yes, and we’ll prove it for differentiable
surfaces. - :

A surface can have cells of dimension at most two, by the theorem on the
Tinvariance of domain. Let’s check what happens when a two-cell or a one-
cell is further subdivided. If an edge is divided into two, by placing a new
vertex in its middle, this adds one edge and one vertex. They contribute with
opposite signs, so they cancel.. If a two-cell is subdivided into two, by means
of a new edge between two of its existing vertices, this adds one two-cell and
one one-cell. These also contribute with opposite signs, so they cancel.

One way to show the invariance of the Euler number would be to prove

~ that these two operations and their inverses are enough to go between any two

finite cell divisions. But this approach is not very satisfactory—one can easily
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get lost in the technical details, and fail to see what’s really going on. A more
insightful idea is to relate the Euler number to something that clearly doesn’t
depend on any cell division: vector fields on the surface.

Let’s look at a simple example first, before tackling the problem in full
generality. Consider the sphere 52, carrying a cell division that is realized as
a convex polyhedron in E®. Arrange the polyhedron in space so that no edge
is horizontal—in particular, so there is exactiy one uppermost vertex I/ and
lowermost vertex L.

Put a unit -+ charge at each vertex, a unit — charge at the center of each
edge, and a unit 4+ charge in the middle of each face. We will show that the
charges all cancel except for those at L and at U. To do this, we displace
the vertex and edge charges into a neighboring face, and then group together
all the charges in each face. The direction of movement is determined by

the rule that each charge moves horizontally, clockwise as viewed from above
(figure 1.16). :

r -1
" |
convexcharges

Figure 1.16. Charges on a convex polyhedron. The arrows are part of

a horizontal vector field sweeping the surface of this polyhedron; the field is

undefined only at the uppermost and lowermost vertices. When the + charges
~ on vertices and the — charges on edges move accordmg to the vector field, they
~ cancel the + charges on the faces. '

- In this way, each face receives the net charge from an open interval along
its boundary.. This open interval is decomposed into edges and vertices, which
alternate.. Since the first and last are edges, there is a surplus of one —;
therefore, the total charge in each face is zero. All that is left is +2, for L and
for U,

- We now generalize this idea to any dlﬁ"erentlable surface thh a differen-
tiable triangulation. This means a differentiable cell division where the faces
are modeled on triangles, in such a way that the cell map for any face is an
fembedding taking each side of the model iriangle onto an edge of the cell
division, and the cell map for this edge is compatible with the cell map for the

face (that is, they differ by an taffine map between domains: see figure 1.17).
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Figure 1.17. Compatibility condition for a triangulation. The cell map f;
from the mode! triangle onto face Fy, composed with an affine map from the
model interval to the appropriate side of the model triangle, agrees with the
cell map e from the model interval onto edge E. Similarly, f2 agrees with e
after composition. This means we can refine the triangulation by subdividing
the model triangle and the model interval.

The assumption that the surface is triangulated isn’t really restrictive:
if we start with a differentiable cell division that is not a triangulation, we
can subdivide edges and faces so each face is modeled on a triangle with
embedded sides. We have already seen that this process doesn’t change the
Euler number. We also have to adjust the cell maps, by a process similar to
that of exercise 1.3.1, so that edge maps are compatible with face maps.

Proposition 1.3.3 (nonvanishing vector fields). If a differentiably tri-
angulated closed surface admits a nowhere zero tangent vector field, its Euler
number is zero. '

Proof of 1.3.3: Suppose first that the vector field is everywhere transverse to
the triangulation, that is, nowhere tangent to an edge. In problem 1.3.4 you're
asked to show that we can arrange for that to be the case, by subdividing the
triangulation and otherwise adjusting it, without changing the Euler number.
By subdividing we can also make the field nearly constant within each triangu-
lar face: more precisely, for each face, in some coordinate chart, the direction
of the field should change by at most ¢, and the direction of the edges should
change by at most € along the edge.

Given such a transverse triangulation, we apply the idea of moving veriex
and edge charges in the direction given by the vector field. If a vertex’s charge
moves into a face, so do the charges for the two adjacent edges around the
face. This means that either exactly one edge charge gets pushed in.or two
edge charges and one vertex charge; the case of three or zero edge charges
being pushed in is ruled out because it cannot occur for a constant field, and
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our field is nearly constant. In both allowable cases, the face is left with a -
total charge of zero, so the Fuler number is zero. 1.3.3

Problem 1.3.4 (transverse triangulation). To complete the proof of proposi-
tion 1.3.3, we must show the {riangulation can be changed so as to become transverse
to the field and so the field and edge directions are nearly constant within each face.

{a) Cover the surface with a finite number of coordinate patches. By drawing
equally spaced lines parallel to each edge as in figure 1.17, subdivide the tri-
angulation so finely that the star of each vertex v—that is, the union of edges
and faces incident on v—lies in a single coordinate patch, and that the direction
of each edge and of the field in the star of », measured in these coordinates,
changes by no more than &.

(b) Imagine the sets of directions of the edges and of the field as intervals on the
circle, of length bounded by £. Show that you can make the intervals of di-
rections of the edges avoid the interval of directions of the field by moving v a
little bit in the appropriate direction, and extending the movement to each edge
incident on v by means of a Euclidean 'similarity (with respect to the patch
coordinates) that keeps the other endpoint of the edge fixed.

(c) Now extend this process to all vertices simultaneously. First show that we
can assume that the vertices can be colored red, green and blue, so that no
‘two vertices of the same color are joined by an edge. (Hint: use tharycentric
subdivision.) Adjust all red vertices at once, then all green vertices. Thls leaves
all edges tramsversal. -

The torus T2 has nowhere zero vector fields: consider a uniform field on
E? and take the quotient as in figure 1.5. So its Euler number is zero.

What about other surfaces? Most of them do not admit a nowhere zero
vector field. The best we can do is to find a vector field that is zero at isolated
points (see exercise 1.3.8), The proof of proposition 1.3.3 suggests that charges
cancel in regions away from the zeros of such a field, so we now need to study
its behavior near its zeros.

-Let X be a vector field on a surface with an isolated. zero at a poinft z.
Working as in the proof of problem 1.3.4, construct a small polygon containing
z whose edges are transverse to X. Place a 4+ charge on each vertex, a —
charge on each edge, and a + charge in the interior of the polygon, and flow
the charges off the boundary of the polygon by using X. The indez of X ai z,

~ denoted (X, z), is the sum of the charges in the interior of the polygon after

the operation of the ﬂow.

Lemma 1.3.5 (index independence). If X is a vector field with an isolated
zero z, the indez of X is independent of the polygon enclosing z; it depends
only on the restriction of X to an arbitrarily small neighborhood of z.

Proof of 1.8.5: Given one polygon containing z with edges transverse to X, we

‘need only show that it gives the same index as another much smaller polygon

with ‘the same properties. Using exercise 1.3.6, we subdivide the annulus
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Figure 1.18. The index of a vector field. An isolated zero of a vector field
leaves a small region where charges don't cancel. For the field on the left, the
total charge of the polygon containing the zero—known as the index of the
vector field at that point—is —1. Such a zero is called a saeddle. For the field
on the right, the index is 1; an isolated zero with index 1 is called a sinkor a
source, depending on whether the field points in or out.

between the two polygons into triangles, and jiggle the vertices to make the
edges transverse to X. The flow causes some charge to enter the annulus across
the outer boundary and some charge to leave across the inner boundary. The
charge left on each triangle of the annulus is zero, and so the charge entering
is equal to the charge leaving. . . . |1.3.5

- Exercise 1.3.6 (triangulating an annulus). A minor technical detail was sup-

pressed a.bove-w_'-how do we triangulate an annulus in the plane? Here we set things
up so that the triangulation is easy—with the necessary background, ore could
instead just quote a theorem about the triangulability of surfaces, '

(a) A disk D is said to be star-shaped with respect to a point v in its interior if each
ray from v to the boundary of D is contained in the interior of D. Show that a
star-shaped polygon can be triangulated with v as a vertex.

(b) Given' two polygons which are star-shaped with respect to v, triangulate the

annulus between their boundaries.

(c) Suppose that we have a polygon which is star-shaped with respect to the isolated
zero z of X. Show that the boundary of the polygon can be made transverse to
X by jiggling vertices only in the radial direction, and hence that the polygon
obtained after jiggling is still star-shaped. ' '

(d) (Harder.) Can you work out a proof without the a.ssumptibn that the polygons
are star-shaped?

‘The simplest vector fields with isolated zeros are the linear vector fields in
the plane, those where the value of the field at a point is obtained by applying
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2 linear map to the point. Clearly the origin is a zero of any linear vector field;
it is isolated if and only if the linear map has non-zero determinant.
If a vector field with isolated zeros is thomotoped in such a way that the

points where it is zero do not change, the indices at the zeros must remain

constant since they are integers. This implies that two linear vector fields -
whose determinants have the same sign must have the same index, since then
they are thomotopic through linear vector fields of non-zero determinant.

Exercise 1.3.7 (index is sign of determinant). (a) Sketch enough pictures of
linear vector fields that you understand the relationship between determinant
and qualitative appearance.

(b} Prove that the index of a linear vector field in the plane is the sign of its
determinant.

Exercise 1.3.8 (isolated zeros). Given a finite cell division of a surface, find a
way to construct a differentiable vector field on the surface with a source in the
middle of each two-cell, a sink at each zero-cell, and a saddle in the middle of each
edge (see figure 1.18 for definitions).

Problem 1.3.9. What are the possible values of the (X, z) when X is a general
vector field? Can you find a formula for {( X, z) valid for all vector fields with 1solated
Zeros?

Proposition 1.3.10 (Poincaré index theorem). If S is a smoo_th surface
and X is a vector field on S with isolaied zeros, the Euler number of S is

x(8) = Z i(X, 2).

ZCTETOS

Consequently, the Fuler number of a surface does not depend on the cell divi-
sion used to compute it—it is a topological invariant.

Proof of 1.3.10: Given a finite cell division of S, start by rep.la,cing it with a
differentiable triangulation, as discussed just before proposition 1.3.3. Subdi-

- vide and jiggle the triangulation as necessary to make all the zeros lie inside

faces, no more than one to a face. Enclose each zero with a polygon contained
inn a face and transverse to the field, as explained in the paragraph preceding
lemma1.3.5. Triangulate the annulus formed by taking away the polygon from
the face (exermse 1.3.6). Finally, make the rest of the triangulation transverse,

“again by using the technique in the proof of problem 1.3.4.

Each polygon’s contribution to the Euler number is the index of the vec-
tor field at the corresponding zero. Each triangle’s contribution outside the
polygons is zero. This proves the formula.

The last sentencefollows because every closed surface admits a vector field
with isolated zeros (exercise 1.3.8). 1.3.10

Challenge 1.3.11. Show that this discussion abut the Euler number and the index
of isolated zeros can be carried out for a.smooth manifold ‘of any dimension.
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If the topology of a closed surface determines its Euler number, could the
converse be true as well? This sounds unlikely~~so much information in a
single number! But amazingly, it’s almost true: knowing the Euler number
and whether or not the surface is orientable is enough to determine the surface.
This important result has been known for more than a century; if you are not
familiar with it, you are urged to work through the following steps:

Problem 1.3.12 (classification of surfaces). Consider a (connected) surface §
obtained by gluing polygons (we allow digons, but not monogons).

(a) S can be obtained by gluing a single polygon.

{b) If the number of vertices in S is greater than one, try to reduce the number by
shrinking one of the edges. This is always possible unless the polygon is a digon
and the two vertices correspond to distinct points on §, in which case § = §2.
Assume from now on that $ has one vertex.

(¢) Let E be the number of edges of §, so the polygon has 2E edges and x(§8) =
2~ E. I E = 1, we have the projective plane RP?, and if E = 2, we have the
torus or Klein bottle (figure 1.15). Assume from now on that E > 3.

(d) An elementary move in this context consists of cutting a polygon along a diag-
onal which separates paired edges e; and ey, and then gluing ¢; to e;. Show
that an elementary move does not change the topology of §.

(e) If § is orientable, there exist two pairs of paired edges z,z’ and y, 3’ that separate
each other.

(f) Suppose that z,z’ and v,y are pairs of paired édges that separate each other,

and that they are paired with reversal of orientation. The remaining edges of
the polygon form segments of length m, n, p and ¢. Using one elementary move,
arrange that m = n = 0. Follow this with another elementary move, to arrange
that m=n=p=0.

(g) If S is orientable, it can be obtained by a gluing of the form
ab105 167 Yagbaaz b3 . . .aghya; b

(In this notation, we choose for each edge an orientation that is consistent with
the identification, and read the resulting word going once around the polygon.)
Therefore, a closed, orientable surface is determined up to homeomorphism by
its Euler number, which is any even integer < 2. The number g is called the
genus of the surface, and the surface is a g-holed torus.

(h) I § is non-onentable, it can be rearranged by one elementary mave in such a
way that its gluing has two adjacent edges that are paired by a glumg map that
preserves orientation.

" (i) The non-orientable surface obtained from a hexagon by the gluing aabbec is

homeomorphic to that obtained by the gluing aabeb—1lc™1,
() Any non-orientable surface can ._be obtained by a gluing of the form
| Q1010287 . . . Gyly.
The number g is called the non-orientable genus of the surface. Two closed

non-orientable surfaces of the same Euler number are homeomorphic.

Revision: 1.25 Date: 91/01/09 14:39:23

Bill: are you sure? 1z
there an ariginal
reference?



i
;
£
:
¥
L
|
j
i
4
H
£
:
‘
:
4

o

Exercize *cloacd
surface minns a
disk™

% strips

% Hyperbolic surfaces

% classification of
surfaces

% 3octagons

% aglninga

zellipric

Problem *Gauss—
Bonnetl signz®

1.3. THE TOTALITY OF SURFACES S ' ' 21

Exercise 1.3.13. How many gluing patterns are there for a 2n-gon? How many
lead to an oriented surface? How many topological types can be obtained? This
shows there is a huge amount of repetition in descriptions of surfaces by gluings.

Exercise 1.3.14 {closed surface minus a disk). Let S be a closed _.connected
surface. Prove that by removing a disk from § we get a disk with attached strips
as in figure 1.19. Can you always make all the strips uniwisted? All but one?

r o r

strips

Figure 1.19. Disks with strips. The result of removing a disk from a closed
surface is a disk with strips attached. On the left, we started from an oriented
surface of genus two; in the middle, from a surface of non-orientable genus
three; on the right, from a projective plane. The figure on the right is the
Mabius strip. '

In section 1.2 we constructed a hyperbolic structure for the oriented genus-
two surface. We can-make an analogous construction for any surface of negative
Euler number, with the help of problem 1.3.12. In fact, such a surface is
obtained by gluing the sides of a 2rn-gon, with n > 3, in such a way that
all vertices are identified to a single vertex. The angle sum of the Euclidean
polygon is greater than 27, so there is a symmetric 2n-gon of the appropriate
size in H?, as in figure 1.13, whose sides glue up to form a smooth hyperbolic
structure on the surface.

Similarly, if a surface has Euler number zero, it can be obtalned by gluing
sides of a square so that all vertices are identified together. Therefore, it has a
Euclidean structure. In the notation of figure 1.15, the surfa,ce is either ¢ — b—
or @ — b+, that is, a torus or a Klein bottle.

To complete the picture, S? and its quotient space RP? = Szf{il}—the
surfaces of positive Euler number—ha.ve spherical structures. Such a structure
is also called elliptic.

- Might there be some exceedingly clever construction for a hyperbolic struc-
ture on the torus or Klein bottle, or a Fuclidean structure on the surface of
genus two?

- Problem 1.3.15 (Gauss—Bonnet signs). (a) Show that the Euler number of a

closed surface with a Euclidean structure is always zero..
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(b) Show that the sum of the (interior) angles of any hyperbolic triangle is always
less than 7, and the sum of the angles of any spherical triangle is always greater
than 7. (Hmt use isometries to arrange triangles, to make the comparisons
easier.)

(¢) Show that the Euler number of a closed surface with a hyperbolic structure is
negative, and the Euler number of a closed surface with an elliptic structure is
positive, '

This is a good place to mention some operations that construct new sur-
faces from old, and whose higher-dimensional analogues will be important
later. We may as well give their definitions in arbitrary dimension.

The connected sum of two {connected) n-manifolds M; and M- is a mani-
fold M, # M, obtained by rémoving copies of the n-disk D* from M; and M-
and gluing the two resulting boundary spheres together.

Exercise 1.3.16. Show that if §3 = 51 # 52 are surfaces, x(83) = x(51)}+x(S2)—2.
What happens for manifolds of other dimensions?

‘This definition can be made more precise: Choose diffeomorphic embed-
dings ¢; : D" — M, and ¢; : D* — M, of the closed n-disk, remove the two
images-of D" from the union M1 U M,, and identify the boundaries ¢;(3D")
and ¢2(8D7) by the map ¢;0¢7'. To what extent does the topology of the re-
sult depend on the choice of ¢; and ¢,? Not much, because there is essentially
only one way to embed an disk in a connected manifold, up to orientation.

More precisely, if we change ¢, (say) by an isotopy, the topology doesn’t
change, because any isctopy between embeddings of D* into an n-manifold
M can be extended to an isotopy of the whole manifold (see {Hir76, p. 185]).
Now associate with an embedding ¢ : D* -+ M the 'frame at ¢(0) given by
the image under D¢(0) of the canonical basis vectors of R™. It is easy to see
(exercise 1.3.17) that two embeddings are isotapic if and only if their associated
tframes can be continuously deformed into one another (that is, they lie in the

~ same connected companent of the Hframe bundle of M). This means there are

two isotopy classes of diffeomorphic embeddings D* — M if M is orientable,
and only one if M is non-orientable. If an orientation is chosen for M, the
two classes are determined by whether t.he embedding preserves or reverses
orientation.

Exercise 1.3.17 (disk embeddings and the frame bundle) (a) Show that
two embeddings of D™ that map the origin to the same point and have the
same derivative there are isotopic.

(b) Show that they’re isotopic if they map the origin to the same point and the
frames they define at that point lie in the same connected component of GL(n,).

{(c) Show that they’re still isotopic if they map the origin to different points, but
the frames they define can be continuously deformed into one another.

If the two manifolds are oriented, it makes sense to form the connected sum
so that the resulting manifold has an orientation which agrees with the original
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orientations away from the disks which are removed. This condition requires -
that one of ¢; and ¢z, but not both, the orientation-preserving. With this
convention, the connected sum of two oriented two-manifolds is a well-defined
oriented manifold. '

If one of the manifolds is non-orientable, the result of the connected sum
does not depend on the choice of orientation for the gluing map, and the result
of the operation is again well-defined.

However, when the two manifolds are orientable but not oriented, there
is a difficulty: the two possible choices of sign for the gluing map may yield
different results. (But exercise 1.3.18 shows that this does not actually happen
for surfaces.) B

Exercise 1.3.18 (surface semigroup). (a) Show that every closed orientable
surface admits an orientation-reversing homeomorphism.

(b) Show that the operation # is a well-defined, commutative, and associative op-
eration on the set of homeomorphism classes of surfaces, making it into a com-
mutative Tsemigroup.

(c) Show that $? acts as an identity element for #.

(d) Show that the torus T2 and the projective plane RP? generate the commutative
semigroup of homeomorphism classes of surfaces under #, and that T?#RP? =
RP*#RP*#RP?,

(e) Sketch a directed labeled graph whose vertices are in one-to-one correspondence

with homeomorphism classes of surfaces, and whose edges show the effect of #
with 72 (if labeled A) and with RP? (if labeled B).

- Exercise 1.3.18 (blowing up a point). (a) Let M be a smooth n-dimensional

manifold and z a point of M. The operation of replacing z by the set of tangent
lines at ¢, giving the result the topology described in figure 1.20, is called blowing
up the point . Show that the resulting topological space is a smooth manifold
homeomorphic to M # RP™,

(b) H n =2 this amounts to cutting out a disk and gluing in a- Mébius strip.

{c) What happens if we do our “blowmg up” by using tangent rays instead of
tangent lines? ' -

Exercise 1.3.20 (autosum). The connected sum operation has a variation where
one removes two disjoint disks on the same manifold, and connects the resulting
boundary spheres together. There are two possibilities for the orientation with which
the spheres are identified. Analyze what happens to surfaces under this operation
of autosum.

Exercise 1.3.21. Show that the semigroup of (connected) closed surfaces can be
generated from the identity element 52 by the operations of blowing up and autosum.
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- Figure 1.20. Blowing up a point. The blowup of M at z (left) has points of
two types: points of M \ {z}, and one-dimensional subspaces of the tangent
space T M. There is a natural map p from the blowup inte M, taking each
point of the first type to itself and each point of the second type to 2. The
topology of the blowup is defined by the following conditions: p is a local
homeomorphism away from p~*(z); and a neighborhood of a point I € p~{(z),
corresponding to a line L, consists of points corresponding to fines near L, plus
points of the first type along those lines and close to 7.
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“1.4. Some three-manifolds

Now that we are well grounded on surfﬁces,. we are ready for a quick flight
through a few three-manifolds.

Example 1.4.1 (the three-torus). Probably the easiest three-manifold to
understand is the three-torus, which can be obtained by gluing just like the
two-torus: start with a cube, and glue each face of the cube to the parallel
face, by parallel translation.

To visualize the three-torus, imagine the cube as a rectangular room where
you are standing. Imagine what it would be like if the opposite walls were
identified with each other, and the floor were identified with the ceiling. When
your line of sight arrives at one wall, it continues from the corresponding point
on the opposite wall, in the same direction as before. Therefore, if you look
straight ahead, you see your back. K you turn to the left, you see your right
side. If you look straight down, you see the top of your head. There are six
images of yourself which appear to be in immediately neighboring rooms, but
there are also rooms which neighbor diagonally, and, really, the lines of sight

- would continue indefinitely. The appearance would be identical to that of an

infinite repeating array of images of yourself (and anybody or anything else in

the room) in all three dimensions (figure 1.21).  The effect is reminiscent
r n
L i

inside3torus

Figure 1.21. A view from inside the three-torus. If you live in a three-torus,
each object appears to be repeated at every point of a three-dimensional lattice.

of a barber shop with mirrors on facing walls, so that you see long lines of
repeated images. The difference is that in a barber shop, when you look at an
adjacent image, it is facing toward you, while in the torus, it is facing away.
In a torus, as you turn toward any image, the image turns away. As you fly
toward the image, the image flies away, and you never can meet it.

Example 1.4.2 (the three-sphere from inside). Another easily described
three-manifold is the three-sphere 5°. The easiest definition of 5° is the unit
sphere 22 + z2 + z2 + 2 = 1 in R*. Unfortunately, this formula does not
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immediately communicate a picture of S° to people who are not adept at
visualizing four-dimensional space. But there is another way to imagine 53,
from the point of view of an inhabitant.

To prepare the way, think first of what an inhabitant of 52, the two sphere,
would see. By some mechanism, light rays are supposed to curve around to
follow the surface. For instance, you can imagine that the “surface” is really a
very thin layer of air between two large concentric glass spheres, which channel
light by reflection in much the same way as fiber optics. (Unfortunately, the
ecology of this model is not so clear. At best, there is just enough room for
one o crawl around on one’s stomach.)

Imagine creature A resting at the north pole, and another creature B
creeping away. You can work out the visual images in terms of which geodesics
(great circles) from the eyes of the A intersect B. As B creeps away, its image
as seen by A at first grows smaller, although not quite as fast as it would in
the plane. Once B reaches the equator, however, its image grows larger again
with continued progress, until at the south pole, its 1mage fills up the entire
background of the field of vision of A in every direction.

The same phenomenon would take place in the three-sphere. Let’s give
ourselves more breathing room than we had in T, and imagine that we arein a
three-spherical world where a great circle is about two miles in circumference.
There is no gravity, and we wont fuss about food, shelter, light or other minor
details just now. We have little jets on our backs for flying around wherever we
please. If I fly away from you, in any direction, my visual image to you shrinks
in size at first fairly rapidly, but as I approach the half-mile mark my visual
size changes very slowly: it probably looks to you as though I have stopped
making progress. After the half-mile mark, I gradually start to increase in
visual size once more. As I approach your antipode, one mile from you, 1 start
to grow rapidly again. When I am three feet from your antipode, the size
of my visual image is exactly the same as if I were three feet from you. If I
turn around and shout back, it will hurt your ears. We quickly learn that we
can carry on a conversation with normal vmces for sound converges again at
antipadal points just as light does.

Even though I have the same visual size to you when I hover three feet
from your antipode as when I hover three feet from you, there is a difference
in my visual] image: you see further around to my sides. (There is also a
difference in focal distance, but let’s put that aside: imagine the light is very
bright, so that your pupils are contracted and you don’t notice this effect.)
The difference becomes very dramatic if I now continue three feet further, so
I cover the antipode of your eyes: you now see my image in every direction,
and it is as if I were turned inside out onto the inside surface of a great hollow
sphere totally surrounding you. You appear io me the same way, as the inside
of a hollow sphere surrounding me.

In this description, we have left out an important part of the image. Light
does not stop after traveling only a mile, it continues further. When I am a
half mile from you, my image to you is as small as possible, but your lines of
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sight continue unimpeded completely around the three-sphere, to arrive back
near where they started on yourself. In the background of everything else, you
see an image of yourself, turned inside out on a great hollow sphere, with the
back of your head in front of you. :

There’s another thing we left out: whenever I am at a distance other than
one mile from you, you can actually see me in two opposite directions. For
instance, when I was three feet from your antipode, had you turned around
rather than me, you would have seen a perfectly normal image of me as if I
were hovering three feet away and facing you, only slightly faded by the blue
haze of the water vapor in the intervening air. You would also appear almost
completely normal to me. But if we were to try to shake hands, they would
pass through each other.

Example 1.4.3 (elliptic space) Accounts of spherical geometry are marred
by exceptions arising from the existence of antipodes—for instance, two points
determine a unique line, but only if they’re not antipodal. Things work out
more cleanly in elliptic space, the sphere with antipodal points identified.
Topologically, n-dimensional elliptic space is just the projective n-space RP",
but as the quotient of the sphere by a group of isometries (a very small group,
just the identity and the antipodal map), it inherits a geometry, just as the
torus inherits a geometry from the Euclidean plane. Geometric assertions can
easily be translated back and forth between the sphere and elliptic space, and
they’re often cleaner in elliptic space: for example, any two points in elliptic
space determine a unique line.

We've seen that in the sphere an object moving away from you decreases
in apparent size until it reaches a distance of 7 /2, then starts increasing again
until, when it reaches a distance of 7, it appears so large that it seems to
surround you entirely. In elliptic space, on the other hand, the maximum
distance is 7 /2, so that apparent size is a monotone decreasing function of
distance. It would nonetheless be distressing to live in elliptic space, since the
entire background of your field of view would be filled up with an image of
yourself. Locking straight ahead you would see the back of your head, turned
upside down and greatly ma.gmfied Everythmg else would still be visible
twice, in opposite directions.

Example 1.4.4 (Poincaré dodecahedral space). This famous example,
discovered by Poincaré, is obtained from a dodecahedron by gluing opposiie
faces. The corners of the pentagons making up opposite faces of a dodecahe-
dron are out of phase: they interleave each other, so there is no question of
gluing each face to its opposite using a translation, as in the torus. Consider
what happens when we glue them with as little twist as possible: a rotation
by 1/10 of a full turn, say in the clockwise direction from front to back, as
in a right-handed screw (figure 1.22, left). This prescription is symmetric, so

“that when we turn the dodecahedron around 180°, the identification appears

the same: right-handed screws are right-handed screws in either direction.
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poincarel2 o
Figure 1.22. The Poincaré dodecahedral space. Each pentagonal face of
a dodecahedron has an opposite face, but the corners of opposite pentagons
interleave each other. If a face is glued to its opposite face by one-tenth of a
clockwise revolution, the resulting space is the Poincaré dodecahedral space.
The edges are glued in triples in this pattern. In order for the gluing to work
geometrically, we must start with a spherical dodecahedron, with dihedral angles
equal to 120°. This slightly puffy solid is shown on the right under stereographic
projection (see exercise 2.2.8)}—it is almost indistinguishable from its Euclidean
counterpart, which has dihedral angles 116.565°

A dodecahedron has five edges around ‘each face and each edge is along

 two faces, so it has 12 - 5/2 = 30 edges. The face pairings force various

identifications of the edges which you can chase through, to check that the
‘edges are glued together in ten groups of three.

' " To see what happens to the 12 - 5/3 = 20 vertices of the dodecahedron,

~consider the spherical triangles obtained by intersecting tiny spheres about
the vertices with the dodecahedron. The way these spherical triangles are
glued together is such that three triangles come together at each vertex, so
the pattern is necessarily that of a tetrahedron. Therefore, the vertices of the
dodecahedron are glued together in five groups of four, and the space obtained

* by this gluing is a manifold since it is locally homeomorphic to Euclidean
space, even in neighborhoods of the vertices and neighborhoods of points on
the edges.

- Can this gluing be done so that the geometry, and not just the topology,
is locally Euclidean? If so, the angles between the faces around an edge of the
glued-up manifold would add up to 2, so (assuming everything is symmetric)
they would each equal 27 /3 or 120°. But the dihedral angles of a dodecahedron
are slightly less-—they equal arctan —2, or 116.565°.

Here the geometry of the three-sphere comes to the rescue. Just as the
angles of a geodesic triangle on the two-sphere has angles somewhat larger
than the angles of a Euclidean triangle, so the dihedral angles of a polyhedron
in the three-sphere are somewhat larger than those of a Euclidean polyvhedron.
A very small regular dodecahedron in the three-sphere has angles very close
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~ to the Euclidean angles. As the dodecahedron grows, the angles increase. In

fact, when the distance from the center to the vertices is x/2 (or a half-mile,
in the scale of example 1.4.2), the dodecahedron is geometrically a two-sphere:
the angles are 7.

‘Therefore, somewhere in between there is a dodecahedron with angles
exactly 27 /3 radians or 120° (figure 1.22, right). For this dodecahedron, the
gluing will work geometrically. .

We can unroll the Poincaré dodecahedral space to obtain a tllmg of 53,
just as we unrolled 7% and T2 to obtain tilings of E* and of E®. This is the
same as saying that the Poincaré dodecahedral space, like elliptic space, 1s a
quotient of S® by a group of isometries. It would be possible to mark out
the tiles exactly using coordinates on $* ¢ E*, and it would also be possible
to work out the combinatorial structure of the iiling by logic, since we know
its local structure. Either approach would involve a fair amount of work at
present, but we will return to this question later, in 7?. It turns out that it
takes 120 dodecahedra to tile the three-sphere. In E*, this pattern defines a
120-hedron whose faces are regular three-dimensional dodecahedra.

Example 1.4.5 (Seifert—Weber dodecahedral space). If the opposite
faces of a dodecahedron are glued together using clockwise twists by three-
tenths of a revolution, instead of one-tenth (figure 1.23), a bit of chasing
around the diagram shows that edges are identified in six groups of five. The
small spherical triangles around the vertices of the dodecahedron obtained
by intersection of the dodecahedron with tiny spheres glue together in such

2 way that five come together at a vertex. The pattern is that of a regular

icosahedron. All twenty vertices are glued together, and the space which results
is 2 manifold known as the Seifert~Weber dodecahedral space.

A
aetfertweber

Figure 1.23.. The Seifert—Weher dodecahedral space. If opposite faces
of a dodecahedron are glued by three-tenths of a clockwise revolution, the
edges are glued in quintuples, and the resulting space is the Seifert—Weber

. dodecahedral space. The gluing can be realized geometric if we use a hyperbolic
dodecahedron with dihedral angles of 72°~—the solid shown on the right, in the
Poincaré ball model.
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The angles of a Fuclidean dodecéhedron are much larger than the 72°
angles needed to do the gluing geometrically. In this case, we can use three-
dimensional hyperbolic space H®, which can be mapped into the interior of

~ a three-dimensional ball, just as in two dimensions. This description in the

ball is the Poincaré ball model of hyperbolic space. Planes are represented as
sectors of spheres orthogonal to the boundary of the ball. The angle between
two hyperbolic planes is the same as the angle between the two spheres. Since
the spheres intersect the boundary of the ball 52, perpendicularly, it is also
the angle between their circles of intersection with this sphere.

The angles of a regular dodecahedron in H? are clearly smaller than they
would be in E?, but can they be as small as 72°7 In the limiting case, as

~ a hyperbolic dodecahedron became very large, its vertices would appear to

nearly touch SZ. There is a limit, the ideal dodecahedron, Whose vertices are
missing: it has ideal vertices on 5'2
By looking at the symmetric placement of three circles on 52 coming from
three adjacent face planes of the ideal dodecahedron which meet at an ideal
vertex, it s easy to see that an ideal dodecahedron has 60° dihedral angles.
Therefore, intermediate between a very small hyperbolic dodecahedron

- with angles approximately 116.565° and a very large dodecahedron with angles

tendmg toward 60° there is a dodecahedron whose dihedral angles are exactly

. This dodecahedron can be glued together to make a geometric form of
the Seifert—Weber' dodecahedral space. It corresponds to = tiling of H® by
dodecahedra all meeting five to an edge and twenty to a vertex.

Example 1.4.6 (lens spaces). Consider a ball with its surface divided into
two hemispheres along the equator. What ha.ppens when we glue one hemi-
spherical surface to the other?

If we glue with no twist at all, so that the identification is the identity on
the equator, the resulting manifold is S. This is analogous to the way 5 can
be formed by dividing the boundary of a disk into two intervals, and gluing
one to the other so as to match each endpoint with itself.

On the other hand, if the hemispheres are glued with a ¢/p clockwise
revolution, where ¢ and p are relatively prime integers, each point along the
equator is identified to p — 1 other points. A neighborhood of such a point
in the resulting identification space is like p wedges of cheese stuck together
to form a whole cheese, so the identification space is a manifold, called a lens
space Ly 4.

To form a geometric model for a lens space, we need a solid something
like a lens, where the angle between the upper surface and the lower surface is
27 /p. This is easy to do within 5. Any great circle in $° has a whole family
of great two-spheres passing through it. From this family it is easy to choose
two that meet at the desired angle 27 /p. Now when the two faces are glued
together, neighborhoods of p points on the rim of the lens which are identified
fit exactly. This corresponds to a tiling of S® by p lenses: see figure 1.24, left.
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lenz

Figure 1.24. Lens spaces. On the left, 53 is seen in cross section, tiled with
twelve copies of Ly, , (we're using stereographic projection: see exercise 2.2.8.)
On the right, L7 is disassembled and reassembled in a different way, showing
that it equals L7 3.

Problem 1.4.7 (reworking lens spaces). (a) The lens that was glued to form
L, can be cut up into p tetrahedra, meeting around one edge through its
central axis. When this is done, the p tetrahedra can be assembled by gluing
first the faces which came from the surface of the lens (figure 1.24, right). What
figure does this form? What identities among lens spaces can you construct?

(b} Cut out a solid cylinder around the central axis of the lens used to form L,,.

Its upper face is glued to its lower face to form a solid torus, under the identi-

. fications. What happens to the rest of the lens when the part of its boundary
on the surface of the lens is glued together? Sketch a picture for Lz ;. Describe
how lens spaces can be constructed by gluing together two solid tori.

(c¢) Show that two lens spaces L, ; and L, o are homeomorphic if andonly if p = p’
and ¢ = +g (mod p) org¢’ =+1 {mod p). (ThlS is much harder; see [Broﬁﬂ]
for a proof.)

Example 1.4.8 (a knottier example). Figure 1.25 shows one of the sim-
plest possible three-dimensional gluing patterns. Start with two tetrahedra
T and T’ with labeled faces and directed edges divided into two types, thick
and thin. Then glue faces in pairs, respecting not only face labels but also
edge types-and directions: for example, face A of T and face A of T" are glued
together so that thick edges match thick edges and one thin edge matches the
other.  In the resulting complex K, all thick edges end up identified, as do
all thin edges. Furthermore, all vertices are identified together into one vertex -

V.

is K a manifold? We need to check that each point in K has a neighbor-
hood homeomorphic to a 3-ball. This is obvious for points coming from the
interiors of the tetrahedra, and for those coming from the interior of a face,
where two half-spaces meet. A point in the interior of an edge, too, has a
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Figure 1.25. A simple three-dimensional gluing pattern. A simple pattern
for gluing two tetrahedra. Each face has a label {centered on it}, and faces
with the same label are identified in a way that is unambiguously determined
by the requirement that edge types (thick and thin) and directions match. (In
fact, even the pairing of faces could be reconstructed from this requirement.)

neighborhood consisting of several wedge-neighborhoods of its preimages on
the edges of T and 77, glued together cyclically to make a ball. . -

" But we run into trouble at the vertex V. Imagine a small neighborhood of
V that intersects each tetrahedron in small tetrahedral neighborhoods of its
vertices. The inside faces of these tetrahedra piece together to form a surface
called the link of V. One can check explicitly that it is a torus. Alternatively,
we can see by counting that the Euler number of the link is 0, and since it is
oriented it must be a torus. The neighborhood of V in K is therefore a cone
on a torus, and 1n particular V has no neighborhood homeomorphic to a ball
and K is not a manifold. In 77 we will treat in more generality and detail the
issue of when complexes formed by gluing polyhedra have manifold structures.

Although K is not a manifold, by removing the recalcitrant vertex we get
a non-compact manifold M = K — {V'}. Since the gluing map for each pair of
faces reverses orientation, M is oriented. By removing an open neighborhood
of V, we obtain a compact manifold whose boundary is a torus.

Exercise 1.4.9. Construct the link of V by gluing together the eight triangles
which are links of the vertices of the two tetrahedra.

It turns out that M is homeomorphic with the complément (with respect
to 5° = R* U {oo}) of a figure-eight knot, shown in figure 1.26. To see
this, we start by arranging the figure-eight knot along the one-skeleton of a
tetrahedron, as in figure 1.27(a}. We see that the knot can be spanned
by a two-complex, with two edges (the arrows) and four two-cells (the faces of
the tetrahedron, each together with a strip and a twisted tab). This complex
encloses a compact region of space, whose interior R is homeomorphic to an
open ball. '

Now imagine the thin edge in figure 1.27(a) coated with red printing ink,

the thick edge coated with green, and the knot coated with black. Insert a
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Figure 1.26, Two views of the figure-eight knot. Two views of the figure
eight knot, the second most commonly occurring knot in extension cords, dog
leashes and garden hoses (after the trefoil).

T

Y\ ‘; :
Q N
-1 _!

fig8complex

Figure 1.27. A two-complex spanning the figure-eight knot. Left: the
figure-eight knot can be spanned by a complex with four two-celis—the faces
of a tetrahedron, each augmented by a strip comming off of a vertex and a
twisted tab comming off of the opposite edge—and two one-cells, shown as
arrows. The region A inside this cell complex is homeomorphic to an open ball.
Right:. We extend the homeomorphism to a map from the closed ball to the
closure of R. Each one-cell is represented by three edges on the boundary, and
each two-cell is bounded by three edges and two pieces of the knot. Shrinking
the knot pieces to points gives the tetrahedron T from figure 1.25.

\

Revision: 1.17 Date: 91/01/01 15:22:58



ballson

% BgBcamplex
% BgBglue

% trefcomples
wrefoil knet

% figBcomplex

1.4. SOME THREE-MANIFOLDS ' ' : 34

balloon into the region R and inflate it, until it fills up all the nooks and cran-
nies of B. Then remove the balloon and examine it; it will be covered by four

regions, corresponding to the four two-cells, and arranged as in figure 1.27(b).

The boundary of each region has five parts: two, shown in the figure
without arrows, are colored black and come from the knot. The other three
come from the edges of the two-complex: two thin and one thick, or two thick
and one thin. Now the knot is not part of the manifold M, so we may expand
or contract the black curves without changing M. If we choose to contract each
of them to a point, so that the four regions become three-sided, the interior
of the balloon, together with the triangular faces, becomes a tetrahedron T
exactly as in figure 1.25.

T’ is formed similarly, inflating a balloon that contains the point at infinity
in §% = R¥*U {co}. _

We will return to this example later. For now, the difference between
the two descriptions—complement of figure-eight knot and union of two
tetrahedra—serves to illustrate the need for a systematic way to compare and
to recognize manifalds.

Exercise 1.4.10. Suggestive pictures can also be deceptive. Figure 1.28 shows
that a trefoil knot, too, can be arranged along the one-skeleton of a tetrahedron,
and spanned by a two-complex similar to the one in figure 1.27. Blow balloons in
the regions inside and outside this complex, and draw the imprints made by the
knot and arrows. Do they give rise to tetrahedra?

r - L

\

L N
trefcomplex
Figure 1,28, A two-complex spanning the trefoil knot. This arrangement
for the trefoil knot, although apparently very similar to figure 1.27, does not

lead to a decomposition of the complement of the knot into tetrahedra.

Revision: 1.17 Date: 91/01/01 15:22:58



TR A T T e Y S

-

A
&
£

Chapler "Hyperbalic
geometry and ita
friends"

Ricmannian metric

r-izometries

ithomogeneity

GIFGETORY

sframes

sectional curvatures

Euclidean geometry

Spherical grometry

%% the three-sphere
from inside

Chapter 2

Hyperbolic geometry and its
friends |

“(Geometry” can mean a number of different things in different contexts. In
this chapter we will study geometry in the classical sense: our geometries will
be analogous to standard Euclidean geometry, with concepts of straight lines
or geodesics, angles and planes, a measure of distance, and a large degree of
homogeneity. ' - : .

- One way to capture the structure is with 2 Riemannian metric. Any Rie-
mannian manifold possesses a group of isometries, transformations of the space
which preserve lines, angles and distances; however, for a typical Riemannian
manifold, this group is the trivial group. Here, in contrast, we require homo-
geneity of the geometry, that is, transitivity of its group of symmetries: for
any two points of the space there must be at least one isometry taking one to
the other, so that each point “looks like” every other point.

In addition to homogeneity, the geometries we will consider in this chapter
satisfy another property, isotropy. A space is isotropic if it looks the same no
matter what position your head is in, or, more precisely, if for any two frames
(ordered bases of orthonormal tangent vectors) at a point in the space, there
is an isometry of the space fixing the point and taking one frame to the other.

Homogeneity and isotropy together are very strong conditions—in partic-
ular they implies that sectional curvatures are the same at every point and in
every tangent two-plane. There are only three essentially distinct simply con-
nected isotropic geometries in any dimension: with zero sectional curvature,
constant positive sectional curvature K, or constant negative sectional curva-
ture —K (after scaling, K may be taken to be 1). They are called Euclidean,
spherical and hyperbolic geometry, respectively.

Euclidean geometry is familiar to all of us, since it very closely approxi-
mates the geometry of the space in which we live, at least up to fairly large
distances. Spherical geometry is the standard geometry of the n-sphere—
geodesics are great circles, angles and distances are inherited from (n + 1)-
dimensional Euclidean space, and so on. We discussed the three-sphere briefly
in example 1.4.2, and will return to it at the end of this chapter. Hyperbolic
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geometry is the least familiar to most people. It is also the most interesting,
and by far the most important for two- and three-dimensional topology. For
this reason, we will spend the next several sections giving different pictures of
hyperbolic geometry. ‘

In chapter 3 we will extend our analysis to include five other three-dimen-
sional geometries that have significance for three-dimensional topology. These
other five geometries are homogeneous but not isotropic: they are the same
at every point, but not with your head at any angle. In fact, something like a

notion of up and down can be geometrically defined in each of these geometries,

and for some of them, a notion of north and south as well.

Two-dimensional geometry can be easily visualized “Irom the outside”, by
sketching pictures on paper. In three dimensions and higher, the best insight is
often gained by imagining yourself inside the space. To formalize this intuitive
concept, we need the idea of a visual sphere. Think of an observer as a point
somewhere in an n-dimensional space, with light rays approaching this point
along geodesics. Each of these geodesics determines a tangent vector at the
point, and the (n — 1}-sphere of tangent vectors is called the visual sphere (see
figure 2.1). Alternatively, one can think of a very small sphere centered at the
observation point, with each geodesic determining an intersection point with
it. An object is perceived as a (segment of a) straight line if its image on the

visual sphere is (an arc of) a great circle. The apparent size of an object is

determined by the amount of angle it takes up in the visual sphere.

P 3

visnalaphere

Figure 2.1. The visual sphere
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2.1. Negatively curved surfaces in space

Before developing abstract models for hyperbolic geometry, it pays to describe
some constructions of a more physical nature. For this we need some basic
concepts from the differential geometry of surfaces, which we’ll introduce as
required. We will not take the time here to develop this beautiful subject in
detail, but you are encouraged to consult one of several readily available good
sources, for example, [ONe66, Hic65, dC76).

The Gaussian curvature, or simply curvature, of a surface is a measure of
its intrinsic geometry. We use the term “intrinsic” to denote those properties
of a surface that are invariant when the surface is bent without being stretched:
that is, they depend only on measurement of lengths of curves along the surface
itself. By contrast, extrinsic properties depend on the embedding of the surface
in space.

There are significant qualitative dlﬁ'erances between surfaces with positive
curvature, zero curvature, and negative curvature. Near the point of tangency,
a surface of positive curvature lies to one side of any of its tangent planes. An
example is a rubber ball. A surface of zero curvature has a line along which
the surface agrees with its tangent plane. To illustrate this, try holding up
a sheet of paper and bending it in- different directions, and notice how you
can find a straight line on the surface through any point. Surfaces of negative
curvature cut through their tangent planes, as in a saddle.

The precise measurement of the curvature depends on the behavior of the
surface to second order. One way to perform it is to arrange our coordinate
system so that the point under scrutiny on our surface is at the origin, and the
tangent plane at that point is horizontal. This means the surface is locally the
graph of a function f(x,y) such that f and its first-order partial derivatives
fo and f, are zero at the origin. The Gaussian curvature at the origin is the
determinant of the hessian matrix

)
.. fyr fyy

For example, the Gaussian curvature of the graph of the polynomial
f(z,y) = Az? + 2Bzy + Cy® at the origin is K = 4(AC — B*). For a
paraboloid of revolution (figure 2.2) this number is positive, whereas for a
hyperbolic pa,raboloid (figure 2.3} it is negative. Notice that here f{z,y)
coincides with the 'quadratic form given by one-half its Hessian matrix,

flz,y) = 2(3:, y)H{z,y). In general, f(x,y) is approximated to second or-
der by the same quadratic form.

The definition given above is based on extrinsic properties. A fundamental
theorem, which Gauss called his “Theorema Egregium” or notable theorem,
is that the Gaussian curvature is actually an intrinsic invariant of the surface:
1t does not change when the surface is bent without stretching. Here is an
intrinsic way to arrive at the same number: draw a circle of radius = on the
surface, centered at the point under scrutiny. If the curvature is positive there,

211.
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quadposcury
Figure 2.2. A paraboloid of revolution. This paraboloid has equation
z = —(z% + y?)/2. As a surface of revolution, its curvature depends only

on the distance r from the origin. Computation shows that the curvature at
distance 7 is (1 -+ r2)~2, whose graph is shown at right.

this circle will have (for small r} a length d smaller than the length 277 of a
corresponding circle on the plane. Conversely, at a point where the surface
is negatively curved, the ratio d/2xr is greater than 1. It turns out that the
second derivative of the ratio df27r at r = 0 is exactly the negative of the
Gaussian curvature as defined: above.

The curvature of the surfaces in figures 2.2 and 2.3 is not constant: it

goes rapidly to zero away from the origin (keeping the same sign). Neither the
intrinsic geometry nor the extrinsic geometry of these surfaces is homogeneous.
It is easy to construct a surface in space with constant positive curvature: the
sphere. It is both extrinsically and intrinsically homogeneous.

a1 K =
T
1 2
J L : -
quadnegeury .

Figure 2.3. A saddle-shaped surface. This is the surface z = (2% — 3°)/2,
a hyperbolic paraboloid. It has curvature —1 at the origin, but the curvature
falls rapidly toward 0 as the distance r from the origin increases—the surface
appears flatter near the edges of the plot. Perhaps surprisingly, the curvature
is again a function of » alone,

Revision: 1.31 Date: 90/11/11 20:09:07



2.1. NEGATIVELY CURVED SURFACES IN SPACE" . . 39

{ constant negative Surfaces of constant negati‘{e curvature are !ess cbvious, but some are
- presdophere nevertheless well-known. The simplest of them is the pseudosphere (ﬁgufe
eraceeix 2.4), the surface of revolution gt_ene_rated by a tractrix (figure 2.5). A tractrix
Problem “surfaces
S e - .

curvature”

L |

pecudosphere L .

Figure 2.4. The pseudosphere. The pseudosphere is the figure obtained
by rotating the tractrix about the z-axis. It has constant curvature —1. Any
small patch of the surface can be placed isometrically—bending but not stretch-
¥ . ing—anywhere else on the surface.

is the track of a box of stones that starts at (0,1) and is dragged by means of
a chain of unit length by a team of oxen walking along the z-axis. In other
words, it is a curve determined (up to translation parallel to the z-axis) by
the property that its tangent lines meet the z-axis a unit distance from the
point of fangency.

.
3
i

r 1

L -1 2 3 4 .
tractrix

Figure 2.5. A tractrix. The tractrix is a curve whose tangent always meets the

z-axis a unit distance away from the point of tangency. Therefore the derivative

of the y-coordinate with respect to arc length s is —y, and y(s) = e™".

o) . .

2‘, Note that the tractrix is not C? at the point (0,1): its tangent is turning
instantaneously at an infinite rate with respect to arclength. The edge of
the pseudosphere is therefore an essential edge, beyond which it cannot be

£ extended smoothly. | -

-

Problem 2.1.2 (surfaces of revolution of constant curvature). Show that
the curvature K of a surface of revolution generated by rotating a plane curve
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' (:c(s), y(s)), where s is arc length, around the z-axis, is given by

x=_l9y
- yds?
Use this to verify that the curvature of the pseudosphere is —1. Then solve for y{s)
when K is 0, —1, and 1, and sketch a few examples of curves (2(),%(s)) in each
case (see figure 2.6). Show that, for K = —1, the curve has a singularity at one or
both ends, so the corresponding surface has an essential boundary beyond which it

cannot be extended smoothly.

r _ 3 r

4 b . 4
spindles _

Figure 2.6. Surfaces of revolution of constant curvature. Each of the
two planes containing a boundary circle is tangent tc the surface along the
boundary circle, and the surface has no smooth extension in space.

The intrinsic geometry of the pseudosphere, like that of the sphere, is
locally homogeneous: any point has a neighborhood isometric to a neigh-
borhood of any other point. To see this, parametrize the pseudosphere by
coordinates (s,8), where s comes from arc length along the tractrix, and ¢
is the angle around the z-axis. The defining property of the tractrix implies
that the derivative of its y-coordinate with respect to arc length is —y, so
that y(s) = €. It follows that for any a and any 8y, the locally defined map
(s,8) — (s + @, 0 + €°F) is an isomeiry. '

The intrinsic geometry of the pseudosphere is also locally isotropic. A
small disk on the surface of the pseudosphere can be rotated about its center
without stretching. This is a consequence of exercise 2.2.13, but you can also
see 1t directly by tackling exercise 2.1.3.

Exercise 2.1.3 (making hyperbolic paper). (a) Approximate a pseudosphere
by a union of truncated cones, each formed from a flat sheet of paper by cutiing
out a portion of an annulus along two radii (figure 2.7) and joining its radial
edges. The radius of an annular segment becomes the distance from the
truncated cone to the cone’s vertex, and the angle subtended by the segment
is proportional to the radius of the truncated cone. Thus the annular segments
should all have the same radius—the length of the tangent of the tractrix ex-
tended to the z-axis—but varying angles, depending on the y-coordinate of the
tractrix.
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[@0D))

annoli

Flgure 2.7. Annuh for making a pseudosphere. Pieces ofannull like this can
be cut out and glued together to make model surfaces of negative curvature,
like the pseudosphere. The Gaussian curvature will be approximately lfr
where r is the radius of the circle that bisects the annulus.

It is convenient to photocopy a drawing of several annuli on a sheet of paper.
It is also worth marking an extra circle on each annulus, to indicate the extent
of overlapping when the annuli are glued together.

{(b) Construct a simply connected piece of surface in a similar way, starting with
an annular strip that has not been made into a truncated cone. Apply this
new surface to the pseudosphere; move it around and turn it. Notice how much
intrinsic local homogeneity the pseudosphere has, which is not visible in space.

{c) How far can you extend this piece of hyperbolic paper? Can yon get it to look
something like figure 2.87

-

negsurface

Figure 2.8. A negatively curved surface in space

An alternate medium for this construction is fabric. In fact, skirts with a nice
negatively-curved flare can be (and are} made using large segments of annuli, roughly
quarter-circles.

Exercise 2.1.4 (polyhedral models of negative curvature),  Approximate
models of a surface of constant negative curvature can also be constructed by joining
triangles.
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‘(a) Cut out a number of equilateral triangles from paper, or better, manila folders,

and join them so there are seven around each veriex. Alternatively, sew pieces
of cloth together.

{b) Compare these models with the paper models of exercise 2.1.3. Ca.nlyou calcu-
late or estimate what size equilateral triangle would correspond to a given size
annulus?

(¢) Try making similar models with eight triangles per vertex. What size equilateral
triangles would be necessary to make a model comparable to that of (a}?

(d) These polyhedral models have negative curvature concentrated at their vertices.
You can make smoother models by diffesing the curvature out along the edges:
replace each side of the equilateral triangles by an arc of circle such that the
three angles of the resulting curvilinear triangle are 2x/7. (The radius of the
circle should be approximately 6.69 times the sides of the triangle.)

(e) Is it possible to make models from congruent triangles that approximate the
geometry of a pseudosphere? What about surfaces of revolution as in figure 2.67

After playing with the paper models above, yoﬁ may be surprised by the
following result:

Theorem 2.1.5 (Hilbert). There is no Ycomplete smooth surface in Fu-
clidean three-space with the local intrinsic geomeiry of the pseudosphere.

Actually, we’ve had hints of this already. We have seen that the pseudo-
sphere and other surfaces of revolution cannot be extended beyond their edges.
Other physical surfaces having negative curvature, such as leaves of many kinds
of plants, brims of floppy hats, or the paper models of exercise 2.1.3, all develop
wavy edges as in figure 2.8, as soon as they grow big enough. This implies
that they are not mathematically smooth, but at best of class C*.

To see this, we need a little more qualitative differential geometry. Imagine
you approximate a surface at a point by a Tquadratic form as we did on page
37. By a rotation of the zy-plane, this quadratic form can be diagonalized,
that is, put in the form Ax? + Cy? with A > C, say. Then the z-axis is
the direction in which the surface curves upward the most (or downward the
least), and the y-axis is the direction in which it curves downward the most
(or upward the least). These two directions are the principal directions of the
surface at that point. If A = C, the principal directions are undefined, and
the point is called an umbilic.

For a C? surface of negative curvature, the principal directions are defined
everywhere and change continuously, so they can be distinguished from one
another. In other words, they define two families of curves tangent to them
and perpendicular to one another; these are the so-called lines of curveture of
the surface, and they’re illustrated in figure 2.9. For a surface with many waves
around the edge, the lines of curvature typically turn through one additional
half-revolution for each wave, so they cannot be defined everywhere: they
must have branch points in the interior, by a reasoning similar to the one used
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curvasurelines

Figure 2.9. Lines of curvature. View from above of the lines of curvature
of the hyperbolic paraboloid of figure 2.3 and of the surface in figure 2.8. The
surface on the right is seen not to be smooth, because the lines of curvature
of a C? negatively curved surface cannot branch.

- to show the Poincaré index theorem (proposition 1.3.10). Therefore such a

surface cannot be of class (2.

Hilbert’s original result in [Hil01] was for real analytic immersions, but the
arguments actually work in class C*. The extension to class C? requires some
care [7]. In class C' an embedding of a complete surface of negative curvature
in space is no longer impossible: [Kui55] gives an explicit construction for one.

- However, any such embedding would be incredibly unwieldy, and pretty
much useless in the study of the surface’s intrinsic geometry, as one quickly
learns from trying to extend the paper models beyond a certain point. For
instance, the length of a circle'of radius R feet in a surface of constant curvature
—1/1t? is 2rsinh B. (One foot is 30.48cm.) The circle of radius 1foot has
length 7.38 feet, which is fine: this would be a model of moderate curvature,
like a sphere of radius 1foot. But the lengths grow rapidly. The circle of radius
2feet has length 22.78 feet, the circle of radius 10feet has length 13.1 miles, and
the circle of radius 20 feet has length 288 673 miles—more than the dxsta.nce
to the moon.

We must therefore resort to distorted pictures of the hyperbolic plane and
of hyperbolic space. Just as it is convenient to have different maps of the
earth for understanding various aspects of its geometry—for seeing shapes, for
comparing areas, for plotting geodesics in navigation—so it is useful to have
several maps of hyperbolic space at our disposal.

The several models of hyperbolic space that we shall look at have another
important role, besides assisting our imagination. As one of the simple and
basic structures of mathematics, hyperbolic geometry shows up in disguise in
diverse places. The djsgmses it wears are usually related to one or another of
these models.
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seciion vmhe iwversive 2,2, The inversive models

% Hyperbolic surfaces

hemaphere~ One of the models, the Poincaré disk model, we're already somewhat familiar
Deaiiion viaversion . With from section 1.2. In this section we generalize it to arbitrary dimension,

in a sphere”

cinversion and study its first cousins, the upper half-space and hemisphere models. These
% square toTus in . )
LR models share the property that they can be obtained from one another by
o e inversions, so our first task is to make sure we understand inversions in n
praper dimensions. Their definition is essentially the same as definition 1.2.1:

properiies o .

inversions . . .
B ses of Definition 2.2.1 (inversion in a sphere). If S C E” is an (n—1)-sphere in
g oo 1 Euclidean space, the inversion ig in S is the unique map from the complement

inversiona

of the center of S into itseif that fixes every point of S, exchanges the interior
and exterior of § and takes spheres orthogonal to 5 to themselves.

As in the two-dimensional case, the image i5(P) of a point P in a circle S

with center O and radius r is the point on the ray OP such that OP-QP' = r2,
2 - It'is somewhat annoying that inversion in a sphere in E* does not map its
center anywhere. We can remedy this by considering the one-point compacti-
fication E" = E"U {oo} of E* (problem 1.1.1), which is homeomorphic to the
sphere 5™, An inversion ¢s can then be extended to map the center of § to oo
and vice versa, 5o it becomes a homeomorphism of B,

Exercise 2.2.2 (lines are circles). Show that the homeomorphism h:E*U
{oo} — 5™ can be chosen in such a way that it maps circles to circles and lines to
c1rc1es minus h(oo) (Hint: see stereograph.lc pro;ectmn below. )

In view of exercise 2.2.2, it is natural to think of lines and pla.nes as circles
and spheres passing through co. Many properties of inversions and of the
inversive models can be expressed more simply under this convention, so we
will use it throughout this section. When we do want to exclude lines and
planes, we'll talk about proper circles and spheres. For instance, here’s the
condensed version of proposition 1.2.3:

Proposition 2.2.3 (properties of inversions II). If § is an (n — 1)-
dimensional proper sphere in E", the inversion ig is conformal, and takes
spheres (of any dimension)} to spheres.

Proof of 2.2.3: For conformality, notice that any two vectors based at a point
are the normal vectors to two (n — 1)-spheres orthogonal to §, so both the
angle between them and the angle between their images equal the dihedral
angle between the spheres. :

The second statement follows from the plane case (preposition 1.2.3) for
spheres of codimension one by considering the symmetries around the line join-
ing the centers of the inverted and inverting spheres; and for lower-dimensional
spheres because they are intersections of spheres of codimension one. [2.2.3

Exercise 2.2.4. (a} Since planes are special cases of spheres, what ig the natural
definition of inversion in a plane?
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(b) What do you get when you successively invert in two concentric spheres? What
if the spheres are planes?

(c) Show that composition of the inversions in two intersecting Euclidean planes is
a Euclidean rotation. How would you define an inversive rotation?

The Poincaré ball model of hyperbolic space is what we get by taking the

unit ball D" in E™ and declaring to be hyperbolic geodesics all those arcs of
"circles orthogonal to the boundary of D™*. We also declare that inversions in
(n — 1)-spheres orthogonal to 8D™ are hyperbolic isometries, which we will
call hyperbolic reflections. According to problem 2.2.17 it would be enough
to specify just the geodesics or just the isometries, but we won’t take the
minimalist approach.

Thanks to proposition 2.2.3, we can retrace the arguments in section 1.2
and conclude that the geodesics and isometries define the hyperbolic metric
on D" up to a constant factor, and that the Poincaré model is conformal,
that is, hyperbolic angles and Euclidean angles are equal. Furthermore, it is
easy to see that spheres of dimension k that meet the boundary orthogonally
represent totally geodesic hyperbolic k-planes (a Riemanmnian submanifold is
totally geodesic if all geodesics in the big manifold that are tangent to the
submanifold are entirely contained in it).

To actually write down a formula for the metric, we look again at figure
1.12, where the hyperbolic length of a vector v is related to the angle of the
banana built on it. Because of conformality we can assume that v is orthogonal
to a diameter, in which case it is easy to see that the angle is 2/(1 — r?) times
the Euclidean length of v, in the limit of small v, where r is the distance from
the basepoint of v to the origin.

Exercise 2.2.5. Draw a diagram and convince yourself of this formula.

Recall that in this construction we had the choice of a multiplicative factor.
‘The choice we made in section 1.2—setting the hyperbolic length of v equal to
the banana angle in the limit when both go to 0—gives the following formula
for the hyperbolic metric ds® as a function of the Euclidean metric dz?:

4
2.2.6. . ds® = —— _dz2.
8 =) z

Exercise 2.2.7 (curvature of the Poincaré model). (a) Find the hyperbolic
distance from the origin to a point at Euclidean distance r from the origin in
the Poincaré model.

(b} Find the_'hyper'bolic length of a circle whose radius is as above.

(¢} Find the Gaussian curvature of the Poincaré model at the origin (use the crite-
rion on page 37). The curvature at any other point is the same, since hyperbolic
space is homogeneous. So it turns out that our choice of a constant factor in
equation 2.2.6 was particularly fortunate.
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We see that distances are greatly distorted in the Poincaré model: the
FEuclidean image of an object has size roughly proportional to its Fuclidean
distance from the boundary 8D", if this distance is small (figures 2.10 and
1.14). A person moving toward D" at constant speed would appear to be
getting smaller and smaller and moving more and more slowly. She would
never get there, of course; the boundary is “at infinity,” not inside hyperbolic
space. :
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Figure 2.10. Hyperbolic tiling by 2-3-7 triangles. The hyperbolic plane
laid out in congruent tracts, as seen n the Poincaré model. The tracts are
triangles with angles 7/2, 7/3 and = /7. Courtesy HWG Homestead Bureau.

Nonetheless, D" can be interpreted purely in terms of hyperbolic geome-
try as the visual sphere. For a given basepoint p in D?, each line of sight, that
1s, each hyperbolic ray from p, tends to a point on dD". If ¢ is another point
in D™, each line of sight from ¢ appears, as seen from p, to trace out a segment
of a great circle in the visual sphere at p, since p and the ray determine a
hyperbolic two-plane. This visual segment converges to a point in the visual
sphere of p; in this way, the visual sphere of ¢ is mapped to the visual sphere
at p. The endpoint of a line of sight from p, as seen by ¢, gives the inverse
map. In this way the visual spheres of all observers in hyperbolic space can be
identified. This construction is independent of the model, and so associates to
hyperbolic space H™ the sphere at infinity S2t.

We now turn to a very useful construction, closely related to inversions.
The sterecographic projection from an n-dimensional proper sphere 5 ¢ E™*!
onto a plane tangent to S at z is the map taking each point p € S to the
intersection ¢ of the line pa’ with the plane, where 2’ is the point opposite =
on 5.
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£ % sterecinversion Exercise 2.2.8 (stereographic projection). Show that stereographic projection
i B % hemispherse . . . ’ ..
v ditatation can be extended to an inversion. {Hint: see figure 2.11.) Consequently, it is confor-

mal, and takes spheres to spheres.

-
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i | L q z J
Figure 2.11. Stereographic projection and inversion. Stereographic pro-
jection from a sphere to a plane is identical to inversion in a sphere of twice
the radius. '

Our next model of H* is derived from the Poincaré ball model by stere-
ographic projection. We place the Poincaré ball D™ on the plane {z; = 0}
of E"*!, surrounded by the unit sphere S® C E**!, and we project from D"
to the northern hemisphere of S™ with center at the south pole (—1,0,...,0),

as shown in figure 2.12(a).  This is an inverse stereographic projection, at
T F L
1 L (b) 4

hemisphers

Figure 2.12. The hemisphere model. (a) By stereographic projection from
the south pole of a sphere we map the equatorial disk to the northern hemi-
sphere, Transfering the Poincaré disk metric by this map we get a metric on
the northern hemisphere whose geodesics are semicircles perpendicular to the
equator. {b) The circle going through p and ¢ and orthogonal to the equatortal
disk is also orthogonal to the sphere. This shows that the projection of part
(2) can also be obtained by following hyperbolic geodesics orthogonal to the
{0 equatorial disk. '

least up to a dilatation (since the projection plane is equatorial rather than
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tangent). In this way we transfer the gébinetry from the equatorial disk to the
northern hemisphere to get the hemisphere model. Since stereographic projec-

~ tion is conformal and takes circles to circles, the hemisphere modél is conformal

and its geodesics are semicircles orthogonal to the equator S** = 3D™.

It is easy to see from figure 2.12(b) that for each point ¢ € D", the circle
orthogonal to the equatorial disk D®* < D™ and to §™ = D™ meets
the northern hemisphere at the same point p as the image of g under the

projection above. This means we can interpret this projection purely in terms

of hyperbolic geometry: fix a totally geodesic n-space H" inside hyperbolic
(n + 1)-space H™*, and choose one of the half-spaces it determines. For
each ¢ € H", the hyperbolic ray from ¢ perpendicular to H* and pointing
into the half-space we chose converges to a point in the corresponding visual
hemisphere, so we get a map H* — S7. By making H” = D” be the equatorial
disk in the Poincaré ball model of H**' = D™ we see that this map H* —
57, coincides with the projection above. :

From the hemisphere model we get the third important inversive model of
hyperbolic space, also by stereographic projection. This time we project from a
point on the equator, say (0,...,0,1), onto a vertical subspace, say {z, = 0},
which we identify with E*. The open northern hemisphere maps onto the
open upper hali-space {zo > 0}, and the equator—the sphere at infinity of the
hemisphere model—maps onto the bounding plane E*~! = {z, = 0}, except
for the center of projection; which is mapped to thepoint at infinity. In other
words, the sphere at infinity here is given by the one-point compactification of
the bounding plane, 5271 = E*-1 {o0}. Geodesics are given by semicircles
orthogonal to the bounding plane E™~! (figure 2.13), and hyperbolic reflections
are inversions in spheres orthogonal to the bounding plane. Clearly, this model,
too, is conformal.

The hyperbolic metric in the upper half-space model has an especially
simple form, which is well suited to many computations. We could compute
it by writing down an explicit formula for the composition of projections that
goes from the Poincaré disk model to the upper half-space model, and then

- using equation 2.2.6 above; but we can save a lot of energy by observing that

this transition map is conformal, 5o our argument about banana angles applies
here too. If we position the banana so that one of its vertices is at infinity, it
becomes a solid cone, and then it’s easy to compare the angle at the vertex
with the Euclidean length of the vector the cone is built on. In the limit when
both are small, the Euclidean length is just zo times the angle, where zy is
the Buclidean distance from the vector’s basepoint to the bounding plane. In
other words, the relation between the hyperbolic metric ds* and the Euclidean
metric dz? is

2.2.9. ds? = —dz°.

I
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* Figure 2.13. Geadesics in the upper half-space model. Geodesics in the
upper half-space model of hyperbolic space appear as semicircles orthogonal to
the bounding plane, or half-lines perpendicular to it.

Thus the Euclidean image of an dbject has size exactly proportional to its
Euclidean distance from the bounding plane E*'. Figure 2.14 shows the
same congrent tracts as figure 2.10, but seen in the upper half-space model. _

Vu/gt3n/3mbook/pictures/chap2/2/uhs237 .ps not found
wha237 ) . -
Figure 2.14. Hyperbolic tiling by 2-3-7 triangles. Another view of the
hyperbolic world divided into congruent tracts. Upper half-plane projection.

Exercise 2.2.10. Any Euclidean similarity of E*~? extends in a unique way to a
Euclidean similarity preserving upper half-space. Show that such a similarity is a
hyperbolic isometry by expressing it as a composition of reflections.

The easy visibility of this significant subgroup of isometries of H™ is a frequently
useful aspect of the upper half-space model.

Exercise 2.2.11. We already know that hyperbolic space is homogeﬁeﬁus and
isotropic, but explicit formulas are especially easy to write down in the upper half-
space model. .

" (a) Given two points in upper half-space, write a composition of hyperbolic reflec-
' tions that will map one to the other.

: (b) Let O(n) be the group of isometries of the tangent space to H" at a point p.
Lo Show that any element of O(n) can be realized by a composition of hyperbolic

reflections. (Hint: Show by induction that O(n) is generated by reflections, and
N . that any reflection in O(=n) can be realized by a reflection in a sphere orthogonal
b to E*~1 in the upper half-space model.)
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(¢} Show that reflections generate the whole group of isometries of H™. (Hint: an
isometry is determined by its derivative at a point.)

A horizontal Euclidean plane {z¢ = ¢}, for ¢ > 0, is not a plane in hyper-
bolic geometry: it lies entirely on one side of a true hyperbolic plane tangent

to it, which is a Euclidean sphere. (One can also notice that pushing a hor-

izontal surface up along orthogonal geodesics shrinks the hyperbolic metric,
so the surface must curve upwards.) These horizontal surfaces are examples

.of horospheres (or horocycles if n = 2). Horospheres are characterized by the

property that their parallel surfaces are all congruent—in our case, by arbitrary
dilatations centered at points on the plane at infinity. Another characteristic
property is that a horosphere is orthogonal to all planes passing through a
certain point on the sphere at infinity; we say the horosphere is tangent to
571 at that point.

Problem 2.2.12. Show that these two characterizations are equivalent, and that
according to them a horosphere in upper half-space appears as either a horizontal
Euclidean plane or a Euclidean sphere tangent to the bounding plane. How does 2
horosphere appear in the Poincaré disk model?

The intrinsic geometry of a horosphere is Euclidean. This is easiest to
see when the horosphere appears as {zo = ¢}, by examining the form of the
hyperbolic metric given by equation 2.2.9. In fact, it follows from the same
equation that any Euclidean isometry acting on a horosphere extends to an
isometry of H* which preserves it and all of its parallel horospheres.

The region {zg > ¢} above a horosphere is called 2 horoball. Ifa horosphere
appears as a Euclidean sphere tangent to the bounding plane, its corresponding
horoball is just the Euclidean ball bounded by that sphere.

Using horocycles we can describe the relation of the hyperbolic plane to
the pseudosphere (figure 2.4).

Exercise 2.2.13 (pseudosphere is locally hyperbolic). Consider the map that
wraps the region y > 1 of the upper half-plane around the pseudosphere, taking
horocycles y = C to meridians and vertical geodesics * = C to generating curves
(tractrixes). Show that, if the map is periodic with period 2x in the z-direction, it is
a local isometry. (Hint: arc length along horocycles, measuied between fixed vertical
geodesics, decreases exponentially with hyperbolic distance from the line y = 1, and
arc length along meridians on the pseudosphere similarly decreases exponentially
with distance from the edge.)

The paper models of exercise 2.1.3 are based on horocycles. In the limit,
when the annuli are infinitely thin, the metric becomes the hyperbolic metric,
and the circles become horocycles. This comparison demonstrates something
that was hard to explain before: the isotropy of the pseudosphere’s metric.

We can use the upper half-space model to study the gronp of isometries
of hyperbolic space. Consider a reflection of H™ given by inversion in an
(n — 1)-sphere § orthogonal to E*~1. The restriction of this inversion to the
sphere at infinity S = E"' U oo is just the inversion in the (n — 2)-sphere
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SN S%Y, and every inversion of S can be so expressed. A transformation

of S%* that can be expressed as a composition of inversions is known as a
Mobius transformation, and the group of all such transformations is the Mébius
group, denoted Mob,_1. Since, by exercise 2.2.11(c), all hyperbolic isometries
can be generated by reflections, it follows that the group of isometries of H®
is 1somorphic to Mob,—;.

Problem 2.2.14 (the Mobius group). Analyze and become familiar with the
Mgbius group. Show that: '

(a) The subg;ronp of the Mébius group that fixes oo is isomorphic to the group of
Fuclidean similarities.

(b} The subgroup of the Mébius group Mob,, that takes an (n — 1)-sphere to itsell
and fixes a point not on that sphere is isomorphic to the group O(n).

(c) For n > 1, the M&bius gronp consists exactly of those homeomorphisms of S%
that take (n — 1)-spheres to (n — 1)-spheres.

(d) Any Mobius transformation that takes a sphere § to a sphere B conjugates ig
to igp.

(e) The subgroup of the Mébius group that takes a k-sphere to itself is isomorphic
to Mdby x O(n — k).

(f} There is a subgroup of the Mébius group isomorphic to O(n +1).
What is the dimension of the M&bius group?

Some geometric problems involving spheres can be greatly simplified by
artful application of 2 Mdbius transformation. '

Exercise 2.2.15 (Steiner’s porism). Suppose you are given an arrangement of
circles in the plane consisting of two non-intersecting circles A and B and a chain
of circles Xy, X»,...,X,,—1, where each X; is tangent to A, B, and X; 1 moar. The
circles are disjoint except for tangencies.

Show that if the X; are erased, and any circle ¥y tangent to A and to B is
constructed, the analogous chain of circles it determines closes up after exactly n
circles.

Exercise 2.2.16 (tangent spheres). Let A, B and C be mutually tangent two-
spheres. Let Xg be a fourth sphere tangent to 4, B and €. Construct a chain of
spheres, beginning with X, each sphere being tangent to A, B and € and to its

‘neighbors in the chain.

Show that the chain closes up on the sixth sphere.

Problem 2.2.17 (minimal hyperbolic properties). In the discussion of hyper-
bolic geometry above, there was no attempt to characterize hyperbolic geometry
using a minimal amount of structure. Here are some steps in this direction:

(a) Show that hyperbolic lines can be characterized in terms of the metric as curves
that minimize distance between any two points. (Hint: in the upper half-space
model, reduce to the case that p and ¢ are on a vertical line.)
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(b) Show how to characterize hyperbolic lines d.xrectly in terms of the group of
isometries, as fixed-point sets.

(c) Show that the only diffeomorphisms of npper half-space to itself that take all hy-
perbolic lines to hyperbolic lines are the hyperbolic isometries. (This contrasts
with the Euclidean case, where affine transformations take lines to lines.)

(d) Conclude that any of these three structures is sufficient as a base structure to
.define hyperbolic geometry: the set of lines, the group of isometries, or the
metric up to a constant multiple.

(e) (Harder.) Show that the measure of angle also is sufficient to deﬁne hyperbolic
geometry.
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2.3. The hyperboloid model and the Klein model

A sphere in Euclidean space with radius r has constant curvature 1/r%. By
analogy, since hyperbolic space has constant curvature —1, hyperbolic space
should be a sphere of radius ¢ = /=1.

This seemingly impossible condition can actually be given a reasonable
interpretation. Let’s see how far analogy can take us. To get an n-sphere,
we start with a positive definite quadratic form @t = 23 + z3 + --- + 22 on
R™1 which gives R™! a Euclidean metric dz? = dz2 + dz? + --- + da2,
making it into E"*1. Restricting to the unit sphere § = {@% = 1}, we get
a Riemannian metric of constant positive curvature 1. The isometries of &
come from linear transformations of E**! preserving Q*; the group of these
orthogonal transformations is denoted O(n + 1).

Now let’s start instead with the indefinite metric

2.3.1. ds* = —dzd +dzd - +dzl

in R associated to the quadratic form @~ = —z2 + 2% + --- + z2. With
this metric, R**! is often referred to as Lorentz space, and denoted E™.
When n = 3, this is the universe of special relativity, although physicists
In this interpretation, the vertical direction
zq represents time, and the horizontal directions represent space. A vector
z is space-like, time-like or light-like depending on whether @~ (z) is positive,
negative, or zero. By analogy with the Euclidean case, the length of a vector
z is /Q~(z), so light-like vectors have zero length, and time-like vectors have
imaginary length {which we take to be a positive multiple of ).

The sphere of radius 7 about the origin in E™! is the hyperboloid H =
{@~ = —1}. When restricted to this hyperboloid, the indefinite metric ds?
of equation 2.3.1 becomes a bona fide, positive definite Riemannian metric: it
is easy to check that any tangent vector to the hyperboloid has real length.
Topologically, H is the union of two open disks.

As in the case of the sphere, which in example 1.4.3 is turned into elliptic
space, we really want to identify aniipodal points of H, to get a subset of
projective space RP". Unlike the case of the sphere, here antipodal points lie
in disjoint components of H, so this subset of RP"™ can be modeled by one
component of the hyperboloid, say, the upper sheet H*, where 2y > 0. This
is the hyperboloid model of hyperbolic space.

Another way to model the same subset of RP" is by inhomogeneous co-
ordinates, where a point (z1,...,%,) € R" stands for the line with parametric
equation (3, z1i,...,2,¢). Then H maps onto the unit disk, giving the projec-
tive model, or Klein model of hyperbolic space (although it was first introduced
by Beltrami: cf. page 6). Notice that, although we can look at the Klein disk
as embedded in E™ (figure 2.15}, its metric is not the induced metric, but
rather the push-forward of the hyperboloid’s metric by central projection.
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r ' ' “

L : _ _
censralprojection

Figure 2.15. The hyperboloid model and the Klein model, A point
p = (Zg, T1,-.-,Tn) on the hyperboloid maps to a point (z1/z0,...,%n/20)
in R”™, shown here as the horizontal hyperplane {z¢ = 1}. This transfers the
metric from the hyperboloid to the unit disk in R, giving the projective madel,
or Kiein model, for hyperbolic space. :

How can we see that these are indeed models for n-dimensional hyperbolic

space? The best way is not by direct calculation but, as for the inversive

models, through the study of lines and isometries.

In E™ we still have a notion of orthogonality, given by the inner product
—ZoYo+ 1% + - < - + Tuyn. The orthogonal complement of any non-zero vector
z is an n-dimensional subspace, denoted by zt; it contains z if and only if
@~ (2) = 0. The orthogonal complement of a subspace is the intersection of

the orthogonal complements of its points.

Exercise 2.3.2 (characterization of tangent vectors). If € H is a point on
the hyperboloid, the tangent space of H at & coincides with =1,

We also have the notion’ of orthogonal transformations, that is, linear
transformations of R™*! preserving ~. Just as the group of isometries of S
is identical with O{n + 1), the group of orthogonal transformations of Ent?,
so also the group of isometries of H is O(n, 1), the group of orthogonal trans-
formations of E™!. '

Exercise 2.3.3. The proof is basically the same as for E®*!. First an orthogonal
transformation of E™! clearly induces an isometry on H, non-trivial if the trans-
formation is non-trivial. Next, all isometries of H come from such transformations,
that is, O(n, 1) acts transitively and isotropically on H:

(a) H p and ¢ are points on H, find an element of O(n,1) interchanging p and q.
(Hint: consider the orthogonal complement of p—¢.}

(b) T p € H, show that any isometry of the tangent space of p is induced by an
element of O(n,1). (Hint: by part (2), it is enough to consider the case where
p is the “north pole” (1,0,...,0).)
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Exercise 2.3.4 (Lorentz transformations). An element of O{n, 1) that takes
each component of H to itself is called a Lorentz transformation. Show that the
group of Lorentz transformations, or Lorentz group, has index two in O(n,1), and
coincides W:lth the group of isometries of H +,

This gives a way to describe geodeszcs in the hyperbolmd and Klein models:
if p € H' is a point and v is 2 non-zero tangent vector to H™ at p, the geodesic
through p in the direction of v is the intersection L of H* with the two-plane P
determined by p, v and the origin {figure 2.16). The same is true with the Klein

disk K instead of H*. To see this, consider the Lorentz transformation that
- g
L _
hyperlines

Figure 2.16. Geodesics in the hyperboloid and Klein mndéls._ In the hy-
perboloid model geodesics are the intersections of two-planes through the origin -
with the hyperboloid. In the projective model they're straight line segements.

fixes P and equals —1 on the orthogonal complement of P. The corresponding
isometry of H* or K fixes exactly those points that lie on L. By uniqueness,
the geodesic through p in the direction of v is fixed by this isometry, and so
must be contained in L. But L is a connected curve, so it must be the geodesic.

For the hyperboloid model, L is a branch of a hyperbola, whose asymp-
totes are rays in the light cone {Q~ = 0,zq > 0}—so called because, in the
relativistic interpretation, it is the union of the trajectories in space-time of
light rays emanating at time 0 from a point source at the origin. Rays in the
light cone, then, are the points at infinity for this model.

-Exercise 2.3.5 (parametrization of geodesics). Show that if v has unit length,

L is parametrized with velocity 1 by pcosh¢+wvsinhi. What is the analogous formula

for the sphere?

For the Klein model, L is a segment of a straight line, meaning that this
model is projectively correct: geodesics look straight. This makes the Klein

~model particularly useful for understanding incidence in a configuration of

lines and planes. The sphere at infinity is just the unit sphere S™ ! the
image in RP™ of the light cone. Angles are distorted in the Klein model, but
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they can be accurately and conveniently computed in the hyperboloid model
if one remembers to use the Lorentz metric of equation 2.3.1, rather than the
Fuclidean metric.

We now exhibit a correspondence between the Klein model and the hemi-
sphere model of section 2.2 that takes geodesics into geodesics. Since the set
of geodesics is sufficient to characterize hyperbolic geometry (problem 2.2.17),
we conclude that K, and consequently also H, are indeed legitimate models
for H*. If K is placed as the equatorial disk of the unit sphere in R**!, the

correspondence is given by Euclidean orthogonal projection onto K (figure

2.17): peodesics in the hemisphere model are half-circles orthogonal to the
equator, so they indeed project to segments of straight lines.

=

it

hemiprojective

Figure 2.17. Going from the hemisphere to the Klein model. We get
the Klein model of hyperbolic space from the hemlsphere model by (Euclidean)
orthogonal prcgectron onto the equatorial dtsk Compare figure 2.12(a).

Note that this a,rra.ngement 1s stmmlar to the one we made to go from the
Poincaré to the hemisphere model, but the projection is different. The com-
posed map, from the Poincaré disk model to the hemisphere back to the Klein
model, is a surprising transformation of the unit disk to itself that maps each
radius to itself, while simultaneously straightening out every circle orthogonal
to the unit sphere into a straight line segment.

Exercise 2.3.6. Find the formula for this Poincaré-to-projective transformation,
in polar coordinates (r,8), where 0 < r < 1 and § € §**_ Find the formula for the
inverse transformation.

- Exercise 2.3.7. The Poincaré model maps to the hemisphere model by stereo-

graphic projection {figure 2.12). Show that the same projection, if extended to H™,
gives a direct correspondence between these two models and the hyperboloid model.

As a subset of projective space RP”*, the Klein model has a natural in-
terpretation in terms of hyperbolic perspective. In fact, it embeds in wisual
projective space, the visual sphere with antipodal points identified, Imagine
you are in H™*!, hovering above a copy of H”. Since hight rays coming from
a geodesic in H" lie in a hyperbolic two-plane, their tangent vectors lie in a
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great circle of your visual sphere, so you see the geodesic as a straight line.
The hyperplane H” looks like the Klein model! The sphere at infinity of H®
looks like a sphere to you. In contrast to the situation in Euclidean space,
the visual radius of a hyperbolic plane in hyperbolic space is always strictly
less than 7, provided the plane does not contain the eye. Your image of H*
shrinks as you move away from it and expands as you move closer. See figure
2.18.

Fu/gt3m/3mbook/pictures/chap2/3/klein237.ps not found]

klein237T

Figure 2.18. A view of the hyperbolic plane from a helicopter in hyper-
bolic space. The same tracts in the hyperbolic plane shown in figures 2.10
and 2.14, this time in the projective disk projection. This picture is in true
perspective in hyperbolic three-space. Stare at the plane near its horizon and
try to sense the way it slopes away from you and the way the area of the plane
grows very rapidly (exponentially) with distance. '

Exercise 2.3.8. How can you tell from a distance at what angle two planes meet
in H3?

We now have a geometric interpretation for points in RP" that lie in the
unit ball and on the sphere. How about points outside the closed ball? If
x € RP" is such a point, @~ is positive on the associated line X C E™'. This
means that Q7 is indefinite on the orthogonal complement X+ of X, and that
the corresponding hyperspace z* C RP™ intersects hyperbolic space. We call
x* the dual hyperspace of . The hyperbolic significance of projective duality
is that any line from z to z2 is perpendicular to 2. This is best seen in the
hyperboloid model, as shown in figure 2.19(a): if p € X' N H¥ represents a
point in z* and v € X' is any tangent vector at p that represents a direction
in 21, we want to show that v is perpendicular to the tangent vector w that
represents the direction from p to X. But w lies in the plane determined by p
and X, and, by exercise 2.3.2, is orthogonal to p; since p is orthogonal to X,
this implies that w is in fact parallel to X, and consequently orthogonal to v.

Exercise 2.3.9. {a) Prove the assertion in the caption of figure 2.19(b).
(b) What is the dual of 2 point in H*? Of a point on $7717
{c} What is the dual of a k-plane?

(d) Show that the dual of a k-plane P is the intersection of the duals of points in
P. Write down a dual statement.

In the two-dimensional case the picture is especially simple. Any two lines
insersect somewhere in RP?. If the intersection is inside 52 , the lines meet in
the conventional sense, from the point of view of a hyperbolic observer. If the
intersection is on S, the lines converge together on the visual circle of the
observer, and they are called parallels. Otherwise, they are called ultraparal-
lels, and have a unique commeon perpendicular in H?, dual to their intersection
point outside 5.
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Figure 2.19. Duality between a hyperplane and a point. The dual of a
point = outside H™ is a hyperplane z* intersecting H™. {a) Lines from z to
z are perpendicular to z1, and lines perpendicular to z1 go through z (see
text for detailed argument). (b) In RP", the point z is the vertex of the cone
tangent to 571 at the (n — 2)-sphere where o+ meets §7;71.

Exercise 2.3.10 (parallelism in hyperbolic space). Extend parallelism and
ultraparallelism to k-planes in H™. Show that ultraparallel (n — 1)-hyperplanes in
H™ have a unigue common perpendicular line. For a related sta.tement about lines
in H?, see proposition 2.5.3. '

Problem 2.3.11 (projective transformations of hyperbolic space). A pro-
jective iransformation is a self-map of RP™ obiained from an invertible linear map
of R™*! by passing to the quotient. An orthogonal transformation of E™! clearly
gives rise to a projective transformation taking 53 ! to itself; show that the converse
is also true. _

This implies that any projective transformation of RP™ that leaves H" invariant
is an isometry, in contrast with the Fuclidean situation, where there are many pro-
Jjective transformations that are not isometries: the affine transformations {compare
problem 2.2.17).

Problem 2.3.12 (shapes of Euclidean polygons). The angles of 2 regular pen-
tagon in plane Euclidean geometry are all 108°, but not all pentagons with 108°
angles are regular. Consider the space of (not necessarily simple) pentagons hav-
ing 108° angles and sides paralle] to the corresponding sides of a model regular
pentagon, and parametrize this space by the (signed) side lengths s,.. ., s5.

(a) Show that the the s; are subject to a linear relation that confines them to a
three-dimensional linear subspace V of R5,

(b) Show that the area enclosed by a pentagon is a guadratic form on V which is
isometric to E»?. How do you measure area for a non-simple pentagon?

(¢} Describe a model for the hyperbolic plane in terms of the subset of V' consisting
of pentagons of unit area. Does your model have a single component?

(d) Show that the space of simple pentagons of unit area is a right-angled pentagon
in the hyperbolic plane.
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(e) There is an area-preserving “butterfly operation” on pentagons that replaces
a side of length s by a side of length —s, changing the lengths of the two
neighboring sides fo make it fit. Interpret this operation in hyperbolic geometry.

(f} Given a non-simple pentagon i in V, when is it posmble 1o modify it by a sequence
of butterfly moves until it 15 simple?

(g} Generalize to hlgher dimensions. Show that the space of simple normalized
Euclidean polygons of » 4+ 3 sides, having unit area and edges parallel to and
in the same direction as some convex model polygon, is parametrized by a
convex polyhedron in hyperbolic n-space. Can you describe the three-dimen-
sional hyperbolic polyhedron when the model polygon is a regular hexagon?

Problem 2.3.13 (1he paraboloid model). To obtain other projectively correct
models of hyperbolic space, one can transform the Klein model by any prcjective
transformation.

(a) Write down a projective transformation that maps the unit sphere of R™ to the
paraboloid z, = z2+-..+z2_,. Applying this projective transformation to the
Klein model K, we obtain the peraboloid model of hyperbolic space.

(b) The paraboloid model is to the Klein model as the upper half-space is to the
Poincaré model. More precisely, the upper half-space model singles out a point
on the sphere at infinity of hyperbolic space, and the group of hyperbolic isome-
tries preserving this point appears as the group of similarities preserving upper
half-space. How does it appear in the paraboloid model?

(¢) Show that orthogonal projection from the paraboloid z, = gi4-- 422 _; tothe

* hyperplane z, = 0 in E” induces an isomorphism between the group of affine

maps preserving the paraboloid and the group of similarities preserving upper
half-space.

Problem 2.3.14. We have seen that Lorentz transformations correspond to isome-
tries of H®, but we did not give a physical interpretation to H®. Is there any way
that people might actually see or experience H® in the relativistic universe?
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2.4. Some computations in hyperbolic space

- Ultimately, what we seek when we study mathematics is a qualitative un-

derstanding. But precise, quantitative manipulations—the nitiy-gritty of
mathematics—are also important as a way to reach this end, and as a test
that our qualitative understanding is correct. The models of hyperbolic space
that we developed over the last two sections provide precise representations of

hyperbolic objects, but they’re intrinsically limited by their lack of symmetry.

Informal pictures, on the other hand, can be invaluable as a help to intu-
ition, and with time and experience they become pretty clear and undistorted
However, they are by nature imprecise. :

To fill in the gap between these two ways of understanding, it is convenient

to know the formulas for measurement in hyperbolic space, so that one can

deal with it {rom the point of view of a surveyor or a bnilder. Working with
formulas tends to be slow and pedestrian, but at least they are precise and
the pictures they evoke are undistorted. In this section, then, we develop
trigonometric formulas and formulas for the area in the hyperbolic plane.

We work along the lines of section 2.3, investigating the similarities and
differences between Lorentz space E*? and Euclidean space E?, and between
hyperbolic and spherical geometry. Spherical trigonometry is sometimes pre-
sented as an array of easily confused formulas, but these formulas are, in fact,
equivalent to statements about dot products of unit vectors in three-space,
and can be neatly derived from the formula for inversion of a 3 x 3 matrix. -

We start with any triple of unit vectors (v1,vs,v3) € S% C E3. If they
are linearly independent, so that no great circle, or spherical line, contains all
three, they determine a spherical triangle, formed by joining each pair v;,v;
by a spherical line segment of length d(vi,v;} = 8;; < 7. The dual basis to
(v1,v2,v3) is another triple (11, wa,ws) of vectors—but not necessarily unit
vectors—in E3, defined by the conditions v; - w; = 1 and v; w; = 0 if ¢ # j,
forz,j = 1,2,3. If we let V and W be the matrices with columns v; and w;,
this can be expressed as W'V = I.

Geometrically, w; points in the direction of the normal vector of the plane
spanned by v; and v, where ¢, 5 and k are distinct; it follows that the angle
#; of the spherical triangle vyv;vs at v; is ® — £(w;, ws), since the angle be-
tween two planes-is the complement of the angle between their outward normal
vectors (figure 2.20).

To relate all these angles, we consider the matrices V'V and W!W of inner

products of the two bases, and notice that they are inverse to one another and
that

1 2 o3
VtV = C12 1 Ca3
i3 Ca3 1

b
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r wy . 7

sphcosines

Figure 2.20. Proving the spherical law of cosines

where ¢;; = v; - v; = cos ;. Thus W'W = (V*V)~! is a muitiple of the matrix
of cofactors of VIV,

1 f 11— eastm—cr enem—os
. £ o 2
2.41. W'W = W C13€23 — €12 1—¢i3  crpcaa — ca3
2
€12€C23 — €13 C12€1a — Co3 1—e¢f,

From this we can easily compute, say,

Wy - Wy cos B2 — ¢cos 13 cos O,5

2.42. COSP3 = —cos L(un,wp) = — = . T -
¢3 (w1, ) hun | Jws| sin 03 sin fy3 ’
or, in the more familiar notation where A, B, C stand for the angles at vy, vy, v3

and a,b, ¢ stand for the opposite sides,
2.4.3. ' cos ¢ = cosacosb + sinasin beos O,

This is called the spherical law of cosines. The dual spherical law of cosines is
obtained by reversing the roles of (vy,vs,v3) and (w1, w2, w3) with respect to
the triangle (figure 2.21):  we set the v; not to the vertices of the triangle,
but to unit vectors orthogonal to the planes containing the sides. Then ¢; =
* — L(vi, v;) fox 4, , k distinct, and 8;; = £(w;, w;). We obtain, for example,

Wi Wy COS ¢y COS b1 + cOS ¢y

05 = y i = -
€08 V12 = COS (whwz) Iw1[|w2[ siné; sin ‘?51

3

or
f . .
cos C' = —cos Acos B +sin Asin B cos c.

‘Exercise 2.4.4. In the limiting case of a very small triangle, we should be able

to recover formulas of Euclidean trigonometry. What do you get from the series
expansion of the spherical Jaw of cosines when a,b, ¢ are very small? What do you
get from the dual spherical law of cosines?
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r

dualsphcosines
Figure 2.21. The dual spherical law of cosines

We now turn to Lorentz space E?*. The situation is similar, but somewhat
complicated by the fact that non-zero vectors can have real, zero or imaginary
length. To cut down the number of cases, we consider only vectors of non-zero
length. We may as well assume that they are normalized in the sense that
they have length 1 or i and their zo-coordinate is positive if they have length
1. We recall from section 2.3 that if a2 normalized vector z € E*! has length
1, it stands for a point on the hyperboloid model H¥ of the hyperbolic plane,
just as a unit vector in E® gives a point in §2. If z has length 1, it lies outside
the hyperboelic plane, and we denote by z* the trace in the hyperbolic plane
of its dual line. '

Suppose, then, that z and y are normalized and distinct. The quadratic
form 7, restricted to the plane spanned by ¢ and y, can have signature
(2,0}, (1,0), or (1,1), corresponding to the cases where the plane intersects
the hyperboloid, is tangent to the cone at infinity, or avoids both (figure 2.22).

In each case, we need to interpret the gquantity z - y, which previously gave
the cosine of the angle between two vectors (here the inner product is the one
associated with the form @, of course). We may as well do it in arbitrary
dimension: '

Proposition 2.4.5 (interpretation of the inner product). Ifr andy are
normalized vectors of non-zero length in E™, either

(a) =,y € H* have length i, and z - y = — cosh d(z,y); or

(b) = € H* has length i, y has length 1 and -y = +sinhd(z,yt); or

(c) = and y have length 1, and the hyperplanes z',yt C B® are secant,
parallel or ultraparallel depending on whether @~ has signature (2,0),
(1,0), or (1,1) on the plane spanned by = and y. In the first case,
z-y = Hcosi(zt,yl); in the second, -y = *1; and in the third,
z -y = £ cosh d(zt,yt).
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i

(b)

(¢)

(=103

Figure 2.22. Interpretation of the inner product for various relative po-
sitions of two points. The labels correspond to the cases in proposition 2.4.5;
the figures are drawn in the projective model.

Proof of 2.4.5: Let P be the plane spanned by = and y. In cases (a) and (b),
P intersects H* in a hyperbolic line L 3 z, and by exercise 2.3.5 this line is
parametrized with velocity 1 by zcosht + vsinht, where v is a unit tangent
vector to Ht ai r.

If y € H*, this implies that y = zcosht 4 vsinht for ¢ = +d{z,y),
depending on the way we chose v. Since z and v are orthogonal (exercise 2.3.2),
we get '

T-y=a-(zcoshi+ vsinht) = — cosht = —cosh d(=z, y).

If, on the other hand, y ¢ H™, exercise 2.4.6 shows that the distance
d(z,y") is achieved for the point § = L N y*, because L is the unique per-
pendicular from x to y*. Thus § = zcosht + vsinht for ¢ = d(z,y*), and y,
being & linear combination of z and p orthogonal to ¢, must be of the form

+{zsinh ¢+ vcosht). We conclude that

z-y=xz-(zsinht+ vcosht) = +sinht = *sinhd(z,yt).

The third possibility in (c) is a variation on (a) and (b). Here L = PN H*
contains neither z nor y, but we can parametrize it starting at £ = LNzt
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Then z = +v, § = L Ny" = Tcoshi + vsinht for ¢t = d{zt ,yl) (again by' '
exercise 2.4.6), and y = *(Zsinht + vcosht), so z -y = L coshd(z*,yt).
We're left with the first two possibilities in (c). If @~ is pOSJt.lve definite
on P, it is indefinite on the orthogonal complement P+, so PrnH* = ztnyt
is non-empty. Let p be a point in this intersection; to measure cos £{z+, yt)
(which is only defined up to sign)} it is enough to find tangent vectors to H+
at p that are normal to z* and y*, and take the cosine of their angle. But z
and y themselves can serve as such tangent vectors, so cos Z{zt,yt) = Lz -y
- If @ is positive semidefinite on P, it is also positive semidefinite on P+,
so PANH* = zt Nyl is empty, but PLN ST consists of a single line through
the origin. Thus z1 and y' meet at infinity—they are parallel. The value of
z - y follows from the fact that this case is a limit between the previous two.
2.4.5|

Exercise 2.4.6 (minimum distance implies perpendicularity). (a) If L C
H" is a line, y € H™ is a point outside L and = is 2 point on I such that the
distance d{z,y) is minimal, the line zy is perpendicular to L.

(b) If L, M C H" are non-intersecting lines and = € L and y € M are points on L

and M such that the distance d(z,y) is minimal, zy is perpendicular to L and
M.

Exercise 2.4.7. (a) To resolve the ambiguities in signs in proposition 2.4.5, we
must assign an orientation to the dual hyperplane of a vector v of real length.
This can be done by distinguishing between the two half-spaces determined by
vl in E™! on the basis of which one contains »; this also distinguishes between
the two half-spaces determined by »* in H". This done, we can define d(z,y')
in part (b) as a signed quantity; how does the formula read then? What about
the various cases in part (¢)7

(b} Is there a sensible normalization for vectors of zero length? How would you
interpret v - w if either or both vectors have zero length?

Now we can calculate the trigonometric formulas for a triangle in H?, or,
more generally, the intersection with H? of a triangle in RP?. As before, we
let (v1,v2,v3) be a basis of normalized vectors in %, forming a matrix V, and
we look at its dual basis (wy, ws, w3), whose vectors form a matrix W. Here, V
and W are no longer inverse to each other; instead, we can write WSV =1,
where 5 is a symmetric matrix expressing the inner product associated with
(2~ in the canonical basis—here the diagonal mairix with diagonal entries
(—1,1,1). However, the matrices of inner products, V'SV and W!'SW, are
still inverse to each other:

(VISVYW'SW) = (V‘SV)(V“1W) =V'SW = (W'SV) = I.

Since some of the v; may have imaginary length, V'SV no longer has all
ones in the diagonal; instead, it looks like this:

€1 Ciz2 €13
. ;
V SV = Co En Coa 3

Ciz €3 &3
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where &; = v; -v; = 1. It follows, as before, that the matrix of inner products
of the w; is '

2.4.8. \
1 £33 — Cag €13C23 — €3Ci2  Ci2€23 — £2C13
WiISW = ———— C13013 — £€3C12 &1€3 — C12€013 — €1C23
det(ViSV) o

. . 2
€12C23 — €2€13 C12C13 — £1Cy3 €182 — €9

This can be used in the same way as equation 2.4.1, but we have to be care-
ful about signs, since normalizing a vector of imaginary length can require
multiplication by a negative scalar.

- Take the case when vq,v2,v3 all have imaginary length, so they form a tri-
angle with all three vertices in H?, as in figure 2.23(a). By proposition 2.4.5(a),
the interpretation of ¢; = v; - v; is in terms of the distances d;;, namely,
¢;j = —coshd;. The vectors w; have real length, and their duals w} rep-

- tesent the sides of the triangle; by proposition 2.4.5(c) and exercise 2.4.7{a),
w; - wif (Jwi] fw;|} = —cos @i, where 4,7,k are distinct and ¢; is the interior
angle at vg.

hypcosines

Figure 2.23. Two ways to see a triangle in the hyperbolic plane. We first
arrange the basis of unit vectors (v, v2, v3) to match the triangle’s vertices (a),
and derive 2 formula relating side lengths. We then make (v, , v2, vs) correspond
to the duals of the edges (b), and obtain a formula relating angles.

Setting all the ; to —1 in equation 2.4.8, we see that we must switch the
sign of the matrix before normalizing, so the diagonal entries are positive. We
then get ' '

W wy c13cs + 12 __ cosh dy3 cosh dyz — cosh dy;
|wn ] fuws] e —14/c2 — 1 sinh dy3 sinh ds3

COS g =

Revision: 1.19 ‘Date: 91/01/61 15:23:48



hyperbolic law of
cosines

% hypcosines

% hyperbolic law of
codine

sthyperbolic
Pycthagorean
theorem

% byperbolic faw ol
cosines

izhyperbolic law of
tines

% hyperboliccofaciar

% polygonsines -

% interpretation of
the inner product

2.4. SOME COMPUTATIONS IN HYPERBOLIC SPACE : R G6

Letting A, B,C stand for the angles at v;,v2,73 and a,b, ¢ for the opposite
sides, we obtain the hyperbolic law of cosines

2.4.9. cosh ¢ = cosh ¢ cosh b — sinh @ sinh bcos C.

To obtain the dual law, we start with the v; outside hyperbolic space, dual
to the sides of the triangle under consideration, as shown in figure 2.23(b).
Then ¢;; = —cos ¢y for ¢, 7,k distinct, and l(w, w;)/ (Jwi IwJ])t = cosh dj;.

‘Thus we have

_ cos &1 co8 by + cos ¢

sin ¢ sin ¢,

€13¢23 + Clz

‘\/1 _‘313‘\/1 .

cosC = —cosAcos B +sinAsinBéoshc.

W - We

|‘w1 | |‘w2 |

cosh d12 =

1

or

The formulas for a right triangle are worth mentioning separately, since
they are particularly simple. Switching A and C (as well as @ and ¢) in the
previous formula and setting ¢ = n /2 we get

cos A
cosha =
&

in B

(note that cos A = sin B in a Euclidean right triangle). From equation 2.4.9
we obtain the hyperbolic Pythagorean theorem:

fC=mnx/2

coshe = coshacoshb

lfC"-;'r/?

From the formula for cosh b ana,iogous to equation 2.4.9, by making the
substitutions coshe = coshacoshb and cos B = coshbsin A and using the

identity cosh® @ = 1 + sinh® ¢, we get

sinh a

if ¢ =x/2.

‘A =

o sinh ¢
Now given any triangle, the altitude % corresponding to side ¢ satisfies sinh 2 =
sinha/ sin A and also sinh & = sinh b/ sin B. This proves the hyperbolic law of
sines, valid for any hyperbolic triangle:

__sinhd  sinhe

~ sinB " sinC

So far we've applied equation 2.4.8 to triangles entirely inside hyperbolic space
and to their duals. Mixed cases can also be interesting; for example, fig-
ure 2.24(a) shows how a pentagon having five right angles can be thought of
as a right triangle with two vertices outside the circle at infinity; they are rep-
resented in the pentagon by their duals, which form two non-adjacent sides.
By using proposition 2.4.5 and keeping track of signs you can convince yourself
that the hyperbolic Pythagorean theorem acquires the form

sinh a

sin A

sinh ¢ sinh § = cosh 4.
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Figure 2.24. Trigonometry in an all-right pentagon and in an all-right hexagon

There follows a hezagonal law of sines for all-right hexagons, since we can
draw a line perpendicular to two opposite sides to obtain two all-right pen-
tagons:

sitha  sinhbd _sinhc"

o _ sinh A “ sinh B~ sinhC’

in the notation of figure 2.24(b). Right-angled hexagons can also be seen as
triangles with all three vertices outside infinity, as shown in the same figure.
Such hexagons are useful in the study of hyperbolic structures on surfaces (see
section 3.8).

S

We are accustomed to the notion that choice of scale in Euclidean space is
arbifrary: it does not essentially matter whether we measure in feet or meters.
Figures can be scaled up or down arbitrarily.

The same is not true in hyperbolic and spherical geometry. If you double
: the sides of a hyperbolic or spherical triangle, its angles, given by equations
L2 2.4.9 and 2.4.3, are no longer the same. There is no hyperbolic or spherical
analogue for similarity transformations (see problem 2.3.11).

This strong dependency between size and angles can be seen even more
clearly in terms of area. For a nice open region in the Fuclidean plane—
say one with a connected, piecewise smooth boundary—the total amount of
curvature of the boundary is always 2x, and in particular the sum of the

(signed) exterior angles of a polygon is 27. For a region of the hyperbolic

plane, the total curvature increases with the area; this is a special case of
oy the Gauss-Bonnet theorem, a very general and profound result of differential

geometry. We won’t state the Gauss—-Bonnet theorem in any more generality
_ here; instead we present an elegant method, also due to Gauss, to calculate the
FRE _ area of a hyperbolic triangle using only elementary means. We start with an

T TR e
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ideal iriangle, one whose three “vertices” are at infinity. Although unbounded,
ideal triangles have finite area:

~ Proposition 2.4.10 (ideal triangles). All ideal triangles are congruent, and

have area 7.

Proof of 2.4.10: Using the upper half-plane model of H?, it is eésy to see that
any ideal triangle can be transformed by isometries so as to match a model
triangle with vertices oo, (—1,0) and (1,0) (figure 2.25).

r : 7

idealtriangle
Figure 2.25. All ideal triangles are congruent. Given any ideal triangle, we
can send one of its vertices to co by inversion, then apply a Euclidean similarity

to send the remaining two vertices to (—1,0) and {1,0).

Now let the coordinates of the upper half-plane be z and 7, with the z-
axis as the boundary. The model triangle is the region given by ~1 <z <1
and y > +/1 — 2%, with hyperbolic area element {1/y*)dz dy {equation 2.2.9). -
Thus the area is

wf2

—dy dz = f d..'r; = / cos>fdf =x. 2.4.10
f -/ —za y V —wf2

Proposition 2.4.11 (area of hyperbolic triangles). The area of a hyper-
bolic triangle s # minus the sum of the interior angles (the angle bemg zero
for a vertez at infinity).

Proof of 2.4.11: When all angles are zero we have an ideal triangle. We next
look at Z-ideal triangles, those with two vertices at infinity. Let A(f) denote
the area of such a triangle with angle T — 8 at the finite vertex. This is well-
defined because all 2-ideal triangles with the same angle at the finite vertex
are congruent—:the reasoning is similar to that for ideal triangles.

(Gauss’s key observation is that A is an additive function, that is, A(¢; +
82) = A(81) + A(02), for 91,02,6; + 0; € (0, ). The proof of this follows from
figure 2.26. It follows that A is a Q-linear function from {0,7) to R. It
1s also continuous, so it must be R-linear. Bui A(w) is the area of an ideal
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B

r 1 r

| |
almostideal

Figure 2.26. Area of Z-ideal triangles. By definition, the areas of the shaded
triangles on the left are A(#;) and A(#;). Likewise, the area of the shaded
triangle on the right is A(6; + 6;). But the shaded areas in the two figures
coincide, because the triangles OAB and QA’B’ are congruent. Therefore
A(8) is an additive function of §; this is used to compute the area of 2-ideal
triangles.

triangle, which is = by proposition 2.4.10; it follows that A(#) = 8, and the

area of a 2-ideal triangle is the complement of the angle at the finite vertex.
A triangle with two or three finite vertices can be expressed as the dif-

ference between an ideal triangle and two or three 2-ideal ones, as shown in

figure 2.27. You should check the details. 2.4.11
r 7
L i

finitetriangle

Figure 2.27. Area of general hyperbolic triangles. If you subtract a finite
hyperbalic triangle from a suitable ideal triangle, you get three %-ideal triangles.
Adding up angles and areas gives proposition 2.4.11,

Exercise 2.4.12 (spherical area). Derive the formula for the area of a spherical
triangle by an analogous procedure, starting with 47 as the area of the sphere.

Corollary 2.4.13 (area of hyperbolic polygons). The sum S of the in-
terior angles of a planar hyperbolic polygon is always less than the sum of
the angles of a Euclidean polygon with the same number n of sides, and the
deficiency (n — 2)x — S is the area of the polygon.
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Woaoctagons Proof of 2. 4 13: Subdivide the polygon into trla.ngles as in the Euclidean case.
S Spclygoms 2.4.13

- Exercise 2.4.14. (a) What is the area of a surface of genus two made from the
regular octagon of figure 1.13(b)?

(b) (Harder.) Show that any surface of genus two of constant curvature —1 has the
same area. '

Exercise 2.4.15. What is a good definition for the area of a non-simple polygon?

What is the formula for the area of a non-simple hyperbohc polygon? Compare
problem 2.3.12.
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2.5. Hyperbolic isometries

We now turn to the quélitative study of the isometries of hyperbolic spa.ce,

- which, as we saw in problem 2.2.14, form a large group. We could use linear

a.lgebra, for this purpose, but we’ll instead use direct geometric constructions,
the better to develop our hyperbolic intuition. The algebraic approach is taken
in problem 2.5.23.

We start in three dimensions. Let ¢ : H> — H?® be an orientation-preser-

ving isometry other than the identity. An azis of g is any line L that is

invariant under ¢ and on which g acts as a (possibly trivial) translation.

Proposition 2.5.1 (axis is unique}. A non-trivial erientation-preserving
isometry of H® can have at most one azis.

Proof of 2.5.1: Suppose that L and M are distinct axes for an orientation-
preserving isometry g. If g fixes both L and M pointwise, take a point z on M
but not on L. Then ¢ fixes the plane containing L and z, because it fixes three
non-collinear points on it. Since g preserves orientation, it is the identity.

If, on the other hand, L is translated by ¢, we have d(z, M) = d(g(:c), M)
for £ € L, so the function d(z, M) is periodic and therefore bounded. But
two distinct lines cannot remain a bounded distance from each other in both
directions, since that would imply they have the same two endpoints on the
sphere at infinity. 2.5.1

Exercise 2.5.2. Find a non-trivial onentatmn—preser\nng isometry of H?® that
leaves invariant more than one line.

Any orientation-preserving isometry of E® is either a translation, a rotation
about some axis, or a screw motion, that is, a rotation followed by a translation
along the axis of rotation. (Exercise 2.5.6 asks you to prove this.) The situation
in H? is somewhat richer, and has its own special terminology.

If a non-trivial orientation-preserving isometry ¢ of H? has an axis that
is fixed pointwise, it is called an elliptic isometry, or a rotation about its axis.
In this case the orbit of a point p off the axls—the set of points g*(p), for
k € Z—lies on a circle around the axis.

If g has an axis that is translated by a non-trivial a.mount it is called
hyperbolic. There are two possibilities here: the orbit of a point off the axis
may lie on a plane, always on the same side of the axis; it is in fact contained
in an equidistant curve, like the one shown in figure 1.11. In this case we
say that g is a translation. Alternatively, the orbit can be the vertices of a
polygonal helix centered around the axis; im this case g is a screw motion,
as can be seen by applying a compensatory translation. (An alternate usage
of the word “hyperbolic” specializes it to what we're calling translations, in
which case “loxodromic” designates a screw motion. This distinction is not
very useful, and we’ll not adopt it.}

By the proposition above, no transformation can be at the same time
elliptic and hyperbolic. But there are isometries that are neither elliptic nor
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hyperbolic: they are called parabolic. For instance, any isométry of H® that
appears as a Euclidean translation parallel to the bounding plane in the upper
half-space model is parabolic.

The proof of the next proposition describes a geometric construction to
locate the axis of a non-trivial orientation-preserving isometry of H3, if it has
one. We will need an elementary fact about pairs of lines; recall (cf. exer-
cise 2.3.10) that two lines in H* are called paralle! if they have a common
endpomt on S$2, or, equivalently, if the distance between them approaches
zero al one end or the other.

Lemma 2.5.3 (common perpendicular for lines in H3). Two distinct
lines in H® are either parallel, or they have a unique common perpendicular.

Proof of 2.5.8: Let the lines be X and Y, and consider the distance function
d{z,y) between points z € X and y € Y. If the lines are not parallel, this
function goes to oo as either & or y or both go to oo; therefore it has a minimum,
attained at points zg and yo.

H the minimum is zero, that is, if the lines cross, any common perpendic-
ular must go through the intersection point, otherwise we’d have a triangle
with two right angles, which is impossible by proposition 2.4.11. As thereis a
unique line orthogonal to the plane spanned by X and Y and passing through
their intersection point, the lemma is proved in this case. (Notice that this
part 1s false in dimension greater than three.)

If the minimum distance is not zero, the line between z¢ and yo is a perpen-
dicular by exercise 2.4.6. If there were another common perpendicular, we’d
obtain a quadrilateral in space with all right angles (although conceivably its
sides could cross). Subdividing the quadrilateral by a diagonal, we’d get two
plane triangles, whose angles add to at least 27; this is again impossible.

2.5.3

If L is a line in H?, we denote by rz the reflection in L, which is the
rotation of = about L.

Proposition 2.5.4 (finding the axis). Any non-irivial erientation-preser-
ving isomelry g of H? can be written in the form g = r, ory, where the lines
L and M are parallel, secant or neither depending on whether g is parabolic,

elliptic or hyperbolic. The azis of g is the common perpendicular of I and M,

if it exists.
Proof of 2.5.4: Take any point p such that g{p) # p. If g*’(p) = p, the midpoint
g of the line segment p g(p) is fixed by g, and the plane through ¢ perpendicular

to the line pg(p) is invariant. Since g reverses the orientation of this plane,
it must act on it as a reflection, fixing a line K. Therefore, ¢ = ri is elliptic

of order two. In this case, one can take L and M to be two orthogonal lines,
“both orthogonal to K at a point z € K.

If p, g{p) and ¢*(p) # p are collinear, p is fortuitously on the axis of g, and
g 15 hyperbolic. We can replace p by some other point not on this axis, and
reduce to the next case.
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In the remaining case, we let M be the bisector of the angle pg{p)g*(p),
so that rar fixes g(p) and interchanges p with ¢*(p). To define L, we look at
the dihedron with edge g(p)g®(p) whose sides contain p and g*(p), respectively,
and take I as the line that bisects this dihedron and is also a perpendicular

bisector of the segment pg(p), as shown in figure 2.28.  (The dihedral angle
r - g(p) i
9(p)
L P 4

axisconstruction

Figure 2.28. The axis of a three-dimensional isometry. The axis of an
isometry g of H® may be constructed, in the generlc case, by connecting the
: orblt of a point p in a polygonal path.

along p g( p) may be 0 or 7, but this doesn’t cause problems.) By symmetry, ri,
interchanges g(p) with ¢*(p), and also p with g*(p). Therefore, rrorys sends p
to g(p), ¢(p) to ¢*(p) and ¢*{p) to ¢°(p). Since rorys and g agree at three non-
collinear points, they agree on the whole plane containing these three points.
Therefore they agree everywhere, since they both preserve orientation.

The common perpendicular of L and M, if it exists, is the axis of ¢, because
it is invariant under 7 o rp;, which acts on it as a translation. The sorting
into cases now follows from lemma 2.5.3 and from the definitions of parabolic,
elliptic and hyperbolic transformations.

Exercise 2.5.5. Using the decomposition of proposition 2.5.4, show that any

parabolic orientation-preserving 1sometry of H3 is conjuga.te to a Euclidean trans-
lation of the upper half-space model. :

Exercise 2.5.6 (isometries of E®). Prove that any orientation-preserving isom-
etry of E® is either a translation, a rotation or a screw motion. Give a geometric
construction for the axis of the transformation, in the latter two cases.

The proof of proposition 2.5.4 also applies to any two-dimensional isome-
try, whether it preserves or reverses orientation, since such an isometry can be
extended to a three-dimensional orientation-preserving isometry. But three-
dimensional orientation-reversing isometries, or arbitrary isometries in higher
dimension, can have fixed point sets other than lines: for example, a reflection
in a plane of any dimension, or a compound rotation about a plane of any
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~ even codimension. Any transformation with a fixed point in hyperbolic space
is still called elliptic. An isometry that translates an axis is hyperbolic, and as

before the axis is unique. Any other non-trivial transformation is parabolic.

Problem 2.5.7 (orientation-reversing isometries of H?). Classify orientation-
reversing isometries of H3, One approach is to modify the construction above, and
express an orientation-reversing isometry as the composition of reflection in a plane
with reflection in a line. Another approach is to exploit the fact that the square of

an orientation-reversing isometry is orientation-preserving. Which isometries of H3

have orientation-reversing square roots? What are the square roots of the identity?
What are the square roots of other isometries which have them?

To study isometries in arbitrary dimension, we continue with the geo-
metric point of view and develop a method, based on the convexity of the
distance function, that will be important later, because it can be adapted to
other negatively curved metrics on R®. For another, algebraic, method, see
problem 2.5.23.

A conver function on a Riemannian manifold is a function f such that, for
every geodesic 7, parametrized at a constant speed, the induced function fo+
is convex. In other words, for every t € (0,1),

forx(t) <tfox(0) +(1—1t)f or(D).

If the inequality is strict for all non-constant +, we say that f is strictly convez.

The product of two Riemannian manifolds is the product manifold, with
the Riemannian metric that is the sum of the metrics on the factors. It is
easy to show that a curve in the product manifold is a geodesic (parametrized

‘at constant speed) if and only if each projection in a factor is also a geodesic
- {parametrized at constant speed). In particular, a geodesic in H* x H"™ is a

curve each of whose projections is a hyperbolic line or a point.

Theorem 2.5.8 (distance function is convex). The distance funciion

d(2,y), considered as a map d : H* x H* — R, is convez. The composi-
tion d oy is strictly convez for any geodesic v in H” x H" whose projections
to the tweo factors are distinct fmes

~ Proof of 2.5.8: We can assume n > 3, since H" is isometrically embedded

in H™. We also assume, for now, that the projections X and Y of 4 are
lines that don't lie on the same plane—in particular, they don’t meet, even at
infinity. _

We parametrize X and Y by arc length, and use = and y to refer to points
on X or Y as well as their parameters. Given z € X and y € Y, we let
£(z,y) be the angle between the segment T§ and the positive ray determined
on X by z; similarly, n{z,y) will be the angle between 7% and the p031t1ve ray
determmed on Y by y (figure 2.29).

Applying the area formula (proposition 2.4.11) to a triangle with two
vertices on X and one on Y, we see that ¢ increases monotonically with
z when y is fixed. The map (£,7) : R? — (0,7) x (0,7) is clearly
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-

L !

distinequality :

Figure 2.29. Derivative of distance is monotone. Positions along the lines
X and Y uniquely determine the angles between the connecting segment and
-the fines. This can be used to show that the distance function between two
lines is convex.

differentiable; we show that it is oneto-one. We do this by looking at

[, y") — &z, v)| + (=", %) — n(=x,y)], where (z,y) and (2/,3) are arbi-
trary pairs of points on X and Y. We can assume that z’ > z. If we also have
¥’ 2y, as in the figure, we can write

£, — &3} + Inle ) — n(e,9)]
> (=, y) — &2, y) + 9’ ¢) — (2, y)
= (&2, y) — &=, 9)) + (E(=",y) —E(=, 1))
+ ((2,5") — a(=',3)) + (2(<’,4) — n(=,3)).

Now
2.5.9. = y'y = &(=' ) > —Lyz'y’

unless y = y'. This is just the triangle inequality for spherical triangles, and the
inequality is strict because X and ¥ are not coplanar. We also have n(z’, 3/} —
7(z',y) = Lyx'y' +area Ayz'y’, by the area formula {proposition 2.4.11). Using
similar relations for the other differences, we get

2.5.10. |¢(a',y') — £(,9)| + [n(z', ) — n(z,v)| > area Azya’ + area Aya'y’

unless ¢ = z’ and y = ¥/'.

The case y' < y is handled the same way, starting with the inequality
(@, ¢)—E(z,9) |+ |nlz', v ) —nlz, v)| > &', y")— (=, ) — (=, ¥ ) — (2, 9).
We conclude that |£j(:z:’, y')— &z, v)| + |"q(m‘, y') — n(m,y-)l is always positive if
{z,y) # (z', "), so (£,7) is a one-to-one map.

On the other hand, exercise 2.5.13 shows that the function d has gradient
Vd = (d.,dy) = (—cosé, —cosn); it follows that Vd is also a one-to-one,
differentiable map from R® to (—1,1) x (~1,1).
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Now the derivative of Vd is

dpr d
CH = rr xg) ,
(o &
the hessian of the distance function. A smooth function is convex if and only if

its second derivative along any line of the domain is everywhere non-negative,
and is strictly convex if the second derivative is everywhere positive. So we

~ have almost arrived at our desired destination. The only thing we still need

to do is to show that H is positive definite.

For this we need an infinitesimal version of the argument above. It is
tempting to carry this out using the terms in equation 2.5.10 involving the
area. However, we avoid doing this, in order to have a valid argument when we
are not working in hyperbolic space, but in any space of non-positive curvature.
For example, in Buclidean space the area terms would not be present.

~ Let g, ¥, and X, be the points on the visual sphere at z’ that correspond to
y, ¥’ and the positive endpoint of X. If d, denotes distance on the visual sphere,
we have d,(X,,y.) = {(7',9), du( X, ;) = £(',¥") and do(y0,37) = Lyz'y,
and equation 2.5.9 follows from the triangle inequality, as already observed.
But, in fact, we can write a stronger inequality, using exercise 2.5.13(c} and
the assumption that y,, ¥, and X, are not collinear on the sphere. Namely,
there exists a positive number ¢, depending only on z and y, such that

2.5.11. E(2',y") — &’ y) + Lye'y > ely - ).

Combining this with a similar equation for 5, we get the following counterpart
for equation 2.5.10:

2512 [, y) — &z 9)| + 0l y) = n(z,9)] > e(le — 2| + Iy - ¥])

unless £ =z’ and y = ¥".
It follows that the ratio of the image area to the domain area under the

~ differentiable homeomeorphism (¢, 7) is at least 2. Therefore the hessian of the

distance function has a determinant that is always strictly positive or always
strictly negative. The distance function is a proper map from R? to [0, co),
and therefore attains its minimum. At the minimum the hessian cannot have
negative determinant, so the determinant is everywhere positive. Since the
diagonal entries of H are positive, H is positive definite. This completes the
proof that if X and Y are not coplanar the distance function is strictly convex.

Now convexity is a closed condition, so it still holds even when the projec-
tions X and Y of 4 are coplanar, or even when one or both reduce to a point,
because all these cases are limits of the case above. But for strict convexity
the limiting argument does not work, and indeed the distance is not strictly
convex if X or Y is a point, or if they are the same line. So we must find other
means to prove strict convexity when X and Y are distinct lines.

At this point we must give up any hope of a proof that works for any space
of non-positive curvature—think of parallei lines in E*. Instead, we'’re free to
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| . % injective derivative  use equation 2.5.10, which still holds with > instead of >. This inequality

* ngecriniy implies that equation 2.5.12 holds, so long as ¢ ¢ ¥ and y ¢ X. Using the

Exercise "derivakive of

distance” gradient Vd as above we conclude that d : X x Y — R is strictly convex

Definitica "BEose-

maun's defimition  except possibly along two lines of the form z = 2o and y = yp. In particular,

af negative

curvature” doy : R — R is strictly convex except at a maximum of two points; but

Finsler manifolds

% distance funciion 2 convex function that is strictly convex in the complement of a finite set of

CoOnvex

% Sience fuaction = points is strictly convex everywhere. _ m

utranslation distance
* o M Exercise 2.5.13 (derivative of distance). (a) Let 2y be a fixed point in hyper-
bolic space. Show that the derivative at z of the distance function = — d{z, z5)
is the unit vector at z pointing along the geodesic from z¢ to z away from z¢.
Let aft) be a differentiable curve in hyperbolic space, parametrized by arc
length, and suppose that zo # a{tp). Prove that the derivative of the distance
d(:ru, a(t)) with respect 1o ¢ at 5 is cosf, where 8 is the angle between the

geodesic from o to ats) and &/(ip).

{b) Show that this is also true in Euclidean space.
{c) Show that it is true in the sphere, provided that z and zo are not antipodal.

(d) (For those who know some riemannian geometry.) Show that the same result
holds in any riemannian manifold, provided that z does not Lie in the cut locus
of zg.

One standard starting point for a study of spaces of negative curvature
: is to assume the following property as an aliernative definition of “negative
= curvature” [Bus55, chapter 5:

Definition 2.5.14 (Busemann’s definition of negatwe curvature). Let
ABC be a triangle and let X be the midpoint of AB and Y the midpoint of
AC. Then XY has length less than half the length of BC.

This definition applies in many situations, including the study of Finsler
manifolds, where other definitions from riemannian manifolds do not apply.
Theorem 2.5.8 implies that hyperbolic space satisfies this property, as does any

- simply connected complete riemannian manifolds of stnctly negative sectional

ol curvature,

¥ Exercise 2.5.15. Assume that Busemann’s definition of regative curvature is sat-
isfied, and do not assume that the distance function is convex. Let AB and CD be
geodesics, with midpoints X and Y. Prove that d(X,Y) < 1(d(4,C) + d(B, DY},
unless all the points lie on the same geodesic. (Hint: draw a diagonal.) What
happens when all the points lie on the same geodesic?

Prove that theorem 2.5.8 holds for any space satisfying Busemann’s definition
of negative curvature.

Y
LA

3 The translation distance of an isometry g : H”' — H" is the function
b : dg{z) = d(a:,g(a:)). By applying theorem 2.5.8 to to the graph of g, which is
o a geodesic-preserving embedding of H™ in H® x H", we get:
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distance iz convex"
Propasitien . of H", the translation distance d, is a conver function on H™. It is strictly

*“rlazzificasion o

isomeszies of H™  conver excepl along lines that ‘map to themselves.
% translation distance

& convex

paxis s wmave . Proposition 2.5.17 {classification of isometries of H*). Let g be an
ith boli
:rc::hirr :r';‘:':&ﬂ wometry Of Hn

(a) g is hyperbolic if and only if the infimum of dg is positive. This infimum

s citained along a line, which is the unique azis forg.

(b} g is parabolic if and only if the infimum of d, is not atiained. This infimum
is then zero; g fizes a unigue point p on SZ*, and acts as a Euclidean
isometry in the upper half-space model with p at oo.

(c) g is elliptic if and only if d; takes the value zero. The set d;1(0) s a
hyperbolic subspace of dimension k, for 0 < k < n.

Proof of 2.5.17: K d, attains a posiiive infimum at some point z, ii also
attains the infimum at g(z). By convexity, d, has the same value on the
line segment joining & and g¢(z), so by corollary 2.5.16 the line through x
and g(z) is invariant. This line is translated along itself, so g is hyperbolic.
The uniqueness of its axis follows just as in the second half of the proof of
proposition 2.5.1.
If d, does not attain an infimum, there is a sequence {z;} such that d,(z;)
~ tends toward the infimum. By compactness, we can assume that {z;} converges
to a point € S%1, which must be fixed by g. We can take x = co in the upper
half-space projection, so ¢ acts as a Euclidean similarity. If this similarity has
no fixed point on the bounding hyperplane 5% \ {oc}, it is an isometry;
therefore d, goes to zero on any vertical ray, and infd, = 0. Also; since g has
no axis and no fixed point in H”, it is parabolic.

If, instead, g does fix a point on S771\ {oo}, it leaves invariant the vertical
line I through that point. If P is a (hyperbohc) hyperplane orthogonal to L,
the closed region F between P and g(P) is a fundamental domain for g, that is,
for any point ¢ € H", there is some k € Z such that g*(z) € P. In particular,
any value of d, is achieved inside F'. Because d, does not attain its infimum,
the compactness argument of the preceding paragraph shows that ¢ fixes a
point in £ N S 1. But if ¢ fixes three points on S, it fixes a whole plane
in H", contradicting the assumption that inf d; is not attained.

Finally, if d; takes the value zero, g is by definition elliptic, and its zero-set

is a k-dimensional subspace because the entire line joining any two fixed points
is fixed. 2.5.17

~ The convexity of d{z,y)} as a function of one variable alone is enough to
define a hyperbolic mean: a rule that gives, for any finite collection of points
in H® with associated weights, or masses, its center of mass. The center
of mass should be preserved under hyperbolic isometries, it should depend
continuously on the points and their weights, and if there is only one point it
should be the point itself. '
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One of the characterizations of the mean in Euclidean space works here
too: it associates with the collection {(p:,m:}} of points p; with mass m; the
point ¢ that minimizes the function Y, mid*(p;,z). Although d(p;,z) is not
a strictly convex function of z, its square is. The sum is therefore strictly
convex, and since 1t is unbounded on any line, there is a unique point where
it attains ifs minimum.

Coro]lar.y 2.5.18 (ﬁnite'hyperbbﬁc group has a fixed point). A finite
group of isometries of H" has at least one fized point.

Proof of 2.5.18: Let x € H™ be any point. If F is a finite group of isometries
of H", the center of mass of the orbit of z, with each point equally weighted,
is fixed by F. 2.5.18

Exercise 2.5.18. Show that any action of any compact group G on H”™ has a fixed
point. You may use the existence of a Haar tmeasure, that is, a measure 4 on G
such that u{gd) = p(A) for A C G and g € G.

Exercise 2.5.20 (the hyperbolic median). A median for a weighted collection
of points in B! is any point that minimizes the weighted sum of the distances to the
points. The set of medians is either a single point, or an interval.

This definition generalizes word for word to E® and to H™. Analyze the existence
and uniqueness of the Euclidean and hyperbolic median when n = 2 (a typical case),
and describe its qualitative pmpertles (Give a geometric characterization of the
median of three points. '

Problem 2.5.21 (other hyperbolic means). There is a very simple definition
of a hyperbolic mean using the hyperboloid model: Given a collection {{p;, m;)},
treat the p; as vectors in H+ C E™!, take their mean, and multiply by a scalar to
put it back on the hyperboloid.

What is the relation between this mean and the squa,re—of-dlstance mean? Is
it the same? Is it expressible as the minimum of a linear combination of convex
functions of distance?

Problem 2.5.22. The Brouwer fixed-point theorem asserts that any continuous
map D™ — D" has a fixed point. Use this theorem, together with an understanding
of isometries of §*~ and E*1, to classify the isometries of H™, at least in the cases
n=2and n = 3.

Problem 2.5.23 (the algebraic study of isometries of H"). By exercise 2.3.4,
isometries of H® are in one-to-one correspondence with linear maps of R**! that
leave invariant each component of the set {§~ = —1}, where @~ is a quadratic
form of type (n,1). We can use this correspondence to obtain information on the -
properties of hyperbolic isometries.

(a) As a warm-up exercise, let V be a two-dimensional real vector space, Q a (pos-
sibly degenerate} quadratic form on ¥V, and 4 :V — V a linear map preserving
. Describe the relationship between ) and the eigenveciors and eigenvalues
of A.
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% she paraboloid (b) Let ¥V be an (n + 1)-dimensional real vector space and Q a quadratic form of
type (n,1) on V. Show that there is an isomorphism from V into R™¥! that
transforms @ into the form Q= = —x2 + 22+ --- + z2. This means that we can
just study E™1. '

(¢} From now on, assume that A is a linear transformation of E™! preserving Q.
If W is a minimal invariant subspace of A, show that W has dimension one or
two. (This is true for any transformation of any non-trivial vector space Y I
the dimension is two, G~ is positive definite on W.

(d) Factor the characteristic polynomial p of A into irreducible quadratic and lin-
ear factors over R. For any irreducible quadratic factor ¢ of p, the subspace
annihilated by ¢{4) must be positive definite, so the roots of ¢ are on the unit
circle.

{e) I p has any roots that are not on the unit circle, there are precisely two such
 roots, A and A1, and the isometry of hyperbolic space induced by A is hyper-
bolic. {We sometimes say that A itself is hyperbolic.)

(f) I A fixes some vectorv with @~ (v) < 0, its induced isometry is e]]ip:tic; it fixes
some totally geodesic subspace P C H" isometric to H¥, for some 0 < k < n,
and “rotates” the normal space of P.

() If all characteristic roots are on the urit circle and A fixes no vectors v with
@~ (v) < 0, A fixes a non-zero v with @ (v) = 0. All such fixed vectors
are multiples of one another. The isometry induced by A is parabolic. The
hyperplane P = {w : v-w = 1}, where - is the inner product associated
with §~, is invariant by A. It intersects the region @~ < 0 in the projective
paraboloid model of problem 2.3.13. The quadratic form @~ is degenerate on
the tangent space of P, and it induces a Enclidean metric on the quotient space
P{/Ruv. The transformation induced by 4 on P/Rv is an Euclidean isometry
without fixed points.
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2.6. Complex coordinates for hyperbolic three-space

Three-dimensional hyperbolic geometry is intimately associated with com-
plex numbers, and many geometric relations in H? can be elegantly described
through this association.

‘The complex plane C embeds naturally in the complex projective line
CP’, the set of complex lines (one-dimensional complex subspaces) of C?.
The embedding maps a point z € C to the complex line spanned by (z,1)},
seen as a point in CP'; we call z the inhomogeneous coordinate for this point,
while any pair ({z,1) € C?, with { ¢ C* = C\ {0}, is called a set of homo-
geneous coordinates for it. The remaining point in CP!, namely the subspace
spanned by (1,0), is the point at infinity; we can make oo its “inhomogeneous
coordinate”. R

Topologically, CP' is the one-point compactification C of G {cf. prob-
lem 1.1.1), so we can extend the usual identification of E? with C to co. This
shows that CP" is a topological sphere, called the Riemann sphere.

As in the real case {problem 2.3.11), a projective transformation of CP’
is what you get from an invertible linear map of C? by passing to the quo-
tient. Projective transformations are homeomorphisms of CPX. If a projective
transformation A comes from a linear map with matrix (¢ 3), its expression in
inhomogeneous coordinates is

_'az-}-b

2.6.1. Alz) = p——

(naturally, this should be interpreted as giving e/c for z = oo and co for
z = —dfc). A map A : CP! = CP! of the form 2.6.1 (with ad — be # 0) is
called a finear fractional transformation {or fractional linear transformation).
Linear fractional transformations behave in a familiar way:

Exercise 2.6.2 (linear fractional iransformations are Mébius transforma-
tions). {a) Show that, under the usual identification CP' = §2, any linear
fractional transformation is a Mdbius transformation, that is, a composition of
inversions. (Hint: look at z — 1/z first.)

(b) Show that any orientation-preserving Mé&bins transformation of $2 is a linear
fractional transformation.

Sometimes Mdbius transformations of C are considered to be just the linear frac-
tional transformations. To avoid confusion, we won’t use this convention.

Problem 2.6.3. It follows from proposition 1.2.3 and exercise 2.6.2 that linear
fractional transformations map circles {including lines) into circles. This can also
be proved directly, by applying such a transformation to the general equation of a
circle,

Is there a conceptual way to explain why circles go io circles? We'll take up
this question again in problem 2.6.5.
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Two non-singular linear maps of C? give the same projective transfor-
mation of CP! if and only if one is a scalar multiple of the other. Thus,
identifying together scalar multiples in the linear group GL(2,C) gives the
group of projective transformations of CP', which we naturally denote by
PGL(2,C) = GL(2,C)/C*. This group is also knowr as PSL(2,C), because
it can be obtained by identifying together scalar multiplesin the special linear

group SL(2, C}, consisting of linear transformations of C* with unit determi-.
nant. ' '

As we saw on page 51, a Mébius transformation of S% ! can be extended
to a unique isometry of H”. Since PGL(2, C) acts on S35 ' by Mabius trans-
formations (exercise 2.6.2), this action can be extended to all of H?, providing

‘the first link between hyperbolic geometry and the complex numbers:

Theorem 2.6.4. The group of orieniation-preserving isometries of H? s

PGL(2,C), identified via the action on S2, = CP!.

This was first proven by Poincaré, who followed essentially the reasoning
above.

There is another, more intrinsic way to obtain the action of PGL(2, C) on
H?. Consider the real vector space V of Hermitian forms on C32, that is, of
maps H : C? x C? — R linear in the second variable and satisfying

H(w,v)= H(v,w)

for v, w € C2. In the canonical basis, a Hermitian form has matrix (; z) with
r,s € R and z € C, so V has dimension four,

The determinant of a form represented by (r z) is rs — zZ, so the function
det is a quadratic form on V. The signature of det is (1,3), because (}7),
(é 2) ( ) and ( ) for example, form an orthonormal basis. Thus V, with
the quadratic form —det, is isomorphic to E>?; by section 2.3, this means that
the set of definite Herrnltla.n forms in C?, up to multlphca,tmn by {non-zero
real) scalars, forms a model for H?!

The sphere at infinity 52 in this description consists of Hermitian forms of
rank one, up to scalars. To each such form we associate its fnullspace, which
is a point in CP?Y; the nullspace determines the form up to multiplication by
a scalar (check th1s), so we get a canonical identification of SZ, with CP'.

Now define an action of GL(2,C) on V as follows: for any A € GL(2,C)
and H € V, let A(H) be such that A(H)(v,w) = H{Av, Aw). The action of
A preserves the form —det up to a scalar—the determinants of all elements
of V get multiplied by |det A|*—so the induced projective transformation in
V/R* gives an isometry of H?, as discussed on page 54. This isometry remains
the same when we multiply A4 by a scalar, so in effect we have an action of
PGL(2,C) on H? by isometriecs. We also have an action of PGL(2,C) on
S = CP.

Problem 2.6.5 (the action of GL(2,C) at infinity). (a} Show that the action
of A € GL(2,C) on CP!, in terms of the identification described above, is
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given (in homogeneous coordinates) by multiplication by A~!. Are all linear
fractional transformations obtained in this way?

(b} Use this to show that PGL(2, C) coincides with the group of orientation-preser-
ving isometries of H®. (Hint: Orientation-preserving isometries of H® act simply
transitively on the set of triples of distinct points at infinity. The same is true
for the action of projective transformations of CPY, as you should check by
writing an explicit formula).

{¢) If H € V represents a point of V/R" ontside the sphere at infinity, the signature
of H is (1,1), that is, H is indefinite. What is the zero-set of H in C?? Show
that, passing to the quotient, the zero-set becomes a circle in CP'. Car every
circle in CP? be obtained in this way? Show that, under the identification of
CP! with the set of forms of rank one in V, all forms in the zero-set of H are
orthogonal to H (for the inner product associated with —det). Thus the zero-set
of H is the intersection of the polar plane of H with the sphere at infinity.

(d) How do zero-sets transform under the action of PGL(2, C)? (Compare part (a)).
Can you answer problem 2.6.3 now?

Exercise 2.6.6. Show in two ways that the group of orientation-preserving isome-
tries of H? is PGL(2,R). (Hints: (1) Use the fact that PGL(2,R) is the subset of
PGL(2, C) that preserves the real axis. {2) In the discussion above, replace Hermi-
tian forms on C? by quadratic forms on R2.) :

Exercise 2.6.7 (classification by the trace). Classify orientation-preserving
isometries of H® into hyperbolic, elliptic and parabolic according to the quantity
tz% A/ det A, where A € GL{2,C) represents the isometry. (Hint: you can assume
that det A = 1. By conjugation, you can also assume that A4 is in Jordan normal
form, so it is either a diagonal matrix or (51).)

Show how to find the axis of a hyperbolic or elliptic isometry, and the angle of
rotation of an elliptic isometry, in terms of a representative 4 E GL(2,C). What is
the trace of a rotation of order two?

" Silvie: check rel-

Problem 2.8.8 (complex trigonometry). The set of oriented lines in H? has the
structure of a complex two-manifold, namely (CP!)? \ A, where A is the diagonal
{(z; z):z € CPl}. Derive formulas for the geometry of lines in H3, as follows:

{a) 1et W be the vector space of linear transformations of C? with trace 0.
There is a one-to-one correspondence between unoriented lines in H* and one-
dimensional subspaces of W whose non-zero representatives are in GL{2,C).
(Hint: see exercise 2.6.7.)

{b) Consider the inner product associated with the quadratic form —det on W: it
isgiven by A-B = %tr AB. Using proposition 2.5.4 and exercise 2.6.7, interpret
the inner product A - B of two vectors of unit length in terms of the geometry
of the pair of lines given by A and B (compare proposition 2.4.5).

{(c) Derive a formula for the relationship between a triple of lines in H? and the
dual triple of common orthogonals to pairs of these lines. This formula should
generalize the squared form of many formulas from section 2.4—for instance,
the spherical formulas come from the sitnation that three lines intersect in a
point in H3.
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(d) Interpret W N SL(2, C) as the set of directed lines in H3. Refine parts (b) and
(c) to take into account the extra information.

' Problem 2.6.9 (trace relations). (a) Show that any two elements A and B of

SL(2, C) satisfy :
trAB + trAB~! =tr Atr B.

(Hint: use the fact that A satisfies its characteristic polyromial.)

(b) Show that the trace of every element of the group generated by A and B is

expressible as a polynomial in tr 4, tr B, and tr AD,

(c) Prove that for any complex numbers z, y, and z, such that the symmetric matrix

fl x oz
z 1 gl
z y 1

is nonsingular, there exist A and B in SL(2,C) such that trd = z, tr B = y
and tr AB = 2, and the subgroup of SL(2, C) generated by A and B is unique
up to conjugacy.

{Hint: Interpret this matrix as the matrix of inner products for a triple of
unit vectors in the space W of problem 2.6.8, representing order-two rotations
a, b and c. If the matrix is non-singular, the three vectors form a basis; nse
this to reconstruct the group G generated by e, b and ¢. Then set A = bc and
B = ca, and show that the group generated by A and B has index two in G,
and can also be determined up to conjugacy.)

(d) Compare the results when this analysis is ap_plsed to two subgroups of SL(2, C)
that have the same image in PSL(2, C).

(e) What interpretation can be given when the matrix of (c) is singular?

(f) Show that the trace of every element of the group generated by A, B and (' is
expressible as a polynomial in the traces of 4, B, C, AB, BC, CA and ABC.
In fact, the first six traces are almost enough to express everything: show, by
expanding the trace of (ABC)?, that the trace of ABC satisfies a quadratic
equation in terms of the other six traces, the other root of which is the trace of
ACB.
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2.7. The geometry of the three-sphere

Just like the circle and the two—spheré, the three-sphere is very round. But
there are some beautiful, classical aspects to its roundness that are not easy

‘to guess from its lower-dimensional sisters.

The most direct way to define 5° is as the unit sphere {z?+ 2z + 2+ 22 =
1}, but visualizing this set directly is hard E:E most people. Stereographic
projection (page 46) gives a picture of §°, as R® = R? U {00}, that makes the
sphere much more tangible, and preserves some aspects of its geometry: for
example, the roundness of circles and spheres. But this picture suffers from a
loss of symmetry: R3 is not as round as it should be, and objects the same
size in 3 are not the same size in R3. To overcome this drawback, it helps to
practice imagining the rigid motions of S® as they appear in R3.

Identifying R* with C2, we obtain new pictures. If the coordinates in C?
are z; and z;, the equation of a unit sphere becomes |2 |* + |22} = 1. Fach
complex line (one-dimensional subspace) in C? intersects 52 in a great circle,
called 2 Hopf circle. Since exactly one Hopf circle passes through each point
of 53, the family of Hopf circles fills up §3—we say it forms a fibration of §3
by circles. The base of the fibration—what you get when you collapse each
fiber to a point—is the set of complex lines of C?, that is, the Riemann sphere
GP1 =C. In this way we get a map §° — S, called the Hopf map

r - A

=

hopfcircles

Figure 2.30. The Hopf fibration in 5°. The three-sphere |2|? 4 [2]* = 1
fibers over the Riemann sphere: each fiber is a great circle, the locus of
z1/zz = constant. Each torus {]zg| = a}, for 0 < @ < 1—which can also
be expressed as {[21| = a}-—divides 53 into two solid tori, one of them con-
taining the point at infinity in the picture.

-

Figure 2.30 shows what the Hopf fibration looks like under stereographic
projection. In this figure the vertical axis is the intersection of ‘S® with the
complex line z; = 0, and the horizontal circle' is the intersection with 2, = 0.
The locus {|z| < a}, for any 0 < a < 1, is a solid torus neighborhood of
the z; = 0 circle. Its boundary {|z2f = a}, a torus of revolution, is filled up
by Hopf circles, each winding once around the z;-circle and once around the
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zo-circle. Any torus of revolution in R? can be transformed into a torus of this
form by a similarity. The fact that any torus of revolution has curves winding
around in both directions that are geometric circles is quite surprising, so much
so that such circles on the torus have a special name: Villarceau circles.

Exercise 2.7.1 (the Hopf fibration). (a) Show that the maps g : 5 - 8
given by multiplication by et for i € R, are isometries, and that they leave the
Hopf fibration invariant. Thus 52 has isometries that don’t have an axis: the
motion near any point is like the motion near any other point. “This is one way
in which §° seems “rounder” than 5%. The one-parameter family {g.} is called
the Hopf flow.

(b) Show that two Hopf circles C' and C’ are parallel in the sense that any two
points in C” are at the same distance from C (in the metric of § 9.

(c) Show that the metric in CP* = 52 induced by the Hopf map is the standard,
round metric. What are the images of great circles?.

The three-sphere, like the circle, is a topological group. This is easiest
to see using quaternions, which are, so to speak, an extension of complex
numbers. We spend some time here investigating their propertles because
they turn out to he useful in several ways.

The space H of quaternions is simply R*, together with a certain non-
commutative multiplication H x H - H. Tlus multiplication is bilinear over
R, so in order to define it we can just specify its effect on a basis of H. The
basis is traditionally denoted {1,1,7,k}, and the action is as follows: 1 is the
identity, and

‘52=j2=k2=—1,

The subspace spanned by 1 is identified with R, and its elements are called
real the subspace Ri+ Rj + Rk is the space of pure quaternions. It is easy to
see that the quaternion product is associative, but not commutative; that R is
the center of H (so the structure of H as a ring determines its structure as a real
vector space), and that a quaternion is pure if and only if its square is a non-
positive real number (so the ring structure also determmes the decomposition
into real and pure subspaces). :

Exercise 2.7.3. Show that any riﬁg automorphism of H is a linear map. This
differs from the 51t11a.t10n in C, which has many a.utomorphlsms '

The con_gugate of a quaternion g =a+bi+eyj+dkisg=a— bz —cj —dk.
The product g7 is positive real, and its square root is the absolute value, or
norm, of g, denoted by lg|. This coincides with the norm of ¢ as a vector in
E*. A quaternion of norm 1 is a unit guafernion. Any non-zero quaternion ¢
has an inverse gt = [q|~%q; thus H is a skew fleld. If p and q are quaternions,
we have P§ = §p and |pg| = |p||¢|. Since the set of unit quaternions is the
unit three-sphere 5% C E*, we have proved the first statement in the following
theorem:
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Theorem 2.7.4 (the group structure of $°). The three-sphere has the
siructure of a nen-commutative group, with center {x1}. Left or right multi-
plication gives a self-action of 5° by orientation-preserving isometries. Con-
jugation gives a self-action by isomeiries which, in addition, takes any two-

sphere with center 1 onto itself. The guotient .5'3/ {&1} is isomorphic to the

group SO(3) of orientation-preserving isometries of S%.

Proof of 2.7.4: The distance along 5° between two poinits depends solely on
the norm of the difference between them; since the norm is preserved by left or
right multiplication by a unit quaternion, these map are isometries. They're
orientation-preserving by continuity, because $° is connected.

Conjugation is also an isometry; since it fixes 1, it leaves invariant the sets
of points at constant distance from 1, which are two-spheres.

The action of S? on these two-spheres by conjugation defines a homomor-
phism p: §° — 50(3 ), whose kernel is the center of 5. Surjectivity is shown
in exercise 2.7.5.

Exercise 2.7.5 (rotating 5% with quaternidns). Let 5% be the sphere of pure

‘quaternions of unit norm. Show that conjugation by a unit quaternion r + p, where

v is real and p is pure, rotates .S_"" around the axis in the direction of p by an angle
2 arctan(|p|/|r]). (Hint: assume first that r = cos 8, p = isin8. Extend to arbitrary
p by showing that 7 can be taken to any point en 52 by conjugation.)

The descriptions of §° via quaternions and via complex numbers can be
combined. If we look at H as a complex vector space, multiplication on the
left by the quaternion z is the same as multiplication by the complex number 2,
so the vector field X;(p) = ip, for p € 5%, induces the Hopf flow on S°. There
is added symumetry in this description, because 1 plays no special role among
the quaternions: any pure quaternion of unit norm can be used in lieu of ¢ to
impart a complex vector space structure to R* (compare exercise 2.7.5). Thus
there are many Hopf flows and many Hopf foliations on $3. In particular, we
can take three mutually orthogonal vector fields X;, X; and Xj to get three
mutually orthogonal families of Hopf circles.

Exercise 2.7.6. Using stereographic projection as in figure 2.30, with the identity

- element 1 € H at the origin and ¢, j and & on the three coordinate axis, try to get

an idea of what the three orthogonal Hopf foliations look like.

There is another way to describe the group structure on $2, via unitary
transformations of C?, that is, complex linear transformations that preserve
the standard Hermitian form (zi, z2) - (w1, w2) = 2110, + 23, on C%. Here
again the case of the circle is analogous: the group SO(2) of orthogonal linear
transformations of the Euclidean plane having determinant 1 acts 'simply
transitively on S, so fixing a point z € S! provides an identification SO(2) &
S1 that takes each g € SO(2) to g(z) € 1.

Similarly, the group SU(2) of unitary transformations of C? of determi-
nant 1 acts simply transitively on S$°, so by fixing a point z € 5% we get an
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identification SU(2) = 5. If z = (1,0) € S® C C?, any point {2, 2) € §°

gets identified to
41 —22
K4 . 21 ’

Exercise 2.7.7. Consider H with the complex structure defined by multiplication
on the left by a given unit quaternion. Show that multiplication on the right by
any quaternion is a complex linear map. Show that multiplication on the right by a
unit quaternion is a unitary map. This again provides an identification S* = SU(2),
which makes 5° the group that preserves, simultaneously, a/l the complex structures
defined by multiplication on the left by unit quaternions.

The connection between the group structure on S° and the geometry of S?,
too, can be recovered from this point of view. Any element of SU(2) acting as
an isometry 52 takes fibers to fibers, so its action passes to the quotient, giving
a projective transformation of CP' that is also an isometry of S%. As a map
of $%, a projective transformation of CP' is orientation-preserving, so we get
a homomorphism SU(2) — S0(3). An element of SU(2) induces the identity
map on CP' if and only if it is a scalar multiple of the identity map on C?;
since the only two such elements are + Id, we get an injective homomorphism
PSU(2) — S0(3), where PSU(2} = SU(2)/{£ 1d}. You should check that this

map is also surjective, and consequently an isomorphism.

~ Exercise 2.7.8. Topologically, PSU(2) is just §3/{£1} = RP3. Describe a direct

correspondence between RP® and SO(3), by realizing RP? as the unit ball in R3
with antipodal points on its boundary identified. (Hint: for a point r,@ € R3, with
8 € 5% and r € {0,1], consider the rotation through an angle 7r around the axis
that contains #.)

Another intriguing aspect of $? is the structure of its own group of rigid
motions. The two actions of S° on itself, by left and right multiplication,
commute, so we can define a homomorphism 7 : §% x §* — S0(4) by

(9, k)(z) = gwh_l'

By theorem 2.7.4 some transformation (&, &) will get us from any orthonormal
frame at 1 to any other such frame, so further composition with a transforma-
tion of the form 7(gh~",1} will get us te any orthonormal frame at any point.
This shows that 7 is surjective, and also that the kernel of = is {:I:(l 1)}, so
we get an isomorphism

0(4) = (5% x §%)/Zs.

How can the group of isometries of a space so round as $° be almost a
product? To understand this better, consider more carefully the nature of
right and left multiplication. :

If g € 5% is not %1, the transformation z — gz fits into the unique Hopf
flow generated by the Hopf field z — pz, where p is the unit quaternion in the
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direction of the g purely imaginary component of ¢. Similarly, when & ¢ 5°
is not +1, the transformation z — z& fits into a unique Hopf flow, generated
by a vector field £ — xp. The two kinds of Hopf flows are distinguished as
left-handed or right-handed: the circles near a given circle wind around it in
a left-handed sense or in a right-handed sense (as the threads of a common
screw or jar lid). As we have seen algebraically, any right- ha.nded Hopf flow
commutes with any left-handed Hopf flow.

Problem 2.7.9. The commutation of right-randed and left—}_ianded Hopf flows can
also be seen geometrically. :

(a) Describe the sensation (i.e., the motion and rate of turning) of a person in §3
when being left-multiplied by a one-parameter subgroup of $°.

(b) Let X and Y be right- and left-handed Hopf fields. Show that, by starting at
any point in S and moving in the direction orthogonal to both X and Y, you

reach a point: where X = Y. Consequently, there is an entire circle C* where
X =Y. Similarly, there is a circle C~ where X = —Y, and that d(C*,C") = .

(¢) Show that the locus of points that lie at a distance a from C'* is a torus invariant

~under X and Y. This is also the locus of points at a distance = — & from
C~. Show that X and Y act as rigid motions of these tori, and consequently
commute. Compa.te ﬂgure 2.30.

~ {d) Interpret C+ and C- algebraically, in terms of the element of 80(4) associated

with multiplication on the left by an element that generates X and on the right
by an element that generates Y. :

(e) Describe the sensation of a person in §% bemg a.cted upon by a general one-
- parameter subgroup of SO(4).

Problem 2.7.10. Give a geometric description of the homomorphism SO(4) —
S0(3) x SO(3). (Hint: Consider the space of right-handed Hopf flows and the space
of left-handed Hopf flows.)
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Chapter 3

Geometric Manifolds

In chapter 1 we looked at a good number of manifolds. In doing this, we relied
more on intuition and common sense than on definitions. It is now time to
study manifolds a bit more systematically.-

Manifolds come to us in nature and in mathematics by many different
routes. Very frequently, they come naturally equipped with some special pat-

tern or structure, and to understand the manifold we need to “see” the pattern.

At other times, a manifold may come to us naked; by finding structures that
fit it, we can gain new insight, relate it to other manifolds, and take better
care of it. o o

The fact that there are all these different grades, or flavors, of manifolds
was not clearly understood during the early development of topology. Different
constructions were perceived more as alternative technical contexts for doing
topology than as building blocks for essentially different structures. One of the
remarkable achievements of topologists over the past forty years has been to

~ come to grips with these distinctions, which are, contrary to intuition, substan-

tive: for example, topological, piecewise linear and differentiable manifolds are
inequivalent in dimensions four and higher, although in dimensions two and
three the distinctions collapse.

Most of the myriad other possible structures—complex structures, foli-
ations, hyperbolic structures, and so on—are considerably more restrictive
than differentiable structures. These more restrictive structures can have great
power in dimensions two and three.

90
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-3.1. BASIC DEFINITIONS ) a1

3.1. Basic definitions

A manifeld is a topological space that is locally modeled on R™.

What it means to be locally modeled on R* depends on what property, or
pattern, of R™ we want to capture. The idea is to patch the manifold together
seamlessly from small pieces of fabric with the pattern. A pattern is described
operationally, in terms of the transformations that preserve it; by allowing
chunks of R™ to be glued together only according to these transformations,
we get a manifold with the desired pattern. The set of allowed gluing maps

should satisfy some natural properties:

Definition 3.1.1 (pseudogroup). A set G of homeomorphisms between
open sets of a topological space X is a pseudogroup if it satisfies the following

conditions:

(a) The restriction of an element ¢ € G to any open set in its domain is also
in G. _

(b) The composition g; o g, of two elements of G, when defined, is in G.

(c) The inverse of an element of G is in G. _

(d) The property of being in § is local, that is, if U = |J, U, and g is a local
homeomorphism ¢ : U — V whose restriction to each U, is in G, then
gEeG.

The basic example is the pseudogroup Top of all homeomorphisms between
open subsets of R*. A topological manifold is a space that has the local
topological pattern, or structure, of R*. More generally, a G-manifold is a
topological space covered by local coordinate systems such that the. coordinate
change maps belong to G. Here is a more precise statement:

Definition 3.1.2 (§-manifold). An n-dimensional G-manifold M is a topo-
logical space X with a G-atlas on it. A G-atlas is a collection of G-compatible

coordinate charts, or local coordinate systems, whose domains cover X. A co-

ordinate chart is a pair (U;, ¢;}, where U; is open in X and ¢; : U; — R" is
a homeomorphism onto its image. Compatibility means that, whenever two
charts (I;, ¢;) and (Uj, ¢;) intersect, the transition map or coordinate change

Wi =¢;047" : UinUj) - ¢(UiNTy)
is in G.

We make a standing assumption that manifolds are Hausdorfl except
where otherwise noted, but the definition of a G-manifold also applies to non-
Hausdorff manifolds.

~ Of course, we don’t really regard the charts as an essential part of _the
structure of M. Two G-atlases A; and A, for X are compatible if their union
is also a G-atlas. Two compatible atlases are considered to define the same

. G-manifold structure for X.
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Mathematicians have a loathing for ambiguity and indefiniteness, so-often
a manifold is defined by one of two polite fictions: an equivalence class of
G-atlases, or a maximal G-atlas. Either object is so huge and complicated as
to be unimaginable, in contrast with individual G-atlases which are generally
not so hard to construct and deal with.

Just as important as the class of manifolds defined by a G-structure is
the class of maps that preserve that structure. The simplest case is when
two G-manifolds are taken to one another by a homeomorp}iism that, when
expressed in terms of local charts, is given by elementsof G (on a small enough
neighborhood of each point). Such a map is called a G-isomorphism, and we
ha.ve every right to consider the two manifolds related by it as being equivalent,

“identical” in some sense.

We won’t give a complete treatment of G-structures and the variety of
beautiful results and questions relating to them: in fact, we will soon focus on
a small class of rigid pseudogroups. But here is a short list of examples, most
of which will play a part later in the book. For a more thorough discussion,
you can consult [Hae58].

Example 3.1.3 (differentiable manifolds). If ' is the pseudogroup of C”
diffeomorphisms between open sets of R*, for r > 1, a C"-manifold is called
a differentiable manifold (of class C7), or C™-manifold. A C"-isomorphism is
called a diffeomorphism.

It is often convenient to consider only C*, or smooth, maps and manifolds.
This doesn’t cause any loss in generality, because a C™-structure on a manifold
determines a unique C®-structure [Whi36]. In other words, every C* aflas
on a manifold is C*-compatible with a (°° atlas, and any two C° atlases
compatible with the same C" atlas are isomorphic via a - dlﬁ'eomorphlsm
close to the identity.

The situation is not so nice for topological manifolds. In 1956, Milnor
proved the surprising result that there are several inequivalent differentiable
manifolds homeomorphic to S7 [Mil56). After these exotic spheres, other man-
ifolds having inequivalent differentiable structures, or no differentiable struc-
ture, were found. '

In low dimension, as we’ve mentioned, those distinctions collapse: every
two- or three-dimensional topological manifold has a differentiable structure
unique to diffeomorphism. See section 3.3 and [Mun60].

Example 3.1.4 (real analytic manifolds). Let C* be the pseudogroup of
local 'real analytic diffeomorphisms of R®. A C“-manifold is called a real
analytic manifold. Real analytic diffeomorphisms are uniquely determined,
using analytic continuation, by their restriction to any open set. Every smooth
structure on a manifold admits a real analytw structure compat1ble with it

[Whi36].

Example 3.1.5 (foliations). Write R™ as the product R** x R* and let ¢
be the pseudogroup of local diffeomorphisms ¢ that take horizontal factors to
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{ oliation horizontal factors, that is, that have the form

) ;Sl:::;;circles
S ivtion on the $(z,9) = (41(z,9), 62(»)),
e poplaircles forr € R** and y € R*. A G-structure is called a foliation of codimension
P iionr "k {or dimension n — k). To visualize a foliation one should think not of local
% woptincies coordinate charts, but of the inverse images of factors R** x {y} under the

charts, which piece together globally to give the leaves of the foliation.

3 One-dimensional foliations exist on many manifolds: any nowhere van-
| ishing vector field has an associated foliation, obtained by following the flow
lines. One example is the Hopf fibration of 52 illustrated in figure 2.30. In
this case all the leaves close upon themselves, but in general the leaves may
spiral around the manifold in a complicated way:

Exercise 3.1.8 (irrational foliation on the torus). For a torus 72 = R2/Z?,
consider the constant vector field X(z,y) = (1,e). The flow lines of X are the
images of the straight lines y = az + yp on T2, under the projection map. Show
that these leaves are topological circles if « is rational, and dense subsets of T2 if «
is irrational. What value of « gives the circles of figure 2.30?

The torus has many other foliations. For example, the quotient of R?\ {0}
by a homothety centered at the origin is a topological torus. Since the foliation
of R?\ {0} by horizontal lines is preserved by homothety, we get a foliation
on the torus by passing to the quotient: see figure 3.1.
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5 o F 4
X y 4 — |
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foliatetoras

Figure 3.1. A foliation on the torus. {a) The horizontal foliation is preserved
by the homothety z — 2z. (b} A foliation is obtained on the quotient manifold,
a torus. Two of the leaves are circles, hence compact; these are darker in the
picture. All other leaves, of which two are shown, spiral around, accumulatmg
onto the circles. '

Exercise 3.1.7 (the Reeb foliation). Apply the process of figure 3.1in one higher

dimension, that is, starting from a foliation by horizontal planes in R3\ {0}. What

is the quotient manifold? Describe the quotient foliation qualitatively; show that

{ one of its leaves is a torus. Cutting the manifold open along this torus gives two

) solid tori, which can be glue back to form the three—sphere, as shown in figure 2.30.
How smooth is the resuiting foliation of 537
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This discovery of this foliation [Ree52] was something of a surprise, for
before then, no foliation of 5% was known. Later it became clear that
codimension-one foliations are very common: Lickorish [Lic65] and Novikov
[Nov65] showed that they exist for every oriented three-manifold, and Wood
[Woo69] extended this to non-orientable three-manifolds. More generally, a
manifold of any dimension has a codimension-one foliation if and only if its
Euler number is zero [Thu76]. (See [Hae58] and [?] for related results for
foliations of codimension greater than one.) )

.On the other hand, Haefliger [Hae58] proved that no foliation of 5% can

- be real analytic, and Novikov [Nov65] proved that every foliation of 5% or

5% x 8%, as well as many other three-manifolds, has a closed leaf that is a
torus. Gabai [?, 7] has constructed foliations with no closed torus leaves on
many three-manifolds outside the scope of Novikov’s theorem. These results
have interesting consequences for the topology of three-manifolds.

Example 3.1.8 {complex manifolds). When n is even, R" can be identified
with C*/2. Let Hol be the pseudogroup of local biholomorphic maps of C*/2,
that is, holomorphic maps that have holomorphic local inverses. (It turns
out that -this is always the case for holomorphic local homeomorphisms.) A
Hol-manifold is called a complez manifold of (complex) dimension n/2. -

'~ When n = 2, a map is holomorphic if and only if it is conformal and
preserves orientation. Therefore an orientation-preserving isometry of the
Poincaré disk mode] for H? is biholomorphic, and every orientable hyperbolic
surface inherits the structure of a complex manifold.

Stercographic projection from the unit sphere to C is a conformal map.
A collection of maps obtained by rotating the sphere and then mapping by
stereographic projection to C constitutes an atlas for a complex structure on
52 {provided they don’t all omit the same point); this is the complex structure
of CP!, the Riemann sphere.

Similarly, orientation-preserving isometries of E? are holomorphic. It fol-
lows that a surface having a hyperbolic, Euclidean or elliptic structure—that
1s, a metric locally isometric to hyperbolic, Euclidéan or elliptic space—also
has a derived complex structure. In particular, all orientable surfaces can be
made into complex manifolds. .

This easy observation has a converse: every complex structure on a closed
surface comes from a hyperbolic, Euclidean, or elliptic structure. The con-
verse is a celebrated result known as the uniformization theorem. It is closely
related to the 'Riemann mapping theorem. The uniformization theorem was
the subject of much attention (and contention) by Poincaré, Klein, and others
in the latter part of the nineteenth century.

We close this section with terminology that, although standard, is poten-
tially quite confusing, :

A manifold-with-boundary is, in general, not a manifold; it is a space locally
modeled on the half-space R} = {(#1,...,2.) € R* 1 z, = 0}. This means
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that each point p in a manifold-with-boundary has a neighborhood that looks
like & neighborhood of some point in R7, either in the interior or on the

boundary. The set of points that don’t have neighborhoods like those of an

interior point of R} form the boundary.

Again, by specializing {0 a pseudogroup of local homeomorphisms of R,
we get various kinds of manifolds. For instance, if we use the pseudogroup
of local homeomorphisms of R’} that are restrictions of Euclidean isometries,
we obtain Euclidean manifolds with geodesic boundary. Hyperbolic manifolds
with geodesic boundary and elliptic manifolds with geodesic boundary are
defined similarly.

- A manifold {(with no boundary) that is compact is called a closed maenifold,
and a non-compact one is sometimes called open. This is sometimes in conflict
with the usage of “open” and “closed” in general topology, but there isn’t
much we can do about it.
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3.2. Gluings and piecewise linear manifolds

As with most raw definitions, direct use of definition 3.1.2 is rare. Atlases
are an inconvenient way to describe a manifold, and normally orie uses some
“higher-level” operation, such as gluing together pieces of R" or taking the
quotient of an existing manifold by a group, to construct new manifolds. We've
used gluings many times already in this book, especially in section 1.3—where
we saw that one always gets a manifold by gluing edges of pdlygonal regions
in pairs—and in section 1.4.

As long as we were dealing with surfaces, our intuition was a pretty sound
guide. However, some of the conclusions we might reach from this experience
break down in high dimensions. In three dimensions, most of these difficulties
can still be circumvented, so that throughout most of this book, we will discuss
polyhedra and gluings and three-manifolds in a rather intuitive way. But in
this section and the next we will work through some of the relevant technical
issues so that we can comfortably ignore them subsequently.

We consider first gluings of simplices, then gluings of convex polyhedra,
which are more common in practice. Recall that an n-simplez ¢ is the Tconvex
hull of n + 1 taffinely independent points vg,...,v, (in some faffine space,
necessarily of dimension at least n). The convex hull of a subset of {vy,...,v.}
is a face, or subsimplez, of 0. As usual, a two-dimensional face is called an
edge of o, and a one-dimensional face (or the unique point in it) is a verter.
A face of dimension n — 1 will be called a facet. The inierior of a simplex is
what’s left when you take away its proper faces; it can also be defined as the
topological interior of the simplex considered as a subset of its 'affine hull.

A simplicial complez is a flocally finite collection ¥ of simplices (in some
afline space), satisfying the following two conditions: any face of a simplex in
¥ is also 1n X, and the intersection of two simplices in ¥ is either empty or a
face of both. The union of all simplices in £ is called the polyhedron of X, and
denoted by {X|. The k-skeleton of X is the subcomplex consisting of simplices
of dimension & or lower.

If a simplicial complex has finitely many simplices, whose union forms a
convex set, we recover the familiar notion of a conver polyhedron, defined, for
instance, as the convex hull of a finite set of points. When we talk about a
convex polyhedron we’ll be referring to this notion, even if finiteness is not
explicitly mentioned.

Given a map from the vertices of a simplicial complex to an afline space,
there is a unique way to extend it to the complex’s polyhedron so that the map
is affine within each simplex. Such a map is called simplicial. A subdivision
of a complex ¥ is any complex ¥’ having the same polyhedron as %, and such
that every simplex in ¥ is contained in some simplex in £/. The importance
of simplicial complexes as a technical tool is that an arbitrary continuous
map from a polyhedron (into, say, an affine space) can be approximated by
a simplicial map in the same homotopy class, if we subdivide the domain
appropriately.
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Naturally, we want to consider two complexes isomorphic if there is a sim-
plicial homeomorphism between the two. But in practice, a somewhat weaker
concept of equivalence turns out to be egually important: two complexes are
called piecewise linear equivalent if they can be subdivided to yield isomorphic
complexes. '

More generally, a map defined on a subset of an affine space is called

piecewise linear if it can be extended to a simplicial map on the polyhedron
of some simplicial complex. Piecewise linear homeomorphisms between. open
subsets of R® form a pseudogroup, which we cail PL. We thus obtain the
important notion of a piecewise linear manifold, namely, a PL-manifold in the
sense of definition 3.1.2.

Problem 3.2.1. Show that PL really is a psendogroup.

The polyhedron of a simplicial complex, or a space homeomorphic to if,

proving properiy {d}
of definition 3.1.1
seerns very hard.

is said to be triangulated by the complex. More exactly, a triangulation of

a topological space X is a simplicial complex X, together with a homeomor-
phism |Z{ — Xj the various concepts defined for simplicial complexes can be
transferred to X by the homeomorphism. We've already used triangulations
in the context of surfaces, in section 1.3 (see especially figure 1.17).

Problem 3.2.2 (triangulating piecewise linear manifolds). Fix alocally finite
atlas for a piecewise linear manifold. Prove that the manifold can be triangulated
in such a way that each coordinate chart maps each simplex linearly into R®. In
particular, any piecewise linear manifold can be triangulated.

When is a triangulated space a manifold? To study this question, we need
the notion of the link of a simplex. I o is a simplex in a simplicial complex
%, let 11,...,Tx be the simplices of ¥ containing 0. For each 7, let o; be the
simplex “opposite” ¢ in 7y, in the sense that ¢ No; = § and 7; is the convex
hull of ¢ U o;. The link link(o, T) of o is the simplicial complex consisting of
the o;. -

Exercise 3.2.3. (a) Show that if £' is a subdivision of T and ¢ is a simplex in
both £ and ¥, the links of ¢ in ¥ and I are plecewise linear equivalent.

(b) The cone on a topological space X, which we denote by CX, is the product

X x [0,1] with X x {1} identified to a point. Show that 2 point in the interior
of a p-simplex o has a neighborhood homeomorphic to D? x C{link(e, Z)).

Proposition 3.2.4 (spherical links imply manifold). Let X be a trian-
gulated space. If the link of every simplez dimension p is homeomorphic to an
(n — p — 1)-sphere, X is a topological manifold.

In fact, it’s enough to check that the liﬁks of vertices are (n — 1)-spheres; -

this implies the condition on links of arbitrary simplices.

Proof of 8.2.4: By exercise 3.2.3(b), every point in X has a n_ei_ghborhobd of

the form D? x C§7~?~}, which is homeomorphic to D7 x D#?, since the cone

on the sphere is a ball. These neighborhoods cover X, so X is a manifold.
' ' ' ' 3.24
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the (n + 1)-sphere.

Now if we take the Poincaré dodecahedral space of example 1.4.4, and call
it P, the suspension L P is not a manifold, because the link of P x {0} is P
itself, which is not a sphere. But if we take the double suspension £2P (that
is, the suspension of X.P), this obstruction disappears. Now there is an edge
with link P, which is not a sphere, but has the homology of a sphere. It turns
out that 2213 is homeomorphic to 3%, and is therefore a topological manifold.
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Now consider a finite set of n-simplices. A glmng is a choice of pairs of
simplex facets (each facet appearing in exactly one of the pairs), together
with simplicial identification maps between the facets of each pair. We are
interested in the identification space, which is the quotient of the union of the
simplices by the equivalence relation generated by the identification maps.

Exercise 3.2.6. Show that, given a finite set of simplices and a gluing, the resulting
-space is homeomorphic to the polyhedron of a simplicial complex.

Exercise 3.2.7. In a gluing of a collectior: of three-dimensional siraplices, each edge
enters into exactly two gluings, one for each of its faces. Composing these, one gets
a cycle of gluings that eventually must return to the original edge. Suppose that the
composition of gluings around the cycle reverses the edge’s orientation. Describe
a neighborhood of the fixed point of the return map of the edge to itself, in the
resulting identification space.

Exercise 3.2.8. Show that a manifold obtaired by gluing is orientable if and the
faces of each simplex are oriented oonsmtently, and all face jdentifications are orienta-
tion-reversing {cf. exercise 1.3.2). :

The following result is a particular case of Edwards’ criterion, but we will
prove it directly:

Proposition 3.2.9 (manifolds have spherical links in dimension
three). The space oblained by a gluing of three-dimensional simplicies i a
three-manifold if and only if the link of every vertez is homeomorphic to S2.

- Proof of 3.2.9: We need some test that non-ma,nifolds will fail, and we choose
local simple connectivity. A topological space X is simply connected at =,
where z € X, if for any neighborhood U of z there is a smaller neighborhood
z € V C U such that any closed loop in the punctured neighborhood V' \ {z}
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% two-dimensional 15 homotopic to a point within U \ {z}. Manifolds of dimension greater than

gloing iz a manifold

% 8 knottier sxample {0 clearly are simply connected everywhere.

gy oaitold it x = 0" If X is a polyhedron and v is a vertex of X, it is certainly the case that
follows that X minus its vertices is a manifold, because the link of any edge is
automatically a circle (cf. exercise 1.3.2(b)). Therefore the link of any vertex
of X. But it is easy to see that X is simply-connected at v if and only if
link(w, X); since the only simply conneced surface is 5%, we conclude that if
the link of v is not a sphere, X is not simply connected at v, and therefore is

-nof a manifold. 3.2.9

Even when a space obtained by gluing three-dimensional simplices is not a
manifold, it can be made into one by removing the vertices whose links are not
‘spheres. This is what we did in example 1.4.8. Alternatively, we can remove
an open neighborhood of each bad vertex, to obtain a compact manifold with
boundary.

Proposition 3.2.10 (gluing is manifold iff ¥ = 0). If X is obiained by
gluing simplices, X is a three-manifold if and only if ils Euler number is zero.
In general, if X has k vertices vy, ..., v, we have

x(X)=k—= Z x (link(v;, X)).

1.-1

e
\:».:5,-:

Proof of 8.2.10: Let e, f and ¢ be the number of edges, two-faces, and tetra-
hedra in X. Then f = 2f, since each face lies on two tetrahedra and ea.ch
tetrahedron has four faces. We also have

k ' '
> x(link(w;, X)) = 2e — 3£ + 44,
i=1

since each edge accounts for two vertices in links of vertices, each face accounts

for three edges and each tetrahedron for four faces. The desired equality
follows.

Since the Euler number of the two-sphere is 2, and the Euler number of

" every other closed surface is less than 2, we get x(X) > 0, with equality if and

only if X is a manifold. - 3.2.10

'Now let X be a space obtained by gluing n-simplices. Since the gluing
maps are linear, X can be immediately given the structure of a piecewise
linear manifold in the complement of the (n — 2)-skeleton. Now consider an
(n — 2)-simplex: its link is a circle. By reasoning as in exercise 3.2.3(b), one
sees that the interior of the simplex has a neighborhood that is piecewise linear
isomorphic to a neighborhood in R™ Thus, the piecewise linear structure
extends to the complement of the (r — 3)-skeleton.

In general, if the link of every cell of dimension greater than & is isomorphic
a piecewise linear sphere, it follows that the link of each k-cell has the structure
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3.2. GLUINGS AND PIECEWISE LINEAR MANIFOLDS 100
of a piecewise linear manifold, and one can ask whether this piecewise linear
manifold is a standard piecewise linear sphere. With this understanding, the
statement of the next proposition makes sense:

Proposition 3.2.11 (piecewise linear manifolds have spherical links).
A space X oblained by gluing simplices is a piecewise linear manifold if and
only if the link of each cell is piecewise linear homeomorphic ta the standard
piecewise linear sphere. ' -

Proof of 8.2.11: I the link of each cell is a standard piecewise linear sphere,
the construction of proposition 3.2.4 gives a piecewise linear atlas.

A triangulation of a piecewise linear manifold is not well defined up to
piecewise linear homeomorphism, but nonetheless, the link of any piecewise
linear embedded k-cell can be defined, and it is always a n — k& — 1 sphere.
(Show how to make sense of the link, show that it is well-defined, and that it
is always an (n — k — 1)-sphere.) This gives the converse. 3.2.11

There are many other interesting problems involving triangulations of
manifolds: When can a topological manifold be triangulated, and do any two
triangulations of a manifold admit isomorphic subdivisions? This latter ques-
tion is the famous Hauptvermutung, or fundamental conjecture, and it is clearly
not true in general: the triangulation of $% described in example 3.2.5 is not
piecewise linear equivalent to the standard triangulation. The first question
has also been answered in the negative for general manifolds: Kirby, Sieben-
mann and Wall showed there exist topological manifolds of dimension 6 that do
not admit any combinatorial structure, and there are non-standard structures
for combinatorial manifolds of dimension 5. But in dimension three or lower
all topological manifolds are triangulable, and all triangulations are piecewise
linear equivalent.

So far we've only considered gluings of simplices, and only by affine maps.
What happens when we allow gluings of arbitrary convex polyhedra, by arbi-
trary maps? Is the topology of the identification space determined by just the
gluing pattern, or does it depend -on the particular choice of a gluing?

The set of vertices of a convex polyhedron is the unique minimal set of
points whose convex hull is the polyhedron; a face is an intersection of the
convex polyhedron with a half-space, having dimension less than the dimension
of the polyhedron.

Two convex polyhedra are combinatorially equivalent if there is a one-to-
one correspondence of their faces of every dimension that preserves incidence.
Thus the vertices are in one-to-one correspondence; each edge of one poly-
hedron - corresponds to an edge of the other polyhedron with correspondmg
vertices; and so on.

If « is 2 combinatorial equivalence between polyhedra F and ¢, a homeo-
morphism h : P — @ is in the combinatorial class of a if A sends each face of
every dimension to the face specified by a. It is easy to see that every combi-
natorial equivalence can be realized by a homeomorphism in its combinatorial
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i cpluing pettern class, but of course not all homeomorphisms are in the combinatorial class of
s nglning
compatibilty a combinatorial equivalence.
copdlisgn
sbarycentric Now consider a finite set of combinatorial classes of n-dimensional convex

subdivision

Problem unigueness  polyhedra. A gluing paltern is a choice of polyhedron facets (each facet. ap-

The Alexander wrick  pearing in exactly one of the pairs), together with 2 combinatorial equivalence
between the facets in each pair. A gluing realizing this pattern is a choice of
actual convex polyhedra of the given combinatorial types, and a choice of ac-
tual homeomorphisms between the faces in the given combinatorial equivalence
classes.

Not any choice of homeomorphisms will do, however: there is a compat-
ibility condition. Any face 8 of dimension n — 2 or less is a face of two or
more facets, so it enters into two or more pairings. Compositions of the var-
jious identifications will result in the identification of 8 with possibly many .
other faces. A bit of reflection shows that there will always be chains of these
identifications that take B to itself. The compatibility condition is this: For
any face A and any chain of identifications whose composition takes 8 back
to itself in the combinatorial class of the identity, the composed identification

" must actually be the identity.

One way to choose compatible gluing homeomorphlsms makes use of the
barycentric subdivision of a polyhedron, which is defined just like the barycen-
tric subdivision of a simplex. Given a combinatorial equivalence between two
polyhedra, we form their barycentric subdivisions, map corresponding vertices
to corresponding vertices, and extend the correspondence to an affine map on
each simplex. It is easy to see that if a gluing map is built in this way, it
satisfies the compatibility condition. :

Problem 3.2.12 {uniqueness of gluings). (a) (The Alexander trick.) Show that
a homeomorphism of the unit ball in R"™ that is the identity on its boundary is
isotopic to the identity. {Hint: comb all the tangles to a single point.)

{b) Show that any two gluings realizing a glven gluing pattern yield homeomorphic
identification spaces. :

Problem 3.2.13. (a) Give a definition for the the link of a cell in a space obtained
by gluing polyhedra

(b) Exterd the various results of this section to this case.

 The number of possible gluings for polyhedra growé. very fast with the
number of facets. ' ' '

Exercise 3.2.14. (a) In how many ways can one pair each face of a cube with its
opposite, so as to produce an oriented three-manifold?

~ (b) Show that the number of gluing patterns for an octahedron is 8!-3%/(41-2%) =
Ty 8505. Can you estimate how many of these yield manifolds? How many yield
i _ orientable manifclds?

o
({/

(¢} Same question for an icosahedron.
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Because of symmetries, many gluing patterns give obviously homeomor-
phic results—for example, in the case of an icosahedron, this reduces the num-
ber of different gluing diagrams by a factor of about 120. {Since some gluings
have a certain amount of symmetry, the reduction is not actually quite this
much.) This still leaves o huge number which are not obviously homeomor-
phic. It seems unlikely that the same phenomenon occurs, as in dimension
two, when very large numbers of different gluing patterns give homeomorphic
manifolds, but how can we tell? We need more tools to be able to name and

recognize a three-manifold when it is described in different ways.

We conclude this section with some further exémples of G-structures. Al-
though related to piecewise linear structures, these notions will not be used
later.

Example 3.2.15 (piecewise projective manifolds). A homeomorphism
R"™ — R” is piecewise projective if the domain is a union of n-simplices such
that the map is a projective transformation on each simplex. A PP-manifold,
where PP is the pseudogroup of local piecewise projective homeomorphisms,
is called a piecewise projective manifold.

If F is a finite set of points in R™*! which do not alllie in a hyperplane, then

.bdunda.ry of the convex hull of F is of course homeomorphic to a sphere. The

sphere automatically has a piecewise projective structure, where coordinate
patches are defined by projection of a piece of the boundary from a point
inside the convex hull to a plane. When the point changes and the plane
changes, the transition functions are piecewise projective. '

Problem 3.2.16 (piecewise linear and piecewise projective structures).
The piecewise linear pseudogroup is contained in the piecewise projective pseuod-

* group, 50 a piecewise linear manifold automatically has a piecewise projective struc-

ture. The piecewise linear structure is a refinement of the piecewise projective
structure it defines.

(a) Show that every piecewise projective structure can be refined to give a piecewise
linear structure.

(b) Show that for any two refinements of a piecewise projective structure on a
manifold, there is a piecewise projective transformation of the manifold to itself
that carries on to the other. Thus, the refinement is not canonical, but it is
canonical up to piecewise projective equivalence.

(c) Show that the boundary of the convex hull of F, as aboiie, has a natural piece-

wise linear structure. Does the link of a vertex in a piecewise linear-manifold
have a canonical piecewise linear-structure, or only a canonical piecewise pro-
jective structure? .

Not all interesting pseudogroups act tra.nsxtwely Here is one of the most,
intriguing examples: :

Example 3.2.17 (piecewise integral projective manifolds). The group
PGL{n + 1,R) of projective transformations of RP™ contains the discrete
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subgroup PGL{n + 1,Z)}. The pseudogroup PIP of piecewise integral projec-
tive transformations consists of local homeomorphisms of R" for which there
is a subdivision of the domain into n-simplices, such that on each one, the
homeomorphism is induced by the action of PGL(n + 1,Z) on R* C RP™.

Since PIP takes points.in R® with rational coordinates to points with
rational coordinates, it is not transitive.

Problem 3.2.18 (piecewise linear and piecewise integral projective struc-

‘tures). Show that every piecewise linear manifold can be given a piecewise integral

projective structure, unique up to plecewise integral projective equivalence.

The unusual aspect to this structure is that the group of piecewise in- -

tegral projective homeomorphisms of a manifold is only countable. Richard
Thompson has shown that the group of piecewise integral projective transfor-
mations of the circle is finitely presented and simple. It is not known whether
the piecewise integral projective homeomorphism group of a surface is finitely
presented. _ _ .

It turns out that the Teichmuller space of a surface (section 3.8) can be
given a sphere at infinity, analogous to that for hyperbolic space, such that
the transformations induced by homeomorphisms of the surface are piecewise
integral projective. '
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Sertion "Smoothings" 3.3. Smoothings

differentiable manifold

Seclio'n “diffcomor. » )
Poivheara ™ We now have a pretty good theoretical understanding of which gluings of

T reamorsnmss  polyhedra give topological three-manifolds, but there still remains a significant

Convention

“ecntinuons issue. Does a space obtained by gluing polyhedra have also the structure of a

dependence co

dgiteomorprism  differentiable manifold? Here is a warm-up exercise:

- Exercis 3.3.1. (a) Show that any two n-gons are diffeomorphic. (To be a dif-
feomorphism, a map should have a maximum rank derivative at every point,
including the vertices.)

(b) Show that two combinatorially equivalent convex polyhedra in R® having ao
more than four edges at any vertex are diffeomorphic.

{c) Show that a typical convex icosahedron in the combinatorial class of the regular
icosahedron is not diffeomorphic to the regular icosahedron.

- This exercise illustrates the need to be careful.

To construct a differentiable structure on a manifold obtained by gluing
convex polyhedra, it is a mistake to keep track of the differentiable structure
of the entire polyhedra; a better approach is to insist only on retaining their
piecewise-differentiable structure. _

The construction or proof of uniqueness of a smooth structure is done by
induction on dimension. The main step in the induction procedure investigates
the link of a simplex. For this reason, the crucial results relate to the structure
on a sphere, and our initial objective is {o understand betier the group of
diffeomorphisms of the sphere.

Let Diff(S™) be the group of smooth diffeomorphisms of the n-sphere. We  suvio, ricase cheax
topologize Diff(S™)} with the C'l-topology. That is to say, a diffeomorphism inere are swe macres,
is near the identity if both its values and its derivatives are uniformly near E;T‘f‘?;‘:ﬁgﬁﬁ e
the identity. The orthogonal group O(r + 1) is contained in Diff{(S™). ID . cect retercnces
low dimensions, the inclusion is a homotopy equivalence, but this is false in fgo e M
general.

Theorem 3.3.2 (linearizing diffeomorphisms). The inclusion O{n+1} C
Diff(S*) is a deformation retract forn =1 and n = 2.

This theorem is due to Smale [Sma59].
PT‘OOf Of 3. 3-2: Silvia. This is net a

convention, One
needz & macre 1o

Convention 3.3.3 (continuous dependence on diffeomorphism). Let f b s reterence o
be a diffeornorphism of S* or 5%, We will perform various operations on [ to phage
change it to an orthogonal transformation. One can check as one goes that each
operation is straightforward enough so that if it is carried out simultaneously
on all diffeomorphisms, then the effect is continuous as a function of f, so that

the desired deformation retraction is indeed constructed.

In order to prepare for the non-trivial part of the proof, we will first make
the derivative of a diffeomorphism orthogonal at one point, and then make the
diffeomorphism equal to that orthogonal transformation in a neighborhood of
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the point. These results are true for all values of n. The problem will then
reduce to showing that the group of diffeomorphisms of a disk which are fixed
on the boundary is contractible, which is false for general .

First we do some standard linear algebra. Let e, ..., e, be the standard
orthonormal basis for R**!. Any basis =q,...,z, gives rise to a flag of half-
spaces Xo, ..., Xn, where X; has dimension 7 + I and is the unique halfspace
containing X;_; and z;. If we have two bases giving rise to the same flag, then
there 1s a canonical homotopy from one to the other, moving each basis vector
linearly, and the flag is fixed by the homotopy. Given a flag, there is a unique
orthonormal basis giving rise to the flag. This assignment of an orthonormal
basis to an arbitrary basis is known as the Gram-Schmidt process and we will
call the canonical homotopy of an arbitrary basis to an orthonormal basis
the Gram-Schmidt homotopy. Note that if the first ¢ vectors of the basis are
orthonormal, then they stay fixed during the Gram-Schmidt homotopy.

Exercise 3.3.4. Show that GL(n,()R) deformation retracts to O(n).

Lemma 3.3.5 {nice patch). Let D be a round disk in S™ with center eq €
S*, and let G}, C Diff(S™) be the space of diffeomorphisms f of S™, whose
restriction to D is equal to the vestriction of some element of O(n + 1) and
such that f(—eg) = —f(eo). Then Diff(S™) deformation retracts to G,

* Proof of 3.9.5: We will work as though there is only one diffeomorphism f to

worry about (see 3.3.3).
First we show that we can make the derivative orthogonal rather than

linear at ep. Let zo = f(eo) and let z4,...,2, be the image of ey,..., e,

under the derivative of f at eg. Let X be the {n 4 1) x (n 4 1) matrix with
columns the z;, and let X; be the Gram-Schmidt homotopy, with Xo = X
and X; orthogonal. The first column of X; is zg. Let p: R* — 5™ be radial
projection. Consider the isotopy pX; X~1f: 5" — S". The isotopy keeps the
image of eg at ¢ the image of —eq:at — f{eo) and, at time ¢, the derivative at
ep 1s X;. It follows that WE may restnct our atiention to diffeomorphisms with
X orthogonal.

By 77, if we are given three points A, B and C on 5", such that A is
distinct from B and (', there is a unique pa.ra.bohc element ¢ with fixed point
A such that g(B) = C. The map ¢ depends continuously on 4, B and C.
Moreover the derivative of ¢ at the fixed point is the identity.

We apply this to our situation with A = f(ey), B = f(—ey) and C =
—f(eo) to show that we can restrict attention to f such that f(—ep) = —f{eo)
and with derivative at ep orthogonal. Let X € O(n+1) be the unique orthog-
onal map given by f and the derivative of f at eg. Then f- 1X:8" — 8 ﬁx&s
eo and —ey and has derivative equal to the identity at eg.

- Conjugating with stereographic projection from —ey, we get a smooth map
h:R™ — R" fixing the origin and with derivative the identity. We use a bump
function ¢, with support in a small disk centered at the origin, to create an
isotopy moving from % to a map which is equal to the identity near the origin
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% averaging. and is equal to h outside the unit disk. There are some technical points to
gx:;ifsf i:'t:nlr:ra.gin;” check here (see exercise 3.3.6).

nlce pald . - - - - - * -
% nice patch Finally, we expand the small disk radially until it is equal in size to the

% loganthm

disk D in the statement of lemma 3.3.5. 3.3.5

Exercise 3.3.6 (averaging). Giver a bump function ¢ with support in the unit
disk in R”, let ¢.(z) = $(z/e). Let h be a diffeomorphism of R™ keepmg the origin
fixed with derwa.tlve the identity.

.(a.) Show that ¢.id + (1 — t, )b gives an isotopy of h for & small enough depending
on h.

(b) Explain why it is probably not an isotopy when ¢ is too large.

(c) Show that £ can be chosen in a manner which depends only on the restriction
" of A to the unit disk, and in a manner which depends continuously on this
Testriction. (This only makes sense if we have a topology on the space of maps

of the closed unit disk into R"—we use the Cl-topology.)

(d} The isotopy created in the proof of lemma 3.3.5 depends continuously on the
restriction of h to the unit disk and therefore continuously or f.

We have shown in lemma 3.3.5 that we may assume that the diffeomor-
phisms we are considering are orthogonal in a disk D. In the case of 5%, we
can now change the diffeomorphism by a linear isotopy on the complementa.ry
interval (see exercise 3.3.7).

It follows that we need only show that the group & of diffeomorphisms
of 52, which are equal to the identity on D, is contractible. This means that
we only need to prove that the group of smooth diffeomorphisms of the plane,
which are the identity outside the unit square, is contractible.

r 1
L. _
VeclorField

Figure 3.2. Vector field on the square. Trajectories of a smooth vector field
which is constant and vertical outStde the unit square.

Now that we have set the stage, we come to the important part of the
proof. Let h:R? — R? be fixed outside the unit square. and let V be the
image of the unit vector field (0,1) under h. We normalize V' to get a unit
length vector field. We have a map R? — S! which gives the direction of V.
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Outside the unit square the map is constant. This map is homotopic by a
smooth homotopy to a point without changing it on the complement of the
unit square, as we can see by lifting to the covering R — S1. Let V; be the
unit vector field at time ¢. V, depends continuously on the pair (t, ), where
0 <t<1, and % is a diffeomorphism of R? which is fixed outside the unit
square, and, for fixed V(z) depends smoothly on the pair (z,t}, where z ¢ R2.

‘Now consider the trajectories of V; for some fixed value of t. We claim

that the orbit of any point in the square starts from the bottom edge of the’

square and ends on the top edge. For otherwise the orbit accumulates in the
square at some point p. We then oblain a closed orbit by adjusting the vector
field in a neighborhood of p. This is impossible (see problem 3.3. 8)

We now reparametrize the trajectories so that it takes unit time to go
from the bottom of the square to the top along any trajectory. Integrating the
vector fields, we get the required isotopy. h

Exercise 3.3.7 (logarithm). Make sense of the assumption made in the proof

- above that an orthogonal map of S! can he regarded as linear on an interval con-

tained in the circle.

Problem 3.3.8 (closed orbits). Prove that a never zero vector field in the plane
has no closed orbits. (Hints: Use problem 1.3.12 and proposition 1.3.10. Move the
vector field to make it point inwards along the closed orbit.) The answer to this

: questmn is a pa.rt of the famous Poincaré-Bendixson theorem

Problem 3.3.9 (reparametnzatmn) We give the space of smooth vector fields
on the square the C-topology. Here are some details that should be checked in the

 proof of theorem 3.3.2.

{a) Prove that, with an appropriate choice of homotopy, V; varies continously in
the C'-topology as a function of the given diffeomorphism and of ¢.

(b) Prove the reparametrization described in the last paragraph of the proof of
theorem 3.3.2 can be done in a way that varies continously with the vector
field in the compact open topology. (Hint: use the inverse fanction theorem
on a single vector field. Use facts about approximate solutions to differential
equations and continuous dependence of inverse functions on ‘parameters for the
continuity.)

Exercise 3.3.10. Why doesn’t the proof of theorem 3.3. 2 go through in higher

dimensions?

1

Corollary 3.3.11 (extending diffeomorphisms). Let n'=1, 2 or 3. Let
D™ be the unit disk, with boundary S*. Then the homomorphasm Diff{D™) —
DiE(S™1), given by restriction, is a homotopy egmmlence In particular any
diffeomorphism of S*~* can be extended to D".

Proof of 3.3.11: To construct the inverse map to the homomorphism, we start
with a diffeomorphism and use Smale’s theorem (3.3.2) to construct an isotopy
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to an orthogonal map. Let B be a small ball with center the origin of D®. The
isotopy is used to construct a diffeomorphism of the complement of B to itself,
which restricts to the given diffeomorphism on 5% and it an orthogonal map
on the boundary of B. We extend the orthogonal map to B radially from the
origin. 3.3.11

Exercise 3.3.12. Fill in the details of the proof of 3.3.11. Show that all the con-
structions depend continously on the data. Show how to carry out the construction
50 that the final map is smooth in a neighborhood of the boundary of B. Explain
how a careless interpretation of the words of the proof would lead to a map which
is continuous but not differentiable on the boundary of B.

Challenge 3.3.13 (extending diffeomorphisms to a simplex). Amongst other
things this exercise gives a very nice and very explicit way of approximating the
boundary of a simplex.

{a) Let o be a linear n-dimensional simplex in R™ and let A, ..., A, be the barycen-
tric coordinate fanctions for #. Prove that for fixed small positive g Ag... . = ¢
is the equation of an (» — 1)-manifold, one of whose components S, inside o is
diffeomorphic to 71

(b} Show that S, is smooth and that it enclosés a convex set.

(c) As ¢ tends to zero, S. tends to the boundary of o in the Hausdorff topology

(d) Let f be a diffeomorphism of a neighborhood U in e of the boundary of ¢ into
0. For ¢ sufficiently small, fS; is a sphere boundmg a set which is star-shaped
from the barycenter of o.

{e) Let W be the complement in ¢ of a small round ball centered at the barycenter.
The restriction of f to a smaller neighborhood of the boundary can be extended
to a diffeomorphism of W with itslf.

(f) If » < 3, the restriction of § can be extended to a diffeomorphism of ¢ with
itself.

A triangulation of a topological space X is a simplicial complex X and a
homeomorphism ¢: K — X. Let M be a smooth manifold. A triangulation of
M is said to be a C"-triengulation if the restriction of the homeomorphism to
each closed simplex is a C"-diffeomorphism.

Theorem 3.3.14 (smoothing). Let M be a piecewise linear manifold of
dimension one, two or three. Then M has a smooth structure and a C™-
triengulation, such that the trigangulation has the given piccewise linear struc-
ture. Any lwo such structures are diffeomorphic to each other.

We emphasize that these conclusions are false in higher dimensions. There
are piecewise linear manifolds that cannot be made smooth, and there are also
piecewise linear manifolds which have essentially distinct smoothing. The
famous first examples of these were due to Milnor [Mil56], who proved that
there are differentiable manifolds homeomorphic to S7 but not diffeomorphic
to S7. In dimensions one, two and three, the concepts of topological, piecewise
linear and differential manifolds are essentially equivalent, but we do not prove
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. the equivalence of the topological case with the others. (See Moise [Moi77],

[Bin39] and other references for a discussion of the problem.)

Proof of 3.8.14: This proof consists largely of not very interesting technical
details, which could be carried out in different ways. Whatever one does, the
crux of the matter is the application of Smale’s theorem (3.3.2).

We prove existence first. Let n be the dimension of our manifold. We
may assume that our manifold is triangulated, that for each simplex ¢ there
is a piecewise linear coordinate chart which is defined on a neighborhood of
the closed star of ¢ and that each coordinate chart maps each simplex linearly
(see 77). .

The differentiable coordinate charts in the neighborhood of each vertex are
precisely the same as the piecewise linear coordinate charts. Now we extend
the differentiable structure to a neighborhood of the edges. Let e be an edge,
and let ¢ be a piecewise linear coordinate chart defined on the small open
neighborhood N of the interior of ¢ to R™ which is linear on the intersection
of N with each simplex.

k= o
1manifold . . ’ ’

- Figure 3.3. charts for one di mensmnal manifold. Charts for a one-manifold
- which are linear on each simplex give an affine structure.

When n = 1, the transition functions are already smooth (in fact affine),
and so the existence of a differentiable structure is proved.

r : | 9 | -

ishear
< _ -
7
—
. $smoothedshear
— N | B

Shear
_ Figure 3.4. smoothmg a shear. In a neighborhood of an edge, the transition
function of a triangulated PL manifold is a shear.
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When n = 2, N consists of two closed strips 5* and 5", whose intersection

is e. Consider the portion of N on which two possibly different differentiable

structures have been defined. This portion is the disjoint union of two con-
nected pieces N; and N;. The transition function is linear on 5N N, and on
S" N Ny. We can therefore deform ¢ so that the transition function becomes

smooth. It is only necessary to perform the deformation in an éxtremel_y small

neighborhood of e. Awa.y from e, ¢ is unaltered.

On each triangle, we now have a differentiable structure in a neighborhood
of the edges. Moreover, in an annulus going round the boundary of the triangle,
a little away from the edge, the original linear chart on the triangle gives the
differentiable structure. Therefore the differentiable structure extends. 'This
completes the proof of the existence of a differentiable structure on a plecewxse
linear surface.

Now let n = 3. We first have to extend the differentiable structure already
found in the neighborhood of each vertex over the sets N defined above. The
picture of N is a bar with central axis e and flanges radiating out from e.

At the two ends of N, we have pieces N; and N; on which two distinct
differentiable structures have been defined. We restrict our attention to Nj.
N, consists of a finite number of wedges and each wedge has two flanges

- appearing in its boundary. We will change ‘¢, the coordinate chart for N,

50 that the transition function becomes smooth. We will express this purely
in terms of changing the transition function itself. Since we are fixing the
coordinate charts for the neighborhoods of the vertices, this forces a change in
¢ on N;. We will omit the easy details associated to the concomitant change
in ¢ which 1s necessary near Ny.

The initial transition function is linear on the intersection of N; with
any simplex. We regard it as being the identity on e. The first step is to
make the transition function for N send each {wo-dimensional disk normal
to e into itself. The circles which bound these disks are triangulated by their
intersection with the triangulation of M. We adjust the transition function so
that these circles are mapped difieomorphically and so that vertices are fixed.
The diffeomerphism can be extended to the disks bounded by the circles, using
corollary 3.3.11 (see figure 3.7). The differentiable structure has now been
extended to a neighborhood of e, consistently with the given differentiable
structure on each closed simplex.

Now we extend the differentiable structure to a neighborhood of a 2-
simplex 0. Let N be an open neighborhood of the interior of . We have
a chart ¢: N — R? which is linear on the intersection of N with any simplex.
The boundary of o has an annular neighborhood in & where the differentiable
structure has already been defined. Let Ny C N be a neighborhood of the an-
nulus in M where the differentiable structure has already been defined. There
are therefore two differentiable structures on N; and the transition function is
smooth except on o N NV, on which it is smooth in the tangential direction.

We straighten out the normals to o to make the transition function smooth
on Ny.
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Figure 3.6, flanges, The neighborhood of an edge in dimension three.

We now have a differentiable structure in a neighborhood of the 2-skeleton,
which agrees with the given differentiable structure on each closed simplex.
Therefore we can extend the structure to each 3-simplex by using a linear chart
on the interior of the 3-simplex. This completes the proof of the existence of
a smooth structure on a 3-dimensional piecewise linear manifold.

The next task is to prove the uniqueness of the smooth structure. We recall
that we are assuming that there is a triangulation of M and two differentiable
structures, such that the differentiable structure on each closed simplex is given
by a linear embedding in R™.

Lemma 3.3.15 (dimension 1 uniqueness). Let M be a one-manifold and
let $: K — M be a triangulation of M. Suppose we have two differentiable
structures on M, such that ¢ is a C°-triangulation for each of them. Then
the two structures are diffeomorphic by o diffeomorphism which sends each
simplex to itself. :

Proaf of 3.3.15: We construct a diffeamorphism near the vertices and extend

it. 3.3.15

Lemma 3.3.16 (dimension 2 uniqueness). Let M be a fwo-manifold and
let ¢: K — M be a triengulation of M. Suppose we have two differentiable
structures on M, such that ¢ is @ C®-triangulation for ecach of them. Let N
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be a neighborhood of the vertices. Then the two structures are diffeomorphic
by a diffeomorphism which sends each vertex to itself, and, for each simples
o, sends c\N to o.

Proof of 3.8.16: We construct a diffeomorphism A near the vertices which sends
each vertex to itself and, near each vertex, but not too near, sends each point
on an edge e into e (see figure 3.7). It is easy to extend & to a neighborhood of
the 1-skeleton in such a way that any point which is not too near the 0-skeleton
and which lies in an edge e is sent into e.

Now we want to extend k to each triangle, having already defined A on a
neighborhood of the boundary. There is enough control of the diffeomorphism
near the vertices {but not too near) and near the edges, to enable us to con-
struct a smooth simple closed curve, which is star-shaped from the barycenter,
whose image under % is also star-shaped from the barycenter. We can then’
extend k to the whole triangle, using corollary 3.3.11 in dimension one.

13.3.16

Lemma 3.3.17 (uniqueness dimension 3). Let M be a three-manifold and
let $: K — M be a triangulation of M. Suppose we have two differentiable
structures on M, such that ¢ is a C®-triangulation for each of them. Let Ny
be an open neighborhood of the vertices and let Ny be a neighborhood of the
1-skeleton. Then the two structures are diffeomorphic by e diffeomorphism
which sends each verter to itself, for each edge e sends e\ Ny to ¢, and for each
triangle t sends t\Ny io t.

Proof of 3.3.17: Let v be a vertex and let S’ and S be small smoath 2-spheres
surrounding » in the two differentiable structures. Then S’ and S” give two
smooth structures which are equivalent as PL, manifolds. By lemma 3.3.16,
there is a diffeomorphism from 5’ to $” which sends vertices of 5 to vertices
of 5", most of each edge of S’ to an edge of §” and most of each triangle of
S’ to a triangle of §”. By corollary 3.3.11, # can be extended to map the
three-dimensjonal ball bounded by S’ to the ball bounded by 5”. We may
assume that %z sends the vertex at the center of the ball to itself.

Now we extend % to a neighborhood of the edges. Such a neighborhood
is a solid cylinder with central axis an edge e and with flanges corresponding
to the various triangles which have e as an edge. The boundary of the solid
cylinder consists of two disks, lying on spheres surrounding vertices of M, and
a cylindrical surface §. The intersection of -S with the triangles of M consists
of a finite set of arcs (see figure ??) going from one end of the cylinder to the
other. ' - ' '

We extend % to a diffeormnorphism of S with the following properties. If D is
a disk normal to e in the one structure, then it is mapped to a disk normal fo e
in the other structure, through the same point of e. If I is an arc of intersection
of a two-simplex ¢ with 5, then it is mapped into ¢. Using corollary 3.3.11, we
extend the diffeomorphism to D, sending the edge ¢ to itself by the identity.
We have now defined % in a neighborhood of the one-skeleton.
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Zsmooihing

Figure 3.7. smoothing a piecewise linear homeomorphism. The first and
second circles enclose neighborhoods of a vertex. The third circle shows the
image of the second neighborhood in the first under a diffeormorphism
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Next we extend k to the two-dimensional simnplices, as in lemma 3.3.16.
Then we extend h to a neighborhood of each triangle, by defining it on shert
curves normal to the triangles.

Finally, we want to extend 4 to each tetrahedron, having defined it on a
neighborhood of the boundary of the tetrahedron. Let v be the barycenter
of the tetrahedronand let B be a small round ball centered at v. We have
sufficient control so that we can construct a smooth 2-sphere near the bound-
ary, star-shaped from v, sent to a smooth 2-sphere near the boundary, also
star-shaped from v. Since the spheres are star-shaped, they bound balls. An
alternative to making the spheres star-shaped it to quote Alexander’s theorem
(??). By the corollary to Smale’s theorem (3.3. 11), we can extend A to the

tetrahedron. _ | 3.3.17
This completes the proof of the theorem. 3.3.14

Problem 3.3.18. {a) Suppose a smooth manifold M of dimension m is embedded
smoothly as a closed subset of a smooth manifold N of dimension m + 1 and
that M and N are orientable. Siuppose this is done twice, with the same M,
but with two different manifolds N, namely Ny and No. Prove that there is a
neighborhood of M in Ny which is diffeomorphic to a neighborhood of M in
N,, such that the diffeomorphism is the identity on M. For the purpose of this
chapter, this only needs to be proved for m =0, 1 and 2.

(b} Prove that any diffeomorphic embeddings of the unit ball B* in R" is isotopic
among diffeomorphic embeddings to the linear map having the same derivative
at the origin.

(¢} Prove that any djﬁ'eomorphjsm of the unit disk D? to itself that fixes three
points on its boundary is isotopic among such diffeomorphisms to the identity.
[Hint: use the Riemann mapping theorem creatively.]

Exercis 3.3.19. canonical smoothing of a three-manifold] From theorem 3.3.14 we
know that a three-manifold has a differentiable structure canonical up to diffeomor-
phism. Can you find a canonical definition for a differentiable structure, given a
gluing pattern? In other words, can you find rules for the construction of a differ-
entiable structure so that no arbitrary choices need to be made in the course of the
construction?

If such a definition exists, it can be expressed as a collection of open coordinate
charts in E?, together with pasting diffeomorphisms identifying an open subset of
one with. an open subset of another, such that there is some “formula” for the
pasting diffeomorphism in terms of the combinatorics of the polyhedra and their
gluing pattern.
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3.4. Geometric structures on manifolds -

It is sometimes convenient to permit ¢ to be a pseudogroup acting on an
arbitrary manifold, although as long'as G is transitive, this does not give any
new types of manifolds. Given a group G acting on a manifold X, we can
consider the pseudogroup G of restrictions of elements of & to open sets in X;
we will generally talk about (G, X)-manifolds mstea,cl of G-manifolds. Many

irnportant pseudogroups are of this form:

Example 3.4.1 (Euclidean manifolds). If @ is the group of isometries of

‘Euclidean space E*, a (G, E*)-manifold is called a Euclidean, or flat, manifold;

the structure of these manifolds is what we discussed informally in section 1.1.
As we saw in section 1.3, the torus and the Klein bottle are the only compact
two-dimensional manifolds that can be given Euclidean structures, but there
are many such structures. We'll return to this question in section 3.8.

I is an altogether non-trivial result, due to Bieberbach [Cha86], that, in
any dimension, there are only finitely many compact Euclidean manifolds up
to homeomorphism, and that any such manifold can be finitely covered by a
torus of the same dimension. For more details, see section 4.3.

- Figure 3.8 shows a gluing construction for a three-dimensional example,
which we’li€all G in section 4. 4, where three-dimensional Fuclidean manifolds
are classified.

r ' ' ' . !

i
euclideanmanifold

Figure 3.8. A Euclidean three-manifold. Starting with two ldentlcal cubes,
each marked with an altitude bisecting each face in such a way that no two
altitudes intersect, identify each face of a cube with the same face of the other
cube, by means of a reflection in the chosen altitude. The result is a Fuclidean
manifold.

-

Exercise 3.4.2. Prove the last assertion in the caption of figure 3.8.
(3) Show that the identification space is a manifold. {This will follow trivially from
proposition 3.2.10.)

(b) Find a group of isometries of E* whose quotient is our manifold. The existence
of this group shows that the manifold has a Fuclidean structure.
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(c) Find a subgroup of finite index isomorphic to Z%; by looking at the quotient
of E* by this subgroup, we see the manifold can be finitely covered by 2 torus,
verifying Bieberbach’s theorem.

Example 3.4.3 (elliptic manifolds). If G is the orthogonal group O(n+1)
acting on the sphere §*, a (G, 5™)-manifold is called spherical, or elliptic. The
Poincaré dodecahedral space (example 1.4.4) and lens spa.ces (example 1.4.6)
are spherical manifolds.

Example 3.4.4 (hyperbolic manifolds). If 7 is the group of isometries
of hyperbolic space H*, a (G, H*}-manifold is a hyperbolic manifold. We dis-
cussed hyperbolic surfaces in section 1.2 and a three-dimensional example, the
Seifert—Weber dodecahedral space, in example 1.4.5.

In each of the three preceding examples, showing that a manifold has
the specified geometric structure amounts to showing that each point has a.
neighborhood isometric to the appropriate ball. (You should justify this in the
light of definition 3.1.2.) This is certainly the case if the manifold is a quotient
of B2, §* or H? by a group of isometries.

Alternatively, if the manifold is defined by gluing pieces of E3, 5% or H3
with geodesic boundary, the condition can be verified by checking that the

- dihedral angles add up to 360° around each edge, and that corners fit together

exactly. We checked the edge condition (but not the corner condition!) -in
examples 1.4.4, 1.4.5 and 1.4.6. Likewise, we can see that the manifold of

figure 3.8 is Euclidean simply by observing that the edges of the cubes are

identified in groups of four, with dihedral angles of 90°, and the corners are
identified in groups of eight octants.

We use the preceding remark to give a hyperbohc structure to several open
manifolds:

Example 3.4.5 (the figure-eight knot complement). We saw in exam-
ple 1.4.8 how a certain gluing of two tetrahedra {minus their vertices) yields a
space homeomorphic to the complement of a ﬁgure eight knot in 53. We now
give this space a hyperbolic structure.

Let the two tetrahedra be regular ideal tetrahedra in hyperbolic space, that
is, regular tetrahedra whose vertices are at infinity. Combinatorially, a regular
ideal tetrahedron is a simplex with its vertices deleted; geometrically, it can
be modeled on 2 regular Euclidean tetrahedron inscribed in the unit sphere,
interpreted in the projective model. The dihedral angles of this polyhedron
are 60°, as can be seen from figure 3.9.

Exercise 3.4.6. Justify the caption of figure 3.9, by showing that the angle between
two planes in hyperbolic space is the same as the angle of their bounding circles on
the sphere at infinity, seenr in the Poincaré ball model.

Now we glue the faces of ‘the two tetrahedra using hyperbolic isometries,
following the combinatorial pattern of example 1.4.8. As we discussed there,
edges are identified six at a time, so the dihedral angles around each edge add
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L
ideattetrahedron

Figure 3.9. A regular ideal tetrahedron. The dihedral angles of a polyhedron
can be read off from the angles between the circles at infinity determined by
the faces in the Poincaré model {a); for an ideal polyhedron, the circles are the

| L _I

same as tn the projective model, and in this case they equal 60°, by symmetry

- (b).

up to 360°. We don’t have to check the vertex condition, because there are no
vertices. __
Apparently, this manifold was first constructed by Gieseking in 1912

[Mag74], without any relation to knots. Riley [Ril82] independently con-

structed this hyperbolic manifold and proved that it was homeomorphic to
the figure-eight knot complement by an indirect method, involving fundamen-
tal groups. Troels Jorgensen construcied the same manifold from an entirely reference to Jorgensen
different point of view, as a punctured torus bundle over the circle. In ad-
dition, this example is closely connected to a family of groups studied by
Bianchi [Bia92] in connection with number theory: the fundamental group of
the figure-eight knot complement is a subgroup of index 12 in PSL(2 Zw]},

where w = 5+ J[-z is a primitive sixth root of unity.

The technique of example 3.4.5 may seem very special, but it actually ap-
plies to many different knot and link complements. One divides the comple-
ment into a union of ideal polyhedra, then atiempts to realize these polyhedra

. as ideal hyperbolic polyhedra and glue them together to form a hyperbolic

manifold. Several people have implemented this procedure on computers, in-
cluding Daryl Cooper, Colin Adams, and Jeff Weeks.

Problem 3.4.7. Figure 3.10 shows the Whitehead link,

Ju/gt3m/3nbook/pictures/chap3/4/whitelink.ps not found

whitelink

Figure 3.10. The Whitehead link and its spanning two complex -
The Whitehead link may be spanned by a two-complex which cuts the

complement info an octahedron, with vertices deleted (see figure 3.10). The
one-cells are the three arrows, and the attaching maps for the two-cells are
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4 L % whikebakoct indicated by the dotted lines. The three-cell is an octahedron (with vertices

% borramspan

% Borromsludiag  deleted), and the faces are identified as in figure 3.11

ofromapan

Exa.mp]_e “a.ﬂi”ne

afas mansfold Fu/gt3m/3mbook/pictures/chap3/4/whitelinkoct.ps not found|

whitelinkoct

Figure 3.11. One vertex has been remoaved so the polyhedron can be
flattened in the plane.

A hyperbolic structure may be obtained from a Euclidean regular octahe-
dron inscribed in the unit sphere. Interpreted as lying in the projective model
for hyperbolic space, this octahedron is an ideal octahedron with all dihedral
angles 90° (again, this can be seen by extending the faces to circles on the
sphere at infinity). Gluing it in the indicated pattern, again using hyperbolic
isometries between the faces gives a hyperbolic structure for the complement
of the Whitehead link,

Fu/gt3m/3mbook/pictures/chap3/4/idealoct .ps not found]

idealoct

Figure 3.12, {deal octahedron with 90° dihedral angles,

Fe/gt3nm/ Smbook/pmtures/ chap3/ 4/borromspan ps not found
borromspan
Figure 3.13. The Borromean rings and their spanning two-complex

A slightly more intricate example of the above technique is given by con-
sidering the complement of the Borromean rings. The Borromean rings are
spanned by a two-complex which cuts the complement into two ideal octahedra
(figure 3.13). The two octahedra are glued as in figure 3.14.

- To see Figure 3.13, the octahedron on the left should be imagined below
the Borromean rings, the octahedron on the right above (so that they have
opposite orientations). Each face of the upper octahedron is glued to the face
directly below it with a 120° rotation; the sense of the rotation is alternately
clockwise and counter-clockwise, alternating in direction like gears. Tt is pos-
‘sible to visualize this decomposition reasonably well — make sure to delete the

- vertices so the corners can open up.’

- To give this manifold a hyperbolic structure we can use two octahedra
with 90° dihedral angles like the one in the previous example, since four faces
are glued to each edge in the resulting complex.

' [Tak85] showed that every three-manifold with non-empty boundary can
be obtained by gluing together simplices, then removing regular nei ghborhoods
of their vertices. Of course, not every way of gluing simplices is related to a
geometmc constructlon - Wil we discuss Fora

domains and
Delaunay

_ Example 3.4.8 (affine manifolds). If G is the group of affine transforma- trisssutations later,

ao that there is 2

tions of R", an (G, R"}-manifold is called an affine manifold. - forward reference?
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fu/gt3m/3mbook/pictures/chap3/4/Borrongludiag.ps not found|
. Borromgludiag
Figure 3.14. The gluing diagram for the complement of the Borromean rings

As an example, consider again the homothety of figure 3.1. As the quotient
of R?\ {0} by a group of affine transformations (the group generated by this
homothety), the torus has an affine structure (why?). '

Here is another method, due to John Smillie, for constructing affine struc-

‘tures on T? from any quadrilateral @ in the Euclidean plane. Identify the

opposite edges of @ by the orientation-preserving similarities that carry one
to the other. Since similarities preserve angles, the sum of the angles about
the vertex in the resulting complex is 2, so a neighborhood of the vertex has
an affine structure (why?). We will see in chapters ??7 and 77 how such struc-
tures on T? are intimately connected with questions concerning Dehn surgery
in three-manifolds.

Milnor [Mil58] showed that the only closed two-dimensional affine mani-
folds are tori and Klein bottles. An important question about affine manifolds
is whether in general a compact affine manifold has Euler number zero.

A Euclidean structure on a manifold automatically gives an affine struc-

- ture. Bieberbach {Cha86] proved that closed Euclidean manifolds with the

same fundamental group are equivalent as affine manifolds.

Example 3.4.9 (complex manifolds). When n is even, R™ can be identified
with C*/2. Let Hol be the pseudogroup of local biholomorphic maps of C*?,
that is, holomorphic maps that have holomorphic local inverses. (It turns
out that this is always the case for holomorphic local homeomorphisms.) A
Hol-manifold is called a complez manifold of (complex) dimension n/2.

When n = 2, a map is holomorphic if and only if it is conformal and
preserves orientation. Therefore an orientation-preserving isometry of the
Poincaré disk model for H? is biholomorphic, and every orientable hyperbolic
surface inherits the structure of a complex manifold.

Stereographic projection from the unit sphere to C is a conformal map.

A collection of maps obtained by rotating the sphere and then mapping by

stereographic projection to C constitutes an atlas for a complex structure on
5? (provided they don’t ali omit the same point); this is the complex structure
of CP?, the Riemann sphere.

Similarly, orientation- preservmg isometries of ]1‘.2 are holomorphic. It fol-
lows that a complex structure is inherited from a hyperbolic, Euclidean or
elliptic structure, so all orientable surfaces have the structure of complex man-
ifolds. _ :

This easy observation has a converse: every complex structure on a closed
surface comes from' a hyperbolic, Euclidean, or elliptic structure. The con-
verse is a celebrated result known as the uniformization theorem. It is closely
related to the TRiemann mapping theorem. The uniformization theorem was
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the subject of much attention (and contention) by Poincaré, Klein, and others

in the latter part of the nineteenth century.
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3.5. A hyperbolic manifold with geodesic boundary

Here is another manifold which is obtained from a gluing of two tetrahedra.

according to figure 3.15 to obtain a simplicial complex K. Note that the
orientations of the edges determine how A is to be glued to A’, etc.

geodgluing .

Figure 3.15. geodesic boundary gluing diagram. Two tetrahedra can be
glued tagether to form a polyhedron which looks like this, laid out in the plane,
Glue lower case faces to upper case faces in this diagram,

- The complex K obtained from this gluing diagram has only one vertex, one
edge, three faces, and two tetrahedra, so its Euler numberis —1. Therefore, by
Lemma 38.2.10, the link of the vertex has Euler number —2 so it is a surface of
genus two. Let M be the manifold obtained by removing an open neighborhood
of the vertex, so M is a surface of genus two. We will construct a hyperbolic
structure for M so that the boundary is geodesic. '

To accomplish this, consider now a one-parameter family of regular tetra-
hedra in the projective model for hyperbolic space centered at the origin in
Euclidean space, beginning with the tetrahedron whose vertices are on the
sphere at infinity, and expanding until the edges are all tangent to the sphere
at infinity. The dihedral angles vary from 60° to 0°, so somewhere in between,
there is 2 tetrahedron Wwith 30° dihedral angles. Truncate this simplex along
each plane v, where v is a vertex (outside the unit ball), to obtain a iruncated
tetrahedron. (Note that the planes v' are disjoint, because the lines joining
the vertices intersect H®.)

Two copies glued together give a hyperbolic siructure for M with totally
geodesic boundary, because v is perpendicular to the faces containing v. A
closed hyperbolic three-manifold can be obtained by doubling this example:
Le., taking two copies of M and gluing them together by the “identity” map
on the boundary

The manifold M turns out to be 2 submanifold of $%: it is the complement
of the handlebody shown in figure 3.18. The manifold may be imagined as
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S0truncate

Figure 3.16. truncated 30-90 tetrahedron. A truncated hyperbolic tetra-
hedron with all edge angles 90° or 30°.

created from an apple by three worms, tunneling into the apple from three
locations spaced around its surface. The worms start burrowing in, but then
each worm turns toward its counterclockwise neighbor, However, the tunnels
fail to connect, passing beneath the neighboring worm’s tunnel. The three
worms then turn up and toward the center, passing above their neighbor’s
tunnel, and finally they all unite in the core of the apple.

In order to see the homeomorphism, we begin with the diagram of figure
3.15. Cut out neighborhoods of the vertices to give the polybhedron which
will be glued to yield the manifold shown in Figure 3.17(a). Also temporarily
remove a regular neighborhood of each of the nine edges separating a pair of
lettered faces (see Figure 3.17(b)}. These nine wedges of cheese are glued to
each other to form a copy of D? x I, i.e., a two-handle. We will glue the
two-handle on at the end. Now deform the picture by an isotopy, so the pairs
of lettered faces are in position for easy gluing (as in Figure 3.17(c)).

Now glue the paired faces together, creating a genus-three handlebody
with an annulus on its boundary where a two-handle is to be attached (as
in Figure 3.17(d}). It is drawn as a ball with three worm holes. Deform the
picture so the annulus becomes an equatorial belt and the worm holes are
longer (Figure 3.17(e)) and simplify (Figure 3.17(f)). Attach the two-handle
to obtain a manifold M with boundary contained in S, whose complement
15 a genus two handlebody made from two balls, joined by three one-handles.
When the balls are appropriately arranged so that one is small, and one is
centered at oo, Figure 3.17(a) results.
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L.
wormholes
Figure 3.18. ball with wormholes. If three wormholes are removed from a
ball, intertwining and meeting at the center as illustrated, the result is home-
omorphic to the the three-manifold obtained from the gluing diagram of two
tetrahedra of figure 3.15, minus small neighborhoods about the vertices.
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3.6. The developing map

Several times, beginning in chapter 1, we have used the intuitive idea of ‘un-
rolling’ a geometric manifold. For instance, a Euclidean torus can be unrolled
in the plane, to give a tiling pattern in the plane. In this section we will give
a proper definition for ‘unrolling’ (developing), and generalize it to its natural
context. )

- Let X be any (connected) real analytic manifold, and G a group of real
analytic diffeomorphisms acting transitively on X. An element of G is then
completely determined by its restriction to any open subset of X.

Suppose that M is any (G, X )-manifold. Let Uy, Us, ... be coordinate charts
for M, with maps ¢; : U; — X and transition functions -y; satisfying

Vij © @i = ¢;.

In general the -;’s are local G-diffeomorphisms of X defined on ¢;(U; N U;)
so.they are determined by locally constant maps, also denoted ~;;, of U; N U;
into G. '

develop . : o
Figure 3.19. multivalued development. The developing map is defined for

any {G, X )-manifold M when G acts analytically. It can be thought of either
as a multi-valued map from M to X or as a map from the universal cover of
M to X. it is determined by analytic continuation, which is global.

Consider now an analytic continuation of ¢; along a path & in M beginning
in Uh. 1t is easy to see, inductively, that on a component of aNU;, the analytic
continuation of ¢; along « is of the form 4 o ¢;, where v € G. Hence, ¢,
can be analytically continued along every path in M. The result of analytic
continuation on nearby paths with the same endpoints is identical. It follows
that there is a global analytic continuation of ¢; defined on the universal cover
of M. (Use the definition of the universal cover as a space of homotopy classes
of paths on M.) This map,

' D:lT»f—+X
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is called the developing map (the formal name for unrolling). D is a local -
(G, X )-diffeomorphism (i.e., it is an immersion inducing the (G, X)-structure
on M).

Exercise 3.6.1 (developing map is unique). The developing map D is unique
up to post-composition (composition on the left} with elements of G.

Although G acts transitively on X In the cases of primary interest, this
condition is not necessary for the definition of D. For example, if G is the
trivial group and X is closed, then closed {2, X)-manifolds are precisely the
finite-sheeted covers of X, and D is the covering projection.

From the uniqueness property (exercise 3.6.1) of D, we have in particular
that '

Proposition 3.6.2 (existence of holonomy map). Fizing ¢ developing
map D, for any covering transformation T, of M over M, there is some
{unique} element g, € G such that '
DoTy=¢,0D.
vince DoToo0Ty = gaoDoTy = g,0gg0D it follows that the correspondence

H:m(M) —G

o= gy

is a homomorphism, called the holonomy of M. The image of H is calied the

holonomy group of M. Because I is only determined up to left-composition
with elements of G, the holonomy H is determined up to conjugacy in G.

Exercise 3.6.3. What are the developing maps and holonomies of

(a) a Euclidean torus, as in example 3.4.1,

~ (b) an affine torus, as in example 3.4.8. _

In general, the holonomy of M need not determine the (G, X)-structure
on M, but there is an important special case in which it does.

Definition 3.6.4. M is a complete (G, X)-manifold if D : M — X is a

. covering map. In particular, if X is simply-connected, this means D is a

homeomeorphism.

It follows that |
Proposition 3.6.5 ((G, X)-manifold is quotient of X). If X is simply

connected, then any complete (G, X)-menifold M may be reconstructed from
the image I' = H(m(M)) of the holonomy, as the quotient space M =~ X/I'.
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Remark: Since I' acts on X from the left, it would be more correct to write
the quotient as I'\.X. However, for our purposes the distinction is so seldom
important that for aesthetic reasons we will continue to write X/T.

Because of the significant relation between I' and M expressed in proposi-
tion 3.6.5, it is often worthwhile replacing a non-simply-connected model space
X by its universal cover X. There is a covering group G acting on X, defined
to be the group of homeomorphisms of X which are lifts of elements of G.

Then (; can be described in the form of an extension

11 (X) > G—G =1

For more about the structure of m(X) and G, see section 3.3.19analysis of
stabilizers]. There is a one-to-one correspondence between (G, X)-structures
and (G X }-structures, but the holonomy for a (G X }-structure contains more
of the information.

Here is a useful sufficient condition for completeness.

Proposition 3.6.6 (closed (G, X)-manifolds are complete)}. Let G be a
Lie group acting analytically and transitively on a manifold X, such that for
any = € X, the isotropy group G, of = is compact. Then every closed (G, X)-
manifold M is complete.

The isotropy group or stabilizer, G, is defined as {g € G | gz = z}. Let
Tz(X) be the tangent space to X at z. There is an analytic homomorphism
of G, to the group of automorphisms of Ty(X). The proof of the proposition
utilizes the following fact, which is important in its own right:

Lemma 3.6.7 (existence of invariant metric). If G acts transitively, X
admits ¢ G-invariant Riemannian melric if and only if the image of G, in
GL{T:(X)) has compact closure. Any G-invarient Riemannian metric is an-
alylic.

Transitivity implies that the given condition at one point z is equivalent
to the same condition everywhere.

Proof of 3.6.7: In one direction this is clear: If G preserves a metric then G,
maps to a subgroup of O{n), which is compact. Now fix some z and assume
that the image of G, has compact closure H,. Let ¢ be any positive definite
form on the tangent space T(X). Since H, is compact there is a finite Haar
measure on 1%, 1.¢. a finite measure invariant under the action of H, on itself
(see [MZ55].) Average the set of transforms ¢*@J, ¢ € H,., using this measure,
to obtain a quadratic form on T,{X) which is invariant under H,. Define a
Riemannian metric {ds?), = ¢"@Q on X, where ¢ € G is any element taking
y to z. This definition is independent of the choice of ¢, and the resulting
Riemannian metric is invariant under G. ' ' - 13.6.7

Such a metric then pieces together to give a Riemannian metric on any (G, X)-

manifold, which is invariant under any (G X)-map. We can now prove the

proposition.
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Proof of closed (G, X)-manifolds are complete: If M is any closed (G, X)-
manifold, then there is some £ > 0 such that the £-ball in the inherited Rie-
mannian metric on M is always contractible and convex, i.e. any two points
in it are joined by a unique geodesic inside the ball. (We use the compactness
of M to guarantee that we can choose ¢ uniformly for all of M.) We may
also choose ¢ so that all e-balls in X are contractible and convex, since G
18 a tramsitive group of isometries. Then for any y € M, B.(y) is mapped
homeomorphically by D, for if D(y) = D(y") for ¢ # y in the ball the geodesic
connecting y to ¥’ is mapped to a self-intersecting geodesic, which can be seen
to be a contradiction to the convexity of &-balls in X. Then D is also an
isometry between B.(y) and B.(D(y)), by definition. If £ is any point in X,
consider the inverse image of a neighborhood, D~1(B,/;(x)). For any y in the
inverse image, the ¢-ball around y maps isometrically and thus must properly
contain a homeomorphic copy of B, (). The entire inverse image must then
be a disjoint union of such homeomorphic copies. Therefore D evenly covers
X, so 1t is a covering projection, and M is complete.

closed (G, X)-manifolds are complete

Corollary 3.6.8. Every closed elliptic three-manifold M has e finite funda-
mental group. The universal covering space of M is S, and in particular, if
M is simply-connected it is homeomorphic to S3.

Proof of 3.6.8: proposition 3.6.6 says the universal covering of M is S°. Since
S? is compact, m (M) is finite. 3.6.8

A topological space X whose universal covering space is confractible is
called an Eilenberg-MacLane space, and denoted K(G,1) where G is m;(X)
{and 1 means this X satisfies the condition that =¢(X) is trivial for k£ # 1.
There are analogous definitions for K(G,n) for arbitrary n). A space which
is a K(G,1) is determined by G up to homotopy equivalence. From proposi-
tion 3.6.6 we see that closed hyperbolic manifolds and closed Fuclidean man-
ifolds are K(G,1)’s. This means that their fundamental groups are extremely
important. '

Exercise 3.6.9 (analysis of stabilizers). Let X be a manifold and G a group of
homeomorphisms acting transitively on X. Let 2o € X be any point.

(a) I the stabilizer G, is path-connected, then 73(X) is abelian.
[Hint: If o and 3 ;: §* — G are loops in G based at 1, then the map a x4 :
5! x §1 — G of the torus into G (where * is multiplication in G) shows that «
and # commute, Now consider the map from G to X given by ¢ — gl

(b) Let H,, be the group of components of G, {in other words, G, modulo its
connected component of the identity). Construct a homomorphism (X} —
Hg,.

(c) Show that the kernel of this homorphism is central.
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_fo_oba.r

foobar

Figure 3.20. foobar. The developing map of an affine torus constructed from
a quadrilateral (see example 3.4.8). The torus is plainiy not complete.
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3.7. Discrete groups

When G is a group of analytic diffeomorphisms of a simply-connected manifold
X, then complete (G, X)-manifolds (up to isomorphism) are in one-to-one
correspondence with certain subgroups of G {up to conjugacy by elements of
G). There are certain traditional fallacies concerning the characterization of
the groups which are holonomy groups for complete (G, X)-manifolds, so it is
worth going through the definitions carefully.

Definition 3.7.1 {discrete group action). When G is a topological group,
then a discrete subgroup I' C & is any subgroup on which the induced topology
is the discrete topology. In other words, there is a neighborhood U of 1 such
that TNU =1.

Definition 3.7.2 (group action with discrete orbits). Let I be a group
acting on a space X. Then T has discreie orbits if for every z € X thereis a
neighborhood U of x such that the set of ¥ € T for which yz € U is finite.

Definition 3.7.3 (wandering group action). Let T’ be a group of homeo-

morphismsof X. Then I' wanders if for every x € X there is a neighborhood
U of z such that the set of 4 € T for which yU n U # ¢ is finite.

Definition 3.7.4 (properly discontinuous group action). Let " be a
group of homeomorphisms of a locally compact space X. Then I" acts properly
discontinuously if for every compact subset K of X there is only a finite set of
elements v € T such that yK intersects K, i.e., for every compact K the map

I'x K — X is a proper map. (A propermap f is a map such that the inverse -

image of any compact set is compact.)

Exercise 3.7.5 (definitions are succesively stronger). When the group of
homeomorphisms of X is given the compact-open topology, then for subgroups I’ of
this group the properties 3.7.1-3.7.4 are successively stronger.

Recall that a group I' acts freely on a space X if no point of X is fixed by
any non-trivial element of I. '

Proposition 3.7.6 (quotient by a wandering group is a manifold). Let
I’ be a group acting on a manifold X. If T wanders and acts freely, then the
quotient space X [T is a manifold and the map X — X/T is a covering map.

Proof of 3.7.6: If T wanders and the action is free, one easily finds a neigh-
borhood U of any point x such that the translates 4U/ are all disjoint. This
shows that the image of = in the quotient topology has a neighborhood home-
omorphic to U, and that U is evenly covered. "13.7.6

Warning: The quotient space X /T need not be Hausdorff. For example,
consider the action of Z on R? — 0 as a group of linear diffeomorphisms (see
figure 3.21) generated by

(z,3) — (22, yfz)
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Figure 3.21. Action with nonhausdorff quotient. The linear transforma-
tion (z,y) — (22, y/2), acting on the plane minus the origin, is a wandering
action so its quotient space is a manifold: for each point, a sufficiently small
neighborhood is disjoint from all its translates. However, the quotient manifold
is not Hausdorff. In fact, every neighborhood of (0 1) in the quotlent space
intersets every neighborhood of (1,0).

Then each point in R? —0 has a neighborhood whose translates are disjoint, so
by proposition 3.7.6 the quotient is a manifold M and the map R*> —0 — M
is a covering map. However, every neighborhood of the image of (1,0) in
M intersects every neighborhood of the image of (0,1) in M, so M is not
Hausdorfl. Its fundamental group is Z.

There is remarkable theorem of {Bro12b|, the plane translation theorem
which asserts (among other things) that every free action of Z on R? is wan-
dering. There are, in fact, many ways that Z can act on R2. For instance,
when the negative y-axis is removed from the example of figure 3.21, the re-
mainder of the plane is homeomorphic to the plane. In particular, there are
non-homeomorphic non-Hausdorff two-manifolds with fundamental group Z,
and universal covering space homeomorphic to R2.

Although we customarily suppose that manifolds are Hausdorff, without
explicit mention of the fact, non-Hausdorff manifolds do sometlmes arise nat-

~urally, and they can often be useful.

Exercise 3.7.7. Find examples of groups of homeomorphisms of manifolds to
demonstrate that none of the properties 3.7.1-3.7.4 are equivalent.

- [Hint: An action of Z witk discrete orbits can be constructed on (§! x R x
[-1,1]) = {7} x R x {0} by choosing a family of diffeomorphisms of the cylinders
5~1 x R x {t} whose orbits spiral with slope i.]
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Proposition 3.7.8. Let T be a group acting on o (Hausdorff) manifold X.
The quotient space X{T' is a Hausdorff manifold with X — X/T a covering
map if and only if ' acts freely and properly discontinuously.

Proof of 3.7.8: HT acts freely and properly discontinuously, then by proposi-
tion 3.7.6 and exercise 3.7.5 we know that X/Tis a manifold and p : X — X/T
1s a covering map. Suppose z and y are points in X on distinct orbits. Let K
be a union of two disjoint compact neighborhoods of # and y which contain
no translates by I' of z or y. Then K — UW&:l ~K is still 2 neighborhood
of z union a neighborhood of y, and these neighborhoods project to disjoint
neighborhoods in X/T, so X/T" is Hausdorff.

For the converse, suppose that X/T" is Hausdorff. Consider any compact
set K C X. Suppose there were an infinite sequence of equations v;z; = u;
with z;,3 € K and distinct +;. Then if (z,y) is any accumulation point of
{(z:,9:)}, p(x) and p(y) do not have disjoint neighborhoods. These images
p(x) and p(y) would have to be distinct, for otherwise, if yz = y, there would
be an infinite number of transformations v714; of any neighborhood U of z
which intersect it, and p would not be a covering map. Therefore X/TI" is not
Hausdorff, a contradiction. 3.7.8

Here is a criterion which is often convenient for checking proper disconti-
nuity:

Proposition 3.7.9 (proper image of properly discontinuous group is
properly discontinuous). Suppose X and Y are spaces on whick a group
[.acts and f : X = Y is a proper, surjective map which respects the group
action. If the action on X is properly discontinuous, then the action on Y is
also properly discontinuous.

Proof of 3.7.9: U K C Y is any compact set then f~'(K) C X is compact
and KNyK # ¢ & fTHK)NYfHK) # ¢ 3.7.9

Exercise 3.7.10 {discrete subgroups of Lie groups are properly discontin-
uous). A discrete subgroup I' of a Lie group (7 acts properly discontinuously on
G by left-translation. [Hint: Find a sufficiently small neighborhood V of 1 so that
whenever gV intersects AV, and ygV intersects AV, then v = 1. Cover any compact
set K by a finite collection {h;V'}.]

Corollary 3.7.11. Suppose G is a Lie group and X is ¢ manifold on which
G acts transitively with compact stabilizers G,. Then any discrete subgroup of
G acts properly discontinuously on X,

Proof of 3.7.11: The map G — X = G/G, is proper. Apply proposition 3.7.9
and exercise 3.7.10. 3.7.11

Thus, in the cases of most interest to us, properties 3.7.1-3.7.4 are in fact
equivalent. .

When a group I' acts properly discontinuously on a space X in such a
way that the quotient space X/I' is compact, then T is called a cocompact
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group. If the quotient space X/T has finite volume, then T' is a co-finite-

volume group. Often in the literature the terminology “lattice” is used for a -
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Section *he 3.8. The Teichmaiiller space of a surface
crchmpller space
of a surface™ . . .
" oo ™ We have seen, in section 1.3, that every closed surface M, of genus ¢ > 1 has

[ reichmilles modunnr @ hyperbolic structure. Actually, there is a lot of freedom in the construction,

Dehn twista with the consequence that surfaces of genus g > 1 have not just one hyperbolic
structure, but many hyperbolic structures. Consider, for example, a surface
of genus two, obtained from gluing opposite sides of an octagon. What shapes
of actagon will do? _ _

The length of each side of the octagon has to equal the length of the
opposite side. In addition, the sum of the angles has to be 27, or equivalently,
the area must be 2. A crude dimensional analysis suggests that there are
many solutions o these conditions: an octagon is determined by 8 vertices in
H? giving 16 degrees of freedom, but the isometry group of H? has dimension
3, leaving 13 degrees of freedom for the shape of an octagon. The constraint
that the sides match up in pairs should leave 9 degrees of freedom, and the
constraint that the angles sum to 2z should leave an 8-dimensional family of
octagons which can be glued together to give a hyperbolic surface of genus 2.
Under the gluing, all 8 vertices become identified and correspond to a point
on the surface. This base point itself has 2 degrees of freedom. Consequently
there appears to be a 6-dimensional family of dlstmct hyperbohc structures
on a surface of genus 2. :

The main issue, in defining the space of hyperbolic structures on a surface,
is what equivalence relation to use. There are two good choices, giving two
different spaces.

The set of all hyperbolic structures on an oriented surface forms a topo-
logical space called Teichmiller space T,. Alternately, one may think of the
collection of all surfaces each with its own hyperbolic structure. Then 7, may
be defined as the set of pairs (N, f) with f : M — N an orientation preserving
diffeomorphism, with the equivalence (N, f) = (¥, fi) if and only if fo f?
is homotopic to an isometry (here (M, id) is taken as the origin). A Hausdorff
topology is introduced by declaring that two points (N, f), (N1, f) are close if
fofi! is homotopic to a diffeomorphism which nearly preserves the hyperbolic
metric — that is, every non-zero tangent vector X on one surface is taken to
a vector Y on the other such that the lengths of X and ¥ have a ratio near 1.
That is, if the image of each infinitessimal circle, which is an ellipse, has the
ratio of its major to minor axes uniformly close to 1.

An orientation preserving automorphism k : M — M induces the auto-
morphism £* : (N, f} — (N, f o k) of T,. This action depends only on the
homotopy class of 4. The group of all such automorphisms of 7, acts discretely
and is called the Teichmiller modular group T,. Note that h* fixes the point
(N, f)if and only if foho f~1 is homotopic to an isometry. Any surface with
a symmetry lies in the fixed set of a finite subgroup # {id} of [,.

The modular group is generated by Dehn twists. A Dehn twist about a
simple loop -y on an oriented surface M is defined as follows. Let A be an
annular neighborhood of 4. The orientation of M induces an orientation of A.
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Let 7 denote the automorphism of A which fixes one boundary component and
rotates the other by 27 in the positive direction. Extend 7 to the whole surface
by setting it equal to the identity outside A. Then 7, or any automorphism
homotopic to 7, is called a Dehn twist about 4. A twist acting on 7, has no
fixed points. ' '

The quotient space, T, /T, (which is an orbifold} is called moduli space or
Riemann moduli space. In other words, in Teichmiiller space, we pay attention

not just to what metric a surface is wearing, but also how it is worn. This

is in contrast to moduli space where all surfaces wearing the same metric are
equivalent. {The importance of the distinction will be clear to anybody who
al some time has inadvertently slipped a sweater on backwards, or who after
putting a pajama suit on an infant has found one leg to be twisted).

twistexasaple . . . . .

Figure 3.22, Two isometric surfaces that define different points in Te-
ichmdller space. The surfaces N and N’ are isometric, but the map T for
which T o f = g is not homotopic to the isometry. It differs from the isometry
by two twists around th_e curve 7. Note how the homotopy class a in R is
realized in ¥ and N’ as geodesics of different fengths.

Note that in two dimensions, the notions of homoetopy and isotopy can be
used interchangeably ([Bae28, Eps66].) Two homeomorphisms (or two embed-
dings) are homotopic if there is a flow from one to the other; they are isotopic,
if the flow can be taken through homeomorphims (resp., embeddings).
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For another illustration of the difference between Teichmiller and moduli
space, consider any element of the Teichmiiller space of M and any curve a.
There is a well-defined quantity length(e), defined to be the infimum of lengths
of curves in the homotopy class of a. No such quantity is defined in the moduli
space: there, we could only define what it means to say that some homotopy
class of curves on the surface has length ! since there is no fized identification
with homotopy classes of curves on M (see figure 3.22).,

A surface with a complex structure (roughly, the assignment of a rule to
measure angles) is necessarily orientable and is called a Riemenn surface. As
a consequence the uniformization theorem of complex aunalysis, a hyperbolic
structure is associated with, for example, every closed Riemann surface of
genus exceeding one, or every surface that results from removing at least 3
points from a Riemann surface. Conversely, it follows from the definition that
every orientable surface with a hyperbolic structure has an associated complex
structure. Orientation preserving isometries between hyperbolic structures
correspond to conformal mappings between the associated complex structures.
In this book we will work only with hyperbolic structures, which leads to a
real analytic structure of 7.

There is an extensive hterature on Teichmiller spaces beginning with Te-
ichmiiller, who introduced a metric. In the theory, points of Teichmiiller space
are often referred to as marked Riemann surfaces, because the points of 7, are
specified by equivalence classes of pairs (Riemann surface, marking), Where
marking means designating a standard set of genera.tors for the fundamental
group. :

Exercise 3.8.1 (ﬁdlonomy defines sfructﬁre). Show that two structures are
equivalent in Teichmiiller space if and only if their holonomy maps are conjugate by
an element of isom({H?).

As we shall prove (theorem 3.8.8), Teichmilller space is homeomorphic to
R®-6. (The first proof of this is due to [Fricke, Klein 1889}; see [Bers, 1960)]
for a good modern reference.)

A free homotopy class of maps f : X — Y means a homotopy class w1thout
reference to basepoints.

 Exercise 3.8.2. Free homotopy classes of curves f : §' — Y in a connected space

Y are in one-to-one correspondence with conjugacy classes in m(Y).

We will say that two curves a, 8 : St — X are homotopically distinct if
o is not freely homotopic either to 8 or to B o vy, where v : $* — §? reverses
orientation.

Proposition 3.8.3 {(embedding of geodesics determined by homotopy
classes). Let M be a (complete) oriented hyperbolic surface end {v';} a col-
lection of mutually disjoint simple loops which are homotopically distinet and

- non triviel. Then each ] is freely homotopic to a unique geodesic y; and the

collection {;} is likewise of mutually disjoint simple loops.
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Proof of 3.5.3: We will carry out the proof for the case that the geodesic « is
homotopic to a simple loop 7'; the general case of muitiple loops follows by a
similar argument. Consider the picture in the universal cover H% Let ¥ be a
preimage (lift) of 4'. There is a uniquely determined cyclic subgroup G of the
group of cover transformations that preserves 5'. The simple arc ¥' has two
distinct end points p,q on S., which are the common fixed points of G. -Any
cover transformation not in G maps 7' to a disjoint arc.

gecidembed
Figure 3.23. geodesics are embedded. in an criented hyperbolic surface for -
any collection of embedded, homotopically distinct curves, the corresponding
system of closed geodesics is also embedded. The condition is equivalent to
the condition that in the universal covering space, the eadpoints of paths which
cover the curves do not separate each other.

The hyperbolic line 7 between p, ¢ projects to a geodesic v freely homotopic
to v'. (To see this, consider the intermediate projection to the open cylinder
H?/G.) Because there is only one line between p, ¢, v is unique in its free
homotopy class.

Two distinct hyperbolic lines in H? are ¢ither dls_;omt or they cross once,
separating the respective end points. Because no two lifts in the orbit of
¥ separate their respective end points, the same is true for the orbit of 5;
consequently ¢ must be a simple loop.

3.8.3

In 2 non-oriented two-manifold, any simple curve with a non-oriented reg-
ular neighborhood (i.e., with a Mébius band neighborhood) is represented by
a simple geodesic. The boundary of its regular neighborhood is represented
by a geodesic running twice around the original geodesic. This is the only
situation where the nou—onented case 1s different.

Let’s analyze an arbitrary hyperbohc structure on a closed oriented surface
M, of genus g. First, pick any maximal collection of non-trivial, homotopically
distinet, disjoint simple curves I' on M,. Such a collection of curves cuts A,
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“Teichmiuller apace
of the pair af
panta"

pants
Figure 3.24. A pair of paats. This surface, the sphere minus three disks, or

a pair of pants, serves as a basic building block from which all closed hyperbalic
surfaces can be built.

into subsurfaces with boundary which are each necessarily diffeomorphic to a
pair of pants, P (figure 3.24), the only surface which cannot be cut further

- except by curves that bound disks or are homotopic to its boundary. There
are |x(M,)| = 2g — 2 copies of P obtained by cutting along I", so there are
31x(M,)| = 3g — 3 components of I".
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pantsdecompose

Figure 3.25. A pants decompasition of a surface. Any oriented surface can
be decomposed into pairs of pants sewen together along boundary components.

The collection I is represented uniquely by a collection I of disjoint simple
geodesics in a hyperbolic structure on M. Cut M, along T' to obtain 2¢ — 2
hyperbolic structures with geodesic boundary on P.

Proposition 3.8.4 (Teichmiiller space of the pair of pants). Hyperbolic
structures on P with geodesic boundary (up to isometries homotopic to the

identity) are tn one-to-one correspondence with a choice of three lengths for
the three components of OP.

shoutd there also be z
piciure in the

Proof of 3.8.4: P can be cut along three seams 5, 5, and S; into two hexagons, byperbolic planeram
H and H' as shown in figure 3.26. These seams are uniquely represented in
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——
-

-

panteew

Figure 3.26. Pants sewn from two hexagons. A pair of pants can be formed
by sewing together two right-angled hexagons along three of the sides.

the hyperbolic structure as geodesic arcs orthogonal to 8P (cf. exercise 3.8.7).
Cutting along these arcs, we obtain two right-angled hyperbolic hexagons H
and H’. The hyperbolic structure on H or H' is uniquely determined by the
lengths of 53,5, and 53, in view of the hexagon cosine law {see section 2.4).
Therefore H is isometric to H', so the lengths of k; and k! are equal, and equal
to half the length /;. The lengths /;,/; and I3 determine H and H', hence the
hyperbolic structure on P. Any choice of three lengths corresponds to some
hyperbolic structure, by exercise 3.8.5. 3.8.4

Exercise 3.8.5 (existence of right hexagons with any three lengths). Show
that any three positive real numbers Ay, by and Az occur as the lengths of alternate
sides of an all-right hyperbolic hexagon. '

[Hint: Method 1: Construct a quadratic form of type (2,1) , using basis
§t,85, 84, by writing down all the inner products. Use the quadratic form model
to obtain the desired hexagon.

Method 2: Given hy and hy, consider the family of figures determined by z in

figure 3.27. Show {geometrically) that picture (c} occurs for all = > zy, and that hyz

is a strictly monotone function of 2 > zo].

@ () ©

buildhex
Figure 3.27. Constructing an all-right hexagon
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Exercise 3.8.6 (covering pants). From two right angled hexagons as in the proof
of proposition 3.8.4 show how to find a set of generators of a fuchsian group G which
is the universal covering group of the corresponding P. The group G is uniquely
determined by P up to conjugation within PSL({2, C).

Exercise 3.8.7 (geodesics on hyperbolic surfaces with geodesic boundary).
Prove the analogs of 77 and 77 for a hyperbolic manifold M with geodesic boundary,
where free homotopy classes of arcs from boundary to boundary are allowed, as well
as closed curves. {Hint: Consider the double of A, which is the union of two copies
of M glued along the boundary by the identity map. Represent the double of an arc
by a closed curve, and show it must be orthogonal to &M, because it is invariant by
the symmetry exchanging the two halves of the double].

Theorem 3.8.8 (Texchmuller space of a surface). Tezchmuller space
T{M,) is homeomorphic to R®~°,

Proof of 3.8.8: For each component of I, we have a free parameter, its length,
in Ry &= R. A choice of all these lengths determines 2¢g — 2 hyperbolic struc-
tures on P which can be glued together to form a hyperbolic structure on AM,.
This gluing can be done in more than one way: for each component of IV we
can vary the gluing map by twisting one side with respect to the other side by
an arbitrary signed hyperbolic distance.

To describe the gluing process, we will examine below the particular case
of two pants P, P; to be glued along a common geodesic boundary loop o. The
case of gluing two edges on the same pants is quite similar. Successively apply-
ing one technique or the other to the growing surface element, the collection of
pants is assembled into the full surface. It must be kept in mind that in joining
adjacent surface elements (or two edges on the same element) it is not enough
simply to specify an identification between points on the opposite sides of the
edge. We must indicate how the fundamental groups of the elements, based at
origins O, Oy, say, are to be fused to form the fundamental group of the joined
element. This can be done by introducing an arc crossing the common edge o
between O, O; together with a multiple of 27 to indicate how many times the
arc should circle o; two choices differ by a2 multiple of the Dehn twist about
o. We will use a gluing parameter x, where —o0 < z < 00. The pure gluing
depends on the quantity X = e*™*“/  where L is the length of o.

We will work in H? in the upper half plane model. Orient the common
boundary geodesic o so that P lies to its left. We may assume that the positive
imaginary axis o* in H? lies over o and that its left side lies over P, its right
lies over Py. Denote by G the fuchsian covering group of P that acts to the
left of 6* and G, that over P, that acts to the right. Fix a point O* on o*
as origin. Let x denote distance along o* measured from O* with positive or
negative sign depending on direction.

Consider the Mobius transformation

Tz - ()2
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Each point z on ¢ is moved signed distance z along ¢*. Now given an z,
consider the fuchsian group

G =< G, TG T >

which is generated by G and T,G, T, 1. This is a universal covering group for
the four-holed sphere P, resulting from gluing P and P, along o with twist
parameter z. Two values of = which differ by an integral multiple of I give rise
to the same group G,. However no conjugacy will induce the automorphism of
G, that comes from the automorphism of 7, (P,) induced by a non-zero power
of a Dehn twist about o.

This parametrization gives a continuous map from Teichmiiller space to
R%~% 22 R¥ ™ x R%~3 where the first 3¢ — 3 coordinates are the lengths of
geodesics in IV and the second 3¢ — 3 coordinates are their associated twist
parameters. Every set of parameters determines a hyperbolic surface up to
homotopy, so this map is a homeomorphism. m

Exercise 3.8.9. (a) Let M be a closed hyperbolic manifold. The space of maps
of §1 into M representing a given free homotopy class retracts into the space of
uniformly parametrized geodesics in that homotopy class. (Hint: consider the ap-
propriate covering space.) _

(b) If there is 2 homotopy hy : M <= M such that kg = id and Ay is an
isometry between two hyperbolic structures on M as constructed above, then there
is a homotopy k' with hy = hg, ] = hy and P} carrying each curve of T to 2
reparametrization of itself. . .

{c) Therefore, the difference of the twist parameters on the two sides of a curve
of I' is an invariant of the element of Teichmiiller space. -
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3.9. Completeness of non-compact manifolds

Even in the nicest cases, it can be subtle to determine whether or not non-
compact (G, X }-manifold is complete. For example, consider the thrice-
punctured sphere, which is obtained by gluing together two triangles minus
vertices in this pattern:

Fu/gt3m/3mbook/pictures/chap3/8/vwhatisthis.ps not found]

whatisthis

Figure 3.28. 1.5

A hyperbolic structure can be obtained by glulng together two ideal tri-

~angles (with all vertices on the circle at infinity).

Each side of an ideal triangle is isometric to R, so there is freedom in
the choice of the gluing maps: the identification between paired sides may be
modified by an arbitrary translation. Therefore, we have not just one, but a
family of hyperbolic structures on the thrice-punctured sphere, parametrized

by R3. (They need not be all distinct, and in fact they are not). We will see

in section 3.10 that exactly one of these is complete! _

To prepare for understanding such structures, we will collect some use-
ful conditions for completeness of a (G, X)-structure, where G is a group of
real-analytic diffeomorphisms acting on a manifold X, as in section 3.6. For
convenience, we fix some natural metric on X, thereby imparting a metric to
any (G, X )—ma.mfoid

This proposition helps justify the use of the term “complete.”

Propositio 3.8.1. Let G be a transitive group of real analytic diffeomorphisms
of X with compact stabilizers G;. Let M be a (G, X)-manifold. Then the
Jollowing conditions are eguivalent:

(a) M is a complete (G, X)-manifold. (See section 3.6.)

{b) For some € > 0, every closed c-ball in M is compact.

(c) For every a > 0, every closed a-ball in M is compact.

(d) There is some family {Si}cr, of compact sets which exhaust M such
that Siy, contains the neighborhood of radius a about S;.

(e) M is complete as a metric space.

Proof of 3.9.1: We will check that (a) = (b) = (c) = (d) = (e) = ().

(a) = (b). Let 2o € X be any point. There is some ¢ > 0 such that the
closed e-ball about x4 is compact. This ¢ works for all z € X since (7 acts
transitively on X. Any e-ball in M is the i image of an e-ball in X so it is also
compact,

{(b) => (c). Suppose that every ball of radius a is compact for some a > .
Then such a ball is covered by a finite number of £/2-balls. A ball of radius
a+¢£/2 is therefore covered by a finite number of g-balls, so it is compact. By

induction closed balls of every radius are compact.
{c) = (d). Let S, be the ball of radius ¢ about .
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(d) = (e). If {z;} is any Cauchy sequence, then {z;} C Sr for some
sufficiently high T', hence it converges.

(e) = (a). Suppose M is metrically complete. We will show that the
deve]opmg map D : M —. X is a covering map by proving that any path o,
in X can be lifted to M (since local homeomorphisms with the path-lifting
property are covering maps}. First we need to see that M is metrically com-
plete. In fact, the projection to M of any Cauchy sequence in M has a limit

point z € M. Since z has a compact neighborhood which is evenly covered

in M, and whose components are definitely separated in the metric of M, the
Cauchy sequence converges also in M.,
Consider now any path o; in X. H it has a lifting &, for ¢ in a closed

neighborhood [0, o), then it has a lifting for ¢ € [0,%9 + &) (for some € > 0).

On the other hand, if it has a lifting for ¢ in a half-open interval [0,1;), the

lifting extends to [0, o] by the completeness of M. Hence, M is complete as a
(G, X)-manifold. m

Note: For hyperbolic manifolds obtained by gluing polyhedra, condition
(d) seems to be the most useful for showing a structure is complete, and
condition {e) for showing a structure is not complete.

Propositio 3.9.2. The hyperbolic structures for the figure-eight knot, White-

head link and Borromean rings complements (Section 7?) are complete.

Proof of 8.9.2: In any of the three cases, let Sp be the union of centers of
the polyhedra to be glued. The balls of radius ¢ about Sp, intersected with
the polyhedra, are matched nicely by the gluing maps, so they yield sets 5
meeting criterion (d) . m
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3.10. Hyperbolic surfaces obtained from ideal triangles

Consider an oriented surface S obtained by gluing ideal triangles in some
pattern. '

Let K be the complex obtained by including the ideal vertices. Associated
with each ideal vertex v of K, there is an invariant d(v), defined as follows.
Let h be a horocycle in one of the ideal triangles, centered about a vertex
which is glued to v and “near” this vertex. Extend A as a horocycle in 5
counterclockwise about v. It meets each successive ideal triangle as a horocycle
orthogonal to two of the sides, until finally it re-enters the original triangle as a
borocycle A’ concentric with A, at a distance Xd(v) from k. The sign is chosen
to be positive if and only if the horoball bounded by % in the ideal triangle
contains that bounded by ‘. (Why doesn’t d{v) depend on the initial choice
of horocycle ~7)

L ' B

. extendhara

Figure 3.29, Extending a horocycle. In a hyperbolic surface obtained by
gluing ideal triangles together, the invariant d{v) is defined for each of its ideal
vertices by extending a horocycle around v and measuring how far its position
has changed upon return to the starting line,

Propositio 3.10.1. The surface S is complete if and only if d(v) = 0 for all
vertices v.

Proof of 8.10.1: Suppose, for instance, that some invariant d{v) > 0. Con-
tinuing & further around v; the length of each successive circuit around v is
reduced by a constant factor < 1, so the total length of A after an infinite
nuinber of circuits is bounded. A sequence of points evenly spaced along A is

- a non-convergent Cauchy sequence, so S flunks condition 3.9.1{e)}.

If all invariants d(v) = 0, on the other hand, one can remove neighborhoods
of each vertex in K defined by fitting together pieces of horoballs to obtain a
compact subsurface S5. Let S; be the surface obtained by removing smaller
horoball neighborhoods bounded by horocycles a distance of £ from the original
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ones. The surfaces S; satisfy the hypotheses of 3.9.1(d), hence § is complete.

_

completesurd

Figure 3.30. A complete hyperbolic surface. When all the invariants d{v)
are zero, then the ideal triangles glue together to form a complete hyperbolic
surface, since the horocycles. match up around each ideal vertex. Note that
each end of 5 looks like a pseudosphere,

For any hyperbolic manifold M, let M denote the metric completion.

Propositio 3.10.2. Let S be a hyperbolic surface obtained by gluing together
ideal hyperbolic triangles, (leaving no free edges). Then S is a hyperbolic sur-
face with geodesic boundary. It has one boundary component of length |d(v)]
for each invariant d #10.

Proof of 3.10.2: Each horocycle, extended as a.bove, which “spirals out”
toward a missing vertex v of S has an endpoint in the metric completion.
Distinct horocycles are determined by a parameter ¢ representing the position
of intersection with some edge heading toward v, well-defined modulo d(v).
Distinct horocycles are uniformly spaced, so they have distinct endpoints. Af-
ter adjoining these endpoints, one readily verifies that every Cauchy sequence
converges. Hence S is a surface with boundary.

Each boundary component of S arises as a limit of geodesms which are
orthogonal to the horocycles around the corresponding missing vertex, and

thus 85 is an union of geodesics. _ 3.10.2

Figure 3.31 is a sketchof 5 and of the developmg map of S, in the projective
disk model.

In the case that S5 is a thrice punctured sphere, note that the conditions
d(v) = 0 for the three ideal vertices give 3 linearly independent linear condi-
tions in 3 variables, so they uniquely determine the three gluing maps of edges
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Figure 3.31. The development of an incomplete surface. When some
of the invariants d(v} are not zero, then the surface obtained by gluing ideal
triangles is the interior of a complete hyperbolic surface with geodesic boundary.
The boundary components have length |d(v)|. In the developing map the edges
of the triangles accumulate on the boundaries, and on the compIeted surface:

'they spzral around each boundary component

of two ideal triangles. This reflects the fact that the Telchmu]ler space of a
thrice-punctured sphere is a single point.

Exercis 3.10.3. {a) Cousider a complete hyperbolic surface with at least one cusp.

()

(©

Show that it can be decomposed into ideal triangles by cutting in any combi-

~ natorial pattern which works topologically.

Show that for any complete hyperbolic surface M? with geodesu: bmmdary,
the interior of M? can be decomposed into ideal triangles in any combinatorial

- pattern which works topologically and with any direction of spiraling specified

around each boundary component of M2, {We assume here, of course, that M2

is not closed.)

Describe the space of hyperbolic structures with geodesic boundary on M2, (as
above) up to isometries homotoplc to the identity. Check the answer against
the method of Section 3.8.
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3.11. Hyperbolic manifolds obtained by gluing ideal
polyhedra

Consider now the more general case of a hyperbolic manifold M obtained by
gluing pairs of faces of a finite collection of polyhedra, with some vertices at
infinity and leaving no free faces. Let M be the simplicial complex obtained
by including the ideal vertices. .

Let Sim" denote the group of similarities of Euclidean n-space E". An

‘element of Sim” can be composed from a rotation (€ O(n)), an expansion

or contraction by a scalar factor, and a translation. A (Sim, E*)-structure is
called a similarity structure.

Propositio 3.11.1. The link {(v) of an ideal vertez v of M has a canonical
stmilarity structure. M is complete if and only if for each ideal vertez v, the
similarity structure on { (v ts complete.

Proof of 8.11.1: To obtain the similarity structure on i{v), take a horospher-
ical cross-section of the set of rays heading toward an ideal vertex of one of
the polyhedra. The horosphere is modeled on Euclidean space, and projec-
tion from one horosphere to a concentric one, along their common “radii”,
is a Euclidean similarity. These similarity structures piece together to give a
similarity structure on I(v).

We will show that the two conditions of Proposition 3.11.1 are equiva-
lent, by relating them to the way horospheres fit together around the ideal

‘vertex. Begin with one horospherical section, far out near an ideal vertex of
.one of the polyhedra, and begin extending it, around the link of v in various

directions. Whenever this extension process comes back to the original face
of the polyhedron, if it does not match up exactly, then M is not complete,
since one may construct a non-convergent Cauchy sequence as in Proposition
3.10.1. If the horospheres always match up, then M is complete, a,ga.m by the
same reasoning as in Proposition 3.10.1.

When the horospheres match up, a horospherical eross-section of I{v) re-
fines the similarity structure to a Euclidean structure. Since Euclidean struc-
tures on compact manifolds are complete, the similarity structure is complete.

It remains to show that the similarity structure is not complete when the
horospheres fail to match up. We need the following lemma.

Lemm 3.11.2. A similarity structure on a closed manifold N is complete
& 1t comes from a Euclidean structure

& its holonomy group consists of Fuclidean isometries.

Proof of 8.11.2: The universal cover N always has a Euclidean structure
(induced by the developing map to E*). If the holonomy group acts isometri-

‘cally, this induces a Euclidean structure on N. This shows that the last two

conditions are equivalent.
If the holonomy is not Euclidean, there is some loop with contracting
holonomy. The lift of this loop in N develops in E* in a geometric progression,
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converging at one end to a point in E*. This point has no neighborhood which
is evenly covered, so N is not complete. 3.11.2

Continuation of proof of 3:11.1; When some horospherical cross-section
does not match up, there is an element of the similarity structure of the link of
some ideal vertex which contracts. Thus, applying lemma 3.11.2, the similarit

' ' H.ll.l

- structure is not complete.

Even when M is not complete, the fact that there is a similarity structure
on the link imposes topological constraints on it. In particular, when n = 3
the links must all be tori, as follows from this exercise:

Exercis 3.11.3. Show that no closed oriented surface other than the torus can be
given a similarity structure. [Hint: compare with the proof of the similar statement
for Euclidean structures in 1.3]

The completion M gives a different picture in each of the cases n = 2n=3
or n > 3. We shall be mainly concerned with the case n = 3, which is the most
interesting. We will study it in detail in Chapter 7, showing by example that
we can deduce non-trivial topological information by studying the completions.

Warning: The similarity structure on {(v) for a hyperbolic manifold M
obtained by gluing ideal polyhedra definitely depends not just on M but on
the decomposition of M into ideal polyhedra, when M is not complete.
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3.12. The eight model geometries

What is a geometry? Up till now, we have discussed three kinds of three-
dimensional geometry: hyperbolic, Euclidean and spherical. These three ge-
ometries have in common the property of being as homogeneous as possible:
not only do they have self-isometries which move any point to any other point,
but these three spaces also have isometries which can take any orthonormal
frame in the tangent space at any point to any other orthonormal frame at any
other point. If we remove this latter condition, there are many more possibili-
ties: there are 3-dimensional spaces which are still homogeneous, but they are
(so to speak) warped, so that there are certain directions in the space which
are geometrically distinguished from other directions.

An enumeration of additional 3-dimensional geometries depends on what
spaces we wish to consider and what structures we use to define and to distin-
guish the spaces. For instance, do we think of a geometry as a space equipped
with such notions as lines and planes, do we think of a geometry as a space

equipped with a notion of congruence , or do we think of a geometry as a space
-equipped with either a metric or a Riemannian metric? There are deficiencies

in any of these approaches.

The problem with using structures such as lines and planes is that they are
not general enough. The five new geometries which we will describe here do not
have any good notion of a plane — there are no flat (totally geodesic) surfaces

in these geometries passing through certain tangent planes. Besides, even in

Euclidean geometry, information about geometric shapes is not determined by
incidence properties of lines and planes.

The problem with using the notion of congruence to define the structure of
a geometry is that the number of different geometries proliferates more than
we would really like. For instance, we could consider Euclidean space with
the group of translations as the group of congruences, or Euclidean space with
horizontal translations together with vertical screw motions {where the amount
of rotation is proportional to the vertical motion}, etc., and get a number of
different geometries. Sometimes it is interesting to distinguish these different
structures, but for the broad picture these variations should all be considered
under the category of Euclidean geomeiry.

Finally, the problem with using a notion of distance to determine the ge-
ometry is, first, that by simply rescaling something like H® or 53, we get
different metric spaces. Moreover, even if we consider metric spaces which are
isometric up to a constant scaling factor to be equivalent, many of the spaces
have a whole family of homoegeneous metrics {sometimes with varying degrees

of homogeneity) which are not even equivalent up to scaling. The three-sphere,

for instance, has an interesting family of homogeneous metrics obtained from
the usual metric by picking a family of Hopf circles and contracting or ex-
panding the lengths of these circles, while keeping the metric constant in the
orthogonal directions.
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The best way to think of a geometry, really, is to keep in mind these
different points of view all at the same time. If we allow changes of the group
of congruences which do not change the metric and changes of the metric which
do not change the group of congruences as inessential changes in the geometry,
and if we also group geometries together when the sets of compact manifolds
modeled on them are identical, we end up with a reasonable enumeration of
geometries.

For logical purposes, we must pick only one deﬁmtlon We choose to

-Tepresent a geometry as a space equipped with a group of congruences, that

is, a (G, X) space.

Definitio 3.12.1. A model geometry (G, X) is a manifold X together with a
Lie group G of diffeomorphisms of X, subject to the following condatlons

a) The space X is connected and simply-connected.

b} G acts transitively on X, and the stabilizers G, of points z € X
- are compact.

c) G is not contained in any larger group of diffeomorphisms of X
with compact stabilizers of points.

d} There exists at least one compact manifold modeled on (G,X).
Remarks. Condition a) selects one representative from each class of locally

equivalent geometries with different fundamental groups, so that they serve as
models for identical classes of 3-manifolds. Condition b) means that the space

‘possesses a homogeneous Riemannian metric invariant by G (see lemma 3.6.7).

Condition c) says that no Riemannian metric which is invariant by G is also
invariant by any larger group. In particular, it selects at most one geometry for
each isometry class of metric spaces. Another reason for condition ¢) is that by
enlarging the structure group G, we do not decrease the set of manifolds with
that structure. Condition d) is not phrased in an intrinsic way, but it is useful
because it eliminates a whole continuous family of 3-dimensional geometries
which do not serve as models for any compact manifolds — this family consists
of 3-dimensional solvable Lie groups (or extensions of them by small compact
groups) which act on themselves by left multiplication. These geometries are
not unimodular, i.e., they have geometrically invariant vector fields which have
negative divergence (decrease volume). Clearly, such a geometry cannot be a
mode] space for anything compact or even of finite volume. We chose the
phrasing of d), rather than the condition that the geometry be unimodular,
because in higher dimensions unimodularity is not sufficient to guarantee that
there are compact manifolds modeled on a geometry.

~ Now we will give a brief description of the other five 3-dimensional model
geometries, along with simple examples of manifolds modeled on each. We
will not prove that this list of eight model geometries is correct, even though
it is possible to develop the list in an elementary way in terms of the local
geometric pictures which are consistent with the possible choices of stabilizers
of points G, {for a discussion, see [Sco83)).
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Section “classification Before actually enumerating the new geometries, however, we should point
manitolds” out that all five are obtained, in one way or another, by combining one of the

] _ two-dimensional geometries with the geometry of the line. Put another way,
each of the five has a canonical fibration either over a 2-dimensional geometry
or a 1-dimensional geometry {or both), with each fiber being a geometry of
complementary dimension. The complete geometric description of the fibra-
tion Involves some measure of how it is twisted. Four of the. new geometries
have fibrations over a 2-dimensional geometry, with 1-dimensional fibers. Miss-

“ing from the list are twisted fibrations over the 2-sphere - such fibrations are
swallowed up by the geometry of the 3-sphere, because of condition c), as well
as untwisted fibrations over the Euclidean plane, which are swallowed up by 3-
dimensional Euclidean geometry. Three of the new geometries have fibrations
over the line, with fiber the 2-sphere (5% x E!), the hyperbolic plane (H? x E'),
and the Fuclidean plane (solvegeometry). (Actually, in the last case, the fiber
should more properly be thought of as the more restrictive geometry of the
group R? acting on itself by left multiplication.) Furthermore, solvegeometry
in fact has a somewhat weird fibration over the hyperbolic plane ~ see sec-
tion ??discussed with fig eight knot?? - it is just that this fibration is not as
canonical nor is it as topologically meamngful as the fibrations of the other
geometrles This weird fibration is

never discussed in the

3.12.2 The 2-Sphere Cross the Line v hit

The underlying space for this geometry is 52 x El, and the group G is
O(3) x isom(E!). -One family of examples of (G, X) mamfolds is the quotient
of 5% x E! by the discrete group generated by the transformation

(6,2) = (A(6),¢ + <)

where 8§ € S%,t € B!, A is an arbitrary orthogonal transformation and ¢ is
an arbitrary positive real number. The manifold is diffeomorphic to §% x §?
when det(A) > 0 and to a related unorientable manifold otherwise.

There is one more family of examples, with group C; * C; generated by

(8,t) > (—0,—1)

and

(6,1) - (—0,a—1)

where a > 0. The quotient three-manifold is orientable, and it can be described
as 5% x I, with each end identified to itself by the antipodal map. In the
three-manifold the two ends become copies of RP?, with orientable regular
neighborhoods wich are therefore one-sided and have boundary S2..

These are the only possible examples of compact manifolds modeled on

S‘szl

Exercis 3.12.3. (a} Any discrete subgroup of isometries of 5% x £1 acts discretely
{but not necessarily effectively) on El,
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(b) A_disriréte group of iscmetries of E! is isomorphic to Z or to Cq * Cy.

- {c) The only closed three-manifolds modeled on 5% x E! are the examples given
above. . _

3.12.4 The Hyperbolic Plane Cross the Line

The underlying space for this geometry is H? x E', and the group is the
group of isometries of the hyperbolic plane cross the group of isometries of the
Euclidean line. The product of any hyperbolic surface with a circle gives an
example of a (isom(H?) x isom(E!), H? x E')-manifold. More generally, if S is
any hyperbolic surface and ¢ : § — § is any isometry of it, then the mapping
torus of ¢, :

My = (S x )/{(2,0) ~ (¢(), 1)}
has an H? x B! structure. -

3.12.5 The Geometry of Twisted Bundles over the Hyperbolic
Plane.

This geometry is needed for modeling most circle bundles over surfaces of
negative BEuler number The simply-connected underlying space for this geom-
etry can be constructed by taking the universal covering space of the tangent
circle bundle T'S(H?) of the hyperbolic plane, that is, the space of non-zero
tangent vectors up to multiplication by positive real numbers. The group I of
isometries of the hyperbolic plane acts, via derivatives, on the tangent circle
bundle T'S{H?), which is homeomorphic to an open solid torus. It is a cu-
rious fact that even orientation-reversing isometries of the H? plane preserve
orientation in their action on TS{H?), since they reverse the direction of the
circles as well as the orientation of the base. TS(H?) can also be thought of as
PSL(2, ()R), the group of orientation-preserving isometries of H2, since such
an jsometry is determined by where it takes a fixed element of the tangent
circle bundie.

Exercis 3.12.6. How do the various kinds of isometries of the hyperbolic plane act
on its tangent circle bundle, visualized as a solid torus? Describe, in particular, how
a rotation of (say) 2r/3 in the hyperbolic plane acts, and how a reflection through
a line acts. '

Let 7 consist of all homeomorphisms of the universal cover W = ﬁ(Hz) which
comrnute with covering transformations and whose quotient action on TS(H?)
comes from the action of an element of 1. Let J be the group generated by 1,
together with vertical translations (which preserve each fiber, in the fibration
of W over H?). Note that vertical translations commute with those elements
of T that preserve orientation in the hyperbolic plane, and that a translation by
any multiple of 2r is again in I. The entire group J preserves the orientation of
W, so every (J, W)-manifold can be given a canonical orientation if we choose
an orientation for W.
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% Woin2gr There is a nice construction for some interesting examples of 3-manifolds
“METRIC! modeled on (J, W), which begins with an arbitrary discrete group I' of =3
orientation-preserving isometries of the hyperbolic plane — for instance, the .

orientable (2,3, 7) triangle group (the orientation-preserving subgroup of the
group generated by reflections in the sides of a triangle with angles # /2, 7 /3,
and 7 /7. See Figure 2.18). Even though there are sometimes elements of such
groups which fix points on the hyperbolic plane, they do nat fix any points
on the tangent sphere bundle of the hyperbolic plane, since their derivatives
are not the identity. The quotient of 7'S (Hz) by I' is a 3—ma,mfoid with a ok
(J, W)-structure.

Other examples can be constructed from these _by fiddling with the
amounts of vertical translation in their holonomy groups {C J). For instance,
the holonomy group for the manifold constructed from the (2, 3, 7} group above -
is an infinite cyclic central extension of the (2,3,7) triangle group,

Z— T — (2,3,7)-group. 5y

If this group is enlarged by adjoining translations by multiples of 27/11, the -
group is still discrete and still acts without fixed points. g
i

Exercis 3.12.7. For which infinite cyclic central extensions of the (2, 3,7) triangle
group can you construct isomorphic discrete subgroups of J? Which of these act
without fixed points? Suppose the base group is the fundamental group of a sur-
face of genus two, instead of the (2,3,7) group ~ can you think of any additional
constraction? [Hint: what is the abelianization of m3(T'S(surface})?] - 3

Instead of visualizing W = PSF(é,()R) as something constructed from
little vectors on the hyperbolic plane, it is better to think of it in three dimen-
sions. One image is the universal covering of the solid torus, D? x R. This
description as a product is unnatural, however; it is really better to iry to
visualize the internal geometry of W from the point of view of someone living
inside it. To form a picture of the internal geometry, begin by imagining what i
it is like to live inside H? x E!." The horizontal planes are like hyperbolic
planes, while any plane which passes through the vertical direction is a Eu-
clidean plane. Now modify this picture by introducing a consistent warp of
space. There is still an infinitesimal definition of vertical and horizontal, but
the warping eliminates any global notion of horizontal levels, since the new
picture is not geometrically a product. By consistent warping, one can create
the effect that a horizontal path which turns at a constant speed to the left
never closes up, but instead, spirals upward — it returns to the initial vertical
fiber successively ab @i higher and higher points. A horizontal path which turns
at a constant speed to the right spirals downward.

In the geometry of W, the foliation by vertical lines. is nat.ural it is
invariant by the full group of congruences J. The distinction between it and

~ the geometry of H? x E! is that in W, there is no horizontal foliation.
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Exercis 8.12.8. Discuss the three-dimensional picture of W in more precise terms.
Suppose that you move along a path in W which is infinitesimally horizontal, and
arrive back at the vertical line where you started. Express your change in altitude
in terms of the signed area enclosed by your shadow in HZ. Give a formula for the
metric on W in terms of upper half-plane coordinates cross R (check your answer
against [Sco83)).

3.12.9 Nilgeometry.

This geometry is needed for modeling twisted circle bundles over surfaces
of zero Euler number It has many similarities to the previous case. To give an
algebraic description, we can begin with the Heisenberg group, which is the
group of upper-triangular 3 by 3 matrices

1 a ¢
N = 01 %
0 0 1

This group is the only 3-dimensional nilpotent but non-abelian connected and
simply-connected Lie group. The Heisenberg group acts on itself by left trans-
lation to give a 3-dimensional geometry, but this group of transformations is
not a maximal group with compact stabilizers, In order to visualize the Heisen-
berg group and also see how it can be enlarged, let us use slightly different
coordinates (a, b,d), where d = ¢ — 1ab. The rule for multiplication becomes

mﬁﬁy@maa)=(a+¢b+md+w+1m3—mm;

Fortunately, it is not too hard to see how left multlphca,tlon by an element
n = (a,b,d) acts on R3: in fact, n acts as an affine transformation of R®
which takes vertical lines (parallel to the d-axis) to vertical lines, and projects
to the (4, b)-plane to act as a pure translation. The transformation may be
constructed by first translating the origin to the point (a, b, d) in R?, and then
shearing R? by a linear transformation which is the identity if (a, b) (0,0),
and otherwise fixes the vertical plane which contains the d-axis as well as the
point (a,b,d), moving a general point (z,y,2) in the d-direction a distance
equal to the signed area of the triangle A((0,0), (e, ), (z,y)).

Using the (a, b, d)-coordinates, we see that there is a group of automor-
phisms of N which is isomorphic to O(2), acting as a group of orientation-
preserving isometries of R® by first performing its usual action on the (a, b)-

plane, and then correcting the orientation if necessary by a reflection through
* this plane.. As the group G of congruences of nilgeometry, we take the semi-

direct product corresponding to this action of 0O(2),
G=NwxO2).

(See exercise 3.12.10 for a definition of semi-direct products).
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As with the preceding geometry, nilgeometry has a natural 1-dimensional
vertical foliation, but no natural transverse 2-dimensional foliation.

As an example, we can construct a 3-manifold with a nilgeometry structure
from the subgroup of the Heisenberg group consisting of matrices with integer
entries. This subgroup is discrete, and has compact quotient.

junglejim

junglejim

Figure 3.32. junglejim. A homogeneous jungle gym in nilgeometry. This
is a picture of the subgroup I' of the Heisenberg group consisting of matrices
with integral entries. The group is transferred to (a, b, d)-coordinates, where
the orbit of the origin under the group forms a lattice in R2, although it is
not the integer lattice. Lines are drawn to show the graph of the.group: three
generators ‘are chosen (the generators are represented by matrices such that ..
{a,b,¢) is one of the three coordinate vectors) and pairs of lattice points are
connected by a line whenever one is obtained from the other by multiplication on
the right by one of the generators. Since multiplication on the right commutes
with multiplication on the left, the picture is invariant by the discrete group T
acting by left multiplication, so from it one can see how I' acts.

Exercis 3.12.10. Let G be a group with a subgroup H and a normal subgroup N.
G is the semi-direct product of N and H (G = Nx H)if G= NH and NnH = {1}.
a) There is a natural homomorphism ¢ : # — Aut{N) given by conjugation.
b) This action of H on N determines the group: given any two groups N and
H, and a homomorphism ¢ : H — Aut(N), show how to construct the {unique)
semi-direct product of N and H consistent with this action.

3.12.11 Solvegeorhetry.

This geometry is the least symmetric of all, having the stabilizer of any
point a finite group. It is based on a three-dimensional solvable Lie group
S = RZx R where the action of R by conjugation on R? is that { € R sends
(z,7) € R? to (e'z,e'y). If we use coordinates (z,y,1) = (z,y,0) - (0,0,%),
then the formula for multiplication is :

(z,y,t)-{z',¥,¥) = (z,¥,0) - (0,0,¢) - (', 3, 0) - (0,0, —¢£) - (0,0, + ¢)
= (+eay b e, i),
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% MAP TOR Thus, multiplication on the left by (z,y,t) is an affine transformation of R?,
Section “MAF TOR" . i . . . .
which first distorts in the z and y directions according to ¢, then translates by
(z,y,1). The action of (Cz)* on R?, in which the three non-trivial elements
act as 1/2-rotations about the three orthogonal linesz =y =0,z -y =t=10
and z + y = t = {0, preserves the group structure. Qur space is 5, and the
group is S x (C,)%. -

If ¢ : T? — T? is any linear map of the torus to itself - that is, it comes
from a linear map of R? to itself which preserves the integer lattice — then
the mapping torus My always has either a Euclidean structure, a nil-geometry
structure or & solve-geometry structure. (Exercise 3.12.13). Compare [P0i95].

Exercis 3.12.13. Let ¢ : T° — T2 be a linear map of the torus to itself, and My,
be the mapping torus. Let Ay and Ag be the roots of the characteristic polynomial
of ¢, 80 Ay - Ag = det ¢ = +1 and Ay + Aa = tr{).

{a) If A; and A7 are not real, then they are roots of unity, and ¢ has finite order.
7? has a Euclidean structure for which ¢ is an isomeiry, and My has a Euclidean
structure. _ .

(b) If A¢ and Az are real and distinct, then ¢ has two eigenspaces. The torus
has a Fuclidean metric for which these eigenspaces are orthogonal, and My has a
solve-geometry structure. ' '

(c) I ¢ does not fit into case (a) or (b), thén Ay = Ay = £1, and then either ¢? =

1 and My has a Euclidean structure, or else ¢ is coﬁjugate to the form 4+ (é T)

n # 0] and My has a nil-geometry structure.
é g
" (d) Find examples of linear maps ¢; and ¢ which have the same characteristic
polynomials with real distinct roots such that My, and M, are not homeomorphic.
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Chapter 4

The structure of discrete

groups

There are often strong consequences for the topology of a manifold M which
can be expressed as the quotient space of a homogeneous space (G, X) by a
discrete group I"' C . These consequences arise from geometric and algebraic
restrictions on discrete groups. In some cases, the information is strong enough
to enable a complete classification of closed (G, X)-manifolds.

In this chapter, we will investigate the structure of discrete subgroups
of automorphisms of a homogeneous space, with an emphasis on the three-
dimensional model geometries.
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4.1. The thick-thin decomposition

- Let M™ be a complete hyperbolic manifold, possibly with infinite volume.

For any point ¢ € M, consider the set of all its lifts to the universal cover
M"™ = H™, They form a regular array, like atoms in a crystal. Because the
group of covering transformations is discrete, there is a minimum distance d
between any two lifts of z. This minimal distance d is also the shortest possible
length of a loop based at z which represents a non-trivial element of m; ().
A ball of radius r = d/2 about z is embedded, since all its lifts are disjoint,
but no larger ball can be embedded.

This number r is called the injectivity radius of M at z, written r =
2.{z). (The terminology arises from the more general setfing of a complete
Riemannian manifold M. There is a canonical map, the exponential map,
from the tangent space of M at = to M, defined by extending geodesics. The
injectivity radius is the radius of the largest open ball on which the exponential
map is injective.) -

We can decompose M into two pieces; M = Mpick) U Mt;,,-n(s), where

Mih,s‘ck{s) = {:!2 eEM: 2,-(2:) > E}

and ' . .
Mipinge) = closure({z € M :i,(z) < e}).

When the particular value of ¢ is not important, we simply write M. and
M- _

We shall see that Mipin(e) has a very standard form, provided € is cho-
sen small enough. In particular Meing) and Mipicr(e) are sub-manifolds with
boundary., Migick(e) does not fit into any standard mold, but on the other
hand,

Proposition 4.1.1 (thick compact). If M" is ¢ complete hyperbolic mani-
fold of finite volume, then My is compact

Proof of 4.1.1 : The ball of radius ¢ in M about a point in My0x has the same
volume V' as a ball in H" of the same radius. Therefore, there is an upper
bound vol{M)/V for the number of points which can be put in My such
that the distance between any two is at least 2¢, since their balls would be
disjoint. If S is any maximal set of points in M, with this prdpex_'ty, then the
closed neighborhood of radius 2¢ about S contains Mys;e. This neighborhood
is compact; since Mipick i 1§J a closed subset, it is also compact. 4.1.1
YL L

Let us turn mL)w ifo Mipin. I x € Mypiy, then for any point z € H” lying
above z there are elements v € x;(M) which move T only a short distance.
The key to understanding M, is to analyze discrete groups generated by
“small” elements. We will state now the main conclusion in this direction
for hyperbolic space, but we will give the proof in a somewhat more general
context in the next section (4.2). ‘

Revision: 1.8 Date: 90/07/10 16:14:06



Fropositien “thin
abelian subgronp”

% thin abelian
aubgroup

% diztance foaction is
Sonvex

4.1. THE THICK-THIN DECOMPOSITION - . 160

| |
thickthinsarl

.Figure 4.1, The thick-thin decomposntmn of a surface. The thin part of
a hyperbelic surface of finite area consists of neighborhoods of short geodesics
and cusps which are isometric to pseudospheres.

Proposition 4.1.2 (thin abelian subgroup). In every dimension n there
is an € > 0 and an integer m such that if B is a ball of radius ¢ in H* and
if m(M) is any discrete subgroup of isom(H™) generated by elements v such
that v(B) intersects B, then wl(M ) has a normal abelian subgroup of index at
most m. :

One reason the integer m is necessary is that there are nonabelian discrete

groups which fix a point. For instance, in dimension n = 2, the group generated

by reflections in two lines meeting at angle n/k is discrete. It is a dihedral
group, and has a normal abelian subgroup (rotations) of index two. For n = 2,
m can be taken as 2.

In dimension 3, the most complicated example of a discrete group which
fixes a point is the group of symmetries of an icosahedron. It has order 120.
The largest normal abelian subgroup has order 2 (generated by the antipodal
map of an icosahedron). The minimal value for m in dimension 3 is 60.

Proposﬂ‘.lon 4.1.2 enables us to analyze the structure of Mipin(e), where
M is a complete hyperbolic manifoid. Choose an ¢ sufficiently small for the
proposition..

For any set & C x1(M), let T(S) denote the set of points in H® moved a
distance less than & by some non-trivial element of S. In particular, T(m (M)
is the interior of M:hm(.«.-), the subset of M lying above Mjjin(e)-

For any particular isometry =, the translation distance d,(z) = d(z,v{z))
1s a convex function on H" (2.5.8). Therefore the set T({v}) is convex.

Two sets T({£}) and T({v}) can have non-empty ‘intersection only if

the group G{3,v) generated by 8 and v contains a normal abelian subgroup
A(B,v) with bounded index.
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Since the group m(M) consists entirely of hyperbolic and parabolic trans-
formations, there are two possibilities. The first possibility is that there exists
a hyperbolic element ¢ € A(B,~). If so, then ¢ has a unique axis /. The group
A(B,~) therefore must take { to itself, so it acts as a group of translations on {.
Therefore A, v) is isomorphic to the infinite cyclic group, Z. Since A(B, %) is
a normal subgroup of G(8, ), the latter group also takes ! to itself, so G(8,v)
as well is infinite cyclic. In particular, § and v commute.

In fact, if B is the subgroup of m; (M) stabilizing I, then B too must be
infinite cyclic, so the component of T'(x, (M)} containing T'({y}) is the same
as T(B). (It is often not true, however, that T(B) is identical with T({e}),
where a generates B.)

In dimension two, for any hyperbolic element ¢ the set T{{¢}) is a neigh-
borhood of some radius r about its axis, since ¢ commutes with reflection
through its axis. It follows that in dimension two, T{B) is also a neighbor-
hood of some radius + about 1.

In dimension three, if ¢ is a hyperbolic element which preserves orienta-
tion, it is composed of a translation along { followed by a rotation about /.

‘This commutes with rotation about I, so T({¢}) in this case is a cylindrical

neighborhood of some radius r about I. If M is orientable, then T(B) is a
union of cylindrical neighborhoods, so it is also a cylindrical neighberhood.

If ¢ is a hyperbolic orientation-reversing transformation of H3, it is a glide-
reflection, composed of a translation along ! followed by a reflection through
some plane P through [. Then T'({¢}} will have an eccentric cross-section,
extending further in the plane of P than in the plane through ! perpendicular
to P. In this case, a cyclic generator a for B must also be a glide reflection,
and T(B) = T({a}).

In higher dimensions, T(B) need not be convex. Nonetheless, it is a union
of convex sets containing I, so it is star-shaped with respect to any point on
the axis I. (A subset X of H" is star-shaped with respect to a point = € X if
the geodesic between x and any other point of X is conta.med entirely within

X.)

The other possibility is that A(3,v) consists entirely of parabolic elements.
A parabolic element fixes a unigue point p € S, so A(ﬁ ,v) and G(3,v) must

o0

fix p. We may arrange coordinates so that p = oo in the upper half-space
model.

Let B be the subgroup of 7(M) fixing p. It must consist entirely of
parabolic elements: if it contained a hyperbolic element, then the conjugates
of a parabolic element by thls hyperbolic element would ha.ve arbitrarily short
translation distances.

Then the component of T'(m1(M)) containing T({7}) is |J,cp T{{4})-
Along any vertical ray in upper half-space, the translation distance of any
parabolic element ¢ fixing oo decreases exponentially. Therefore, T({¢}) in-
tersects such a ray in a half-line. This means that T(B) is star-shaped in a
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Problem “shapes of  generalized sense with respect to p (aJthough p, being on S, is not in T(B)

4 thin sets”

CUEDE at a_]_l) . -
Fropaoiition “thick 4
compact implies In the two- or three-dimensional orientable case, each 8 € B must look ;

finite volume"

% thick compact like a pure translation in the upper half-space model, so T({8}) and T(B) are
- open horoballs.

Problem 4.1.3 (shapes of thin sets). (a) Give an example of an orientation-

preserving hyperbolic transformation o of H? such that T({a}) is a proper
subset of T({a'%}).

(b) Give an example of a non-convex component of T{A) for a cyclic subgroup
A(B,7) of isometries of HA. =

From the picture of the components of T'(m;(M)), the picture of Myn
follows easily. “3
Some components of M;hm may be compact These are diffeomorphic —~£
to (D™~ x R)/Z, so the quotient is D™ 1 x S? if the action of Z preserves
~orientation, or a non-orientable disk bundle over S otherwise. ™
Other components of M, may be non-compact. These all have the form :
(up to diffeomorphism) of N*~1 x {0, oc), where N*~! is an arbitrary Euclidean
(» — 1)-manifold. These non-compact components of My, are neighborhoods sheatd more be said
of cusps of M. Cusps are not points of M, but ideal points, which can be ecrough- bick
~defined as (parabolic fixed points in S of elements of x;{M))/(Action of

. rl(M.)]._

‘Proposition 4.1.4 (thick compact implies finite volume). A complete
hyperbolic manifold M has finite volume iff Mypicr is compact.

s

Proof of 4.1.4: We have already seen that M is compact if M has finite
volume (4.1.1). For the converse, we need to show that when M. is compact, o
then each of the finitely many components of M, has finite volume. This i
is trivial for compact components. For a non-compact quotient, C, consider
its universal cover C in upper half-space, z,, > 0, arranged so the parabolic i
fixed point is the point at oo. The volume of C is computed as the volume of 24
%] lying above some compact region in Xj,..., Xn-1 plane, ie. a fundamental
region for the action of B on C. This cross-section of ' lies above some height
Tn = h > 0 and since the hyperbolic volume element decreases as (1/X,)",
the volume is clearly finite.
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{7 seion oo 4.2, Groups generated by small elements
e generated by small
"Helm:lmnf;s‘:‘ . . B Thia sectian_ has been
Housdert amense 1o get an overall image of discrete groups I' of a Lie group G, you need to 530 rumien Vot
Propoaition “clase _
o pronps Y understand not only the well-behaved examples but the extreme examples as [oon, "o the
- Hausdorff clozad” ’ have been put in. Be

7 well, when T' is almost-indiscrete, in the sense that there are many elements or e wokous for

very close to the identity. meeded. The nilpotent

For this, the Housdorff topology is quite helpful. The Hausdorff distance bees sirenehensd, o
between two closed subsets A and B of a compact metric space X is the powerar, e
greatest distance a point in either set is from any point in the other set, or in

symbols,

d(A, B) = max (rfea}(lgé%ld(a, )),ma,x(mmd(a b)))
The Hausdorff metric makes the set of closed subsets of X into a compact
metric space H{X). The topology of #(X) depends only on the iopology of
X, not on the metric on X.
For subsets of a noncompact metric space, the appropriate definition is
not as clear, and in fact there are two good definitions. Most obvious is to use
exactly the same definition as for compact spaces. Unfortunately, with this
topology, the space is not compact (and not even paracompact).
For our purposes, the best choice is to define the Hausdorff topolegy in
terms of the intersections with compact sets. That is, if X is a locally compact,
complete metric space and A C X is a closed subset, we define neighborhoods
Nk,(A) for compact K C X and € >0 to consist of sets B such that d(A N
K, BN K) < e. With this topology H(X) is a compact topological space. = suoutd we raves

fact?-Dick

Let’s apply this to the case X is a Lie group G: the Hausdorff topology in-
duces a topology on the set of closed subgroups H C G. Here is an elementary
fact: '

Proposition 4.2.1 (closed subgroups Hausdorff closed). The set of
closed subgroups of a Lie group G form a closed, hence compact, set in H(G).

Proof of 4.2.1: et A C G be a closed subset which is a Limit point of closed
subgroups of G. Let a,b € A. We need to verify that a~? € A and that ab € A.
Choose a compact set K C G whose interior contains neighborhoods of a, b,
ab and a~'. Then Nx(A) conta.ins subgroups with elements within € of a
and b, hence elements near to a™* and to ab. Taking the limit as ¢ — 0, the

proposition follows.

For any closed subgroup H C G, the component Hp of H which contains
1 is a Lie subgroup: it is a connected submanifold, and it is determined by
its tangent space at 1. The entire subgroup H is a union of a discrete set of
cosets of Ho; in the special case that Ho=1, H is a discrete group.
L If G admits discrete groups with elements arbltra_nly close to 1, then the
cyclic subgroups generated by these elements form a dotted line going a definife
distance away from 1." H this happens, the set of discrete subgroups do not
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form a closed subspace of H(G): the Hausdorff limit of a sequence of discrete
groups, as elements get closer and closer to 1 has a nontrivial component of
the identity. '

If we can understand what are the Lie subgroups Hy C G which can
occur as the identity components of such limits, we will have a good tool
for understanding subgroups of G with small elements. The key result is the
following: o " ' '

Theorem 4.2.2 (nilpotent limits). (a) For any Lie group G, there is a
neighborhood U of 1 in G such thal any discrete subgroup of G which is
generated by its intersection with U is nilpotent.

(b) Furthermore, any discrete subgroup of G generated by its intersection with
U is a cocompact subgroup of a connected, closed, nilpotent subgroup of G.
(c) The closure of the set of discrete subgroups of e Lie group G consists only

of discrete subgroups together with certain closed subgroups whose identity
component is nilpotent.

'P_roo fof .2.2: The basic idea is that for elements close to the identity in a Lie

anralinil

Figure 4.2. commutator of small elements. In any Lie group, the commu-
tator [a, b] = aba~1b7! of two elements near 1 is even closer. its distance from
1 is estimated by the product of the distances of a and b from 1, by Taylot's
theorem.

group, multiplication is approximated by vector addition in its tangent space
(its Lie algebra). Since addition of vectors is commutative, multiplication of
small elements is almost commutative: it is commutative up to second order.
In symbols, there is an € > 0 and a constant C such that for any a,b € G such
that d(1,a) < & and d(1,5) < €, then

d(1,[aba" b)) < cd(1,a)d(1,b).

In particular, [a, 8] is considerably closer to 1 than either ¢ or b. This inequality

follows from Taylor’s theorem applied to the map of G x G — G defined by
the commutator [a, b], taking into account that [1,8] = [e,1] = 1. '
Counsider any discrete subgroup I' which is generated by its intersection
with the ¢ neighborhood of 1, where ¢ is sufficiently small that d(1, [, b]) <
1/2d(1,a) for any a and b within ¢ of 1. Then any nested commutator

[.‘11, [.92; [93, cers qu—l,gk] . ]]]
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of elements g; within £ of 1 is within distance 27%¢ of 1. Since there is a
minimum distance of nontrivial elements of T' from 1, there is some %k such
that all such nested commutators of length k equal 1.

It easily follows that I' is nilpotent: define subgroups

IF'=TeDIh D...D2T: =1

to be the subgroups generated by length i nested commutators of elements of
I in the e-neighborhood of 1. Thls is a central series for I', which proves that
1t is nilpotent.

L i Jd
smallgronp

Figure 4.3. group génerated_ by small elements. A discrete subgroup
of a Lie group generated by small elements must look something like this.
It is something like a lattice in R”, but multiplication might not be quite
commutative: the commutators of elements in spaced out dlrectlons might be
nontrivial in directions where the dots are spaced much closer together.

To prove the second statement, we need to use the exponential map and
the logarithm in a Lie group G. The Lie algebra of & is the tangent space
G to G at the point 1. An element V in G can be transported by the action
of G on itself by multiplication on the left to give a lefi-invariant vector field
Ly on G. The flow of Ly is the action on G on the right by a l-parameter
subgroup of . The image of 1 by the time one map of the flow of Ly is called
exp(V')—the time one map of the flow acts by multiplication on the right by
exp(V'). The derivative of the map V — exp(V) is the identity at 1. It follows,
in particular that the exponential map is injective from a neighborhood of 0
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tog in G to a neighborhood of 1 in G. In such a neighborhood, we can define log
[ pGrassmanian to be the inverse function of exp. - _
The usual exponential function is the exponential map for the multiplica-
! tive group of positive real numbers.
\ It is easy to check that for any integer n, just as with the usual exponential
; function, exp(nV) = exp{V)*. However, exp(V + W) does not in general equal

exp(V') exp(W), since multiplication in G might not be commutative.

Let U be a small neighborhood of 1 in 7. Let us study a discrete group
I’ generated by its intersection with /. We may assume that the logarithm
is well-defined on I/ and that the left-invariant vector fields Ly are nearly
parallel in U, as viewed in some local coordinate system. So that we have
a clear picture, we can take U/ to be the image of a ball of radius £ in G.
We will construct a connected nilpotent subgroup containing I' by building an
increasing family of nilpotent subgroups

PO:NOCNjc...CNks

containing T, of increasing dimension, until we obtain a connected subgroup
Ni. .

The first step is the easiest. Let a1 be a nontrivial element of T' which is
closest to 1, and let 1, be its logarithm. The flow from V, is a 1-parameter
subgroup of G containing gp. We know that a, is central in I'. It follows

that the nth root a} = exp{((1/n)log(Vs)) is also centralized by T, because
of the uniqueness of nth roots within U/. Passing to the limit as n — oo, it
follows that the 1-parameter subgroup M; with tangent V; is centralized by T.
Because the powers of @, are uniformly spaced in Mj, it is a closed subgroup.
Thus Ni = M, - T is a closed nilpotent subgroup of G on which Gamma acts
cocompactly.

~ The induction step is similar. We assume, by induction, that we have a
sequence No C ... C Nj of closed nilpotent groups containing I', each of the
form N; = M;-T', where M; is connected and closed, of dimension 7. We also
assume that [N;, M;] C M;_; and that T is a cocompact subgroup of N;.

We take a; to be a smallest element of N; which is not in M;. The commu-
tator of any element of N; NI/ with e; is smaller than a;, so it must be in M;.
In particular, a; normalizes M;. We want to show that the 1-parameter group
((a;) containing e; also normalizes M;. To see this, consider its action by con-
Jugacy on the group G. The derivative of this action at 1 is an action (called
Ad) on G. This induces an action on the space of d;-dimensional subspaces of
G, where d; is the dimension of M;. (In general, the space of k-dimensional
‘subspaces of an an n-dimensional vector space is called the Grassmanian man-
ifold G{(n, k).) Exercise 4.2.3 asserts that for any smooth flow on any compact
manifold, there is some o > 0 such that if a point is not fixed by the flow, it
cannot be fixed by the time ¢ map of the flow for any time less than #,. It fol-
lows that, if I has been chosen small enough, G(a;) normalizes M;. Therefore,
My = M; - G(a;) is a closed, connected subgroup of G. T think the fact shat

.MH, 1 is closed
depends on the
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Applying the uniqueness of roots within I/ as before, it follows that I
normalizes M;.q, since it normalizes a; - M;. Therefore, Niyy =T - My, is a
closed subgroup of G. '

To verify the other inductive hypotheses, apply similar arguments to the

action by conjugacy of Niy; on the Mj, and to the quotient action on M, /M;.

The third statement of the theorem is easy to deduce from the second.
14.2.2

Exercise 4.2.3 (slow recovery). Let M be a closed manifold, and X a C2-smooth
vecior field on M. Let ¢, be the flow coming from X. Show that there is a real
number 25 > 0 such that for any p € M, if ¢; does not fix p for every i, then no
1<t < iy fixes p.

{Hint: Consider the picture when you blow up a local coordinate patch so that
£X has unit length at p.]

In particular cases, theorem 4.2.2 can be made much more specific.

Corollary 4.2.4 (discrete orthogonal almost abelian). For any dimen-
sion n, there is an m such that any discrete subgroup of O(n) coniains an
abelian subgroup with index at most m.

Proof of 4.2.4: Let U be a neighborhood of 1 guaranteed by theorem 4.2.2.
For any discrete (or equivalently, finite) subgroup T of O(n), the subgroup
I'y generated by its intersection with U has bounded index. Specifically, we
can find a symmetric neighborhood W = W1 of 1 such that W2 ¢ U. If
¢; are coset representatives for I'y, then ;W and ¢;W are disjoint for ¢ # ;.
Therefore the index (T, I'y) is less than the volume of O(n) divided by the
volume of W.

Since O(n) is compact, 1t admits a metric Whlch is invariant by the action

~of O(n) on itself by both left and right multiplication (??). In general, a metric
“of this sort on a Lie group is called a bi-invariant metric.

According to 4.2.2, I'y is contained in a connected nilpotent subgroup N of
O(n). The bi-invariant metric restricts to a bi-invariant metricon N. Let Z be
the center of N. The action Ad of N on its Lie algebra must fix the tangent
space z to Z, since this action is the derivative of the action by conjugacy.
Conversely, any tangent vector which is fixed by Ad generates a 1-parameter
subgroup which is central, and therefore the vector is in z.

The perpendicular subspace p to z is also invariant, since the metric is

invariant by Ad. Notice that p does not contain any invariant vectors.

If Z # N, the quotient group Z /N is nilpotent and has positive dimension,
then Ad similarly has a nontrivial fixed subspace on its Lie algebra. But p
projects isomorphically to the Lie algebra of Z/N, which contradicts the fact
that p has no invarjant vectors. Therefore, Z = N, so NV is actually abelian.

Revision: 1.10 Date: 90/07/10 16:14:26

The praof 1that

[Ny, Ml C M,y
needs considerable
expansion, the
cacompaciness of the
action geemas
clear-Dick

The proof actually
uses a conlinuous
version of this
exercise -Dick



Exercize "Isemetries

of En"

Lemma “maximal
plane of
transiation

% Isometries of EP

Corellary "discrete
Euclidean atmoast
abelian”

% nilpotent limits
discreie orthogonal
almiozt abelian

% lsometrics of EP

4.2. GROUPS GENERATED BY SMALL ELEMENTS 168

We will derive a similar corollary for Euclidean isometry groups, but first
let’s recall some basic facts about Euclidean isometries.

Exercise 4.2.5 (Isometries of E"}. (a) Every isometry ¢ can be written as V —
A(V)_+ Vg, where 4 € O(n) and V, is some vector.

(c) If G is 2 subgroup of the group of isometries of E™ {then then the subgroup G(T)
consisting of all the elements of G which are pure translations is normal in G.

Lemma 4.2.6 (maximal plane of translation). Let ¢ be an isomelry of

E". There is an unique mazimal plane Fuclidean subspace E(¢) which ¢ maps
to itself by a translation.

Proof of 4.2.6: Let ¢ have the form V s A(V)4V,. Let U be the 1-eigenspace
of A. H U is trivial ¢ fixes a point and we are done. If not, then ¢ takes planes
in E* parallel to U to planes parallel to U, so it has an induced action as an
isometry ¢/U of E*/U. In the induced action, the 1-eigenspace is trivial.

It foliows, exercise 4.2.5, that ¢/U/ has a unique fixed point. In terms of
¢, this means that there is a unique maximal plane Euclidean subspace E{¢
which ¢ maps to itself by a translation. 4.2.6

‘Corollary 4.2.7 (discrete Euclidean almost abelian). For cach dimen-

ston n, there is an integer m such that a discrete subgroup of wsometries of E*
has an abelian subgroup of index at most m.

Proof of 4.2.7: Let U be some neighborhood of 1 in isom(E™) as guaranteed by

- theorem 4.2.2. We may assume that this neighborhood has the form U/, x Us,

where U; is a neigborhood of 1 in O(n — 1) and /3 is a neighborhood of 1 in
the group of translations. If we conjugate isom(E") by contra,ctlons, we see
that U; can be made as large as we please!

The subgroup of I' generated by U; x AlU; is contained in a connected,

“closed, nilpotent subgroup, for every A. As A — oo, these subgroups must

eventually stabilize, because they can only increase by increasing their dimen-

_sion. Therefore, the subgroup I'(U; ) generated by elements of T with derivative

in Uy 1s nilpotent, and is contained in a connected, closed, nilpotent subgroup
N of isom(E"). It follows, as in the proof of corollary 4.2.4, that the index of
Ty, in I’ is bounded.

We claim that N is abelian.

Let Z be the center of N. Suppose there is an element ¢ € Z which is
not a translation, i.e., EE(¢) is a proper subspace of E*, of dimensionk < =.
Then all of N must preserve E(¢), so that N C O(n — k) x isomE*. Since
N is mlpotent its projections to the two factors are a.lso nilpotent, hence, by
inductiof’ “ﬁ)e ian, so' N itself 13,@*8 ian. -

Otherwme, the center Z must consist of translations.

Let T be the normal subgroup of N consisting of translations (see exer-
cise 4.2.5). Let E(T') be the plane spanned by the translational components of
the elements of T'. E(T') is preserved by N. The quotient N/T is also nilpotent
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. 1 % discrese oritogonat and acts as a group of isometries of E*/E(T). Therefore N may be naturally

almess abelian

Problem “abetian  thought of as a subgroup of O(n — k) x E* where k is the dimension of EiT i
4.2.7

subgroups

trenslate’ The result then follows by applying corollary 4.2.4 and induction.

Proposition “short
motion almaat

[ g e s PTOblem 4.2.8 (abelian subgroups translate). For every abelian subgroup A
of isom E*, show that thereis a umque maximal Euchdean subspace E(A) on which
A acts by tra,nsla.tlons

Consider a group & acting on a space X with compact stabilizers of points.
We need to extend our analysis to the case of groups generated by elements
which move some point point # € X a short distance in X, but where the
group elements may not be close to the identity.

% Proposition 4.2.9 (short motion almost nilpotent). Let G be a Lie group
acting on ¢ manifold X so that stabilizers of points are compact. Let z € X
be any point. There exists an integer m and an € > 0 such that any discrete
subgroup T of G generated by elemenis which move z o distance less than ¢
kas a normal nilpotent subgroup of finite indez no more than m.
- Furthermore, T is contained in a closed subgroup of G with no more than S
m. components with a nilpotent identity component. . ._ Vv wf’ G-

" Proof of {.2.9: To clarify our picture, we may assumne without loss of generallty—’l o LS + ‘p
that X = G/G;, or equivalently, tha.t G acts transztwely In that case, G’ fibers Wh“
over X with fiber G,. Do we need to expl_aan
Let U be a neighborhood of 1 as guaranteed by 4.2.2, Then the subgroup \fo'fihf:ﬁ;:;.i e
of any discrete group I' generated by its intersection with I/ is nilpotent. The ;ﬁ%ﬁpiﬁ ]Eia;;e
main complication in this proof arises from the possibility that this subgroup
may not be normal,
_ Let' V = V™! be any symmetric neighborhood of G, whose closure is
compact. Then V contains all elements of G which move = a distance less
than &, for some . Inductively define a sequence of neighborhoods Uy = U O

Uy D ... by setting

=Nl 1yt = u»
gev
Any conjugate of an element of U;;; by an element of V is in U,-.

Let d be the dimension of G. Since V has a compact closure, there is some
integer m such that among any m elements g1,..., g, of V, there is at least
one pair (g;, g;) which differ by an element ¢71g; € U,.

For any subgroup I' C G and any subset Y C G, we use the notation I'y
to denote the subgroup generated by 'NY. -

Choose a symmetric neighborhood W = W= of G, such that if
{b1,... by} are any m elements contained in W then their product b;by - by,
is in V. Consider any discrete group I generated by its intersection with W,
that is, I' = T'w. Each subgroup Iy, is nilpotent, and is a cocompact subgroup
of a connected nilpotent subgroup N; C G. The subgroups N; C N;_; can in-
crease only by increasing dimension, so there must be some index 1 < ¢ < d
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Coraltaty “small such that N; = N,_,. Since any element g € W NT must conjugate Ty, into-

discrete hyperbaolic

wmost abelian” | Ty, it follows that g normalizes N;. So H = I' N N; is a normal, nilpotent

% short motien almost

nilpetent subgroup of I,
% discrete orthogonal . }

almost abelian We claim that the quotient group I'/H has order at most m. Let G1y-. 0,0
% discrete Euclidean

almast abelian be a set of generators for .7, each of which lies in W. If '/ H has order greater

% dizcrete orthogonal

T

smostavelian — thapn M there would be a collection of m + I words {i}, in the generators

{a:}, of word length not exceeding m, which map to distinct elements of I'/ H.
But each of these elements w; is contained in V, so that some pair of them
‘would have to differ by an element of 'y, C H, contrary to hypothesis. {4.2.9

Corollary 4.2.10 (small discréete hyperbolic almost abelian). For every
dimension n there is an integer o and a disiance € > 0 such that any discrete
subgroup T' of isom(H") generated by elemenits which move some point x a
small distance € contains an abelian subgroup with index al most m.

Proof of 4.2.10: In light of theorem 4.2.9 it will suffice to show that every
connected closed nilpotent subgroupMof isom(H") is abelian. If there is a
hyperbolic element ¢ in the center of N, then the entire group must preserve
the axis of ¢, N is a subgroup of O(n — 1) x R, and the conclusion follows
from 4.2.4. If there is a parabolic element ¢ in the center of N, then the entire
group must preserve the fixed point of ¢ on S%1, so it is a subgroup of the
group of Euclidean similarities. However, it must actually be a subgroup of
the group of Euclidean isometries, since ¢ does not commute with a similarity
that actually expands or contracts. The result follows from 4.2.7.

- In the remaining case the center of N contains an elliptic element ¢. Then
N must preserve the fixed hyperbolic subspace of dimension 0 < d < nfixed
‘by &, and it is a subgroup of H? x O(n — d). The result follows by induction,
using 4.2.4. o 14.2.10
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4.3. Euclidean manifolds and crystallographic groups

We have seen (4.2.7) that every discrete group of isometries of E™ contains an
abelian subgroup A with finite index. There is a beautiful, more complete,
classical theory primarily due to [Biell, Biel2]. See also [Zas48].

Theorem 4.3.1 (Bieberbach). (a) A group G is isomorphic to o discrete
group of isometries of E™ (for some m) iff G contains o free abelian sub-
group with finite indez.

G is isomorphic to a discrete cocompact group of isometries of E™ iff G
contains a subgroup A isomorphic to Z™ with finile index such that A is
tts own centralizer. In that case, A is also normal, and it is the unique
mazimal free abelian subgroup of finite index. A is the subgroup of all
translations.

(b)

If Gy and G, are discrete cocompact groups of isometries of E™ gnd E™
whichk are isomorphic as groups, then my = my and there is an affine
isomorphism a : E™ — B™ taking G, to G,. '

For any given dimension m, there is only a finite collection of cocompact
discrete groups of zsametmes of E™, up to affine equivalence.

(c)

(@

Cocompact discrete groups of isometries of E™ are called crystallographic
groups, or sometimes Bieberbach groups. :

Corollary 4.3.2 (classification of Euclidean manifolds). Diffeomorphism

classes of closed Euclidean m-manifolds are in one-to-one correspondence with
torsion-free groups containing a subgroup with ﬁmte indez isomorphic to Z™.
The correspondence is

Proof-of classification of Fuclidean manifolds: (assuming 4.3.1) G is torsion-
free and contains a subgroup A; with finite index which is free abelian of
rank m, then any maximal abelian subgroup S containing A, satisfies (b).

- Therefore, we need only verify that a discrete group G of Euclidean isometries

acts freely if and only if G is torsion-free. Clearly any element which fixes a
point must have finite order if G is discrete.

Conversely, if  is any finite subgroup of isometries, then F has at least
one fixed point: for any point y in E®, the center of mass of its orbit Fy is
fixed by F. |classification of Euclidean manifolds|

Proof of Bieberbach: The forward direction of part (a} follows from 4.2.7.
There is a straightforward construction to prove the backward direction of
part (a), which produces an action of G on a fairly high-dimensional Euclidean
space. Let A be a free abelian subgroup of rank n and index p. Choose a
faithful representation p of A as a discrete group of translations of E*. There
is an associated action of G on p disjoint copies of E*, one for each coset vA.
One way to define this action is to let

X=Gx E“/(ga,:.':) ~

(g, p(a)z)
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for a € A. Then X consists of one copy of E" for each coset gA, and G acts on
it naturally. (Some topologists may find it helpful to think of this as the E®
bundie over G/A associated to the principal bundle G with fiber A acting on
the right). G therefore acts faithfully as a discrete group of isometries on the
product of the components of X, which is E*”. (E"? is the space of sections
of the E* bundle, above. This construction of an action of a big group from
an action of a subgroup is known as the induced representation).
To prove parts {b) and (c), we need only the following fact.

Proposition 4.3.3 (dimension n invariant subspace). Let G be any dis-
crete group of isometries of E™. Let n be the rank of any normal free abelion
subgroup of finile index. Then there is an E™ C E™ invariant by G.

Proof of dimension n invariant subspace: By problem 4.2.8, there is some
unique maximal plane E4 invariant by any abelian subgroup A such that A
acts by translations on £4. There is a foliation of £4 by parallel n-dimensional
planes, each invariant by A, where n'is the rank of the image of A in Isom{E},).
If A is already free abelian, n is the rank of A, because a free rank n+ 1 action
by translations on E” cannot be discrete. If A is normal in G, then G preserves

- the leaves of the foliation, so it acts on the space of leaves, which is another

Euclidean space. But the action factors through G/A, a finite group, so there
is a fixed point, i.e., a fixed leaf. ' dimension n invariant subspace

C’ontmmtwn of proof of 4.8.1 To prove (b) in the forward dlI'eCthD con-
sider any cocompact group G of isometries of E™. By 4.2.7, there is an abelian
subgroup B C G of finite index (hence still cocompact). By problem 4.2.8, B
acis by translations on some plane Ep. Since B is cocompact, Eg = E™ and
B contains m linearly independent translations. Let A C G be the subgroup
of G consisting of all translations. Then A is isomorphic to Z™. Any element
4 which commutes with all elements of A must have a trivial rotational part,
so it 1s a translation and therefore in A.

To prove (b) in the reverse direction, suppose G is a group and A a free
abelian subgroup of finite index which is its own centralizer. Then, by part
(a), G acts effectively as a discrete group on some Euclidean space E™. Since
A has finite index, the intersection of all the finitely many subgroups of G

conjugate to A is a normal subgroup B of finite index.

Applying 4.3.3, we find that there is an E™ C E™ invariant by 7 on which
B acts by translations, where m is the rank of B. Since B C A and A is

~abelian, the rotational parts of elements e € A must act trivially on E™ so

A also acts on E™ by translations. The action is effective since for a € A,
some power a* is an element of B (non-trivial because A is free). Let ¢ be an
element in G — A, if g acts trivially on E™

Since A is its own centralizer, the rotational parts of elements geG-A
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\,u\(-q,\v(:) are non-trivial, so the action of G is effective. The praof that
elements of G — A acl

% For part {c), if p; and p, are two faithful representations of a group G as eAectnely neces
AT QD discrete cocompact groups of isometries of E™ and E™2, we know from (b) ™
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that my = my = rank(A). Consider the diagonal action (p1, p2) on the product
E™ x E™2, From 4.3.3, there is a copy of E™ C E™ x E™2 invariant by the

action. This plane must project surjectively to each factor, since it is invariant,

so it is the graph of an affine isomorphism from E™ to E™? conjugating p; to
Pa- . _ - . . - . :
Part {d) may secem plausible now, because from (b) and 4.2.7 we have
an upper bound to the order of G/A (for G a cocompact group in any fixed
dimension). The details, however, take a little care.

First, consider the representation of G/A in aut(A} = GL(n,Z).

Theorem 4.3.4 (finitely many automorphisms of abelian group).
There are only finitely many finite subgroups of GL(n,Z), up to conjugacy in
GL(n,Z).

Proof of finitely many automorphisms of abelian group: Given a finite sub-

~ group F C GL{n, Z), we will describe a procedure to find a basis for the integer

lattice L so that elements of F are represented by matrices with entries whose

absolute values are bounded by a constant C,, depending only on =.

First, choose a positive quadratic form on R" which is invariant by F (by
avera.gmg the standard one over F, for instance). Adjust the scale so that
the minimal length of a lattice point (other than 0) is 1. Let V C R” be the
vector subspace spanned by lattice elements of length 1. Adjust the scale in
the orthogonal complement VL until the minimal length of a lattice point in
R"™ — V is 1. F still preserves the metric because V and V1 are invariant
under F'. Continue until you obtain a quadratic form such that the minimum
non-zero length of a lattice element is 1, and the jattice points of length 1 span
R" as a vector space.

There may not be any free basis for L consisting of elements of length

" 1. (See problem 4.3.7.) However, we can find a free basis for L consisting
of elements with length < (n + 1)/2. To do this, choose a set ay,...,a, of

linearly independent lattice elements of length 1 . Suppose inductively that we
have found our desired basis b1,.. ., b for the intersection of the lattice with
the subspace W, spanned by a;,...,a:, k< n. Let { be a lattice element in
Wiy1 — Wi such that {4+ W} has minimum distance to W}. This distance does
not exceed 1 {Sihce Rpy has Ynok distancesd)

Now add multiples of ay,...,a; to make the orthogonal projection of ! to
W), reasonably small: The parallelepiped P spanned by a;,...,a; has diameter
less than &, and with appropriate choice of my, ..., my, the pI‘OJECth]] of ! =
I+ Z, 1 Mia; can be placed in a copy of P centered ai the origin, which is
contained in the ball of radius £/2. Therefore, the element I of LN (I + W)
has length not greater than 4/(k/2)2 + 1 < ((k+2)/2). Adjoin ¥ to the basis,
completing the inductive step.

To complete the proof of theorem 4.3.4, we will now. show that matri-
ces representing elements F with respect to our basis by, ..., 5, have bounded
entries. It suffices to show that the coordinates of any vector V of length
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< (n+1)/2 are bounded. The :** coordinate of V is the ratio of the volume of
the parallelepiped P spanned by by, ..., 5;_1, V, bi1, ..., by to the volume of the
parallelepiped @ spanned by by, ..., b,. The volume of P is at most [(n-+1)/2]",
while the volume of @ is greater than the volume of a ball in E* of radius 1/2
{since the injectivity radius of R"/L is the constant 1/2}. Hence, the coordi-
nates are bounded.

finitely many automorphisms of abelian group]

Continuation of the pmbf of 4.8.1(d). We have proved so far that (ﬁxing

the dimension r) there are only finitely many choices for G//A together with

its action on A by conjugation. This gives us the behaviour of cosets of A, but
not of individual elements within the cosets.

Enough data to determine the structure of G' can be defined by choos-
ing representatives ¢(g) € G for each coset g € GfA, and for each pair g, 4
specifying the multiplication rule in G,

cg) - c(k) = c(gk) - alg, k),

where a(g, k) is in A. The choice of a(g, k) along with the action of G/A on

A gives the abstract isomorphism type of G, which by part {c) classifies G up

to affine isomorphism. Note that if the a{g, k) are all trivial then G is the

semi-direct product A x GfA (see 3.12.10). Any choice of ag, k) satisfying
certain consistency conditions will produce a group, but many of them may

“be isomorphic. To find a bound for the number of groups, we need only show

that, given a group G, we can make appropriate choices of ¢(g) and c(h) that
will bound the elements a{g, k). Use the quadratic form used for the proof
of 4.3.4 to impart a new Euclidean structure to R* which is invariant by G.
Choose any point 2o € E™, and for each element g € G/A choose ¢(g) to be a
representative of the coset g which moves zg a minimal distance.

Let ay,...,a, be a set of linearly independent lattice elements of lenghth
1, as in the proof of theorem 4.3.4, and let P be the parallelogram they span.
Then P is a fundamental domain for the subgroup generated by a4, ...,a, and
has diameter less than n. Therefore one can always alter ¢(g) by composing
with elements of this sibgroup to assure that c{g) moves z¢ a distance less
than n. Then a(g, k) = c(gh)~Te(g)c(h) moves zo a distance less than 3, so
the number of choices is bounded. '

Another way to show that there are only a finite number of groups G with
a given action of G/A on A is to show they are subgroups with bounded index
in the semi-direct product A x G/A. See exercise 4.3.8.

. Problem 4.3.5 (eétimating lattice automorphisms). {a) Any finite subgroup

F of 8L(n, Z) injects into SL{n, C,,), for m > 3. [Hint: In the metric used for
the proof of 4.3.4, the unit ball in L injects into C},, for m > 3 1

(b) The kernel of F — SL{n, C;) has order a power of 2.

(c) The order of SL(n, Cp) is p~1(p" = 1}(p" — p) - - - (" — p*"!), for p a prime. By
considering the ged of the order of SL(n, C,), what restrictions can you find for
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S

finite subgroups.of #L(n, Z}, for small n? Do you get any more information by
considering SL(n, C,,) for general m?

Problem 4.3.6 (isometric lattices). Show that the group of symmetries of an

- octahedron can be embedded in GL(3, Z) in exactly three different ways, corjugate

in GL(3,R) to the standard action but not conjugate in GL(3, Z}.

[{Hint: to construct latfices invariant by the octahedral group, begin with the
ordinary cubic lattice and adjoin halves of certain lattice elements. To show that
these lattices are the only types, use the observation that if £ is a lattice invariant
by a finite subgroup F C 0(n), then for any element V of L with minimal length
and any f € F, the angle between V and f(V) must be at least 60° if f(V) # V.]

Why are the three actions not conjugate in GL(n,2)?
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Figure 4.4, the three isometric lattices. The three lattices which have the
largest possible symmetry, that of the octahedron. In crystallography, these are
called generically the isometric lattices, and specifically the cubic lattice, the
face-centered cubic lattice, and the body-centered cubic lattice.

Problem 4.3.7 (thin cubic lattice). In dimension n > 5, the standard cubic

lattice Z* C R™ is contained in a lattice which is not generated by its intersection
with the unit ball. . '

Exercise 4.3.8 (semidirect crystallographic supergroup). Prove that every
crystallographic group G whose maximal abelian subgroup of finite index is A is a
subgroup of the semi-direct product A x GfA, with bounded firite index.

Let n be the order of G/A.

(2) G acts as a group of affine maps of A", using the induced representation de-
scribed in 4.3.1.

(b) Let B C A™ be the orbit of the action of A which contains the origin (1,...,1).
There is an induced affine action of G orn A™/B, which factors through G/A.

(c) Embed A" in a larger free abelian group C of the same rank by adjoining a*®
roots to all elements. & acts on C. Let D) be the maximal subgroup containing
B which has the same rank as B. Then the action of G on C/D has a fixed
point, so there is a coset E of D which is invariant by G.
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(d) The action of G on E is effective. The group G- E consisting of transformations.

in G followed by tramslations in F is isomorphic to the semi-direct product

Ax G/A.

(e) The above shows that G with n'® roots adjoined for all translations in G is a
semi-direct product. The index is »™, where m is the rank of 4. Show that
the minimal index with which G can be embedded in a semi-direct product is
at most n. (Note: the action of G/A on the lattice, in this minimal embedding,
might not be isomorphic to the action of G/A on A).
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4.4. THREE-DIMENSIONAL EUCLIDEAN MANIFOLDS .

- 4.4, Three-dimensional Euclidean manifolds

The geometric theory of 3-dimensional crystallography was mainly developed
during the course of the 19th century.

There are 32 subgroups of ({3) that occur as subgroups of a crystallo-
graphic group which stabilize & point in E*. They are known in crystallography
as the point groups, and were first enumerated by [Hes30].

There are 14 distinct crystallographic groups which are the full groups of

' syrnrnetnes of a lattice (as an array of points) in R, up to affine equivalence.

These were enumerated by [Bra49], and the classes of lattices, according to
their symmetry, are known as Bravais lattices. (See problem 4.4.13 and chal-
lenge 4.4.14.) :

There are 65 orientation- -preserving crystallographic groups, which were
classified by [Soh79]. Finally, three people independently derived the full list
of 230 crystallographic groups [vF91], [Sch91], and [Bar94],

From a list of crystallographic groups, one can of course derive a list of
Euclidean three-manifolds by crossing out the groups which do not act freely
([Now34]). This involves much more work than necessary, though, and [HW35]
gave a direct classification of Euclidean three-manifolds.

With such a large number of crystallographic groups, is there a conceptual
way we can sort out the fundamental groups of three-manifolds?

Suppose that I is the fundamental group of a closed Fuclidean 3-manifold.

The first step is to understand better how the finite subgroup F € O(3)
which consists of the derivatives {or rotational parts) of elements of T' relates to
the lattice of translations in I'. For each subgroup H C F, there is a subgroup
I'g consisting of those elements of I' whose derivative lies in H. Of course,
I'yyy is Z3, and its quotient is 7.

The next cases are when H is a cyclic group Ck, generated by the derivative

da € O(3) of some element o C T.

Since ¢ has no fixed points, do must have 1 as an eigenvalue. Fither
the 1l-eigenspace is 1-dimensional, and de is a rotation of order k£ about a
line, or it is 2-dimensional and do is reflection through a plane. In either
case, it determines an orthogonal splitting of R® as a two-dimensional space
V plus a one-dimensional space W. A first observation is that thls splitting is
commensurate with the la.t.t1ce F{1) of translations in I':

Lemma 4.4.1 (Euchdean splitting). If the group T, preserves orienia-
tion, then the group of translations 1"{1} is genemted by its intersection with V

“and its tniersection with W.

If Te, contains orientation-reversing elements then k=2, da is a reflec-
tion, and the subgmup of I'¢1y generated by its intersections with V and W has

“index at most 2.

Proof of {.4.1: Since the group I'c, preserves the factorization of E® into

Revision: 1.8 _ Date: 90/07/10 16:16:03



4.4, THREE-DIMENSIONAL EUCLIDEAN MANIFOLDS 178

L. 'y
euclidsplita

Figure 4.5. Euclidean manifolds are almost products. When a cocompact
Euclidean group I" has an element « whose derivative is a rotation about some
axis, then for any translation T € T, the composition of conjugates of T by
powers of a transiates along the axis of .

E? x E!, it is contained in the product:
T'c, C isom(E?) x isom(E!).

First we’ll do the case that do i1s a rotation, so « is a screw motion in the
direction of B'. Consider an arbitrary element v € I'¢,, and its projection
p(7) to isom(E!). We claim that p(4)* is in the image of g, . First, if 7 is not
a translation, then it is a screw motion in the direction of E!. In that case, its
~ kth power is a translation, necessarily in the same direction. Otherwise, « is
a translation. It is an easy exercise to check that in this case the product of
the conjugates of ¥ by all powers of g, i.e. - (aya™) ... (& 1ya!~¥), lies

in I'c,. Hence, p(¥)* lies in the image of T'c,. @%2 k W‘&({\m\ -
C

1t follows that the image of I'c, in isom{E!) is disctete, since it has index
at most k in the discrete subgroup I'c, Nisom(E).

‘The kernel of the homomorphism p from Tg, to isom(E!) consists entirely
of translations, for otherwise there would be elements with fixed points. There-
fore, the translations of I'g, along E? together with those along E! have index
at most k£ in all of I'g,. Since the group of all translations also has index k,
these two subgroups must be identical. The first assertion of the lemma is

established.

- Now we take up the case that ', contains orientation-reversing elements.
Then k = 2, and the elements which reverse orientation must have derivative
equal to reflection in E?. In this case, consider the projection ¢ : Pg, —
isom(E?). The image consists of translations, by hypothesis. We claim that
for any element v € I'g,, the square of its image ¢(v)* is in the intersection
T'g,Nisom(E?). The reasoning is exactly the same as before: if the derivative of
~ is not trivial, then 2 is in the intersection. Qtherwise, 4 is a translation, and
the composition of 4 with its conjugate by an orientation-reversing element
lies in the intersection. o

We conclude that the image ¢(T'¢; ) has index at most 4 in the intersection
I'c, N isom(E?). (Both groups are isomorphic to Z%; the image of the map
g — ¢* of Z? to itself has index 4.)
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The kernel of ¢ consists entirely of translations, for if any element of the
kernel had a non-trivial derivative it would have a fixed point. We can conclude
that the subgroup of I'p, generated by translations along E? together with
translations along E! has index at most 4 in ['g,, so it has index 1 or 2 in jts
subgroup I'{1} of translations. 4.4.1

. Problem 4.4.2 {(splitting crystallographic groups). Is the conclusion of the

lemma false for a general crystallographic gronp in E*? If s0, how would the con-
clusion need to be weakened to make it valid in this more general context?

The stepping stone to an understanding of the classnﬁcatlon of Euclidean
three-manifolds is the following:

Theorem 4.4.3 (Euc}idean covered by torus cross E). Buvery closed

Fuclidean three-manifold M can be expressed as a quotient of T? x E! by the
action of a discrete group G, where I? is a Euclidean torus..

From this theorem, there is a fairly routine procedure for recovering the list
of Euclidean three-manifolds. The discrete group G 1s a subgroup of isom{7"?) x
isom(E?). If G does not project faithfully to isom(E'), we can factor T? x E!
by the kernel to re-express M as a quotient either of T2 x B! or K2 x El,
where K? is a Klein bottle, by a group which is represented faithfully by its
projection to isom(E?').

The group of deck transformations is Z or Z; = Z, (the only discrete co-
compact subgroups of isom{E')), and it is not hard to list all possible cases,
and then check for redundancy. {Compare problem 4.4.11)

First we will prove the theorem, as this will give us additional useful in-
formation.

Proof of 4.4.8: Let T be the group of deck transformations of E® over M; let
F C O(3) be the group of rotational parts of elements of T and let A be the
group of translations in I'.

If F= {1}, T is a group of translations and the result is trivial.

If Fis a cyclic group generated by some element ¢, then from lemma
4.4.1, there is a splitting E* = E? x E' such that the intersection H of I'gy
with 1som(E2) is isomorphic to Z%. This subgroup is normal, and the quotient

E*/H, acted on by T'/H, fulfills the requirements for the theorem.

In the remaining cases, F' has order greater than 2, so'its orientation-
preserving subgroup Fp is nontrivial. For each nontrivial element o € Fy,
there is a splitting E* = E? x E!, with E' parallel to the axis of «, such that
the subgroup I'(;; of translations is generated by its elements that translate
along one of the two factors. _ : '

If there are elements o, 3 € F whose axes do not coincide, then the axes
must be orthogonal, since the first nonzero lattice point on either must project
to a lattice point on the other. Then o? = #* = 1, otherwise the axis of aff is
not orthogonal to the axes of a and of 8. (See problem 4.4.4.) Tt follows that
o takes the axis of 8 to itself, so that it commutes with 8, and the group Fp is
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C,2. If M is orientable, we are done: each of the three splittings, determined
by the axis of @, of 8, or of B, is invariant by I". Take H to be the group
generated by translations in the plane perpendicular to the axis of ¢, say, and
E*/H satisfies the requirements.

What remains is the case that F' is not orientation-preserving and not
cyclic. Then the fixed plane of any reflection must contain every axis, since
the composition of a reflection with a rotatior whose axis is not contained in
the plane of reflection does not have 1 as an eigenvalue, hence an isometry with
this derivative has a fixed point. {Problem 4.4.4.) It follows that there can be
only one such axis, since the composition of rotations about two different axes
has an axis not in the same plane. The splitiing defined by this axis enables
us to finish the construction. 4.4.3

Problem 4.4.4 (axis of composition). (2) Let f and g be rotations of E2, H?
or the elliptic plane RP?, with fixed points z and y. Give a description of fog,
including a comstruction for its fixed point (which may be at co or beyond in
the projective embeddings of E? or H?). [Hint: see figure 4.6]

l_ n

0g

L

comp osition

Figure 4.6. axis of composmon. This diagram gives hints for problem 4.4.4.
The diagram on the left indicates a construction for the compaosition of two
rotations, and on the right for the composition of a rotation and a reflection.

(b) | Verify that an orientation-preserving group. of isometries of 52 has all elliptic
axes mutually orthogonal if and only if it is a cyclic group or C; @ C; acting
by 180° rotations about three mutually orthogonal transformations.

(c) Describe the composition of the reflection in a line in E? with a rotation about
a point not on that line, and show that it has no fixed points. Generalize this
1o §? and to EZ.

(d) Describe the compesition of refiection in a plane in E® with a rotation about
an axis intersecting the plane in a point,

(e) Generalize the construction of Part a) to the case that f and ¢ are arbitrary
orientation-preserving isometries of E3, H® or P3.

Now we can enumerate the Euclidean three-manifolds. We will follow the
notation of {Wol67], denoting the six orientable manifolds G,, vey (36, and the
four non-orientable manifolds By, ..., B;. Three of the orientable manifolds,
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G, Gs, and G, have two different oriented. forms, distinguished by the hand-
edness of the screw motion with shortest translation distance. The orientations
with left-handed screws can be denoted &7, etc.

In order to avoid repetitions, we can enumerate the manifolds in order of
the group F of rotational parts of their deck transformations.

Case 4.4.5 The group F is irivial.
The manifold Gy is the three-torus 72,

Case 4.4.6 The group £ is cyclic and preserves orientation.
From propositions 4.4.3 and 4.4.1, it follows that the manifold is.a mapping
torus My, where ¢ is a linear transformation in SL(2,Z) which acts as an

Jisometry of some Euclidean torus which rotates by angle Iz /k, with (I,k) = 1.

By challenge 4.4.10, every non-trivial finite subgroup of SL(2,Z) is a sub-
group of C4 (acting by rotations of the square torus, 1.2) or Cs (acting by
rotations of the hexagonal torus, 1. 3). Then & = 2,3, 4 or 6, and the mani-
folds are these:

F C; Cs C, Cq

Angle of rotation 180° 120°, 240° | 90°, 270° | 60°, 300°
Type of two-torus arbitrary | hexagonal | square | hexagonal
Name of three-manifold G, Gs, G Gy, G Gs, G§ -

Case 4.4.7 The group F preserves orientation, but it is not cyclic.
Then, (from problem 4.4.4(b)), F is C; X C; acting as rotations about three

~ orthogonal axes. We have seen one such manifold, Gs. (See example 3.4.1). To

prove that this is the only possible example, we use 4.4.3 to conclude that our
manifold M must be of the form T? x E'/ (Cz*Cg), where the rotational part of
the action of C,+C, on T? is generated by reflections through orthogonal axes.

‘The two actions of C, on T must have no fixed points, and an application

of proposition 4.4.1 {in dimension 2 instead of 3) shows that the torus must
be a rectangular torus, and the reflections must be parallel to the sides. "This
proves there is only one such manifold.

Case 4.4.8 The group F'is Cg, acting by reflection through a plé.ne.

We may assume the fixed plane of the reflection is the z-y plane. Every
element of the group G which reverses orientation leaves invariant some plane

. z.= constant, so we may normalize so the z-y plane is such a plane, for some

g € G. Let A C G be the translations in G, and Ay C A be those translations

_which leave the z-y plane invariant. By Proposition 4.4.1, Ay has either index
1 or index 2 in the image of A projected orthogonally to the z-y plane. We can

again normalize so that an infinite cyclic subgroup of A preserves the z-axis,
and that a minimal translation along the z-axis has,an orientation-reversing
square-root, which translates half the distance and reflects through the z-y
plane. '

We can think of the manifold in two ways: as T? x E! modulo the action
of C; x G, (acting in the z direction), or as a Klein bottle X? x E! modulo
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an action of Z, where the fundamental group of the Klein bottle is the group
that stabilizes the -z plane. It is clear that this is a normal subgroup.

Case 4.4.8 (a): The projected image of A is Aq. This is equivalent to
the translational part of any element with a non-trivial rotational component

lying in the z-z plane, because otherwise by composition one can obtain a pure

translation whose projection does not lie in A,.

In this case, the manifold is By, the product of the Kleinr bottle with ST.
The alternative description is T2 x E! modulo C; % C,, with each of the (C;)’s
acting in precisely the same way as translations of the torus.

Case 4.4.8 (b): The projected image of A contains Ao with index 2.
Thus A contains a pure translation with z-y component not contained in Ag,
and whose z compouent is half the minimal translation fixing the z-axis. The
manifold B, is T? x E'/(C, # C;) where the two (C:)'s are acting on 77 in two
different ways as order-two translations. The alternative description of B, is
the mapping torus of an isometry ¢ : K* — K?, where ¢ interchanges the two
parallel simple geodesics on K? which have unoriented neighborhoods (diffeo-
morphic to Moebius ba.nds) ? is the prOJectmn of the transla.tzon mentioned
above.

Case 4.4.9 The group F contains a reflection, and has order greater than 2.

We will see that F' must then be C; @ C,, generated by reflections in two
orthogonal planes. First, recall that any rotation axis in F must pass through
any fixed plane of any reflection in F. The composition of any two rotations
with distinct axes has an axis which does not lie in the plane spanned by them.
Therefore, there is a unique axis for rotations In F which we can arrange to
be the z-axis.

G acts on the z-coordinate by translations. Let ¢ be the minimal non-
zero translation in the z direction of a pure translation in G. Then there is
a homomorphism from F to R/(t) taking ¥ € F to the z translational part
(mod t) of any element of G whose rotational part is 4. Let Gy C & be the
subgroup which acts trivially on z. If Gy consists entirely of translations, this
map is injective, so F' is cyclic. This coniradicts our assumption, so Gy is the
fundamental group of the Klein botile.

By proposition 4.4.1, applied once to Gy and once to G, we can normalize

's0 the group A C G of translations is generated by one translation along each

of the three coordinate axes, and Gy is generated by Ap = A N Gy together
with a translation along the z-axis composed with reflection in the z-z plane.
The group F must normalize Gy, which proves that F is C; & C; generated

. by reflection in the z-z and y-z planes.

Cur manifold is the mapping torus of an isometry ¢ of a Euclidean Klein
bottle to itself. The gluing map ¢ has various lifts to an isometry of the
Fuclidean plane which normalizes Gy; some lifis are reflections composed with
a translation while others are 180° rotations composed with a translation.
There are two cases for ¢, depending on whether the lifts have a translational
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component in the y direction which is not a translational component of an
element of Gy.

Case 4.4.9(a): The manifold B; is obtained when the gluing map ¢
preserves each of the two simple geodesics with non-oriented neighborhoods.

Case 4.4.9(b): The manifold B, is obtained when ¢ 1nterchanges the two
simple geodesics with non-oriented neighborhoods.

Challenge 4.4.10 (finite subgroups of SL(2, Z)). (a) Every finite subgroup of
S1.(2,7Z) is a conjugate to a subgroup contained in Cg acting by rotations of
the equilateral triangular lattice, or Cq4 acting as rotations of the square lattice.
[Hint: see the proof of 4.3.4]

(b) * SL(2,Z) is isomorphic to Cy4 ¥c, Cs. [Hint: Let SL(2,Z) act on the upper
half-plane in the standard way, as fractional linear tra.nsformatmns Find a
fundamental domain for the action.]

{c) Show that the Teichmiiller space of Euclidean structures on the torus of area 1,

7(T?), is parametrized by the upper half-plane, and the action of SL(2,Z) on

it as automorphisms of ;(T?) corresponds to the standard action used in part
b) above.

Problem 4.4.11 (other product coverings). In what other ways can the ten
Fuclidean three-manifolds be described as M? x E1/G where M? is a Euclidean
two-manifold and G is Cj * Cy?

Problem 4.4.12 {abelian structure). Modify proposition 4.4.1, so it applies to
arbitrary cocompact groups acting in Euclidean n-space. (The conclusion will be
vacuous unless some non-trivial element of F*-has a non-trivial subspace.)

Problem 4.4.13 (maximal subgroups of SL(3,Z)). Show that there are four
maximal finite subgroups F of SL(3,Z) up to conjugacy, by finding the maximally
symmetric lattices A as follows:

(a) If A is invariant by a rotation of order m about an axis V then from prob-
lem 4.4.12, (ANV}® (ANVLY)CmAC A som=2,3,40r6.

{b) The only lattices invariant by a cyclic group of rotations of order 6 are the
products of a triangular lattice in E? with a lattice in E'.. Any such lattice has
maximal symmetry Dqp. [Hint: consider (a) for ¢? and ¢°, where ¢ generates
the group.] -

If F contains a cyclic group of order 3, then either it is subsumed under b} or

the orthogonal image A; of 4 in V' contains ANV * w1th index 3. The three

cosets must look like this:

Such a lattice automatically has symmetry Ds, genera,ted by a 180° revolution

about two lines. This is not a maximal finite subgroup, since by adjusting the
* scale in the V direction one can obtain the cubic, the face-centered cubic or the

body-centered cubic lattice.

If F contains a group of rotations of order 4, then A is either (ANV)@(ANVL)
or contains this with index 2. In the latter case, A is obtained from the body-
centered cabic lattice. By adjusting the vertical scale, one can obtain ¢ither the
face-centered cubic or the body-centered cubic lattice.

(d)
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.(e) Cs; has two embeddings in SL(3,Z) up to conjugacy, subsumed in the embed-

dings of Cj.

(f) If F does not contain a normal cyclic subgroup, then it contains the group of
symmetries of a tetrahedron (which can be inscribed in a cube). There are three
orthogonal order 2 axes corresponding to the three common perpendiculars to
opposite edges of a tetrahedron, so A is either a cubic, a fa.{:e centered cubic or
a body-centered cubic lattice. '

(g) Since -1 is central in GL(3, Z),_'maximal-ﬁnife subgroups of GL(3, Z) are in

- one-to-one correspondence with maximal finite-subgroups of SL(3, Z).

Challenge 4.4.14 (Bravais lattices). Enumerate the fourteen Bravais lattice
classes. Here is a table which can serve as a guide:

Name for group | Subgroups of O(3) nor- | Number of lattice
of Bravais lattices malizing the lattice ‘| classes in group
- Triclinie 1 1

Monaoclinic - Cy 2
Orthorhombic Cy & C, 4
Tetragonal Dy 2
Hexagonal D¢ or Dys 2
Isometric Octahedral group 3

Problem 4.4.15. Show that there are two crystallographic gfouﬁs 1 and G5 {not
uniquely determined) in dimension 3 such that every other three-dimensional crys-
tallographic group is isomorphic to a subgroup of Gy or G3.

Problem 4.4.16 (two-dimensional groups, three-dimensional manifolds).
Show that every closed orientable three-manifold arises as the tangent circle bundle
of a two-dimensional Euclidean orbifold See Chapter 5, especially section 5.7, for
the appropriate definitions. Which Euclidean 3-manifold occurs twice?

Challenge 4.4.17 (intransigent groups). Show that there are interesting dis-
crete subgroups of isom(E?) x isom(E?) whose projections to the fa.ctors are not

" discrete.

(a) Consider the group G with presentation < a,8,7 | a? = 8% = y2 = {af)® =
(B1)® = (va)® = 1 >. The groups generated by reflections in the sides of
either of the two golden isosceles triangles, with angles 7 /5,2x/5 and 27/5 or
3n/5,%/5 and 7/5, are homomorphic images of G. If p; and p, are the two
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(b)

(c)

homomorphisms, show that the image of the diagonal homomorphism p; X P2

G — isom(E?) x isom{E?) is a crystallographic group in B4, yet the images

of p; and p; are not discrete. [Hint: pass to a subgroup of index 2 of G, and
consider how py X p2 acts on the ring Z [5th roots of unity), which maps into
C? as a lattice.]

Show that g1 X p, is not faithful by comparing it to an action p on the hyperbolic
plane. Construct a “picture” of the crystallographic group of (a) by showing
that H?/p(Gy) is a surface M of genus 2, where Go i is the kernel of a map from
G to Ds. Then G acts on the maximal abelian cover M and its image there has
a subgroup of index 10 isomorphic to Z4, the group of deck transformations of
M over M. Map M equivariantly into E* (with polyhedral image), using maps
of its triangles to copies of the two golden triangles. Can you decxde whether
this is an embedding? :

Generalize this construction for any prxme p to produce crystallographic groups
in E?~1 which are generated by three elements of order 2 and contain elements of
order p. Show that this is the minimam possible dlmensxon for a crystallographic
group having elements of order p.

Problem 4.4.18. Translate challenge 4.4.17 into a complex analytic form. In other
words, make use of the conformal equivalence between any two triangles rather than
the aﬂine equivalence. The surface M of genus 2 is a 5-fold regular branched covermg
of the Riemann sphere CP1, 50 it can be pat i in the form {{z,y) € CP1x CP! : 2%+

* ¥* = 1}. The two maps of the universal abelian cover M of M to C have differentials

which can be taken as y~3dz and y~*dz. (Derive this from the qualitative form of
the branching.) What happens when 5 is replaced by an arbitrary prime p?
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4.5. Elliptic three-manifolds

The classification of elliptic three-manifolds was given in outline by [Hop26]
and in detail by [ST30, ST32] The analysis is made much easier by the fact
that the group of isometries of 5% is almost a product. (See section 2.7, the
geometry of the three-sphere).

We understand manifolds in this section to be closed.

Proposition 4.5.1. Every elliptic three-manifold is orientable.

Proof of 4.5.1: An orientation-reversing element of O(4) must have an
odd dimensional {—1)-eigenspace, since it preserves orientation on its {+1)-
eigenspaces and its two-dimensional irreducible subspaces. Therefore, its {41)-

' H’f 5.1

eigenspace is non-empty, so it has a fixed point.

Remark. Readers more familiar with topology will recognize the topo-
logical explanation for this fact: one of the first -corollaries of the Lefschetz
fixed-point theorem is that every orientation- -Teversing continuous map of an
odd-dimensional sphere to itself has a fixed point.

Proposition 4.5.2. If the holonomy group of an elliptic three-manifold M
does not contain —1, then —1I acts on M ws a cavemng transformation (i.e.,

without fized points).

" Proof of 4.5.2: For —1I to have a fixed point in its action on M means that

some element v € m (M) takes some point z € S* to its antipodal point —z.
Then v*(z) = z, so v* = I, and since v acts without fixed points, v = —I (see
exercise 4.5.3). 4.5.2

Exercise 4.5.3 (free order two elements). Show that

(a) the only order two element of O(3) which acts freely on $? is the antipodal map
—1I, and

(b) the only order two element of O(n) which acts freely on 8" is the antipodal map
—I.

In view of these two propositions, the classification of elliptic three-
manifolds can be broken into two stages.

First, we study three-manifolds whose holonomy groups contain --I.
These are the quotients of elliptic three-space, RP® = SO(3), by a group
of orientation-preserving isometries. The advantage is that the orientation-
preserving isometry group of RP?® is a product, SO(3) x SO(3), rather than
almost a product as for S°.

The full list can then be obtained by adjoining certain double covers of
manifolds in the first list, those double covers whose holonomiy does not contain
—1I. This second step is easy:

Proposition 4.5.4. A three-manifold RP?/T' has a double cover by a three-
manifold whose holonomy does not contain —1 if and only if I' has odd order.
Such a double covering is unique.
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Proof of 4.5.4: I T has even order, it contains an element + of order 2. If ¥ is
any isometry of S® covering «, then 72 = —I (since if % = I then ¥ = —1 so
= itself would have {o be tr1v1a,1 In that case, M does not have a covering of
the desired form. _

If I has odd order, consider the holonomy group I for M, which has a two-
to-one homomorphism to I'. Think of lefi-multiplication by an elementin I' as
a permutation of I'. Multiplication by —I is an odd permutation. Therefore
the subgroup I's C I, consisting of even permutations, maps isomorphically to
I',and ' =T x C; (see problem 4.5.12). The desired double cover is 53/T%.

Every subgroup I'; C "= I x C, which projects isomorphically to I' is the
graph of a homomorphism from T' to C,. The only homomorphism is trivial,
so ['; = Te. ' 454

There remains the classification of finite subgroups H C SO(3) x SO(3)
which act freely on RP?. We have just used one construction for subgroups

“of a product Ty x Ty the graph of a homomorphxsm I'y — I’y is a subgroup

of I'y x Iy, and this construction covers all possible subgroups which project
isomorphically to I'y. There is also a symmetric construction, the graph of
a homomorphlsm T'; — T'i. These constructions are special cases of a nice
construction for all subgroups of a product. Given a pair of groups I'; and
Iz, and a pair of homomorphisms &, ky to a third group B, the fiber product
G(hl, ha) of k1 and %, is the subgroup of T; x Ty

(h1,h2) = {(71,72) hi(m) = ho(2)y 11 €T, 12 €T3}
G(h1, hs)

N )

e ) /

The special case when h; or h; is an isomorphism reduces to the graph of
a homorphism.

I

Proposition 4.5.5 (diagonal groups are fiber product). Every subgroup
H C Ty x T3 which projects surjectively to both factors is the fiber product of
a pair of surjective homomorphisms of I'y and I'; o some group B.

Proof of {.5.5: Let Hy, and Hy be the intersections of H W1th the two factors,
Pl X {1} and {1} x Fg :

We claim that H; is normal in 'y x {1}. To check this, consider an
element (ky,1) € Hy, and conjugate it by an arbitrary element (y;,1). By
hypothesis, there is some v, € Ty such that (yq,v2) € H. It follows that
(1,72) « (R, 1) - (7', 5Y) = (mhargh, 1) € Hy. Therefore, Hy is normal in
Iy x {1}. Similarly, H, is normal in {1} x I';.

Now we can take the quotient of the entire picture by the normal subgroup
Hy x Hy. We obtain a subgroup B = H/(H; x H;) of the product (I'y/H;) x
(F2/H,) which intersects each factor of the product trivially. In this quotient
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picture, B is the graph of an isomorphism between I'y / H; and T's/ H,;. We can
reconstruct A as the fiber product of the maps of T'; and T'; to B.

Using 4.5.5, finite groups of isometries of RP? can be enumerated fairly
readily in terms of subgroups of SO(3). These subgroups will be classified con-
ceptually in section 5.5, but it i is ‘worth working them out by a straightforward
albeit grundgy a.pproach

Problem 4.5.8 (grundgy classification of subgroups of S0(3)). Classify all
finite subgroups of SO(3).

(a) For any spherical triangle with angles «, # and -y there are elements 4, B and
of SO(3) such that ABC = 1 which rotate by angles 2c, 28 and 2y. (Compare
problem 4.4.4). '

- {b) Conversely, if A, B,C € S0(3) satisfy ABC = 1, and i the three .a.xes are not

coplanar, they can be described as above using any of eight spherical triangles.

{c} Three positive real numbers «, 8 and ¥ are the angles of a nondegenerate
spherical triangle if and only if @ + 8 + 4 > 7, and they -satisfy the tnangle
inequalities & + 8 > v ete.

(d) In a spherical triangle, the shortest side is opposite the smallest angle.

(e) If A and B generate a finite group F, and if they have axes closer than any
other pair of elements of F, then at least one has order 2 and the other has
order 2 or 3.

(f) ¥ A and B as above have order 2 a.nd genera.te.a finite subgroup, the grc;up is
a dihedral group D, of order 2z.

{g) If A and B as above have order 2 and 3, their product has order 3, 4 or 5, and
they generate the tetrahedral group (order 12}, the octahedral group (order 24),
or the icosahedral group (order 60).

(h} Every finite subgroup of SQ(3) is generated by 1 or 2 elements.
(i) The finite subgroups of SO(3) are the cyclic groups, the dihedral groups, the
tetrahedral group, the octahedral group, and the icosahedral group.

The other piece of information necessary is a good criterion for a group to
act freely on RP?.

Proposition 4.5.7. 4 subgroup H C SO(3) x 80(3) acts freely on RP® if
and only if there is no element (hy,hy) € H (except (1,1)) such that hy is
conjugate in SO(3) to hs.

Remark: Every element of SO(3) is a rotation by some angle a about
an axis, and two elements are conjugate if they rotate by the same angle. By
reversing the direction of an axis, a rotation by « is also conjugate to a rotation
by 2r —«

Proof of 4.5.7: The action of SO(3) x SO(3) on RP® = S0(3) is by multipli-
cation on the right and left,

(hy, ko)(z) = hyzhy'.

For z to be a fixed point means = = h;zh;! or thoz™! = &,. 4.5.7
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Corollary 4.5.8 (low order commitment). Let H C 80(3) x SO(3) be a
group whick acts freely on RP®, and let Ty and T be its two projections. Then
for p =2 and for p =3, all order p elemenis in one of the T; are in H, and
no order p elements of the other are in H.

Proof of 4.5.8: All elements of order p = 2 or p = 3 are conjugate in SO{3).
Therefore, H; and H, cannot both have elements of order p—at least one of
them, say H,, does not.
Consider any element a € I'y of order p. We will show that (a,1) € H.
By definition, there is some 8 in I'; such that (a, ) € H. Then its pth
power (1,8%) € H, has order m not a multiple of p (but possibly m = 1).
Hence (o™, 8™) has order p, so f™ must equal 1. Therefore (a™,1) € H, and

since m is prime to p, also (o, 1) € H. '
Exercise 4.5.9 (Sylow subgroups). (a} Construct an isometric action of C5 on’

RP?3 such that Hy and H, are both trivial.

(b) Construct examples of groups of isometries acting freely on RP> whose orders
are powers of 2 and powers of 3 for which both I'y and I'; are not trivial. '

Corollary 4.5.10 (one factor is cyclic). (Seifert) With notation as above,
either Ty or T'y must be irivial or cyclic. There is some one-parameter subgroup
(¢ S') of one of the two factors of SO(3) x SO(3) which commutes with the
action of H.

Proof of 4.5.10: If one of the T, say, I'; is cyclic (or trivial), then it is contained

in a 1-parameter subgroup P of SO(3), isomorphic to S, so that multiplication

on the right by P commutes with the action of H. Thus all we need to show
is that one of the I'; is cyclic.

By 4.5.6, the finite subgroups of SO(3) are the cyclic groups, the dihedral
groups, and the three groups of rigid motions of regular polyhedra: the tetra-
hedral, octahedral and icosahedral groups. All but the cyclic groups contain
elements of order 2, and all others except the tetrahedral group are generated
by elements of order 2.

H H contains no elements of order 2, then both T; are cychc and we are
done.

Otherwise, we may suppose for concreteness that I, contains elements of
order 2. We need to show that if I'y is not cyclic then T’ is cyclic.

The only choice for I'y, with a proper normal subgroup containing its order
two elements, is the tetrahedral group. The subgroup generated by order two
elements is the subgroup taking each pair of opposite edges to itself. It has
the structure of C; @ C,. It has index three—see problem 4.5.17.

Therefore, the quotient group I'y/H; = T3/ H; is Cs. Since H, contains
no elements of order 2, neither does I'y, so it is cyclic.

The significance of 4.5.10 is that any elliptic three-manifold M = RP*/H
(or its double cover) is foliated by circles, coming from the family of Hopf
circles which are orbits of any $* action on RP* which is normalized by H.
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This is not quite a fiber bundle, because sometimes there are circles where the
circles in a neighborhood wind around several times before closmg A foliation
like this is called a Seifert fibering of M.

We can use these fiberings to better understand the topology and geometry
of elliptic manifolds. In the correspondence (discussed in section 2.7) between
RP® and the tangent circle bundle of 52, the tangent circles form a family of
Hopf circles. The action of SO(3) on the right is the action of isometries of

SO(3) by their derivatives on the tangent sphere bundle of $2.

The action on the left is a little harder to visualize in this picture: to
make it well-defined, we must first pick a base point (tangent vector) X,
corresponding to the identity element of the group. Given an element v of
SO(3), «v acting on the left sends any tangent vector Y to the vector Y which
has the same geometrical relation to Y as X; does to 4Xg = Xpy. Thus, v
acts on the left by issuing a set of instructions to a tangent vector such as
“turn 10° to the left in the circle fiber, proceed 100 kilometers in S? along the
resulting direction, turn 45° to the right and hal$.”

Using this description we see that we can arrange the action of 0(2) C
SO(3) so that it acts on the right as the group of diffeornorphisms of the
tangent sphere bundle of 2 consisting of simultaneous rotations of the fibers,
possibly composed with the derivative of the antipodal map. This corresponds
to regarding ((2) C SO(3) as the actions which preserve the standard Hopf
circles.

By 4.5.10, any finite group I acting freely on RP? is contained in SO(2) x
SQ(3). Using the action as described above, we can think of the quotient space
reasonably well in terms of a two-dimensional picture (Challenge 4.5.14). We
will discuss the general theory of Seifert fiber spaces in chapter 5.

Theorem 4.5.11 (classification of elliptic manifolds). The elliptic three-
manifolds M are of one of the following four types: '

(a) If miM is abelian, then it is cyclic and M is o lens space
Lpg = Sa/ C,

(p and ¢ relatively prime), where a gcn.emtor of C, ( p not necessarily a
prime)} acts, using complez coordinates (21,2;), as

(zl, 22) — (Czl, quz')

with { the primitive p** root of unity 2™/

(b) 71 (M) has the form Hy x Hy, where H; is a binary dihedral group, the

binary tetrahedral group, the binary octahedral group or the binary icosa-
hedral group, and H, is a cyclic group (possibly {1}) with order relatively
prime to the order of H1 In this case M has the form RP3/(H; x Hy),
where Hy = Hy/{#1} C SO(3) and H, C SO(3).

(c) (M) has the form H where His a subgroup of index 3 of T x Ca,, where
m is odd and T is the tetrahedral group. M has the form RP*/H
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(d) m (M) has the form H where H is subgroup of indez 2 in Ca, X Doy,
where n is odd and m and n are relatively prime. Again, M has the form
"RP*/H.

Note: f T is a subgroﬁp of 50(3), then the group Fcss consisting of
elements which project to I' is called the binary I' - e.g., if I is the icosahedral

group, T is the binary icosahedral group. As we have seen, T=I'xC,iff T
has odd order.

Proof of 4.5.11: Counsider first the case M = RP3/H. I H is abelian,
then Iy and T'; are both either cyclic or C; @ C,. But if (M) is abelian,
C; & C; cannot oceur, since 1ts binary counterpart T is the quaternion group
{#1, £4, £y, £k} which is non-abelian. It is the homomorphic image of #; (M)
induced by the map SO(4) — 53 Therefore, ', and I; are cyclic, and H
must itself be cyclic — otherwise for some prime p, the group of elements of
order p would have rank 2, which would mean C, C H, and C, C Hz, con-
tradicting the fact that H acts freely. Since H is cychc H has the structure
H = Gy @ Cp, for some k& and some odd m, and H = sz @ C,. But
Zox = Cgen since it has a unique element (—1I) of order 2.

If #(M) is abelian but M 3 RP*/H, then m{M/ £ I) is cyclic, so
(M) C w1 (M/ £ I) is also cyclic.

The description given in (a) for an arbitrary free action of a cycllc group
on S° is derived from elementary linear algebra.

If M = RP®/H, where H is not cyclic, then we can assume (from 4.5.8)
that H, contains all elements of order 2 in I'; and that Hy, = C,, where m is
odd. So either H; = Iy, or I is cyclic or the tetrahedral group. Hy =T}
implies also H; =T'; and m(M) = Hl & H, = H1®H2 If I'; is the tetrahedral
group, we get case (c), as in the proof of 4.5.10. I T is cyclic, T'y must be
dihedral, since H is not abelian and the groups of the regular polyhedra are
not cyclic extensions of cyclic groups. T'z/H, must be C,, since C,, is the
only normal cyclic subgroup of odd order of a dihedral group Ds,.. Thus,
L3 = Dapm, I'1 = Cyy, and H is a subgroup of index 2 of I'y & Ts. 4.5.11

Problem 4.5.12 (Frobenius map). Show that for any group T which is a central
extension A4 — [ —» F, where I is finite, the *Frobenius map” T — A which sends
any element to its |1"|”‘ power is a homomorphism. In particular, if [['] is relatively
prime to the order of any element in A, then T is canonically isomorphic to the
product I' x A.

[Hint: choose a product structure for I as a set, but respecting the action of A.
Reinterpret the map v — /Tl as the total amount 4 “rotates” the cosets of AJ.

Exercise 4.5.13. Give the correspondences between these various descriptions of
jens spaces:

(a) M = RP3/H, where H C (cyclic group x cyclic group), or the dcmble cover of
a manifold of this form.

(b} The description given in Theorem 4.5.11. What repetitions are there in the list?
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(¢) Take a lens, L = (D? x I}/ (each @ x I, for § € 3D?), and glue the top to the
bottom by a rotation of order p.

(d) Glue together two copies of the solid tori D? X §1 by any zffine homeomorphism
¢ between their boundaries such that $(8D?) is not parallel to §D2.

Challenge 4.5.14 (two-dimensional description of elliptic three-manifolds).
Give a two-dimensional description of the elliptic three-manifolds other than lens
spaces, expressed in terms of the bundle of regular p-gons in the tangent space of
§2. Which lens spaces can be expressed analogously? What are the two ways of
describing M in the case m;(M) = (cyclic group) x (binary dikedral group)?

Exercise 4.5.15. Elliptic three-manifolds «— subgroups of U(2) which act freely
on C2? - {0}.

Problem 4.5.16. Describe 5%/ (binary tetrahedral group) and 53/ (binary octa-
hedral group) geometrically by describing a fundamental polyhedron in 53 and how
it is glued together.

Problem 4.5.17 (polyhedra and permutations). Give a geometric description
of the isomorphisms '

tetrahedral group & A,
octahedral group = 54
icosahedral group = A4s.

‘[Hint: consider the action on various geometrical figures inside a regular polyhedron].

Describe the structure of the full group of isometries of a regular polyhedra
(allowing reversals of orientation). [Hint: —1I is central in O(3)].

Give a description of the automorphism of the icosahedral group &= As; C S5
which does not come from an isometry, by imagining a dodecahedron made of pen-
tagrams.
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4.6. Discrete groups of isometries of the five fibered ge-
ometries

In the preceding two sections, we have seen that Euclidean three-manifolds and
elliptic three-manifolds have a close relation to discrete groups acting in one
and two dimensions. It is less surprising that theré are similar descriptions for
manifolds modeled on any of the five geometries which have a natural fibering
over either two-dimensional or one-dimensional geometries.

For 52 x E!, this was easy (section 3.12.3). For the remaining four geome-
tries — H? x El, PSL(2,R), nilgeometry and solvgeometry — the description
in terms of lower dimensional geometries still requires analysis.

Propositio 4.6.1. A discrete group, T, of isometries of H*xE! or PSI:E?Z', R)

 has image in the group of isomeiries of H? which is either discrete or contains

an abelian subgroup with finite index.

Proof of 4.6.1: Let X denote either of the two. geometries, and G the com-
ponent of its group of automorphisins which contains 1 . First, assume that
I' C Go. The center Zy = Z(Go) is the kernel of the map p : Gy — Isom(H?).

- Let U be any minipotent neighborhood of 1 in G. ZpU is also minipotent

since [z111, zgu9] = [t1,%2]. Therefore the subgroup H of p(T') generated by
p(D)0p(U) = p(TNZyU) is nilpotent. We will assume that p(I) is not discrete,
and prove that it contains an abelian subgroup with finite index. The non-
discreteness of p(T') implies that H is not empty, and one readily sees that it is
contained in a one—pa.rameter subgroup A which is either elliptic, hyperbolic,

~ or parabolic.

If ¥ € T is any element, and if & = p(k'} is a sufficiently small element, then
the commutator [4, A'] is close to the identity (since one can write &' = zhg, for
some kg near the identity). Since I is discrete, h may be chosen small enough
to guarantee that ¢ commutes with &', so p(y) centralizes A. The centralizer
of Ais A, so p(T') is abelian. (In the more general case that I' is not contained
in the 1dent1ty component G, p(I") would ou]y have an abelian subgroup of

Afinite index). - ]4.6.1

Corollar 4.6.2. A discrete group T of isometries of H2 x EL or PSIT(E: R)ise
co-finite-volume group iff it has an infinite subgroup H C T which acts trivially

on H?, and the group T/H is a discrete co-finite-area group of isometries of
Hz.

Proof of 4.6.2: X p(TI") is abelian, it acts preserving a line, point or horocycle
in H% so T preserves and acts discretely on the preimage in X (where X is
H? x E? or PSL[2 R)). Thus X/T' has infinite volume.

Since X/T' has finite volume, p(T') is a discrete group of motions of H2.

Let H be the kernel of p. The volume of X/T is area(H?/ p(F)) length(E H),
and the corollary follows. _
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Propositio 4.6.3. A discreic group I' of isometries of nilgeametry (3.12.9)
projects to @ group of isometries of E* which is either discrele, or preserves
some line or some point in E°,

- Proof of 4.6.3: Let p: G — Isom(E?) be the projection of G to its action

on E? (in the (a,b,d) coordinates of 3.12.9). Let us first suppose that I is
contained in the identity component Gy of G, the group of isometries of nilge-
ometry. Then the commutator subgroup of T' acts by translations on E? since
the commutator of any two orientable isometries of E? is a translation. If y
and -, are elements of T', then {4, v2] is a vertical translation { of nilgeometry
by a distance equal to the area of the parallelogram spa.nned by p(71){(0) — 0
and p{2)(0) — 0 to E2.

Suppose that there is some such parallelogram with non-zero area. Let T

be the group of all vertical translations in I'. T'is central in Gy, and the group

Go/T acts on E? with compact stabilizers. Therefore, by 77, the group I'/T
of isometries of E? is discrete.

If on the other hand all translations of E? in p([I',T']) are linearly depen-
dent, then either p({I',T']) acts trivially on E? — in which case either some
element of p(T') has non-trivial rotation and thus p(I'} fixes a point or p(T)
consists entirely of pure translations and is thus discrete — or p([[,I]) acts
by translations along some line. Then the rotational parts of the action of
p(I') can only be the identity or 180° rotations, and one sees that p(T') must
preserve some line in E2,

The general case, when T ¢ G, follows rea,dlly o 4.6.3

Corollar 4.6.4. A co-finite-volume group T' of isometries of nilgeometry is
cocompact, and its image in Isomn(E?) is discrete.

Finally, consider three-dimensional solve-geometry. Denote the space by
X, its group by G and the identity component of G by Go. Recall the structure
of Gp as an extension R? — Gy — R.

Propositio 4.6.5. If Ty C Gy is any discrete subgroup, then I'of(I's N RE)
acts discretely on R. Any discrete subgroup I' of G acts as a discrete group
on the line R, and the kernel of the action on the line is a discrete group of
isometries of the Euclidean plane.

Proof of {.6.5: Any element « in Ty which is not in 1'1',2 acts as an affine map
in R® which translates some unique vertical line (since v acts on R? without
any eigenvalue of 1).

If Ty is abelian, it is either contained in RZ, or all of Ty must act as
translations on a single vertical line. The proposition follows in either case.

If Ty is not abelian, its commutator subgroup is contained in R2. H it €
I'oNR2 and v € [o—R?, then { and iy~ are linearly independent translations,

“so TgNR2%is cocompact. The action of I's on R factors through the action on
X/(To N R?), so by 77 the image of Ip in R is discrete.

The statements concerning I" follow readily. 4.6.5
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- S iurnsigen: growps  Eixercis 4.6.6. (This is standard material in the theory of arithmetic groups.) Show

% Seme computations

in hyperbolic space  that there are interesting discrete groups of isometries of H2 x H? which project to

% discrcte Euclidean N
almont sbefian non-discrete groups on both factors. Do challenge 4.4.17 first.
% COFIN NIL .

(a} Now consider the group G with presentation

<a,fylat ==y =(af) = (7)Y =(va)' =1>.

Consider three triangles: two in the hyperbolic plane with angles # /7,27 /7 and
27 /7, and 3n/7,7x/7 and /7, the third orn §? with angles 27/7,37/7 and 37/7.
This gives three homomorphisms of & into isometries of some geometry. Show that
the diagonal homomorphism, into Isom(H? x H? x $§?), has discrete image, and
consequently the projection to Isom(H? x H?) is also discrete.

[Hint: write down matrices for the quadratic form descriptions of H? and 52
based on these triangles, as in Section 2.4. Note that all coefficients are algebraic
integers. Describe alattice in R® invariant by the diagonal action of G, and conclude
that 7 is discrefe.

(b) Prove that the image in fsom(H?) is indiscrete by showing that the two
images are isomorphic, and that there is a subgroup which is elliptic in one image
but hyperbolic in the other.

(c) Show that these homomorphisms of G are not faithful.

We now have enough information to be able to find algebraic properties of
cocompact groups in any of the eight geometries which identify the geometry.
First, a convenient piece of terminology. If X is a property of certain groups,
then a group is almest X if it contains a subgroup of finite index which is
X. For instance, discrete groups of Euclidean motions are almost abelian
(4.2.7); discrete cocompact groups of automorphisms of nilgeometry are almost

nilpotent (from 4.64), etc. Semecne needs 1o fins

a 1982 copy ol
chapter 4 and insert
this flowehart and the
one later in the
section-Dick

Theore 4.6.7. A cocompact group ' of automorphisms of any one of the eight
basic three-dimensional geomeiries is not isomorphic to a cocompact group n
any of the others.

The following flowchart reconstructs the geometry.
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', a cocompact group of isome-
tries of an unknown geometry X

IsT

almost

Proof of {.6.7: We already have most of the information, so we only need to
consider a few extra points. From section 3.12.3, corollary 4.2.7, 4.6.2, 4.6.4
and 4.6.5, it is clear that a group always takes a yes branch when the flowchart

- Revision: 1.6 .
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says it should. An infinite cyclic normal subgroup in the case of PS[T@: R) on
H? x E!, is I' N Zy, where Zp is the center of the identity component of the
group. The only problem is to make sure that no group takes a yes branch
when the flowchart says it shouldn’t.

Cocompact groups of isometries of H® are prevented from taking any yes
branch by the fact that they have no normal abelian subgroups, by a familiar
line of reasoning. (To prove that no cocompact subgroup of Isom(H?) is
almost solvable, we further observe that any maximal abelian subgroup is
only normalized by itself). Groups of isometries of H? x E! or PSL(2,R) are
separated from the earlier cases similarly. (See the proof of 4.6.1.) To separate
them from each other, note that any normal infinite cyclic subgroup A C I is
a subgroup of I' 11 Z). The centralizer of A is TN Gy. If A maps injectively to
the abelianization of T' N Gy, then there is some homomorphism of I' N Gy to
Z which is injective on A. Let H be the kernel. Since the action of H on H?
is the same as the action of HA, which has finite index in T, it follows that I

is cocompact. A cocompact subgroup of PSL(2,R) does not lift to PSL(2 R)
(Exercise 4.6.8), so the geometry must be H? x EL.
- It is elementary to check the other cases. _ 4.6.7

Exercis 4.6.8, A cocompact subgmup of PSL{2,R) does not lift to PSL(2 R).

_[Hmt see exercise 3 12.8.]

The non-cocompact but cofinite volume case is somewhat different.

Theore 4.6.9. Non-cocompact cofinite volume groups of automorphisms ez-
ist only for H® H? x E' and PSL(2,R) (out of the eight basic geometries).
Any such group of autemorphisms of H? x E' acts also as a cofinite volume

© group of automorphisms of PSL(2, R), and vice versa. Otherwise, groups are

distinguished by this flowchart:
WE NEED A FLOWCHART HERE

The separation of the case of H® from the other two cases is exactly the
same as for cocompact groups. We will not prove the rest of 4.6.9.
 Here are purely algebraic characterizations of cocompact discrete sub-
groups of nilgeometry and solvegeometry, analogous to a Bieberbach theorem.

Theore 4.6.10. A group T’ has an action as a discrete cocompact group of
automorphisms of nilgeometry with finite kernel if and only if I' contains a
subgroup of ﬁmte index isomorphic lo the group

H =<a,b|[a,][a,b]]=[b,]a, b]]"'l>

The action is effective if and only if the centralizer of H is infinite cyclic (&

~ torsion free).

Revision: 1.6 . - Date: 90/10/31 16:33:28



Section “"COCOM
SOL®

% COCOM NI

% finitely many
autemacphisme of
abelian group

% NILGEOM

4.6. THE FIVE FIBERED GEOMETRIES . . : ' o 198

Theore 4.6.11. A group I' has an action as a discrete cocompact group of
automorphisms of solvegeometry with finite kernel if and only if I’ contains a
subgroup H of finite index which is an ertension of the form

7’ S HSZ

where the action of Z on Z® is generated by ¢ hyperbolic element of SL(2, Z),
i.e., an element with |trace| > 2.
The action of I' is effective if and only if the centmhzer of H is trivial,

startproof[4.6.10) If I is a discrete cocompact group of isometries of nilgeome-
try, then I acts on the plane as a cocompact discrete group of isornetries. Let

‘a and b be two elements of T which act on the plane as linearly independent

iranslations. The subgroup they generate is isomorphic to H. Since the com-
mutator [a, b] is a non-zero vertical translation, E*/H must be compact so H
is of finite index.

Conversely, suppose I is a group which contains H with finite index. Let
Hj be a subgroup with finite index in A which is normal in I* (take for example
the intersection of H’s conjugates). Then Hy has various actions as a discrete
cocompact group of automorphisms of nilgeometry. The first step is to choose
an action such that conjugation by an element v € I' induces an automorphism
of Hy which comes from an isometry of nilgeometry. Toward this end arrange
and choose an action of Hy in nilgeometry so that conjugation of its induced
action on E? by an element ¥ € " comes from an isometry of E2. This can
be done by choosing a metric on E? invariant by the conjugation action, as
in 4.3.4. The action on the plane does not determine the action in space: in
fact, for any linear map f : R? — R, the linear map L; of R® into itself which
preserves the z-axis and sends (X, z) to (X, z+ /(X)) (where X € R?), induces
an automorphism of the Heisenberg group (using the (a,b,d) coordinates of
3.12.9). Two actions of Hp as isometries of nilgeometries which give rise to the
same action in the plane differ by some map L; -~ note in particular, that the
action of [Hy, Hy| is always the same, being determined by the areas of various
parallelograms in the plane. '

A finite group of automorphisms of Hy which respects the action of Hj
on E? acts by affine transformations on the set of choices of actions of Hj in
nilgeometry. This finite group has a fixed point - the center of mass of any
orbit — so the actions of Hp can be chosen so the finite group comes from
isometries of nilgeometry.

Finally, to realize I' we consider the induced representation of I as a group
of affine transformations of N/#e)| This space is constructed by considering

(T/Ho) x N = (T x N)/(gh,z) ~ (g,p(h)z)

where NV is nilgeometry and p is the representation of Hy as a group of isome-
tries of nilgeometry, and taking the cartesian product of the copies of N. There
is a foliation of NT/#0) by copies of N, parallel to a kind of diagonal embed-
ding  — ((¢1,2),.es {gn,x)) where = 1,...,m is an index for the cosets of Hy
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in I' and each ¢; is a choice of an isometry of nilgeometry which realizes the
automorphism of Hy defined by the i-th coset. This foliation is invariant by
the action of I', and each leaf is invariant by Hy. As in the proof of proposi-
tion 4.3.3, there must be some leaf invariant by I'. The action of I" on this leaf
gives the desired action on N.

The condition for the action of T’ to be effective is easily checked. An
element y cannot possibly act trivially on N unless it centralizes H (or Hp).
The group which centralizes Hy in the full group of 1sometries of N is R acting
as pure vertical translations), so the centralizer of H acts effectively if and only
if it is infinite cyclic. finishproof4.6.10

startproof[4.6.11] If T is a discrete cocompact group of automorphisms of
solvegeometry, then T' N G has the form indicated for H, where G is the
identity component of G' (using 4.6.5).

If I is a group having a subgroup H of finite index of the form described
in 4.6.11, then we can construct a discrete cocompact action of H on X (by
Exercise 3.12.13(b)). We may as well assume that H is normal in I'. The next

“claim is that every possible automorphism of H is induced by conjugation by

some element of G which normalizes the action of H on X. Indeed, any auto-
morphism must preserve the Z? subgroup, and it must preserve or interchange
the two eigenspaces in R? = Z? ® R. The automorphism restricted to Z? can

‘therefore be realized by an element of G of finite order, followed, if necessary,

by some translation in the {vertical) ¢-direction to adjust the relative scaling
factors of the eigenspaces. The full group H has one remaining generator,

which is a translation along some line. After the automorphism, it becomes

a translation along a new line, in the same or opposite sense depending on
whether the eigenspaces in R? are preserved or interchanged. A horizontal
translation now adjusts this final generator, without changing the action of
the others. :

Note that two different elements of G can never induce the same automor-
phism of H. Therefore the construction above gives a group homomorphism
Aut(H) — G, which extends the given embedding of H in G. The composition
I' = Aut(H) — G completes the proof of 4.6.11. finishproof4.6.11
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spaces

There are two images which even though logically equivalent, are quite different
in appearance: the first image is that of a group I' acting freely and properly
discontinuously on a simply-connected space X (such as the hyperbolic plane);
the second image is its quotient manifold X/T. .

In this chapter we will enlarge our vocabulary, so that we can discuss
in a similar way the two images associated with groups which act properly
discontinuously but. do not necessarily act freely — such a group is discrete,
but some of its elements may have fixed points. The quotient spaces of these
groups {equipped with enough additional structure to describe the way.they
act) we will call orbifolds. (The name V-manifold, has also been used for a
related concept.)

There are several reasons o study groups which do not act freely. In the
first place, there are many beautiful and simple examples, which are often
easier to come by than examples of groups acting freely.

Second, groups which do not act freely arise in connection with the study-
of symmetries of manifolds, for instance, the theory of symmetries of knots.

Third, as we have seen in the preceding chapter, groups acting freely in
three dimensions are sometimes built out of groups which do not act freely
in one and {wo dimensions. One and two dimensional orbifolds give a more
rational base for the theory of Seifert fiber spaces.

Finally, orbifolds provide a useful tool for constructing hyperbolic struc-
tures on three-manifolds: see [Thurston, | and [Thurston, ]
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5.1. Some examples of orbit spaces

Let us begin with a few examples of quotient spaces or orbit spaces in order
to get a taste of their geometric flavor.

Example §.1.1 (ordinary mirror}. Consider the action of the cyclic group
C: of order 2 on R? by reflection in the y-z plane. The quotient space is the
half-space = > 0. Physically, one may imagine a mirror placed on the y-z wall
of this half-space. The scene as viewed by a person in this hali-space is like
all of R3, with scenery invariant by the C; symmetry (figure 5.1).

r 3

-

Figure 5.1. Symmetry of a mirror. An ordinary mirror creates a scene with
-2-fold symmetry,

Example 5.1.2 (barber shop). Consider the group 7 generated by reflec-
tions in the planes z = 0 and z = 1 in R®. G is the infinite dihedral group
Do, = C; * C,. The quotient space is the slab 0 < # < 1. A physical model is
formed by two mirrors on parallel walls, as commonly seen in barber shops.

Example 5.1.3 (cone). The cyclic group C; acts in the plane as the group
of rotations of order & about the origin. The region between two rays at a
27 [k angle is a fundamental domain. The two sides of the angle are identified
by the group action, forming a cone.

The most common cones, for instance, many ice cream cones, are formed
when & = 2 from an angle of =, or a half-plane. Such a cone, when rolled
around on table rolls around its point, returning to its initial orientation when
it reaches the original position. (figure 5.2).

Example 5.1.4 (billiard table). Let G be the group of isometries of the
Euclidean plane generated by reflections in the four sides of a rectangle B. G

Date: 90/09/23 17:08:18



Example “rectangular
pillow”

5.1. SOME EXAMPLES OF ORBIT SPACES 202
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Figure 5.2. A cone with cone éhgle .
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billiard

Figure 5.3. A billiard table. (Notation: (*2222).) A billiard table and multiple reflections.

is isomorphic to D, x D, and the quotient space is B. A physical model is
a billiard table. A collection of balls on a billiard table gives rise to an infinite
collection of balls on R?, invariant by G.

To make the physical model work more accurately, at least for a single
ball, think of the mathematical billiard table as a smaller rectangle inside the
physical billiard table, with margins of one ball radius. Then the centers of
balls can take positions exactly delimited by this rectangle. If the ball has no
spin so that its angle of incidence equals to angle of reflection, iis trajectory
on the billiard table is the image of a straight line in the plane, folded up by
D, x D,..

the labelling on figure
5.4 is wrong

Example 5.1.5 (rectangular pillow). (Notation: (2222)). ' Let H be the

r I 3
‘ L . .
1 i
v
1 m
L I _ 4
pillow

Figure 5.4. The orientation preserving billiard group

subgroup of index 2 which preserves orientation in the group G of the preceding
example. If the images of the billiard table are alternately colored black and
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white in a checkerboard pattern, this is the subgroup which takes black to
black and white to white. The quotient space of E* by H is a rectangular
pillow.

Two adjacent recta.ngles form a fundamental domain for the group action.
The quotient space is obtained by identifying the edges of the two rectangles by
reflection in the common edge (figure 5.4). Topologically, this quotient space
is a sphere, with four distinguished points or singular points, which come from
points in R? with nontrivial isotropy (Cs). Geometrically, it is like a pillow.
The local intrinsic geometry of the pillow near each of its points is the same as
the geometry of a cone of cone angle 7. These are called order 2 cone points.
Quotient spaces of group actions often have cone-type singularities.

Problem 5.1.6 (tetrahedron as orbifold). Consider any tetrahedron T in E3
which is made from four congruent triangles. Show that T is isometric to the
quotient space of E? by a discrete group. Construct a physical model, and watch
what happens if you roll it carefully on a table. Wrap a ribbon or string around the
tetrahedron so that it follows a geodesic. It should never cross itself. Why not?

Example 5.1.7 (cone axis). The example of a cone generalizes to three
dimensions in 2 straightforward way. The cyclic group C; acts in E® as the
group of rotations of order k¥ about a line. A fundamental domain is a wedge

. between two pla.nes which meet at angle 271'/ k along the line, and one face

of the wedge is identified to the other via the action. The quotient space is

'homeomorph:c to R®. Geometrically, it inherits a Euclidean metric in the

complement of the cone axis. The geometry along the axis is that of a product
of an order k cone with the line E!. A singular curve like this is called an
order k cone azis. _ o
Can you visualize what it would look like to live inside this quotient space?
The.appearance would be the identical to that of a pattern with %-fold rota-
tional symmetry about a line in E*. Suppose, for example, that & = 2. You
would see an image of yourself directly through the cone axis. The axis itself
would not be visible. If you threw a ball toward your image, it would whip
around the axis, just like a light ray, and come back to you.

Example 5.1.8 (borromean orbifold). (Notation: (25%2:2;*).) A crystal-
lographic group. Here is one more 3-dimensional example to illustrate the
geometry of quotient spaces.

Consider three families of lines parallel to the three axes in E® interlaced
evenly so they do not intersect: in coordinates, (t,n,m+1/2), (m+1/2,{,n)
and (n,m+ 1/2,1) where n and m are integers and ¢ is a real parameter. The
lines intersect each cube in the unit lattice as in figure 5.5. Let G be the group
generated by 180° rotations about these lines. The unit cube can be taken
as fundamental domain for this group action. We may construct the quotient
space by making all identifications coming from elements of G which take faces
of the cube to faces. These identifications fold each side shut, like a book. In
doing this, we keep track of the axes, which form the singular locus of the final
result. As you can see by studying figure 5.6, the quotient space is 52 with the
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borrocube

Figure 5.5. A group generated by rotations in . The quotient space of a
group generated by 180° rotations about 3 non-intersecting families of parallel
lines. A unit cube is a fundamental domain for the group action.

singular locus consisting of three circles in the form of the Borromean rings.
Metrically, this means that $° has a Euclidean metric in the complement of
these rings. Each ring is an order 2 cone axis.

In these examples, it turned out not to be very hard to construct the
quotient space from the group action. We need to develop the connection
between group actions and quotient spaces in the opposite direction as well:
~ given a picture of the quotient space, to be able to say, aha-that picture arises
from a certain group acting on Euclidean space (or hyperbolic space, or ... ).
To do this requires knowledge about the singular locus {that s, points coming

from elliptic axes, etc.), with appropriate information about how the group
acts above this locus,
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1. Rl TP . d
borroident

Figure 5.6. ldentifications of a cube yielding the Barromean rings. These
pictures show how to fold up the sides of the fundamental domain according
to the group action, one pair of opposite sides at a time, finally yielding the
3-sphere with three singular axes in the form of a link which is called the
Borromean rings.
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Section *Basic 5.2. Basic definitions for orbifolds

definitions for
arbifolde™
;fgﬁgidmmpm o An orbifold is a space locally modeled on R™ modulo faithful finite group
orbit spaces actions. Before filling in the formal details of what this means, we will try to
elucidate it by examples and an intuitive disucssion.

The idea is that an orbifold is pieced together from the structure that
is locally visible in the quotient space of the action of a discrete group on
a manifold. In the section 5.1, we gave a number of examples of quotient
spaces of groups acting by isometries. In these instances, the quotient space, or
quotient orbifold, has a geometric structure along with its topological structure.
For such examples, the geometry, without any additional information about
group actions, is sufficient to capture the essence of the example. For instance,
the geometry near an order & cone point is enough to deduce the value of k.

For a topological orbifold, not equipped with a.geometric structure metric,
one has to take more care. For instance, as topological objects, all cones
E?/C; are equivalent. In order to capture the nature of a cone as a quotient
space of the plane, an additional piece of information besides the topology is
necessary: the additional information is the group Cj, its action on E?, and
a homeomorphism of a neighborhood of the origin in the quotient space to a
neighborhood of the cone point. Really, there is only one way to do this, up
to homeomorphism, once the location of the cone point and the integer &k are
specified, so the description is often abbreviated by labeling the point by the
integer k.

For any finite collection {(p1,m1), (p2,n2),- .., {pr,n&)} of points p; in the
plane with an integer n; greater 1 attached to each point, there is an orbifold
O{(p1,71),{p2,m2)s...,{pe,mx)): it is locally modeled on R? in every neigh-
borhood not intersecting the points. In a neighborhood of the point p;, the
orbifold is modeled on E?/C,,.. If we identify E? with the complex numbers
C, the modeling of the nelghborhood of p, on C/C,,is conveniently expressed

Voo
bytheformula,zl—rz"%@ (n-.;_‘f) ﬁ‘a_}f\g .é.__ (g k@)(@ U&‘I’D“—&{ PI";S‘ ;

scribing, the quotient space of a discrete group acting on some manifold. One
thing you can ‘do’ with an orbifold is try to find a manifold, together with a dis-
crete group acting on it, whose orbit space is the given orbifold. Sometimes this
is possible, sometimes not. For the orbifold O((pi,n1),(p2,n2),...,(Px, 1)),
this would amount to constructing a manifold which ‘unwra.ps n; t;mes about
each p;. _ _

There may be many different manifolds with discrete groups acting on
them, whose quotient space is the same orbifold. '

Consider, for example, the orbifold O((1,2),(—1,2)}. This (and other
similar examples) work out nicely when considered as complex orbifolds. One
way to ‘unwrap’ about the order two cone points at 1 and —1 is by taking the
graph of the ambiguous function 1/(z — 1)(z + 1), that is,

= {{z,w) € C*lw? = (z - 1)(z + 1)} .
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prodviem “cyctic  This set M ? is a surface (or in the lingo of complex analysis and algebraic
orbifold” geometry, a curve) which maps by a mostly 2 — 1 map to the first coordinate.
The map (w, 2) — {—w, z) generates a C, action on the surface, with quotient
orbifold 0O((1,2), (—1,2)). Topologically, the surface is a cylinder. You can see
this by making a branch cut along the interval [~1, 1]. The two branches of ,/
are interchanged every time you cross this arc. When you cut the plane along
the arc, you get a half-infinite cylinder, and when you glue the two copies {for
the two branches) together, you get a doubly-infinite cylinder.

The surface. M? can be analytically parametrized by C — 0: a formula is
1/2(t — 71, + ¢~'). The group C; of symmetries, in these coordinates, is
generated by inversion, ¢ = ¢7!. The two fixed points are 1. The function
g{t) = (t — t71}/2 gives the map to the quotient orbifold.

The punctured complex plane can easily be expressed as a quotient space of
the plane modulo a group of translations, using the function exp. If we choose
the translations to be tranlations by 2Pi, so that { = exp(2Piis), then the
-composed map of C to O((1,2),(—=1,2)} is cos. Somehow, the cosine function
is implicit in the orbifold O((1,2),(~1,2)): the cosine function obeys the laws

cos(s) = cos(—s)

and .
cos(s) = cos(s + 27},

in other words, it is invariant by an action of the infinite dihedral group on C,
generated alternately by order 2 rotations about the origin and about =. The
cosine function itself is the quotient map to the quotient orbifold! o

This . gives two different ways to “‘unwrap’ the orbifold O{(1,2},(-1,2)).
There are an infinite number of intermediate examples, using the various finite
dihedral groups acting on the punctured plane, generated by inversion together
with multiplication by some group of roots of unity. The maps to the quotient
orbifold are gi(t) = 1/2(tF — =% ¢F +¢7%).

In general, there is at least one easy way to ‘unwrap’ the orbifold
O((p1,n1)y .+ (Pr,nx)). Let N be the least common divisor of the n;, and

“use the function :
_ /N
(H(z — )™ "") :

{We use this .hota.tion, rather than cancelling the exponents, to emphasize that
there are N branches of the function above a generic point in C.)

Problem 5.2.1 (cyclic branched cover of orbifold). What is the genus of this
surface? How many punctures does it have? '

We can also add the point at infinity in C, to turn it into a sphere
complezes (the Riemann sphere}, and try to understand the orbifolds
O((pr, 1)y . .. {pr,nz)) defined in a similar way. It is a good idea to use
oo as one of the points p, as a reminder nat to forget it. The analysis
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becomes trickier. Some cases can be derived from the Schwartz-Christoffel
method for conformal mappings of the upper half-plane to a polygon. - For
instance, consider O((0, 3), (1,3), (00, 3)). The graph of the multi-valued func-
tion z — (z{z — 1))1/% is one way to ‘unwrap’ this orbifold. {Notice that the
three sheets are permuted cyclically when one goes around a large circle, that

15, a small circle about co.} The surface can be triangulated using the images

of the three segments of the real axis. This triangulation has 3 vertices, 9
edges and 6 triangles: its Euler number is 0, and it is a torus. (‘Curves’ which

are toruses are called elliptic curves.) The orbifold is the quotient of the torus

by a group of order 3.

Topologically, we can express the torus as the quotient of the plane by
a group of translations. Combining with the order three rotations of the
torus, we obtain a topological description of our orbifold as the quotient of
the plane by a group generated by order 3 rotations about the three corners
of an equilateral triangle.

We can derive the complex a,nalytlc formula using the Schwarz-Christoffel
formula for the Riemann mapping to a polygon. More explicitly, integrate the
equation

w = (2)73(1 — 2)"*dz.

In this formula, the argument of the coefficient of dz is constant in each of
the three intervals (—oo,0), {0,1), and (1,00). Therefore, each of the three
segments maps to a straight line. These lines are parallel to the sides of an
equilateral triangle. Since dw never vanishes in the upper half plane, the in-
tegral defines the the requisite mapping. The map can be extended across
each of the three intervals of the real line by the Schwarz reflection princi-
ple. When this is continued recursively, one obtains an analytic description of
O((0,3), (1,3), (cc, 3)) as the quotient of the plane by the (3,3,3) group.

Here is a more formal expansion of the definition for an orbifold: an orb-
ifold @ consists of an underlying space Xg, together with some additional
structure. The structure can be described by covering X with a collection
of connected open sets U; which (for convenience in the definition) is closed
under taking components of finite intersections. Each U; is called a coordinate
patch. To each U; is associatéd a finite group T, a faithful action of I; on
some connected open subset U; of R™, and a homeomorphism, called a coor-
dinate chart ¢; : U; — U: ;/T;. Whenever U; C Uj, there is to be an injective
homomorphism

fi T = 1

and an embedding
$ii: Ui —~ U;

" equivariant with re-spect to fi; (that is, for v € T, gé,J(-T:c) = fu(q’)gb,}(a:))

such that the diagram below commutes:

Revision: 1.16 S Date: 91/01/01 16:27:06

Pl
OB



-5.2. BASIC DEFINITIONS FOR ORBIFOLDS _ 209

E’ % Definition “geometric
T orbifolds”
Example “maniiclds
are orbifclds™
Exampie “mirrar of
manifold"
mmirror
srzilvered

5

l

—
 —

% orbifold with g f[
houndazy - o ‘f’u—éuﬂ—‘e —
Example “manifeld {/P;’ _ U f
with cone axes” l
i /
U; C

We regard g;j as being defined only up to composition with elements of
I';, and fi; as being defined up to conjugation by elements of I';. It is not
generally true that q.f:,k' = E,k 0 3,1 when UiclU; C Uy, but there should exist
an element v € T such that ¥ = b5 0 ¢ij and 7 - fuelg) -7~ = fir 0 fi5(9),
for each g € I';. :

Of course, the covering {U;} is not an intrinsic pa.rt of the structure of an
orbifold; two coverings of a space X give rise to the same orbifold structure if
there is a larger cover, containing ea;ch of the given covers, and still satisfying
the definitions.

The notion of a geometric structure can be carried over to orbifolds in a
stralghtforwa:rd way:

Definition 5.2.2 (geometric orbifolds). A T'-orbifold, where T is a psen-
dogroup of local homeomorphisms of R", means that in the definition all maps
and group actions are contained in the the pseudogroup I". As with manifolds,
if G is a group acting on a space X, a (G, X)-orbifold is the same as a T
orbifold, where I is the pseudogroup of restrictions of elements of G to some
coordinate patch in X. :

Example 5.2.3 (manifolds are orblfolds) A closed manifold is an orblfold
where each group I’ is the trivial group, so that U; = U..

Example 5.2.4 (mirror of manifold). A ma.nifold M with boundary can
be given an orbifold structure mM in which its boundary becomes a mirror.
Any point on the boundary has a neighborhood modeled on R*/C,, where C,
acts by reflection in a hyperplane. We will say that a boundary component of a
manifold which has been given an orbifold structure in this way is sifvered. One
‘can imagine living inside a manifold whose walls are glass; some of the walls
may be transparent, while others may be silvered so that they have become

mirrors. The unsilvered walls are still boundary components (see definition
5.2.8.)

Example 5;2._5 (manifold with cone axes). If M is a differentiable »-
manifold, and N C M is any codimension two submanifold, then a local
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= —

L _I

orbichart

Figure 5.7. A manifold with boundary underlies a mirrored orbifold. A
manifold M with boundary is the underlying space for an orbifold m.M {without
boundary), by making the boundary into a mirror. The figure shows how a
covering works near the boundary of M..

model for the pair (M, N) is (R",R*"?). For any integer k > 1, this pair is
komeomorphic to R"/Cy, where C; acts by rotations about R*~2, Therefore
there is an orbifold structure on M which makes N into an order % cone axis.
This structure can be made differentiable in a natural way.

This orbifold is ‘M with order k¥ N’ symbohzed M(EN).

Proposﬂ:lon 5.2.6 (quotients of manifolds are orbifolds). The quotaent
space of a manifold M by a group I' which acts properly discontinuously on M
is an orbifold.

Proof of 5.2.6: For any point z € M/F, choose ¥ €¢ M projecting to z. Let I
be the stabilizer of Z. (I, depends, of course, on the particular choice of %.)
There is a neighborhood ff of 7 invariant by I, and disjoint from its translates
by elements of I’ not in I.. The projection induces a homeomorphlsm from

Uz/I: to Uz. To obtain'a suitable covering of M/I', augment some covering

- {U:} by adjoining components of finite intersections. If V' is a component of
Uz, N...NU,,, then there is a corresponding component V of some set of

translates Uz, N...N ’ykl:,-fz,‘ The group fylfxlfyl“ YO Nyl ! acts on
1z N...0 'rkU,,k and on its set of components. Let H be the stabilizer of
V. Then V V and H give the required local structure. 5.2.6
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The orbifold mAM arises in this way, for instance: it is obtained as the
quotient space of the C, action on the double dM of M which interchanges
the two halves. The construction of example of 5.2.5 often produces an orbifold
which is a quotient of a manifold by a group action, but not always.

Henceforth, we shall use the terminology M{I' to mean M/T' as an orbifold.

Note that each point = in an orbifold ) is associated with a group @',
well-defined up to isomorphism. In a local coordinate system U = U/T, T,
is the stabilizer of any point in U mapping to z. (Altematlvely, [y may be
defined as the smallest group associated with the various different coordinate
patches containing x.) The set Tg = {z | I'; # {1}} is the singular locus of
Q. We shall say that @ is a manifold when £o = ¢. :

Warning: It happens often that the underlying space Xg is a topological
manifold, especially in dimensions 2 and 3, although @ is not a manifold. Do
not confuse properties of ) with properties of Xg.

Proposntmn 5.2.7 (singular category). The singular locus of an orbzfold
is a closed set with empty interior.

Proof of 5.2.7: For any coordinate patch U/ = U/T; Zg N U is the image of the
union of the fixed point sets in U of elements of T'. Hence £, N is closed, so
g is closed.

The fact that Yo has empty interior is a consequence of the theorem of
[New31] that a non—trlvlal homeomorphism of a manifold which has finite order
cannot fix any open set. This theorem is deep in the topological case, but it
is elementary in the diffetentiable case that mamﬂy concerns us. {See 5. 4.1 for
the discussion in the differentiable case.) BT

Here are two more definitions which are completely parallel to the defini-
tions for manifolds.

Deﬁmtmn 5.2.8 (orbifold with boundary). An orbifold with boundary
means a space locally modeled on R® modulo finite groups and R} modulo
finite groups.

Warning: Do not confuse the boundary of an orbifold with the boundary
of its underlying space {(when this makes sense.) The actual boundary of the
orbifold depends not just on the picture, but on the data of the local groups
as well.

Definition 5.2.9 (suborbifold). A d-dimensional suborbifold ()1 of an orb-
ifold Q; means a subspace Xg, C Xg, locally modeled on R? modulo the
induced actions of the local groups of Q4 on invariant d-dimensional subspaces.

We will also have occasion to talk of suborbifelds with boundery, and we
have a variety of different possibilities. We take for granted that the various
actions involved in the local structure are induced in the obvious way by the
largest group associated to a point. By a proper subordifold ¢}, of ()2 we mean
that the boundary of ) is a suborbifold of the boundary of @3, and no other
point of (0 is contained in the boundary of Q. If an interior point of ¢y lies
in the boundary of @2, then the whole of Q; must lie in the boundary of ¢},.
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The orbifold ml, the mirrored unit interval, is non-orientable and one-
dimensional. An endpoint is a zero-dimensional manifcld—the group of order
two is changed to a group of order one, to satisfy the requirement of the
definition that only faithful actions are used. The quotient of S? by C; acting
by rotations has two cone points. A geodesic joining the two cone points gives
a suborbifold if and only if & = 2.

Example 5.2.10 ((2,3,6) prism). Consider a rectangular prism in euclidean

three space, with triangular base, having angles «/2, #/3 and #/6. Suppose

all the faces are mirrors and all edges are corner reflectors. Then the tri-
angular faces are suborbifolds and the edges perpendicular to the trianglular
faces are suborbifolds. No other faces or edges are suborbifolds. To see this
phenomenon physically, build a large box of prismatic shape, make one two
triangular mirrors (reflecting inwards) with red glass. Step inside the box and
replace the red triangular lid. You see an infinite sequence of parallel red floors
and ceilings. If an edge of a red triangle on the floor is painted black, you see
on the fioor a pattern of black edges which is not a line. A vertical edge does
however give rise to a line.

Example 5.2.11 (Borromean suborbifolds). In example 5.1.8 of the
three-sphere with order 2 Borromean rings, consider a disk in S whose bound-
ary is one of the three rings and which intersects the other rings transversely
in two pomts ' This is'a suborbifold. The boundary of the disk is locally mod-
eled on a plane modulo a reflection in a line in the. plane. At the transverse
intersections with cone axes, it is locally modeled on a plane modulo rotations
about a perpendicular line.

Problem 5.2.12 (suborbifolds and the singular locus). Let Q; be a suborb-

ifold of @; and suppose that a non-singular point of Q; is a singular point of Q,.

Provethat @1 is contained in the singular locus of Q,. (The topological version
of this uses Newman’s theorem [New31]. The differentiable version can be proved
using only proposition 5.4.1.)

5.2.13Note on history and terminology

The concept of an orbifold has been implicitly used by mathematicians
for a long time — by Poincaré, for instance — but the absence of a formalized
definition has often created awkwardness in language and communication, and

- a consequent distortion in the development of mathematics.

A formal definition for a V-manifold was introduced by [Sat56, Sat57], al-
though in his definition he requires £4 to have codimension at least 2, and the
definition was based on the Riemannian geometry rather than modelling mod-
ulo groups. There has been a fair amount of literature treating V-manifolds.

The term “orbifold” was coined during my course at Princeton in 1976-77,
when I was not aware of the earlier definition of V-manifolds. The word was
obtained by a democratic process after earlier terminology proved unsuccessful.

The word “orbifold” seems to suggest the correct concept to people more
quickly than “V-manifold”, so I have decided to stick with it. The “V” of
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L “V-manifold” is meant to suggest the cone-like shape near its singular locus.
Unfortunately, people first encountering the word tend to assume a. V-manifold
1s a kind of manifold. “Orbifold” suggests the orbit space of a group action on
a manifold. Unfortunately, it tends to look like nothing when abbreviated (for
symbolic use), so I have found it expedient to add a tail to O — Q to give a
cue that it is not 0. :

Nan
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5.3. Covering orbifolds and the fundamental group

When M is a simply-connected manifold and T is a properly discontinuous
group, we would like to be able to reconstruct I' as the “flundamental group”
of M/T', and M as the “universal covering” of M/T, just as in the case that I’
acts freely. In this section we will show how to make the reconstruction.

Definition 5.3.1 (covering orbifeld). A covering orbifold of an orbifold @

is an orbifold §), with a projection p : X3 —  Xg between the underlying

spaces, such that
1) pis a local covering that is, each point z € X7 in the domain has a neigh-

borhood U = /T {where U is an open s subset of R“) such that p restricted
to U is isomorphic to a map U/T' — U/T' (T C )

and

i1) pis an even covering, that is, each point 2’ €  in the range has a neigh-
borhood V = V /T for which each component U; of p~*(V) is isomorphic
to V/ T';, where I'; C T is some subgroup. The isomorphism must respect
the projections.

Note that the underlying space X7 is not generally a covering space of
Xp.

As a basic example, when I" is a group acting properly discontinuocusly
on a manifold M, then M is a covering orbifold of M/T. In fact, for any
subgroup I'' C ', M/T" is a covering orbifold of M/T. Thus, the rectangular
pillow (5.1.5) is a two-fold covering space of the billiard table {5.1.4)

~

e

paperdolis
Figure 5.8. Covering spaces of a mirrored strip. The construction of

covering spaces of a mirored strip by larger mirrored strips is often taught to

five year olds by folding paper dolls. (Notatloﬂ A mirrored strip is also called
(Tooco).)

Here is another explicit example to illustrate the notion of covering orb- -

ifold. Let S be the infinite strip 0 < z < 1 in R?; consider the orbifold m.S$
(named (*ocooo)). This orbifold is a covering space of itself with any number

of sheets, by folding back and forth. An eight-sheeted covering is depicted in
figure 5.8.
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5, »  Definition “good and - C T
K badh m
geed
iihad
% teardrop
% 23501h
Propoeition “universal
cover of orbidold™
% universal cover of
orbitold
L o

teardrop.
Figure 5.9. The teardrop is a bad orbifold. It has no covering space other
than itself. (Notation: (m))

Definition 5.3.2 (good and bad). An orbifold is good if it has some covering
orbifold which is a manifold. Otherwise it is bad.

The teardrop (figure 5.9) is an example of a bad orbifold. The underly-
ing space for a teardrop is 5% Its singular locus consists of a single point,
whose neighborhood is modeled on R?/C,,, where C,, acts by rotations. By
comparing possible coverings of the upper half with possible coverings of the

£ lower half, you may easily see that the teardrop has no non-trivial connected
s covering.

Similarly, you may verify that an orbifold @ = (_m) with underlying space

Xq = 57 having two cone points of orders n and m is bad unless m=n.
' Two-dimensional orbifolds with three or more cone points, as we shall see,
are always good. For example, the orbifold with underlying space S? having
three cone points of orders 2, 3 and § is isomorphic to $? modulo the group
of orientation preserving symmetries of a dodecahedron (figure 5.10)

Proposition 5.3.3 (universal cover of orbifold). An orbifold Q has a
universal cover. In other words, if x € Xg — Zg is a base point for @ then
the universal covering p: Q —  is a connected covering with base point T
(with p(z) = z), such that for any other covering p' : P — Q) with base point

z' (and p(Z') = z), there is a unigue lifting ¢ : Q— Pofp to a covering map
of P. '

This proof has been

The universal covering orbifold § corresponds to what is sometimes called ™™~

the universal branched covering of Xg subject to certain branching conditions
along Tq. The universal covering is a manifold iff @ is good. In that case, it
is the same as the universal covering space of any manifold which is a covering
orbifold of Q. One fairly elementa.ry method to prove 5.3.3 goes in outlirie as
follows:

First define the orientation covering @y of @, a two-fold covering orbifold
which is oriented. The singular locus $g, now has codimension at least 2. The
universal covering of Q is obtained from a certain covering space of ¢J; — Xg,

Revision: 1.13 Date: 90/07/10 15:20:17



i

% fiberprod

5.3. COVERING ORBIFOLDS AND THE FUNDAMENTAL GROUP 216

r —

L -
2350rb

Figure 5.10. The 235 orbifold. The orbifold (235) with underlying space 52
and cone points of orders 2, 3-and 5 is the quotient space of 52 by the group
of arientation-preserving isometries of the dodecahedron.

| by “filling it back in” above Xg,. The desired covering space of @4 — Zg,

has fundamental group the subgroup generated by all loops which are freely
homotopic to the form /I, in some local coordma.te system U /T, where « is
a loop in U. '

We will give a different proof, because it seems more illuminating. .

Proof of universal cover of orbifold: The key step is to be able, given a
collection of coverings @; — @, to find another covering P — @ which is a
common covering of the ();.

For the construction of the universal covering space of a topological space,
the fiber product works toward this effect. Recall that the fiber product of
a collection of maps f; : X; — X of topological spaces is the subset of the
cartesian product consisting of all tuples in J], X, that map to the same point
in X: {(:I:, Yier € H:eIX | Vi,e 1, fi{z:) = f:(‘c:)}

In the case of orbifolds, it does not quite work to take the fiber product
of the underlying spaces. The difficulty is best illustrated by example. Two
covering maps S' = dI — mlI and mI — m] are shown in figure 5.11,
along with the fiber product of the underlying spaces. There is an extraneous

" double point, which we must eliminate in the right definition of fiber product

of covering maps of orbifolds. _

First let’s see what happens in local coordinates. Let U = U /T be a
coordinate patch. We may suppose that U is sufficiently small so that in every
covering of @, p~'(U) consists of components of the form 7] /T, where I C T

Let Q; & Q be a collection of covermg orbifolds, and consider components
V: of p;H(U). Each V; has the form U/T;, for some group I'; C ', where j
ranges over the set J of all components for all 7.
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. |

: s! with double point

?

fiberprod

Figure 5.11. The orbifold fiber product is not the topological fiber prod-
uct. There are often extraneous intersections in the topological fiber product.
In this case, the orbifold fiber product of degree two coverings of mI — mI
and §1 — mI is a degree four covering 51 — mi, while the topological fiber
product of the maps between underlying spaces is a figure eight. The orbifold
fiber product takes into account the local groups to separate these intersections
into different sheets, making it an orbifold..

If = is a regular point in U, then preimages of x in V; are parametrized by

“the cosets I';y € I'/T';. (Once we pick some Z € U which maps to z, then the

preimage in U is ['F and the preimage in V; is TZ/T; 2 I'/T;.) Then the part
- of the fiber product mapping to z is parametrized by the product

[/ = [/

This expression has the disadvantage that it depends on the choice of an ¥
lying above z. To get a uniform formula, we use all possible choices for ¥ and
divide by the action of T' which permutes these choices. The result is

= (J]r x 0)/(r = [ r;)

JjeJ JeJ

where the action of ' x []. T'; is

(v (3diea): ((es)iens ) = (057 sea, yu)-

In these formulas, when the index set is infinite, the products are unre-
stricted products equipped with the discrete topology.

_ The covering maps V — U/T; are defined by sendmg {(a3)ser, ) to a,
Note that this respects the equivalence relations. . If u € U is any regular pomt
this construction agrees with the usual fiber product descrlptlon, 80 it 1s the
same as the topological construction.

It is clear that this construction gives a covering orbifold of U.
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These local constructions piece together to give a kind of global fiber prod-
uct. (The piecing together automatically works because the local construction
has the universal property that any common covering of the ((7 /T;) has a
unique factorization as a covering of V). Note that V has many components,
reflecting the fact that no choice of base points was made.

To form a universal covering of an orbifold @, take a set I of coverings
representing all possible isomorphism classes of covering, form the fiber prod-

uct of all these coverings, and take the component of the base point.

|universal cover of orbifold |

The universal covering Cj of an orbifold Q is automatically a regular cov-

. ering: for any preimage z’ of the base point ¥ there is a deck transformation

taking 7 to 2.

Definition 5.3.4 (fundamental group). The fundamental group r;(Q) of
an orbifold @ is the group of deck transformations of the universal covering

Q.

Although this is the most natural definition for the fundamental group
of an orbifold, it is not usually the best way to compute the fundamental
group. As with manifolds, the fundamental group can also be described in
terms of closed loops in the orbifold through a base point, or in terms of a cell

division of the orbifold. Loops are trickier than in manifolds, however, because

of ambiguities that can arise from the singular locus. A closed curve in the
underlying space Xq determines an element of the fundamental group only if
it is equipped with enough additional information to determine continuations
of liftings to arbitrary covering space. To describe in detail how this works
must wait until we have analyzed the nature of the singular locus. That this
analysis must be special rather than general is really a consequence of the
phenomena of exercises 5.3.7 and 5.3.8. -

Covering spaces of orbifolds can be very useful for understanding examples.

Figure 5.12. The quotient of the ‘Borromean rings by a threefold sym-
metry. The three-sphere with order 2 Borromean rings is a 3-fold covering
space of the 3-sphere with order 2 A and order 3 B, where A and B are circles
linked as illustrated. The latter orbifold has a 2-fold covering which is $3 with
order 3 figure eight knot.

L
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For example, the Borromean ring example (5.1.8) has.a 3-fold axis of
symmetry, so it is a 3-fold covering space as shown in figure 5.12. A two-
fold covering space formed from the latter orbifold by unwrapping around the
C; axis which is the image of the rings is the figure eight knot labeled Cas.
These two orbifolds obtained from our original example 5.1.8 are also quotient
spaces of Euclidean crystallographic groups (challenge 5.3.5). The figure eight
knot example is hard to see directly, at least compared to the Borromean ring
example. '

Challenge 5.3.5 (order 3 figure eight). Show that the two orbifolds derived
in figure 5.12 are quotient spaces of Euclidean crystallographic groups, by using
example 5.1.8, finding an appropriate supergroup of index three and then a subgroup

- of index two in the supergroup. Study how these groups act on a fundamental

domain, so you can relate them to figure 5.12.

~ It is tempting to try to generalize the theory of orbifolds to encompass
more complicated topology such as simplicial complexes modulo properly dis-

continuous groups. This does not work well. In particular, problem 5.3.7 and
problem 5.3.8 show that the local description of the quotient space is not suf-

ficient to construct either a universal covering space or a fundamental group,
without adding an undesirable condition to the definition (exercise 5.3.9).

Problem 5.3.8 (fiber product of bands). Let C be a cylinder a-I_Id. M be a
Moebius band. Both m(C and mM are double coverings of mC, by reflecting in the

:median circle. What is the orbifold fiber product of these coverings? What is the

smallest regular covering which factors through both of these coverings?

Problem 5.3.7 {no universal cover). Consider the complex A obtained by gluing
a disk to the median circle of C, and the complex B obtained by gluing a disk to
the median circle of M. There are C, actions orn A and B, such that the quotient
spaces, as modeled on simplicial complexes modulo finite groups, are isomorphic.
Therefore, the quotient does not have a universal covering, using definitions parallel
to the definitions for orbifolds.

Problem 5.3.8 (no fundamental graup). There is a (C;)” action and a {C;) ac- -

~ tion on the letter H whose quotient spaces are isomorphic, as spaces locally modeled

“on simplicial complexes modulo finite groups.

Problem 5.3.9 (simplicial orbifolds). What additional hypothesis is necessary
to make it possible to reconstruct a umniversal covering and a fundamental group
from a space locally modeled on simplicial complexes modulo finite groups? [Hint:
consider proposition 5.2.7.]
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5.4. Geometric structures on orblfolds and the devel-
oping map

The singular locus of a topological orbifold can be wild, that is, it can have a
complicated topological structure even locally. A discussion of this is outside

~our scope, so from now on we will focus on differentiable orbifolds.

The singular locus of a differentiable orbifold may be understood as follows.

ILet U=U /T be any local coordinate system. There is a Riemannian metric

on U invariant by I': such a metric may be obtained by beginning with any
Riemannian metric on U, and averaging by the finite group I'. For any point
Z € U consider the exponential map, which gives a diffeomorphism from the
¢ ball in the tangent space at ¥ to a small neighborhood of %. Since the
exponential map commutes with the action of the isotropy group of 7, it

- gives an isomorphism between a neighborhood of the image of T in @, ind a

neighborhood of the origin in the orbifold R*/T', where I is a finite subgroup
of the orthogonal group O{n).

Propaosition 5.4.1 (differentiable orbifolds locally orthogonal). 4 dif-
ferentiable n-orbifold is locally modeled on R™ modulo finite subgroups of the
orthogonal group. The local coordinate systems are glued togcther by diffeo-
morphisms. :

- Proposition 5.4.2 (local plcture of 2—orb1folds) The smgular Iocus of a

two-dimensional orbifold has these types of local models:

i) The mirﬁ'or, R?/C,, where C; acts by reflection in the y-axié.
ii) Cone poinis of order n: R?/C,,, with C, acting by rotations.
ili) Corner reflectors of order n: R?{Dy, {where Da, is the dihedral group of

order 2n). The action of Dy is generated by reflections in two lines which
meet at an angle of ©[n (figure 5.13).

- Proof of 6.4{.2: These are the only three types of finite subgroups of Oi Z_i.

It follows that the underlying space of a two-dimensional orbifold is always
a topological surface, possibly with boundary. This makes it easy to enumerate
all two-dimensional orbifolds, by enumerating surfaces together with combi-
natorial information which determines an orbifold structure. It is not very
easy with strictly topological methods to determine which of these arbifolds
are good. By studying orbifolds with geometric structures, however, we shall
find {theorem 5.5.3} that we can sort them out in a straightforward way.

If X is a real analytic manifold and G is a group of analytic diffeomor-
phismns of X, then an orbifold with a (G, X) structure has a developing map,
just like a manifold (section 3.6).
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Figure 5.13. The dihedral group -Dy3. The group D,y is illustrated, It is
generated by reflections in lines @ and &, which meet in a 60° angle.

Proposition 5.4.3 (orbifold development). Let G be a group of real ana-
- lytic diffeomorphisms of a.real analytic manifold X. Every (G, X) orbifold Q
is good, and there is a developmg map

D:Q-—-)-X

from the universal covering of Q@ to X. The map D is a local (G, X) homeo-
morphism, and is unique up to composztwns of the form goD (g€ Q).

- The holonomy homomorphism g
H:m:(Q)— G

is defined Just. as for mamfolds (see proposition 77). A (G, X) orbifold is
 complete if the developing map D is a covering map (compare definition 7).

Here is another useful proposition, which parallels ?? for manifolds. This

is essentially a case of Poincaré’s famous theorem on fundamenta.l polyhedra

([Poi82, Poi83], and [Mas71]):

Proposition 5.4.4 (closed (G, X) orblfolds are complete) If G isa
group of analytic diffeomorphisms acting tramsitively on X such that each
isotropy group Gx is compact, then every compact (G’ X) orbifold without
boundary is complete.
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Proof of 5.4/.3: The reason that the existence of the developing map does not
immediately reduce to what everyone knows about analytic continuation (in
contrast to section 3.6) is that one does not know ahead of time that Qisa
manifold, so one does not know ahead of time that analytic continuation of a
map from ¢ to X works even locally.

To form a picture that will give a quick proof, consider the set G{(Q) of
all germs of local (G, X) covering maps from X to . A .germ of a map
from a space A to another space B is an object determined by a source point

@ € A and a map f to B defined on some neighborhood of a.' Two maps f;

and f, have the same germ at a if their restrictions to any sufficiently small
neighborhood of @ are the same. The point f {a) € B is called the target of
the germ.

To help develop the picture, consider the case that ¢} is X itself. The
space G(X} is G x X, which we can parametrize so that z € X determines
the target and g € G determines the map. (Hence, the source point is g lz.)
Tn general, if U = U/T is a local coordinate system in Q@ with U C X, then
G(U) = (G x U)/T, with v € T acting on (g,u) by sending it to (yg,yu).
Observe that the source point is unchanged by this action, so that the local
covering map over U is unchanged. In particular, note that if G is a Lie group,
G(Q) is a manifold, since the action of I'on G x I is a free action. G(Q) has a
kind of foliation (actually a foliation provided G is a Lie group) whose leaves
map as local coverings to Q). A leaf of this foliation is defined locally as the set
of germs which come from a single local (G, X) covering map. Formally, we
define the leaf topology on G(Q}), with a neighborhood basis consisting of sets
of germs determined by a single local covering map from an open set of X to
@, and a leaf is a component in this topology. By definition, G(Q) with this
topology maps to @ at least as a local covering map. Because G is analytic,
the leaves are Hausdorff. From the description of G(I/), it follows that the

-map to @ is an even covering (see definition 5.3.1(ii}). Therefore, each leaf of

G(Q) is a covering space of . On the other hand, each leaf maps as a local
covering to X; this map is obtained by projecting the germs to the sources,
rather than the targets. Thus we consiruct the developing map, and at the
same time show that @ is good.

In summary: it is awkward to construct the developing map in isolation,
so we have instead constructed all possible developing maps at once. The
union of the graphs of all possible developing maps (thought of in the form
of multi-valued maps from @ to X) can be nicely visualized as a foliation of

- G(Q), and thelr properties are easy to verify formally. 54.3

Proof of 5.4.4: The proof that closed (G, X} otbifolds are complete is the same
as in the case of manifolds (proposition ??). First construct 2 Riemannian
metric for X which is invariant by G. This produces a R;lema.nman metric
for every (G,X) orbifold (i.e. for every neighborhood U = U/T an inner
product on the tangent space of U invariant by T'. In particular the orbifold
inherits a distance function from X). If ¢} is a compact (G, X) orbifold without
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boundary, then there is some ¢ such that the e—neighborhood of any point
in () develops homeomorphically to X. Therefore the map to X i1s an even
covering, hence a covering map. '

|

236develop o . :

Figure 5.14. The development of (*236) . The 90°,60°,30° Euclidean

triangle is an orbifold. Its developing map consists of repeatédly reflecting the
- triangle through its sides.- By proposition 5.4.4, the pattern is discrete.

~'To illustrate proposition 5.4.4, consider a triangle whose sides are mirrors
and whose vertices are corner reflectors of orders 2,3 and 6. This triangle
has a Buclidean structure as a 30°,60°,90° triangle. The developing map
is shown in figure 5.14. Proposition 5.4.4 implies that if one begins with a
30°,60°,90° triangle placed in the Euclidean plane and begins flipping it over,
always keeping at least one side in contact with the plane, then whenever it
returns to its original location it is also in its original orientation. -
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5.5. The geometric classification of 2-dimensional orb-

ifolds

We will use a handy notation proposed by Conway to describe 2-dimensional
orbifolds in terms of their underlying topology plus the combinatorial structure
of the singularities. We have already mentioned it in a few places: for instance,
the billiard table of figure 5.3 is (*2222). The * here denotes a string of one
or more mirrors connected by corner reflectors, and the numbers indicate the
orders of the corner reflectors. Numbers which do not follow a * denote cone
points. Thus (2222) is an orbifold with four order-2 cone points.

More generally, an orbifold is described by first listing its orientable fea-
tures, then listing its unorientable features, separated by a vertical bar which
is usually optional. For example, (39|"24) = (39*24) has underlying space a
disk, with cone points of orders 3 and 9, and a string of two mirrors meeting
at corner reflectors of orders 2 and 4. The cone points and the mirror strings
can be listed in an arbitrary order (as long as the cone points are listed first),
and the order of the corner reﬂectors in a string of mirrors can be cyclically
permuted.

‘\W

LA w'ﬁ
VA 'A‘
V ¢

oL A .A‘
.'(‘} 'w WJ&
'A"c :> A “'C "A‘ e
— v “"" "‘VJ.‘
NS TAT é%::. :
walla

Figure 5.15. Wallpaper groups: a. These patterns show the symmetry
of the full and half triangle groups (*632) and (632). Notice the six lines of
reflection passing through the six-pointed stars in the figure at left. On the
right, there are no orientation-reversing symmetries. Six stars whirl out from
each point of order six rotational symmetry. These patterns, and the other
wallpaper patterns in this section, were generated using kali, a program written
by Annamaria Amenta

4

The default topology for the underlying space of an orbifold is §2. Each *
causes a disk to be removed, to form a boundary component of the underlying
space. Thus, for example, (**} is a silvered annulus.

Additional topology is indicated by the symbol ° (pronounced ‘circle’).
Before the bar, the circle denotes a handle, while after the bar it denotes a
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% paperdoll cross-cap. This is in line with the general pattern, that each non-orientable
feature is related to some orientable feature, its orientable double cover.

The vertical bar can usually be made redundant by putting all handles
first, and all cross-caps last. If there are any intervening cone points or mirror
strings, this is sufficient. Only in the case that the orbifold is 2 manifold is the
bar then necessary. Thus (°[) is a torus, while (I°) is a projective plane and
(1°°) is a Klein bottle. A silvered Mdbius band is (|*°) = (*°).

The basic identity for surfaces becomes (°[°) = ([>°°).

LEERRY:

wallb ) .
Figure 5.16. Wallpaper groups: b. These patterns show the symmetry
of the full and half triangle groups (*442) and (442). The reflections in the
pattern at left force a very different effect than the rotations at right.

‘Wherever a number can appear, the symbol oo can also appear. If it
appears before the bar, it means that one point is remaved from the orbifold.
If it appears in a string of mirrors, it means one point is removed to separate
one mirror from the next. Thus, (*oooo) is topologically a disk, minus two
points on the boundary; the remainder of its boundary is silvered. This is
equivalent to the mirrored infinite strip (figure 5.8). Similarly, the quotient
orbifold of a pattern which repeats under the action of Z = C,, acting by
translations is an infinite cylinder, denoted (cooo) (figure 5.17)

Figure 5.17. Infinite cyclic symmetry. The quotient orbifold for the sym-
metries of this wave pattern is an infinite cylinder (coco) .

The Euler number for a manifold generalizes to orbifolds. This is especially
useful in sorting out 2-orbifolds.
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Definition 5.5.1 (Euler number of orbifold). Let § be an orbifold, and
suppose that its underlying space has a cell-division such that each open cell is
in the same stratum of the singular Jocus. (That is, the local group associated
to the interior points of any cell is constant.}) Then the Euler number x(@) is

defined by the formula

. __tYydim{ei) 1
X(Q) = Z( 1) IF(CI)I

ei

where ¢; ranges over cells and |T'(¢;)| is the order of the group I'(¢;) associated
to the cell. .

| gj*’;‘v‘;“‘"ﬁ :V;T A

walle .

Figure 5.18. Wallpaper groups: c. These patterns exhibit symmetry of the
full and half triangle groups (*333) and (333). Even with lots of decorations,
the pattern at left appears much more regimented.

‘The Euler number is not always an integer. The definition is concocted for
the following reason. Define the sheet number of a covering to be the number
of preimages of any point in the base which is not a singular point.

Proposition 5.5.2 (Euler number multiplies). If Q — Q is a covering
map with sheet number k, then '

x(Q) = kx(Q)

Proof of 5.5.2: The sheet number of a cover can be computed in terms of the
behavior of the covering above any point = as the sum

_ o« r
sheet number = Z =] .
{ylp(y}=r} z

The formula for the Euler number of a cover follows immediately.
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Symbol | full value | half value
L] . 2 1
- . . _ 1
m (rm—1)/m | (m —1)}/2m

Table 5.1. Values for Conway's symbals
The Euler number of a 2-orbifold is 2 minus the sum of the values of symbols as
indicated above. For instance, (°°23%5*°) is2~2—2-1/2-2/3-1-2/5-1-1 =
—6 — 29/30.

To illustrate, a triangle' orbifold (*abc) has Euler number

X{(abe)) = 2+ 3+ = —1).

+(1f2n1-)

+(1/203). W
L - -172 1

eulertriang
Figure 5.19. Computing the Euler number of a triangle orbifold. Com-
puting the Euler number of a triangle orbifold.

Thus, for example (“‘532) has Euler npumber 2 s lts universal cover is §2,
with deck transformations the group of symmetnes of the dodecahedron. (See
figure 5.10). This group has order 120 = 7— On the other hand, the orbifold
(*632) has Euler number 0, while (*732) has Euler nurnber = It follows that
they cannot be covered by 52

‘The Euler number of a 2-orbifold may be readily computed from Conway’s
name for it. Each symbol has a certain value, such that the Euler number is 2
minus the sum of these values. The symbol takes full value if it comes before
the bar, and half-value afterwards.

If Q is equipped with a metric coming from invariant Riemannian metrics
on.the local models U, then one can derive the Gauss-Bonnet formula

/l KdA =27x{(Q)
Q
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walld

Figure 5.20. Wallpaper groups: d. These patterns exhibit symmetry of
the two orbifolds (4%2) and (3*3). These orbifolds are both cones, with one
corner reflector on the boundary. Each pattern has one type of point with only
rotational symmetry about it, and another type of point through which at least
two lines of reflection pass. The pattern at left occurs commonly in tilings of
floors, when there are square tiles with grain that alternates between vertical
and horizontal.

This may be deduced from the Gauss-Bonnet formula for surfaces by excising
from Xg a small neighborhood of £g. Observe that along any mirror of Q,
the geodesic curvature is 0 (i.e mirrors are geodesics), that corner reflectors of
type n have angles of x/n, and that a small circle which encloses an elliptic
point of order n has total curvature approximately 27 /n.

It follows that if () has an elliptic, Euclidean, or hyperbolic structure, it is

‘necessary that x(Q) be respectively positive, zero, or negative. Furthermore,

if @ is elliptic or hyperbolic, then area(Q) = 27 |x{(Q)-

" Theorem 5.5.3 (classification of 2-orbifolds). A closed, two-dimensional

orbifold has an elliptic, Euclidean or hyperbolic structure if and only if it is
good. All bad orbifolds have positive Euler number, and the type of geometric
structure for a good orbifold is determined by the sign of its Euler number.

All closed orbifolds which are not. hyperbolic are listed in table 5.2,

Proof of 5.5.3: It is routine to list all orbifolds with non-negative Euler
number, as shown in the table. ' S

We have already indicated one easy, direct argument to show that the
orbifolds are bad when the table claims they are bad, by computing informa-
tion about the fundamental group. Here is another proof that they are bad,
involving the Euler number. First, if the underlying space is D?, we reduce to
the case that the underlying space is S? by taking a double cover. If there are
{wo cone points, we may assume their orders are relatively prime, by passing
to a cover. The Euler number of (_) is 1 + 1/n, while the Euler number of
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o Bbaded Xo Bad Elliptic | Euclidean
(-) () (632)
Sphere | ((m)yn<m | {(__) (442)
(22-) (333)
(233) (2222)
(234)
(235}

*-) (*) (*632)
Com)n<m| ("__) | (*442)
Disk (*_22) | (*333)
(*332) | (*2222)
(*432) | (2'22)
(*532) | (3°3)

_ 9 | (#2)
(2*m) (2*2)
;_; (3'2)

£ Other (8 (27°)

) |oeb
()

)

()

‘Table 5.2. Classification of non-hyperbolic 2-orbifolds
Th1s table shows all closed orbifolds with positive Euler number, or equiva-

lently, all that do not have a hyperbolic structure. Each is elther bad, elliptic,
or Euchdea.n .

(-m)is i”‘:—mm)- In either case, the Euler number does not divide 2, so it .cannot
have S? as its universal cover. But these orbifolds have Riemannian metrics
of strictly positive curvature (figure 5.21), so by an elementary argument of
Riemannian geometry, its universal cover cannot be a noncompax:t manifold-
therefore, it cannot be a manifold. :

5.5.4Question: What is the best plnchmg constant for Riemannian metrics
on these orbifolds? T hink wkis has bec
answered, cither by

The elliptic or Euclidean structures for the orbifolds may be constructed §uetier by someone
by either of two methods: they may be identified as the quotient of 52 or P e
FE? by a discrete group, or the structure may be directly constructed on the
orbifold. For instance, the Euclidean structure on (4*2) can be constructed
by gluing together two adjacent edges of a square. Alternatively, it can be
constructed as a discrete group (figure 5.20). The trickiest Euclidean orbifold
is (22°), which can be constructed by identifying the boundary of a square
by the antipodal map. Among the elliptic orbifolds, many are consiructed

as polygons on the sphere (for instance (*_22) or {*__)), or as the doubles

PN

S
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— N\ 1
L ' : _
badorh

Figure 5.21. Bad orbifolds have positively curved metrics. The teardrops
(<) and spindles (_m) have Riemannian metrics of strictly positive curva-
ture, easily constructed as surfaces of revolution. The half-tears (*..) and
half-spindles (*_m) also inherit positively curved metrics, since the deck trans-
formations of (_) = (*_) and (_m) — (*~m) act as isometries.

of these polygons along their boundary. Somewhat trickier are (2*.) (a lune
(*--) modulo a rotation of order 2) and (3*2) (the triangle (*222) modulo
an order 3 rotation). The fundamental group of (3*2) acts as the group of
orientation preserving symmetries of a regular tetrahedron, cross C; acting as
the antipodal map (sending the tetrahedron to ancther tetrahedron).

walle

Figure 5.22. Wallpaper groups: e. These patterns exhibit symmetry of the -
orbifolds (2*22) (paper hat) and (22*) (pillow case). These are the first two of
five patterns with rotations of order 2, but no other rotations. -

The 17 Euclidean orbifolds correspond to the 17 “wallpaper groups” (i.e.
the 17 cocompact discrete 2-dimensional Euclidean isometry groups). {refer-
encel!lll} See the figures throughout this section for illustrations. Readers
- should unfold a sampling of these orbifolds for themselves, to appreciate their
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RO
KRR
KOO (2 e 2

wallf ’ -
Figure 5.23. Wallpaper groups: f. These patterns exhibit symmetry of the

orbifolds (*2222) (rectangle) and (2222) (pillow).

beauty. Another pleasant exercise is to identify the orbifolds associated with
some of Escher’s prints. '

Hyperbolic structures can be found, and classified, for orbifolds with neg-
ative Euler characteristics by decomposing them into primitive pieces, in a
manner analogous to our analysis of Teichmiiller space for a surface (section
3.8) . Given an orbifold @ with x(Q) < 0, we first cut it into simpler pieces
using a maximal family of one-dimensional suborbifolds (namely, circles and
mI’s) having the property that every component of the complement of the
union has negative Euler number. Each resulting piece must have an ori-
entable underlying space, since every non-orientable surface contains a simple
curve with a non-orientable neighborhood. Cutting along such a curve does
not create any new components, and leaves the Euler number unaltered. Note
that an interval which joins two order 2 elliptic points is a suborbifold, and
cutting along it creates a circular boundary component. Intervals joining other
types of elliptic points are not suborbifolds. The other possible mJ suborb-
ifolds to cut along are intervals joining two mirrors, intervals joining a mirror
and an order two elliptic point, intervals joining a mirror to itself, and inter-

vals along a mirror between two different order two corner reflectors. ‘Cutting’

along such a suborbifold amounts to rubbing off the silver, and treating the
interval now as boundary. Circular cuts come in three types: the circle may
have an annulus neighborhood, a Mébius band neighborhood, or it may be a
mirror.

All the possible pieces which can result after a maximal cutting as above-
are tabulated in 7?7 and illustrated in figure 5.25. Each double line in‘the
figure indicates part of the boundary. ' :

Verification that these are all the cases is straightforward although slightly
tedious.

The indecomposable pieces:
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wallg _
Figure 5.24, Wallpaper groups: g. These patterns exhibit symmetry of the
arbifolds (**) (silvered annulus) and (*°) (silvered Mébius band). '

gl [ o | 1 [ 2 J 3 ]
Triangular pillows | (_mp) | (_moo) | (_ooo) | (cococo)
Triangles | (*-mp) | (*_moo) | (*_cooo} | (cvo000)

Triangular pillowcases | {_*m) | (_*o0) | (oc0*m) | {c0*00)

Table 5.3. Indecomposable pieces of orbifolds
When a 2-dimensional orbifold of negative Euler number is maximally split
along closed one-dimensional suborbifolds into pieces of negative Euler num-
ber, only the 12 atoms listed remain. The symbols here refer to the orbifold
obtained by deleting the boundary, that is, co refers to a stretch of boundary.

To classify hyperhbolic structures for the orbifolds of Figure 5.25 (requiring
any boundary component to be a geodesic suborbifold), we consider the gen-
eralized triangle — a figure obtained from a triangle in the projective model
of H? (whose vertices may lie outside the disk), by intersecting with its dual
triangle. Recall from section 2.3 that the sides of the dual triangle are orthog-
onal to the sides of the original triangle that intersect them, and observe that
each picture is either a generalized triangle or can be formed from two such
generalized triangles— see figure 5.27 for an example of this. Using arguments

analogous to the proof of theorem 3.8.8 (Teichmiiller space of a surface), we

obtain
Lemma 5.5.5 (hyperbolic pieces). Fach of the orbifelds of Figure 5.25 has

a hyperbolic structure, and the set of all hyperbolic structures is parametrized -

by the choice of an arbitrary positive real number as the length of each deouble
line.

Appropriately chosen hyperbolic structures on the pieces can be reassem-
bled to give a hyperbolic structure on the original orbifold. 5.5.3
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5Py

arbpieces

Figure 5.25. Indecomposable pieces of 2-dimensional orbifolds. These
are the 12 types of pieces which can be obtained by cutting a 2-dimensional
orbifold of negative Euler number along a maximal set of essential, non-parallel
1-sub-orbifolds. '

From the proof of 5.5.3, we also obtain a description of the the Teichmiiller
space:

Theorem 5.5.6 (Teichmiiller space of orbifolds). The Teichmiller space
7(Q) of an orbifold Q@ with x(Q) < 0 is homeomorphic to Fuclidean space of
dimension —3x(Xgq) + 2k + 1, where k is the number of elliptic poinis and { is
the number of corner reflectors.

In other words, the dimension of the Teichmiller space depends only on
the combinatorial topology, and not the orders, associated with features. If all
orders are 3, then the dimension is 3x(Q). '

Proof of 5.5.6: First suppose that all cone points and corner reflectors have or-
der 3. Allocate the parameters associated with the 1-dimensional cuis equally
to the abutting pieces. Thus, a circle with a neighborbood which is an annu-
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Figure 5.26. Wallpaper groups: h. These patterns show the symmetry of
(I°) (the Klein bottle} and (°]) (the torus). In the figure at left, notice the

two vertical glide axes, showing the structure of the Klein bottle as the union
of two Mobius bands along their boundary.

generaktriangle
Figure 5.27. Generalized triangles. Construction of (*_222) and (_.‘_‘“") from
generalized triangles.
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lus has a length parameter and a twist parameter associated, so each side is
allocated 1. A circle which has a Mobius band neighborhood or which lies on
a mirror has a single length parameter. Thus in all three cases, the abutting
pieces each have an allocation of 1 parameter. An mI always has 1 parameter,

so its two sides each have an allocation of 1/2 parameter.

In ??, the possible indecomposable pieces are listed, with boundary re-
moved. An oo before the * represents a circle, so it carries 1 parameter, while
an oo after the star is a silvered interval, with an allocation of 1/2 parameter.
The Euler number of the orbifold, in each instance, is 3 times the number of
allocated parameters, establishing the dimension count in the order 3 case.

The only additional complication in general is some degeneracies which
occur when some of the orders are 2. For instance, if a cut is made along an
ml joining two elliptic points of order 2, only one piece results, which has an
additional geodesic circle as boundary. However, a circle can be folded into an
ml in a 1-parameter family of different ways, differing by twists. Therefore
the circle has two associated parameters, length and twist, but only one piece
to receive its allocation.

To take care of this special situation, think of m/7 as a limiting case of a
type of indecomposable piece. In other words, if the orders of the cone points
were not both two, the corresponding cut would have been a circle enclosing
the two cone points, so we think of cutting on the interval as a limiting case
of cutting along an enclosing circle. The degenerate piece has type (_moo),
and receives an allocation of 1 parameter.

Similarly, a mirrored interval can be thought of as creating a degenerate
piece of type (*_moo). :

The dimension count then goes through. 5.5.6

walli

Figure 5.28. Wallpaper groups: i. This is perhaps the most interesting of
the wallpaper groups, (22°). The quotient space is the projective plane. Notice
the two glide axes at right angles, and two types of points of order 2 symmetry.
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Exercise 5.5.7 (orbifolds on the projective plane) The fundamental group
of RP( ) contains C, with index 2, since RP has S( n) 38 2 double covering. Is

T (RP(E)) .D or an.

Exercise 5.5.8 (Paper dolls on (*442)) Fold a square sheet of thin Euclidean
paper as a covering of (*442) (using a 32 or greater-fold cover), cut out a pattern —
e.g., little half-people - and unfold.

Exercise 5.5.9 {developing Euclidean orbifolds). Invent patterns on (3*3), on

(2*22) and on (22°) and sketch their development in EZ.
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5.6. Three-dimensional orbifolds

A small neighborhood of any point in a differentiable orbifold is isomorphic
to the unit ball in R* modulo a discrete subgroup of O(n), by 5.4.1. In other
words, the neighborhood is isomorphic to the cone on an {n-1)-dimensional
elliptic orbifold (since the unit ball is the cone on 5*~'). Conversely, if E*!
is any (n-1)-dimensional elliptic orbifold, then the cone ¢(E*~') on E* ! is
an n-dimenstonal orbifold, where the cone point is associated with the group
™ (Eu—l )

When n = 3, the possible types of local behavior are therefore determined
by the elliptic column in table 5.2. The underlying space of a three-dimensional
orbifold is topologically a manifold with boundary, except possibly near a finite
number of points whose neighborhoods are cones on {{°) = RP?. (In particu-.
lar, note that if @ is closed and orientable, then X, is a closed manifold.) The
orbifold structure is determined by a one-complex in @, the one-dimensional
singular locus together with an integer > 2 labeling each edge. If the edge
is an interior edge, then it is elliptic of order n and a neighborhood is the
cone on (—_), modeled on R3/C,. If the edge is on the boundary of Xg, then
it represents an order n corner reflector and its neighborhood is the cone on
(*--), modeled on R® modulo the dihedral group D;,.

The labels must satisfy certain rules at the vertices, determined by theo-
rem 5.5.3. An interior vertex which is not on a RP*-point must have three
ends of edges incident to it, of orders 2,2,n or 2,3,3 or 2, 3,4, or 2,3, 5, cor-
responding. An interior RP? point has at most one end of an edge incident
to it: its neighborhood is the cone on either ([°} or (_°}. Finally, a vertex on

80X must either have three ends of edges on 8Xg incident to it, with labels

2,2,nor2,3,3 or 2,3,4, or 3,4,5, or it may be incident to one end of an ar-
bitrarily labeled interior edge (with neighborhood the cone on {_*), or it may
be incident to the end of one boundary edge and one interior edge, labeled m
and 2 or 2 and 3 (with neighborhood the cone on either {2*m) or (3*2).)

Since elliptic structures in dimension 2 are determined up to isometry by
their topological type and associated integers, this data suffices to determine
the local models near the vertices. :

There are many, many three-dimensional orbifolds. For example, any knot
in S? gives rise to an orbifold for each integer n, where the knot is made & cone
axis of order n. Any one-complex such that every vertex is incident to 3 ends of
edges has at least one labelling describing an orbifold - all edges can be labeled
2. Usually there are many possible labelings obeying the rules Such orbifolds
provide a rich source of examples for three-dimensional topology, since it is
easy to draw pictures of them.
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complicated3orb i . .
_Figure 5.29, A three-orhifold. A 3-di_mensional orbifold, illustrating some of
the possible local structure.
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Section “Fiber 5.7. Fiber bundles

gl]‘;‘s:;;dée{l,;IDLES . _ : .
efinition “orkifeld . .
e i There is a natural way to define the tangent space T(Q) of an orbifold Q.

:;tfgg:rﬁ::;dt::m When the universal cover () is a manifold, then the covering transformations Sivi, this T op o1
act on T(Q) by their derivatives. T(Q) is then T(Q)/71(Q). The tangent space acirgh.

at a singular point is not a vector space, but rather a vector space modulo a

finite group. In the general case, @ is made up of pieces covered by manifolds,

and the tangent space of Q is pieced together from the tangent space of the

pieces. Similarly, any of the fiber bundle which are naturally associated to

manifolds gives rise to something over orbifolds.

Definition 5._7.1 (orbifold fiber bundle). A fiber bundle E with generic
fiber F, over an orbifold ¢ is an orbifold with a projection

p:XE—)XQ

between the underlying spaces, such that each point z € ¢ has a neighborhood
U = UJT (with  C R") such that for some action of I' on F, p~(U) =
(7 x F)/T (where T' acts by the diagonal action). The product structure
should of course be consistent with p: the diagram below must commute. -

OxF —— p"l(U.)

|

U-—'—r_U

With this definition, natural fiber bundles over manifolds give rise to natu-
ral fiber bundles over orbifolds. For example, the tangent sphere bundle TS(Q)
is the fiber bundle over @ with generic fiber the sphere of rays through 0 in
a regular fiber of T(Q). When @ is Riemannian, this is identified with the
unit tangent bundle T1(M). When @ is a two-dimensional orbifold whose lo-
cal groups preserve orientation, then TS(Q) is a three-manifold, because the
action of the local groups on the unit tangent bundle is free.

Caution is in order in generalizing certain uses of fiber bundles o orb-
ifolds. For example, it makes sense to speak of differentiable functions on an
orbifold: they come from differentiable functions on the local model spaces.
But what does the directional derivative mean? Most tangent vectors over
singular points have several lifts in the local model space. The result is that

-the direcional derivative of an invariant differentiable function is equal in all
these directions. As a consequence, the directional derivatives along certain
tangent vectors is always 0 (for example, in any direction at'any cone pomt of
a 2-orbifold).

A related phenomenon is that a continuous vector field on an orbifold is
tangent to each stratum of the singular locus. On the other hand, a continuos
line field need not be tangent: for instance, any parallel line field in the E*
descends to a continous line field on (*2222).
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A three-manifold is called a Seifert fiber space if it fibers over a’ two-
dimensional orbifold. The term is generally used only in the case that the
only singular points of the base are elliptic. Seifert fiber spaces (in the nar-
rower sense) were introduced, thoroughly analyzed and used to adva.nta.ge by
Seifert, beginning with [Selfert 1932).

There are non-orientable manifolds which fiber over two-orbifolds which
have mirrors. These have topological properties much like Seifert fiber spaces
in the narrower sense, and perhaps the term should be extended to include

them. An example is the mapping torus My of a diffeomorphism ¢ of the

surface of genus 2, where ¢ acts as the deck transformation of the two-fold
covering over m(T2—D?). The mapping torus My fibers over m(T2— D?), with
generic fiber 51. We will avoid the question of what is the best terminology
by sticking with the language of orbifolds.

In the next seciion we will analyze in detail the behavior of fiber bundles
over orbifolds, including an extension of Conway’s notation for 2-orbifolds that
will completely describe the structure of 3-orbifolds that fiber over 2-orbifolds.
First, though, we will develop some more general facts. '

We have already seen a number of examples and classes of three-manifolds
which fiber over two-orbifolds or one-orbifolds, but we have expressed them in
the language of group actions. For convenience, we will collect the results and
rephrase them in terms of orbifolds.

Theorem 5.7.2 (Euclidean 3-manifolds fiber over orbifolds). (from sec-

tion {.4)

e) Evc%y closed Fuclidean three-manifold fibers over ¢ Euclidean two-orbifold
and also fibers over a one-orbifold, with fiber a Euclidean two-orbifold.

b) (Problem 4.4.16) Every closed orientable Fuclidean three-manifold is
TS(@), where Q is a closed Euclidean two-orbifold without mirrors.

Theorem 5.7.3 (elliptic 3-manifolds fiber over orbifolds).. ([Seifert,
1932].) Every elliptic three-manifold fibers (in ai least one way) over an elliptic
two-orbifeld.

Proof of 5.7.3: This follows from 4.5, particularly 4.5.11, the preceding dis-
iS 7.3

cussion and exercise 77.

Note: Many elliptic three- ma.mfolds fiber also over bad orbifolds. (See Exercise
5.7.10.)

Theorem 5.7.4 (fibered geometry orbifolds fiber). An orbifold @ of
finite volume modeled on any of the five fibered geometries itself fibers over a
one- or two-dimensional orbifold. More precisely, if Q is modeled

Revision: 1.9 Date: 91/61/01 16:27:16

I B ..r')i

FEF)




5.7. FIBER BUNDLES : o241

( | % The five fbered on 5% x K} - it fibers over @ one-orbifold with fiber an
) gcg:gk elliptic two-orbifold. (It also fibers topo-
% icosguotiont logically over an elliptic two-orbifold.)
connection™
= connection H? x E! : it fibers over a hyperbolic two-orbifold, and

it also fibers over a one-orbifold with fiber
a hyperbolic two-orbifold.

on SLR : it fibers over a hyperbolic two-orbifold.
on nilgeomelry: it fibers over a two-dimensional Euchdean
orbifold.

on solvegeometry: it fibers over a one-orbifold with fiber a Fu-
clidean two-orbifeld.

Proof of 5.7.4: This is a restatement of conclusions f.rom.??.

We have seen enough examples of discrete groups acting on E® and 52 to
know that Euclidean and elliptic orbifolds do not, in general, fiber over any
one-orbifold or two-orbifold. This can be rigorously proved just by studying
neighborhoods of vertices. For example, the group of orientation-preserving
symmetries of the cubic tiling of E® has as fundamental domain two of the
. tetrahedra in the barycentric subdivision of this tiling (figure 5.30). The quo-
£ ¥ tient orbifold has underlying space S®, with singular locus shown in figure

5.30. It does not fiber even locally near a 2,3,4 vertex (if it fibered over
a two-orbifold, the lift of the arigin would give a 1-dimensional subspace of
R3 invariant by the action of the (2,3,4)-group. But this is just the octa-
hedral group, which has no such invariant line. Similarly, if it fibered over a
1-orbifold the lift of the origin would give a 2-dimensional subspace invariant
by the octahedral group).

Similarly, RP?/({ x I), where I is the icosahedral group 71{235) is an
orbifold with underlying space $® and singular locus given in 5. 31 $o 1t cannot
fiber for a similar reason.

There is also a converse construction: we will show how to construct a
geometric structure for any 3-orbifold which fibers over a 2-orbifold with 1-
dimensional fibers.

First we need an invariant to help distinguish fibered orbifolds with two-
dimensional bases. Suppose that P is a three-orbifold which fibers over a two-
orbifold B with projection p: P — B. Choose an arbitrary ¢ Riemannian
metric go on P. The length [ of the fiber through any point of P which
lies above a regular point of B extends to a £ function on P; ‘the metric
@1 = {1/D)go has the property that all generic fibers have length 1 .

Definition 5.7.5 (orbifold connectlon) An (isometric) connection for P
¢y is a field r of two-planes on P such that

a) The two-plane 77 C T,(P) at each point p is transverse to the fiber through
p, and

Revision: 1.9 Date: 91/01/01 16:27:16




e, b e v s e anEes

L @

5.7. FIBER BUNDLES ' : 242

(b)

cubic -

Figure 5.30. The quotient by the symmetries of the cubic tiling . The
quotient of E* by the group of symmetries of the cubic tiling. It does not fiber
as an orbifold.

1

icosquotient

Figure 5.31. Quotient orbifold of the icosahedron. The singular locus of
the'R_P?’_/(I X I), where I is the icosahedral group 71(235). The quotient of
the action of I alone is the Poincard dod_ecahedral space (1.4.4), for whic'h a
dodecahedron is a fundamental domain. The additicnal factor of I rolls up this
space by the orientation-preserving symmetries of the dodecahedron, giving a
double-tetrahedron 3-orbifold as shown
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Proposition existence b)) the . “combing process” defined by r preserves the metric on the fibers.

of isemetric

connection” More precisely, if o is any short arc on B the line field defined by 7 on

~!{a) has nearby mtegral curves a constant distance apart as measured
along the fibers.

Recall that a “two-plane” may actually be the quotient of an invariant two-
plane by the local group. The interpretation given to the definition should be
the same as an invariant connection on the local model for the fiber bundle,
modulo the local group.

=

]_B \—‘4’:
combing

Figure 5.32 The combing defined by a ﬁeld of two-planes. A field r of

two-planes on P defines a “combing process that allows paths on the base B
to be lifted.

Proposition 5.7.6 (existence of isometric connection). The fiber bundle

p: P — B daways has a connection respecting the metric g restf‘zcted to the
fibers,

Pmof of 5.7.6: First we can reduce the construction of a connection to a local
problem, as follows. We can think of a two-plane field transverse to the fibers
at.a point z € P -as a linear function from T,;)(B) to T.(P), which projects
back to the identity under the map p, : To(P) — Tpn(B). In this way, it
makes sense to take convex combinations of such plane fields. If 7y,..., 7 are
connections defined over an open set I/ C B and if Ay,. .., A are non-negative
C* functions summing to 1, then the convex combination ZX;7; is again a
connection. Therefore, if we can construct a connection above each coordinate
neighbothood U = U/T, we can construct a connection. globally by using a
partition of unity.

Consider the local model Py — U for Py — U = I /T over a coordinate
neighborhood. A connection can be found in such a neighborhood by first
choosing a section &/ — F,. This determines a parametrization of P, as
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U x F, by making the U-factors equally spaced along the fibers. The tangent
space to the U-factors is a connection = for Py — U. The average 1%[ 2T
over the local group I' gives a connection invariant by I', thus a connection for
P over U. ' 5.7.6

Let’s specialize to the case that B is oriented, P is oriented, and therefore
the fibers also have a consistent orientation, the “quotient” orientation such
that the orientation of the base times the orientation of the fibers gives the
orientation of P. There is a unique one-form w (called the connection form)
such that w annihilates r, and w evaluated on a positive unit length tangent
vector to a fiber is 1 . The exterior derivative dw may be understood geomet-
rically by Stokes formula, f, dw = fac‘ w. Applying this in the case that C is
a small disk, we see that f; . w measures the total amount that the combing
process going around JC translates the fiber down or up, and in particular, it
depends only on the image of #C in the base B. Therefore dw has the form
dw = p*{1, where the two-form {2 defined on B.is called the curvature of the
connection. _ o

There are many possible connections which respect the given metric on
the fibers. H w' is the connection form for such a connection, then w' — w
vanishes on the tangent space to the fibers, and it can be written in the form
W —w = p*a. If @ is the curvature for ', s0 duw’ = p(¥, then ' — Q = da,
s0 {¥' is cohomologous to £. Conversely, every 2-form §¥ cohomologous to
(i.e., having the same integral over B.) is the curvature for some connection
respecting the given fiber metric (whose connection form is w + P where
(¥ — @ = da). The cohomology class of 0 is the (real) Euler class of P, and
Sz @ is the Buler number. Note that there is no factor 1/2r here, since we
made fibers have length 1 instead of length 2.

The Euler class is also independent of the choice of fiber metric (prob-
lem 5.7.11). The Euler number is always a rational number expressible with
denominator the least common multiple of the orders of the local groups of
the base (problem 5.7.12). ' -

In case the base, the fibers, the total space, or all three fail to be oriented,
there is still some notion of curvature. : :

As long as the fibers are consistently oriented, there is still a connection
form w and a curvature form ). If the the fibers are consistently oriented but

. the base is not orientable, all two-forms on the base are cohomologous, so we

do not obtain any non-trivial numerical invarians.
If the fibers are not consistently oriented, then a connection form cannot

‘be defined as simply as before. Instead, we think of a connection form w as a

one-form with values in the tangent space to the fibers. Previously we (perhaps
unconsciously) identified this tangent space with R, using the orientation, but
now such an identification is not possible. The exterior derivative dw is still
well-defined, but it has values in the tangent space to the fibers. If the fibers
are all circles, so they are orientable over a small neighborhood in the base,
then the tangent space to the fibers is the pullback of a 1-dimensional vector
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bundle over the base, and dw is the pullback of a 2-form § on the base, with
values in this bundle..

If there are any fibers which are mI instead of §?, then the tangent space
to the fibers is not the pullback of a bundle on the base If the total space of the
bundle is oriented, then there 1s,§1mple expedient: note that when everything

is oriented, the Euler number [, 5§ can be calculated alternatively as [, pwAdw.

As long as the total space to the bundle is oriented, w A dw is a three-form

-with R coefficients, and if the base and fiber orientations are simultaneously

reversed, w A dw is unaltered.

Definition 5.7.7 (Euler number of fibration). The Euler number x(P)
is defined for any closed oriented three-orbifold P which fibers over a two-

dimensional base as f,w A dw, where w is any connection form. If P is non-
orientable, x(P) is defined to be 0.

This definition agrees with the previous definition in the oriented case. The

- fact that it is independent of choices may be derived from the mdependence

in a four-fold cover in which everythmg is oriented.

Proposition 5.7.8 (ﬁbered orbifolds hav_e _ geometric structures).
Every three-orbifold P which fibers over a good closed two-orbifold B admits a
geometric structure. The type of structure is given by this table:

x(B) <0 |

. X(B) >0 X(B) =10 x\o) -
IxI(Py#0| S8 Nilgeometry | PSL(2,R)
XI(P)=0| §&*xE' | - E3 H? x E!

Remark: The Euler characteristic of B is independent, of 6rienta.tion, while
the sign of x{P) depends on the orientation of P. Thus for an orientable but
not oriented fiber bundle P, it does not make sense to talk about the case

- x(P) > 0 versus the case x(P) < 0. If we were to stick purely with oriented

objects we could make this distinction, and we would also need to distinguish

the two orientations for nilgeometry and for PSL(2, R), making ten types of

geometry instead of eight.

Proof of 5.7.8: Consider first the case that everything is oriented. By theorem
5.5.6, B has a geometric structure; choose such a structure. Choose a fiber-
metric for P and a counnection form w. The curvature { is cohomologous
to a twe-form KdA for some constant K, where A is the area form (since
the 2-dimensional de Rham cohomology is 1-dimensional). By the preceding
discussion we may suppose that w was chosen so that {t = KdA. A geometry
may now be constructed which serves as a model for P. We can take the
total space of such a geometry to be the universal cover P, which fibers over
B. The structure group can be taken as the group of diffeomorphisms of P
which preserve w and take fibers to fibers inducing an isometry.of B to itself.
That this group is transitive and has compact stabilizer G, is elementary
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(problem 5.7.13). Further analysis shows that the geometry so constructed is
subsumed under the geometry given in the table (problem 5.7.14).

In the non-oriented case, choose a geometric structure for the base and a
connection. Now pass to the two- or four-fold connected cover P which orients
everything, where the connection is represented by an (ordinary) connection
form & with curvature an (ordinary) 2-form {l on B. The deck transformations
which reverse fiber orientation take & to —&, while the others preserve ©. We
know that there is some one-form a on B such that &+p*ais a connection form
having constant curvature. The fonn « may not transform properly under the
group A of deck transformations of P over P. However, if we form the average
B =1 Ai 2 sea £(8)87a, where 3(6) is the sign of the action on orientations of
the fibers iz a connection form &' = & + p*§ which has constant curva.ture and
does transform correctly under A.

Note that if any element 6 of A reverses orlentatlon of P, then on the
one hand &' A di’ = —&* (W' A d&') {because &’ on the fibers is equal to the
lengih element and dis’ = p* K dA, so that &' A du’ is a constant multiple of the

volume form of P), while on the other hand, & (5(6)) GO AN D) =
8*(@' Ade’). This implies that the constant curva.ture K is zero, justifying our
definition in the non-orientable case, B 5.7.8

There is a._result similar to 5.7.8 for _three—orbifol_dsf which fiber over a
1-orbifold, provided the fiber is elliptic or Euclidean:

Proposition 5.7.9 (geometric structures for fibrations over 1-orbifolds).
IfQ is a 3-orbifold which fibers over a 1-orbifold with fiber an elliptic 2-orbifold,
then @ admits an 5% x E! structure.

If Q fibers over a 1-orbifold with fiber a Buclidean 2-orbifold, then Q ad-
mits either ¢ Euclidean structure, a nilgeometry structure, or o solvegeometry
structure. '

Proof of 5.7.9: : 5.7.9

Problem 5.7.10 (ﬁbrﬁtions over bad orbifolds). a) Show that the three-sphere
fibers over every possible bad two-orbifold. (Hint: consider the actions of ST on §2.)
b) What bad orbifolds do lens spaces fiber over?

Problem 5.7.11 (Euler class is invariant). a) Show that a one-form on P is
a connection form respecting some fiber metric iff w is positive on positive tangent
vectors to the fibers and duw has the form p*Q2, for some two-form € on B.

b) Show that if w; and w; are connection forms respecting (possibly different)
fiber metrics but with the same fiber length of 1 , then wy —w; has the form df -l-p a,
where f is a function on P and o a one-form on B. _

¢) The Euler class is an invariant up to ﬁber—preservmg and orientation-
preserving diffeomorphism.

Problem 5.7.12 (Euler number is rational). Describe a more topological con-
struction for () which yields a rational number expressible with denominator the
least common multiple of the orders of the local groups.
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(Hint: consider multiple-valued sections of P — B over the complement of a
regular point of B.)

Problem 5.7.13 (connection-preserving diffeomorphism are transitive).
Show that for a circle bundle or E}-bundle X over a two-dimensional geometry B, if
w is a connection form having constant curvature, then the group of diffeomorphisms
of X which preserve w a.nd project to isometries of B acts transitively and with
compact stabilizers.

(Hint: Given an isometry f : B — F and an isometry g P 1(:i:o) — p ~1(f(zo))
for some zq € B, consider how to extend g along a path beginning on p~(zo).)

Problem 5.7.14 (enlarge geometry). Show that the group of diffeomorphisms
of X, which was constructed in ?? can be enlarged to give the geometry listed in

‘the table of ?7.

Problem 5.7.15 (Euler number of orbifold is that of sphere bundle). Prove
that for any closed two-orbifold B, x(TS(B)) = x(B).

Pmblem..'s 7.18. Show that an ori.enta,ble three-orbifold which fibers over a non-
compact hyperbolic orbifold of finite area has both a PSL(2 R} structure and an
H2 x E! structute
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5.8. Some examples of three-orbifolds which fiber over
two-orbifolds.

We will build up a description and naming system for three-orbifolds which
fiber over two-orbifolds, starting with local information and working up in
scale. : '
The first distinction to note is the two possibilities for a generic fiber. If
the generic fiber is a circle, the name will be enclosed in round parentheses,

for instance, (2,5-72.2:43,6). A name enclosed in square brackets, such as

[25+2.2:], means the generic fiber is an interval.

How aboutl some
complete names for a
few things, followed
by adding mere
complexities. Start
with
everythingoriented:
baze and teral space.
Juat cone points.
Then add case of

* oriented tolal space.

We'll first describe what can happen when the generic fiber is a circle.

Above the neighborhood of a cone point p of order m on a two-orbifold,
the bundle p is the quotient of D? x S' by the cyclic group C,,. If the C,,
preserves orientation, then it acts on S! by a k/m rotation of the circle. Given
a choice of -an orientation for the fiber over p, k is well-defined modulo ra. This
behavior is denoted m,. The group C,. can reverse orientation only when m
is even; this behavior is denoted mN. All orientation reversing isometries of
the circle are conjugate, so there are no further local distinctions.

Above a mirror, the bundle has the form D? x §/C,, where C; acts on
D? by a reflection. There are three possibilites for the action on $!: the non:
trivial element of C, may act as the identity, as a rotation of order 2, or as a
reflection. These three behaviors are indicated, respectively, by ., by :, or by
a blank, in the position corresponding to that mirror.

At a corner reflector, the local fundamental group of the base is Dgy,
generated by the reflections ¢ and & in the two adjacent mirrors. If m is odd,
then ¢ is conjugate to b, and therefore the behavior of the fiber bundles above
the two adjacent mirrors must be the same. Since neither the identity and an
order two rotation have any other conjugates, the action of the Dy, on the
circle is determined up to conjugacy by the conjugacy classes of the action of
a and of b if either preserves orientation. Additional information only needs
to be supplied for a corner reflector when both @ and b reverse the orientation
of the fiber. (This is the same as the case that the total space of the bundle
is locally orientable.) In this case, ab preserves orientation, and it might have
any rotation number k/m, recorded as my. Geometrically, the universal cover
of the fiber bundle over a neighborhood of the corner reflector is an infinite
solid cylinder, D? x R.

I @ is a polygonal orbifold, that is, a two-orbifold (*abc.. . z) whose under-
lying space D? and singular locus @D?, then it turns out that every orientable
three-orbifold P which fibers over  has underlying space 5. (See 5.8.5)

Here are some examples.

Example 5.8.1 (tangent sphere bundle of mD?). The tangent sphere

- bundle of mD? is $3, with singular locus two C,~Hopf circles (figure 5.33).
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a2hopf

Figure 5.33. The tangent sphere bundle of mD? is §°

One way to derive this is to begin with the universal cover. We know that

TS(5?) is RP?, so its universal covering is 5%, and TS(S5?) is a double covering

of TS{(mD?). Therefore TS(mD?) is S modulo a group of isometries of order

4. The quotient orbifold has two circles of Cz—singular loci, consisting of the

clockwise tangents to D% and the counterclockwise tangents. The group must

be (C:)?, generated by two 180° rotations about two Hopf circles which are

dual to each other. (Alternate generators are the antipodal map, together with

a 180° rotation about one of the Hopf circles.) The quotient space is obtained

£ ' by constructing a fundamental domain at the intersection of two hemispheres
- containing the two Hopf circles on their boundaries, and folding it up.

fikerpatch

Figure 5.34.

Alternatively, one may construct the picture by piecing it together from

TS{U;), where {U;}i=12 is an open cover of the base. Let U; be an open

disk in the interior, and U; be a neighborhood of 8D?. TS(U;) is an open

- solid torus [} x S since the tangent bundle of U is trivial. We can think
§ . of U as (m[0,1/2)) x S* = ((—1/2,1/2) x §1/C,). Its tangent circle bundle
S is ((~1/2,1/2) x S x 51)/C,, where C; acts as a reflection in the first and
second factors. In other words, it acts on these two factors as a 180° rotation
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Brercise “abration of  Of & cylinder about an axis of symmetry intersecting the cylinder in two points.
twiste "

Exsmple tangens o The quotient is an open disk, with two C;—elliptic points. Therefore TS(Us) I
% billiardbundle is an open solid torus, with two parallel C;—elliptic axes running lengthwise. 3
r B

o
Wrcoint s

C

Gk

flipstrip ok

F:gure 5. 35

The two solid tori are glued together by glumg a Iongztude of the first
to a meridian of the second, and longitude of the second to a meridian plus
longitude of the first. This imparts the 360° twist which links the two Cy—
a.xes

‘Exercise 5.8.2.(fibration of twisted band). For each integer n, let P, be the _
orbifold with underlying space 52 and singular locus the boundary of an unknotted i
- band with n half-twists, labeled 2. Show that P, fibers over mD? with Euler number
nf2. 5
(Hint: To get the fibration, think first about fibering the twisted band by itself. ' ;
Given the fibration, construct a connection form w above a neighborhood of the
mirror locus using a trivialization of the bundle there. Consider any extension of w
over the rest of F,. The integral of @ over mD? equals the integral of dw over a
section abave the interior of mD? , which can be computed using Stokes formula.}

1

twistarh

Figure 5.36. An orbifold with a twisted singular locus. The orbifold P,,,n = +5.

Example 5.8.3 (tangent to billiards). A rectangular billiard table B has
the tangent circle bundle pictured in figure 5.37.
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—
2 2
B
2 2

_

billiardbundle

Figure 5.37. Tangent circle bundle of a billiard table. The tangent circle
bundle of a rectangular bifliard table.

The picture of TS(B) may be constructed using the double covering mC —
B. Arguing as for example 5.8.1, TS(mC) is § x (57, 5, y)- Dividing by the
C, action gives 5.37. The Cg-cover is reconstructed érom 5.37 by cutting open

along two D( ;2.2) 8 spanning the upper and lower loops, and then doubling.

From problem 5.7.15 we know that the tangent circle bundle should have
a connection with 0 curvature, and one can see this directly by choosing a
connection form which vanishes on the tangent space of a suborbifold mC C
TS(B), where C is a cylinder connecting the top and bottom circle.

Note the two-fold symmetry in TS(B), which comes from rota.txng B 180°
and then reversing the image of each vector. The quotient space is the same
as Example 5.1.8.

Problem 5.8.4 (billiard foliation). The motion of a billiard ball on B (ignoring
affects of friction or spin) determines a flow on TS{B). Describe the trajectories in
terms of figure 5.37.

{(Hint: there is a codimension-one foliation of TS{(B) with two leaves which are
m(’s, while the other leaves are tori.)

Example 5.8.5 (tangent sphere bundles of polygonal orbifolds).
TS(D?

( s W] ,...,ﬂk))'

Fu/gt3m/3mbook/pictures/chaps/8/figurl.ps not found|
figurt

Figure 5.38, 2

TS(D( m3 mz.my)) 15 cOnstructed by piecing together models of the tangent
circle bundle above neighborhoods of each corner, edge, and abave the interior.
Over the non-singular part of D} _ ., we have a solid torus. Over an
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edge e, we have m.J x e, with generic fibers folded once to become mI; nearby
fibers go once around these mI's. The picture above a corner reflector of order
n is described by Figure 5.39. The tangent circle bundle over the disk cover
of a neighborhood of the corner reflector is drawn as a solid torus D? x $1,
on which the action of the dihedral group is generated by a rotation of =

around the axis R, and a combined rotation of 2x/n in D? and around S!.

The fundamental domain of this action is a solid cylinder with: both bottom
and top faces identified to themselves by folding around C, axes, situated
at an angle of r/n from each other. Thus, the generic fiber is folded with
multiplicity 2n in ml. The fibers above the nearby edges weave up and down
n times, and nearby circles wind around 2n times.

Fu/gt3m/3mbook/pictures/ckaps/8/WEAVE. ps not found]

WEAVE

Figure 5.39. 2

When the pieces are assembled, we obtain this knot or link:

Vu/gt3m/3mbock/pictures/chap5/8/figur2.ps not found
figur2 :

Figure 5.40. 2

{ sngynz,..may 18 €lliptic, then all geodesics are closed, having length
dividing 27, and the geodesic flow comes from a circle action. It follows that
TI(D? mm“__,nﬂ), is a fibration in a second way, by projecting to the quotient
space by the geodesic flow. For instance, the singular locus of T} (Df3.5) can
be rearranged to fit on the surface of a torus, as a (3,5) curve. Therefore, it
also fibers over 5% 5 o).

When D?

figur3

figurd

Figure 5.41. figur3

A more complete discussion deécribing and classifying fibered orbifolds in
terms of the Euler number and other invariants may be found in [Dun] or

- [BS85). Dunbar also has illustrations of all the Euclidean and elliptic orbifolds

which have underlying space $°. Bonahon and Siebenmann analyze Conway’s
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notion of “algebraic” knots and links by considering the Ca-orbifold which the

link determines and studying decompositions of these orbifolds as unions of
fiber bundles, when such a decomposition exists.
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5.9. Tetrahedral orbifolds

It is beyond our scope to give a geometric classification of all orbifolds, but we
will analyze some special classes of orbifolds which illustrate the beauty and
wide adaptability of geometric structures.

We will begin by analyzing a special, but significant, classical set of orb-
ifolds which have the combinatorial type of tetrahedron. The next project
will be to classify orbifolds whose underlying space is a three-manifold with
boundary, and whose singular locus is the boundary. In particular, the case
when Xg is the three-disk is interesting — the fundamental group of such an
orbifold (if it is good) is called a reflection group.

There is a system of notation, called the Cozeter diagram, which is efficient
for describing n-orbifolds of the type of a simplex. The Coxeter diagram is a
graph, whose vertices are in correspondence with the {n-1)-faces of the simplex.
Each pair of (n-1)-faces meet on an (n-2)-face which is a corner reflector of
some order k. The corresponding vertices of the Coxeter graph are joined by
(k-2)-edges, or alternatively, a single edge labeled with the integer k-2. The
notation is efficient because the most commonly occurring corner reflector has
order 2, and it is not mentioned. Sometimes this notation is extended to

- describe more complicated orbifolds with Xg = D™ and Lo C 8D, by using

dotted lines to denote faces which are not incident. However, for a complicated
polyhedron — even the dodecahedron — this becomes quite unwieldy.

A necessary and sufficient condition for a graph with (n+1)-vertices to
determine an orbifold (of the type of a n-simplex) is that each complete sub-
graph on n vertices is the Coxeter diagram for an elliptic (n-1)-orbifold, since
the group generated by any n mirrors is the local fundamental group at one
of the vertices of the simplex (see the discussion in section 5.6).

r 1
n n 3
O o0—0
o——0—-0
2 2 2 3

O—-———@J 20— b3 20—m78 3
L _J

ellipticeox

Figure 5.42. The Coxeter diagrams for the elliptic triangle orblfo!ds
The Coxeter diagrams for the elliptic triangle orbifolds.
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Theore 5.9.1. Every n-orbifold of the iype of a simplex has either an elliptic,
Euclidean or hyperbolic structure. The types in the three-dimensional case are
listed in figure 5.48.

é

_<
B
B

L  +=elliptic 0=Euclidean - =hyperbolic _J

simploacox

Figure 5.43. The Coxeter diagrams of three-dlmensmnal orbifolds of the
type of a simplex.. The Coxeter diagrams of three-dimensional orbifolds of
the type of a simplex.

This statement may be slightly generalized to include non-compact arb-
ifolds of the combinatorial type of a simplex with some vertices deleted.

Theore 5.9.2. .Every n-orbifold which has the combinatorial type of a simplex

.. with some deleted vertices, such that the “link” of each deleted vertex is «

Euclidean orbifold, and whose Cozeter diagram is connected, admits o complete

- hyperbolic structure of finite volume. The three-dimensional ezamples are listed

tn figure 5.44.

Proof of 5.9.1 and 5.9.9:
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Figure 5.44. Orbifolds of simplex type with deleted vertices. Coxeter
diagrams for the three-orbifolds of the combinatorial type of a simplex with
deleted vertices

L

The method is to describe a simplex in terms of the quadratic form models.
Thus, an n-simplex ¢™ on S™ has (n+1)-hyperfaces. Each face is contained in
the intersection of a codimension-one subspace of E™*! with S™. Let V4, ..., V.
be unit vectors orthogonal to these subspaces in the direction away from o™.
Clearly, the V; are linearly independent (otherwise the faces would all intersect
in a single point). Note that V;-V; =1, and when i # j, V;- V; = —cos a5,
where oy; is the angle between face ¢ and face j. Similarly, each face of an
n-simplex in H™ is contained in the intersection of a subspace of E™! with the
sphere of imaginary radius X7 + ... + X2 — X2, = —1 (with respect to the
standard inner product X -Y =377 X;-Y; — X1y - Yoyq on E™), Outward
vectors Vp, ..., V,, orthogonal to these subspaces have real length, so they can
be normalized to have length 1 . Again, the V; are linearly independent. and
V: - V; = —cosay; when i # j. For an n-simplex o™ in Euclidean n-space, let
Vb, ..., Vo, be outward unit vectors in directions orthogonal to the faces on o™.
Once again, V; - V; = — cos a;. '
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Given a collection {ai;} of angles, we now try to construct a simplex.
Form a matrix M of presumed inner products, with 1’s down the diagonal and
mi; = —cosoy; off the diagonal. If the quadratic form represented by M is
positive definite or of type (n,1), then we can find an equivalence to E™*! or
E™', which sends the basis vectors to vectors Vg, ..., V,, having the specified
inner product matrix. (Recall that S*MS = D, where D is the diagonal
quadratic form of E**! or E®! and the columns of S are scaled versions of
M’s eigenvectors. Qur vectors are the rows of S.) The intersection of the half-
spaces X -V; < 0 is a cone, which must be non-empty since the {V;} are linearly
independent. In the positive definite case, the cone intersects S™ in a simplex,
whose dihedral angles f§;; satisfy cos ;; = cos ¢;, hence 8;; = ;. In the
type {n, 1) case, the cone determines a simplex in RP", but the simplex may
not be contained in H* C RP™. To determine the positions of the vertices,
observe that each vertex v;, the intersection of the planes corresponding to
Vo,---,Vi..., Vs, determines a one-dimensional subspace whose orthogonal
subspace is spanned by Vp,:..,Vi...,V,. The vertex v; is on H*, on the
sphere at infinity, or outside infinity according to whether the quadratic form
restricted to this orthogonal subspace is positive definite, degenerate, or of
type (n-1,1). Thus, the angles {;;} are the angles of an ordinary hyperbolic
simplex iff M has type (n, 1), and for each i the submatrix obtained by deleting
the i** row and the corresponding column is positive definite. They are the
angles of an ideal hyperbolic simplex (with vertices in H™ or 871} iff all such
submatrices are either positive definite, or have rank n-1.

By similar considerations, the angles {e;} are the angles of a Euclidean
n-simplex iff M is positive semidefinite of rank n.

When the angles {a;;} are derived from the Coxeter diagram of an orbifold,
then each submatrix of M obtained by deleting the i** row and the i** column

corresponds to an elliptic orbifold of dimension n — 1, hence it is positive

definite. The full matrix must be either positive definite, or type (n,1) or
positive sernidefinite with rank n. If is an easy exercise to list the examples
in any dimension, and compute the determinant of their corresponding matrix
to ascertain the geometry in which they are realized. We have thus proven
theorem 5.9.1.

Notice now that in the Euclidean case, the subspace of vectors of zero
length with respect to M is spanned by a = (ao, ..., 2,), where q; is the (n-1}-
dimensional area of the ¢** face of ¢ {the j* entry of Ma is the sum of the
oriented areas of the projections of faces onto the plane determined by the j**
face, which is clearly 0).

To establish 5.9.2, first consider any submatrix M; of rank n-1 which is
obtained by deleting the ** row and i** column so the link of the i** vertex is
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Euclidean. Change basis so that M; becomes

1 0

0 - 0

using (ag,...,&i...,an) (which is just 2 iz @:Vi) as the ldst basis vector.
-When the basis vector V; is put back, the quadratic form determined by M

becomes

1 0 *

.o .

1 ¥

0 0 -C

* * * =C 1
where —C = — 3. ¢; cos ay; is negative since the Coxeter diagram was sup-
posed to be connected. It follows that M has type (n,1), which implies that
the orbifold is hyperbolic. 15.9.1 and 5.9.2]

Remark: The material in this section is essentially due to [Cox34], [Lan50]
and [CW50]. An interesting survey of the subject is given by [Vin85).
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5.10. Andre’ev’s theorem and generalizations

The somewhat subtle classification of orbifolds combinatorially equivalent to
a simplex would seem to indicate that the analysis for a general polyhedron
would be hopelessly complicated. Amazingly, the situation in dimension 3
becomes much simpler and cleaner once the polyhedron is more complicated
than a simplex. Before stating the theorem, due to [?, 7], we need some
definitions.

An orbifold @ with boundary is said to be an n-disk guotient if its universal
cover is the n-disk D", '

‘Definition 5.10.1 (incompressible). A two-dimensional compact suborb-

ifold P of a three-orbifold @ is compressible if one of the fo]]owmg two condi-
tions is satisfied.

a} P is the boundary of a suborbifold of Q,I which is a three-disk quotient R.

b) There is a one-dimensional suborbifold § C P which is not the boundary
of a two-disk quotient in the boundary of @ and which is the boundary of
a two-disk quotient R which is a proper suborbifold of Q.

* An incompressible two-dimensional compact suborbifold of @ is a compact
suborbifold which is not compressible. It would be possible also to talk of
non-compact compressible and incompressible surfaces, but we will not do so
here. In each case, the suborbifold R is called a compression disk quotient.

- Note in particular that according to the definition any bad suborbifold is
automatically incompressible. The two different types of compressible surfaces
in definition 5.10.1 are of Euler characteristic greater than zero and less than
or equal to zero respectively. The definitions can also be adapted to one-
dimensional suborbifolds of two-dimensional orbifolds. For example, consider
the mirrored annulus. An arc going from a mirror to itself is compressible,
because it bounds a suborbifold whose double cover is a two-disk. An arc

going from one of the mirrors of the annulus to the other is incompressible.

If we multiply by S* we get an example of a compress1b1e subaorbifold and an
incompressible suborbifold.

Two proper suborbifolds So and S; of @ are said to be parallel if there is
a suborbifold P x I of @, such that P x0 = Spand P x 1 = §;.

Theorem 5.10.2 (Andre’ev 1). Let Q) be a three-orbifold with Xg homeo-

~morphic to B* and Ly = OB3. Suppose that Q has at least five faces. Then

Q@ has a hyperbolic structure if and only if every incompressible compact sub-

‘orbifold P of Q has x(P) < 0.

Andre’ev also proved a generalization to the finite volume case:

Theorem 5.10.3 (Andre’ev 2). Let Q be o three-orbifold with Xg homeo-
morphic to B*(—finitely many points) which is combinatorially a polyhedron

- with some vertices deleted, and suppose thai T is the boundary of B*(— finitely
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many points). Suppose Q@ has at least five faces. Then () has a hyperbolic
structure with finite volume if and only if

a) The link of each ma'ssing_vértex 5 a Buclidean two-orbifold, and

b} each incompressible compact suborbifold P C Q with x(P) > 0 is parallel
to the link of a missing vertez.

We will prove these theorems later, as a consequence of more general re-

sults. In the meantime we can at least prove the theorem’s easy direction. The

proof refers ahead to some basic three-manifold topology discussed in chap-
ter 777, These forward references could have been avoided by rephrasing the
statements of theorem 5.10.2 and theorem 5.10.3 in a purely combinatorial
way, thus avoiding the mention of incompressible suborbifolds, whose defini-
tions are useful only because of Alexander’s theorem and the loop theorem.
We have chosen this formulation because it is conceptually clearer than the
combinatorial formulation.

Proof of necessity in 5.10.2 and 5.10.3: Suppose @ has a hyperbolic structure.
Then € locks like a convex polyhedron in H®. We first take a look at 77
and see that each vertex of @ lies on exactly three edges, because its link
is a spherical orbifold, except that a missing vertex may have four incident
edges.” Let P be a compact incompressible suborbifold P with x(P) = 0.
If P is a sphere or a torus, then it must be disjoint from the singular set, by

- problem 5.2.12. I it is a sphere, it bounds a three-ball by Alexander’s theorem

(see [?]), and so it is compressible. If it is a torus, Dehn’s lemma (see [Hem?76])
proves that it is compressible. To show that P cannot be an annulus, note
that its boundary is disjoint from L. But each face of  is simply connected,
and so each boundary curve bounds a compression disk in Eg — X}, So we
know that P is combinatorially a disk, with 0,1,2,3 or 4 vertices.

H P has no vertices, then its boundary lies on a plane, and bounds a disk
on that plane (by the Jordan curve theorem and by Alexander’s theorem P

bounds a B® / Cg) P cannot have one vertex, because a hyperbolic plane never

meets itself at an angle. If P has two vertices, they must both lie on the line

of intersection of two planes, and P bounds a B3 /D

If P has three vertices, then the sides of P lie on three planes which
intersect in a point p in H? if x(P) > 0 or on $2, if x(P) = 0. We claim that
pisin @, or in its closure if it is on S%. To see this, consider any vertex v of

- & between P and p and as far as possible from p. One first shows that v must

lie on an edge e containing one of the vertices p; of P, and p;, v and p are
collinear. But a spherical orbifold which is a mirrored triangle has each side
of length at most w/2. This means that the edges at v other than e have the
other endpoint further from p than v, contra.dicting the definition of v. (see
figure 5.45). Therefore, P bounds a B3/T or is parallel to the link of a missing
cusp vertex,

If P has four vertices, then they must all be D, vertices. Consider the
four planes determined by the four sides of P. Either they all meet at oo, or
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Fu/gt3m/3mbook/pictures/chap5/10/3VERTEXPCSS. ps not found

IVERTEXPOSS

Figure 5.45. . Missing picture

two of them meet in an edge and the other two are perpendicular to the edge
(see figure 5.46). In either case, we apply an argument as in the three-vertex
case to deduce that P is compressible or para.llel to a missing cusp vertex.
necessity in 5.10.2 and 5.10.3

Fu/gt3m/3mbook/pictures/chap5/10/4VERTEXPGSS. ps not found|

4VERTEXPOSS
Figure 5.46, 2. The two possible ways that four planes can meet at 90°

Before proceeding to generalize and prove 5.10.2 and 5.10.3, we will give
two beautiful applications to Euclidean geometry.

A packing of disks in E? (or H? or 5?) means a coilection of closed dlsks
with disjoint interiors. The nerve of a packing is then a one-complex, whose
vertices correspond to the disks, and whose edges correspond to pairs of disks
which intersect. This graph has a canonical embedding in the plane, by map-
ping the vertices to the centers of the disks and the edges to straight line
segments which will pass through points of tangency of the disks.

Corollary 5.10.4 (circle pack). Let 4 be any graph in R?, such that each
has distinct ends and no two verlices are joined by more than one edge. Then
there is ¢ packing of circles in E? whese nerve is isotopic to vy. If v is the
one-skeleton of a triangulation of 52 then this disk packing is unique up to
Moebius transformations.

Proof of 5.10.4:  We transfer the problem to S$% by siereographic projec-
tion. Add an extra vertex in each non-triangular region of S — v, and edges
connecting it to neighboring vertices, so that 4 becomes the one-skeleton of a
triangulation T of 5% Let P be the polyhedron (meaning only a topological
structure of faces, edges, and vertices) obtained by cutting off neighborhoods
of the vertices of T', down to the middle of each edge of T, and replacing them
by new polygonal faces.

Let @ be the orbifold with underlying space Xg = [*— vertices of P, and
Eb = edges of P, each modeled on R*/D,. For any compact incompressible
suborbifold @’ with x(Q’) = 0, 0X¢ must be a curve crossing at most four
edges of P; but the only such curves are the curves which circumnavigate
a vertex. These cross exactly four edges and bound Euclidean suborbifolds.
Thus, @ satisfies the hypotheses of 5.10.2, and @ has a hyperbolic structure.
This means that P is realized as an ideal polyhedron in H?®, with all dihedral
angles equal to 90°. The planes of the new faces of P (those resulting from
truncating vertices of T') intersect S2 in circles. Two of the circles are tangent
whenever the two faces meet at an ideal vertex of P. This is the packing
required by 5.10.4.
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figl

agt
Figure 5.47. figl. A circle packing of %

fig2

figz
Figure 5.48. fig2. v extended to a triangulation of 52

fig3

fg? :

Figure 5.49. fig3. P is obtained from T' by “truncating” at the vertices
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Mostow’s theorem 7?7 states that the hyperbolic structure on Q is unique
up to Moebius transformations. Since the hyperbolic structure on @ may
be reconstructed from the packing of disks on $2, our circle packing is also
unique up to Moebius transformations. To make the reconstruction, observe
that any three pairwise tangent disks have a unique common orthogonal circle.
The set of planes determined by the packing of disks on 52, together with
extra circles orthogonal to the triples of tangent circles coming from vertices
of the triangular regions of 5% — « cut out a polyhedron of finite volume
combinatorially equivalent to P, which gives a hyperbolic structure for Q.

Remark: Andre’ev also gave a proof of uniqueness of a hyperbolic poly-
hedron with assigned concave angles, so the reference to Mostow’s theorem is
not essential.

Corollary 5.10.5 (circumpoly). Let T be any triangulation of S*. Then
there is a conver polyhedron in R®, combinatorially equivalent to T whose
one-skeleton is circumscribed about the unit sphere (i.c., each edge of T is
tangent o the unit sphere). Furthermore, this polyhedron is unique up to a
projective transformation of R® C RP® which preserves the unit sphere.

Proof of 5.10.5: Construct the ideal polyhedron P, as in the proof of 5.10.4.
Embed H® in RP?, as the projective model. The intersection of the half-
spaces(in RP?) determined by old faces of P {i.e those coming from faces of
T') forms a polyhedron in RP?, combinatorially equivalent to 7. Notice that
the vertices of this polyhedron are dual (in the sense of section 2.3) to the
new faces of P. Adjust by a projective transformation if necessary so that this

polyhedron is in R3. (To do this, transform P so that the origin is in its

interior.} 5.10.5

Remarks: Note that the dual cell-division T* to T is also a convex polyhe-
dron in R?, with one-skeleton of T* circumscribed about the unit sphere. The
intersection T'NT™* = P. :

These three polyhedra may be projected from the north pole of 52 ¢ RP?
along straight lines to R? C RP2. Stereographic projection is conformal on
52, so the edges of T project to lines orthogonal o the packing of circles, while
the edges of T™* project to tangents to these circles. It follows that the vertices
of T project to the centers of the circles. Thus the image of the one-skeleton
of T is the geometric embedding in R? of the nerve « of the circle packing.

7u/gt3n/3mbook/pictures/chap5/10/fig4.ps not found]
figs ]
Figure 5.50. 1.5. A aircle packing and its nerve

The existence of other geometric patterns of circles in R? may also be de-
duced from Andre’ev’s theorem. For instance, it gives necessary and sufficient
condition for the existence of a family of circles meeting only orthogonally in a
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Theorem “Androev  certain patiern, or meeting at 60° angles. This connection will be made clearer

on terus”

Thecrem "Andreev  in the next two sections.

on surface”

% Androrev on torus One might also ask about the existence of packing of circles on surfaces of
% Andre'ev 1 constant curvature other than 5% The answers are corollaries of the following

© Andre'ev 2
theorems:

Theorem 5.10.6 (Andre’ev on torus). LetQ be an orbifold such that X =
T? x [0,00), (pessibly with some deleted vertices on T? x 0 having Euclidean
links) a_nd Yo = 0Xq. Then @ admits a complete hyperbolic structure of
finite volume if and only if each compact incompressible suborbifold P C
with x(P) = 0 is a Buclidean suborbifold parallel to the link of a missing
verter or to the link of the point at infinity corresponding to T? x oo.

Theorem 5.10.7 (Andre’ev on surface). Let M? be a closed surface, with
X(M?) < 0. An orbifold Q such that Xg = M? x [0,1] (possibly with some
deleted vertices on M* x 1 having Euclidean links ), 5qg = 80Xy and L,
the one-skeleton of Bg, is contained in C M? x 1. Then Q has e hyperbohc_
structure if and only if each compact incompressible suborbifold P C Q with
x(P) 2 0 is a Euclidean suborbifold parallel to the link of a missing vertex.

figh

figs

Figure 5. 51. ﬁg5

Proof of necessity in 5.10.6 and 5.10.7: We will not carry out the proof in

detail, because it is almost identical with the proof of necessity in 5.10.2 and

5.10.3. We confine ourselves to discussing the one situation which is different

here from the preceding proof—that is, we show that if Q is a hyperbolic

orbifold, then any incompressible mirrored annulus P is parallel to a missing

vertex. The universal cover of Q is H3. The inverse image of the singular s, do you wam o
set is a set of hyperbolic planes, which cuts the inverse image of the annulus nemenciatute for
into components. Let C' be one of these components, with disjoint boundary they sriser abse
components &pC' and §,C, lying on hyperbolic planes Hy and H;. Since the

boundary curves on the annulus P are mirrors, they cannot intersect the one-

skeleton of Xg.
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Therefore, if 85C and &) C are simple closed curves, then they bound disks
in Hy and H; respectively, and these disks are disjoint from the one-skeleton.
This means that the boundary curves of P bound compression disks in Lo —X5.

If 3C is an infinite curve then the corresponding generafor y of m P is

parabolic or hyperbolic, and its action preserves Hy and Hy. If Ho = H;, then

there is an annulus A in g — 5§ with the same boundary curves as P. If we
move A a little, we obtain a suborbifold of @ which is 1sotopic to P, keeping
the boundary of the annulus fixed. Without loss of generality, P = A, and
then it is easy to see there is a compression disk quotient.

So we may assume that Hy % H;. If 4 is parabolic, then we put the
parabolic point at infinity in the upper half space model, and see that Hy and
H, must be parallel vertical half planes. The surface called C above is an
infinite strip, invariant under <. Since each complementary component of the
singular set is a convex subset of H®, everything in H? lying above C is in
this component. This shows that P is parallel to the vertex of a missing cusp
point. -

The final situation to consider is when  is hyperbolic and Hy # H;. Then
its axis must equal to Hy N H,, which lies in the one-skeleton of the singular
set, and we have already seen that 0,C and 0,C are disjoint from this. We
obtain a wedge of hyperbolic space bounded by C, a strip of Hy and a strip
of Hy, which covers the product of a triangle with two mirrored sides with
S;. The interior of the wedge is disjoint from the singular set. Consider a
triangle with one edge on C, one edge on Hp aud one edge on H;. This is a
compression disk quotient for P. necessity in 5.10.6 and 5.10.7

Exercise 5.10.8. Formulate and deduce the analogues of corollaries 5.10.4 and
5.10.5 for theorems 5.10.6 and 5.10.7. (Hint: Consider how 7;(Q) acts on $2,, to
get the right pictures for the circle-packing corollary. To get a good picture for

5.10.5, make use of horospheres and surfaces which are a constant distance from the
hyperbolic plane.)

Example 5.10.9 (Borromean rings). We have seen (5.1.8} that the Bor-
romean rings are the singular locus for a Euclidean orbifold, in which they are
elliptic axes of order 2. With the aid of Andre’ev’s theorem, we may find all
hyperbolic orbifolds which have underlying space 52 and the Borromean rings
as singular locus. The rings can be arranged so they are invariant by reflection
in three orthogonal great spheres in 5° (see figure 5.52). 'We can form a new
orbifold @ by making the rings elliptic axes of orders k,! and m, and by acting
on it with the reflections in the great spheres we see that it is an eight-fold
covering of another orbifold; which has the combinatorial type of a cube (see
5.52). By Andre’ev’s theorem, such an orbifold has a hyperbolic structure if
and only if k,! and m are all greater than 2. If k is 2, for example, then there

“is a sphere in S® separating the elliptic axes of order ! and m and intersecting

the elliptic axis of order 2 in four points. This forms an incompressible Eu-
clidean suborbifold of @, which breaks ) into two halves, each fibering over
two-orbifolds with boundary, but in incompatible ways (unless [ or m is 2).
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When &k = [ = m = 4, the fundamental domain, for 71(@) acting on H3 is
a regular right angled dodecahedron!

Any of the numbers &,! or m can be permitted to take the value oo in this
discussion, denoting a parabolic cusp. When [ = m = oo, for instance, then
@ has a k-fold cover which is the complement of the untwisted 2k-link chain
Doy,

Problem 5.10.10. Which hyperbolic orbifolds have Dy; as singular locus?
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Figure 5.52, 1.5
Fu/gt3n/3mbook/pictures/chaps/10/ fig6.ps not found
figd
Figure 5.53. 1.5. Base spaces of the fibra:tions
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Sectiotn "Con;tryc:iné 5.11. Constructing pa‘tternS Of CirCIES
PATTERNS OF ~
CIRCLES .

% ANDREEV]1 ON . . i .

SURF We will formulate a precise statement about patterns of circles on surfaces of
% ANDREEVZ ON g . g . . .

SURF non-positive Buler characteristic which gives theorems ?7 and ?7 as imme-
% ANDREEV1 . . .
% ANDREEV2 diate consequences. We will later use these when we return to the proof of

Andre’ev’s theorems (?? and 77?).

If 5 is a complete surface of constant curvature and if P is 2 family of
.immersed geometric disks on S, we can describe the pattern of intersection in
terms of a graph G(D), whose vertices are in correspondence with the elements
of D and whose edges are in correspondence to the “intersections” of elements i
of D. Here we mean an intersection not in the mathematical sense but in a ;
more visual sense which we can define mathematically te be a homotopy class _
of paths p : [0,1] — S from the center of a disk I} € D to the center of another 3
disk I’ € D (not necessarily different from D) such that when p is lifted to i
the universal cover S, the lifts of the closed disks D and I’ centered at its
endpoints have a non-empty intersection.

Let E denote the set of edges of G(D). There is a function © : £ — {0, 7]
which measures angles of intersection of the boundaries of the disks. We -3
measure the {unsigned) angle between the clockwise tangent of one disk and 3
the counterclockwise tangent of the others, so that an angle of 0 means an
external tangency and # means an internal tangency.

There is a canonical geodesic map g : G(D) — S, provided the curvature =
is non-positive, which takes each vertex to the center of its disk and each edge
to the geodesic in its homotopy class.

Associated with D there is a hyperbolic manifold P{D) with polyhedral
boundary. When S has positive curvature, we scale the metric to make it co- :
incide with 52, and obtain P(D) by chopping out the hyperbolic half-spaces i
which intersect S2 | in the elements of D. When S has curvature 0, we iden-
tify its universal cover S with the boundary of upper half-space. We remove i
hyperbolic half-spaces corresponding to the disks on S, and divide by 71(S5) "
to obtain P(D). K the curvature is negative, we identify S with the northern
hemisphere of S2,, chop out hyperbolic half-spaces corresponding to the disks
on §. We also remove the lower half-ball, and divide by (S) to obtain P(D).

We specialize to the case that the angles do not exceed 7/2, and in the
spherical case that each disk is smaller than a hemisphere. Then, an edge ¢
of g(G(P)) with ©@(E) > 0 can only intersect the two relevant disks, so the
edges of the polyhedral manifold P(D} correspond to edges e of G(D) with

- O(e) > 0, and the dihedral angles of P(D) are given by ©. This means also,
that g : G(D) — S is an embedding; except that the following pattern may
oceur:

Let G’ be the graph embedded in S obtained by deleting all edges of

g{G(D)} which intersect other edges. We will assume that S — G’ is con-
tractible. Denote its edge set E’.
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Arguing as in the necessity proof for ?7 and 7?7, we see that © (transferred
to G') must satisfy certain conditions:

5.11.1Conditions:

a) No edge forms a null-homotopic closed loop.

b) The only null-homotopic closed loops made of two edges have the form
exe !

c) If e; ¥ e ¥ e3 (¢, € E') forms a null-homotopic closed loop, and if
E?:: @(e;) = =, then these three edges go around the boundary of a
triangular component of S — G'.

d) If eyxerxezrey (e; € E) is a null-homotopic closed loop, and if 3¢, O(e;) =
2, then this loop either goes around the boundary of a quadrilateral of
S — G’ or goes around two adjacent triangles.

In fact, these conditions are sufficient.

Theore 5.11.2. Let S be a closed surface with-x(S) < 0. Let &' C S be any
embedded graph such that S — G’ is contractible, and © : E' — [0,7/2] any
function {where E' is the edge set of (') so that G' and O satisfy conditions
5.11.1.

Then there is a metmc of constent curvature on S and a fams!y F of disks
on.§ so that G' and © arise from F. The metric together with the disks are
unique, up to a change of metric by a constant followed by an isometry between
metrics which is isotopic to the density.

This theorem establishes ??7 and ??, since if we take G(D) to be dual to
T¥ and choose © to reflect the required cone angles, then P(’D) is the desired
orblfold

Proof of 5.11.2: TFirst, we can augment the graph G' by adding edges which
subdivide it into triangles with the value of @ = 0 on these edges. Conditions
5.11.1 remain valid for the new graph, which we will call G. Let 7 be the
generalized triangulation having (3 as its one-skeleton.

The idea 1s to solve for the radii of the circles €. Given an arbitrary set of
radii, we shall construct 2 Riemannian metric on S with cone type singularities
at the vertices of 7, which has a family of circles of the given radii meeting at
the given angles. We adjust the radii until S lies flat at each vertex. Thus, the
proof is closely related to the idea that one can make a conformal change of any
given Riemannian metric-on a surface until it has constant curvature. Recall
that a conformal map is one which takes infinitesimal circles to infinitesimal
circles; the conformal factor is the ratio of the radii of the ta.rget and source
circles. -

Lemm 5.11.3. For any three non-obtuse angles 01,0, and O3 € [O,#/Q]
and any three positive numbers Ry, R, and Ry, there is a configuration of three
circles in both hyperbolic and Euclidean geometry, unigue up lo isometry having

- radii R, and meeting in angles O);.
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Proof of 5.11.3: The length I; of a side of the hypothetical triangle of centers
of the circles is determined as the side opposite the obtuse angle # — @; in a
triangle whose other sides are R; and R;. Thus, sup (R;, R;) < i < R; + R;.
The three numbers I, l; and I3 obtained in this way clearly satisfy the triangle

inequalities Iy < I; + I;. Hence, one can construct the appropriate triangle
which gives the desired circles. ' : 5.11.3

Continuation of proof of 5.11.2: Let V denote the set of vertices of 7. For

every element R € RY (i.e., if we choose a radius for the circle about each

vertex), there is a singular Riemannian metric, which is pieced together from
the triangles of centers of circles with given radii and angles of intersection as
in 5.11.3. The triangles are taken in H* or E? depending on whether x(8) < 0
or x(5) = 0. The edge lengths of cells of 7 match whenever they are glued

‘together, so we obtain a metric, with singularities only at the vertices, and

constant curvature  or -1 everywhere else.

The notion of curvature can easily be extended to Riemannian surfaces
with certain sorts of singularities. The curvature form KdA becomes a measure
k on such a surface. Tailors are of necessity familiar with curvature as a
measure. Thus, a seam has geodesic curvature (k; — k;) - v, where v is one-
dimensional Lebesgue measure and k; and ky are the geodesic curvatures of
the two halves. (The effect of gathering is more subtle ~ it is obtained by
putting two lines infinitely close together, one with positive curvature and one
with balancing negative curvature. Another instance of this is the boundary
of a lens.) - '

More to the point for us is the curvature concentrated at the apex of a
cone: it is 27 — «, where « is the cone angle (computed by slitting the cone
to the apex and laying it flat). It is easy to see that this is the unique value
consistent with the Gauss-Bonnet thecrem, which then generalizes to give:

zn(v)+f xgd3+./KdAi2wX(S)' 5.11.4
a8 s

veC

where S is a surface with boundary 85 and C is the set of cone points.
Formally, we now have a map

F:RY - RY.

Given an element R € RY, we construct the singular Riemannian metric on
S, as above; F'(R) describes the discrete part of the curvature measure s on
S, in other words, F(R)(v) = «r(V). Our problem is to show that 0 is in
the image of F, for then we will have a non-singular metric with the desired
pattern of circles built in. _

When x(S) = 0, then the shapes of the Euclidean triangles do not change
when we multiply R by a constant, so F(R) also does not change. Thus we
may as well normalize so that 3, ., R(v) = 1. Let A C RY be this locus - A
is the interior of the standard |V| — 1 simplex. Observe, by the Gauss-Bonnet
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‘theorem, that 3 ., &r(v) = 0. Let Z C RY be the locus defined by this

equation.

- If x(S) < 0, then changing R by a constant does make a difference in «.
In this case, let A C RY denote the set of R such that the associated metric
on S has total area 27|x(S)|. By the Gauss-Bonnet theorem, A = F~(Z)
(with Z as above). We will prove that A intersects each ray through 0 in a

-unique point, so A is a simplex in this case also. This fact is easily deduced

from the following lemma, whxch will also prove the uniqueness of the solution
obtained in 5.11.2;

Lemm 5.11.5. Let Cy,Cy and Cs be circles of radii Ry, Ry and Ry in hyper-
bolic or Fuclidean geometry, meeling pairwise in non-obluse angles. If Cy and
Cs are held constant but Cy is varied in such a way thaet the angles of inter-
section are constant but Ry decreases, then the center of Cy moves toward the
tntertor of the triangle of centers.

30:1 ' 3_&2 6&3

<0, 92 923 S0
am <% 3R, >% 3R Y

| where t;he o; are the angles of the triangle of centers.

. Proof of 5. 11 5: Consider ﬁrst the Euclidean case. Let I;,1; and I3 denote

the lengths of the sides of the triangle of centers. The partial derivatives %
and a%lfz?{ can be computed geometrically. If v; denotes the center of C, then
g—;’- is determined as the vector whose orthogonal projections to sides 2 and 3
are -‘%‘g- and ﬂ*"— Thus, Ry 22 3R 1s the vector from vy to the intersection of the
lines joining the pairs of intersection points of two circles.

When all angles of intersection of circles are acute, no circle meets the

opposite side of the triangle of centers: It follows that -gﬁl- points to the
interior of Awvyuz.

The hyperbolic prdof is smnla;r except that some of it takes place in the

| 'ta.ngent space to H? at v;. : o 5.11.5

Continuation of proof of 5.11.2. From lemma 5.11.5 it follows that when all
three radii are increased, the new triangle of centers can be arranged to contain
the old one. Thus, the area of S is monotone, for each ray in RY. The area
near 0 is near 0, and near o it approaches = x (#iriangles) = =2z x(S-V) >
—27x(S); thus the ray intersects A = F~'(Z) in a unique point.

It is now easy to prove that F' : A — Z is one-to-one. In fact, consider
any two distinct points R and R’ € A. Let V= C V be the set of v where
R'(v) < R(v). Clearly V~ is a proper subset. Let 7v— be the subcomplex of T
spanned by V. (ry- consists of all cells whose vertices are contairied in V)
Let Sy- be a smali nelghborhood of ry-. We compare the geodesm curvature
8Sv- in the two metrics. To do this, we may arrange Sy~ to be orthogonal
to each edge it meets. Each arc of intersection of 35y~ with a triangle having
one vertex in ¥V~ contributes approximately «; to the total curvature, while
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each arc of intersection having two vertices in V'~ coniributes approximately
Bi+vi— .

. In view of lemma 5.11.5, an angle such as ¢ increases in the R’ metric.
The change in £; and 4, is unpredictable. However, their sum must increase:
first, let Ry and R; decrease; 7 — & — (81 ++2), which is the area of the triangle
in the hyperbolic case, decreases or remains constant but &; also decreases, so
B1+ v must increase. Then let R; increase; by 5.11.5, 81 and 7, both increase.
Hence, the geodesic curvature of 3Sy~ increases.

From the Gauss-Bonnet formula (5.11.4) applied to Sy-, it follows that
the total curvature at vertices in V™~ must decrease in the B’ metric (Note that
the area of Sy~ decreases, so if K = —1, the third term on the left increases).
In particular, F(R) # F{R'), which shows that F' is one-to-one on A.

The proof that 0 is in the image of F is based on the same principle as the
proof of uniqueness. We can extract information about the limiting behavior
of F as R approaches @A by studying the total curvature of the subsurface

Sye, where V? consists of the vertices v such that R(v) is tending toward 0 .

When a triangle of 7 has two vertices in V° and the third not in V°, then the
sum of the two angles at vertices in VO tends toward #.  When a triangle
of 7 has only one vertex in V°, then the angle at that vertex tends toward
the value * — ©(e)}, where e is the opposite edge. Thus, the total curvature of
dSvo tends toward the value 3 .p(, (7 — ©(e)), where L(ryo} is the “link
of rye.” The Gauss-Bonnet formula gives =~ '

Lim ) .ﬁ(v) =— 3 (7 — ©(e)) + 2ax(Sye) < 0 5.11.6

veV0 . " eEL{ry0)

(Note that area (Syo) — 0.) To see that the right-hand side is always negative,
it suffices to consider the case that 7yo is connected. Unless tyo has Euler
characteristic one, both terms are non-positive, and the sum is negative. If
L{7yo) has length five or more, then 3°_/., 0y ¥ — O(E) > 27, so the sum is
negative. The cases when L{7yo) has the length three or four are dealt with
by conditions 5.11.1{c) and (d).

When V' is any proper subset of V% and R € A is an arbitra.ry point, we
also have an inequality

Y kr®)> = 3 (1 —6(e)) + 2rx(Sv:). 5117

vl e€EL(Tyr)

This may be deduced quickly by comparing the R metric_w'ith_ a metric R’
in which R'(V’) is near 0 . In other words, the image F(A) is contained in
the open polyhedron P C Z defined by the inequalities 5.11.7. Since F(A) is

an open set whose boundary is AP (by 5.11.6), F(A) = interior(P). Since
0 € int(P), this completes the proof of ?7, 77, and 5.11.2. 5.11.2

Remarks: This proof was based on a practical algorithm for actually con-
structing patterns of circles. The idea of the algorithm is to adjust, iteratively,
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the radii of the circles. A change of any single radius affects most strongly the
curvature at that vertex, so this process converges reasonably well.

The patterns of circles on surfaces of constant curvature, with singularities
at the centers of the circles, have a three-dimensional interpretation. Because
of the inclusions Isom{H?) C Isom(H?) and Isom(E?) C Isom(H3), there
is associated with such a surface S a hyperbolic three-manifold Mg, homeo-
morphic to S x R, with cone type singularities along (the singularities of 5)
xR. Each circle on S determines a totally geodesic submanifold (a “plane”) in
Mg, as in the construction of P(F). These, together with the totally geodesic
surface isotopic to S when § is hyperbolic, cut out a submanifold of Ms with
finite volume. If the cone angles have the form 2z /n, this is a hyperbolic

orbifold.
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[fu/gt3m/3mbook/pictures/chap5/11/figurel.ps not found

figurel -
Figure 5.54. 1. Notice that this is the same configuration we came across in
the proof of the necessity of 72 and 77

Fu/gt3m/3mbook/pictures/chap5/11/figure2.ps not found| $
figure2 .
Figure 5.55. 2. If E?___l O(e;) > 7, then three faces of the P(F) intersect
either in H® or §2 , thus as in section 77 this intersection point is a vertex of
P(F), so the three edges determine a triangular compenent of S — G,

a/gt3m/3mbook/pictures/chaps/i1/figured.ps not found|

figured
Figure 5.56. 2. As in section 77, the above are the only two possibilities.
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Figure 5.57. 1.5
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Figure 5.58. 1.5
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Figure 5.59. 1.5
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Figure 5.60. 1.5
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Figure 5.61. 2
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Figure 5.62. 2. (3 meets 5152 = () and C; don’t meet
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Figure 5.63. 1.5
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figurell

Figure 5.64. 1.5
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figurel2

Figure 5.65, 2
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5.12. Proof of Andre’ev’s theorem

In this section we will prove a result about convex polyhedra which extends
theorem 5.11.2 to the case x(S) > 0, and which immediately implies Andre’ev’s
theorem (?? and 7).

Theore 5.12.1. (Andre’ev). Let 7 be a triangulation of S? with more than
four triangles, let G' be its one-skeleton with edge set E' and let © : B’ —
[0,7/2] be any function such that G’ and O satisfy conditions 5.11.1. Then
there is a family D of disks on S® (in the usual metric) giving rise to G' (up
to isotopy) and ©.

The method of the preceding section for the proof of 5.11.2 does not di-
rectly work for 5.12.1. The proof breaks down, for instance, in the application
of the Gauss-Bonnet formula to prove the uniqueness (5.11.12), which was
tied up with existence. In fact, the map F is not injective and is not even
surjective to a neighborhood of zero, when § is the two-sphere. It is not in-
jective because moving a polyhedron isometrically in H® changes the radii of
the disks which describe its faces, but does not change the value of F = 0.
It is not surjective because otherwise one could obtain a Riemannian metric
of constant curvature on $? except at one isolated cone-type singularity, for
instance, an elliptic structure on a teardrop otbifold. This is impossible for
any cone angle « # 2. _ _

Nonetheless, there are some special cases of Andre’ev’s theorem which can
be derived from the preceding method after first converting patterns of circles
on S? to patterns in E? using stereographic projection. .

Lemm 5.12.2. Theorem 5.12.1 holds provided there is af least one triangle of
 whose three edges ey, ez and es satisfy O(e1) + O(ez) + O(€s) < 7.

Proof of 5.12.2: 5.12.2 (See also exercise 5.12.3) The hypothesis that the angle
sum is < « means that if there is a solution D, there is some point p on §?
not in the interior of any disk in D. If the inequality is strict, p can be chosen
ot to be in any closed disk of D. Stereographic projection from p transforms
the problem to E?: we think of G as a triangulation of a triangle in E2.

The method of 5.11 is modified as follows. First choose three radii for the
“hig” disks, whose centers are vertices of the assumed triangle. f 3 o, ©(e) <

_m, we can take the three radii to be 1 . If 57, O(e;) = , the three circles

on S? become straight lines in E?, and we give the three radii the limiting
value co. These radii are to be held constant for the proof. The map F is
defined from RK_V" to RY~%_ where V; is the set consisting of the three outer
vertices.. N _

If the radii of Vj are finite, we study F on all of R} % (normalization
has been replaced by fixing these values). Notice that since each triangle is
Euclidean F(R)|v_v, = 0 implies that F(R) = 0. We consider R to
be the interior of a simplex with boundary faces consisting of the coordinate
planes and one boundary face (with all its subfaces) “at infinity.” The finite
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boundary behaviour was already taken care of by the previous cases. We may
now obtain information about the limiting behavior of F as R approaches an
infinite boundary face. Let 7v,, be the subcomplex spanned by all vertices ¥,
whose associated radii approach infinity. As before we thicken Tv,, t0 Sy, and
approximate the geodesic curvature of 3Syv,,. We obtain

Lim 3 a(v) = 2rx(Sv)+ Y (- 6(e) > 0

VEVes .. eed TVea

where the sum is over all the exposed edges of 7. As before this leads to the
inequalities
> 80) < 2x(Sv) + Y. (m—6(e))

vEVo e€irty,,

We again prove, using lemma 5.11.5, that F is injective. Thus, as before,
we have proved that 0 € im(F) since our inequalities tell us the boundary
behavior. '

If the radii are infinite, then when we multiply R € RV-% by a constant,
F' does not change. We can normalize so 2wev_vy, B(v) = 1. We can think
of this as a limiting case, as above, so we see that f,.x, = 27 where S
is a thickening of the subcomplex spanned by all the finite vertices. Thus
Y vev-v, F(R){v) = 0. Lemma 5.11.5 carries over even when R | is infinite,
and the uniqueness proof carries over. (Note that since R |, is constant,
there are no extraneous boundary effects. The angles and angle sums which
“increase” and “decrease” may do so only in the weak sense so that they may
remain constant, if some of the vertices involved have infinite radii.) Existence
follows from the univalence of F, together with boundary behavior given by
9.11.7. Note that the solution develops appropriately into E?, even though we
have not controlled the lengths of arcs of the big disks. 5.12.2

Exercis 5.12.3. Derive Lemma 5.12.2 in the case O(e;) + O{e;) + O(es) < m as a
formal consequence of theorem 5.11.2, o o

(Hint: Any convex acute-angled polyhedron which has three faces meeting at
angles a,f and « with &+ f + ¥ < 7 can be decomposed into two pieces along a
common orthogonal plane (to each of the three faces). Glue the problem of lemma
5.12.2 to an appropriately chosen genus-two problem.)

Proof of 5.12.8: 5.12.1 For the general case, we will follow Andre’ev’s method,
but make use of the special case to bypass some steps.

Dual to the triangulation 7 of 52 is a polyhedron P. The edge set & of
7 we identify with the set £ of edges of P. The plan is to study the space of

hyperbolic polyhedra of the combinatorial type of P. Since 7 is a triangulation,

only three faces meet at each vertex of P. In case P has symmetries, we
understand a combinatorial equivalence to P to be fixed. Let F,E and V
denote the numbers of faces, edges and vertices of P. The condition that a set
of half-spaces determine a polyhedron combinatorially equivalent to P is an
open condition. A polyhedron combinatorially equivalent to P is determined
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as an intersection of F half-spaces, and the set of half-spaces is the three-
manifold S? x (0, ). (A half-space is specified by the center and radius of its

- disk on 52,.) Therefore, the set of polyhedra combinatorially equivalent to P is

a manifold of dimension 3F. The group of isometries of H? is six-dimensional,
and it acts freely on the space of polyhedra combinatorially equivalent to P, so
the space of congruence classes of polyhedra combinatorially equivalent to P
is a manifold of dimension 3F —6. Let C'/(P) denote the.open subset consisting
of polyhedra with angles < 7 /2, and C(P) the polyhedra with angles < 7 /2.

Lemm 5.12.4. If there is a © : £ — [0, x /2] satisfying conditions 5.11.1 such
that the three edges €, €3, and e3 of every triangle of 7 satisfy O(e)) +O(ez) +
O(e3) > =, then C(P) is not empty.

" Proof of 5.12.4: Let K > = be the minimum value of the @-sum for the three

edges of any triangle of 7. Then (x/K) - © satisfies the hypotheses of lemma
5.12.2, so there is a non-compact polyhedron of finite volume combinatorially

equivalent to P, with every angle strictly less than /2. Push each face plane
slightly inward, to get a compact acute-angled polyhedron. - 5.12.4

Continuation of proof of 5.12.1: We will now study the map A : C(P) —
[0, 7 /2}® which describes the dihedral angle at the edges of a polyhedron. Since
the Euler characteristic of 52 is 2 , we have

V_-E4+F=2
9E =3V

E=3F -6.

Thus, the dimension of the domain of A equals the dimension of the range of
n _

Next we will prove that A is one-to-one. This, combined with an analysis
of the “boundary behavior” of A, will tell us the range of A.

Lemm 5.12.5. Let B be a polygon in H? with all angles < ©/2, and let C
be another polygon with the same angles. Label each side of B with a +,0
or — according to whether the corresponding side of C has a larger, equal, or
smaller length. If C is not congruent to B, then there is ot least one pair of
+ sides of B which separate a pair of — sides.

Proof of 5.12.5: Otherwise, there is some common perpendicalar m to some
pair of sides of B such that all sides of B ta the right of m are labeled 0 or +,
and all sides to the left are labeled 0 or —. Consider the length of the altitude
of C corresponding to m. Looking at the right half of B with the right half of
C, we see that this altitude of C' lengthens, but looking at the left halves we
see that it shortens, a contradiction. :

- This lemma combines nicely with a well-known lemma of Cauchy, which
was a key step to the proof of rigidity of convex polyhedra in E3:
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Lemm 5.12.6. (Cauchy). Lei P be a polyhedron, meaning a cell-division of
S? such that two cells touch either along at most one one-cell or along at most
one zero-cell. Suppose the edges of P are labeled with +, 0 and — in such a
way that for each face of P, either all edges are labeled 0, or there is at least
one pair of +’s which separate at least one pair of —’s. Then the labeling is
identically 0.

Proof of 5.12.6: Let V be the union of closed two-cells whose edges are not

labeled identically 0. Let V; be any component of V. Define a line field with

singularities on Vp which is tangent to any edge labeled 0 or +, transverse to
any edge labeled —, and has at most one singularity which then has negative
index in the interior of any face of V4, as in figure 5.66.

Now collapse each component of 8V to a point, to obtain a singular line
field on S The index at any vertex is negative or 0 , so the total index is
negative, which contradicts the fact that the total index must be +2 = x{S?).
(Recall that the Poincaré-Hopf index theorem says that the index of any line-

_ field is the same as the Euler 'cha.xjacteristic of the space.) 5.12.6
COMB TYPE
COME TYPE

Figure 5.66. COMB TYPE

Corollar 5.12.7. The map A : C(P) — [0,7/2)% is injective.

Proof of 5.12.7: Observe that the corner angles of faces of P are determined
by the dihedral angles of P, and they are all < #/2. Apply 5.12.5 and 5.12.6.
: 5.12.7
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Continuation of proof of 5.12.1: By invariance of domain (or by an elementary
application of the inverse function theorem using a first-order version of 5.12.7)
the image of A restricted to C(P) is an open set, U C [0,7/2)¥, contained
in the open subset V, which is defined by conditions 5.11.1 together with
the open condition that for the three edges e;,e; and ez of any triangle of 7,
O(es) + O{ez) + O(es) > w. To prove that U = V, it suffices to prove that
oU € dV. This is sufficient, since V is connected and we already know that
U CV. Let © € 8U C V be any limiting assignment of angles, and let {£;}
be a sequence of hyperbolic polyhedra € C(P) such that the dihedral angles
A(P;) converge to ©,. Consider any face F' of {P;}. Hits area tends toward 0,
then the sum of its angles tends toward the Euclidean value. But the dihedral

angle of the edge which meets ' at any corner is not less than the corner angle

of F, so we get a circuit of faces circumnavigating #' so that O, assigns values
which sum to (f —2)7 (if F has f sides). Clearly, f < 4, since each angle is no
greater than 7 /2. Since we assumed that P is not a tetrahedron, this circuit
does nof circumnavigate a vertex, so Q, fails 5 11.1, and must be outmde v,
hence in V.

I no face has area tending toward 0, and H all edges of {F;} remain
bounded in length, then {#} has a subsequence converging up to congruence.
(If any edge tends to 0 in length, it is easy to see that the corner angles of its

- two incident faces must tend to x/2, and adjacent edges tend to oo in length.)

Since ©; is assumed to be on U, we conclude that at least one edge length
does not remain bounded. Pa.ss to a subsequence where the length of some
edge e goes to co.

The area of each face is bounded. Therefore in the faces of P contammg
e, e cannot have a standard tubular neighborhood of width &; in fact, e must
nearly parallel other edges (within ¢) for all but a bounded portio_n of its
length, so we conclude that the lengths of more edges of {F;} tend to co. How
long can this continue? Since each edge has an angle of al most #/2 and the
angle sum for such a circuit converges to the Euclidean value (as one sees by
considering the intersection with an approximately perpendicular plane to the
edges in question) the chain of faces with long, nearly parallel, faces can only
have length three or four.

This shows that 6, € V. (Note that if the circuit goes around an edge,
it forces the two ends of the edge to have angles — (0,7/2,7/2), so O, fails
the condition on two triangles of 7. If it goes around a vertex, it similarly

fails.)

Exercis 5.12.8. Let P be a cube truncated at four alternate corners. Show that
C(PFP) is empty.

Exercis 5.12.9. * a) Consider the operation of taking two polyhedra which have
three edges at cach vertex, and performing a kind of connected sum by deleting a
neighborhood of a vertex of each, and matching the edges which were incident to
one deleted vertex with the edges which were incident to the other, yielding a new
polyhedron of the same type. Show that any polyhedron with three edges incident

- Revision: 1.5 : Date: 89/10/15 18:34:41



% CIRCLE COND
% FLUSMIN SEP

Section "CAUCHY-

LIKE"
% CAUCHYLIKE
% CAUCHY

5.12. PROOF OF ANDRE’EV’S THEOREM ' s o 280

to each vertex is obtained in a unique way by combining pol"y:hedra which cannot

be decomposed further. (“Unique” must be appropriately interpreted, of course. )
b} Let P be a polyhedron with three edges at each vertex, and let Py, ..., P; be
its indecomposable pieces. Label each vertex of Py,..., P, with —1 if it is used for
a connected sum operation, and label it +1 otherwise. Show that C(P) is empty iff
for at least one F;, the vertices are labeled alternately, that is each edge has a +1
vertex and a —1 vertex.
(Hint: If there is a solution for @, there is a solution near © = -;r/ 3 which satisfies

the closed inequalities. Solutions for © near x/3 form an open convex cone. Such

a cone is empty iff the spanning vectors for the dual cone (see 5.11.1) contain 0 in

 their convex hull. Consider what this means on P in relation to its decomposition;

use induction on the tree like pattern in which the P; are assembled.)

Exercis 5.12.10. Show that lemma 5.12.5 is sharp, in the sense that for any hy-
perbolic polygon B with angles < #/2, and any labeling of the sides of B with 4’s,

0%s, and ~’s such that at least one pair of +’s separates a pair of —’s, there is a

polygon C with the same angles as B and with its + sides larger, its 0 sides the
same length, and its — sides smaller.

Exercis 5.12.11. Show that if B and C are two convex polygons on §2 with
correspondlng sides equal in length, and if the vertices of B are labeled with +’s, 0’s
and —’s according to whether the angle at the corresponding vertex of C is larger,
the same, or smaller than the angle of B, then at lea.st one pair of +’s separates at
least one pair of —’s. : : S :

Exercis 5.12.12. Prove Cauchy’s rigidity theorem for cbnvex polyhedra in E3: if
P and Q are two convex polyhedra in E3, and f : P — @ is a piecewise linear
isometry between them, then f extends to an isometry of E3.

(Hint: first triangulate P so that f is linear on each triangle. Apply 5.12.11
and 5.12.6. )
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GlosSary |

action [Ber87, vol. I, p. 5. f G is a

group and X is a topological space, an
action of G on X (or G-action) is a ho-
momorphism from G into the group of
homeomorphisms of X; we denote the
image of z € X under the homeomor-
phism associated to g € G by g(z). A
G-action defines an equivalence relation
on X, whereby z,y € X are equivalent if
and only if y = g(z) for some g € G. The
equivalence classes of this equivalence are
the orbits of G. The space of orbits, with
the quotient topology, is the quotient of
X by the G-action.

ambient. When we talk about two
spaces (or manifolds, etc.), one con-
tained in the other, the containing space.
is sometimes called the ambient space.
A homeomorphism (or diffeomorphism,

_etc.}, of the containing space is then

called an ambient homeomorphism.

barycentric subdivision. The barycen-

tric subdivision of a triangle is obtained

by joining the triangle’s barycenter—the

average of its three vertices—to the ver-
tices and to the midpoints of the sides.
The subdivision of a triangulation is
what you get by taking the barycentric
subdivision of each triangle in the trian-
gulation.

Cr, C*. See ldifferentiable.
cprie' on a torus.

covering,
ing space, covering transformation,
covering group [Mun75, p. 331-341,

cOovering Imap, CcOver-

tial derivatives of all orders.

398]. A continuous map p : X — X be-
tween path-connected topological spaces
is a covering map if every point of X has

.a neighborheod V such that every con-

nected component of p71(V) is mapped
homeomorphically onto V by p. In this
case X is called a covering space of X,
and (;( .P, X ) is called a covering. A map
¢ : X — X such that po¢ = pis a
covering transformation for this covering;
covering transformations form a group,
called the covering group. If X is simply
connected, it is called the universal cover
of X—*the” because it is unique up to
homeomorphism.

diffeomorphism, diffeomorphic. i f
is bijective and both f and f~! are dif-

- ferentiable, f is called a diffeornorphism,

and X and Y are said to be diffeomor-
phic.

differentiable map [Hir76, p. 9, 15]. A
map. f : U — R™, where U is open in
R™, is differentiable of class C* {ora C”-
map) if f has continuous partial deriva-
tives of order up to . It is smooth, or
of class O, if it has continuous par-
A map
f: X — R™, where X C R™ is arbi-
trary, is of class C* if it can be extended
to a C” map on a neighborhood of X.
Amap f : X — Y between dif-
ferentiable manifolds or manifolds-with-

- boundary is of class CT if, for every point

of z € X, the expression of f in local
coordinates in a neighborhood of « is of
class 7.

317
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"
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hyperbolic geometry
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s:homotopic
sihomotopy
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zisotophc
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szembedding
embedded

Glossary

differentiable manifold.

dihedral angle. The dihedral angle be-
tween two intersecting planes in space is
the angle between the lines determined
on the two planes by a third plane or-
thogonal o both.

embed, embedding. See immersion.

Euclidean [Ber87, p. 153, 202]. We get
EBuclidean n-space E* (plane if n = 2) by
giving R™ the Euclidean meiric d{z,y) =

& ziw) 172 , where z = (21,...,%,) and

g = (1n,-- ,y,,) are points in R”’. For

n = 3 this is the space of our everyday
experience.

Euclid’s parallel axiom. “Given aline
and a point outside the line, there is ex-
actly one parallel to the line through the
point.” This axiom, which holds in a Eu-
clidean space, has numerous equivalent
formulations, such as “The sum of the
angles of a triangle equals 180°.”

" frame, frame bundle.

fundamental group [Mun75, p.326]. If

X is a connected topological space, the
set of homotopy classes of loops begin-
ning and ending at a fixed point of X (the
base point) is a group under concatena-
tion of paths. It is called the fundamen-
tal group of X. I the fundamental group
of X is trivial, we say that X is simply
connected.

geodesic {dC76, p. 7?]). Geodesics are
curves that are as straight as possible.
More precisely, given a Riemannian man-
ifold X and an icterval 7 C R, a curve
¥ : I - X is a geodesic if, for z,y €
I close enough, the shortest path join-
ing ¥(z} and 4(y) in X coincides with
4{[z,y]). Normally we alse require that

v be parametrized at constant speed

(which can be zero). Often the image
(I )_, too, is called a geodesic.

geometry. Sometimes we use “geom-
etry” interchangeably with “metric.”
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Other times, “geometry” refers to the set
of properties of a space that depend on
the metric. Qther times yet, it refers to
the properties of a space that are invari-
ant under a group of transformations of
the space, which depends on the context.
Thus projective geometry, Fuclidean ge-
ometry, hyperbolic geometry.

homothety [Ber87, vol. I, p. 39]. A
homothety centered at a point p € E*
is the map that fixes p and “blows up”
or “shrinks down” all of space around p.
More precisely, it takes ¢ to k(q p) + 1,
for £ € R\ {0} fixed.

homotopy, homotopic, homotope
[Mun75, p. 318-319]. Two continuous
maps f,g : X — Y between topologi-
cal spaces are homotapic if they can be
continuously deformed into one another,
that is, if there is a continuous map F' :
X x.{0,1] —~ Y such that F|xq0y = f
and F|xy(1} = g. Such a map is called a
komotopy between f -and g, and we say
that f can be homotoped into g through

F. If every stage of the homotopy, that

is, every map Fix. fort € [0,1],is a
homeomorphism onto its image, we say
that F is an isotopy and that f and g are
isoiopic.

immersion [Hir76, p.21]. A differen-
tiable map f : M — N between differ-
entiable manifolds is an immersion if the
derivative df has maximal rank at every
point p € M. I, in addition, f is a home-
omorphism onto its image, it is called an
embedding, and we say that M is embed-
dedin N. In particular, an embedding is
a one-to-one immersion.

induced orientation on the bound-
ary.

intermediate value theorem. A con-
tinuous function f : {e,b] — R that is
positive at ¢ and negative at & must be
zero somewhere in (a,b). A trivial conse-

quence of the connectedness of an inter-
val.
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Glossary

invariance of domain, theorem on
the [Brol2a, |. If a subset 4 C R™
is homeomorphic to an open subset of
R", it is itself open. From this it easily
follows that an m-dimensional manifold
cannot have a subset homeomorphic to
R*, for n > m.
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orthogonal trajectories.

polygonal region. A closed set on the
plane bounded by a polygon.

guotient by a group action. See
taction.

isotopy, isotopic, isotope. See Thomc'tolﬁ'uotient. topology [Mun75, p. 134-

O(4). If f and g are real-valued functions
of a real or integer variable z, we say that
fis O(g) if f is bounded by a multiple
of g for z large enough. For instance, f
grows polynomially if f is O(z") for some
n, that is, if f is bounded by a polyno-
mial of order .

orbit. See Taction.

order. The order of an element g of a
group is the smallest positive integer n (if
one exists) such that ¢g" is the identity.

orientation, oriented, orientable,
orientation-preserving, orientation-
reversing [Mil65, p. 27]. An oriente-
tion for a finite-dimensional vector space
is an equivalence class of (ordered) bases
that can be taken to one another by lin-
ear transformations with positive deter-
minant. A linear transformation between
oriented vector spaces is orfentaiion-
preserving or orientatfon-reversing de-
pending on whether its determinant is
positive or negative.

A manifold M is orientable if the
tangent spaces to M at all points can
be oriented consistently. This means
that M can be covered by coordinate
patches such that the derivative map
of any coordinate map at any & €
M is an orientation-preserving map be-
tween T, M and R™ with its standard
orientation. We say that M is ori-
ented if such a choice of orientations has
been made. A local diffeomorphism be-
tween oriented manifolds is orientation-
preserving or orienfation-reversing ac-
cording to what its derivative is at each
point.
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136]. If X is a topological space and ~ is
an equivalence relation on X, we define
the gquotient topology on the set X/ ~
of equivalence classes by decreeing that
a set of classes is open if and only if
the union of their inverse images in X
is open.

Riemannian manifold, Riemannian
metric [BG88, p. 126]. A Riemannian
metric on a differentiable manifold X is a
rule that gives for each point p € X an in-
ner product on the tangent space T, X, in
such a way that the inner product varies
smoothly with p. Giving an inner prod-
uct also gives 2 notion of length for tan-
gent vectors, and consequently for differ-
entiable paths. A Riemannian manifold
is 2 manifold with a Riemannian metric;
such a manifold is a metric space in a nat-
ural way, the distance between two points
being the infimum of the lengths of paths
joining the two points.

. semigroup.

similarity [Ber87, vol. I, p. 183]. A sim-
tlarity of Euclidean space is a transforma-
tion that multiplies all distances by the
same factor k.

simply connected. See fundamental
group.

smooth. See Ydifferentiable.

star, star of a vertex, star of a simplex
in a simplicial complex

symmetry.
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sulling
siiles
stiling
tcovering

Glossary

tiling [Ber87, vol. I, p. 11-31]. Roughly
speaking, a tiling of a space X is a way to
fill up X with copies of one or more stan-
dard tiles, or shapes. There are various
ways to restrict and formalize this defi-
nition to make it more manageable. We
can stick to the following definition: A
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tiling of X consists of a connected com-
pact subset P C X and a group G of
isometries of X such that the interior of
P is non-empty, the union of images of
P under G is X, and two images of P
coincide if their interiors intersect.

universal cover. See icovering.
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