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Introduction

These notes (through p. 9.80) are based on my course at Princeton in 1978-
79. Large portions were written by Bill Floyd and Steve Kerckhoff. Chapter 7, by
John Milnor, is based on a lecture he gave in my course; the ghostwriter was Steve
Kerckhoff. The notes are projected to continue at least through the next academic
year. The intent is to describe the very strong connection between geometry and low-
dimensional topology in a way which will be useful and accessible (with some effort)
to graduate students and mathematicians working in related fields, particularly 3-
manifolds and Kleinian groups.

Much of the material or technique is new, and more of it was new to me. As
a consequence, I did not always know where I was going, and the discussion often
tends to wanter. The countryside is scenic, however, and it is fun to tramp around if
you keep your eyes alert and don’t get lost. The tendency to meander rather than to
follow the quickest linear route is especially pronounced in chapters 8 and 9, where
I only gradually saw the usefulness of “train tracks” and the value of mapping out
some global information about the structure of the set of simple geodesic on surfaces.

I would be grateful to hear any suggestions or corrections from readers, since
changes are fairly easy to make at this stage. In particular, bibliographical informa-
tion is missing in many places, and I would like to solicit references (perhaps in the
form of preprints) and historical information.
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CHAPTER 1
Geometry and three-manifolds

The theme I intend to develop is that topology and geometry, in dimensions up
through 3, are very intricately related. Because of this relation, many questions
which seem utterly hopeless from a purely topological point of view can be fruitfully
studied. It is not totally unreasonable to hope that eventually all three-manifolds
will be understood in a systematic way. In any case, the theory of geometry in
three-manifolds promises to be very rich, bringing together many threads.

Before discussing geometry, I will indicate some topological constructions yielding
diverse three-manifolds, which appear to be very tangled.

0. Start with the three sphere S3, which may be easily visualized as R?, together
with one point at infinity.

1. Any knot (closed simple curve) or link (union of disjoint closed simple curves)
may be removed. These examples can be made compact by removing the interior of
a tubular neighborhood of the knot or link.
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1. GEOMETRY AND THREE-MANIFOLDS

The complement of a knot can be very enigmatic, if you try to think about it
from an intrinsic point of view. Papakyriakopoulos proved that a knot complement
has fundamental group Z if and only if the knot is trivial. This may seem intuitively
clear, but justification for this intuition is difficult. It is not known whether knots
with homeomorphic complements are the same.

2. Cut out a tubular neighborhood of a knot or link, and glue it back in by a
different identification. This is called Dehn surgery. There are many ways to do
this, because the torus has many diffeomorphisms. The generator of the kernel of the
inclusion map m;(T?) — m; (solid torus) in the resulting three-manifold determines
the three-manifold. The diffeomorphism can be chosen to make this generator an
arbitrary primitive (indivisible non-zero) element of Z @ Z. It is well defined up to
change in sign.

Every oriented three-manifold can be obtained by this construction (Lickorish) .
It is difficult, in general, to tell much about the three-manifold resulting from this
construction. When, for instance, is it simply connected? When is it irreducible?
(Irreducible means every embedded two sphere bounds a ball).

Note that the homology of the three-manifold is a very insensitive invariant.
The homology of a knot complement is the same as the homology of a circle, so
when Dehn surgery is performed, the resulting manifold always has a cyclic first
homology group. If generators for Z @ Z = m,(T?) are chosen so that (1,0) generates
the homology of the complement and (0,1) is trivial then any Dehn surgery with
invariant (1,n) yields a homology sphere. 3. Branched coverings. If L is a link,
then any finite-sheeted covering space of S — L can be compactified in a canonical
way by adding circles which cover L to give a closed manifold, M. M is called a
branched covering of S® over L. There is a canonical projection p : M — S3, which is
a local diffeomorphism away from p~!(L). If K C S® is a knot, the simplest branched
coverings of S3 over K are then n-fold cyclic branched covers, which come from the
covering spaces of S® — K whose fundamental group is the kernel of the composition
m (8% — K) — H\(S* — K) = Z — Z,. In other words, they are unwrapping S°
from K n times. If K is the trivial knot the cyclic branched covers are S3. It
seems intuitively obvious (but it is not known) that this is the only way S® can be
obtained as a cyclic branched covering of itself over a knot. Montesinos and Hilden
(independently) showed that every oriented three-manifold is a branched cover of S*
with 3 sheets, branched over some knot. These branched coverings are not in general
regular: there are no covering transformations.

The formation of irregular branched coverings is somehow a much more flexible
construction than the formation of regular branched coverings. For instance, it is not
hard to find many different ways in which S® is an irregular branched cover of itself.
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1. GEOMETRY AND THREE-MANIFOLDS

5. Heegaard decompositions. Every three-manifold can be obtained from two
handlebodies (of some genus) by gluing their boundaries together.

The set of possible gluing maps is large and complicated. It is hard to tell, given
two gluing maps, whether or not they represent the same three-manifold (except
when there are homological invariants to distinguish them).

6. Identifying faces of polyhedra. Suppose Py, ..., P are polyhedra such that the
number of faces with K sides is even, for each K.

Choose an arbitrary pattern of orientation-reversing identifications of pairs of
two-faces. This yields a three-complex, which is an oriented manifold except near the
vertices. (Around an edge, the link is automatically a circle.)

There is a classical criterion which says that such a complex is a manifold if and
only if its Euler characteristic is zero. We leave this as an exercise.

In any case, however, we may simply remove a neighborhood of each bad vertex,
to obtain a three-manifold with boundary.

The number of (at least not obviously homeomorphic) three-manifolds grows very
quickly with the complexity of the description. Consider, for instance, different ways
to obtain a three-manifold by gluing the faces of an octahedron. There are

8!
2441
possibilities. For an icosahedron, the figure is 38,661 billion. Because these polyhedra
are symmetric, many gluing diagrams obviously yield homeomorphic results—but this
reduces the figure by a factor of less than 120 for the icosahedron, for instance.

In two dimensions, the number of possible ways to glue sides of 2n-gon to obtain an
oriented surface also grows rapidly with n: it is (2n)!/(2"n!). In view of the amazing
fact that the Euler characteristic is a complete invariant of a closed oriented surface,
huge numbers of these gluing patterns give identical surfaces. It seems unlikely that

3% = 8,505
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1. GEOMETRY AND THREE-MANIFOLDS

such a phenomenon takes place among three-manifolds; but how can we tell?

ExXAMPLE. Here is one of the simplest possible gluing diagrams for a three-
manifold. Begin with two tetrahedra with edges labeled:

There is a unique way to glue the faces of one tetrahedron to the other so that
arrows are matched. For instance, A is matched with A’. All the /— arrows are
identified and all the //— arrows are identified, so the resulting complex has 2
tetrahedra, 4 triangles, 2 edges and 1 vertex. Its Euler characteristic is +1, and (it
follows that) a neighborhood of the vertex is the cone on a torus. Let M be the
manifold obtained by removing the vertex.

It turns out that this manifold is homeomorphic with the complement of a figure-
eight knot.

"Figure eight knot."

4 Thurston — The Geometry and Topology of 3-Manifolds



1. GEOMETRY AND THREE-MANIFOLDS

>

Another view of the figure-eight knot

1.6

This knot is familiar from extension cords, as the most commonly occurring knot,

after the trefoil knot

In order to see this homeomorphism we can draw a more suggestive picture of the
figure-eight knot, arranged along the one-skeleton of a tetrahedron. The knot can be

Tetrahedron with figure-eight knot, viewed from above
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1. GEOMETRY AND THREE-MANIFOLDS

spanned by a two-complex, with two edges, shown as arrows, and four two-cells, one
for each face of the tetrahedron, in a more-or-less obvious way:

This pictures illustrates the typical way in which a two-cell is attached. Keeping in
mind that the knot is not there, the cells are triangles with deleted vertices. The two
complementary regions of the two-complex are the tetrahedra, with deleted vertices.

We will return to this example later. For now, it serves to illustrate the need for
a systematic way to compare and to recognize manifolds.

NOTE. Suggestive pictures can also be deceptive. A trefoil knot can similarly be
arranged along the one-skeleton of a tetrahedron:

6 Thurston — The Geometry and Topology of 3-Manifolds
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1. GEOMETRY AND THREE-MANIFOLDS

From the picture, a cell-division of the complement is produced. In this case,
however, the three-cells are not tetrahedra.

The boundary of a three-cell, flattened out on the plane.
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CHAPTER 2
Elliptic and hyperbolic geometry

There are three kinds of geometry which possess a notion of distance, and which
look the same from any viewpoint with your head turned in any orientation: these
are elliptic geometry (or spherical geometry), Euclidean or parabolic geometry, and
hyperbolic or Lobachevskiian geometry. The underlying spaces of these three geome-
tries are naturally Riemannian manifolds of constant sectional curvature +1, 0, and
—1, respectively.

Elliptic n-space is the n-sphere, with antipodal points identified. Topologically
it is projective n-space, with geometry inherited from the sphere. The geometry of
elliptic space is nicer than that of the sphere because of the elimination of identical,
antipodal figures which always pop up in spherical geometry. Thus, any two points
in elliptic space determine a unique line, for instance.

In the sphere, an object moving away from you appears smaller and smaller, until
it reaches a distance of 7/2. Then, it starts looking larger and larger and optically,
it is in focus behind you. Finally, when it reaches a distance of 7, it appears so large
that it would seem to surround you entirely.

In elliptic space, on the other hand, the maximum distance is 7/2, so that ap-
parent size is a monotone decreasing function of distance. It would nonetheless be

Thurston — The Geometry and Topology of 3-Manifolds 9

2.2



2. ELLIPTIC AND HYPERBOLIC GEOMETRY

distressing to live in elliptic space, since you would always be confronted with an im-
age of yourself, turned inside out, upside down and filling out the entire background
of your field of view. Euclidean space is familiar to all of us, since it very closely
approximates the geometry of the space in which we live, up to moderate distances.
Hyperbolic space is the least familiar to most people. Certain surfaces of revolution
in R? have constant curvature —1 and so give an idea of the local picture of the
hyperbolic plane.

The simplest of these is the pseudosphere, the surface of revolution generated by
a tractrix. A tractrix is the track of a box of stones which starts at (0,1) and is
dragged by a team of oxen walking along the z-axis and pulling the box by a chain of
unit length. Equivalently, this curve is determined up to translation by the property
that its tangent lines meet the z-axis a unit distance from the point of tangency. The
pseudosphere is not complete, however—it has an edge, beyond which it cannot be
extended. Hilbert proved the remarkable theorem that no complete C? surface with
curvature —1 can exist in R®. In spite of this, convincing physical models can be
constructed.

We must therefore resort to distorted pictures of hyperbolic space. Just as it is
convenient to have different maps of the earth for understanding various aspects of its
geometry: for seeing shapes, for comparing areas, for plotting geodesics in navigation;
so it is useful to have several maps of hyperbolic space at our disposal.

2.1. The Poincaré disk model.

Let D™ denote the disk of unit radius in Euclidean n-space. The interior of D"
can be taken as a map of hyperbolic space H". A hyperbolic line in the model is any
Euclidean circle which is orthogonal to dD"; a hyperbolic two-plane is a Euclidean
sphere orthogonal to 0D"; etc. The words “circle” and “sphere” are here used in

10 Thurston — The Geometry and Topology of 3-Manifolds
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2.2. THE SOUTHERN HEMISPHERE.

the extended sense, to include the limiting case of a line or plane. This model
is conformally correct, that is, hyperbolic angles agree with Euclidean angles, but
distances are greatly distorted. Hyperbolic arc length v/ds? is given by the formula

ds* = <1 _1T2>2da:2,

where vdz? is Euclidean arc length and r is distance from the origin. Thus, the
Euclidean image of a hyperbolic object, as it moves away from the origin, shrinks in
size roughly in proportion to the Euclidean distance from 0D™ (when this distance
is small). The object never actually arrives at dD", if it moves with a bounded
hyperbolic velocity.

Lines -

People

The sphere D™ is called the sphere at infinity. It is not actually in hyperbolic
space, but it can be given an interpretation purely in terms of hyperbolic geometry,
as follows. Choose any base point py in H". Consider any geodesic ray R, as seen
from po. R traces out a segment of a great circle in the visual sphere at py (since
po and R determine a two-plane). This visual segment converges to a point in the
visual sphere. If we translate H" so that pg is at the origin of the Poincaré disk

model, we see that the points in the visual sphere correspond precisely to points
in the sphere at infinity, and that the end of a ray in this visual sphere corresponds
to its Euclidean endpoint in the Poincaré disk model.

2.2. The southern hemisphere.

The Poincaré disk D™ C R is contained in the Poincaré disk D"*! c R*™! as a
hyperbolic n-plane in hyperbolic (n + 1)-space.

Thurston — The Geometry and Topology of 3-Manifolds 11
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

Stereographic projection (Euclidean) from the north pole of D" sends the
Poincaré disk D™ to the southern hemisphere of D"+,

Souﬂ\.e,rﬂ
Hem SPhc'fe

Thus hyperbolic lines in the Poincaré disk go to circles on S™ orthogonal to the
equator S 1.

There is a more natural construction for this map, using only hyperbolic geometry.
For each point p in H™ C H™"!, consider the hyperbolic ray perpendicular to H™ at
p, and downward normal. This ray converges to a point on the sphere at infinity, 26
which is the same as the Euclidean stereographic image of p.

n. pa\ﬂ

2.3. The upper half-space model.

This is closely related to the previous two, but it is often more convenient for
computation or for constructing pictures. To obtain it, rotate the sphere S™ in
R"*! so that the southern hemisphere lies in the half-space z,, > 0 is R**!. Now
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2.4. THE PROJECTIVE MODEL.

stereographic projection from the top of S™ (which is now on the equator) sends the
southern hemisphere to the upper half-space x,, > 0 in R**!,

™,

), et _Lin

/ LS \\

J'I.IJ /

i T . ;
R i \h{% \..

A hyperbolic line, in the upper half-space, is a circle perpendicular to the bounding
plane R"~! C R". The hyperbolic metric is ds* = (1/z,)* dz?. Thus, the Euclidean
image of a hyperbolic object moving toward R"~! has size precisely proportional to
the Euclidean distance from R"~!.

T

2.4. The projective model.

This is obtained by Euclidean orthogonal projection of the southern hemisphere
of S™ back to the disk D™. Hyperbolic lines become Euclidean line segments. This
model is useful for understanding incidence in a configuration of lines and planes.
Unlike the previous three models, it fails to be conformal, so that angles and shapes
are distorted.

It is better to regard this projective model to be contained not in Euclidean

2.7

space, but in projective space. The projective model is very natural from a point of 2.8

view inside hyperbolic (n + 1)-space: it gives a picture of a hyperplane, H", in true
perspective. Thus, an observer hovering above H™ in H"*!, looking down, sees H"

Thurston — The Geometry and Topology of 3-Manifolds 13



2. ELLIPTIC AND HYPERBOLIC GEOMETRY

as the interior of a disk in his visual sphere. As he moves farther up, this visual disk
shrinks; as he moves down, it expands; but (unlike in Euclidean space), the visual
radius of this disk is always strictly less than 7/2. A line on H? appears visually
straight.

It is possible to give an intrinsic meaning within hyperbolic geometry for the
points outside the sphere at infinity in the projective model. For instance, in the
two-dimensional projective model, any two lines meet somewhere. The conventional
sense of meeting means to meet inside the sphere at infinity (at a finite point). If
the two lines converge in the visual circle, this means that they meet on the circle at
infinity, and they are called parallels. Otherwise, the two lines are called ultraparallels;
they have a unique common perpendicular L and they meet in some point = in the
Mobius band outside the circle at infinity. Any other line perpendicular to L passes
through x, and any line through x is perpendicular to L.

™

L L
| "./ *
p

j

To prove this, consider hyperbolic two-space as a plane P C H3. Construct
the plane @ through L perpendicular to P. Let U be an observer in H3. Drop a
perpendicular M from U to the plane (). Now if K is any line in P perpendicular

\‘\ '

14 Thurston — The Geometry and Topology of 3-Manifolds
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2.4. THE PROJECTIVE MODEL. 2.8a

\\\\\\\@
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<
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——

=

= —

———

|

Evenly spaced lines. The region inside the circle is a plane, with a base line and a family of
its perpendiculars, spaced at a distance of .051 fundamental units, as measured along the base
line shown in perspective in hyperbolic 3-space (or in the projective model). The lines have been
extended to their imaginary meeting point beyond the horizon. U, the observer, is directly above
the X (which is .881 fundamental units away from the base line). To see the view from different
heights, use the following table (which assumes that the Euclidean diameter of the circle in your
printout is about 5.25 inches or 13.3cm):

To see the view of hold the picture a To see the view of hold the picture a
U at a height of distance of U at a height of distance of
2 units 11" ( 28 cm) 5 units 17" (519 cm)
3 units 27" ( 69 cm) 10 units 2523" (771 m )
4 units 6’ (191 cm) 20 units 10528.75 miles (16981 km)

For instance, you may imagine that the fundamental distance is 10 meters. Then the lines are
spaced about like railroad ties. Twenty units is 200 meters: U is in a hot air balloon.

Thurston — The Geometry and Topology of 3-Manifolds 15



2. ELLIPTIC AND HYPERBOLIC GEOMETRY

to L, the plane determined by U and K is perpendicular to ), hence contains M;
hence the visual line determined by K in the visual sphere of U passes through the
visual point determined by K. The converse is similar.

This gives a one-to-one correspondence between the set of points x outside the
sphere at infinity, and (in general) the set of hyperplanes L in H". L corresponds
to the common intersection point of all its perpendiculars. Similarly, there is a
correspondence between points in H™ and hyperplanes outside the sphere at infinity:
a point p corresponds to the union of all points determined by hyperplanes through p.

2.5. The sphere of imaginary radius.

A sphere in Euclidean space with radius r has constant curvature 1/r?. Thus,
hyperbolic space should be a sphere of radius 7. To give this a reasonable interpreta-
tion, we use an indefinite metric dz? = dz? + - -+ + da? — da? , in R"*'. The sphere
of radius ¢ about the origin in this metric is the hyperboloid

2 2 2
i+t ay, —x,, = —L

16 Thurston — The Geometry and Topology of 3-Manifolds
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2.6. TRIGONOMETRY.

The metric dx? restricted to this hyperboloid is positive definite, and it is not
hard to check that it has constant curvature —1. Any plane through the origin is d?-
orthogonal to the hyperboloid, so it follows from elementary Riemannian geometry
that it meets the hyperboloid in a geodesic. The projective model for hyperbolic space
is reconstructed by projection of the hyperboloid from the origin to a hyperplane in
R™. Conversely, the quadratic form a3 + --- + 22 — 22, can be reconstructed from
the projective model. To do this, note that there is a unique quadratic equation of

the form
n
Z Clijl'il'j =1

ij=1
defining the sphere at infinity in the projective model. Homogenization of this equa-
tion gives a quadratic form of type (n,1) in R""1 as desired. Any isometry of the
quadratic form % + -+ + 22 — 22, induces an isometry of the hyperboloid, and
hence any projective transformation of P" that preserves the sphere at infinity in-
duces an isometry of hyperbolic space. This contrasts with the situation in Euclidean
geometry, where there are many projective self-homeomorphisms: the affine transfor-
mations. In particular, hyperbolic space has no similarity transformations except
isometries. This is true also for elliptic space. This means that there is a well-defined
unit of measurement of distances in hyperbolic geometry. We shall later see how this
is related to three-dimensional topology, giving a measure of the “size” of manifolds.

2.6. Trigonometry.

Sometimes it is important to have formulas for hyperbolic geometry, and not just
pictures. For this purpose, it is convenient to work with the description of hyperbolic

Thurston — The Geometry and Topology of 3-Manifolds 17
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

space as one sheet of the “sphere” of radius ¢ with respect to the quadratic form
Q(X) :X12+"‘+X2_XZ+1

in R"*!. The set R"*!, equipped with this quadratic form and the associated inner
product

XY =) XiVi = Xpp1Vosn,
i=1
is called E™!. First we will describe the geodesics on level sets S, = {X : Q(X) = r?}
of ). Suppose that X; is such a geodesic, with speed

s =1/Q(X,).

We may differentiate the equations

Xt'Xt:T2> Xt'XtZSQa
to obtain

Xt'XtZO, Xt'Xt:O,
and

Xt . Xt = —Xt . Xt = —82.

Since any geodesic must lie in a two-dimensional subspace, X, must be a linear
combination of X; and X;, and we have

. S\ 2
2.6.1. % =-(3) x
r
This differential equation, together with the initial conditions
XO'X0:7"2> XO'X0:32, XO'X0:0>
determines the geodesics.
Given two vectors X and Y in E™!, if X and Y have nonzero length we define
the quantity
XY
(X)Y)= ——
X[ Y]]
where || X|| = v X - X is positive real or positive imaginary. Note that
c(X,Y) =c(AX,uY),

where A and p are positive constants, that ¢(—X,Y) = —¢(X,Y), and that ¢(X, X) =
1. In Euclidean space E"*1 ¢(X,Y) is the cosine of the angle between X and Y. In
E™! there are several cases.

We identify vectors on the positive sheet of S; (X,,+1 > 0) with hyperbolic space.
If Y is any vector of real length, then @ restricted to the subspace Y+ is indefinite
of type (n — 1, 1). This means that Y intersects H" and determines a hyperplane.

18 Thurston — The Geometry and Topology of 3-Manifolds
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2.6. TRIGONOMETRY.

We will use the notation Y to denote this hyperplane, with the normal orientation
determined by Y. (We have seen this correspondence before, in 2.4.)

2.6.2. If X and Y € H", then ¢(X,Y) = coshd (X,Y),

where d (X,Y) denotes the hyperbolic distance between X and Y.

To prove this formula, join X to Y by a geodesic X; of unit speed. From 2.6.1 we 2.14
have

Xt:Xt7 Xt'X0:07
so we get ¢( Xy, Xp) = (X, Xy), ¢(Xo, Xo) = 0, ¢(X, Xo) = 1; thus ¢(X, X;) = cosht.
When t = d(X,Y), then X; =Y, giving 2.6.2.
If X+ and Y are distinct hyperplanes, then
2.6.3.
X+ and Y+ intersect
<= ( is positive definite on the subspace (X,Y’) spanned by X and Y
— c¢(X,Y) <1
= ¢(X,Y) =cos Z(X,Y) = —cos (X, V™).

To see this, note that X and Y intersect in H" <= ( restricted to X+ NY* is
indefinite of type (n —2,1) <= (@ restricted to (X,Y’) is positive definite. ({(X,Y")
is the normal subspace to the (n — 2) plane X+ NY). 2.15
There is a general elementary formula for the area of a parallelogram of sides X
and Y with respect to an inner product:

area = /X - XY Y —(X-Y)2=|X| -|IY]-V1-cX,Y)2

This area is positive real if X and Y span a positive definite subspace, and pos-
itive imaginary if the subspace has type (1,1). This shows, finally, that X+ and
Y1 intersect <= ¢(X,Y)? < 1. The formula for ¢(X,Y’) comes from ordinary
trigonometry.
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

2.6.4.
X+ and Y+ have a common perpendicular <= @ has type (1,1) on (X,Y)

— o(X,Y)2>1
= ¢(X,Y) = £cosh(d (X", YH)).

The sign is positive if the normal orientations of the common perpendiculars coincide,
and negative otherwise.

i€ g (X 5 X) cosh d(X , Y) o6

The proof is similar to 2.6.2. We may assume X and Y have unit length. Since
(X,Y) intersects H™ as the common perpendicular to X+ and Y+, Q restricted to
(X,Y) has type (1,1). Replace X by —X if necessary so that X and Y lie in the
same component of S;N(X,Y). Join X to Y by a geodesic X; of speed i. From 2.6.1,
X, = X,. There is a dual geodesic Z; of unit speed, satisfying Z; - X; = 0, joining
X+ to Y+ along their common perpendicular, so one may deduce that

o, (X,Y)=+94EY — 4q(xt vh.

There is a limiting case, intermediate between 2.6.3 and 2.6.4:

2.6.5. X+ and Yt are parallel
<= (@ restricted to (X,Y’) is degenerate
— c(X,Y) =1

In this case, we say that X+ and Y+ form an angle of 0 or 7. X+ and Y+ actually
have a distance of 0, where the distance of two sets U and V is defined to be the
infimum of the distance between points u € U and v € V.
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2.6. TRIGONOMETRY.

There is one more case in which to interpret c¢(X,Y):

2.6.6. If X is a point in H™ and Y+ a hyperplane, then
sinh(d (X, Y"))

o X,Y) =

I

7

where d (X,Y™) is the oriented distance.

a(x,¥)>0

The proof is left to the untiring reader.

With our dictionary now complete, it is easy to derive hyperbolic trigonometric
formulae from linear algebra. To solve triangles, note that the edges of a triangle
with vertices u, v and w in H? are U+, V+ and W+, where U is a vector orthogonal
to v and w, etc. To find the angles of a triangle from the lengths, one can find
three vectors u, v, and w with the appropriate inner products, find a dual basis, and
calculate the angles from the inner products of the dual basis. Here is the general
formula. We consider triangles in the projective model, with vertices inside or outside
the sphere at infinity. Choose vectors vy, v and vz of length i or 1 representing these
points. Let ¢ = v; - v;, €; = /&€ and c¢i; = c(v;,v;). Then the matrix of inner
products of the v; is

€1 €12C12  €13C13
C = | e12012 €2 €23C23

€13C13  €23Ca3 €3

The matrix of inner products of the dual basis {v!,v* v3} is C~!. For our pur-
poses, though, it is simpler to compute the matrix of inner products of the basis
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY
{V/—det C*},

—adjC = (—detC)-C' =

—6263(1 - 033) —61263(013023 - C12) —61362(012023 - 013)
—61263(013023 - 012) —6163(1 - 6%3) —62361(012013 - 023)
—61362(012023 - 013) —62361(012013 - 623) —6162(1 - C%g)

If v, 0%, 0% is the dual basis, and ¢ = ¢(v®,v7), we can compute

— €13C23 — C12
B 2 2’
V1 —c3/1 — ciy

where it is easy to deduce the sign

2.6.7. c'?

—€12€3
V —€2€34/ —€1€3

directly. This specializes to give a number of formulas, in geometrically distinct cases.
In a real triangle,

€ =

cos v cos 3 + cosy

2.6.8. coshC =

Y

sin asin 3

cosh A cosh B — coshC
sinh A sinh B ’

or coshC' = cosh Acosh B — sinh Asinh Bcosc. (See also 2.6.16.) In an all right
hexagon,

2.6.9. cosy =
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cosh a cosh 3 + cosh

2.6.10. hC =
o8 sinh a:sinh (3

(See also 2.6.18.) Such hexagons are useful in the study of hyperbolic structures on
surfaces. Similar formulas can be obtained for pentagons with four right angles, or
quadrilaterals with two adjacent right angles:

2.20

By taking the limit of 2.6.8 as the vertex with angle v tends to the circle at
infinity, we obtain useful formulas:
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

1
2.6.11. cosh € — o8 acos B+

sin acsin (3

and in particular

1

2.6.12. coshC = ——.
sin «v

These formulas for a right triangle are worth mentioning separately, since they are

particularly simple.
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oL

v
A B
From the formula for cosy we obtain the hyperbolic Pythagorean theorem:
2.6.13. cosh C' = cosh A cosh B.
Also,
2.6.14. cosh A = C(,)S 04'
sin 8
(Note that (cosa)/(sin#) = 1 in a Euclidean right triangle.) By substituting
(cosh C)
(cosh A)
for cosh B in the formula 2.6.9 for cos «, one finds:
inh A
2.6.15. In a right triangle, sina = s?n .
sinh C'

This follows from the general law of sines,

sinh A B sinh B B sinh C

2.6.16. In any triangle, — - = — .
sin v sin (3 sin 7y

2.22
Similarly, in an all right pentagon,
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

one has
2.6.17. sinh Asinh B = cosh D.
It follows that in any all right hexagon,

there is a law of sines:
sinh A B sinh B B sinh C
sinha  sinh  sinhy’

2.6.18.
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CHAPTER 3
Geometric structures on manifolds

A manifold is a topological space which is locally modelled on R™. The notion of
what it means to be locally modelled on R™ can be made definite in many different
ways, yielding many different sorts of manifolds. In general, to define a kind of
manifold, we need to define a set § of gluing maps which are to be permitted for
piecing the manifold together out of chunks of R™. Such a manifold is called a G-
manifold. G should satisfy some obvious properties which make it a pseudogroup of
local homeomorphisms between open sets of R™:

(i) The restriction of an element g € G to any open set in its domain is also in
g.
(ii) The composition g; o g, of two elements of G, when defined, is in G.
(iii) The inverse of an element of G is in G.
(iv) The property of being in G is local, so that if U = |J,, U, and if g is a local
homeomorphism g : U — V whose restriction to each U, isin G, then g € G.

It is convenient also to permit G to be a pseudogroup acting on any manifold,
although, as long as § is transitive, this doesn’t give any new types of manifolds. See
Haefliger, in Springer Lecture Notes #197, for a discussion.

A group G acting on a manifold X determines a pseudogroup which consists of
restrictions of elements of G to open sets in X. A (G, X)-manifold means a manifold
glued together using this pseudogroup of restrictions of elements of G.

ExaMPLES. If G is the pseudogroup of local C" diffeomorphisms of R", then
a G-manifold is a C"-manifold, or more loosely, a differentiable manifold (provided
r>1).

If G is the pseudogroup of local piecewise-linear homeomorphisms, then a §-
manifold is a PL-manifold. If G is the group of affine transformations of R", then a
(G,R™)-manifold is called an affine manifold. For instance, given a constant A\ > 1
consider an annulus of radii 1 and A+ e€. Identify neighborhoods of the two boundary
components by the map z — A\x. The resulting manifold, topologically, is T2.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Here is another method, due to John Smillie, for constructing affine structures
on T? from any quadrilateral @ in the plane. Identify the opposite edges of @) by
the orientation-preserving similarities which carry one to the other. Since similarities
preserve angles, the sum of the angles about the vertex in the resulting complex is
27, so it has an affine structure. We shall see later how such structures on 72 are
intimately connected with questions concerning Dehn surgery in three-manifolds.

The literature about affine manifolds is interesting. Milnor showed that the only
closed two-dimensional affine manifolds are tori and Klein bottles. The main unsolved
question about affine manifolds is whether in general an affine manifold has Euler
characteristic zero.

If G is the group of isometries of Euclidean space E", then a (G, E™)-manifold
is called a Fuclidean manifold, or often a flat manifold. Bieberbach proved that a
Euclidean manifold is finitely covered by a torus. Furthermore, a Euclidean structure
automatically gives an affine structure, and Bieberbach proved that closed Euclidean
manifolds with the same fundamental group are equivalent as affine manifolds. If G
is the group O(n + 1) acting on elliptic space P™ (or on S™), then we obtain elliptic
manifolds.

CONJECTURE. Every three-manifold with finite fundamental group has an elliptic
structure.
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3.1. A HYPERBOLIC STRUCTURE ON THE FIGURE-EIGHT KNOT COMPLEMENT.

This conjecture is a stronger version of the Poincaré conjecture; we shall see the
logic shortly. All known three-manifolds with finite fundamental group certainly have
elliptic structures.

As a final example (for the present), when G is the group of isometries of hyper-
bolic space H", then a (G, H")-manifold is a hyperbolic manifold. For instance, any
surface of negative Euler characteristic has a hyperbolic structure. The surface of
genus two is an illustrative example.

)

Topologically, this surface is obtained by identifying the sides of an octagon, in
the pattern above, for instance. An example of a hyperbolic structure on the surface
is obtained form any hyperbolic octagon whose opposite edges have equal lengths
and whose angle sum is 27, by identifying in the same pattern. There is a regular
octagon with angles 7/4, for instance.

3.1. A hyperbolic structure on the figure-eight knot complement.

Consider a regular tetrahedron in Euclidean space, inscribed in the unit sphere,
so that its vertices are on the sphere. Now interpret this tetrahedron to lie in the
projective model for hyperbolic space, so that it determines an ideal hyperbolic sim-
plex: combinatorially, a simplex with its vertices deleted. The dihedral angles of the
hyperbolic simplex are 60°. This may be seen by extending its faces to the sphere at
infinity, which they meet in four circles which meet each other in 60° angles.

By considering the Poincaré disk model, one sees immediately that the angle
made by two planes is the same as the angle of their bounding circles on the sphere
at infinity.

Take two copies of this ideal simplex, and glue the faces together, in the pattern
described in Chapter 1, using Euclidean isometries, which are also (in this case)
hyperbolic isometries, to identify faces. This gives a hyperbolic structure to the
resulting manifold, since the angles add up to 360° around each edge.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

T

—

—_— T

A regular octagon with angles /4,
whose sides can be identified to give a surface of genus 2.

A tetrahedron inscribed in the unit sphere, top view.

According to Magnus, Hyperbolic Tesselations, this manifold was constructed by
Gieseking in 1912 (but without any relation to knots). R. Riley showed that the
figure-eight knot complement has a hyperbolic structure (which agrees with this one).
This manifold also coincides with one of the hyperbolic manifolds obtained by an
arithmetic construction, because the fundamental group of the complement of the
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3.2. A HYPERBOLIC MANIFOLD WITH GEODESIC BOUNDARY.
figure-eight knot is isomorphic to a subgroup of index 12 in PSLy(Z|w]), where w is
a primitive cube root of unity.
3.2. A hyperbolic manifold with geodesic boundary.

Here is another manifold which is obtained from two tetrahedra. First glue the two
tetrahedra along one face; then glue the remaining faces according to this diagram:

In the diagram, one vertex has been removed so that the polyhedron can be
flattened out in the plane. The resulting complex has only one edge and one vertex.
The manifold M obtained by removing a neighborhood of the vertex is oriented with
boundary a surface of genus 2.

Consider now a one-parameter family of regular tetrahedra in the projective model
for hyperbolic space centered at the origin in Euclidean space, beginning with the
tetrahedron whose vertices are on the sphere at infinity, and expanding until the
edges are all tangent to the sphere at infinity. The dihedral angles go from 60° to 0°,
so somewhere in between, there is a tetrahedron with 30° dihedral angles. Truncate
this simplex along each plane v+, where v is a vertex (outside the unit ball), to obtain
a stunted simplex with all angles 90° or 30°:
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3.9

Two copies glued together give a hyperbolic structure for M, where the boundary
of M (which comes from the triangular faces of the stunted simplices) is totally geo-
desic. A closed hyperbolic three-manifold can be obtained by doubling this example,
i.e., taking two copies of M and gluing them together by the “identity” map on the
boundary.

3.3. The Whitehead link complement.

The Whitehead link may be spanned by a two-complex which cuts the complement
into an octahedron, with vertices deleted:

5 )
X

The one-cells are the three arrows, and the attaching maps for the two-cells are
indicated by the dotted lines. The three-cell is an octahedron (with vertices deleted), 3.10
and the faces are identified thus:
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3.4. THE BORROMEAN RINGS COMPLEMENT.

A hyperbolic structure may be obtained from a Euclidean regular octahedron in-
scribed in the unit sphere. Interpreted as lying in the projective model for hyperbolic
space, this octahedron is an ideal octahedron with all dihedral angles 90°.

Gluing it in the indicated pattern, again using Euclidean isometries between the
faces (which happen to be hyperbolic isometries as well) gives a hyperbolic structure
for the complement of the Whitehead link.

3.4. The Borromean rings complement.

This is spanned by a two-complex which cuts the complement into two ideal
octahedra:
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Borromean rings A spanning 2-complex

Here is the corresponding gluing pattern of two octahedra. Faces are glued to
their corresponding faces with 120° rotations, alternating in directions like gears.

3.5. The developing map.

Let X be any real analytic manifold, and G' a group of real analytic diffeomor-
phisms of X. Then an element of GG is completely determined by its restriction to
any open set of X.

Suppose that M is any (G, X)-manifold. Let Uy, Us, ... be coordinate charts for
M, with maps ¢; : U; — X and transition functions v;; satisfying

Vij © Pi = @;.
In general the 7;;’s are local G-diffeomorphisms of X defined on ¢;(U; N Uj) so they
are determined by locally constant maps, also denoted +;;, of U; N U; into G.

Consider now an analytic continuation of ¢; along a path « in M beginning
in U;. It is easy to see, inductively, that on a component of o N U;, the analytic
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continuation of ¢; along « is of the form v o ¢;, where v € G. Hence, ¢ can be
analytically continued along every path in M. It follows immediately that there is
a global analytic continuation of ¢; defined on the universal cover of M. (Use the
definition of the universal cover as a quotient space of the paths in A.) This map,

D:M— X,

is called the developing map. D is a local (G, X )-homeomorphism (i.e., it is an im-
mersion inducing the (G, X)-structure on M.) D is clearly unique up to composition
with elements of G.

Although G acts transitively on X in the cases of primary interest, this condition
is not necessary for the definition of D. For example, if G is the trivial group and
X is closed then closed (G, X )-manifolds are precisely the finite-sheeted covers of X,
and D is the covering projection.

From this uniqueness property of D, we have in particular that for any covering

transformation 7, of M over M, there is some (unique) element g, € G such that
DoT,=g,0D.
Since DoT,0T3=g,0Do0Ts=g,0ggo D it follows that the correspondence
H:aw- g,

is a homomorphism, called the holonomy of M.
In general, the holonomy of M need not determine the (G, X)-structure on M,
but there is an important special case in which it does.

DEFINITION. M is a complete (G, X )-manifold if D : M — X is a covering map.
(In particular, if X is simply-connected, this means D is a homeomorphism.)

If X is similarly connected, then any complete (G, X)-manifold M may easily be
reconstructed from the image I' = H(m(M)) of the holonomy, as the quotient space
X/T.

Here is a useful sufficient condition for completeness.

PROPOSITION 3.6. Let G be a group of analytic diffeomorphisms acting transi-
tively on a manifold X, such that for any x € X, the isotropy group G, of x is
compact. Then every closed (G, X)-manifold M is complete.

PROOF. Let @) be any positive definite on the tangent space T, (X) of X at some
point x. Average the set of transforms ¢(Q), g € G, using Haar measure, to obtain
a quadratic form on T).(X) which is invariant under G,. Define a Riemannian metric
(ds?*), = g(Q) on X, where g € G is any element taking x to y. This definition
is independent of the choice of g, and the resulting Riemannian metric is invariant
under G.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Therefore, this metric pieces together to give a Riemannian metric on any (G, X)-
manifold, which is invariant under any (G, X)- map.

If M is any closed (G, X )-manifold, then there is some € > 0 such that the e-ball
in the Riemannian metric on M is always convex and contractible. If x is any point
in X, then D™!(B,/2(x)) must be a union of homeomorphic copies of B(z) in M.
D evenly covers X, so it is a covering projection, and M is complete. 0

For example, any closed elliptic three-manifold has universal cover S®, so any
simply-connected elliptic manifold is S®. Every closed hyperbolic manifold or Eu-
clidean manifold has universal cover hyperbolic three-space or Euclidean space. Such
manifolds are consequently determined by their holonomy.

Even for G and X as in proposition 3.6, the question of whether or not a non-
compact (G, X)-manifold M is complete can be much more subtle. For example,
consider the thrice-punctured sphere, which is obtained by gluing together two tri-
angles minus vertices in this pattern:

A hyperbolic structure can be obtained by gluing two ideal triangles (with all vertices
on the circle at infinity) in this pattern. Each side of such a triangle is isometric to
the real line, so a gluing map between two sides may be modified by an arbitrary
translation; thus, we have a family of hyperbolic structures in the thrice-punctured
sphere parametrized by R3. (These structures need not be, and are not, all distinct.)
Exactly one parameter value yields a complete hyperbolic structure, as we shall see
presently.

Meanwhile, we collect some useful conditions for completeness of a (G, X )-struc-
ture with (G, X) as in 3.6. For convenience, we fix some natural metrics on (G, X)-
structures.

PropoSITION 3.7. With (G, X) as above, a (G, X)-manifold M is complete if
and only if any of the following equivalent conditions is satisfied.

(a) M is complete as a metric space.
(b) There is some € > 0 such that each closed e-ball in M is compact.
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3.5. THE DEVELOPING MAP.

The developing map of an affine torus constructed from a quadrilateral (see p. 3.3).
The torus is plainly not complete. FEzxercise: construct other affine toruses with the
same holonomy as this one. (Hint: walk once or twice around this page.)
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(c) For every k >0, all closed k-balls are compact.
(d) There is a family {S:};t € R, of compact sets which exhaust M, such that
Siia contains a neighborhood of radius a about S;.

PROOF. Suppose that M is metrically complete. Then M is also metrically com-
plete. We will show that the developing map D : M — X is a covering map by
proving that any path oy in X can be lifted to M. In fact, let T C [0, 1] be a maxi-
mal connected set for which there is a lifting. Since D is a local homeomorphism, T’
is open, and because M is metrically complete, T is closed: hence, o can be lifted,
so M is complete.

It is an elementary exercise to see that (b) <= (¢) <= (d) = (a). For any
point 2o € X there is some e such that the ball B,(x) is compact; this € works for
all z € X since the group G of (G, X)-diffeomorphisms of X is transitive. Therefore
X satisfies (a), (b), (¢) and (d). Finally if M is a complete (G, X )-manifold, it is
covered by X so it satisfies (b). The proposition follows. O

3.8. Horospheres.

To analyze what happens near the vertices of an ideal polyhedron when it is glued
together, we need the notion of horospheres (or, in the hyperbolic plane, they are
called horocycles.) A horosphere has the limiting shape of a sphere in hyperbolic
space, as the radius goes to infinity. One property which can be used to determine
the spheres centered at a point X is the fact that such a sphere is orthogonal to all
lines through X. Similarly, if X is a point on the sphere at infinity, the horospheres
“centered” at X are the surfaces orthogonal to all lines through X. In the Poincaré
disk model, a hyperbolic sphere is a Euclidean sphere in the interior of the disk,
and a horosphere is a Euclidean sphere tangent to the unit sphere. The point X of
tangency is the center of the horosphere.
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3.8. HOROSPHERES.

Concentric horocycles and orthogonal lines.

s

‘-_._____‘_-_-—.--‘__-_’_'_'_‘_./

Translation along a line through X permutes the horospheres centered at X.
Thus, all horospheres are congruent. The convex region bounded by a horosphere is
a horoball. For another view of a horosphere, consider the upper half-space model. In
this case, hyperbolic lines through the point at infinity are Euclidean lines orthogonal
to the plane bounding upper half-space. A horosphere about this point is a horizontal
Euclidean plane. From this picture one easily sees that a horosphere in H™ is isometric
to Euclidean space E"~!. One also sees that the group of hyperbolic isometries fixing
the point at infinity in the upper half-space model acts as the group of similarities
of the bounding Euclidean plane. One can see this action internally as follows. Let
X be any point at infinity in hyperbolic space, and h any horosphere centered at X.
An isometry g of hyperbolic space fixing X takes h to a concentric horosphere h'.
Project h' back to h along the family of parallel lines through X. The composition
of these two maps is a similarity of h.

Consider two directed lines [; and [y emanating from the point at infinity in the
upper half-space model. Recall that the hyperbolic metric is ds? = (1/x2) dz?. This
means that the hyperbolic distance between [; and [, along a horosphere is inversely
proportional to the Euclidean distance above the bounding plane. The hyperbolic
distance between points X; and X5 on [y at heights of hy and hy is |log(hs) —log(hy)].
It follows that for any two concentric horospheres h; and hs which are a distance d
apart, and any pair of lines [; and [ orthogonal to hy and hs, the ratio of the distance
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F1GURE 1. Horocycles and lines in the upper half-plane

between [; and [y measured along h; to their distance measured along hs is exp(d).

qi Qg_ |
<
; T ha
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3.9. Hyperbolic surfaces obtained from ideal triangles.

Consider an oriented surface S obtained by gluing ideal triangles with all vertices
at infinity, in some pattern. Fzercise: all such triangles are congruent. (Hint: you
can derive this from the fact that a finite triangle is determined by its angles—see
2.6.8. Let the vertices pass to infinity, one at a time.)

Let K be the complex obtained by including the ideal vertices. Associated with
each ideal vertex v of K, there is an invariant d(v), defined as follows. Let h be a
horocycle in one of the ideal triangles, centered about a vertex which is glued to v
and “near” this vertex. Extend h as a horocycle in S counter clockwise about v. It
meets each successive ideal triangle as a horocycle orthogonal to two of the sides,
until finally it re-enters the original triangle as a horocycle A’ concentric with h, at a
distance +d(v) from h. The sign is chosen to be positive if and only if the horoball
bounded by A’ in the ideal triangle contains that bounded by h.
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3.9. HYPERBOLIC SURFACES OBTAINED FROM IDEAL TRIANGLES.
a—'\\\

) <0

The surface S is complete if and only if all invariants d(v) are 0. Suppose, for
instance, that some invariant d(v) < 0. Continuing h further round v; the length
of each successive circuit around v is reduced by a constant factor < 1, so the total
length of h after an infinite number of circuits is bounded. A sequence of points
evenly spaced along h is a non-convergent Cauchy sequence.

If all invariants d(v) = 0, on the other hand, one can remove horoball neighbor-
hoods of each vertex in K to obtain a compact subsurface Sy. Let S; be the surface
obtained by removing smaller horoball neighborhoods bounded by horocycles a dis-
tance of ¢ from the original ones. The surfaces S; satisfy the hypotheses of 3.7(d)
1—hence S is complete.

: 3.22
For any hyperbolic manifold M, let M be the metric completion of M. In general,

M need not be a manifold. However, it S is a surface obtained by gluing ideal

hyperbolic triangles, then S is a hyperbolic surface with geodesic boundary. There is
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one boundary component of length |d(v)| for each vertex v of K such that d(v) # 0.
S is obtained by adjoining one limit point for each horocycle which “spirals toward” a
vertex v in K. The most convincing way to understand S is by studying the picture:

3.10. Hyperbolic manifolds obtained by gluing ideal polyhedra.

Consider now the more general case of a hyperbolic manifold M obtained by
gluing together the faces of polyhedra in H™ with some vertices at infinity. Let K
be the complex obtained by including the ideal vertices. The link of an ideal vertex
v is (by definition) the set L(v) of all rays through that vertex. From 3.7 it follows
that the link of each vertex has a canonical (similarities of E"~', E"~1 ) structure,
or similarity structure for short. An extension of the analysis in 3.9 easily shows
that M is complete if and only if the similarity structure on each link of an ideal
vertex is actually a Fuclidean structure, or equivalently, if and only if the holonomy
of these similarity structures consists of isometries. We shall be concerned mainly
with dimension n = 3. It is easy to see from the Gauss-Bonnet theorem that any
similarity two-manifold has Euler characteristic zero. (Its tangent bundle has a flat
orthogonal connection). Hence, if M is oriented, each link L(v) of an ideal vertex
is topologically a torus. If L(v) is not Euclidean, then for some o € m L(v), the
holonomy H («) is a contraction, so it has a unique fixed point xy. Any other element
B € m(L(v)) must also fix xg, since  commutes with . Translating zo to 0, we
see that the similarity two-manifold L(v) must be a (C*, C — 0)-manifold where C* is
the multiplicative group of complex numbers. (Compare p. 3.15.) Such a structure
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is automatically complete (by 3.6), and it is also modelled on
(C*,C - 0),

or, by taking logs, on (C,C). Here the first C is an additive group and the second
C is a space. Conversely, by taking exp, any (C,C) structure gives a similarity
structure. (C,C) structures on closed oriented manifolds are easy to describe, being
determined by their holonomy, which is generated by an arbitrary pair (z1,2) of 3.24
complex numbers which are linearly independent over R.

We shall return later to study the spaces M in the three-dimensional case. They

are sometimes closed hyperbolic manifolds obtained topologically by replacing neigh-
borhoods of the vertices by solid toruses.
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CHAPTER 4
Hyperbolic Dehn surgery

A hyperbolic structure for the complement of the figure-eight knot was con-
structed in 3.1. This structure was in fact chosen to be complete. The reader may
wish to verify this by constructing a horospherical realization of the torus which is
the link of the ideal vertex. Similarly, the hyperbolic structure for the Whitehead
link complement and the Borromean rings complement constructed in 3.3 and 3.4 are
complete.

There is actually a good deal of freedom in the construction of hyperbolic struc-
tures for such manifolds, although most of the resulting structures are not complete.
We shall first analyze the figure-eight knot complement. To do this, we need an
understanding of the possible shapes of ideal tetrahedra.

4.1. Ideal tetrahedra in H3.

The link L(v) of an ideal vertex v of an oriented ideal tetrahedron T' (which by
definition is the set of rays in the tetrahedron through that vertex) is a Euclidean
triangle, well-defined up to orientation-preserving similarity. It is concretely realized
as the intersection with 7' of a horosphere about v. The triangle L(v) actually
determines T" up to congruence. To see this, picture T  in the upper half-space model
and arrange it so that v is the point at infinity. The other three vertices of T form
a triangle in E? which is in the same similarity class as L(v). Consequently, if two
tetrahedra T" and T” have vertices v and v with L(v) similar to L(v’), then 7" can
be transformed to T by a Euclidean similarity which preserves the plane bounding
upper half-space. Such a similarity is a hyperbolic isometry.
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It follows that T is determined by the three dihedral angles «, § and ~ of edges
incident to the ideal vertex v, and that a + 8 + v = w. Using similar relations
among angles coming from the other three vertices, we can determine the other three
dihedral angles:

g

2
2

B

Thus, dihedral angles of opposite edges are equal, and the oriented similarity
class of L(v) does not depend on the choice of a vertex v! A geometric explanation of
this phenomenon can be given as follows. Any two non-intersecting and non-parallel
lines in H? admit a unique common perpendicular. Construct the three common
perpendiculars s,t and u to pairs of opposite edges of T'. Rotation of 7 about s, for
instance, preserves the edges orthogonal to s, hence preserves the four ideal vertices
of T, so it preserves the entire figure. It follows that s, t and v meet in a point and
that they are pairwise orthogonal. The rotations of m about these three axes are the
three non-trivial elements of 2z @ 2 acting as a group of symmetries of 7'
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4.1. IDEAL TETRAHEDRA IN H3.

4.4
In order to parametrize Euclidean triangles up to similarity, it is convenient to
regard E? as C. To each vertex v of a triangle A(¢,u,v) we associate the ratio

(t—v)
(u o ’U) - Z(U)
of the sides adjacent to v. The vertices must be labelled in a clockwise order, so that

)-1
2(t)= 20y

(u_z_l_
wy W E -2

t i i

5
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4. HYPERBOLIC DEHN SURGERY

Im(z(v)) > 0. Alternatively, arrange the triangle by a similarity so that v is at 0
and u at 1; then ¢ is at z(v). The other two vertices have invariants

At) =

2(u) = pi(v)‘

4.1.1.

Denoting the three invariants z1, 29, 23 in clockwise order, with any starting point, we
have the identities

21 k9 %3 — —1

4.1.2. | — 2+ 212 = 0

We can now translate this to a parametrization of ideal tetrahedra. Each edge
e is labelled with a complex number z(e), opposite edges have the same label, and
the three distinct invariants satisfy 4.1.2 (provided the ordering is correct.) Any z;
determines the other two, via 4.1.2.

e e T s i B L,
=B L T

4.2. Gluing consistency conditions.

Suppose that M is a three-manifold obtained by gluing tetrahedra 73, ..., T; and
then deleting the vertices, and let K be the complex which includes the vertices.

Any realization of T1,...,T} as ideal hyperbolic tetrahedra determines a hyper-
bolic structure on (M — (1 — skeleton)), since any two ideal triangles are congruent.
Such a congruence is uniquely determined by the correspondence between the ver-
tices. (This fact may be visualized concretely from the subdivision of an ideal triangle
by its altitudes.)
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4.2. GLUING CONSISTENCY CONDITIONS.

e o

The condition for the hyperbolic structure on (M — (1 — skeleton)) to give a
hyperbolic structure on M itself is that its developing map, in a neighborhood of each
edge, should come from a local homeomorphism of M itself. In particular, the sum
of the dihedral angles of the edges ey, ..., ex must be 27r. Even when this condition
is satisfied, though, the holonomy going around an edge of M might be a non-trivial
translation along the edge. To pin down the precise condition, note that for each ideal
vertex v, the hyperbolic structure on M — (1 — skeleton) gives a similarity structure
to L(v) — (0 —skeleton). The hyperbolic structure extends over an edge e of M if and
only if the similarity structure extends over the corresponding point in L(v), where
v is an endpoint of e. Equivalently, the similarity classes of triangles determined by
z(e1),...,z(ex) must have representatives which can be arranged neatly around a
point in the plane:

The algebraic condition is

4.2.1. z(ey) - z(eg) - -+ - z(eg) = 1.

This equation should actually be interpreted to be an equation in the universal
cover C*, so that solutions such as
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are ruled out. In other words, the auxiliary condition
4.2.2. argzy + - +argz, = 27w

must also be satisfied, where 0 < arg z; < 7.

4.3. Hyperbolic structure on the figure-eight knot complement.

Consider two hyperbolic tetrahedra to be identified to give the figure eight knot
complement:
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4.3. HYPERBOLIC STRUCTURE ON THE FIGURE-EIGHT KNOT COMPLEMENT.

We read off the gluing consistency conditions for the two edges:
(/=) zowiwy = 1 ( J— )23 z0wiws = 1.
From 4.1.2, note that the product of these two equations,
(212023)* (wywows)® = 1

is automatically satisfied. Writing 2z = 2;, and w = wy, and substituting the expres-
sions from 4.1.1 into (#£—), we obtain the equivalent gluing condition,

4.3.1. 2(z—1w(w—1) =1.
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We may solve for 2z in terms of w by using the quadratic formula.

L 1+ /14 4/ww—1)
B 2

We are searching only for geometric solutions

4.3.2.

Im(z) >0 Im(w)>0

so that the two tetrahedra are non-degenerate and positively oriented. For each
value of w, there is at most one solution for z with Im(z) > 0. Such a solution exists
provided that the discriminant 1 + 4/w(w — 1) is not positive real. Solutions are
therefore parametrized by w in this region of C: 4.10

3L

Aoy R

il e
)(ortﬂ;"‘-ﬂ!

wlution

i i I " L

2 -1 o 1 2 3

Note that the original solution given in 3.1 corresponds to w = z = v/—1 = % + \/752

The link L of the single ideal vertex has a triangulation which can be calculated
from the gluing diagram: 411
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d
e

Now let us compute the derivative of the holonomy of the similarity structure on
L. To do this, regard directed edges of the triangulation as vectors. The ratio of any
two vectors in the same triangle is known in terms of z or w. Multiplying appropriate
ratios, we obtain the derivative of the holonomy:
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e B S —

a
We
. a_j_ sy _’z‘k,_ 123— =g
{t.] ‘Z‘lz3)1(21 ):.@]3_14)3‘)1 % s

H(z) = 2ww)? = (3)?
H(y) = 2 =w(l-2).

Observe that if M is to be complete, then H'(z) = H'(y) = 1, so z = w. From
4.3.1, (2(z —1))?> = 1. Since z(z — 1) < 0, this means z(z — 1) = —1, so that the only
possibility is the original solution w = z = v/—1.

4.4. The completion of hyperbolic three-manifolds obtained from ideal
polyhedra.

Let M be any hyperbolic manifold obtained by gluing polyhedra with some ver-
tices at infinity, and let K be the complex obtained by including the ideal vertices.
The completion M is obtained by completing a deleted neighborhood N(v) of each
ideal vertex v in k, and gluing these completed neighborhoods N(v) to M. The
developing map for the hyperbolic structure on N(v) may be readily understood in
terms of the developing map for the similarity structure on L(v). To do this, choose
coordinates so that v is the point at infinity in the upper half-space model. The
developing images of corners of polyhedra near v are “chimneys” above some poly-
gon in the developing image of L(v) on C (where C is regarded as the boundary of
upper half-space.) If M is not complete near v, we change coordinates if necessary
by a translation of R? so that the developing image of L(v) is C — 0. The holonomy
for N(v) now consists of similarities of R* which leave invariant the z-axis and the
x — y plane (C). Replacing N(v) by a smaller neighborhood, we may assume that
the developing image I of N(v) is a solid cone, minus the z-axis.
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4.4. COMPLETION OF HYPERBOLIC THREE-MANIFOLDS

The completion of I is clearly the solid cone, obtained by adjoining the z-axis to
I. 1t follows easily that the completion of

N(w) =1

is also obtained by adjoining a single copy of the z-axis.
The projection

e~

p:N(v) — N(v)

extends to a surjective map p between the completions. [p exists because p does not
increase distances. p is surjective because a Cauchy sequence can be replaced by a

Cauchy path, which lifts to N(v).] Every orbit of the holonomy action of m (N(v))
on the z-axis is identified to a single point. This action is given by

H(«):(0,0,2) — |H' ()] - (0,0, 2)

where the first H(«a) is the hyperbolic holonomy and the second is the holonomy of
L(v). There are two cases:

Case 1. The group of moduli {|H'(«)|} is dense in R,. Then the completion of
N(v) is the one-point compactification.

Case 2. The group of moduli {|H'(«)|} is a cyclic group. Then the completion
N(v)
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is topologically a manifold which is the quotient space (Y/H, and it is obtained
by adjoining a circle to N(v). Let a3 € m(L(v)) be a generator for the kernel of
a — |H'(a)] and let 1 < |H'(aq)| generate the image, so that «; and ay generate
m(L(v)) = Z @& Z. Then the added circle in

N(v)
has length log |H'(as)|. A cross-section of N(v) perpendicular to the added circle

is a cone (Cy, obtained by taking a two-dimensional hyperbolic sector Sy of angle 6,
[0 < 6 < oo] and identifying the two bounding rays:

It is easy to make sense of this even when 6 > 27. The cone angle 6 is the argument
of the element H'(ag) € C*. In the special case § = 2w, Cjy is non-singular, so

N(v)
is a hyperbolic manifold. N(v) may be seen directly in this special case, as the solid
cone I U (z — axis) modulo H.

4.5. The generalized Dehn surgery invariant.

Consider any three-manifold M which is the interior of a compact manifold M
whose boundary components Py, ..., P are tori. For each 7, choose generators a;, b;
for m(P;). If M is identified with the complement of an open tubular neighborhood
of a link L in S3, there is a standard way to do this, so that a; is a meridian (it
bounds a disk in the solid torus around the corresponding component of L) and b; is
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4.5. THE GENERALIZED DEHN SURGERY INVARIANT.

a longitude (it is homologous to zero in the complement of this solid torus in S?). In
this case we will call the generators m; and ;.

We will use the notation M, g)).....(ax,3,) t0 denote the manifold obtained by
gluing solid tori to M so that a meridian in the i-th solid torus goes to «;, a; + 3;b;.
If an ordered pair (a4, 3;) is replaced by the symbol oo, this means that nothing is
glued in near the i-th torus. Thus, M = M. .

These notions can be refined and extended in the case M has a hyperbolic struc-
ture whose completion M is of the type described in 4.4. (In other words, if M is
not complete near P;, the developing map for some deleted neighborhood N; of P,
should be a covering of the deleted neighborhood I of radius r about a line in H3.)
The developing map D of N; can be lifted to I, with holonomy H. The group of
isometries of I is R @ R, parametrized by (translation distance, angle of rotation);
this parametrization is well-defined up to sign.

DEFINITION 4.5.1. The generalized Dehn surgery invariants (a;, 3;) for M are
solutions to the equations

o H(a;) + B:H(b;) = (rotation by =+ 2m),
(or, (e, B;) = oo if M is complete near F;).

Note that (o, 3;) is unique, up to multiplication by —1, since when M is not
complete near P;, the holonomy H : m(N;) — R ® R is injective. We will say that
M is a hyperbolic structure for

M(a1761)7'”7(ak7ﬁ1€) :

If all (a;, 5;) happen to be primitive elements of Z@Z, then M is the topological man-
ifold Mqa, g)),....(ax,8;) With a non-singular hyperbolic structure, so that our extended
definition is compatible with the original. If each ratio «;/; is the rational number
pi/q; in lowest terms, then M is topologically the manifold Mpy 1), (prsar) - The hy-
perbolic structure, however, has singularities at the component circles of M — M with
cone angles of 27 (p;/ay) [since the holonomy H of the primitive element p;a; + ¢;b;
in 7 (F;) is a pure rotation of angle 27 (p; /).

There is also a topological interpretation in case the (o, 3;) € Z & Z, although
they may not be primitive. In this case, all the cone angles are of the form 27 /n;,
where each n; is an integer. Any branched cover of M which has branching index
n; around the i-th circle of M — M has a non-singular hyperbolic structure induced
from M.
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4. HYPERBOLIC DEHN SURGERY
4.6. Dehn surgery on the figure-eight knot.

For each value of w in the region R of C shown on p. 4.10, the associated hyperbolic
structure on S®— K, where K is the figure-eight knot, has some Dehn surgery invariant
d(w) = £ (pu(w), AM(w)). The function d is a continuous map from R to the one-point
compactification R?/ & 1 of R? with vectors v identified to —v. Every primitive
element (p,q) of Z @ Z which lies in the image d(R) describes a closed manifold
(5% — K)(p,q) which possesses a hyperbolic structure.

Actually, the map d can be lifted to a map d : R — R2, by using the fact that
the sign of a rotation of

—_——

(H3 — z-axis)

is well-defined. (See §4.4. The extra information actually comes from the orientation
of the z-axis determined by the direction in which the corners of tetrahedra wrap
around it). d is defined by the equation d(w) = (u, A) where

pH(m) + NH?(1) = (a rotation by +2m)

In order to compute the image J(R), we need first to express the generators [ and
m for m1(P) in terms of the previous generators x and y on p. 4.11. Referring to
page 6, we see that a meridian which only intersects two two-cells can be constructed
in a small neighborhood of K. The only generator of 7 (L(v)) (see p. 4.11) which
intersects only two one-cells is +y, so we may choose m = y. Here is a cheap way to
see what [ is. The figure-eight knot can be arranged (passing through the point at
infinity) so that it is invariant by the map v — —v of R® = 3.

This map can be made an isometry of the complete hyperbolic structure constructed
for S — K. (This can be seen directly; it also follows immediately from Mostow’s
Theorem, ... ). This hyperbolic isometry induces an isometry of the Euclidean struc-
ture on L(v) which takes m to m and [ to —I. Hence, a geodesic representing [ must

4.18

be orthogonal to a geodesic representing m, so from the diagram on the bottom of 4.19

p. 4.11 we deduce that the curve | = +x + 2y is a longitude. (Alternatively, it is not
hard to compute m and [ directly).
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4.6. DEHN SURGERY ON THE FIGURE-EIGHT KNOT.

From p. 4.12, we have

H(m) = w(l-2z2)

46.1. H) = 2201 2y

The behavior of the map d near the boundary of R is not hard to determine.
For instance, when w is near the ray Im(w) = 0, Re(w) > 1, then z is near the ray

Im(z) = 0, Re(z) < 0. The arguments of H(m) and H(l) are easily computed by
analytic continuation from the complete case w = z = v/—1 (when the arguments
are 0) to be

arg H(m) =0 arg H(I) ~ +2m.
Consequently, (u, \) is near the line A = +1. As w — 1 we see from the equation
z1—2)w(l—w)=1
that
|2 Jw| — 1
so (p1, A) must approach the line 1+4\ = 0. Similarly, as w — 400, then |2 |w[* — 1,

so (u, A) must approach the line g — 4\ = 0. Then the map d extends continuously
to send the line segment

1,400
to the line segment 4.20
(—4,4+1), (+4,+1).

There is an involution 7 of the region R obtained by interchanging the solutions
z and w of the equation z(l — z) w(l —w) = 1. Note that this involution takes H(m)
to 1/H(m) = H(—m) and H(l) to H(—1). Therefore d(tw) = —d(w). It follows that
d extends continuously to send the line segment

—00, 0

to the line segment

(+4,—1),(—4,-1).
When |w| is large and 0 < arg(w) < 7/2, then |z| is small and
arg(z) = m — 2arg(w).

Thus arg H(m) ~ argw, arg H(l) ~ 21 — 4argw so pargw + \(21 — dargw) = 2.
By considering |H(m)| and |H(I)|, we have also pn — 4X = 0, so (u, A) =~ (4,1).
There is another involution o of R which takes w to

1—w
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(and z to T — 2). From 4.6.1 we conclude that if d(w) = (u, A), then d(ow) = (11, —\).
With this information, we know the boundary behavior of d except when w or 7w is
near the ray r described by

ﬁ

Re(w) =3, Im(w)> %24

The image of the two sides of this ray is not so neatly described, but it does not
represent a true boundary for the family of hyperbolic structures on S® — K, as w
crosses  from right to left, for instance, z crosses the real line in the interval (0, 3).
For a while, a hyperbolic structure can be constructed from the positively oriented
simplex determined by w and the negatively oriented simplex determined by z, by
cutting the z-simplex into pieces which are subtracted from the w-simplex to leave a
polyhedron P. P is then identified to give a hyperbolic structure for S — K.

For this reason, we give only a rough sketch of the boundary behavior of d near
ror 7(r):
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4.8. DEGENERATION OF HYPERBOLIC STRUCTURES.

Since the image of d in R2 does not contain the origin, and since d sends a curve
winding once around the boundary of R to the curve abed in RQ, it follows that the
image of d(R) contains the exterior of this curve.

In particular

THEOREM 4.7. Every manifold obtained by Dehn surgery along the figure-eight
knot K has a hyperbolic structure, except the six manifolds:

(8% = K) gy = (87 = K) ()
where (u, \) is (1,0), (0,1), (1,1), (2,1), (3,1) or (4,1).

The equation
(5% = K)ap = (5% = K(—ap)
follows from the existence of an orientation reversing homeomorphism of S® — K.

I first became interested in studying these examples by the beautiful ideas of
Jorgensen (compare Jorgensen, “Compact three-manifolds of constant negative cur-
vature fibering over the circle,” Annals 106 (1977) 61-72). He found the hyperbolic
structures corresponding to the ray = 0, A > 1, and in particular, the integer and
half-integer (!) points along this ray, which determine discrete groups.

The statement of the theorem is meant to suggest, but not imply, the true fact
that the six exceptions do not have hyperbolic structures. Note that at least

5% = (5 = K)n,)

does not admit a hyperbolic structure (since 71(S%) is finite). We shall arrive at
an understanding of the other five exceptions by studying the way the hyperbolic
structures are degenerating as (1, A) tends to the line segment

(—4,1),(4,1).

4.8. Degeneration of hyperbolic structures.

DEFINITION 4.8.1. A codimension-k foliation of an n-manifold M is a G-struc-
ture, on M, where G is the pseudogroup of local homeomorphisms of R" % x R* which
have the local form

oz, y) = (f(x, ), 9(y))-

In other words, G takes horizontal (n — k)-planes to horizontal (n — k)-planes.
These horizontal planes piece together in M as (n — k)-submanifolds, called the
leaves of the foliation. M, like a book without its cover, is a disjoint union of its
leaves.
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For any pseudogroup H of local homeomorphisms of some k-manifold N*, the
notion of a codimension-k foliation can be refined:

DEFINITION 4.8.2. An H-foliation of a manifold M™ is a G-structure for M™,
where G is the pseudogroup of local homeomorphisms of R*~* x N* which have the
local form

oz, y) = (f(z,y), 9(v))

with g € H. If I is the pseudogroup of local isometries of hyperbolic k-space, then
an H-foliation shall, naturally, be called a codimension-k£ hyperbolic foliation. A
hyperbolic foliation determines a hyperbolic structure for each k-manifold transverse
to its leaves.

When w tends in the region R C C to a point R — [0, 1], the w-simplex and the
z-simplex are both flattening out, and in the limit they are flat: 4.24

If we regard these flat simplices as projections of nondegenerate simplices A and B
(with vertices deleted), this determines codimension-2 foliations on A and B, whose
leaves are preimages of points in the flat simplices:
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A and B glue together (in a unique way, given the combinatorial pattern) to
yield a hyperbolic foliation on S® — K. You should satisfy yourself that the gluing
consistency conditions for the hyperbolic foliation near an edge result as the limiting
case of the gluing conditions for the family of squashing hyperbolic structures.

The notation of the developing map extends in a straightforward way to the case
of an H-foliation on a manifold M, when H is the set of restrictions of a group J of
real analytic diffeomorphisms of N¥; it is a map

D: M"™— N¥.

Note that D is not a local homeomorphism, but rather a local projection map, or a
submersion. The holonomy

H:m(M)—J
is defined, as before, by the equation
DoT,=H(a)oD.
Here is the generalization of proposition 3.6 to H-foliations. For simplicity, assume

that the foliation is differentiable:

PROPOSITION 4.8.1. If J is transitive and if the isotropy subgroups J, are com-
pact, then the developing map for any H-foliation F of a closed manifold M s a
fibration

D:M"™— N*.
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PROOF. Choose a plane field 7% transverse to J (so that 7 is a complementary
subspace to the tangent space to the leaves of &, called TF, at each point). Let h
be an invariant Riemannian metric on N* and let g be any Riemannian metric on
M. Note that there is an upper bound K for the difference between the g-length of
a nonzero vector in 7 and the k-length of its local projection to N*.

Define a horizontal path in M to be any path whose tangent vector always lies
in 7. Let a : [0,1] — N be any differentiable path, and let &y be any point in
the preimage D~!(ag). Consider the problem of lifting o to a horizontal path in M
beginning at &y. Whenever this has been done for a closed interval (such as [0,0]),
it can be obviously extended to an open neighborhood. When it has been done for
an open interval, the horizontal lift & is a Cauchy path in M, so it converges. Hence,
by “topological induction”, « has a (unique) global horizontal lift beginning at dy.
Using horizontal lifts of the radii of disks in IV, local trivializations for D : M — N
are obtained, showing that D is a fibration. 0

DEFINITION. An H-foliation is complete if the developing map is a fibration.

Any three-manifold with a complete codimension-2 hyperbolic foliation has uni-
versal cover H2 x R, and covering transformations act as global isometries in the first
coordinate. Because of this strong structure, we can give a complete classification of
such manifolds. A Seifert fibration of a three-manifold M is a projection p: M — B
to some surface B, so that p is a submersion and the preimages of points are circles
in M. A Seifert fibration is a fibration except at a certain number of singular points
T1,..., o5 The model for the behavior in p~(N.(z;)) is a solid torus with a foliation
having the core circle as one leaf, and with all other leaves winding p times around
the short way and ¢ times around the long way, where 1 < p < ¢ and (p,q) = 1.

The projection of a meridian disk of the solid torus to its image in B is g-to-one,
except at the center where it is one-to-one.

A group of isometries of a Riemannian manifold is discrete if for any x, the orbit
of = intersects a small neighborhood of = only finitely often. A discrete group I' of
orientation-preserving isometries of a surface N has quotient N/T" a surface. The
projection map N — N/T" is a local homeomorphism except at points x where the
isotropy subgroup I', is nontrivial. In that case, I', is a cyclic group Z/qZ for some
q > 1, and the projection is similar to the projection of a meridian disk cutting across
a singular fiber of a Seifert fibration.

THEOREM 4.9. Let F be a hyperbolic foliation of a closed three-manifold M. Then
either
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A meridian disk of the solid torus wraps ¢ times around its image disk. Here p =1
and ¢ = 2.

(a) The holonomy group H(m M) is a discrete group of isometries of H?, and
the developing map goes down to a Seifert fibration

Dimnr : M — H?/H(m M),

or
(b) The holonomy group is not discrete, and M fibers over the circle with fiber
a torus.

The structure of F and M in case (b) will develop in the course of the proof.

PROOF. (a) If H(m M) is discrete, then H?/H(m M) is a surface. Since M is
compact the fibers of the fibration D : M® — H? are mapped to circles under the
projection 7 : M3 — M?3. It follows that D/H(mM) : M® — H?/H(mM) is a
Seifert fibration.

(b) When H (7 M) is not discrete, the proof is more involved. First, let us assume
that the foliation is oriented (this means that the leaves of the foliation are oriented,
or in other words, it is determined by a vector field). We choose a m; M-invariant
Riemannian metric ¢ in M3 and let 7 be the plane field which is perpendicular to
the fibers of D : M3 — H2. We also insist that along 7, ¢ be equal to the pullback
of the hyperbolic metric on H2.

By construction, g defines a metric on M3, and, since M? is compact, there is an
infimum I to the length of a nontrivial simple closed curve in M3 when measured
with respect to g. Given gy, g2 € my M, we say that they are comparable if there is a
y € M3 such that

d(D(g1(y)), D(92(y))) <1,
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where d( , ) denotes the hyperbolic distance in H?. In this case, take the geodesic
in H? from D(g;(y)) to D(g2(y)) and look at its horizontal lift at go(y). Suppose
its other endpoint e where ¢;(y). Then the length of the lifted path would be equal
to the length of the geodesic in H?, which is less than I. Since gig, ' takes g2(y) to
g1(y), the path represents a nontrivial element of 71 M and we have a contradiction.
Now if we choose a trivialization of H? x R, we can decide whether or not g;(z) is
greater than e. If it is greater than e we say that g; is greater than ¢, and write
g1 > go, otherwise we write g; < go. To see that this local ordering does not depend
on our choice of y, we need to note that

U(gi,92) = {z | d(H(g1(2)), H(gz(z))) < I}

is a connected (in fact convex) set. This follows from the following lemma, the proof
of which we defer.

LEMMA 4.9.1. f,, 5, (2) = d(g12,g27) is a a convex function on H?.

One useful property of the ordering is that it is invariant under left and right
multiplication. In other words ¢g; < g» if and only if, for all g3, we have g3g1 < ¢392
and g193 < g2g93. To see that the property of comparability is equivalent for these
three pairs, note that since H(m H?) acts as isometries on H?,

d(Dg1y, Dgay) < I implies that d(Dgsg1y, Dgsgay) < I.

Also, if d(Dgyy, Dgay) then d(Dgsgi(gs'y), Dgsga(gs 'y)) < I, so that gigs and gags
are comparable. The invariance of the ordering easily follows (using the fact that
m1 M preserves orientation of the R factors).

For a fixed z € H? we let G.(X) C m M be those elements whose holonomy
acts on x in a way C' — e-close to the identity. In other words, for ¢ € G.(z),
d(z,Hy(x)) < € and the derivative of H,(z) parallel translated back to x, is e-close
to the identity.

PROPOSITION 4.9.2. There is an €y so that for all € < € |G, G| C G..

PROOF. For any Lie group the map [*,%] : G x G — G has derivative zero at
(id,id). Since for any g € G, (g,id) + id and (id, g) — 1. The tangent spaces of
G x id and id xG span the tangent space to G x G at (id,id). Apply this to the
group of isometries of H2. 0

From now on we choose € < I/8 so that any two words of length four or less in G.
are comparable. We claim that there is some 3 € G, which is the “smallest” element
in G, which is > id. In other words, if id < o € G, a # 3, then o > (3. This can be
seen as follows. Take an e-ball B of x € H? and look at its inverse image B under D.
Choose a point y in B and consider y and a(y), where a € G.. We can truncate B

66 Thurston — The Geometry and Topology of 3-Manifolds

4.30



4.8. DEGENERATION OF HYPERBOLIC STRUCTURES.

There are only finitely many translates of y in this region.

by the lifts of B (using the horizontal lifts of the geodesics through x) through y and
a(y). Since this is a compact set there are only a finite number of images of y under
m1M contained in it. Hence there is one [(y) whose R coordinate is the closest to
that of y itself. (3 is clearly our minimal element.

Now consider a > 8 > 1, a € G.. By invariance under left and right multiplica-
tion, a? > B, > v and a > o !Ba > 1. Suppose a 'Ba < 3. Then > a 1fBa > 1
so that 1 > a~1B8aB~! > B371. Similarly if a=!Ba > 8 > 1 then 3 > afBa~! > 1
so that 1 > afa 1371 > 371 Note that by multiplicative invariance, if g1 > ¢»
then g,' = g7'g195" > 97 920957 = g;'. We have either 1 < Ba ' 'a < 3 or
1 < Bafta™! < 3 which contradicts the minimality of 3 . Thus o~ !8a = 3 for all
a € G..

We need to digress here for a moment to classify the isometries of H?. We will
prove the following:

PROPOSITION 4.9.3. If g : H*> — H? is a non-trivial isometry of H? which
preserves orientation, then exactly one of the following cases occurs:

(i) g has a unique interior fixed point or
(i) g leaves a unique invariant geodesic or
(iii) g has a unique fived point on the boundary of H?.

Case (i) is called elliptic, case (ii) hyperbolic, case (iii) parabolic.
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PRrROOF. This follows easily from linear algebra, but we give a geometric proof.
Pick an interior point z € H? and connect x to gz by a geodesic l;. Draw the
geodesics Iy, Iy at gz and g?x which bisect the angle made by [y and g¢ly, gly and g2l
respectively. There are three cases: 4.33

(i) 1, and [y intersect in an interior point y
(ii) There is a geodesic I3 perpendicular to [y, Iy
(iii) [y, [y are parallel, i.e., they intersect at a point at infinity xs.

9%
case lit)
/ ¥ case ‘(rL) h'f per bolic
elliphc
: gx 2
‘
gx
case (i) _
Para hollc_

X
In case (i) the length of the arc gz, y equals that of ¢g*z,y since A(gx, g*z,y) is
an isoceles triangle. It follows that y is fixed by g.
In case (ii) the distance from gz to I3 equals that from g*z to I3. Since I3 meets
[y and [5 in right angles it follows that [3 is invariant by g. 4.34

Finally, in case (iii) g takes {; and Iy, both of which hit the boundary of H? in
the same point x3. It follows that g fixes x3 since an isometry takes the boundary to
itself.

Uniqueness is not hard to prove. ([l

Using the classification of isometries of H?, it is easy to see that the centralizer
of any non-trivial element g in isom(H?) is abelian. (For instance, if g is elliptic with
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fixed point xg, then the centralizer of g consists of elliptic elements with fixed point
xg). It follows that the centralizer of § in m (M) is abelian; let us call this group N.

Although G(z) depends on the point z, for any point ' € H?, if we choose ¢
small enough, then G (2') C G.(z). In particular if x = H(g)z, g € m M, then
all elements of G (x') commute with 3. It follows that N is a normal subgroup of
m(M).

Consider now the possibility that 3 is elliptic with fixed point o and n € N
fixes g we see that all of 7y M must fix zy. But the function f,, : H*> — R which
measures the distance of a point in H? from x¢ is H(m; M) invariant so that it lifts
to a function f on M3. However, M? is compact and the image of f is non-compact,
which is impossible. Hence (3 cannot be elliptic.

If 5 were hyperbolic, the same reasoning would imply that H(m M) leaves invari-
ant the invariant geodesic of 3. In this case we could define f, : H> — R to be the
distance of a point from [. Again, the function lifts to a function on M? and we have
a contradiction.

The case when 8 is parabolic actually does occur. Let xg be the fixed point of
on the circle at infinity. N must also fix 2. Using the upper half-plane model for H?
with zy at oo, 3 acts as a translation of R? and N must act as a group of similarities;
but since they commute with (3, they are also translations. Since N is normal, w3 M
must act as a group of similarities of R? (preserving the upper half-plane).

Clearly there is no function on H? measuring distance from the point x( at infinity.
If we consider a family of finite points x, — X, and consider the functions f,_, even
though f, blows up, its derivative, the closed 1-form df,_, converges to a closed 1
form w. Geometrically, w vanishes on tangent vectors to horocycles about xg and
takes the value 1 on unit tangents to geodesics emanating from x.

The non-singular closed 1-form w on H? is invariant by H (7, M), hence it defines
a non-singular closed one-form w on M. The kernel of @ is the tangent space to
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the leaves of a codimension one foliation F of M. The leaves of the corresponding
foliation F on M are the preimages under D of the horocycles centered at xy. The
group of periods for w must be discrete, for otherwise there would be a translate of
the horocycle about xg through x close to z, hence an element of GG, which does not
commute with 3. Let py be the smallest period. Then integration of w defines a
map from M to S = R/(py), which is a fibration, with fibers the leaves of F. The
fundamental group of each fiber is contained in N, which is abelian, so the fibers are
toruses.

It remains to analyze the case that the hyperbolic foliation is not oriented. In this
case, let M’ be the double cover of M which orients the foliation. M’ fibers over S*
with fibration defined by a closed one-form w. Since w is determined by the unique
fixed point at infinity of H(m M’), w projects to a non-singular closed one-form on
M. This determines a fibration of M with torus fibers. (Klein bottles cannot occur
even if M is not required to be orientable.) U

We can construct a three-manifold of type (b) by considering a matrix
AeSL(2,7)

which is hyperbolic, i.e., it has two eigenvalues A\, Ay and two eigenvectors Vi, V5.
Then A‘/l = )\1‘/1,14‘/2 = /\2‘/2 and )\2 = 1//\1

Since A € SL(2,7Z) preserves Z @ Z its action on the plane descends to an action
on the torus 72. Our three-manifold M, is the mapping torus of the action of A
on T2. Notice that the lines parallel to V; are preserved by A so they give a one-
dimensional foliation on M. Of course, the lines parallel to V5 also define a foliation.
The reader may verify that both these foliations are hyperbolic. When

2 1
=[]
then M, is the manifold (S® — K')(p,+1) obtained by Dehn surgery on the figure-eight

knot. The hyperbolic foliations corresponding to (0,1) and (0, —1) are distinct, and
they correspond to the two eigenvectors of

2 1
)

All codimension-2 hyperbolic foliations with leaves which are not closed are obtained
by this construction. This follows easily from the observation that the hyperbolic
foliation restricted to any fiber is given by a closed non-singular one-form, together
with the fact that a closed non-singular one-form on 72 is determined (up to isotopy)
by its cohomology class.

The three manifolds (S* — K)@,1y, (S® — K)@1) and (S* — K)(3,1) also have
codimension-2 hyperbolic foliations which arise as “limits” of hyperbolic structures.
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Since they are rational homology spheres, they must be Seifert fiber spaces. A Seifert
fiber space cannot be hyperbolic, since (after passing to a cover which orients the
fibers) a general fiber is in the center of its fundamental group. On the other hand,
the centralizer of an element in the fundamental group of a hyperbolic manifold is
abelian.

4.10. Incompressible surfaces in the figure-eight knot complement.

Let M? be a manifold and S C M? a surface with 0S C M. Assume that
S # 52, IP?% or a disk D? which can be pushed into M. Then S is incompressible
if every loop (simple closed curve) on S which bounds an (open) disk in M — S
also bounds a disk in S. Some people prefer the alternate, stronger definition that
S is (strongly) incompressible if m(S) injects into 71 (M). By the loop theorem of
Papakyriakopoulos, these two definitions are equivalent if S is two-sided. If S has
boundary, then S is also 0-incompressible if every arc o in S (with d(«) C 9S) which
is homotopic to M is homotopic in S to 95.

0- incompressif)/ |

If M is oriented and irreducible (every two-sphere bounds a ball), then M is
sufficiently large if it contains an incompressible and 0J-incompressible surface. A
compact, oriented, irreducible, sufficiently large three-manifold is also called a Haken-
manifold. It has been hard to find examples of three-manifolds which are irreducible
but can be shown not to be sufficiently large. The only previously known examples
are certain Seifert fibered spaces over S? with three exceptional fibers. In what follows
we give the first known examples of compact, irreducible three-manifolds which are
not Haken-manifolds and are not Seifert fiber spaces.
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NOTE. If M is a compact oriented irreducible manifold # D3, and either OM # ()
or H'(M) # 0, then M is sufficiently large. In fact, OM # 0 = H'(M) # 0.
Think of a non-trivial cohomology class a as dual to an embedded surface; an easy
argument using the loop theorem shows that the simplest such surface dual to « is
incompressible and 0-incompressible.

The concept of an incompressible surface was introduced by W. Haken (Inter-
national Congress of Mathematicians, 1954), (Acta. Math. 105 (1961), Math A. 76
(1961), Math Z 80 (1962)). If one splits a Haken-manifold along an incompressible
and O-incompressible surface, the resulting manifold is again a Haken-manifold. One
can continue this process of splitting along incompressible surfaces, eventually arriv-
ing (after a bounded number of steps) at a union of disks. Haken used this to give
algorithms to determine when a knot in a Haken-manifold was trivial, and when two
knots were linked.

Let K be a figure-eight knot, M = 5% — N(K). M is a Haken manifold by
the above note [M is irreducible, by Alexander’s theorem that every differentiable
two-sphere in S bounds a disk (on each side)].

Here is an enumeration of the incompressible and 0-incompressible surfaces in M.
There are six reasonably obvious choices to start with;

e 5 is a torus parallel to OM,

o Sy = T?-disk = Seifert surface for K. To construct S, take 3 circles lying
above the knot, and span each one by a disk. Join
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the disks by a twist for each crossing at K to get a surface S, with
boundary the longitude (0, £1). S is oriented and has Euler characteristic
= —1, so it is T?-disk.
e S3 = (Klein bottle-disk) is the unoriented surface pictured.

e S, = O (tubular neighborhood of S3) = T? — 2 disks. 89S, = (+4,1),
(depending on the choice of orientation for the meridian).
e S5 = (Klein bottle-disk) is symmetric with Ss.

e S = O (tubular neighborhood of S5 ) = T? — 2 disks. 0S5 = (+4,1).

It remains to show that

THEOREM 4.11. FEwvery incompressible and 0-incompressible connected surface in
M s isotopic to one of Sy through Sg.

COROLLARY. The Dehn surgery manifold My, is irreducible, and it is a Haken-
manifold if and only if (m,l) = (0,£1) or (+4,£1).

In particular, none of the hyperbolic manifolds obtained from M by Dehn surgery
is sufficiently large. (Compare 4.7.) Thus we have an infinite family of examples of
oriented, irreducible, non-Haken-manifolds which are not Seifert fiber spaces. It
seems likely that Dehn surgery along other knots and links would yield many more
examples.

PROOF OF COROLLARY FROM THEOREM. Think of M, ; as M union a solid
torus, D? x S, the solid torus being a thickened core curve. To see that M)
is irreducible, let S be an embedded S? in My, transverse to the core curve a
(S intersects the solid torus in meridian disks). Now isotope S to minimize its
intersections with a.. If S doesn’t intersect o then it bounds a ball by the irreducibility
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of M. If it does intersect o we may assume each component of intersection with the
solid torus D? x S! is of the form D? x z. If SN M is not incompressible, we may
divide S into two pieces, using a disk in SN M, each of which has fewer intersections
with a. If S does not bound a ball, one of the pieces does not bound. If SN M is
O-incompressible, we can make an isotopy of S to reduce the number of intersections
with a by 2. Eventually we simplify S so that if it does not bound a ball, SN M
is incompressible and O-incompressible. Since none of the surfaces Si,...,Sg is a
submanifold of S2, it follows from the theorem that S in fact bounds a ball.

The proof that M, is not a Haken-manifold if (m,l) # (0,%£1) or (£4,+£1) is
similar. Suppose S is an incompressible surface in M, ;). Arrange the intersections
with D? x S' as before. If SN M is not incompressible, let D be a disk in M with
0D C SN M not the boundary of a disk in S N M. Since S in incompressible,
0D = 0D’ for some disk D’ C S which must intersect a. The surface S’ obtained
from S by replacing D’ with D is incompressible. (It is in fact isotopic to S, since
M is irreducible; but it is easy to see that S’ is incompressible without this.) S’
has fewer intersections with o than does S. If S is not 0-incompressible, an isotopy
can be made as before to reduce the number of intersections with a. Eventually we
obtain an incompressible surface (which is isotopic to S) whose intersection with M
is incompressible and d-incompressible. S cannot be S; (which is not incompressible
in M(m,1)), so the corollary follows from the theorem. O

PROOF OF THEOREM 4.11. Recall that M = S* — N(K) is a union of two
tetrahedra-without-vertices. To prove the theorem, it is convenient to use an al-
ternate description of M at T? x I with certain identifications on 7% x {1} (compare
Jorgensen, “Compact three-manifolds of constant negative curvature fibering over the
circle”, Annals of Mathematics 106 (1977), 61-72, and R. Riley). One can obtain
this from the description of M as the union of two tetrahedra with corners as follows.
Each tetrahedron = (corners) x I with certain identifications on (corners) x {1}.
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This “product” structure carries over to the union of the two tetrahedra. The
boundary torus has the triangulation (p. 4.11)

4 4.45

T? x {1} has the dual subdivision, which gives T? as a union of four hexagons.

The diligent reader can use the gluing patters of the tetrahedra to check that the
identifications on T2 x {1} are
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where we identify the hexagons by flipping through the dotted lines.

The complex N = T? x {1} /identifications is a spine for N. It has a cell subdivi-
sion with two vertices, four edges, and two hexagons. N is embedded in M, and its
complement is 72 x [0, 1).

If S is a connected, incompressible surface in M, the idea is to simplify it with
respect to the spine N (this approach is similar in spirit to Haken’s). First isotope S
so it is transverse to each cell of N. Next isotope S so that it doesn’t intersect any
hexagon in a simple closed curve. Do this as follows.

If S N hexagon contains some loops, pick an innermost loop a. Then a bounds
an open disk in M? — S (it bounds one in the hexagon), so by incompressibility it
bounds a disk in S. By the irreducibility of M we can push this disk across this
hexagon to eliminate the intersection . One continues the process to eliminate all
such loop intersections. This does not change the intersection with the one-skeleton

S now intersects each hexagon in a collection of arcs. The next step is to isotope
S to minimize the number of intersections with N(;). Look at the preimage of SN V.
We can eliminate any arc which enters and leaves a hexagon in the same edge by
pushing the arc across the edge.

If at any time a loop intersection is created with a hexagon, eliminate it before
proceeding.

Next we concentrate on corner connections in hexagons, that is, arcs which con-
nect two adjacent edges of a hexagon. Construct a small ball B about each vertex,
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and push S so that the corner connections are all contained in B, and so that S
is transverse to 0B. S intersects OB in a system of loops, and each component of
intersection of S with B contains at least one corner connection, so it intersects Ny
at least twice. If any component of S N B is not a disk, there is some “innermost”
such component S;; then all of its boundary components bound disks in B, hence in
S. Since S is not a sphere, one of these disks in S contains S;. Replace it by a disk in
B. This can be done without increasing the number of intersections with Ny, since
every loop in OB bounds a disk in B meeting N(;) at most twice.

Now if there are any two corner connections in B which touch, then some compo-
nent of S'NB meets N(j) at least three times. Since this component is a disk, it can
be replaced by a disk which meets N(;y at most twice, thus simplifying S. (Therefore
at most two corners can be connected at any vertex.)

Assume that S now has the minimum number of intersections with Ny in its
isotopy class. Let I, I, ITI, and IV denote the number of intersections of S with edges
I, II, 111, and IV, respectively (no confusion should result from this). It remains to
analyze the possibilities case by case.

Suppose that none of I, II, III, and IV are zero. Then each hexagon has connec-
tions at two corners. Here are the possibilities for corner connections in hexagon A.

a F
/
b e
£
c d

If the corner connections are at a and b then the picture in hexagon A is of the
form
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I I
C I. J

This implies that IT = I+ 111+ 114 14 IV, which is impossible since all four numbers
are positive in this case. A similar argument also rules out the possibilities c-d, d-e,
a-f, b-f, and c-e in hexagon, and h-i, i-j, k-1, g-1, g-k and h-j in hexagon B.

The possibility a-c¢ cannot occur since they are adjacent corners. For the same
reason we can rule out a-e, b-d, d-f, g-i, i-k, h-1, and j-1.

Since each hexagon has at least two corner connections, at each vertex we must
have connections at two opposite corners. This means that knowing any one corner
connection also tells you another corner connection. Using this one can rule out all
possible corner connections for hexagon A except for a-d.

If a-d occurs, then I 4+ IV 4 II = I + III + II, or III = IV. By the requirement of

opposite corners at the vertices, in hexagon B there are corner connections at i and
1, which implies that I = II. Let = III and y = [. The picture is then

We may reconstruct the intersection of S with a neighborhood of N, say N(N),
from this picture, by gluing together x + y annuli in the indicated pattern. This
yields x +y punctured tori. If an x-surface is pushed down across a vertex, it yields a
y-surface, and similarly, a y-surface can be pushed down to give an z-surface. Thus,
SNN(N) is x + y parallel copies of a punctured torus, which we see is the fiber of a
fibration of N(NN) ~ M over S*. We will discuss later what happens outside N(V).
(Nothing.)

Now we pass on to the case that at least one of I, II, III, and IV are zero. The
case I = 0 is representative because of the great deal of symmetry in the picture.
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4.10. INCOMPRESSIBLE SURFACES IN THE FIGURE-EIGHT KNOT COMPLEMENT.

First consider the subcase I = 0 and none of II, III, and IV are zero. If hexagon
B had only one corner connection, at h, then we would have I11 + IV = II + IV + III,

9 N g

contradicting IT > 0. By the same reasoning for all the other corners, we find that
hexagon B needs at least two corner connections. At most one corner connection can
occur in a neighborhood of each vertex in N, since no corner connection can involve 4.51
the edge I. Thus, hexagon B must have exactly two corner connections, and hexagon
A has no corner connections. By checking inequalities, we find the only possibility is
corner connections at g-h. If we look at the picture in the pre-image T? x {1} near I
we see that there is a loop around I. This loop bounds a disk in .S by incompressibility,

and pushing the disk across the hexagons reduces the number of intersections
with Ny by at least two (you lose the four intersections drawn in the picture, and
gain possibly two intersections, above the plane of the paper). Since S already has
minimal intersection number with Ny already, this subcase cannot happen.

Now consider the subcase I = 0 and II = 0. In hexagon A the picture is
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implying IIT = IV. The picture in hexagon B is

with y the number of corner connections at corner [ and x = IV — y. The three
subcases to check are z and y both nonzero, x = 0, and y = 0.

If both = and y are nonzero, there is a loop in S around

edges I and II. The loop bounds a disk in S, and pushing the disk across the
hexagons reduces the number of intersections by at least two, contradicting minimal-
ity. So x and y cannot both be nonzero.

IfI=1I=0and z =0, then SNN(N) is y parallel copies of a punctured torus. 453
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4.10. INCOMPRESSIBLE SURFACES IN THE FIGURE-EIGHT KNOT COMPLEMENT.

IfI =1 =0and y = 0, then SNN(N) consists of |x/2]| copies of a twice
punctured torus, together with one copy of a Klein bottle if z is odd.

Now consider the subcase I = III = 0. If S intersects the spine N, then II # 0 454
because of hexagon A and IV # 0 because of hexagon B. But this means that there
is a loop around edges I and III, and S can be simplified further, contradicting
minimality.
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The subcase I = IV = 0 also cannot occur because of the minimality of the
number of intersections of S and N(;). Here is the picture.

By symmetric reasoning, we find that only one more case can occur, that III =
IV =0, with I = II. The pictures are symmetric with preceding ones:
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4.10. INCOMPRESSIBLE SURFACES IN THE FIGURE-EIGHT KNOT COMPLEMENT.

To finish the proof of the theorem, it remains to understand the behavior of .S
in M —N(N) =T?x [0,.99]. Clearly, SN (T2 x [0,.99]) must be incompressible.
(Otherwise, for instance, the number of intersections of S with N3y could be reduced.)
It is not hard to deduce that either S is parallel to the boundary, or else a union
of annuli. If one does not wish to assume S is two-sided, this may be accomplished
by studying the intersection of S N (T?% x [0,.99]) with a non-separating annulus.
If any annulus of S N (7% x [0,.99]) has both boundary components in 7% x .99,
then by studying the cases, we find that S would not be incompressible. It follows
that S N (7% x [0,.99]) can be isotoped to the form (circles x [0,.99]). There are
five possibilities (with S connected). Careful comparisons lead to the descriptions of
So, ..., S¢ given on pages 4.40 and 4.41. ([l
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CHAPTER 5

Flexibility and rigidity of geometric structures

In this chapter we will consider deformations of hyperbolic structures and of
geometric structures in general. By a geometric structure on M, we mean, as usual,
a local modelling of M on a space X acted on by a Lie group G. Suppose M is
compact, possibly with boundary. In the case where the boundary is non-empty
we do not make special restrictions on the boundary behavior. If M is modelled
on (X, G) then the developing map M 25 X defines the holonomy representation
H :m M — G. In general, H does not determine the structure on M. For example,
the two immersions of an annulus shown below define Fuclidean structures on the
annulus which both have trivial holonomy but are not equivalent in any reasonable
sense.

However, the holonomy is a complete invariant for (G, X)-structures on M near
a given structure My, up to an appropriate equivalence relation: two structures M;
and M, near M, are equivalent deformations of M, if there are submanifolds M] and
M, containing all but small neighborhoods of the boundary of M; and M,, with a
(G, X) homeomorphism between them which is near the identity.

Let M; denote a fixed structure on M, with holonomy H.

PROPOSITION 5.1. Geometric structures on M near My are determined up to
equivalency by holonomy representations of mM in G which are near Hy, up to
conjugacy by small elements of G.
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5. FLEXIBILITY AND RIGIDITY OF GEOMETRIC STRUCTURES

PROOF. Any manifold M can be represented as the image of a disk D with
reasonably nice overlapping near dD. Any structure on M is obtained from the
structure induced on D, by gluing via the holonomy of certain elements of m (M).

Any representation of m; M near Hy gives a new structure, by perturbing the
identifications on D. The new identifications are still finite-to-one giving a new
manifold homeomorphic to M.

If two structures near M, have holonomy conjugate by a small element of G, one
can make a small change of coordinates so that the holonomy is identical. The two
structures then yield nearby immersions of D into X, with the same identifications;
restricting to slightly smaller disks gives the desired (G, X)-homeomorphism. O

5.2

As a first approximation to the understanding of small deformations we can de-
scribe M in terms of a set of generators § = {g¢1,...,9,} and a set of relators
R ={r1,...,r}. [Eachr; is a word in the g;’s which equals 1 in 71 M.] Any represen-
tation p : m M — G assigns each generator g; an element in G, p(g;). This embeds
the space of representations R in GY. Since any representation of M must respect
the relations in 7 M, the image under p of a relator r; must be the identity in G.
If p: G5 — G® sends a set of elements in G to the |R| relators written with these
elements, then D is just p~!(1,...,1). If p is generic near Hy, (i.e., if the derivative
dp is surjective), the implicit function theorem implies that R is just a manifold of
dimension (|G| — |R]) - (dim G). One might reasonably expect this to be the case,
provided the generators and relations are chosen in an efficient way. If the action of G
on itself by conjugation is effective (as for the group of isometries of hyperbolic space)
then generally one would also expect that the action of G on G¥ by conjugation, near
Hy, has orbits of the same dimension as G. If so, then the space of deformations of
My would be a manifold of dimension

dim G - (|G| — |R| — 1).
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ExXAMPLE. Let’s apply the above analysis to the case of hyperbolic structures on
closed, oriented two-manifolds of genus at least two. G in this case can be taken
to be PSL(2,R) acting on the upper half-plane by linear fractional transformations.
m(M,) can be presented with 2g generators aq, by, . . . a4, b, (see below) together with
the single relator [],_,[a;, bi].

e

_—

Since PSL(2,R) is a real three-dimensional Lie group the expected dimension of the
deformation space is 3(2g — 1 — 1) = 6g — 6. This can be made rigorous by showing
directly that the derivative of the map p : G5 — G® is surjective, but since we will
have need for more global information about the deformation space, we won’t make

the computation here.
5.5

ExXAMPLE. The initial calculation for hyperbolic structures on an oriented three-
manifold is less satisfactory. The group of isometries on H? preserves planes which,
in the upper half-space model, are hemispheres perpendicular to C U oo (denoted
@) Thus the group G can be identified with the group of circle preserving maps
of C. This is the group of all linear fractional transformations with complex coef-
ficients PSL(2,C). (All transformations are assumed to be orientation preserving).
PSL(2,C), is a complez Lie group with real dimensions 6. M? can be built from one
zero-cell, a number of one- and two-cells, and (if M is closed), one 3-cell.

If M is closed, then (M) = 0, so the number & of one-cells equals the number of
two-cells. This gives us a presentation of 7 M with k generators and k relators. The
expected (real) dimension of the deformation space is 6(k — k — 1) = —6.

If OM +# (), with all boundary components of positive genus, this estimate of the
dimension gives

5.2.1. 6- (—x(M)) = 3(—x(dM)).

This calculation would tend to indicate that the existence of any hyperbolic struc-
ture on a closed three-manifold would be unusual. However, subgroups of PSL(2, C)
have many special algebraic properties, so that certain relations can follow from other
relations in ways which do not follow in a general group. 5.6

The crude estimate 5.2.1 actually gives some substantive information when
X(M) < 0.
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PROPOSITION 5.2.2. If M? possesses a hyperbolic structure My, then the space of
small deformations of My has dimension at least 6 - (—x(M)).

PRrROOF. PSL(2,C)? is a complex algebraic variety, and the map
p: PSL(2,C)% — PSL(2,C)*%

is a polynomial map (defined by matrix multiplication). Hence the dimension of the
subvariety p = (1,...,1) is at least as great as the number of variables minus the
number of defining equations. O

We will later give an improved version of 5.2.2 whenever M has boundary com-
ponents which are tori.

5.3

In this section we will derive some information about the global structure of the
space of hyperbolic structures on a closed, oriented surface M. This space is called
the Teichmiiller space of M and is defined to be the set of hyperbolic structures on M
where two are equivalent if there is an isometry homotopic to the identity between
them. In order to understand hyperbolic structures on a surface we will cut the
surface up into simple pieces, analyze structures on these pieces, and study the ways
they can be put together. Before doing this we need some information about closed
geodesics in M.

PRoOPOSITION 5.3.1. On any closed hyperbolic n-manifold M there is a unique,
closed geodesic in any non-trivial free homotopy class.

PRrOOF. For any a € m M consider the covering transformation 7, on the uni-
versal cover H™ of M. It is an isometry of H". Therefore it either fixes some interior
point of H" (elliptic), fixes a point at infinity (parabolic) or acts as a translation
on some unique geodesic (hyperbolic). That all isometries of H? are of one of these
types was proved in Proposition 4.9.3; the proof for H" is similar.

NoOTE. A distinction is often made between “loxodromic” and “hyperbolic” trans-
formations in dimension 3. In this usage a loxodromic transformation means an isom-
etry which is a pure translation along a geodesic followed by a non-trivial twist, while
a hyperbolic transformation means a pure translation. This is usually not a useful
distinction from the point of view of geometry and topology, so we will use the term
“hyperbolic” to cover either case.

88 Thurston — The Geometry and Topology of 3-Manifolds



5.3

Since T, is a covering translation it can’t have an interior fixed point so it can’t
be elliptic. For any parabolic transformation there are points moved arbitrarily small
distances. This would imply that there are non-trivial simple closed curves of arbi-
trarily small length in M. Since M is closed this is impossible. Therefore T, trans-
lates a unique geodesic, which projects to a closed geodesic in M. Two geodesics
corresponding to the translations 7, and 7], project to the same geodesic in M if
and only if there is a covering translation taking one to the other. In other words,
o' = gag~! for some g € m M, or equivalently, « is free homotopic to a. 0

PROPOSITION 5.3.2. Two distinct geodesics in the universal cover H™ of M which
are 1nvariant by two covering translations have distinct endpoints at oo.

PRroOF. If two such geodesics had the same endpoint, they would be arbitrarily
close near the common endpoint. This would imply the distance between the two
closed geodesics is uniformly < e for all €, a contradiction. 0

PROPOSITION 5.3.3. In a hyperbolic two-manifold M? a collection of homotopi-
cally distinct and disjoint nontrivial simple closed curves is represented by disjoint,
sitmple closed geodesics.

PROOF. Suppose the geodesics corresponding to two disjoint curves intersect.
Then there are lifts of the geodesics in the universal cover H? which intersect. Since
the endpoints are distinct, the pairs of endpoints for the two geodesics must link
each other on the circle at infinity. Consider any homotopy of the closed geodesics
in M?2. Tt lifts to a homotopy of the geodesics in H?. However, no homotopy of the
geodesics moving points only a finite hyperbolic distance can move their endpoints;
thus the images of the geodesics under such a homotopy will still intersect, and this
intersection projects to one in M?2.

The proof that the closed geodesic corresponding to a simple closed curve is
simple is similar. The argument above is applied to two different lifts of the same
geodesic. 0

Now we are in a position to describe the Teichmiiller space for a closed surface.
The coordinates given below are due to Nielsen and Fenchel.

Pick 3g — 3 disjoint, non-parallel simple closed curves on M?. (This is the max-
imum number of such curves on a surface of genus g.) Take the corresponding
geodesics and cut along them. This divides M? into 2¢g — 2 surfaces homeomorphic
to S?—three disks (called “pairs of pants” from now on) with geodesic boundary.

=@
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On each pair of pants P there is a unique arc connecting each pair of boundary
components, perpendicular to both. To see this, note that there is a unique homotopy
class for each connecting arc. Now double P along the boundary geodesics to form
a surface of genus two. The union of the two copies of the arcs connecting a pair
of boundary components in P defines a simple closed curve in the closed surface.
There is a unique geodesic in its free homotopy class and it is invariant under the
reflection which interchanges the two copies of P. Hence it must be perpendicular to
the geodesics which were in the boundary of P.

This information leads to an easy computation of the Teichmiiller space of P.

PROPOSITION 5.3.4. T(P) is homeomorphic to R® with coordinates

(10g ll, IOg ZQ, log lg),
where l; = length of the i-th boundary component.

PRrROOF. The perpendicular arcs between boundary components divide P into two
right-angled hexagons. The hyperbolic structure of an all-right hexagon is determined
by the lengths of three alternating sides. (See page 2.19.) The lengths of the con-
necting arcs therefore determine both hexagons so the two hexagons are isometric.
Reflection in these arcs is an isometry of the hexagons and shows that the boundary
curves are divided in half. The lengths [;/2 determine the hexagons; hence they also
determine P. Any positive real values for the [; are possible so we are done. 0

90 Thurston — The Geometry and Topology of 3-Manifolds

5.10



5.3

In order to determine the hyperbolic structure of the closed two-manifold from
that of the pairs of pants, some measurement of the twist with which the boundary
geodesics are attached is necessary. Find 3g — 3 more curves in the closed manifold
which, together with the first set of curves, divides the surface into hexagons.

In the pairs of pants the geodesics corresponding to these curves are arcs connect-
ing the boundary components. However, they may wrap around the components. In
P it is possible to isotope these arcs to the perpendicular connecting arcs discussed
above. Let 2d; denote the total number of degrees which this isotopy moves the feet
of arcs which lie on the ¢-th boundary component of p.

Of course there is another copy of this curve in another pair of pants which has
a twisting coefficient d;. When the two copies of the geodesic are glued together
they cannot be twisted independently by an isotopy of the closed surface. Therefore
(d; — df) = 7; is an isotopy invariant.

REMARK. If a hyperbolic surface is cut along a closed geodesic and glued back
together with a twist of 27n degrees (n an integer), then the resulting surface is
isometric to the original one. However, the isometry is not isotopic to the identity so
the two surfaces represent distinct points in Teichmiiller space. Another way to say
this is that they are isometric as surfaces but not as marked surfaces. It follows that
7; is a well-defined real number, not just defined up to integral multiples of 2.

THEOREM b5.3.5. The Teichmiiller space T(M) of a closed surface of genus g is
homeomorphic to R%=5. There are explicit coordinates for T(M), namely

(10gl177'1»10gl277'2, . 710gl3g—377—3g—3)a

where l; is the length and T; the twist coefficient for a system of 3g — 3 simple closed
geodesics.
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In order to see that it takes precisely 3g — 3 simple closed curves to cut a surface
of genus ¢ into pairs of pants P; notice that y(P;) = —1. Therefore the number of
P;’s is equal to —x(M,) = 2g — 2. Each P, has three curves, but each curve appears
in two P;’s. Therefore the number of curves is %(29 —2) = 39 — 3. We can rephrase
Theorem 5.3.5 as

T(M) ~ R™3XM),
It is in this form that the theorem extends to a surface with boundary.

The Fricke space F(M) of a surface M with boundary is defined to be the space
of hyperbolic structures on M such that the boundary curves are geodesics, modulo
isometries isotopic to the identity. A surface with boundary can also be cut into pairs
of pants with geodesic boundary. In this case the curves that were boundary curves
in M have no twist parameter. On the other hand these curves appear in only one
pair of pants. The following theorem is then immediate from the gluing procedures
above.

THEOREM 5.3.6. F(M) is homeomorphic to R=3X(M),

The definition of Teichmiiller space can be extended to general surfaces as the
space of all metrics of constant curvature up to isotopy and change of scale. In the
case of the torus T2, this space is the set of all Euclidean structures (i.e., metrics
with constant curvature zero) on T2 with area one. There is still a closed geodesic
in each free homotopy class although it is not unique. Take some simple, closed
geodesic on T2 and cut along it. The Euclidean structure on the resulting annulus is
completely determined by the length of its boundary geodesic. Again there is a real
twist parameter that determines how the annulus is glued to get T?. Therefore there
are two real parameters which determine the flat structures on 72, the length [ of a
simple, closed geodesic in a fixed free homotopy class and a twist parameter 7 along
that geodesic.

THEOREM 5.3.7. The Teichmiiller space of the torus is homeomorphic to R? with
coordinates (logl, T), where I, T are as above.

5.4. Special algebraic properties of groups of isometries of H3.

On large open subsets of PSL(2, C)Y, the space of representations of a generating
set G into PSL(2, C), certain relations imply other relations. This fact was anticipated
in the previous section from the computation of the expected dimension of small
deformations of hyperbolic structures on closed three manifolds. The phenomenon
that dp is not surjective (see 5.3) suggests that, to determine the structure of m M?
as a discrete subgroup of PSL(2,C), not all the relations in m;M? as an abstract
group are needed. Below are some examples.
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5.4. SPECIAL ALGEBRAIC PROPERTIES OF GROUPS OF ISOMETRIES OF HS.
gJorgensen

PROPOSITION 5.4.1 (Jgrgensen). Let a,b be two isometries of H® with no common
fized point at infinity. If w(a,b) is any word such that w(a,b) = 1 then w(a™',b7) =
1. If a and b are conjugate (i.e., if Trace(a) = 4 Trace(b) in PSL(2,C) ) then also
w(b,a) = 1.

PRroOOF. If a and b are hyperbolic or elliptic, let [ be the unique common perpen-
dicular for the invariant geodesics l,, [, of a and b. (If the geodesics intersect in a
point x, [ is taken to be the geodesic through = perpendicular to the plane spanned
by I, and ;). If one of a and b is parabolic, (say b is) [ should be perpendicular to
l, and pass through b’s fixed point at co. If both are parabolic, [ should connect the
two fixed points at infinity. In all cases rotation by 180° in [ takes a to a~! and b and
b=!, hence the first assertion.

If a and b are conjugate hyperbolic elements of PSL(2, C) with invariant geodesics
l, and [, take the two lines m and n which are perpendicular to [ and to each other
and which intersect [ at the midpoint between g, and [,. Also, if g, is at an angle of
0 to I, along [ then m should be at an angle of §/2 and n at an angle of 6 + /2.

n "“*-»-....Qb

Rotations of 180° through m or n take [, to [, and vice versa. Since a and b
are conjugate they act the same with respect to their respective fixed geodesics. It
follows that the rotations about m and n conjugate a to b (and b to a) or a to b™!
(and b to a™1).

If one of a and b is parabolic then they both are, since they are conjugate. In this
case take m and n to be perpendicular to [ and to each other and to pass through
the unique point x on [ such that d(z,ax) = d(z,bxr). Again rotation by 180° in m
and n takes a to b or a to b1 O

REMARKS. 1. This theorem fails when a and b are allowed to have a common
fixed point. For example, consider

11 ,_[r 0
“=1o 1| “lo At
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where A € C*. Then
_ _ 1IN
(b~"ab")' = b~*a'b" = [0 Ll

If X is chosen so that A\? is a root of a polynomial over Z, say 1 + 2X? = 0, then a
relation is obtained: in this case

w(a,b) = (a)(bab™")? = I.

However, w(a™t,b~') = I only if A™2 is a root of the same polynomial. This is not
the case in the current example.

2. The geometric condition that a and b have a common fixed point at infinity
implies the algebraic condition that a and b generate a solvable group. (In fact, the
commutator subgroup is abelian.)

GEOMETRIC COROLLARY 5.4.2. Any complete hyperbolic manifold M3 whose
fundamental group is generated by two elements a and b admits an involution s (an
isometry of order 2) which takes a to a™" and b tob='. If the generators are conjugate,
there is a Zo ® Zso action on M generated by s together with an involution t which
interchanges a and b unless a and b have a common fixed point at infinity.

PROOF. Apply the rotation of 180° about [ to the universal cover H3. This
conjugates the group to itself so it induces an isometry on the quotient space M?3.
The same is true for rotation around m and n in the case when a and b are conjugate.
It can happen that a and b have a common fixed point x at infinity, but since the
group is discrete they must both be parabolic. A 180° rotation about any line through
x sends a to a~! and b to b~1. There is not generally a symmetry group of order four
in this case. 0

As an example, the complete hyperbolic structure on the complement of the figure-
eight knot has symmetry implied by this corollary. (In fact the group of symmetries
extends to S? itself, since for homological reasons such a symmetry preserves the
meridian direction.)
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Here is another illustration of how certain relations in subgroups of PSL(2, C) can
imply others:

PROPOSITION 5.4.3. Suppose a and b are not elliptic. If a™ = b™ for some
n,m # 0, then a and b commute.

PRrROOF. If a™ = b™ is hyperbolic, then so are a and b. In fact they fix the same
geodesic, acting as translations (perhaps with twists) so they commute. If a” = ™
is parabolic then so are a and b. They must fix the same point at infinity so they act
as Euclidean transformations of any horosphere based there. It follows that a and b
commute. 0]

PROPOSITION 5.4.3. If a is hyperbolic and a* is conjugate to a' then k = +I.

PROOF. Since translation distance along the fixed line is a conjugacy invariant
and p(a®) = +kp(a) (where p( ) denotes translation distance), the proposition is
easy to see. [

Finally, along the same vein, it is sometimes possible to derive some nontriv-
ial topological information about a hyperbolic three-manifold from its fundamental

group.

PROPOSITION 5.4.4. If M? is a complete, hyperbolic three-manifold, a,b € 7 M3
and [a,b] = 1, then either
(i) @ and b belong to an infinite cyclic subgroup generated by x and ' = a,
2 =0, or
(i) M has an end, E, homeomorphic to T? x [0,00) such that the group gen-
erated by a and b is conjugate in ™ M?> to a subgroup of finite index in

7T1E.

PRrROOF. If a and b are hyperbolic then they translate the same geodesic. Since
w1 M? acts as a discrete group on H?, a and b must act discretely on the fixed geodesic.
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Thus, (i) holds.

If a and b are not both hyperbolic, they must both be parabolic, since they
commute. Therefore they can be thought of as Euclidean transformations on a set of
horospheres. If the translation vectors are not linearly independent, a and b generate a
group of translations of R and (i) is again true. If the vectors are linearly independent,
a and b generate a lattice group L,, on R?. Moreover as one approaches the fixed
point at infinity, the hyperbolic distance a point z is moved by a and b goes to zero.

\

Recall that the subgroup G.(X) of m M? generated by transformations that moves
a point x less than € is abelian. (See pages 4.34-4.35). Therefore all the elements of
G.(X) commute with a and b and fix the same point p at infinity. By discreteness
G(X) acts as a lattice group on the horosphere through x and contains L, as a
subgroup of finite index.

Consider a fundamental domain of G.(X) acting on the set of horocycles at p
which are “contained” in the horocycle H, through x. It is homeomorphic to the
product of a fundamental domain of the lattice group acting on H, with [0, c0) and
is moved away from itself by all elements in 71 M? not in G.(X). Therefore it is
projected down into M? as an end homeomorphic to 7% x [0, 1]. This is case (ii). O

5.5. The dimension of the deformation space of a hyperbolic
three-manifold.

Consider a hyperbolic structure My on 72 x I. Let o and 3 be generators for
Z®7Z = m(T? x I); they satisfy the relation [a, 3] = 1, or equivalently a3 = Sa.
The representation space for Z @ Z is defined by the equation

H(a) H(B) = H(B) H(w),
where H(a), H(f) € PSL(2,C). But we have the identity
Tr(H(a) H(B)) = Tr(H(B) H()),
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as well as det (H(«) H()) = det (H(B) H(a)) = 1, so this matrix equation is equiva-
lent to two ordinary equations, at least in a neighborhood of a particular non-trivial
solution. Consequently, the solution space has a complex dimension four, and the de-
formation space of My has complex dimension two. This can easily be seen directly:
H(«a) has one complex degree of freedom to conjugacy, and given H(«) # id, there is
a one complex-parameter family of transformations H () commuting with it. This
example shows that 5.2.2 is not sharp. More generally, we will improve 5.2.2 for any
compact oriented hyperbolic three-manifold M, whose boundary contains toruses,
under a mild nondegeneracy condition on the holonomy of M:

THEOREM 5.6. Let My be a compact oriented hyperbolic three-manifold whose
holonomy satisfies

(a) the holonomy around any component of OM homeomorphic with T? is not
trivial, and
(b) the holonomy has no fized point on the sphere at co.

Under these hypotheses, the space of small deformations of My has dimension at least
as great as the total dimension of the Teichmiiller space of OM, that is,

+3[x((0M)s)|  if x((9M);) < 0,
dime(Def(M)) > ) <1 if XﬁﬁgMilg =0,

REMARK. Condition (b) is equivalent to the statement that the holonomy repre-
sentation in PSL(2,C) is irreducible. It is also equivalent to the condition that the
holonomy group (the image of the holonomy) be solvable.

ExXAMPLES. If N is any surface with nonempty boundary then, by the immersion
theorem [Hirsch] there is an immersion ¢ of N x S* in N x I so that ¢ sends m(N)
to m (N x I) = m(IN) by the identity map. Any hyperbolic structure on N x [
has a —6x(/N) complex parameter family of deformations. This induces a (—6x(V))-
parameter family of deformations of hyperbolic structures on N x S, showing that
the inequality of 5.6 is not sharp in general.

Another example is supplied by the complement M}, of k unknotted unlinked solid
tori in S®. Since 7 (M}) is a free group on k generators, every hyperbolic structure
on Mj has at least 3k — 3 degrees of freedom, while 5.6 guarantees only k& degrees of
freedom. Other examples are obtained on more interesting manifolds by considering
hyperbolic structures whose holonomy factors through a free group.

ProOF OF 5.6. We will actually prove that for any compact oriented manifold
M, the complex dimension of the representation space of w1 M, near a representation
satisfying (a) and (b), is at least 3 greater than the number given in 5.6; this suffices,
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by 5.1. For this stronger assertion, we need only consider manifolds which have no
boundary component homeomorphic to a sphere, since any three-manifold M has the
same fundamental group as the manifold M obtained by gluing a copy of D? to each
spherical boundary component of M.

REMARK. Actually, it can be shown that when M # 0, a representation
p:mM — PSL(2,C)

is the holonomy of some hyperbolic structure for M if and only if it lifts to a repre-
sentation in SL(2,C). (The obstruction to lifting is the second Stiefel-Whitney class
wy of the associated H3-bundle over M.) It follows that if Hy is the holonomy of a
hyperbolic structure on M, it is also the holonomy of a hyperbolic structure on M ,
provided &M # ). Since we are mainly concerned with structures which have more
geometric significance, we will not discuss this further.

Let Hy denote any representation of m M satisfying (a) and (b) of 5.6. Let
Ti,..., T, be the components of M which are toruses.

LEMMA 5.6.1. For each i, 1 < i <k, there is an element co; € m (M) such that
the group generated by Ho(cy) and Ho(m(T;)) has no fized point at co. One can
choose «; so Hy(w;) is not parabolic.

PROOF OF 5.6.1. If Hy(mT;) is parabolic, it has a unique fixed point = at oo
and the existence of an « not fixing x is immediate from condition (b). If Hy(mT;)
has two fixed points x; and x5, there is Hy(f;) not fixing x; and Hy(f2) not fixing
xo. If Ho(y) and Hy(f2) each have common fixed points with Hy(mT;), o) = (152
does not.

If Hy(c) is parabolic, consider the commutators 7, = [}, §] where f € mT; is
some element such that Hy(5) # 1. If Hylal™, 3] has a common fixed point x with
Hy(B) then also oG~ fixes x so ( fixes o "x; this happens for at most three

values of n. We can, after conjugation, take Hy(ca) = [(1) H Write
i—1p-1_ |@ b
e

where a +d = 2 and ¢ # 0 since [é] is not an eigenvector of 3. We compute
Tr(7,) = 2 + n’c; it follows that 7, can be parabolic (< Tr(y,) = £2) for at most 3
values of n. This concludes the proof of Lemma 5.6.1. U

Let {a;,1 < i < k} be a collection of simple disjoint curves based on 7T; and
representing the homotopy classes of the same names. Let N C M be the manifold
obtained by hollowing out nice neighborhoods of the «;. Each boundary component
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of N is a surface of genus > 2, and M is obtained by attaching k two-handles along
non-separating curves on genus two surfaces Si,..., Sy C ON.

Let «a; also be represented by a curve of the same name on S;, and let (3; be a
curve on S; describing the attaching map for the i-th two-handle. Generators ~;, d;
can be chosen for m;T; so that «a;, 3;,7;, and §; generate m B; and [ay, 3] - [:, 6] = 1.
m M is obtained from m M by adding the relations 3; = 1.

LEMMA 5.6.2. A representation p of m{ N near Hy gives a representation of m M
if and only if the equations 5.27

Tr(p(8) =2
and Tr (p oy, Bi]) =2
are satisfied.
PROOF OF 5.6.2. Certainly if p gives a representation of m M, then p(3;) and

play, Bi] are the identity, so they have trace 2.
To prove the converse, consider the equation

Tr[A, Bl =2
in SL(2,C) . If A is diagonalizable, conjugate so that
A0
)
Write
—1p-1 _ a b
e )

We have the equations
at+d=XA+"
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Tr[A, Bl =Xa+ A "'d=2
which imply that
a=\"1d=\

Since ad — bc = 1 we have bc = 0. This means B has at least one common eigenvector

[(1)] or [[1)] with A; if [A, B] # 1, this common eigenvector is the unique eigenvector

of [A, B] (up to scalars). As in the proof of 5.6.1, a similar statement holds if A is
parabolic. (Observe that [A, B] = [—A, B], so the sign of Tr A is not important).

It follows that if Tr play, ;] = 2, then since [v;, &;] = [y, ], either p (o), p (5;),
p (7;) and p (8;) all have a common fixed point on the sphere at infinity, or pla;, ;] = 1.

By construction Hj, m.5; has no fixed point at infinity, so for p near HypmS;
cannot have a fixed point either; hence p[a, ;] = 1.

The equation Tr p (5;) = 2 implies p (5;) is parabolic; but it commutes with p (3;),
which is hyperbolic for p near Hy. Hence p(;) = 1. This concludes the proof of
Lemma 5.6.2. O

To conclude the proof of 5.6, we consider a handle structure for N with one zero-
handle, m one-handles, p two-handles and no three-handles (provided OM = ). This
gives a presentation for my N with m generators and p relations, where

L—=m+p=x(N)=x(M) -k

The representation space R C PSL(2,C)™ for m M, in a neighborhood of H, is
defined by the p matrix equations

ri=1, (1<i<p),
where the r; are products representing the relators, together with 2k equations
Trp(3;) =2
Trp(lew, Bi]) =2 [1 <i <K

The number of equations minus the number of unknowns (where a matrix variable is
counted as three complex variables) is

3m —3p — 2k = =3x(M) + k + 3.
U

REMARK. If M is a closed hyperbolic manifold, this proof gives the estimate of
0 for dimc def(M): simply remove a non-trivial solid torus from M, apply 5.6, and
fill in the solid torus by an equation Tr(y) = 2.
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There is a remarkable, precise description for the global deformation space of
hyperbolic structures on closed manifolds in dimensions bigger than two:

THEOREM 5.7.1 (Mostow’s Theorem [algebraic version]). Suppose I'y and T'y are
two discrete subgroups of the group of isometries of H™, n > 3 such that H"/T'; has
finite volume and suppose ¢ : I'y — I's 1s a group isomorphism. Then I'y and I'y are
conjugate subgroups.

This theorem can be restated in terms of hyperbolic manifolds since a hyperbolic
manifold has universal cover H" with fundamental group acting as a discrete group
of isometries.

THEOREM 5.7.2 (Mostow’s Theorem [geometric version]). If M{* and MY are com-
plete hyperbolic manifolds with finite total volume, any isomorphism of fundamental
groups ¢ : T My — m My is realized by a unique isometry.

REMARK. Multiplication by an element in either fundamental group induces the
identity map on the manifolds themselves so that ¢ needs only to be defined up to
composition with inner automorphisms to determine the isometry from M; to Ms.

Since the universal cover of a hyperbolic manifold is H™, it is a K (, 1). Two such
manifolds are homotopy equivalent if and only if there is an isomorphism between
their fundamental groups.

COROLLARY 5.7.3. If My and My are hyperbolic manifolds which are complete
with finite volume, then they are homeomorphic if and only if they are homotopy
equivalent. (The case of dimension two is well known.)

For any manifold M, there is a homomorphism Diff M — Out(m M), where
Out(m M) = Aut(m M)/ Inn(m M) is the group of outer automorphisms. Mostow’s
Theorem implies this homomorphism splits, if M is a hyperbolic manifold of dimen-
sion n > 3. It is unknown whether the homomorphism splits when M is a surface.
When n = 2 the kernel Diffo(M) is contractible, provided x (M) < 0. If M is a Haken
three-manifold which is not a Seifert fiber space, Hatcher has shown that Diffy M is
contractible.

COROLLARY 5.7.4. If M™ is hyperbolic (complete, with finite total volume) and
n > 3, then Out(m; M) is a finite group, isomorphic to the group of isometries of M™.

PROOF. By Mostow’s Theorem any automorphism of 71 M induces a unique isom-
etry of M. Since any inner automorphism induces the identity on M, it follows that
the group of isometries is isomorphic to Out(m M). That Out(m; M) is finite is im-
mediate from the fact that the group of isometries, Isom(M™), is finite.
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To see that Isom(M™) is finite, choose a base point and frame at that point and
suppose first that M is compact. Any isometry is completely determined by the
image of this frame (essentially by “analytic continuation”). If there were an infinite
sequence of isometries there would exist two image frames close to each other. Since
M is compact, the isometries, @1, ¢, corresponding to these frames would be close
on all of M. Therefore ¢, is homotopic to ¢,. Since the isometry ¢, ¢, induces the
trivial outer automorphism on 7y M, it is the identity; i.e., ¢2 = ¢;.

If M is not compact, consider the submanifold M, C M which consists of points
which are contained in an embedded hyperbolic disk of radius e. Since M has finite
total volume, M, is compact. Moreover, it is taken to itself under any isometry. The
argument above applied to M, implies that the group of isometries of M is finite even
in the non-compact case. 0

REMARK. This result contrasts with the case n = 2 where Out(m; M?) is infinite
and quite interesting.

The proof of Mostow’s Theorem in the case that H"/I" is not compact was com-
pleted by Prasad. Otherwise, 5.7.1 and 5.7.2 (as well as generalizations to other
homogeneous spaces) are proved in Mostow. We shall discuss Mostow’s proof of this
theorem in 5.10, giving details as far as they can be made geometric. Later, we will
give another proof due to Gromov, valid at least for n = 3.

5.8. Generalized Dehn surgery and hyperbolic structures.

Let M be a non-compact, hyperbolic three-manifold, and suppose that M has a
finite number of ends FEy, ..., By, each homeomorphic to T? x [0,00) and isometric
to the quotient space of the region in H? (in the upper half-space model) above
an interior Euclidean plane by a group generated by two parabolic transformations
which fix the point at infinity. Topologically M is the interior of a compact manifold
M whose boundary is a union of T3, . .., T}, tori.

Recall the operation of generalized Dehn surgery on M (§4.5); it is parametrized
by an ordered pair of real numbers (a;, b;) for each end which describes how to glue
a solid torus to each boundary component. If nothing is glued in, this is denoted by
oo so that the parameters can be thought of as belonging to S? (i.e., the one point
compactification of R? ~ H;(T? R)). The resulting space is denoted by My, 4,
where d; = (a;, b;) or oo.

In this section we see that the new spaces often admit hyperbolic structures. Since
My, .4, 1s a closed manifold when d; = (a;,b;) are primitive elements of Hy(T? Z),
this produces many closed hyperbolic manifolds. First it is necessary to see that
small deformations of the complete structure on M induce a hyperbolic structure on

some space My, _ q,.
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LEMMA 5.8.1. Any small deformation of a “standard” hyperbolic structure on
T? x [0,1] extends to some (D? x SY)4. d = (a,b) is determined up to sign by the
traces of the matrices representing generators o, 3 of mT?.

PROOF. A “standard” structure on 72 x [0, 1] means a structure as described on
an end of M truncated by a Euclidean plane. The universal cover of T? x [0, 1] is the
region between two horizontal Euclidean planes (or horospheres), modulo a group
of translations. If the structure is deformed slightly the holonomy determines the
new structure and the images of o and (3 under the holonomy map H are slightly
perturbed.

If H(«) is still parabolic then so is H(/3) and the structure is equivalent to the
standard one. Otherwise H(a) and H () have a common axis [ in H3. Moreover
since H(«) and H(f3) are close to the original parabolic elements, the endpoints of
are near the common fixed point of the parabolic elements. If T2 x [0,1] is thought
to be embedded in the end, T? x [0, 00), this means that the line lies far out towards
oo and does not intersect 72 x [0, 1]. Thus the developing image of 7% x [0,1] in H?
for new structure misses [ and can be lifted to the universal cover

H3 —1
of H3 —1.
This is the geometric situation necessary for generalized Dehn surgery. The ex-
tension to (D? x S1), is just the completion of

H3 — 1/{H(a), H()}
where H is the lift of H to the cover
H— 1.

—_~

Recall that the completion depends only on the behavior of H(«) and H () along .
In particular, if H () denotes the complex number determined by the pair (translation
distance along [, rotation about ), then the Dehn surgery coefficients d = (a, b) are
determined by the formula:

a H(a) +bH(B) = +2mi.
The translation distance and amount of rotation of an isometry along its fixed
line is determined by the trace of its matrix in PSL(2,C). This is easy to see since
trace is a conjugacy invariant and the fact is clearly true for a diagonal matrix. In

particular the complex number corresponding to the holonomy of a matrix acting on
H?3 is log A where \ + A1 is its trace. 0

The main result concerning deformations of M is
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THEOREM 5.8.2. If M = My, o admits a hyperbolic structure then there is a
neighborhood U of (0o, ...,00) in S? x S x -+ x S? such that for all (dy,...,dk) €

U, Mg,...q, admits a hyperbolic structure.

PRrROOF. Consider the compact submanifold My C M gotten by truncating each
end. M, has boundary a union of k tori and is homeomorphic to the manifold M
such that M = interior M. By theorem 5.6, M, has a k complex parameter family
of non-trivial deformations, one for each torus. From the lemma above, each small
deformation gives a hyperbolic structure on some My, 4, . It remains to show that
the d; vary over a neighborhood of (o0, ..., 00).

Consider the function
Tr: Def(M) — (Tr(H(aq)), ..., Tr(H(ay)))

which sends a point in the deformation space to the k-tuple of traces of the ho-
lonomy of ay,as,...,ar, where «;, 3; generate the fundamental group of the i-th
torus. Tr is a holomorphic (in fact, algebraic) function on the algebraic variety
Def(M). Tr(Mw, ) = (£2,...,£2) for some fixed choice of signs. Note that
Tr(H(oy)) = £2 if and only if H () is parabolic and H(«;) is parabolic if and only
if the i-th surgery coefficient d; equals co. By Mostow’s Theorem the hyperbolic
structure on My, o is unique. Therefore d; = oo for i = [,..., k only in the original
case and Tr™'(£2,...,42) consists of exactly one point. Since dim(Def(M)) > k it
follows from [ | that the image under Tr of a small open neighborhood of My, « is
an open neighborhood of (£2,...,£2).

Since the surgery coefficients of the i-th torus depend on the trace of both H (o)
and H(f;), it is necessary to estimate H([3;) in terms of H(q;) in order to see how
the surgery coefficients vary. Restrict attention to one torus 7" and conjugate the
original developing image of M, . ~ so that the parabolic fixed point of the holonomy,
Hy, (mT), is the point at infinity. By further conjugation it is possible to put the
holonomy matrices of the generators «, # of 7T in the following form:

mi =g 1] mo=[g 5]

Note that since Hy(«), Ho(3) act on the horospheres about oo as a two-dimension-
al lattice of Euclidean translations, ¢ and [ are linearly independent over R. Since
Hy(a), Ho(3) have [,] as an eigenvector, the perturbed holonomy matrices

H(a), H(S)
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will have common eigenvectors near [(ﬂ , say LIJ and [612} Let the eigenvalues of
H(a) and H(3) be (\,A71) and (u, u~1) respectively. Since H(«) is near Hy(a),

1) =[3)
However

o )22 (- (2] ()

Therefore
A— 21
~1
€1 — €9
Similarly,
p—pt
—=c
€1 — €2

For A\, u near 1,
log(\) A—=1 A=-X" 1
log(p) p—=1 p—p?t ¢
Since H(a) = log A and H(f3) = log p this is the desired relationship between H ()
and H ().
The surgery coefficients (a,b) are determined by the formula

aH (o) +bH(B) = +2mi.

>%
)

From the above estimates this implies that

4271

log A\

(Note that the choice of sign corresponds to a choice of X or A1) Since 1 and ¢ are
linearly independent over R, the values of (a,b) vary over an open neighborhood of
oo as A varies over a neighborhood of 1. Since Tr(H(a)) = A + A~! varies over a
neighborhood of 2 (up to sign) in the image of Tr : Def(M) — CF, we have shown
that the surgery coefficients for the My, 4, possessing hyperbolic structures vary
over an open neighborhood of oo in each component. 0

(a+bc) ~

ExXAMPLE. The complement of the Borromean rings has a complete hyperbolic
structure. However, if the trivial surgery with coefficients (1,0) is performed on
one component, the others are unlinked. (In other words, M 000,00 18 S minus two
unlinked circles.) The manifold My ), (where M is S* minus the Borromean rings)
is then a connected sum of lens spaces if x,y are primitive elements of H;(T?,Z) so
it cannot have a hyperbolic structure. Thus it may often happen that an infinite
number of non-hyperbolic manifolds can be obtained by surgery from a hyperbolic
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one. However, the theorem does imply that if a finite number of integral pairs of
coefficients is excluded from each boundary component, then all remaining three-
manifolds obtained by Dehn surgery on M are also hyperbolic.

5.9. A Proof of Mostow’s Theorem.

This section is devoted to a proof of Mostow’s Theorem for closed hyperbolic
n-manifolds, n > 3. The proof will be sketchy where it seems to require analysis.
With a knowledge of the structure of the ends in the noncompact, complete case, this
proof extends to the case of a manifold of finite total volume; we omit details. The
outline of this proof is Mostow’s.

Given two closed hyperbolic manifolds M; and M, together with an isomorphism
of their fundamental groups, there is a homotopy equivalence inducing the isomor-
phism since M; and M, are K(m,1)’s. In other words, there are maps f; : My — My
and fy : My — M such that fio f5 and fy 0 f; are homotopic to the identity. Denote
lifts of f1, f to the universal cover H" by f1, f» and assume fi o f» and fo o f; are
equivariantly homotopic to the identity.

The first step in the proof is to construct a correspondence between the spheres
at infinity of H™ which extends f; and fs.

DEFINITION. A map ¢ : X — Y between metric spaces is a pseudo-isometry if
there are constants ¢, ¢, such that ¢;'d(zy, 22) — co < d(ga1, g22) < crd(wy, 29) for
all z1,29 € X.

LEMMA 5.9.1. f1, fo can be chosen to be pseudo-isometries.

Proor. Make f; and f> simplicial. Then since M; and M, are compact, f; and
f> are Lipschitz and lift to f; and f» which are Lipschitz with the same coefficient.
It follows immediately that there is a constant ¢; so that d( ﬁxl, ﬁ:@) < cd(xy, )
fori=1,2 and all x1,29 € H".

If 2; = fiy;, then this inequality implies that

d(f2 o fl(y1)7 fao fl(yz)) < Cld(flylaflyQ)-

However, since M; is compact, f» o fi is homotopic to the identity by a homotopy
that moves every point a distance less than some constant b. It follows that

d(y1,y2) —2b < d(f2 0o flyla fQ 0 f1y2)7
from which the lower bound ¢, 'd(y1, 1) — ¢z < d(flyl, flyg) follows. O

Using this lemma it is possible to associate a unique geodesic with the image of
a geodesic.
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PROPOSITION 5.9.2. For any geodesic g C H™ there is a unique geodesic h such
that f1(g) stays in a bounded neighborhood of h.

PrOOF. If j is any geodesic in H", let N4(j) be the neighborhood of radius s
about j. We will see first that if s is large enough there is an upper bound to
the length of any bounded component of g — (fl_l(Ns(j))), for any j. In fact, the
perpendicular projection from H™ — N(j) to j decreases every distance by at least
a factor of 1/cosh s, so any long path in H™ — N,(j) with endpoints on ON,(j) can
be replaced by a much shorter path consisting of two segments perpendicular to 7,
together with a segment of j.

— |

When this fact is applied to a line j joining distant points p; and py on fl (9), it
follows that the segment of g between p; and py must intersect each plane perpendic-
ular to j a bounded distance from j. It follows immediately that there is a limit line
h to such lines j as p; and py go to 400 and —oo on fi(g), and that f;(g) remains a
bounded distance from h. Since no two lines in H" remain a bounded distance apart,
h is unique. O

COROLLARY 5.9.3. fl : H" — H" induces a one-to-one correspondence between
the spheres at infinity.
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PROOF. There is a one-to-one correspondence between points on the sphere at
infinity and equivalence classes of directed geodesics, two geodesics being equivalent if
they are parallel, or asymptotic in positive time. The correspondence of 5.9.2 between
geodesics in M; and geodesics in M, obviously preserves this relation of parallelism,
so it induces a map on the sphere at infinity. This map is one-to-one since any two
distinct points in the sphere at infinity are joined by a geodesic, hence must be taken
to the two ends of a geodesic. 0

7

The next step in the proof of Mostow’s Theorem is to show that the extension
of fl to the sphere at infinity S ! is continuous. One way to prove this is by citing
Brouwer’s Theorem that every function is continuous. Since this way of thinking is
not universally accepted (though it is valid in the current situation), we will give
another proof, which will also show that f is quasi-conformal at S™!'. A basis
for the neighborhoods of a point z € S%! is the set of disks with center z. The
boundaries of the disks are (n — 2)-spheres which correspond to hyperplanes in H?
(i.e., to (n — 1)-spheres perpendicular to S™ ! whose intersections with S”! are the
(n — 2)-spheres).

For any geodesic ¢ in My, let ®(g) be the geodesic in M, which remains a bounded
distance from f;(g).
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LEMMA 5.9.4. There is a constant ¢ such that, for any hyperplane P in H" and
any geodesic g perpendicular to P, the projection of fi(P) onto ¢(g) has diameter
<ec.

PROOF. Let x be the point of intersection of P and g and let [ be a geodesic ray
based at . Then there is a unique geodesic [y which is parallel to [ in one direction
and to a fixed end of g in the other. Let A denote the shortest arc between = and ;.
It has length d, where d is a fixed contrast (= arc cosh v/2).

A
/ ™N\¢
;x' Q ‘l A i
‘

The idea of the proof is to consider the image of this picture under f;. Let
o(1),o(l1), #(g) denote the geodesics that remain a bounded distance from [,/; and g
respectively. Since ¢ preserves parallelism ¢(I) and ¢(I;) are parallel. Let I+ denote
the geodesic from the endpoint on S of ¢(I) which is perpendicular to ¢(g). Also
let 2 be the point on ¢(g) nearest to f;(x).

Since f;(x) is a pseudo-isometry the length of f;(A) is at most ¢;d where ¢; is a
fixed constant. Since ¢(l;) and ¢(g) are less than distance s (for a fixed constant s)

from f;(1;) and f(g) respectively, it follows that z is distance less than Cyd+2s = d

from ¢(l;). This implies that the foot of I+ (i.e., I+ N ¢(g)) lies distance less than
d to one side of xy. By considering the geodesic I, which is parallel to [ and to the
other end of g, it follows that f lies a distance less than d from .

Now consider any point y € P. Let m be any line through y. The endpoints
of ¢(m) project to points on ¢(g) within a distance d of x¢; since fi(y) is within a

distance s of ¢(m), it follows that y projects to a point not farther than d 4 s from
Zg- O
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?(3)

E;(M)

COROLLARY 5.9.5. The extension of f, to S™=1 s continuous.

PROOF. For any point y € S™!, consider a directed geodesic g bending toward v,
and define f;(y) to be the endpoint of ¢(g). The half-spaces bounded by hyperplanes
perpendicular to ¢(g) form a neighborhood basis for f;(y). For any such half-space
H, there is a point & € g such that the projection of fl(w) to ¢(g) is a distance
> (' from 0H. Then the neighborhood of y bounded by the hyperplane through x
perpendicular to g is mapped within H. O

Below it will be necessary to use the concept of quasi-conformality. If f is a
homeomorphism of a metric space X to itself, f is K-quasi-conformal if and only if

for all z € X
lim Supz,yesr(z) d (f(l'), f(y))
r—0 infm,yEST(Z) d (f(x)a f(y)) N

where S,.(Z) is the sphere of radius r around Z, and x and y are diametrically
opposite. K measures the deviation of f from conformality, is equal to 1 if f is
conformal, and is unchanged under composition with a conformal map. f is called
quasi-conformal if it is K-quasi-conformal for some K.

COROLLARY 5.9.6. f; is quasi-conformal at St

PROOF. Use the upper half-space model for H" since it is conformally equivalent
to the ball model and suppose x and flx are the origin since translation to the origin
is also conformal. Then consider any hyperplane P perpendicular to the geodesic g
from 0 to the point at infinity. By Lemma 5.9.4 there is a bound, depending only
on fj, to the diameter of the projection of f;(P) onto ¢(g) = g. Therefore, there
are hyperplanes Py, P, perpendicular to g contained in and containing fl(P) and the
distance (along g) between P; and P, is uniformly bounded for all planes P.
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But this distance equals logr,r > 1, where r is the ratio of the radii of the n — 2
spheres
821_2’ 51?2_2
in S”~! corresponding to P; and P,. The image of the n—2 sphere S% 2 corresponding
to P lies between S;-? and S/~? so that 7 is an upper bound for the ratio of maximum
to minimum distances on )
fl(Sg*Q).

Since log r is uniformly bounded above, so is r and f; is quasi-conformal. 0J

Corollary 5.9.6 was first proved by Gehring for dimension n = 3, and generalized
to higher dimensions by Mostow.

At this point, it is necessary to invoke a theorem from analysis (see Bers).

THEOREM 5.9.7. A quasi-conformal map of an n — 1-manifold, n > 2, has a
derivative almost everywhere (= a.e.).

REMARK. It is at this stage that the proof of Mostow’s Theorem fails for n = 2.
The proof works to show that f; extends quasi-conformally to the sphere at infinity,
S1 . but for a one-manifold this does not imply much.

Consider f; : S»1 — S~ by theorem 5.9.7 df; exists a.e. At any point  where
the derivative exists, the linear map d fl(x) takes a sphere around the origin to an
ellipsoid. Let Aq,..., \,_1 be the lengths of the axes of the ellipsoid. If we normalize
so that Ay - Ao+ A\,_1 = 1, then the \; are conformal invariants. In particular denote
the maximum ratio of the \;’s at « by e(x), the eccentricity of f, at . Note that if
f, is K-quasi-conformal, the supremum of e(r), x € S%' is K. Since 71 M; acts on
S7=1 conformally and e is invariant under conformal maps, e is a measurable, m M;
invariant function on S™!'. However, such functions are very simple because of the
following theorem:

THEOREM 5.9.8. For a closed, hyperbolic n-manifold M, m M acts ergodically on
Sl d.e., every measurable, invariant set has zero measure or full measure.
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COROLLARY 5.9.9. e is constant a.e.

PROOF. Any level set of e is a measurable, invariant set so precisely one has full
measure. 0

In fact more is true:
THEOREM 5.9.10. 71 (M) acts ergodically on S x S7L.

REMARK. This theorem is equivalent to the fact that the geodesic flow of M is
ergodic since pairs of distinct points on S™! are in a one-to-one correspondence to
geodesics in H™ (whose endpoints are those points).

From Corollary 5.9.9 e is equal a.e. to a constant K, and if the derivative of f; is
not conformal, K # 1.

Consider the case n = 3. The direction of maximum “stretch” of df defines a
measurable line field [ on S%. Then for any two points x,y € S2 it is possible to
parallel translate the line [(x) along the geodesic between z and y to y and compute
the angle between the translation of [(x) and I(y). This defines a measurable 73 M-
invariant function on S x S2. By theorem 5.9.10 it must be constant a.e. In other
words [ is determined by its “value” at one point. It is not hard to see that this is
impossible.

For example, the line field determined by a line at x agrees with the line field
below a.e. However, any line field determined by its “value” at y will have the same
form and will be incompatible.

The precise argument is easy, but slightly more subtle, since [ is defined only a.e.

The case n > 3 is similar.

Now one must again invoke the theorem, from analysis, that a quasi-conformal
map whose derivative is conformal a.e. is conformal in the usual sense; it is a sphere-
preserving map of S™ 1 so it extends to an isometry I of H™. The isometry [

conjugates the action of 1 My to the action of m M, completing the proof of Mostow’s
Theorem. 0J

5.10. A decomposition of complete hyperbolic manifolds.

Let M be any complete hyperbolic manifold (possibly with infinite volume). For
e > 0, we will study the decomposition M = M q U M| .y where M consists of
those points in M through which there is a non-trivial closed loop of length < €, and
M« consists of those points through which every non-trivial loop has length > e.

In order to understand the geometry of M, we pass to the universal cover
M = H". For any discrete group I' of isometries of H" and any = € H" let T'(z) be
the subgroup generated by all elements of I' which move x a distance < ¢, and let
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['(z) C I'c(x) be the subgroup consisting of elements whose derivative is also e-close
to the identity.

LEMMA 5.10.1 (The Margulis Lemma). For every dimension n there is an € > 0
such that for every discrete group T of isometries of H" and for every x € H", T".(x)
is abelian and T(x) has an abelian subgroup of finite index.

REMARK. This proposition is much more general than stated; if “abelian” is
replaced by “nilpotent,” it applies in general to discrete groups of isometries of Rie-
mannian manifolds with bounded curvature. The proof of the general statement is
essentially the same.

PROOF. In any Lie group G, since the commutator map [ , |: G x G — G has
derivative 0 at (1,1), it follows that the size of the commutator of two small elements
is bounded above by some constant times the product of their sizes. Hence, if I" is
any discrete subgroup of G generated by small elements, it follows immediately that
the lower central series I'. D [I',, '] D [I", [[".,I'"}]], ... is finite (since there is a lower
bound to the size of elements of I')). In other words, I’ is nilpotent. When G is
the group of isometries of hyperbolic space, it is not hard to see (by considering, for
instance, the geometric classification of isometries) that this implies I is actually
abelian.

To guarantee that I'c(z) has an abelian subgroup of finite index, the idea is first to
find an €; such that I, (x) is always abelian, and then choose € many times smaller
than ¢, so the product of generators of I'c(x) will lie in I", (x). Here is a precise
recipe:

Let N be large enough that any collection of elements of O(n) with cardinality
> N contains at least one pair separated by a distance not more than €;/3.

Choose €3 < €3 so that for any pair of isometries ¢; and ¢, of H" which translate
a point = a distance < €, the derivative at x of ¢; o ¢ (parallel translated back to x)
is estimated within €6 by the product of the derivatives at x of ¢; and ¢, (parallel
translated back to z).

Now let € = €3/on, so that a product of 2N isometries, each translating z a
distance < €, translates x a distance < ey. Let gy,..., gr be the set of elements of I'
which move z a distance < ¢; they generate I'c(z). Consider the cosets I' (), where
v € T'e(x); the claim is that they are all represented by 7’s which are words of length
< N in the generators gy, ..., gx. Infact, if y =g, - ... -g;, is any word of length > N
in the g;’s, it can be written v = a - €' - 3, (a, €, 3 # 1) where ¢’ - § has length < N,
and the derivative of € is within €3 of 1. It follows that (a3)™! - (a€’8) = f7'€'0 is
in I', (x); hence the coset YI', () = (af)I, (z). By induction, the claim is verified.
Thus, the abelian group I'{ (z) has finite index in the group generated by I'c(z) and
I, (z), so I' (x) NTc(x) with finite index. O
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ExAMPLES. When n = 3, the only possibilities for discrete abelian groups are Z
(acting hyperbolically or parabolically), Z x Z (acting parabolically, conjugate to a
group of Euclidean translations of the upper half-space model), Z x Z,, (acting as
a group of translations and rotations of some axis), and Zs X Z, (acting by 180°
rotations about three orthogonal axes). The last example of course cannot occur as
[ (z). Similarly, when € is small compared to 1/n, Z x Z, cannot occur as I".(x).

Any discrete group I' of isometries of Euclidean space E"~! acts as a group of
isometries of H™, via the upper half-space model.

For any x sufficiently high (in the upper half space model), I'.(x) = I". Thus, 5.10.1
contains as a special case one of the Bieberbach theorems, that I' contains an abelian
subgroup of finite index. Conversely, when I'.(z) NI', () is parabolic, I'.(z) must be
a Bieberbach group. To see this, note that if I'.(x) contained any hyperbolic element
7, no power of v could lie in I'{ (z), a contradiction. Hence, I'.(x) must consist of
parabolic and elliptic elements with a common fixed point p at co, so it acts as a
group of isometries on any horosphere centered at p.

If I'(z) NI, (x) is not parabolic, it must act as a group of translations and
rotations of some axis a. Since it is discrete, it contains Z with finite index (provided
[.(z) is infinite). It easily follows that I'.(z) is either the product of some finite
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5.10. A DECOMPOSITION OF COMPLETE HYPERBOLIC MANIFOLDS.
FIGURE 1. The infinite dihedral group acting on H?3.

subgroup F of O(n — 1) (acting as rotations about a) with Z, or it is the semidirect
product of such an F' with the infinite dihedral group, Z/2 x Z /2.

\ /

For any set S C H", let B,.(S) = {x € H"|d(x,5) <r}.

COROLLARY 5.10.2. There is an € > 0 such that for any complete oriented hy-
perbolic three-manifold M, each component of M is either

(1) a horoball modulo Z or 7. & Z, or
(2) B,(g) modulo Z, where g is a geodesic.

The degenerate case r = 0 may occur.

PROOF. Suppose x € M(o. Let 7 € H? be any point which projects to . There
is some covering translation v which moves z a distance < e. If ~ is hyperbolic, let
a be its axis. All rotations around a, translations along a, and uniform contractions
of hyperbolic space along orthogonals to a commute with . It follows that M(oﬁ]
contains B,.(a), where r = d(a,x), since v moves any point in B,.(a) a distance
< €. Similarly, if v is parabolic with fixed point p at oo, M(O,e] contains a horoball
about p passing through z. Hence M is a union of horoballs and solid cylinders
B,.(a). Whenever two of these are not disjoint, they correspond to two covering
transformations ; and v, which move some point x a distance < ¢; v, and v, must
commute (using 5.10.1), so the corresponding horoballs or solid cylinders must be
concentric, and 5.10.2 follows. 0
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5.11. Complete hyperbolic manifolds with bounded volume.

It is easy now to describe the structure of a complete hyperbolic manifold with
finite volume; for simplicity we stick to the case n = 3.

PrOPOSITION 5.11.1. A complete oriented hyperbolic three-manifold with finite
volume is the union of a compact submanifold (bounded by tori) and a finite collection
of horoballs modulo Z ® 7 actions.

PROOF. M| ) must be compact, for otherwise there would be an infinite se-
quence of points in M| .. pairwise separated by at least . This would give a sequence
of hyperbolic €/2 balls disjointly embedded in M, [e,00), Which has finite volume. M
must have finitely many components (since its boundary is compact). The proposi-
tion is obtained by lumping all compact components of M q with M ). ]

With somewhat more effort, we obtain Jgrgensen’s theorem, which beautifully
describes the structure of the set of all complete hyperbolic three-manifolds with
volume bounded by a constant C':

THEOREM 5.11.2 (Jgrgensen’s theorem [first version]). Let C' > 0 be any con-
stant. Among all complete hyperbolic three-manifolds with volume < C', there are
only finitely many homeomorphism types of M . In other words, there is a link L.
in S such that every complete hyperbolic manifold with volume < C' is obtained by
Dehn surgery along L. (The limiting case of deleting components of Lo to obtain a
non-compact manifold is permitted.)

PROOF. Let V' be any maximal subset of M oy having the property that no two
elements of V' have distance < €/2. The balls of radius €/4 about elements of V
are embedded; since their total volume is < (' this gives an upper bound to the
cardinality of V. The maximality of V' is equivalent to the property that the balls of
radius €/2 about V' cover.
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o

The combinatorial pattern of intersections of this set of €/2-balls determines M, [e,00)
up to diffeomorphism. There are only finitely many possibilities. (Alternatively a
triangulation of M .y with vertex set V' can be constructed as follows. First, form
a cell division of M| ) whose cells are indexed by V', associating to each v € V' the
subset of M) consisting of x € M .y such that d(z,v) < d(x,v’) for all v' € V.
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If V is in general position, faces of the cells meet at most four at a time. (The
dual cell division is a triangulation.)

Any two hyperbolic manifolds M and N such that M. ) = Njc ) can be obtained
from one another by Dehn surgery. All manifolds with volume < C' can therefore be
obtained from a fixed finite set of manifolds by Dehn surgery on a fixed link in each
manifold. Each member of this set can be obtained by Dehn surgery on some link in
S3, s0 all manifolds with volume < C' can be obtained from S® by Dehn surgery on
the disjoint union of all the relevant links. U

The full version of Jgrgensen’s Theorem involves the geometry as well as the
topology of hyperbolic manifolds. The geometry of the manifold M .y completely
determines the geometry and topology of M itself, so an interesting statement com-
paring the geometry of M .)’s must involve the approximate geometric structure.
Thus, if M and N are complete hyperbolic manifolds of finite volume, Jgrgensen
defines M to be geometrically near N if for some small €, there is a diffeomorphism
which is approximately an isometry from the hyperbolic manifold M o) to Nic ).
It would suffice to keep € fixed in this definition, except for the exceptional cases
when M and N have closed geodesics with lengths near e. This notion of geometric
nearness gives a topology to the set H of isometry classes of complete hyperbolic
manifolds of finite volume. Note that neither coordinate systems nor systems of gen-
erators for the fundamental groups have been chosen for these hyperbolic manifolds;
the homotopy class of an approximate isometry is arbitrary, in contrast with the def-
inition for Teichmiiller space. Mostow’s Theorem implies that every closed manifold
M in H is an isolated point, since M| o) = M when € is small enough. On the other
hand, a manifold in H with one end or cusp is a limit point, by the hyperbolic Dehn
surgery theorem 5.9. A manifold with two ends is a limit point of limit points and a
manifold with &k ends is a k-fold limit point.

Mostow’s Theorem implies more generally that the number of cusps of a geometric
limit M of a sequence {M;} of manifolds distinct from M must strictly exceed the
lim sup of the number of cusps of M;. In fact, if € is small enough, M consists only
of cusps. The cusps of M; are contained in Mi(o,e]? if all its components are cusps,
and if Mi[e,oo) is diffeomorphic with M. ) then M; is diffeomorphic with M so M; is
isometric with M.

The volume of a hyperbolic manifold gives a function v : H — R,. If two
manifolds M and N are geometrically near, then the volumes of M .y and N
are approximately equal. The volume of a hyperbolic solid torus rg centered around
a geodesic of length [ may be computed as

0 27 l
volume (solid torus) = / / / sinh 7 cosh r dt df dr = wl sinh®r
o Jo Jo
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while the area of its boundary is
area (torus) = 27l sinhry coshry.

Thus we obtain the inequality

area (0 solid torus) 1 sinh rg

_ 1

5
The limiting case as rp — oo can be computed similarly; the ratio is 1/2. Applying
this to M, we have

5.11.2. volume (M) < volume (M) + 3 area (OMe)).

volume (solid torus) 2 cosh rq

It follows easily that v is a continuous function on H.

5.12. Jgrgensen’s Theorem.

THEOREM 5.12.1. The function v : J — Ry is proper. In other words, every
sequence in H with bounded volume has a convergent subsequence. For every C,
there is a finite set My, ..., My of complete hyperbolic manifolds with volume < C'
such that all other complete hyperbolic manifolds with volume < C' are obtained from
this set by the process of hyperbolic Dehn surgery (as in 5.9).

PRrOOF. Consider a maximal subset of V' of M| . having the property that no
two elements of V' have distance < ¢/2 (as in 5.11.1). Choose a set of isometries of
the €/2 balls centered at elements of V' with a standard €/2-ball in hyperbolic space.
The set of possible gluing maps ranges over a compact subset of Isom(H?), so any
sequence of gluing maps (where the underlying sequence of manifolds has volume
< () has a convergent subsequence. It is clear that in the limit, the gluing maps
still give a hyperbolic structure on M ), approximately isometric to the limiting
M. ooy’s. We must verify that M ) extends to a complete hyperbolic manifold. To
see this, note that whenever a complete hyperbolic manifold N has a geodesic which
is very short compared to €, the radius of the corresponding solid torus in N
becomes large. (Otherwise there would be a short non-trivial curve on ON(gq—but
such a curve has length > ¢). Thus, when a sequence {M;__ } converges, there are
approximate isometries between arbitrarily large balls BT(M%OO)) for large 7, so in
the limit one obtains a complete hyperbolic manifold. This proves that v is a proper
function. The rest of §5.12 is merely a restatement of this fact. O

REMARK. Our discussion in §5.10, 5.11 and 5.12 has made no attempt to be
numerically efficient. For instance, the proof that there is an € such that I'.(z) has
an abelian subgroup of finite index gives the impression that € is microscopic. In
fact, € can be rather large; see Jorgensen, for a more efficient approach. It would
be extremely interesting to have a good estimate for the number of distinct M )’s
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Figure eight knot

2 &

Whitehead Link

where M has volume < C, and it would be quite exciting to find a practical way of
computing them. The development in 5.10, 5.11, and 5.12 is completely inefficient in
this regard. Jorgensen’s approach is much more explicit and efficient.

ExAMPLE. The sequence of knot complements below are all obtained by Dehn
surgery on the Whitehead link, so 5.8.2 implies that all but a finite number possess
complete hyperbolic structures. (A computation similar to that of Theorem 4.7 shows
that in fact they all possess hyperbolic structures.) This sequence converges, in I,
to the Whitehead link complement:

NoOTE. Gromov proved that in dimensions n # 3, there is only a finite number of
complete hyperbolic manifolds with volume less than a given constant. He proved this
more generally for negatively curved Riemannian manifolds with curvature varying
between two negative constants. His basic method of analysis was to study the
injectivity radius
inj(z) = 1 inf{lengths of non-trivial closed loops through z}

= sup {r| the exponential map is injective on the ball of radius r in T'(x)}.
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Basically, in dimensions n # 3, little can happen in the region M? of M™ where
inj(z) is small. This was the motivation for the approach taken in 5.10, 5.11 and 5.12.
Gromov also gave a weaker version of hyperbolic Dehn surgery, 5.8.2: he showed that
many of the manifolds obtained by Dehn surgery can be given metrics of negative
curvature close to —1.
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CHAPTER 6

Gromov’s invariant and the volume of a hyperbolic manifold

6.1. Gromov’s invariant

Let X be any topological space. Denote the real singular chain complex of X by
Cy(k). (Recall that C(X) is the vector space with a basis consisting of all continuous
maps of the standard simplex A into X.) Any k-chain ¢ can be written uniquely as
a linear combination of the basis elements. Define the norm ||¢|| of ¢ to be the sum
of the absolute values of its coefficients,

6.1.1. ||| = Z ;| where ¢ = Zaiai, o AF — X,

Gromov’s norm on the real singular homology (really it is only a pseudo-norm) is
obtained from this norm on cycles by passing to homology: if a € Hy(X;R) is any
homology class, then the norm of « is defined to be the infimum of the norms of
cycles representing a,

DEFINITION 6.1.2 (First definition).
||| = inf {]|z]| | z is a singular cycle representing ac}.

It is immediate that
oo+ 8] <l + 18]

and for A € R,

Il < Al el
If f: X — Y is any continuous map, it is also immediate that
6.1.2. [ fecell < [lev]]-

In fact, for any cycle Y a;0; representing «, the cycle > a;f o o; represents f.a,
and || > a;f ooyl = > |ai| < [|D] aio4|. (It may happen that foo; = foo;; even
when o; # 0;.) Thus | f.a|| < inf|la;f o 0;]| < ||af|. In particular, the norm of the
fundamental class of a closed oriented manifold M gives a characteristic number of M,
Gromov’s invariant of M, satisfying the inequality that for any map f : M; — Ms,

6.1.3. | [Mi] ]| = | deg f || [Ma] |-

What is not immediate from the definition is the existence of any non-trivial
examples where || [M] || # 0.
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ExAMPLE. The n-sphere n > 1 admits maps f : S™ — 5™ of degree 2 (and
higher). As a consequence of 6.1.2 ||[S"]|| = 0. More explicitly, one may picture a
sequence {z;} representing the fundamental class of S*, where z; is (})o; and o; wraps
a 1-simplex i times around S*. Since ||z]| = 1, || [S']]| = 0.

As a trivial example, || [S?]] = 2.

Consider now the case of a complete hyperbolic manifold M™. Any k 4+ 1 points
Vg, ...,V IN M" = H™ determine a straight k-simplex oy, ., : AF — H" whose
image is the convex hull of vy,...,vx. There are various ways to define canonical
parametrizations for o, ., ; here is an explicit one. Consider the quadratic form
model for H™ (§2.5). In this model, v, ..., v become points in R™™ so they deter-
mine an affine simplex «. [In barycentric coordinates, a(to,...,tx) = >_ t;v;. This
parametrization is natural with respect to affine maps of R"™!]. The central projec-
tion from O of @ back to one sheet of hyperboloid @ = z+---+22 —z2 | = —1 gives
a parametrized straight simplex o, ., in H", natural with respect to isometries of
H™.

k

Any singular simplex 7 : A¥ — M can be lifted to a singular simplex 7 in
M = H", since A¥ is simply connected. Let straight (7) be the straight simplex with
the same vertices as 7 and let straight(7) be the projection of 7 back to M. Since the
straightening operation is natural, straight(7) does not depend on the lift 7. Straight
extends linearly to a chain map

straight : C.(M) — C.(M),

chain homotopic to the identity. (The chain homotopy is constructed from a canon-
ical homotopy of each simplex 7 to straight(7).) It is clear that for any chain c,
|| straight (¢)|| < ||c||. Hence, in the computation of the norm of a homology class in
M , it suffices to consider only straight simplices.

PROPOSITION 6.1.4. There is a finite supremum vy to the k-dimensional volume
of a straight k-simplex in hyperbolic space H™ provided k # 1.
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ProoF. It suffices to consider ideal simplices with all vertices on S, since any
finite simplex fits inside one of these. For k& = 2, there is only one ideal simplex up to
isometry. We have seen that 2 copies of the ideal triangle fit inside a compact surface
(§3.9). Thus it has finite volume, which equals 7 by the Gauss-Bonnet theorem.
When k = 3, there is an efficient formula for the computation of the volume of an
ideal 3-simplex; see Milnor’s discussion of volumes in chapter 7. The volume of such
simplices attains its unique maximum at the regular ideal simplex, which has all
angles equal to 60°. Thus we have the values

vy = 3.1415926 ... = 7
vy = 1.0149416 . . .

It is conjectured that in general, vy is the volume of the regular ideal k-simplex; if so,
Milnor has computations for more values, and a good asymptotic formula as k — oo.
In lieu of a proof of this conjecture, an upper bound can be obtained for vy from the
inductive estimate

6.1.6. Vg <

6.1.5.

Uk—1

E—1

To prove this, consider any ideal k-simplex ¢ in H*. Arrange ¢ so that one of its
vertices is the point at oo in the upper half-space model, so that o looks like a
triangular chimney lying above a k — 1 face o¢ of o.

Let dWP* be the Euclidean volume element, so hyperbolic volume is dV* =
(3-)*dW*. Let 7 denote the projection of og to E"~', and let h(z) denote the
Euclidean height of oy above the point x € 7. The volume of o is

v(a):// tF dt a1
T Jh
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(where dW*~1 is the Euclidean k — 1 volume element for 7). Integrating, we obtain

(k—1)v(o) = / h k=D gkt
The volume of oy is obtained by a similar integral, where dW*~! is replaced by
the Euclidean volume element for ¢, which is never smaller than dW*~!. We have
(k—1)v(o) < v(og) < vg—1. O

We are now ready to find non-trivial examples for Gromov’s invariant:

COROLLARY 6.1.7. Fvery closed oriented hyperbolic manifold M™ of dimension
n > 1 satisfies the inequality
v(M)

Un

M| >
PROOF. Let Q be the hyperbolic volume form for M, so that [,, Q = v(M). If
z =) z;0; is any straight cycle representing [M], then

U(M):/MQ:ZZZ»/M i<y Jal v

Dividing by v,,, we obtain ||z|| > v(M)/v,. The infimum over all such z gives 6.1.7 [

A similar proof shows that the norm of element 0 # o € Hy(M,R) where k # 1
is non-zero. Instead of {2, use an k-form w representing some multiple Ao such that
w has Riemannian norm < 1 at each point of M. (In fact, w need only satisfy the
inequality w(V') < 1 where V' is a simple k-vector of Riemannian norm 1.) Then the
inequality ||a|| > A/ is obtained.

Intuitively, Gromov’s norm measures the efficiency with which multiples of a
homology class can be represented by simplices. A complicated homology class needs
many simplices.

Gromov proved the remarkable theorem that the inequality of 6.1.7 is actually
equality. Instead of proving this, we will take the alternate approach to Gromov’s
theorem developed in [Milnor and Thurston, “Characteristic numbers for three-
manifolds”], of changing the definition of || || to one which is technically easier to
work with. It can be shown that past and future definitions are equivalent. However,
we have no further use for the first definition, 6.1.2, so henceforth we shall simply
abandon it.

For any manifold M, let C1(A*, M) denote the space of maps of A* to M, with
the C! topology. We define a new notion of chains, where a k-chain is a Borel
measure p on C1(AK M) with compact support and bounded total variation. [The
total variation of a measure y is ||u| = sup{ [fdu||f] < 1}. Alternately, 1 can be
decomposed into a positive and negative part, 4 = p4 — p— where py and p_ are
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positive. Then ||| = [ dps + [ dp-—]. Let the group of k-chains be denoted Cy(M).
There is amap 0 : Cx(M) — Cx_1 (M), defined in an obvious way. It is not difficult to
prove that the homology obtained by using these chains is the standard homology for
M:; see [Milnor and Thurston, “Characteristic numbers for three-manifolds”| for more
details. (Note that integration of a k-form over an element of Cj (M) is defined; this
gives a map from C, (M) to currents on M. Some condition such as compact support
for p is necessary; otherwise one would have pathological cycles such as Z(%)Qai,
where o; wraps A! i times around S'. The measure has total variation > (+)? < oo,
yet the cycle would seem to represent the infinite multiple Y (1)[S'] of [S'].)

DEFINITION 6.1.8 (Second definition). i Let o € H*(M;R), where M is a mani-
fold. Gromov’s norm ||a| is defined to be

||| = inf{||ul| | € C*(M) represents a}.

THEOREM 6.2 (Gromov). Let M"™ be any closed oriented hyperbolic manifold.

Then A
=)

Un

PRrOOF. The proof of corollary 6.1.7 works equally well with the new definition
as with the old. The point is that the straightening operation is completely uniform,
so it works with measure-cycles. What remains is to prove that || [M] || < v(M) /vy,
or in other words, the fundamental cycle of M can be represented efficiently by a
cycle using simplices which have (on the average) nearly maximal volume.

Let o be any singular k-simplex in H™. A chain smeary/ (o) € Cr(M) can
be constructed, which is a measure supported on all isometric maps of ¢ into M,
weighted uniformly. With more notation, let A denote Haar measure on the group
of orientation-preserving isometries of H", Isom, (H™). Let h be normalized so that
the measure of the set of isometries taking a point z € H" to a region R C H" is
the volume of R. Haar measure on Isom, (H") is invariant under both right and left
multiplication, so it descends to a measure (also denoted h) on the quotient space
P(M) =m M\ Isom(H™).

There is a map from P(M) to C'(A*, M), which associates to a coset m My the
singular simplex powoo, where p : H" — M is the covering projection. The measure
h pushes forward to give a chain smeary/ (o) € C,(M). Since h is invariant on both
sides, smear); (o) depends only on the isometry class of 0. Smearing extends linearly
to Cr(H™). Furthermore, smear); Oc = 0 smear) c.

Let o0 now be any straight simplex in H", and o_ a reflected copy of . Then
%smearM(U — 0_)) is a cycle, since the faces of o and o_ cancel out in pairs, up to
isometries. We have

|3 smeary (o — o_)|| = v(M).
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The homology class of this cycle can be computed by integration of the hyperbolic
form € from M. The integral over each copy of o is v(c), so the total integral is
v(M)v(o). Thus, the cycle represents

5 smear (o — 0_)] = v(c)[M]
so that
[o(o) [M] || < v(M).
Dividing by v(¢) and taking the infimum over o, we obtain 6.2. U

COROLLARY 6.2.1. If f : My — My is any map between closed oriented hyperbolic
n-manifolds, then

v(My) > | deg flv(My).

Gromov’s theorem can be generalized to any (G, X )-manifold, where G acts tran-
sitively on X with compact isotropy groups.

To do this, choose an invariant Riemannian metric for X and normalize Haar
measure on G as before. The smearing operation works equally well, so that one has
a chain map

smeary; : Cp(X) — Cx(M).

In fact, if NV is a second (G, X)-manifold, one has a chain map
smeary s - Gk(N) — (i’k(M),

defined first on simplices in N via a lift to X, and then extended linearly to all of
Cr(N). If z is any cycle representing [N], then smeary p/(z) represents

(v(N)/v(M))[M].
This gives the inequality

NI o [HEM ]

o(N) — o(M)
Interchanging M and N, we obtain the reverse inequality, so we have proved the
following result:

THEOREM 6.2.2. For any pair (G, X), where G acts transitively on X with com-
pact isotropy groups and for any invariant volume form on X, there is a constant C'
such that every closed oriented (G, X)-manifold M satisfies

1M = Co(M),
(where v(M) is the volume of M). O
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This line may be pursued still further. In a hyperbolic manifold a smeared k-cycle
is homologically trivial except in dimension k£ = 0 or £ = n, but this is not generally
true for other (G, X )-manifolds when G does not act transitively on the frame bundle
of X. The invariant cohomology HE(X) is defined to be the cohomology of the cochain
complex of differential forms on X invariant by G. If « is any invariant cohomology
class for X, it defines a cohomology class ay; on any (G, X )-manifold M. Let PD(~)
denote the Poincaré dual of a cohomology class ~.

THEOREM 6.2.3. There is a norm || || in H:(X) such that for any closed oriented
(G, X)-manifold M,
[PD () || = v(M)]|ov]].

PrROOF. It is an exercise to show that the map
smeary a : Ho (M) — H. (M)

is a retraction of the homology of M to the Poincaré dual of the image in M of
H}(X). The rest of the proof is another exercise. O

In these variations, 6.2.2 and 6.2.3, on Gromov’s theorem, there does not seem
to be any general relation between the proportionality constants and the maximal 6.11
volume of simplices. However, the inequality 6.1.7 readily generalizes to any case
when X possesses and invariant Riemannian metric of non-positive curvature.

6.3. Gromov’s proof of Mostow’s Theorem

Gromov gave a very quick proof of Mostow’s theorem for hyperbolic three-manifolds,
based on 6.2. The proof would work for hyperbolic n-manifolds if it were known that
the regular ideal n-simplex were the unique simplex of maximal volume. The proof This is now known to
goes as follows. be true.

LEMMA 6.3.1. If My and My are homotopy equivalent, closed, oriented hyperbolic
manifolds, then v(M;) = v(Ms).

Proor. This follows immediately by applying 6.2 to the homotopy equivalence
M1 — Mz. |:|

Let fi1: M7 — M, be a hoznotopy equivalence and let fl : Ml — Mg be a lift of
f1. From 5.9.5 we know that f; extends continuously to the sphere S™ 1.

LEMMA 6.3.2. If n = 3, f takes every 4-tuple of vertices of a positively oriented
reqular ideal simplex to the vertices of a positively oriented regqular ideal simplez.
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PROOF. Suppose the contrary. Then there is a regular ideal simplex o such that
the volume of the simplex straight( fla) spanned by the image of its vertices is v3 — €,
with € > 0. There are neighborhoods of the vertices of o in the disk such that for any
simplex o’ with vertices in these neighborhoods, v(straight(fla’)) < w3 —€/2. Then
for every finite simplex o, very near to o, this means that a definite Haar measure
of the isometric copies ¢’ of o near ¢’ have v(straight(fla(’))) < vy —€/2. Such a
simplex oy, can be found with volume arbitrarily near v3. But then the “total volume”
of the cycle z = & smear(of, — o) strictly exceeds the total volume of straight(f,z),

2
contradicting 6.3.1. 0

To complete the proof of Mostow’s theorem in dimension 3, consider any ideal
regular simplex o together with all images of ¢ coming from repeated reflections in
the faces of 0. The set of vertices of all these images of ¢ is a dense subset of SZ.
Once f; is known on three of the vertices of ¢, it is determined on this dense set of
points by 6.3.2, so f; must be a fractional linear transformation of S2 | conjugating
the action of 71 M; to the action of 1 My. This completes Gromov’s proof of Mostow’s
theorem. U

In this proof, the fact that f; is a homotopy equivalence was used to show (a) that
v(M;) = v(M,) and (b) that fi extends to a map of S%. With more effort, the proof
can be made to work with only assumption (a):

THEOREM 6.4 (Strict version of Gromov’s theorem). Let f : My — My be any map
of degree # 0 between closed oriented hyperbolic three-manifolds such that Gromov’s
inequality 6.2.1 is equality, i.e.,

v(M,) = | deg f|v(Ma).

Then f is homotopic to a map which is a local isometry. If |degf| = 1, f is a
homotopy equivalence and otherwise it is homotopic to a covering map.

PROOF. The first step in the proof is to show that a lift f of f to the universal
covering spaces extends to S%. Since the information in the hypothesis of 6.4 has
to do with volume, not topology, we will know at first only that this extension is a
measurable map of S% . Then, the proof of Section 6.3 will be adapted to the current
situation.

The proof works most smoothly if we have good information about the asymptotic
behavior of volumes of simplices. Let o be a regular simplex in H? all of whose edge
lengths are F.

THEOREM 6.4.1. The volume of og differs from the maximal volume vs by a
quantity which decreases exponentially with E.
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PRroor. Construct copies of simplices o centered at a point zy € H® by drawing
the four rays from a point zy through the vertices of an ideal regular simplex o
centered at xy5. The simplex whose vertices are on these rays, a distance D from z,
is isometric to og for some E. Let C' be the distance from x( to any face of this
simplex. The derivative dv(og)/dD is less than the area of Jog times the maximal
normal velocity of a face of og. If o is the angle between such a face and the ray
through x4, we have

dU(U E)
dD
From the hyperbolic law of sines (2.6.16) sin &« = sinh C'/ sinh D, showing that dv(o;)/dD
decreases exponentially with D (since sinh C' is bounded). The corresponding state-
ment for E follows since asymptotically, £ ~ 2D + constant. O

< 27 sin a.

6.14

LEMMA 6.4.2. Any simplex with volume close to vs has all dihedral angles close
to 60°.

PROOF. Such a simplex is properly contained in an ideal simplex with any two
face planes the same, so with one common dihedral angle. 6.4.2 follows form 777 [

LEMMA 6.4.3. There is some constant C' such that for every simplex o with volume
near vs and for any angle 8 on a face of o,

v3 —v(o) > CB%

PRroOF. If the vertex v has a face angle of 3, first enlarge o so that the other
three vertices are at oo, without changing a neighborhood of v. Now prolong one of
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the edges through v to S, and push v out along this edge. The new spike added
to o beyond v has thickness at v estimated by a linear function of § (from 2.6.12),
so its volume is estimated by a quadratic function of 3. (This uses the fact that a
cross-section of the spike is approximately an equilateral triangle.) O

LEMMA 6.4.4. For every point xo in My, and almost every ray r through o, fi(r)
converges to a point on SZ .

PROOF. Let 29 € H?, and let 7 be some ray emanating from xy. Let the simplex
o; (with all edges having length i) be placed with a vertex at xy and with one edge
on r, and let 7; be a simplex agreeing with o; in a neighborhood of xy but with the
edge on r lengthened, to have length 7 + 1.

i ‘merl}b

The volume of o; and 7; D o; deviate from the supremal value by an amount
¢; decreasing exponentially with ¢, so smeary,, 7, and smeary;, o; are very efficient
cycles representing a multiple of [M;]. Since v(M;) = |deg f|v(Ms), the cycles
straight f. smear,;, 0; and straight f, smeary;, 7, must also be very efficient. In other
words, for all but a set of measure at most v(Mj)e; /vs of simplices o in smear o; (or
near smear 7;), the simplex straight fo must have volume > v3 — ¢;.

Let B be a ball around zg which embeds in M;. The chains smearg o; and
smearp 7; correspond to the measure for smear,; o; and smear,; 7; restricted to those
singular simplices with the first vertex in the image of B in M;. Thus for all but a
set of measure at most (2v(Mi)/vs) > i, € of isometries I with take xo to B, all
simplices I(0;) and I(7;) for all 4 > iy are mapped to simplices straight f smearg o
with volume > vy —¢;. By 6.4.3, the sum of all face angles of the image simplices
is a geometically convergent series. It follows that for all but a set of small measure
of rays r emanating from points in B, f(r) converges to a point on S%; in fact, by
letting 79 — o0, it follows that for almost every ray r emanating from points in B,
f (r) converges. Then there must be a point 2’ in B such that for almost every ray r
emanating from 2/, f (r) converges. Since each ray emanating from a point in H? is
asymptotic to some ray emanating from ', this holds for rays through all points in

H3. U
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REMARK. This measurable extension of f to S2 actually exists under very general
circumstances, with no assumption on the volume of M; and M;. The idea is that if
g is a geodesic in M, f (g) behaves like a random walk on M,. Almost every random
walk in hyperbolic space converges to a point on S™!. (Moral: always carry a map
when you are in hyperbolic space!)

LEMMA 6.4.5. The measurable extension of f to S2 carries the vertices of almost
every positively oriented ideal reqular simplex to the wvertices of another positively
oriented ideal regular simplex.

PRroor. Consider a point zo in H? and a ball B about 2y which embeds in M,
as before. Let o; be centered at xy. As before, for almost all isometries I which take
xo to B, the sequence {straight folo 0;} has volume converging to vs, and all four
vertices converging to SZ .

If for almost all I these four vertices converge to distinct points, we are done.
Otherwise, there is a set of positive measure of ideal regular simplices such that the
image of the vertex set of ¢ is degenerate: either all four vertices are mapped to the
same point, or three are mapped to one point and the fourth to an arbitrary point.
We will show this is absurd. If the degenerate cases occur

X NS

with positive measure, there is some pair of points vy and vy with f(ve) = f(v1)
such that for almost all regular ideal simplices spanned by vy, v1, v2, v3, either f (vg) =
f(vo) or f(vs) = f(vy). Thus, there is a set A of positive measure with f(A) a single
point. Almost every regular ideal simplex with two vertices in A has one other vertex
in A. It is easy to conclude that A must be the entire sphere. (One method is to use
ergodicity as in the proof of 6.4 which will follow.) The image point f(A) is invariant
under covering transformations of M;. This implies that the image of m M; in m Mo
has a fixed point on S, which is absurd. U

We resume the proof of 6.4 here. It follows from 6.4.5 that there is a vertex vy such
that for almost all regular ideal simplices spanned by vy, v, v2, v3, the image vertices
span a regular ideal simplex. Arrange vy and f (vg) to be the point at infinity in the
upper half-space model. Three other points v, v, v3 span a regular ideal simplex
with vy if and only if they span an equilateral triangle in the plane, £?. By changing
coordinates, we may assume that f maps vertices of almost all equilateral triangles
parallel to the x-axis to the vertices of an equilateral triangle in the plane. In complex
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notation, let w = v/—1, so that 0,1,w span an equilateral triangle. For almost all
z € C, the entire countable set of triangles spanned by vertices of the form z 4 27 %n,
2+ 27 +1), 24+ 27%(n +w), for k,n € Z, are mapped to equilateral triangles.

7a

VANV
\/\A/\ \/ //
VAV

7R R N

Then the map f must take the form

f(z +27%(n + mw)) = g(2) + h(2) - 27%(n + mw), k,n,m € Z,

for almost all z. The function h is invariant a.e. by the dense group 7' of translations
of the form 2z +— 2+ 27%(n+mw). This group is ergodic, so h is constant a.e. Similar
reasoning now shows that ¢ is constant a.e., so that f is essentially a fractional linear
transformation on the sphere S%. Since f oTy =Tf.q0 f, this shows that m M; is
conjugate, in Isom(H?), to a subgroup of m; Ms. O

6.5. Manifolds with Boundary

There is an obvious way to extend Gromov’s invariant to manifolds with boundary,
as follows. If M is a manifold and A C M a submanifold, the relative chain group
Cr(M,A) is defined to be the quotient Cx(M)/Cr(A). The norm on Cr(M) goes
over to a norm on Ci(M, A): the norm ||u|| of an element of Cr(M, A) is the total
variation of u restricted to the set of singular simplices that do not lie in A. The
norm ||| of a homology class v € Hy(M, A) is defined, as before, to be the infimal
norm of relative cycles representing . Gromov’s invariant of a compact, oriented
manifold with boundary (M, M) is ||[M, dM]||, where [M, dM] denotes the relative
fundamental cycle.

There is a second interesting definition which makes sense in an important special
case. For concreteness, we shall deal only with the case of three-manifold whose
boundary consists of tori. For such a manifold M, define

| [M,0M] ||o = lin%inf{HzH |z straight [M,OM] and ||0Z| < a}.

Observe that 0z represents the fundamental cycle of M, so that a necessary condi-
tion for this definition to make sense is that || [0M] | = 0. This is true in the present
situation that OM consists of tori, since the torus admits self-maps of degree > 1.
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Then ||(M,0M)||o is the limit of a non-decreasing sequence, so to insure the existence
of the limit we need only find an upper bound. This involves a special property of
the torus.

PROPOSITION 6.5.1. There is a constant K such that z s any homologically trivial
cycle in Co(T?), then z bounds a chain ¢ with ||c| < K||z||.

PROOF. Triangulate T2 (say, with two “triangles” and a single vertex). Partition
T? into disjoint contractible neighborhoods of the vertices. Consider first the case
that no simplices in the support of z have large diameter. Then there is a chain
homotopy of z to its simplicial approximation a(z).

The chain homotopy has a norm which is a bounded multiple of the norm of
z. Since simplicial singular chains form a finite dimensional vector space, a(z) is
homologous to zero by a homology whose norm is a bounded multiple of the norm
of a(z). This gives the desired result when the simplices of z are not large. In the
general case, pass to a very large cover T2 of T2. For any finite sheeted covering
space p : M — M there is a canonical chain map, transfer: C,(M) — €,(M). The
transfer of a singular simplex is simply the average of its lifts to M; this extends in
an obvious way to measures on singular simplices. Clearly p o transfer = id, and
|| transfer c|| = ||c||. If z is any cycle on T?, then for a sufficiently large finite cover
T2 of T2, the transfer of z to T2 = T2 has no large 2-simplices in its support. Then
transfer z is the boundary of a chain ¢ with ||c|]| < K||z|| for some fixed K. The
projection of ¢ back to the base space completes the proof. 0

We now have upper bounds for ||[M,9M]||o. In fact, let z be any cycle repre-
senting [M,0M], and let € be any cycle representing [0M]. By piecing together z
with a homology from 0z to e given by 6.5.1, we find a cycle 2’ representing [M, 0M|
with ||| < ||z]] + K(]|0z] + |le]|). Passing to the limit as ||¢[| — 0, we find that
[ [M, OM] || < [|z]| + K10z

The usefulness of the definition of || [M,dM] ||y arises from the easy
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PROPOSITION 6.5.2. Let (M,0M) be a compact oriented three-manifold, not nec-
essarily connected, with OM consisting of tori. Suppose (N,ON) is an oriented man-
ifold obtained by gluing together certain pairs of boundary components of M. Then

1N, ONTllo < [ [M, 0M] o

COROLLARY 6.5.3. If (S,05) is any Seifert fiber space, then
115, 05T llo = IS, 0511 = 0.
(The case 0S = ¢ is included.)

PRrROOF OF COROLLARY. If S is a circle bundle over a connected surface M with
non-empty boundary, then S (or a double cover of it, if the fibers are not oriented) is
M x S*. Since it covers itself non-trivially its norm (in either sense) is 0. If S is a circle
bundle over a closed surface M, it is obtained by identification of (M — D?) x S!
with D? x S, so its norm is also zero. If S is a Seifert fibration, it is obtained
by identifying solid torus neighborhoods of the singular fibers with the complement
which is a fibration. 0

PROOF OF 6.5.2. A cycle z representing [M,dM] with [|0z]] < € goes over to a
chain on [N, ON], which can be corrected to be a cycle 2’ with ||z||" < ||z|| + Ke. O

If M is a complete oriented hyperbolic mani_fold with finite total volume, recall
that M is the interior of a compact manifold M with boundary consisting of tori.
Both || [M,0M] || and || [M,0M] ||o can be computed in this case:

LEMMA 6.5.4 (Relative version of Gromov’s Theorem). If M is a complete ori-
ented hyperbolic three-manifold with finite volume, then

o(M)

U3

I[A, 0M]llo = [|[M,0M] || =

PROOF. Let 0 be a 3-simplex whose volume is nearly the maximal value, v3. Then
smear); o is a measure on singular cycles with non-compact support. Restrict this
measure to simplices not contained in Mg, and project to M ) by a retraction
of M to M ). Since the volume of M is small for small €, this gives a relative
fundamental cycle 2’ for

(M[e,oo)7 aM[E,OO)) = (M, aM)
with ||2/]| ~ %]f) and with [|0Z’|| small. This proves that

v(M)

> || [M, 0M] lo-
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There is an immediate inequality
| [M,0M] lo > || [M,0M]||.

To complete the proof, we will show that || [M,dM] || > v(M)/vs. This is done by a
straightening operation, as in 6.1.7. For this, note that if ¢ is any simplex lying in
Mg, then straight(c) also lies in M, since Mg is convex. Hence we obtain a
chain map

straight : C,(M, M,q) — C.(M, Mq),

chain homotopic to the identity, and not increasing norms. As in 6.1.7, this gives the
inequality

V(Moo
V1M, Mo || 2 2 ie0)

U3

Since for small € there is a chain isomorphism between €, (M, Mo ) and €y (M, M)
which is a || ||-isometry, this proves 6.5.4. O

Here is an inequality which enables one to compute Gromov’s invariant for much
more general three-manifolds:

THEOREM 6.5.5. Suppose M is a closed oriented three-manifold and H C M is a
three-dimensional submanifold with a complete hyperbolic structure of finite volume.
Suppose H is embedded in M and that OH is incompressible. Then
v(H)

U3

M =

REMARK. Of course, the hypothesis that OH is incompressible is necessary; oth-
erwise M might be S2. If H were not hyperbolic, further hypotheses would be needed
to obtain an inequality. Consider, for instance, the product M, x I where M, is a
surface of genus g > 1. Then || [M,] || = 2v(M,)/7m =4 |x(M,)|, so

1M > 1, 0(My x DI = [ IM] || = 4 [x(M,)]

On the other hand, one can identify the boundary of this manifold to obtain M, x S,

which has norm 0. The boundary can also be identified to obtain hyperbolic manifolds
(see §4.6, or § ). Since finite covers of arbitrarily high degree and with arbitrarily
high norm can also be obtained by gluing the boundary of the same manifold, no
useful inequality is obtained in either direction.

PROOF. Since this is a digression, we give only a sketch of a proof.
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S?ralther; ﬂ\e A\[j[)‘é’z"bﬁ’ic

}\ﬂ,rf I.}Cll“l P' t_»ccs O( @
\ :-__;ﬂnrj‘ﬁ'_. X -

With 6.5.5 combined with 6.5.2, one can compute Gromov’s invariant for any
manifold which is obtained from Seifert fiber spaces and complete hyperbolic mani-
folds of finite volume by identifying along incompressible tori.

The strict and relative versions of Gromov’s theorems may be combined; here is
the most interesting case:

O

THEOREM 6.5.6. Suppose My is a complete hyperbolic manifold of finite volume
and that My # M is a complete hyperbolic manifold obtained topologically by replac-
ing certain cusps of My by solid tori. Then v(My) > v(Ms).
6.25

PrROOF. No new ideas are needed. Consider some map f : M; — My which

collpases certain components of M; (0.q 1O short geodesics in My. Now apply the proof
of 6.4. O

6.6. Ordinals

Closed oriented surfaces can be arranged very neatly in a single sequence,

.@--

=2 K s -2 X =iy

in terms of their Euler characteristic. What happens when we arrange all hyper-
bolic three-manifolds in terms of their volume? From Jgrgensen’s theorem, 5.12 it
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follows that the set of volumes is a closed subset of R,. Furthermore, by combining
Jorgensen’s theorem with the relative version of Gromov’s theorem, 6.5.4, we obtain

COROLLARY 6.6.1. The set of volumes of hyperbolic three-manifolds is well-ordered.

PRrROOF. Let v(M;) > v(Ms) > ... > v(M) > ... be any non-ascending sequence
of volumes. By Jorgensen’s theorem, by passage to a subsequence we may assume that
the sequence {M;} converges geometrically to a manifold M, with v(M) < limv(M;).
By 6.5.2, eventually || [M] |lo < || [M] ||, so 6.5.4 implies that the sequence of volumes

is eventually constant. 0
6.26

COROLLARY 6.6.2. The volume is a finite-to-one function of hyperbolic manifolds.

ProOF. Use the proof of 6.6.1, but apply the strict inequality 6.5.6 in place of
6.5.2, to show that a convergent sequence of manifolds with non-increasing volume
must be eventually constant. 0

In view of these results, the volumes of complete hyperbolic manifolds are indexed
by countable ordinals. In other words, there is a smallest volume v;, a next smallest
volume vy, and so forth. This sequence v; < v9 < v3 < --- < v, < --- has a limit
point v, which is the smallest volume of a complete hyperbolic manifold with one
cusp. The next smallest manifold with one cusp has volume wvy,. It is a limit of
manifolds with volumes v 11, Vyio, - .., Upsk, --.. The first volume of a manifold
with two cusps is v,2, and so forth. (See the discussion on pp. 5.59-5.60, as well
as Theorem 6.5.6.) The set of all volumes has order type w”. These volumes are
indexed by the ordinals less than w*, which are represented by polynomials in w.
Each volume of a manifold with k cusps is indexed by an ordinal of the form a - w¥,
(where the product « - 3 is the ordinal corresponding to the order type obtained by
replacing each element of o with a copy of 3). There are examples where « is a limit
ordinal. These can be constructed from coverings of link complements. For instance,
the Whitehead link complement has two distinct 2-fold covers; one has two cusps and
the other has three, so the common volume corresponds to an ordinal divisible by
w?. T do not know any examples of closed manifolds corresponding to limit ordinals.

It would be very interesting if a computer study could determine some of the low
volumes, such as vy, v, v,,v,2. It seems plausible that some of these might come
from Dehn surgery on the Borromean rings.

There is some constant C' such that every manifold with k& cusps has volume
> (C'-k. This follows from the analysis in 5.11.2: the number of boundary components
of M ) is bounded by the number of disjoint €/2 balls which can fit in M. It would
be interesting to calculate or estimate the best constant C.
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COROLLARY 6.6.3. The set of values of Gromov’s invariant || []||o on the class
of connected manifolds obtained from Seifert fiber spaces and complete hyperbolic
manifolds of finite volume by identifying along incompressible tori is a closed well-
ordered subset of RT, with order type w®.

We shall see later (§ ) that this class contains all Haken manifolds with toral
boundaries.

PrOOF. Extend the volume function to v(M) = vz - || [M]]|lo when M is not
hyperbolic. From 6.5.5 and 6.5.2, we know that every value of v is a finite sum of
volumes of hyperbolic manifolds. Suppose {w;} is a bounded sequence of values of
v. Express each w; as the sum of volumes of hyperbolic pieces of a manifold M; with
v(M); = w;. The number of terms is bounded, since there is a lower bound to the
volume of a hyperbolic manifold, so we may pass to an infinite subsequence where
the number of terms in this expression is constant. Since every infinite sequence of
ordinals has an infinite non-decreasing subsequence, we may pass to a subsequence
of w;’s where all terms in these expressions are non-decreasing. This proves that
the set of values of v is well-ordered. Furthermore, our subsequence has a limit
W = Vg, + -+ V,,, which is expressed as a sum of limits of non-decreasing sequences
of volumes. Each v, is the volume of a hyperbolic manifold M; with at least as many
cusps as the limiting number of cusps of the corresponding hyperbolic piece of M;.
Therefore, the ]\7[]-’5 may be glued together to obtain a manifold M with v(M) = w.
This shows the set of values of v is closed. The fact that the order type is w“ can
be deduced easily by showing that every value of v is not in the k-th derived set, for
some integer k; in fact, k < v/C, where C' is the constant just discussed. ([l

6.7. Commensurability

DEFINITION 6.7.1. If I'y and I'y are two discrete subgroups of isometries of H",
then T'; is commensurable with T'y if T'; is conjugate (in the group of isometries of
H™) to a group I"] such that I'' NI’y has finite index in I} and in T's.

DEFINITION 6.7.2. Two mapifolds M; and My are commensurable if they have
finited sheeted covers M; and M, which are homeomorphic.

Commensurability in either sense is an equivalence relation, as the reader may
easily verify.

ExAMPLE 6.7.3. If W is the Whitehead link and B is the Borromean rings, then
S3 — W has a four-sheeted cover homeomorphic with a two sheeted cover of S® — B:

140 Thurston — The Geometry and Topology of 3-Manifolds

6.28

6.29
Labelled 6.7.3.ex



6.7. COMMENSURABILITY

! ;
honﬁeo mm'Pl‘n(.

= N\

| 4554

T C—/ Iy
©>

_— 53- w / 83__ B
V=3.606286 v="732772

The homeomorphism involves cutting along a disk, twisting 360° and gluing back.
Thus S — W and S® — B are commensurable. One can see that 7;(S® — W) and
71(S% — B) are commensruable as discrete subgroups of PSL(2, C) by considering the
tiling of H? by regular ideal octahedra. Both groups preserve this tiling, so they are
contained in the full group of symmetries of the octahedral tiling, with finite index.
Therefore, they intersect each other with finite index.

.

71 (S® — B) C Symmetries (octahedral tiling) D 71 (S® — W)

7'('1(83 — B) D) 71(53 — B) ﬂﬂ'1<53 - W) C 7T1<SB - W)
6.30

WARNING. Two groups I['; and I'y can be commensurable, and yet not be conju-
gate to subgroups of finite index in a single group.

PROPOSITION 6.7.3. If My is a complete hyperbolic manifold with finite volume
and My is commensurable with My, then My is homotopy equivalent to a complete
hyperbolic manifold.

ProoOF. This is a corollary of Mostow’s theorem. Under the hypotheses, Ms has
a finite cover M3 which is hyperbolic. M3 has a finite cover M, which is a regular
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cover of Ms, so that m;(M,) is a normal subgroup of m(Ms). Consider the action
of m1(Ms) on m1(My) by conjugation. m (M) has a trivial center, so in other words
the action of m(My) on itself is effective. Then for every o € m;(My), since some
power of oF is in m (M), a must conjugate 7 (M) non-trivially. Thus my(Ms) is
isomorphic to a group of automorphisms of 71(My), so by Mostow’s theorem it is a
discrete group of isometries of H". 0

In the three-dimensional case, it seems likely that M; would actually be hyper-
bolic. Waldhausen proved that two Haken manifolds which are homotopy equivalent
are homeomorphic, so this would follow whenever M; is Haken. There are some sorts
of properties of three-manifolds which do not change under passage to a finite-sheeted
cover. For this reason (and for its own sake) it would be interesting to have a better
understanding of the commensurability relation among three-manifolds. This is diffi-
cult to approach from a purely topological point of view, but there is a great deal of
information about commensurability given by a hyperbolic structure. For instance,
in the case of a complete non-compact

hyperbolic three-manifold M of finite volume, each cusp gives a canonical Eu-
clidean structure on a torus, well-defined up to similarity. A convenient invariant
for this structure is obtained by arranging M so that the cusp is the point at oo
in the upper half space model and one generator of the fundamental group of the
cusp is a translation z — 2z + 1. A second generator is then z — z + a. The set
of complex numbers «; ... corresponding to various cusps is an invariant of the
commensurability class of M well-defined up to the equivalence relation

no; +m
QG ~ —,
po; +q

where

n,m,pq € Z, ’n "

0.
p q‘#

(n,m,p and ¢ depend on 7).

142 Thurston — The Geometry and Topology of 3-Manifolds

6.31



6.7. COMMENSURABILITY

@Qa+l)

/ /

(x+3)

o
- ao+d
modulus = arh

In particular, if o ~ (3, then they generate the same fields Q(«) = Q(f3).
Note that these invariants «; are always algebraic numbers, in view of

PROPOSITION 6.7.4. If T is a discrete subgroup of PSL(2,C) such that H*/T has
finite volume, then I" is conjugate to a group of matrices whose entries are algebraic.

ProoOF. This is another easy consequence of Mostow’s theorem. Conjugate I' so
that some arbitrary element is a diagonal matrix

w0

0 pt
and some other element is upper triangular,

A

0 A tH|°
The component of I' in the algebraic variety of representations of I' having this form
is 0-dimensional, by Mostow’s theorem, so all entries are algebraic numbers. 0

One can ask the more subtle question, whether all entries can be made algebraic
integers. Hyman Bass has proved the following remarkable result regarding this
question:

THEOREM 6.7.5 (Bass). Let M be a complete hyperbolic three-manifold of finite
volume. Then either m (M) is conjugate to a subgroup of PSL(2,0), where O is
the ring of algebraic integers, or M contains a closed incompressible surface (not
homotopic to a cusp).
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The proof is out of place here, so we omit it. See Bass. As an example, very few
knot complements seem to contain non-trivial closed incompressible surfaces. The
property that a finitely generated group I' is conjugate to a subgroup of PSL(2, 0)
is equivalent to the property that the additive group of matrices generated by I’
is finitely generated. It is also equivalent to the property that the trace of every
element of I' is an algebraic integer. It is easy to see from this that every group
commensurable with a subgroup of PSL(2,0) is itself conjugate to a subgroup of
PSL(2,0). (If Try™ = a is an algebraic integer, then an eigenvalue A\ of ~ satisfies
A — A" + 1 =0. Hence \, \™! and Try = A + A\~! are algebraic integers).

If two manifolds are commensurable, then their volumes have a rational ratio.
We shall see examples in the next section of incommensurable manifolds with equal
volume.

QUESTIONS 6.7.6. Does every commensurability class of discrete subgroups of
PSL(2, C) have a finite collection of maximal groups (up to isomorphism)?

Is the set of volumes of three-manifolds in a given commensurability class a dis-
crete set, consisting of multiples of some number V{7

6.8. Some Examples

ExAMPLE 6.8.1. Consider the k-link chain C} pictured below:

Q)

Ce

e T,

If each link of the chain is spanned by a disk in the simplest way, the complement of
the resulting complex is an open solid torus.
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S3 — (), is obtained from a solid torus, with the cell division below on its boundary,
by deleting the vertices and identifying.

4

Y £ F
R iR 3

\: a
1 i< &
&

AN

C
R B b hr,DLJ_E-
‘-FJ_\L?& < ¢ d

'l; ;—j / /
Z A4 B C
_u < %
meridian
>

6.35
To construct a hyperbolic structure for S* — Cj, cut the solid torus into two drums.
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Let P be a regular k-gon in H? with all vertices on S2 . If P’ is a copy of P obtained
by displacing P along the perpendicular to P through its center, then P’ and P can
be joined to obtain a regular hyperbolic drum. The height of P’ must be adjusted
so that the reflection through the diagonal of a rectangular side of the drum is an
isometry of the drum. If we subdivide the drum into 2k pieces as shown,

6.36

the condition is that there are horospheres about the ideal vertices tangent to three
faces. Placing the ideal vertex at oo in upper half-space, we have a figure bounded
by three vertical Euclidean planes and three Euclidean hemispheres of equal radius r.
Here is a view from above:
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From this figure, we can compute the dihedral angles a and  of the drum to be

Q. = arc COS(

cosT/k

V2

), 0 =m—2a.

Two copies of the drum with these angles can now be glued together to give a hyper-
bolic structure on S%—Cj. (Note that the total angle around an edge is 4a+23 = 2.
Since the horospheres about vertices are matched up by the gluing maps, we obtain

a complete hyperbolic manifold).

From Milnor’s formula (6), p. 7.15, for the volume, we can compute some values.

—_
O O Utk WD R

(S48
e}

200
1000
8000

U(Ss — Ck)
0
2.33349
10.14942
14.60306
18.83169
22.91609
34.691601
182.579859
732.673784

3663.84264
29310.8990

o0

u(S? — )k

0
1.77782
2.53735
2.92061
3.13861
3.27373
3.4691601
3.65159719
3.66336892
3.66384264
3.66386238
3.66386238
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Note that the quotient space (S® — C})/Z; by the rotational symmetry of Cy is
obtained by generalized Dehn surgery on the White head link W, so the limit of 6.38
v(Cy)/k as k — oo is the volume of S — .

Note also that whenever k divides [, then there is a degree é map from S? — C;
to S? — Cf. This implies that v(S® — C))/l > v(S® — C)/k. In fact, from the table
it is clear that these numbers are strictly increasing with k.

The cases k£ = 3 and 4 have particular interest.

EXAMPLE 6.8.2. The volume of S® — C3 per cusp has a particularly low value
(1.7778). The holonomy of the hyperbolic structure can be described by

A/) :
&

c Cy  v= 55049
w = 1]
H(B) = :1—+aa 1fa]
H(C) = :_1a ﬂ

where o = _1+T\m Thus (X3 — C3) is a subgroup of PSL(2,0;) where Oy is the
ring of integers in Qv/—d. See §7.4. Referring to Humbert’s formula 7.4.1, we find
v(H?3/PSL(2,07) = .8889149. . ., so m;(S® — C3) has index 6 in this group.

EXAMPLE 6.8.3. When k = 4, the rectangular-sided drum becomes a cube with all
dihedral angles 60°. This cube may be subdivided into five regular ideal tetrahedra: 6.39
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Thus S3—C} is commensurable with S3— figure eight knot, since 7 (5% —C)) preserves
a tiling of H3 by regular ideal tetrahedra.

d—

lIs® - ¢, Il, = 20 s®- Bll, =2
commensurable with PSL(2, O3)

S3 — O, is homeomorphic to many other link complements, since we can cut along
any disk spanning a component of Cj, twist some integer number of times and glue
back to obtain a link with a complement homeomorphic to that of Cj. Further-
more, if we glue back with a half-integer twist, we obtain a link whose complement
is hyperbolic with the same volume as S® — C,. This follows since twice-punctured
spanning disks are totally geodesic thrice-punctured spheres in the hyperbolic struc-
ture of S — C}. The thrice-punctured sphere has a unique hyperbolic structure, and
all six isotopy classes of diffeomorphisms are represented by isometries. 6.40

Using such operations, we obtain these examples for instance:

EXAMPLE 6.8.4.

>
proc | @ @

commensurable with Cs

The second link has a map to the figure-eight knot obtained by erasing a compo-
nent of the link. Thus, by 6.5.6, we have

v(S® — C3) = 5.33340 ... > 2.02988 = v(S® — figure eight knot).

These links are commensurable with Cf, since they give rise to identical tilings of
H? by drums. As another example, the links below are commensurable with Co:

EXAMPLE 6.8.5.
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X E @G
kﬁ{) \\:\)(@:/

A

k = 5 Commensurable with C;9 v = 34.69616

6.41
The last three links are obtained from the first by cutting along 5-times punctured

disks, twisting, and gluing back. Since this gluing map is a diffeomorphism of the

surface which extends to the three-manifold, it must come from an isometry of a

6-punctured sphere in the hyperbolic structure. (In fact, this surface comes from the

top of a 10-sided drum).

The compex modulus associated with a cusp of C), is

Clearly we have an infinite family of incommensurable examples.

By passing to the limit £ — oo and dividing by Z, we get these links commensu-
rable with S® — W and S® — B, for instance:

EXAMPLE 6.8.6.

D© ©

v = 7(83-]3)
= T,32772...

Many other chains, with different amounts of twist, also have hyperbolic struc-
tures. They all are obtained, topologically, by identifying faces of a tiling of the
boundary of a solid torus by rectangles. Here is another infinite family Dqg(> 3)
which is easy to compute: 6.42

EXAMPLE 6.8.7.
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meridian

Hyperbolic structures can be realized by subdividing the solid torus into 4 drums
with triangular sides:

6.43

Regular drums with all dihedral angles 90° can be glued together to give S® — Dj,.
By methods similar to Milnor’s in 7.3, the formula for the volume is computed to be

0(S® — Do) = 8k (u(5 + 37) + (5 — 37))-

Thus we have the values

k ’U(53 — ng) ’U(53 — ng)/(%)
3 14.655495 2.44257
4 24.09218 3.01152
5 32.55154 3.25515
6 40.59766 3.38314
100 732.750 3.66288
1000 7327.705 3.66386
00 00 3.66386

Thurston — The Geometry and Topology of 3-Manifolds 151



6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

The cases £k = 3 and k = 4 have algebraic significance. They are commensu-
rable with PSL(2,0;) nad PSL(2,0,), respectively. When k& = 3, the drum is an
octahedron and v(S% — Do) = 4v(S3 — W),

Note that the volume of (S% — Dy5) is 20 times the volume of the figure-eight knot
complement. 6.44

Two copies of the triangular-sided drum form this figure:

The faces may be glued in other patterns to obtain link complements. For instance,
if k is even we can first identify

the triangular faces, to obtain a ball minus certain arcs and curves on the boundary.

v f‘ e . i 5,
—& ic

'.\..\“ (" TV -

(B!

. v 6.45

o |

If we double this figure, we obtain a complete hyperbolic structure for the com-
plement of this link, Fj:
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Alternatively, we can identify the boundary of the ball to obtain

EXAMPLE 6.8.9.

/”3?\1\
f

QGD’/\

In these examples, note that the rectangular faces of the doubled drums

6.46
have complete symmetry, and some of the link complements are obtained by gluing
maps which interchange the diagonals, while others preserve them. These links are
generally commensurable even when they have the same volume; this can be proven
by computing the moduli of the cusps.

There are many variations. Two copies of the drum with 8 triangular faces, glued
together, give a cube with its corners chopped off. The 4-sided faces can be glued,
to obtain the ball minus these arcs and curves:

C

The two faces of the ball may be glued together (isometrically) to give any of these
link complements: 6.47
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EXAMPLE 6.8.10.

&G

v =12.04692 = 1v(S® — Ds) > v(C?) (commensurable with PSL(2, Zv/=2))

The sequence of link complements, F}, below can also be given hyperbolic struc-
tures obtained from a third kind of drum:

EXAMPLE 6.8.11.

6.48

The regular drum is determined by its angles  and 8 = m — a. Any pair of
angles works to give a hyperbolic structure; one verifies that when the angle a =
arc cos(cos 5- — %), the hyperbolic structure is complete. The case n = 1 gives a
trivial knot. In the case n = 2, the drums degenerate into simplices with 60° angles,
and we obtain once more the hyperbolic structure on F, = figure eight knot. When
n = 3, the angles are 90°, the drums become octahedra and we obtain F; = B.
Passing to the limit n = oo, and dividing by 7Z, we obtain the following link, whose
complement is commensurable with S — figure eight knot:
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EXAMPLE 6.8.12.

v=4—05977...

With these examples, many maps between link complements may be constructed.
The reader should experiment for himself. One gets a feeling that volume is a very
good measure of the complexity of a link complement, and that the ordinal structure
is really inherent in three-manifolds.
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CHAPTER 7

Computation of volume

by J. W. Milnor

7.1. The Lobachevsky function x().

This preliminary section will decribe analytic properties, and conjecture number
theoretic properties, for the function

0
n(f) = —/ log |2 sin u| du.
0
Here is the graph of this function:

()

0.5
625-/\
‘ Tz

2

Thus the first derivative a’(0) is equal to —log|2sin 6|, and the second derivative
a”(0) is equal to — cot §. T will call n(6) the Lobachevsky function. (This name is not
quite accurate historically, since Lobachevsky’s formulas for hyperbolic volume were
expressed rather in terms of the function

[

&

0
/ log(secu) du = n(0 + w/2) + 0log 2
0
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for |#] < m/2. However our function 7(6) is clearly a close relative, and is more
convenient to work with in practice. Compare Clausen [3]). references are

Another close relative of 1(6) is the dilogarithm function at end of chapter

P(z) = i 2"/n*  for |2| <1,
n=1

which has been studied by many authors. (See for example [1], [2], [8], [9], [12], [13].)
Writing

0 = = [ tog(1 = w)dww
(where |w| < 1, the substitution w = eom yields 7.2

log(1 — w) dw/w = (7 — 20 + 2ilog(2sind)) db
for 0 < € < 7, hence
Y(e”) = (1) = —0(r — 0) + 2in(0)

for 0 < 0 < 7. Taking the imaginary part of both sides, this proves the following: 7.3

LEMMA 7.1.2. The Lobacheuvsky function has uniformly convergent Fourier series
expansion

a(f) = %Zsin@n@)/n?

Apparently, we have proved this formula only for the case 0 < 6 < 7. However,
this suffices to show that s(0) = a(7) = 0. Since the derivative

dn(0)/df = —2log | sin 20|
is periodic of period m, this proves the following.

LEMMA 7.1.3. The function 1(0) is itself periodic of period w, and is an odd
function, that is, n(—0) = —u(0).

It follows that the equation in 7.1.2 is actually valid for all values of 6.
The equation 2" — 1 = H;.:é (z —e~27/m) for z = ¥ leads to the trigonometric
identity
n—1
2sinnu = H 2sin(u + jm/n).
=0
Integrating the logarithm of both sides and multiplying by n, this yields the following
for n > 1, and hence for all n.
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LEMMA 7.1.4. The identity
n(nb) = > na(d+ jr/n)
jmodn
is valid for any integer n # 0. (Compare [14].)

Here the sum is to be taken over all residue classes modulo |n|. Thus for n = 2
we get

1(20) = 1(0) + n(0 + 7/2),

D=

or equivalently
t1(20) = n(0) — n(w/2 - 6).

As an example, for § = 7/6:
Sn(r/3) = n(m/6).

(It is interesting to note that the function s(f) attains its maximum,
a(m/6) = .5074. ..,

at 0 = /6.)
It would abe interesting to know whether there are any other such linear relations
between various values of s1(#) with rational coefficients. Here is an explicit guess.

CONJECTURE (A). Restricting attention to angles 6 which are rational multiples

of 7, every rational linear relation between the real numbers s(f) is a consequence of
7.1.3 and 7.1.4.

(If we consider the larger class consisting of all angles # for which e is algebraic
then it definitely is possible to give other @-linear relations. Compare [4].)
A different but completely equivalent formulation is the following.

CONJECTURE (B). Fixing some denominator N > 3, the real numbers x(7j/N)
with j relatively prime to N and 0 < j < N/2 are linearly independent over the
rationals.

These numbers span a rational vector space vy, conjectured to have dimension
¢(N)/2, where it is easy to check that vy C vy whenever N divides M. Quite likely
the elements x(7j/N) with 1 < j < ¢(N)/2 would provide an alternative basis for
this vector space.

I have tested these conjectures to the following extent. A brief computer search
has failed to discover any other linear relations with small integer coefficients for
small values of N.
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To conclude this section, here is a remark about computation. The Fourier series
7.1.2 converges rather slowly. In order to get actual numerical values for n(0), it is
much better to work with the series

n(6) = 9(1 — log |26 +;%%>

which is obtained by twice integrating the usual Laurent series expansion for the
cotangent of f. Here

Bi=1 B,=1

- 6’ 300"
are Bernoulli numbers. This series converges for |#| = 7, and hence converges rea-
sonably well for |0] < 7/2.

7.2

Having discussed the Lobachevsky function, we will see how it arises in the com-
putation of hyperbolic volumes. The first case is the ideal simplex, i.e., a tetrahedron
whose vertices are at oo and whose edges are geodesics which converge to the vertices
at 0o. Such a simplex is determined by the dihedral angles formed between pairs of
faces. The simplex intersects any small horosphere based at a vertex in a triangle
whose interior angles are precisely the three dihedral angles along the edges meeting
at that vertex. Since a horosphere is isometric to a Euclidean plane, the sum of the
dihedral angles at an infinite vertex equals 27. It follows by an easy computation
that the dihedral angles of opposite edges are equal.

Call the three dihedral angles determining the simplex «, (3,7 and denote the
simplex by ¥, 3. The main result of this section is:

THEOREM 7.2.1. The volume of the simplex equals n(a) + 71(B) + n(7).

a,Byy

In order to prove this theorem a preliminary computation is necessary. Consider
the simplex S, g pictured below, with three right dihedral angles and three other
dihedral angles «, (3, v and suppose that one vertex is at infinity. (Thus a4+ = 7/2.)
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It turns out that any simplex can be divided by barycentric subdivision into simplices
with three right angles so this is a natural object to consider. The decomposition of
Zm 5 18 demonstrated below, but first a computation, due to Lobachevsky.

LEMMA 7.2.2. The volume of So x/2—a~ equals [n(a+7y)+m(a—7)+2x(r/2—a)].

Proor. Consider the upper half-space model of H?, and put the infinite vertex
of Sar/2—a at 00. The edges meeting that vertex are just vertical lines. Further-
more, assume that the base triangle lies on the unithemisphere (which is a hyper-
bolic plane) Recall that the line element for the hyperbolic metric in this model is
ds® = dw+(++dz so that the volume element is dV = %. Projecting the base tri-
angle to the (z,y) plane produces a Euclidean triangle T' with angles a,, 7/2 — o, /2, 7.8

which we may take to be the locus 0 < x < cosv,0 <y < ztana, with v as above.

REMARK. This projection of the unit hemisphere gives Klein’s projective model
for H2. The angles between lines are not their hyperbolic angles; rather, they are the
dihedral angles of corresponding planes in H?3.

Now it is necessary to compute

(). / // dxdgdz'
z,yeT 2> 1 172 y?2 z

Integrating with respect to z gives

dx dy
2). .
) v | [t
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Setting a = v/1 — x2, we have 7.9

cos 7y xtan o dy cosy T a+ xtan «
V:/ d:v/ ﬁ:/ <_10g—)
o 0 2(a? — y?2) 0 4a a— rtan o
_/COS”Y dml 2(acosa + rsina)
—Jo 4a 2(acosa — xsina)

(3).

If we set « = cosf, then a = v/1 — 22 =sin6 and % = —df. Then (3) becomes

1 [ 2sin(6 + «)
— = [ —dglog( 2T
v 4/,r/2 °g<2sin(9—a))

~ Laty ) = sy — ) = (/24 ) + (/2 — ).

(4).

Since n(y) —a) = —a(a — ) and x(7/2 + a) = —u(n/2 — «) by 7.1.3, this is the
desired formula. O

Suppose that two vertices are at infinity in S, r/2—a. Then a = ~. The lemma
above implies that volume

(Sar/2-aa) = 1[1(20) + 20(7/2 — a)].
By lemmas 7.1.3 and 7.1.4
n(r/2—a)=-na(r/2+a) and n1(20) =2(x(a) + n(a+ 7/2))
so that

(5). Volume (Sg.x/2-a,a) = %n(a).

To see how 3 5
upper half-space model of H3. Put one vertex at the point at infinity and the base 7.10
on the unit sphere. Drop the perpendicular from oo to the sphere and draw the
perpendiculars from the intersection point x on the base to each of the three edges
on the base. Connect x to the remaining three vertices. Taking the infinite cone on
the lines in the base gives the decomposition. (See (A) below.) Projecting onto the
(x,y) plane gives a triangle inscribed in the unit circle with x projected into its center.
Figure (B) describes the case when x is in the interior of the base (which happens
when «, 3,7 < 7/2). Not that the pairs of triangles which share a perpendicular are
similar triangles. It follows that the angles around x are as described.

decomposes into simplices of the above type, consider the
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=
S

Each sub-simplex has two infinite vertices and three dihedral angles of 7/2 so
that they are of the type considered above. Thus

Volume (Z) =2(3a(y) + 31(8) + 1a(a)).
B

In the case when z is not in the interior of the base triangle, Y, 5, can still be
thought of as the sum of six simplices each with three right dihedral angles. However,
some of the simplices must be considered to have negative volume. The interested
reader may supply the details, using the picture below.
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EXAMPLE. The complement of the figure-eight knot was constructed in 3.1 by
gluing two copies of ¥, /3 +/3.»/3. Thus its volume is 6x(7/3) = 2.02988.. . ..

REMARK. It is not hard to see that the (7/3,7/3, 7/3) simplex has volume greater
than any other three-dimensional simplex. A simplex with maximal volume must
have its vertices at infinity since volume can always be increased by pushing a finite
vertex out towards infinity. To maximize V = s(a) + 1(5) + u(7y) subject to the
restraint a+ [+~ = 0 we must have a'(a)) = /() = a'(y) which implies easily that
a = 3 =~ = r/3. (The non-differentiability of n(a) at @ = 0 causes no trouble,
since V' tends to zero when «, 3 or 7 tends to zero.)

Theorem 7.2.1 generalizes to a formula for the volume of a figure which is an
infinite cone on a planar n-gon with all vertices at infinity. Let the dihedral angles
formed by the triangular faces with the base plane be (a,...,q,) and denote the
figure with these angles by ¥, 4,
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7.3
THEOREM 7.2.3. (i) Y i, a; = 7. (ii) Volume (Zq,,  a,) = Dy 1().

PRroOOF. The proof is by induction. The case n = 3 is Theorem 1. Suppose the
theorem to be true for n = k — 1. It suffices to prove it for n = k.

Consider the base k-gon for X, . ,, and divide it into a k — 1-gon and a triangle.
Take the infinite cone on each of these two figures. If the new dihedral angle on the
triangle side is (3, the new angle on the k — 1-gon side in @ — 3. By the induction

hypothesis
2 n
(Zai>—|—ﬁ:7r and(Zai)—l—ﬂ—ﬁ:W.

i=1 i=3
Part (i) follows by adding the two equations. Similarly by the induction hypothesis,

Vol(Za,.a0.8) = (gn(&i)) + a1(3)

and .
Vol(Xus....onn—p) = <Z n(ozi)) + a(m — f).
i=3
Part (ii) follows easily since sn(m — 3) = —a(f3). O

ExAMPLE. The complement of the Whitehead link was constructed from a regular
ideal octahedron which in turn, is formed by gluing two copies of the infinite cone
on a regular planar quadrilateral. Thus its volume equals 8a(7w/4) = 3.66386.. ..
Similarly, the complement of the Borromean rings has volume 165(7w/4) = 7.32772. ..
since it is obtained by gluing two ideal octahedra together.

7.3

It is difficult to find a general pattern for constructing manifolds by gluing in-
finite tetrahedra together. A simpler method would be to reflect in the sides of a
tetrahedron to form a discrete subgroup of the isometries of H3. Unfortunately this
method yields few examples since the dihedral angles must be of the form 7 /a, a € Z
in order that the reflection group be discrete with the tetrahedron as fundamental
domain. The only cases when the sum of the angles is m are X /2 x/4.x /45 Xr/3,7/3,7/3
and X, /3 x/3,x/6 corresponding to the three Euclidean triangle groups.

Here is a construction for polyhedra in H3 due to Thurston. Take a planar regular
n-gon with vertices at infinity on each of two distinct planes in H?® and join the
corresponding vertices on the two figures by geodesics. If this is done in a symmetric
way the sides are planer rectangles meeting each other at angle # and meeting the
bases at angle . Denote the resulting polyhedra by N, g. Note that 2a + 3 = 7
since two edges of an n-gon and a vertical edge form a Euclidean triangle at infinity.
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In order to compute the volume of N, g consider it in the upper half-space model
of H?. Subdivide N, s into n congruent sectors S, 3 by dividing the two n-gons into n
congruent triangles and joining them be geodesics. Call the lower and upper triangles
of So 3, Th and T; respectively. Consider the infinite cones C} and Cy on 17 and T5.
They have the same volume since they are isometric by a Euclidean expansion. Hence
the volume of S, s is equal to the volume of Q) = (S, 3U Cy) — C4.

| g 0t

S

Q \_—/ S&,B

Evidently () is an infinite cone on a quadrilateral. To find its volume it is necessary
to compute the dihedral angles at the edges of the base. The angles along the sides
are g The angle at the front face is a + v where ~ is the angle between the front
face and the top plane of N, g. Consider the infinite cone on the top n-gon of N, g.
By (1) of Theorem 7.2.3 the angles along its base are m/n. Thus v = 7/n and the

front angle is o + 7/n. Similarly the back angle is o — 7/n.
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By (2) of Theorem 7.2.3 we have
(6). Vol(Nag) = nVol(Q) = n(2n(8/2) + n(a + 7 /n) + n(a — 7/n)).

If a and ( are of the form 7 /a, a € Z then the group generated by the reflections
in the sides of N, 5 form a discrete group of isometries of H®. Take a subgroup
' which is torsion free and orientation preserving. The quotient space H3/T is an
oriented, hyperbolic three-manifold with finite volume.

Since 2a + [ = m the only choices for (a, 3) are (7/3,7/3) and (7,4,7/2). As
long as n > 4 both of these can be realized since 3 varies continuously from 0 to
n — 2/n as the distance between the two base planes of N, g varies from 0 to oco.
Thus we have the following:

THEOREM 7.3.1. There are an infinite number of oriented three-manifolds whose
volume is a finite rational sum of n(0) for 6’s commensurable with .

7.4

We will now discuss an arithmetic method for constructing hyperbolic three-
manifolds with finite volume. The construction and computation of volume go back
to Bianchi and Humbert. (See [5], [7], [10].) The idea is to consider Og4, the ring
of integers in an imaginary quadratic field, Q(v/—d), where d > 1 is a square-free
integer. Then PSL(2,0,) is a discrete subgroup of PSL(2,C). Let I" be a torsion free
subgroup of finite index in PSL(2,04). Since PSL(2,C) is the group of orientation
preserving isometries of H3, H? /T is an oriented hyperbolic three-manifold. It always
has finite volume.

EXAMPLE. Let Z[i] be the ring of Gaussian integers. A fundamental domain
for the action of PSL(2,Z[i]) has finite volume. Different choices of I" give different
manifolds; e.g., there is a T’ of index 12 such that H?/T is diffeomorphic to the
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complement of the Whitehead link; another I' of index 24 leads to the complement
of the Borromean rings. (N. Wielenbert, preprint).

EXAMPLE. In case d = 3, Q4 is Z]w] where w = %TS and there is a sub-

group I' C PSL(2, Z|w]) of index 12 such that H3/T is diffeomorphic to the comple-
ment of the figure-eight knot. (R. Riley, [11]). In order to calculate the volume of

H?/PSL(2,0,4) in general we recall the following definitions. Define the discriminant, 7.8
D, of the extension Q(v/—d) to be

_ {d if d = 3(mod4),
4d  otherwise.

If Oy is considered as a lattice in T, then v/D/2 is the area of T/O4 . The Dedekind

(-function for a field K is defined to be

(k(S) = Z 1/N(a)®  where

a runs through all ideals in O and N(a) = |O/a| denotes the norm of {(.5) is also
equal to

taking all prime ideals of 3.

THEOREM 7.4.1 (Essentially due to Humbert).

Vol(H®/PSL(2,04)) = 2 oy (2)/¢a(2).

This volume can be expressed in terms of Lobachevsky’s function using Hecke’s
formula
=)

Cov=a(8)/C(S) = Z TRt

Here (ﬁ) is the quadratic symbol where we use the conventions:

(i) If n =p1,...,ps, p; prime then (%) = (;—f)) (;—f) e (‘p—?).
(i) If p| D then (=) = 0; (P) = +1.
(iii) for p an odd prime

—D\ _ [ +1 if =D = X?*(modp) for some X,
P —1 if not.
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—D\ _ [+1 if =D =1(mod38),
p ) | -1 if =D =5(mod8).
(Note that —D # 3 (mod 4) by definition.)

The function n +— (%) is equal to 1/4/—D times its Fourier transform;* i.e.,

> () —vn(2)

kmod D

(iv) For p=2

Multiplying by 1/n? and summing over n > 0 we get

(2). > 1/n? Z (_D) omikn/D _ \/_Z

n>0 n>0

For fixed k the imaginary part of the left side is just the Fourier series for 2:x(7k/D).
Since the right side is pure imaginary we have:

(3). 22( >7rk/D \/_Z< )1/71

kmod D n>0

Multiplying by D/24 and using Hecke’s formula leads to

(4). D/12 ) ( ) (nk/D) = Vol(H*/ PSL(2,04)).

kmod D

EXAMPLE. In the case d = 3, 7.4.4 implies that the volume of H?/(PSL(2, Z[w])
is +(n(m/3) — n(27/3)) = $n(w/3). Recall that the complement of the figure-eight
knot S?® — K is diffeomorphic to H3/T" where I' had index 12 in PSL(2, Z[w]). Thus it
has volume 6ui(7/3). This agrees with the volume computed by thinking of S® —

as two copies of X /3 73 x/3 tetrahedra glued together.

Similarly the volumes for the complements of the Whitehead link and the Bor-
romean rings can be computed using 7.4.4. The answers agree with those computed
geometrically in 7.2.

This algebraic construction also furnishes an infinite number of hyperbolic man-
ifolds with volumes equal to rational, finite linear combinations of n (a rational
multiple of 7). Note that Conjectures (A) and (B) would imply that any rational
relation between the volumes of these manifolds could occur at most as a result of
common factors of the integers, d, defining the quadratic fields. In fact, quite likely
they would imply that there are no such rational relations.

*Compare Hecke, Vorlesangen iiber algebr. Zahlen, p. 241. 1T am grateful to A. Adler for help
on this point.
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CHAPTER 8
Kleinian groups

Our discussion so far has centered on hyperbolic manifolds which are closed, or
at least complete with finite volume. The theory of complete hyperbolic manifolds
with infinite volume takes on a somewhat different character. Such manifolds occur
very naturally as covering spaces of closed manifolds. They also arise in the study
of hyperbolic structures on compact three-manifolds whose boundary has negative
Euler characteristic. We will study such manifolds by passing back and forth between
the manifold and the action of its fundamental group on the disk.

8.1. The limit set

Let I" be any discrete group of orientation-preserving isometries of H". If x € H"
is any point, the limit set Ly C S is defined to be the set of accumulation points
of the orbit ', of x. One readily sees that Lr is independent of the choice of x
by picturing the Poincaré disk model. If y € H™ is any other point and if {v;}
is a sequence of elements of T' such that {y;z} converges to a point on S”!, the
hyperbolic distance d(7;x,y;y) is constant so the Euclidean distance goes to 0; hence
lim vy = lim ~;x.

The group I' is called elementary if the limit set consists of 0,1 or 2 points.

PrRoPOSITION 8.1.1. T' is elementary if and only if I' has an abelian subgroup of
finite index. O

When T is not elementary, then Ly is also the limit set of any orbit on the sphere
at infinity. Another way to put it is this:

PROPOSITION 8.1.2. IfI' is not elementary, then every non-empty closed subset
of Se tnvariant by I' contains Lr.

PROOF. Let K C S, be any closed set invariant by I". Since I' is not elementary,
K contains more than one element. Consider the projective (Klein) model for H™,
and let H(K) denote the convex hull of K. H(K) may be regarded either as the
Euclidean convex hull, or equivalently, as the hyperbolic convex hull in the sense
that it is the intersection of all hyperbolic half-spaces whose “intersection” with S,
contains K. Clearly H(K)N Sy, = K.
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H(K)

Since K is invariant by I, H(K) is also invariant by I'. If x is any point in
H™N H(K), the limit set of the orbit I', must be contained in the closed set H(K).
Therefore L C K. O

A closed set K invariant by a group I' which contains no smaller closed invariant
set is called a minimal set. It is easy to show, by Zorn’s lemma, that a closed
invariant set always contains at least one minimal set. It is remarkable that in the
present situation, Lr is the unique minimal set for I'.

COROLLARY 8.1.3. If I' is a non-elementary group and 1 # I < T is a normal
subgroup, then Ly = L.

PROOF. An element of I' conjugates I to itself, hence it takes L+ to Lyv. IV must
be infinite, otherwise I would have a fixed point in H™ which would be invariant by
[' so I" would be finite. It follows from 8.1.2 that L D Ly. The opposite inclusion
is immediate. 0

EXAMPLES. If M? is a hyperbolic surface, we may regular (M) as a group of
isometries of a hyperbolic plane in H3. The limit set is a circle. A group with limit
set contained in a geometric circle is called a Fuchsian group.

The limit set for a closed hyperbolic manifold is the entire sphere S™ 1.

If M3 is a closed hyperbolic three-manifold which fibers over the circle, then
the fundamental group of the fiber is a normal subgroup, hence its limit set is the
entire sphere. For instance, the figure eight knot complement has fundamental group
(A,B: ABA"'BA = BAB 'AB).
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It fibers over S* with fiber F' a punctured torus. The fundamental group 7 (F')
is the commutator subgroup, generated by AB~! and A~'B. Thus, the limit set of
a finitely generated group may be all of S? even when the quotient space does not
have finite volume.

A more typical example of a free group action is a Schottky group, whose limit
set is a Cantor set. Examples of Schottky groups may be obtained by considering
H"™ minus 2k disjoint half-spaces, bounded by hyperplanes. If we choose isometric
identifications between pairs of the bounding hyperplanes, we obtain a complete
hyperbolic manifold with fundamental group the free group on k generators.

Sc_hott l*y S'rouP
Koz
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It is easy to see that the limit set for the group of covering transformations is a
Cantor set.

8.2. The domain of discontinuity

The domain of discontinuity for a discrete group I is defined to be D = S 1 —Lr.
A discrete subgroup of PSL(2, C) whose domain of discontinuity is non-empty is called
a Kleinian group. (There are actually two ways in which the term Kleinian group is
generally used. Some people refer to any discrete subgroup of PSL(2, C) as a Kleinian
group, and then distinguish between a type I group, for which Ly = S2 | and a type II
group, where Dr # (). As a field of mathematics, it makes sense for Kleinian groups
to cover both cases, but as mathematical objects it seems useful to have a word to
distinguish between these cases Dr # () and Dr = ().)

We have seen that the action of I' on Lp is minimal—it mixes up Lr as much as
possible. In contrast, the action of I' on Dr is as discrete as possible.

DEFINITION 8.2.1. If I' is a group acting on a locally compact space X, the action
is properly discontinuous if for every compact set K C X, there are only finitely many
v € I' such that YK N K # 0.

Another way to put this is to say that for any compact set K, the map 'x K — X
given by the action is a proper map, where I' has the discrete topology. (Otherwise
there would be a compact set K’ such that the preimage of K’ is non-compact. Then
infinitely many elements of I" would carry K U K’ to itself.)

ProproOSITION 8.2.2. If I' acts properly discontinuously on the locally compact
Hausdorff space X, then the quotient space X is Hausdorff. If the action is free, the
quotient map X — X/I' is a covering projection.

PROOF. Let z1,25 € X be points on distinct orbits of I'. Let N; be a compact
neighborhood of z;. Finitely many translates of x5 intersect Nj, so we may assume
Nj is disjoint from the orbit of z5. Then U,yeF ~vN; gives an invariant neighborhood
of x1 disjoint from x,. Similarly, x5 has an invariant neighborhood N, disjoint from
Ny; this shows that X/T" is Hausdorff. If the action of I' is free, we may find,
again by a similar argument, a neighborhood of any point x which is disjoint from
all its translates. This neighborhood projects homeomorphically to X/I. Since T
acts transitively on the sheets of X over X/T', it is immediate that the projection
X — X/T is an even covering, hence a covering space. 0

ProrosITION 8.2.3. If " is a discrete group of isometries of H", the action of I’
on Dr (and in fact on H™ U D) is properly discontinuous.
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ProoFr. Consider the convex hull H(Lr). There is a retraction r of the ball
H™U S to H(Lr) defined as follows.

If + € H(Lr), r(z) = x. Otherwise, map x to the nearest point of H(Lr). If
x is an infinite point in Dr, the nearest point is interpreted to be the first point of
H(Lr) where a horosphere “centered” about x touches Lr. This point r(z) is always
uniquely defined

because H(Lr) is convex, and spheres or horospheres about a point in the ball are
strictly convex. Clearly r is a proper map of H" U Dr to H(Lr) — Lr. The action of
[ on H(Lr) — Lr is obviously properly discontinuous, since I' is a discrete group of
isometries of H(Lr) — Lr; the property of H" U Dr follows immediately. O

REMARK. This proof doesn’t work for certain elementary groups; we will ignore
such technicalities.

It is both easy and common to confuse the definition of properly discontinuous
with other similar properties. To give two examples, one might make these definitions:

DEFINITION 8.2.4. The action of I' is wandering if every point has a neighborhood
N such that only finitely many translates of N intersect N.

DEFINITION 8.2.5. The action of I' has discrete orbits if every orbit of I has an
empty limit set.

ProPOSITION 8.2.6. IfT" is a free, wandering action on a Hausdorff space X, the
projection X — X/T" is a covering projection.

PROOF. An exercise. [l

WARNING. Even when X is a manifold, X/I" may not be Hausdorff. For instance,
consider the map

L:RP—0—->R?2-0
L(z,y) = (2z, 5y).
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A
iy
It is easy to see this is a wandering action. The quotient space is a surface with
fundamental group Z & Z. The surface is non-Hausdorff, however, since points such
as (1,0) and (0,1) do not have disjoint neighborhoods.

Such examples arise commonly and naturally; it is wise to be aware of this phe-
nomenon.

The property that I' has discrete orbits simply means that for every pair of points
x,y in the quotient space X/I', x has a neighborhood disjoint from y. This can occur,
for instance, in a [-parameter family of Kleinian groups I';, ¢ € [0,1]. There are
examples where I'; = Z, and the family defines the action of Z on [0,1] x H? with
discrete orbits which is not a wandering action. See § . It is remarkable that the
action of a Kleinian group on the set of all points with discrete orbits is properly
discontinuous.

8.3. Convex hyperbolic manifolds

The limit set of a group action is determined by a limiting process, so that it
is often hard to “know” the limit set directly. The condition that a given group
action is discrete involves infinitely many group elements, so it is difficult to verify
directly. Thus it is important to have a concrete object, satisfying concrete conditions,
corresponding to a discrete group action.
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We consider for the present only groups acting freely.

DEFINITION 8.3.1. A complete hyperbolic manifold M with boundary is convex
if every path in M is homotopic (rel endpoints) to a geodesic arc. (The degenerate
case of an arc which is a single point may occur.)

PROPOSITION 8.3.2. A complete hyperbolic manifold M is convex if and only if
the developing map D : M — H" is a homeomorphism to a convex subset of H™.

PROOF. If M is a convex subset S of H™, then it is clear that M is convex, since
any path in M lifts to a path in S, which is homotopic to a geodesic arc in S, hence
in M.

If M is convex, then D is 1 — 1, since any two points in M may be joined by a
path, which is homotopic in M and hence in M to a geodesic arc. D must take the

endpoints of a geodesic arc to distinct points. D(M) is clearly convex. O

We need also a local criterion for M to be convex. We can define M to be locally
convex if each point

jconve x t
:e‘ﬂc\; ber lﬂootl {,
- - o i, 4

x € M has a neighborhood isometric to a convex subset of H". If z € OM, then z
will be on the boundary of this set. It is easy to convince oneself that local convexity
implies convexity: picture a bath and imagine straightening it out. Because of local
convexity, one never needs to push it out of M. To make this a rigorous argument,
given a path p of length [ there is an € such that any path of length < € intersecting
N (po) is homotopic to a geodesic arc. Subdivide p into subintervals of length between
€/4 and €/2. Straighten out adjacent pairs of intervals in turn, putting a new division
point in the middle of the resulting arc unless it has length < €/2. Any time an
interval becomes too small, change the subdivision. This process converges, giving a
homotopy of p to a geodesic arc, since any time there are angles not close to 7, the
homotopy significantly shortens the path.
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This give us a very concrete object corresponding to a Kleinian group: a complete
convex hyperbolic three-manifold M with non-empty boundary. Given a convex
manifold M, we can define H(M) to be the intersection of all convex submanifolds
M’ of M such that myM’ — m M is an isomorphism. H (M) is clearly the same as
HL. (M)/m(M). H(M) is a convex manifold, with the same dimension as M except
in degenerate cases.

PROPOSITION 8.3.3. If M is a compact convexr hyperbolic manifold, then any
small deformation of the hyperbolic structure on M can be enlarged slightly to give a
new convex hyperbolic manifold homeomorphic to M.

PROOF. A convex manifold is strictly convez if every geodesic arc in M has in-
terior in the interior of M. If M is not already strictly convex, it can be enlarged
slightly to make it strictly convex. (This follows from the fact that a neighborhood
of radius € about a hyperplane is strictly convex.)

Strictly convey

Thus we may assume that M’ is a hyperbolic structure that is a slight deformation
of a strictly convex manifold M. We may assume that our deformation M’ is small
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enough that it can be enlarged to a hyperbolic manifold M” which contains a 2e-
neighborhood of M’. Every arc of length [ greater than € in M has the middle (I — ¢)
some uniform distance § from OM; we may take our deformation M’ of M small
enough that such intervals in M’ have the middle [ — € still in the interior of M’. This
implies that the union of the convex hulls of intersections of balls of radius 3e with
M’ is locally convex, hence convex. U

The convex hull of a uniformly small deformation of a uniformly convex manifold
is locally determined.

REMARK. When M is non-compact, the proof of 8.3.3 applies provided that M
has a uniformly convex neighborhood and we consider only uniformly small deforma-
tions. We will study deformations in more generality in §

PROPOSITION 8.3.4. Suppose M{" and M3 are strictly convex, compact hyperbolic
manifolds and suppose ¢ : M{* — M3 is a homotopy equivalence which is a diffeo-
morphism on OM;. Then there is a quasi-conformal homeomorphism f : B" — B"
of the Poincaré disk to itself conjugating my My to mMsy. f is a pseudo-isometry on
H™.

PROOF. Let ¢ be a lift of ¢ to a map from M, to M. We may assume that ¢ is
already a pseudo-isometry between the developing images of M; and M,. Each point
p on OM; and OM, has a unique normal ray Yp; if @ € 7y, has distance ¢ from oM,
let f(z) be the point on Vj(p) @ distance ¢ from dM,. The distance between points at
a distance of ¢ along two normal rays 7,, and v,, at nearby points is approximately
cosht + asinh ¢, where d is the distance and @ is the angle between the normals of p;
and p,. From this it is evident that f is a pseudo-isometry extending to ¢. ([l

Associated with a discrete group I' of isometries of H", there are at least four
distinct and interesting quotient spaces (which are manifolds when I' acts freely ).
Let us name them:

DEFINITION 8.3.5.
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Mr = H(Ly)/I' , the convex hull quotient.

Nr = H™ /T, the complete hyperbolic manifold without boundary.

Or = (H" U Dr)/T', the Kleinian manifold.

Pr = (H"U Dpr UWr)/I'. Here Wr C P" is the set of points in the projective
model dual to planes in H™ whose intersection with S, is contained in Dr.

We have inclusions H(Nr) = My C Npr C Or C Pr. It is easy to derive the fact that
[' acts properly discontinuously on H™ U Dr U Wt from the proper discontinuity on
H" U Dr. My, Nr and Or have the same homotopy type. Mr and Or are home-
omorphic except in degenerate cases, and Np = int(Or) Pr is not always connected
when Lt is not connected.

8.4. Geometrically finite groups

DEFINITION 8.4.1. T" is geometrically finite if N.(Mr) has finite volume.

The reason that N (Mr) is required to have finite volume, and not just Mr, is to
rule out the case that I' is an arbitary discrete group of isometries of H*t c H™ .
We shall soon prove that geometrically finite means geometrically finite (8.4.3).

THEOREM 8.4.2 (Ahlfors’ Theorem). If ' is geometrically finite, then Ly C Sy
has full measure or 0 measure. If Ly has full measure, the action of I' on S is
ergodic.

ProoOF. This statement is equivalent to the assertion that every bounded mea-
surable function f supported on Lr and invariant by [ is constant a.e. (with respect
to Lebesque measure on S,). Following Ahlfors, we consider the function hy on H™
determined by f as follows. If x € H™, the points on S, correspond to rays through
x; these rays have a natural “visual” measure V,. Define hs(z) to be the average
of f with respect to the visual measure V. This function h; is harmonic, i.e., the
gradient flow of hy preserves volume,

divgrad hy = 0.

For this reason, the measure —~ )V;C is called harmonic measure. To prove this,
oo

Vo (S

consider the contribution to hf( coming from an infinitesimal area A centered at
p € S"! (ie., a Green’s function). As x moves a distance d in the direction of
p, the visual measure of A goes up exponentially, in proportion to e™ 14 The
gradient of any multiple of the characteristic function of A is in the direction of p,
and also proportional in size to e 19 The flow lines of the gradient are orthogonal
trajectories to horospheres; this flow contracts linear dimensions along the horosphere

in proportion to e~¢, so it preserves volume.
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e ‘ P-\ i,

P

The average hy of contributions from all the infinitesimal areas is therefore harmonic.
We may suppose that f takes only the values of 0 and 1. Since f is invariant by I,
so is hy, and hy goes over to a harmonic function, also hy, on Np. To complete the
proof, observe that hy < % in Ny — Mr, since each point x in H™ — H(Lr) lies in
a half-space whose intersection with infinity does not meet Lr, which means that f
is 0 on more than half the sphere, with respect to V,. The set {z € Np|hs(z) = 1}
must be empty, since it bounds the set {x € Np|hs(z) > 3} of finite volume which
flows into itself by the volume preserving flow generated by grad hy. (Observe that
grad hy has bounded length, so it generates a flow defined everywhere for all time.)
But if {p|f(p) = 1} has any points of density, then there are x € H"! near p with

hy(x) near 1. It follows that f is a.e. 0 or a.e. 1. O

Let us now relate definition 8.4.1 to other possible notions of geometric finiteness.
The usual definition is in terms of a fundamental polyhedron for the action of T'.
For concreteness, let us consider only the case n = 3. For the present discussion, a
finite-sided polyhedron means a region P in H? bounded by finitely many planes. P
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is a fundamental polyhedron for I if its translates by I' cover H?, and the translates
of its interior are pairwise disjoint. P intersects S, in a polygon which unfortunately
may be somewhat bizarre, since tangencies between sides of P N S, may occur.

Sometimes these tangencies are forced by the existence of parabolic fixed points
for I'. Suppose that p € S is a parabolic fixed point for some element of I'; and let 7
be the subgroup of I' fixing p. Let B be a horoball centered at p and sufficiently small
that the projection of B/P to Nr is an embedding. (Compare §5.10.) If 7 D Z & Z,
for any point x € BN H(Lr), the convex hull of 7z contains a horoball B, so in
particular there is a horoball B’ C H(Lr) N B. Otherwise, Z is a maximal torsion-
free subgroup of m. Coordinates can be chosen so that p is the point at oo in the
upper half-space model, and Z acts as translations by real integers. There is some
minimal strip S C C containing Lr N C; S may interesect the imaginary axis in a
finite, half-infinite, or doubly infinite interval. In any case, H(Lr) is contained in the
region R of upper half-space above S, and the part of OR of height > 1 lies on OHr.

It may happen that there are wide substrips S’ C S in the complement of Ly. If S’
is sufficiently wide, then the plane above its center line intersects H(Lr) in B, so it
gives a half-open annulus in B/Z. If T is torsion-free, then maximal, sufficiently wide
strips in S — Lr give disjoint non-parallel half-open annuli in Mr; an easy argument
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shows they must be finite in number if I is finitely generated. (This also follows from
Ahlfors’s finiteness theorem.) Therefore, there is some horoball B’ centered at p so
that H(Lr) N B' = RN B’. This holds even if I has torsion.

With an understanding of this picture of the behaviour of Mr near a cusp, it is
not hard to relate various notions of geometric finiteness. For convenience suppose I'
is torsion-free. (This is not an essential restriction in view of Selberg’s theorem—see
§ .) When the context is clear, we abbreviate Mr = M, Ny = N, etc.

PROPOSITION 8.4.3. Let I' € PSL(2,C) be a discrete, torsion-free group. The
following conditions are equivalent:

(a) T is geometrically finite (see dfn. 8.4.1).
(b) Mieooy is compact.
(¢) T' admits a finite-sided fundamental polyhedron.

PROOF. (a) = (b).

Each point in M| ) has an embedded €/2 ball in N,/2(Mr), by definition. If (a)
holds, Ne/,,(Mr) has finite volume, so only finitely many of these balls can be disjoint
and Mrc ) i compact.

(b) = (c). First, find fundamental polyhedra near the non-equivalent parabolic
fixed points. To do this, observe that if p is a Z-cusp, then in the upper half-space
model, when p = oo, Ly N C lies in a strip S of finite width. Let R denote the region
above S. Let B’ be a horoball centered at oo such that RN B = H(Lr) N B’. Let
r: H®UDr — H(Lr) be the canonical retraction. If Q is any fundamental polyhedra
for the action of Z in some neighborhood of p in H(Lr) then r~1(Q) is a fundamental
polyhedron in some neighborhood of p in H3 U Dr.

Thurston — The Geometry and Topology of 3-Manifolds 183

8.20

8.21



8. KLEINIAN GROUPS

A fundamental polyhedron near the cusps is easily extended to a global fundamental
polyhedron, since Op-(neighborhoods of the cusps) is compact.

(c) = (a). Suppose that I" has a finite-sided fundamental polyhedron P.

A point x € PN S is a regular point (€ Dr) if it is in the interior of P N Sy
or of some finite union of translates of P. Thus, the only way x can be a limit point
is for x to be a point of tangency of sides of infinitely many translates of P. Since
P can have only finitely many points of tangency of sides, infinitely many ~I" must
identify one of these points to x, so x is a fixed point for some element vI'. v must
be parabolic, otherwise the translates of P by powers of v would limit on the axis
of 7. If x is arranged to be oo in upper half-space, it is easy to see that LrC must
be contained in a strip of finite width. (Finitely many translates of P must form a
fundamental domain for {7™}, acting on some horoball centered at oo, since {7"} has
finite index in the group fixing co. Th faces of these translates of P which do not
pass through oo lie on hemispheres. Every point in C outside this finite collection of 822
hemispheres and their translates by {y"} lies in Dr.)

It follows that v(N(M)) = v(N(H (Lr)) N P) if finite, since the contribution near
any point of Lr N P is finite and the rest of N.(H (L)) N P is compact. O
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8.5. The geometry of the boundary of the convex hull

Consider a closed curve ¢ in Euclidean space, and its convex hull H(o). The
boundary of a convex body always has non-negative Gaussian curvature. On the
other hand, each point p in 0H (o) — o lies in the interior of some line segment or
triangle with vertices on . Thus, there is some line segment on 0H (o) through p,
so that 0H (o) has non-positive curvature at p. It follows that 0H (o) — ¢ has zero
curvature, i.e., it is “developable”. If you are not familiar with this idea, you can
see it by bending a curve out of a piece of stiff wire (like a coathanger). Now roll
the wire around on a big piece of paper, tracing out a curve where the wire touches.
Sometimes, the wire may touch at three or more points; this gives alternate ways
to roll, and you should carefully follow all of them. Cut out the region in the plane
bounded by this curve (piecing if necessary). By taping the paper together, you can
envelope the wire in a nice paper model of its convex hull. The physical process
of unrolling a developable surface onto the plane is the origin of the notion of the
developing map.

The same physical notion applies in hyperbolic three-space. If K is any closed
set on S, then H(K) is convex, yet each point on 0H(K) lies on a line segment
in 0H(K). Thus, 0H(K) can be developed to a hyperbolic plane. (In terms of
Riemannian geometry, 0H(K) has extrinsic curvature 0, so its intrinsic curvature
is the ambient sectional curvature, —1. Note however that OH(K) is not usually
differentiable). Thus 0H(K) has the natural structure of a complete hyperbolic
surface.

PROPOSITION 8.5.1. If T is a torsion-free Kleinian group, the OMr is a hyperbolic
surface. O

The boundary of Mr is of course not generally flat—it is bent in some pattern.
Let v C OMr consist of those points which are not in the interior of a flat region of
OMr. Through each point x in v, there is a unique geodesic g, on OMr. g, is also a
geodesic in the hyperbolic structure of OMr. 7 is a closed set. If M has finite area,
then 7 is compact, since a neighborhood of each cusp of My is flat. (See §8.4.)

DEFINITION 8.5.2. A lamination L on a manifold M" is a closed subset A C M
(the support of L) with a local product structure for A. More precisely, there is a
covering of a neighborhood of A in M with coordinate neighborhoods U; P4 Rk x RF
so that ¢;(A N U;) is of the form R"™* x B, B C R*. The coordinate changes ¢;;
must be of the form ¢;;(z,y) = (fij(x,y), g;;(y)) when y € B. A lamination is like a
foliation of a closed subset of M. Leaves of the lamination are defined just as for a
foliation.
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ExaMPLES. If J is a foliation of M and S C M is any set, the closure of the
union of leaves which meet S is a lamination.

Any submanifold of a manifold M is a lamination, with a single leaf. Clearly, the
bending locus v for M has the structure of a lamination: whenever two points of
are nearby, the directions of bending must be nearly parallel in order that the lines
of bending do not intersect. A lamination whose leaves are geodesics we will call a
geodesic lamination. 8.25

T... am A eode‘gia:_t
mination
Lo

By consideration of Euler characteristic, the lamination v cannot have all of 0M
as its support, or in other words it cannot be a foliation. The complement OM — ~y
consists of regions bounded by closed geodesics and infinite geodesics. Each of these
regions can be doubled along its boundary to give a complete hyperbolic surface,
which of course has finite area. There

8.26
is a lower bound for 7 for the area of such a region, hence an upper bound of

2|x(OM)] for the number of components of OM — 7. Every geodesic lamination -y on

a hyperbolic surface S can be extended to a foliation with isolated singularities on

the complement. There
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is an index formula for the Euler characteristic of S in terms of these singularities.
Here are some values for the index.

D> /A\

From the existence of an index formula, one concludes that the Euler characteristic
of S is half the Euler characteristic of the double of S — . By the Gauss-Bonnet
theorem,

Area(S — v) = Area(95)

or in other words, v has measure 0. To give an idea of the range of possibilities for
geodesic laminations, one can consider an arbitrary sequence {7;} of geodesic lamina-
tions: simple closed curves, for instance. Let us say that {7;} converges geometrically
to v if for each x € support 7, and for each ¢, for all great enough ¢ the support of ~;
intersects N(x) and the leaves of v; N N, (x) are within € of the direction of the leaf
of v through x. Note that the support of v may be smaller than the limiting support
of 7;, so the limit of a sequence may not be unique. See §8.10. An easy diagonal
argument shows that every sequence {7;} has a subsequence which converges geo-
metrically. From limits of sequences of simple closed geodesics, uncountably many
geodesic laminations are obtained.

Geodesic laminations on two homeomorphic hyperbolic surfaces may be compared
by passing to the circle at co. A directed geodesic is determined by a pair of points
(z1,20) € SL x SL — A where A is the diagonal {(x,z)}. A geodesic without
direction is a point on J = (SL x S — A/Z,), where Z, acts by interchanging
coordinates. Topologically, J is an open Moebius band. It is geometrically realized
in the Klein (projective) model for H? as the region outside H2. A geodesic g projects
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to a simple geodesic on the surface S if and only if the covering translates of its pairs
of end points never strictly separate each other.

Sis nol simp'f* q i Smele

Geometrically, J has an indefinite metric of type (1,1), invariant by covering
translates. (See §2.6.) The light-like geodesics, of zero length, are lines tangent to
Sl ; lines which meet H? when extended have imaginary arc length. A point g € J
projects to a simple geodesic in S if and only if no covering translate T,(g) has a
positive real distance from g.
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Let 8 C J consist of all elements g projecting to simple geodesics on S. Any
geodesic C H? which has a translate intersecting itself has a neighborhood with the
same property, hence § is closed.

If v is any geodesic lamination on S, Let 8, C J be the set of lifts of leaves of
v to H?. 8, is a closed invariant subset of 8. A closed invariant subset of C' C J
gives rise to a geodesic lamination if and only if all pairs of points of C are separated
by an imaginary (or 0) distance. If g € 8, then the closure of its orbit, m(S)g is
such a set, corresponding to the geodesic lamination g of S. Every homeomorphism
between surfaces when lifted to H? extends to SL (by 5.9.5). This determines an
extension to J. Geodesic laminations are transferred from one surface to another via
this correspondence.

8.6. Measuring laminations

Let L be a lamination, so that it has local homeomorphisms ¢; : LNU; ~ R"*x B;.
A transverse measure p for L means a measure p; defined on each local leaf space B;,
in such a way that the coordinate changes are measure preserving. Alternatively one
may think of i as a measure defined on every k-dimensional submanifold transverse
to L, supported on TN L and invariant under local projections along leaves of L. We
will always suppose that p is finite on compact transversals. The simplest example
of a transverse measure arises when L is a closed submanifold; in this case, one can
take 1 to count the number of intersections of a transversal with L.

We know that for a torsion-free Kleinian group I', M is a hyperbolic surface
bent along some geodesic lamination . In order to complete the picture of OMr,
we need a quantitative description of the bending. When two planes in H? meet
along a line, the angle they form is constant along that line. The flat pieces of OMr
meet each other along the geodesic lamination v; the angle of meeting of two planes
generalizes to a transverse “bending” measure, 3, for 7. The measure (3 applied
to an arc o on My transverse to 7 is the total angle of turning of the normal to
OMr along « (appropriately interpreted when 7 has isolated geodesics with sharp
bending). In order to prove that [ is well-defined, and that it determines the local
isometric embedding in H3, one can use local polyhedral approximations to dMr.
Local outer approximations to dMr can be obtained by extending the planes of local
flat regions. Observe that when three planes have pairwise intersections in H? but
no triple intersection, the dihedral angles satisfy the inequality

a+p <.

Thurston — The Geometry and Topology of 3-Manifolds 189

8.29

8.30



8. KLEINIAN GROUPS

(The difference v — (a+ () is the area of a triangle on the common perpendicular
plane.) From this it follows that as outer polyhedral approximations shrink toward
Mr, the angle sum corresponding to some path a on dMr is a monotone sequence,
converging to a value B(«). Also from the monotonicity, it is easy to see that for
short paths a4, [0 <t < 1], B(«) is a close approximation to the angle between the
tangent planes at ay and a;. This implies that the hyperbolic structure on 0Mr,
together with the geodesic lamination v and the transverse measure (3, completely
determines the hyperbolic structure of Nr in a neighborhood of dMr.

The bending measure (3 has for its support all of 4. This puts a restriction on the
structure of v: every isolated leaf L of v must be a closed geodesic on M. (Other-
wise, a transverse arc through any limit point of L would have infinite measure.) This
limits the possibilities for the intersection of a transverse arc with v to a Cantor set
and/or a finite set of points.

When ~ contains more than one closed geodesic, there is obviously a whole family
of possibilities for transverse measures. There are (probably atypical) examples of
families of distinct transverse measures which are not multiples of each other even for
certain geodesic laminations such that every leaf is dense. There are many other ex-
amples which possess unique transverse measures, up to constant multiples. Compare
Katok.

Here is a geometric interpretation for the bending measure § in the Klein model.
Let Py be the component of Pr containing Nr (recall definition 8.3.5). Each point in
By outside S, is dual to a plane which bounds a half-space whose intersection with
S is contained in Dr. &P, consists of points dual to planes which meet Lp in at
least one point. In particular, each plane meeting Mr in a line or flat of My is dual
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to a point on OPy. If 7 € dF, is dual to a plane 7 touching Lr at z, then one of
the line segments 7z is also on dF,. This line segments consists of points dual to
planes touching Lr at x and contained in a half-space bounded by 7. The reader
may check that Py is convex. The natural metric of type (2,1) in the exterior of Sx
is degenerate on dF,, since it vanishes on all line segments corresponding to a family
of planes tangent at S... Given a path o on My, there is a dual path @ consisting
of points dual to planes just skimming M along a. The length of & is the same as

Bla).

REMARK. The interested reader may verify that when N is a component of OMrp
such that every leaf of v M N is dense in v N N, then the action of mn on the
appropriate component of 9P — Lp is minimal (i.e., every orbit is dense). This
action is approximated by actions of m; N as covering transformations on surfaces
just inside dF,.

8.7. Quasi-Fuchsian groups

Recall that a Fuchsian group (of type I) is a Kleinian group I' whose limit set
Lr is a geometric circle. Examples are the fundamental groups of closed, hyperbolic
surfaces. In fact, if the Fuchsian group I is torsion-free and has no parabolic elements,
then I' is the group of covering transformations of a hyperbolic surface. Furthermore,
the Kleinian manifold Or = (H® U Dr)/T has a totally geodesic surface as a spine.

NOTE. The type of a Fuchsian group should not be confused with its type as a
Kleinian group. To say that I' is a Fuchsian group of type I means that Ly = S?!,
but it is a Kleinian group of type II since Dr # ().

Thurston — The Geometry and Topology of 3-Manifolds 191

8.33



8. KLEINIAN GROUPS

Suppose M = N?x [ is a convex hyperbolic manifold, where N? is a closed surface.
Let I'" be the group of covering transformations of M, and let I' be a Fuchsian group
coming from a hyperbolic structure on N. I' and I” are isomorphic as groups; we
want to show that their actions on the closed ball B? are topologically conjugate.

Let Mr and My be the convex hull quotients (M ~ N? and Mp ~ N? x I).
Thicken Mpr and My to strictly convex manifolds. The thickened manifolds are s.34
diffeomorphic, so by Proposition 8.3.4 there is a quasi-conformal homeomorphism of
B3 conjugating I' to I"". In particular, Ly is homeomorphic to a circle. I”, which has
convex hull manifold homeomorphic to N? x I and limit set ~ S!, is an example of
a quasi-Fuchsian group.

DEFINITION 8.7.1. The Kleinian group I is called a quasi-Fuchsian group if Lr
is topologically S*.

PROPOSITION 8.7.2 (Marden). For a torsion-free Kleinian group ', the following
conditions are equivalent.

(i) T is quasi-Fuchsian.

(ii) Dr has precisely two components.
(iii) T' s quasi-conformally conjugate to a Fuchsian group.

PRroor. Clearly (iii) = (i) = (ii). To show (ii) = (iii), consider
Or = (H* U Dr)/T.
Suppose that no element of I" interchanges the two components of Dr. Then Or is a

three-manifold with two boundary components (labelled, for example, N; and Ny),
and 8.35
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I'=m(Or) = m(Ny) = m(Ny). By a well-known theorem about three-manifolds
(see Hempel for a proof), this implies that Or is homeomorphic to Ny x I. By the
above discussion, this implies that I is quasi-conformally conjugate to a Fuchsian
group. A similar argument applies if Or has one boundary component; in that
case, Or is the orientable interval bundle over a non-orientable surface. The reverse
implication is clear. 0

EXAMPLE 8.7.3 (Mickey mouse). Consider a hyperbolic structure on a surface of
genus two. Let us construct a deformation of the corresponding Fuchsian group by
bending along a single closed geodesci v by an angle of /2. This

8.36

will give rise to a quasi-Fuchsian group if the geodesic is short enough. We may
visualize the limit set by imagining bending a hyperbolic plane along the lifts of ~,
one by one.
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We want to understand how the geometry changes as we deform quasi-Fuchsian
groups. Even though the topology doesn’t change, geometrically things can become
very complicated. For example, given any € > 0, there is a quasi-Fuchsian group I'
whose limit set L is e-dense in S?, and there are limits of quasi-Fuchsian groups
with LF == 52.

Our goal here is to try to get a grasp of the geometry of the convex hull quotient
M = My of a quasi-Fuchsian group I'. Mt is a convex hyperbolic manifold which is
homeomorphic to N2 x I, and the two boundary components are hyperbolic surfaces
bent along geodesic laminations.

We also need to analyze intermediate surfaces in M. For example, what kinds of
nice surfaces are embedded (or immersed) in Mp? Are there isometrically embedded
cross sections? Are there cross sections of bounded area near any point in Mp?

Here are some ways to map in surfaces.

(a) Take the abstract surface N2, and choose a “triangulation” of N with one
vertex. Choose an arbitrary map of N into M. Then straighten the map (see §6.1).
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This is a fairly good way to map in a surface, since the surface is hyperbolic away from
the vertex. There may be positive curvature concentrated at the vertex, however,
since the sum of the angles around the vertex may be quite small. This map can be
changed by moving the image of the vertex in M or by changing the triangulation
on N.

8.38

(b) Here is another method, which insures that the map is not too bad near the
vertex. First pick a closed loop in N, and then choose a vertex on the loop. Now
extend this to a triangulation of N with one vertex. To map in N, first map

in the loop to the unique geodesic in M in its free homotopy class (this uses a
homeomorphism of M to N x I). Now extend this as in (a) to a piecewise straight
map f: N — M. The sum of the angles around the vertex is at least 27, since there
is a straight line segment going through the vertex (so the vertex cannot be spiked).
It is possible to have the sum of the angles > 27, in which case there is negative
curvature concentrated near the vertex.

(c) Here is a way to map in a surface with constant negative curvature. Pick an
example, as in (b), of a triangulation of N coming from a closed geodesic, and map 8.39
N as in (b). Consider the isotopy obtained by moving the vertex around the loop
more and more. The loop stays the same, but the other line segments start spiraling
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beconmes

around the loop, more and more, converging, in the limit, to a geodesic laminated
set. The surface N maps into M at each finite stage, and this carries over in the
limit to an isometric embedding of a hyperbolic surface. The triangles with an edge
on the fixed loop have disappeared in the limit. Compare 3.9.

One can picture what is going on by looking upstairs at the convex hull H(Lr).
The lift f : N — H(Lr) of the map from the original triangulation (before isotoping
the vertex) is defined as follows. First the geodesic (coming from the loop) and its
conjugates are mapped in (these are in the convex hull since their

before after

endpoints are in Lr). The line segments connect different conjugates of the ge-
odesic, and the triangles either connect three distinct conjugates or two conjugates
(when the original loop is an edge of the triangle). As we isotope the vertex around
the loop, the image vertices slide along the geodesic (and its conjugates), and in
the limit the triangles become asymptotic (and the triangles connecting only two
conjugates disappear).

The above method works because the complement of the geodesic lamination
(obtained by spinning the triangulation) consists solely of asymptotic triangles. Here
is a more general method of mapping in a surface N by using geodesic laminations.

DEFINITION 8.7.5. A geodesic lamination v on hyperbolic surface S is complete
if the complementary regions in S — « are all asymptotic triangles.

PROPOSITION 8.7.6. Any geodesic lamination v on a hyperbolic surface S can be
completed, i.e., v can be extended to a complete geodesic lamination v D v on S.

PROOF. Suppose v is not complete, and pick a complementary region A which is
not an asymptotic triangle. If A is simply connected, then it is a finite-sided asymp-
totic polygon, and it is easy to divide A into asymptotic triangles by adding simple
geodesics. If A is not simply connected, extend v to a larger geodesic lamination by
adding a simple geodesic « in A

196 Thurston — The Geometry and Topology of 3-Manifolds

8.40

8.41



8.7. QUASI-FUCHSIAN GROUPS

.

(being careful to add a simple geodesic). Either a separates A into two pieces
(each of which has less area) or o does not separate A (in which case, cutting along
a reduces the rank of the homology. Continuing inductively, after a finite number of
steps A separates into asymptotic triangles. 0

Completeness is exactly the property we need to map in surfaces by using geodesic
laminations.

PROPOSITION 8.7.7. Let S be an oriented hyperbolic surface, and I' a quasi-
Fuchsian group isomorphic to m.S. For every complete geodesic lamination v on
S, there is a unique hyperbolic surface S =~ S and an isometric map f : S — My
which is straight (totally geodesic) in the complement of y. (v here denotes the cor-
responding geodesic lamination on any hyperbolic surface homeomorphic to S.)

REMARK. By an isometric map f : M; — M, from one Riemannian manifold to
another, we mean that for every rectifiable path «; in M;, f o «y is rectifiable and
has the same length as a;. When f is differentiable, this means that df preserves
lengths of tangent vectors. We shall be dealing with maps which are not usually
differentiable, however. Our maps are likely not even to be local embeddings. A
cross-section of the image of a surface mapped in by method (c) has two polygonal
spiral branches, if the closed geodesic corresponds to a covering transformation which
is not a pure translation:
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(This picture is obtained by considering triangles in H® asymptotic to a loxo-
dromic axis, together with their translates.)

If the triangulation is spun in opposite directions on opposite sides of the geo-
desic, the polygonal spiral have opposite senses, so there are infinitely many self-
intersections.

PrROOF. The hyperbolic surface S’ is constructed out of pieces. The asymptotic
triangles in S — 7 are determined by triples of points on S. . We have a canonical
identification of S!. with Lr; the corresponding triple of points in L spans a triangle
in H?3, which will be a piece of §'. Similarly, corresponding to each leaf of 4 there is
a canonical line in H3. These triangles and lines fit together just as on S; from this
the picture of S’ should be clear. Here is a formal definition. Let P, be the set of
all “pieces” of 7, i.e., P, consists of all leaves of 7, together with all components of
S — 7. Let P, have the (non-Hausdorff) quotient topology. The universal cover S/

198 Thurston — The Geometry and Topology of 3-Manifolds

8.43



8.8. UNCRUMPLED SURFACES

is defined first, to consist of ordered pairs (x,p), where p € P, and z is an element
of the piece of H? corresponding to p. I' acts on this space S’ in an obvious way;
the quotient space is defined to be S’. It is not hard to find local coordinates for S’,
showing that it is a (Hausdorff) surface.

An appeal to geometric intuition demonstrates that S’ is a hyperbolic surface,
mapped isometrically to Mp, straight in the complement of 7. Uniqueness is evident
from consideration of the circle at co. 0J

REMARK. There are two approaches which a reader who prefers more formal
proofs may wish to check. The first approach is to verify 8.7.7 first for laminations
all of whose leaves are either isolated or simple limits of other leaves (as in (c)), and
then extend to all laminations by passing to limits, using compactness properties of
uncrumpled surfaces (§8.8). Alternatively, he can construct the hyperbolic structure
on S’ directly by describing the local developing map, as a limit of maps obtained by
considering only finitely many local flat pieces. Convergence is a consequence of the
finite total area of the flat pieces of 5.

8.8. Uncrumpled surfaces

There is a large qualitative difference between a crumpled sheet of paper and one
which is only wrinkled or crinkled. Crumpled paper has fold lines or bending lines
going any which way, often converging in bad points.
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DEFINITION 8.8.1. An uncrumpled surface in a hyperbolic three-manifold N is
a complete hyperbolic surface S of finite area, together with an isometric map f :
S — N such that every x € S is in the interior of some straight line segment which
is mapped by f to a straight line segment. Also, f must take every cusp of S to a
cusp of N.

The set of uncrumpled surfaces in N has a well-behaved topology, in which two
surfaces f1 : S1 — N and f5 : S5 — N are close if there is an approximate isometry
¢ : S; — S5 making f; uniformly close to f, o . Note that the surfaces have no
preferred coordinate systems.

Let v C S consist of those points in the uncrumpled surfaces which are in the
interior of unique line segments mapped to line segments.

PROPOSITION 8.8.2. v is a geodesic lamination. The map f is totally geodesic in
the complement of .

PrOOF. If z € S — ~, then there are two transverse line segments through =z
mapped to line segments. Consider any quadrilateral about x with vertices on these
segments; since f does not increase distances, the quadrilateral must be mapped to
a plane. Hence, a neighborhood of x is mapped to a plane.

F

—_—
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Consider now any point z € 7, and let a be the unique line segment through
x which is mapped straight. Let a be extended indefinitely on S. Suppose there
were some point y on « in the interior of some line segment 3 ¢ a which is mapped
straight. One may assume that the segment Ty of « is mapped straight. Then, by
considering long skinny triangles with two vertices on 3 and one vertex on «, it would
follow that a neighborhood of x is mapped to a plane—a contradiction.

Thus, the line segments in v can be extended indefinitely without crossings, so
must be a geodesic lamination. 0

P
Y

R \

U =5 Nisan uncrumpled surface, then this geodesic lamination v C S
(which consists of points where U is not locally flat) is the wrinkling locus w(U).

The modular space M(S) of a surface S of negative Euler characteristic is the
space of hyperbolic surfaces with finite area which are homeomorphic to S. In other
words, M(.S) is the Teichmiiller space T(S) modulo the action of the group of home-
omorphisms of S.

PROPOSITION 8.8.3 (Mumford). For a surface S, the set A. C M(S) consisting
of surfaces with no geodesic shorter than € is compact.

PROOF. By the Gauss—Bonnet theorem, all surfaces in M(S) have the same area.
Every non-compact component of S ¢ is isometric to a standard model, so the result
follows as the two-dimensional version of a part of 5.12. (It is also not hard to give
a more direct specifically two-dimensional geometric argument.) 0

Denote by U(S, N) the space of uncrumpled surfaces in N homeomorphic to S
with m1(S) — m(N) injective. There is a continuous map U(S, N) — M(S) which
forgets the isometric map to N.

The behavior of an uncrumpled surface near a cusp is completely determined by
its behavior on some compact subset. To see this, first let us prove

PROPOSITION 8.8.4. There is some € such that for every hyperbolic surface S
and every geodesic lamination v on S, the intersection of v with every non-compact
component of S(o,q consists of lines tending toward that cusp.
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L A

PROOF. Thus there are uniform horoball neighborhoods of the cusps of uncrum-
pled surfaces which are always mapped as cones to the cusp point. Uniform con-
vergence of a sequence of uncrumpled surfaces away from the cusp points implies
uniform convergence elsewhere. 0

PROPOSITION 8.8.5. Let K C N be a compact subset of a complete hyperbolic
manifold N. For any surface Sy, let W C U(So, N) be the subset of uncrumpled

surfaces S L N such that f(S) intersects K, and satisfying the condition
(np) m1(f) takes non-parabolic elements of w1 S to non-parabolic elements of T N.

Then W is compact.

ProOF. The first step is to bound the image of an uncrumpled surface, away
from its cusps.

Let € be small enough that for every complete hyperbolic three-manifold M,
components of M are separated by a distance of at least (say) 1. Since the area
of surfaces in U(Sy, V) is constant, there is some number d such that any two points
in an uncrumpled surface S can be connected (on S) by a path p such that pN .Sy o)
has length < d.

If neither point lies in a non-compact component of S, one can assume, further-
more, that p does not intersect these components. Let K’ C N be the set of points
which are connected to K by paths whose total length outside compact components
of N is bounded by d. Clearly K’ is compact and an uncrumpled surface of W
must have image in K’, except for horoball neighborhoods of its cusps.

Consider now any sequence S7, Sy, ... in W. Since each short closed geodesic in .5;
is mapped into K’, there is a lower bound €’ to the length of such a geodesic, so by 8.8.3
we can pass to a subsequence such that the underlying hyperbolic surfaces converge
in M(S). There are approximate isometries ¢; : S — S;. Then the compositions
fiog; - S — N are equicontinuous, hence there is a subsequence converging uniformly
on Sieooy- The limit is obviously an uncrumpled surface. [To make the picture
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clear, one can always pass to a further subsequence to make sure that the wrinkling
laminations ~; of S; converge geometrically.] U

COROLLARY 8.8.6. (a) Let S be any closed hyperbolic surface, and N any
closed hyperbolic manifold. There are only finitely many conjugacy classes
of subgroups G C m N isomorphic to m 5.
(b) Let S be any surface of finite area and N any geometrically finite hyperbolic
three-manifold. There are only finitely many conjugacy classes of subgroups
G C m N isomorphic to m .S by an isomorphism which preserves parabolicity
(in both directions).

PROOF. Statement (a) is contained in statement (b). The conjugacy class of
every subgroup G is represented by a homotopy class of maps of S into N, which is
homotopic to an uncrumpled surface (say, by method (c) of §8.7). Nearby uncrumpled
surfaces represent the same conjugacy class of subgroups. Thus we have an open
cover of the space W by surfaces with conjugate subgroups; by 8.8.5, this is a finite
subcover. O

REMARK. If non-parabolic elements of 1.5 are allowed to correspond to parabolic
elements of m; N, then this statement is no longer true.

In fact, if S SN s any surface mapped into a hyperbolic manifold N of finite
volume such that a non-peripheral simple closed curve 7 in .S is homotopic to a cusp
of N, one can modify f in a small neighborhood of v to wrap this annulus a number
of times around the cusp. This is likely to give infinitely many homotopy classes of
surfaces in V.

&=y

\

' W cudp

In place of 8.8.5, there is a compactness statement in the topology of geometric
convergence provided each component of S| . is required to intersect K. One would
allow S to converge to a surface where a simple closed geodesic is pinched to yield a
pair of cusps. From this, one deduces that there are finitely many classes of groups GG
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isomorphic to S up to the operations of conjugacy, and wrapping a surface carrying
G around cusps.

Haken proved a finiteness statement analogous to 8.8.6 for embedded incompress-
ible surfaces in atoroidal Haken manifolds.

8.9. The structure of geodesic laminations: train tracks

Since a geodesic lamination 7y on a hyperbolic surface S has measure zero, one
can picture v as consisting of many parallel strands in thin, branching corridors of S
which have small total area.

s

i
e

Imagine squeezing the nearly parallel strands of v in each corridor to a single
strand. One obtains a train track 7 (with switches) which approximates v. Each leaf
of v may be imagined as the path of a train running around along 7.

Here is a construction which gives a precise and nice sequence of train track
approximations of . Consider a complementary region R in S —~. The double dR is
a hyperbolic surface of finite area, so (dR)2q has a simple structure: it consists of
neighborhoods of geodesics shorter than 2e¢ and of cusps. In each such neighborhood
there is a canonical foliation by curves of constant curvature: horocycles about a cusp
or equidistant curves about a short geodesic. Transfer this foliation to R, and then
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to S. This yields a foliation JF in the subset of S where leaves of v are not farther
than 2e apart. (A local vector field tangent to F is Lipschitz, so it is integrable; this
is why F exists. If 7 has no leaves tending toward a cusp, then we can make all the
leaves of F be arbitrarily short arcs by making e sufficiently small. If v has leaves
tending toward a cusp, then there can be only finitely many such leaves, since there
is an upper bound to the total number of cusps of the complementary regions. Erase
all parts of & in a cusp of a region tending toward a cusp of S; again, when € is
sufficiently small all leaves of F will be short arcs. The space obtained by collapsing
all arcs of F to a point is a surface S’ homeomorphic to S, and the image of ~y is a train
track 7. on S’. Observe that each switch of 7, comes from a boundary component
of some dR(g2q. In particular, there is a uniform bound to the number of switches.
From this it is easy to see that there are only finitely many possible types of 7., up
to homeomorphisms of S” (not necessarily homotopic to the identity).

In working with actual geodesic laminations, it is better to use more arbitrary
train track approximations, and simply sketch pictures; the train tracks are analogous
to decimal approximations of real numbers.

Here is a definition of a useful class of train tracks.

DEFINITIONS 8.9.1. A train track on a differentiable surface S is an embedded
graph 7 on S. The edges (branch lines) of 7 must be C!, and all edges at a given
vertex (switch) must be tangent. If S has “cusps”, 7 may have open edges tending
toward the cusps. Dead ends are not permitted. (Each vertex v must be in the
interior of a C* interval on 7 through v.) Furthermore, for each component R of
S — 7, the double dR of R along the interiors of edges of R must have negative
Euler characteristic. A lamination v on S is carried by 7 if there is a differentiable
map f : S — S homotopic to the identity taking v to 7 and non-singular on the
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tangent spaces of the leaves of . (In other words, the leaves of  are trains running
around on 7.) The lamination v is compatible with 7 if 7 can be enlarged to a train
track 7" which carries .

PROPOSITION 8.9.2. Let S be a hyperbolic surface, and let 6 > 0 be arbitrary.
There is some € > 0 such that for all geodesic laminations v of S, the train track
approzimation . can be realized on S in such a way that all branch lines 7. are C?
curves with curvature < 9.

PRrooOF. Note first that by making e sufficiently small, one can make the leaves of
the foliation F very short, uniformly for all v: otherwise there would be a sequence of
7’s converging to a geodesic lamination containing an open set. [One can also see this
directly from area considerations.] When all branches of 7. are reasonably long, one
can simply choose the tangent vectors to the switches to be tangent to any geodesic
of v where it crosses the corresponding leaf of F; the branches can be filled in by
curves of small curvature. When some of the branch lines are short, group each set
of switches connected by very short branch lines together. First map each of these
sets into S, then extend over the reasonably long branches. 0

COROLLARY 8.9.3. Every geodesic lamination which is carried by a close train
track approximation 7. to a geodesic lamination v has all leaves close to leaves of 7.

Proor. This follows from the elementary geometrical fact that a curve in hyper-
bolic space with uniformly small curvature is uniformly close to a unique geodesic.
(One way to see this is by considering the planes perpendicular to the curve—they
always advance at a uniform rate, so in particular the curve crosses each one only
once.)

O

PROPOSITION 8.9.4. A lamination X\ of a surface S is isotopic to a geodesic lam-
wnation if and only iof

(a) A is carried by some train track T, and
(b) no two leaves of A take the same (bi-infinite) path on .
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PROOF. Given an arbitrary train track 7, it is easy to construct some hyperbolic
structure for S on which 7 is realized by lines with small curvature. The leaves of
A then correspond to a set of geodesics on S, near 7. These geodesics do not cross,
since the leaves of A do not. Condition (b) means that distinct leaves of A determine
distinct geodesics. When leaves of A are close, they must follow the same path for
a long finite interval, which implies the corresponding geodesics are close. Thus, we
obtain a geodesic lamination v which is isotopic to A. (To have an isotopy, it suffices
to construct a homeomorphism homotopic to the identity. This homeomorphism is
constructed first in a neighborhood of 7, then on the rest of S.) O

REMARK. From this, one sees that as the hyperbolic structure on S varies, the
corresponding geodesic laminations are all isotopic. This issue was quietly skirted in
68.5.

When a lamination A has an invariant measure p, this gives a way to associate a
number 1(b) to each branch line b of any train track which dominates ~: p(b) is just
the transverse measure of the leaves of A collapsed to a point on b. At a switch, the
sum of the “entering” numbers equals the sum of the “exiting” numbers.

Conversely, any assignment of numbers satisfying the switch condition determines a
unique geodesic lamination with transverse measure: first widen each branch line b
of 7 to a corridor of constant width p(b), and give it a foliation G by equally spaced
lines.
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As in 8.9.4, this determines a lamination +; possibly there are many leaves of G
collapsed to a single leaf of v, if these leaves of G all have the same infinite path. G
has a transverse measure, defined by the distance between leaves; this goes over to a
transverse measure for .

8.10. Realizing laminations in three-manifolds

For a quasi-Fuchsian group I', it was relatively easy to “realize” a geodesic lam-
ination of the corresponding surface in My, by using the circle at infinity. However,
not every complete hyperbolic three-manifold whose fundamental group is isomorphic
to a surface group is quasi-Fuchsian, so we must make a more systematic study of
realizability of geodesic laminations.

DEeFINITION 8.10.1. Let f : S — N be a map of a hyperbolic surface to a
hyperbolic three-manifold which sends cusps to cusps. A geodesic lamination v on
S is realizable in the homotopy class of f if f is homotopic (by a cusp-preserving
homotopy) to a map sending each leaf of v to a geodesic.

PRrROPOSITION 8.10.2. If v is realizable in the homotopy class of f, the realization
is (essentially) unique: that is, the image of each leaf of v is uniquely determined.

ProOOF. Consider a lift & of a homotopy connecting two maps of S into N. If S
is closed, h moves every point a bounded distance, so it can’t move a geodesic to a
different geodesic. If S has cusps, the homotopy can be modified near the cusps of S
so h again is bounded. O

In Section 8.5, we touched on the notion of geometric convergence of geodesic
laminations. The geometric topology on geodesic laminations is the topology of geo-
metric convergence, that is, a neighborhood of + consists of laminations +" which

208 Thurston — The Geometry and Topology of 3-Manifolds

8.57

8.58



8.10. REALIZING LAMINATIONS IN THREE-MANIFOLDS

have leaves near every point of v, and nearly parallel to the leaves of v. If 7; and
vo are disjoint simple closed curves, then v, U 7 is in every neighborhood of 7, as
well as in every neighborhood of 5. The space of geodesic laminations on S with the
geometric topology we shall denote GL. The geodesic laminations compatible with
train track approximations of v give a neighborhood basis for ~.

The measure topology on geodesic laminations with transverse measures (of full
support) is the topology induced from the weak topology on measures in the Mdbius
band J outside S in the Klein model. That is, a neighborhood of (v, ) consists
of (7, ') such that for a finite set fi,..., fr of continuous functions with compact

support in J,
‘/fid,u_/fid,u/

This can also be interpreted in terms of integrating finitely many continuous functions
on finitely many transverse arcs. Let ML(S) be the space of (v, ) on S with the
measure topology. Let PL(S) be ML(S) modulo the relation (v, u) ~ (7, ap) where
a > 0 is a real number.

< €.

ProproSITION 8.10.3. The natural map ML — GL is continuous.

PropPOSITION 8.10.4. The map w : U(S,N) — GL(S) which assigns to each
uncrumpled surface its wrinkling locus is continuous.

PRrROOF OF 8.10.3. For any point x in the support of a measure ;1 and any neigh-
borhood UU of x, the support of a measure close enough to p must intersect U. [J

PROOF OF 8.10.4. An interval which is bent cannot suddenly become straight.
Away from any cusps, there is a positive infimum to the “amount” of bending of an
interval of length € which intersects the wrinkling locus w(S) in its middle third, and
makes an angle of at least € with w(S). (The “amount” of bending can be measure,
say, by the different between the length of a and the distance between the image
endpoints.) All such arcs must still cross w(S’) for any nearby uncrumpled surface
S’ O

When S has cusps, we are also interested in measures supported on compact
geodesic laminations. We denote this space by MLy (S). If (7,u) is a train track
description for (v, u), where u(b) # 0 for any branch of T, then neighborhoods for
(v, 1) are described by {(v/, 1)}, where 7 C 7 and |u(b) — p/(b)| < e. (If bis a
branch of 7" not in 7, then p(b) = 0 by definition.)

In fact, one can always choose a hyperbolic structure on S so that 7 is a good
approzimation to . If S is closed, it is always possible to squeeze branches of 7
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together along non-trivial arcs in the complementary regions to obtain a new train
track which cannot be enlarged.

A

This implies that a neighborhood of (v, ) is parametrized by a finite number of
real parameters. Thus, ML(S) is a manifold. Similarly, when S has cusps, ML(S)
is a manifold with boundary ML (S).

PROPOSITION 8.10.5. GL(S) is compact, and PL(S) is a compact manifold with
boundary PLy(S) if S is not compact.

PROOF. There is a finite set of train tracks 7,..., 7, carrying every possible
geodesic lamination. (There is an upper bound to the length of a compact branch
of 7., when S and € are fixed.) The set of projective classes of measures on any
particular 7 is obviously compact, so this implies PL(S) is compact. That PL(S) is
a manifold follows from the preceding remarks. Later we shall see that in fact it is
the simplest of possible manifolds.

In 8.5, we indicated one proof of the compactness of GL(S). Another proof goes
as follows. First, note that

PROPOSITION 8.10.6. Every geodesic lamination v admits some transverse mea-
sure p (possibly with smaller support).

PrRoOOF. Choose a finite set of transversals «q, ..., a; which meet every leaf of
7. Suppose there is a sequence {/;} of intervals on leaves of v such that the total
number NN; of intersection of /; with the a;’s goes to infinity. Let p; be the measure
on |Ja; which is 1/N; times the counting measure on /; N a;. The sequence {y;} has
a subsequence converging (in the weak topology) to a measure p. It is easy to see
that p is invariant under local projections along leaves of 7, so that it determines a
transverse measure.

210 Thurston — The Geometry and Topology of 3-Manifolds

8.60

8.61



8.10. REALIZING LAMINATIONS IN THREE-MANIFOLDS

If there is no such sequence {/;} then every leaf is proper, so the counting measure
for any leaf will do. 0

We continue with the proof of 8.10.5. Because of the preceding result, the image
J of PL(S) in GL(S) intersects the closure of every point of GL(S). Any collection
of open sets which covers GL(S) has a finite subcollection which covers the compact
set J; therefore, it covers all of GL(.5). O

Armed with topology, we return to the question of realizing geodesic laminations.
Let Ry C GL(S) consist of the laminations realizable in the homotopy class of f.

First, if v consists of finitely many simple closed geodesics, then ~ is realizable
provided 7 (f) maps each of these simple closed curves to non-trivial, non-parabolic
elements.

If we add finitely many geodesics whose ends spiral around these closed geodesics
or converge toward cusps the resulting lamination is also realizable except in the
degenerate case that f restricted to an appropriate non-trivial pair of pants on S
factors through a map to S*.

To see this, consider for instance the case of a geodesic g on S whose ends spiral
around closed geodesics ¢; and ¢o. Lifting f to H?, we see that the two ends of f (9)
are asymptotic to geodesics f(g1) and f(§2). Then f is homotopic to a map taking
g to a geodesic unless f (1) and f (g2) converge to the same point on S, which can

only happen if f(gl) = f(go) (by 5.3.2). In this case, f is homotopic to a map taking
a neighborhood of g U g; U gs to f(g1) = f(g2)-
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The situation is similar when the ends of g tend toward cusps.

These realizations of laminations with finitely many leaves take on significance in
view of the next result:

ProprosiTION 8.10.7. (a) Measures supported on finitely many compact or
proper geodesics are dense 1n ML.
(b) Geodesic laminations with finitely many leaves are dense in GL.
(¢) Each end of a non-compact leaf of a geodesic lamination with only finitely
many leaves spirals around some closed geodesic, or tends toward a cusp.

PRrROOF. If 7 is any train track and p is any measure which is positive on each
branch, pu can be approximated by measures y’ which are rational on each branch,
since p is subject only to linear equations with integer coefficients. p’ gives rise to
geodesic laminations with only finitely many leaves, all compact or proper. This
proves (a).

If ~ is an arbitrary geodesic lamination, let 7 be a close train track approximation
of v and proceed as follows. Let 7/ C 7 consist of all branches b of 7 such that there
exists either a cyclic (repeating) train route or a proper train route through b.

212 Thurston — The Geometry and Topology of 3-Manifolds

8.64



8.10. REALIZING LAMINATIONS IN THREE-MANIFOLDS

(The reader experienced with toy trains is aware of the subtlety of this question.)
There is a measure supported on 7/, obtained by choosing a finite set of cyclic and
proper paths covering 7/ and assigning to a branch b the total number of times these
paths traverse. Thus there is a lamination A consisting of finitely many compact or
proper leaves supported in a narrow corridor about 7. Now let b be any branch of
7 — 7. A train starting on b can continue indefinitely, so it must eventually come
to 7/, in each direction. Add a leaf to X\ representing a shortest path from b to 7/
in each direction; if the two ends meet, make them run along side by side (to avoid
crossings). When the ends approach 7, make them “merge”—either spiral around a
closed leaf, or follow along close to a proper leaf. Continue inductively in this way,
adding leaves one by one until you obtain a lamination A\ dominated by 7 and filling
out all the branches. This proves (b).

)/ <CJ//__~__ -
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If v is any geodesic lamination with finitely many (or even countably many)
leaves, then the only possible minimal sets are closed leaves; thus each end e of a
non-compact must either be a proper end or come arbitrarily near some compact leaf
[. By tracing the leaves near [ once around [, it is easy to see that this means e spirals
around /. 0J

" \}'l "\\\

M S

e q // \‘ *\‘
< 15 !
L 4 ‘ ‘
:g N \‘
A a"""' l‘
kN

NEPS

Thus, if f is non-degenerate, R is dense. Furthermore,

THEOREM 8.10.8. If my f is injective, and f satisfies (np) (that is, if w1 f preserves
non-parabolicity), then Ry is an open dense subset of GL(S).

ProoOF. If v is any complete geodesic lamination which is realizable, then a train
track approximation 7 can be constructed for the image of v in N3, in such a way that
all branch lines have curvature close to 0. Then all laminations carried by 7 are also
realizable; they form a neighborhood of 7. Next we will show that any enlargement
~v" D 7 of a realizable geodesic lamination + is also realizable. First note that if 4/ is
obtained by adding a single leaf [ to -, then 4 is also realizable. This is proved in
the same way as in the case of a lamination with finitely many leaves: note that each
end of [ is asymptotic to a leaf of 7. (You can see this by considering S —~.) If f is
homotoped so that f(y) consists of geodesics, then both ends of f(I) are asymptotic
to geodesics in f(v). If the two endpoints were not distinct on S.., this would imply
the existence of some non-trivial identification of v by f so that m;f could not be
injective.
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By adding finitely many leaves to any geodesic lamination ' we can complete it.
This implies that 4/ is contained in the wrinkling locus of some uncrumpled surface.
By 8.8.5 and 8.10.1, the set of uncrumpled surfaces whose wrinkling locus contains
v is compact. Since the wrinkling locus depends continuously on an uncrumpled
surface, the set of 7/ € Ry which contains 7 is compact. But any 7/ D v can be
approximated by laminations such that 7' — ~ consists of a finite number of leaves.
This actually follows from 8.10.7, applied to d(S — ). Therefore, every enlargement
7' D yisin Ry.

Since the set of uncrumpled surfaces whose wrinkling locus contains v is compact,

there is a finite set of train tracks 7q,..., 7, such that for any such surface, w(S) is
closely approximated by one of 7y,...,7,. The set of all laminations carried by at
least one of the 7; is a neighborhood of v contained in R;. 0J

COROLLARY 8.10.9. Let I" be a geometrically finite group, and let f : S — Nr be
a map as in 8.10.8. Then either Ry = GL(S) ( that is, all geodesic laminations are
realizable in the homotopy class of f), or I has a subgroup 1" of finite index such that
Nt is a three-manifold with finite volume which fibers over the circle.

CONJECTURE 8.10.10. If f : S — N is any map from a hyperbolic surface to a
complete hyperbolic three-manifold taking cusps to cusps, then the image 1 (f)(m1(.5))
is quasi-Fuchsian if and only if Ry = GL(S).

PrRoOOF OF 8.10.9. Under the hypotheses, the set of uncrumpled surfaces homo-
topic to f(.5) is compact. If each such surface has an essentially unique homotopy to
f(9), so that the wrinkling locus on S is well-defined, then the set of wrinkling loci
of uncrumpled surfaces homotopic to f is compact, so by 8.10.8 it is all of GL(S5).

Otherwise, there is some non-trivial h; : S — M such that hy = hg o ¢, where
¢ : S — S is a homotopically non-trivial diffeomorphism. It may happen that ¢ has
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finite order up to isotopy, as when S is a finite regular covering of another surface in
M. The set of all isotopy classes of diffeomorphisms ¢ which arise in this way form
a group. If the group is finite, then as in the previous case, Rp = GL(S). Otherwise,
there is a torsion-free subgroup of finite index (see ), so there is an element ¢ of
infinite order. The maps f and ¢ o f are conjugate in I', by some element 5 € T
The group generated by  and f(mS) is the fundamental group of a three-manifold
which fibers over S*. O

We shall see some justification for the conjecture in the remaining sections of
chapter 8 and in chapter 9: we will prove it under certain circumstances.

8.11. The structure of cusps

Consider a hyperbolic manifold N which admits a map f : S — N, taking cusps
to cusps such that m(f) is an isomorphism, where S is a hyperbolic surface. Let
B C N be the union of the components of N corresponding to cusps of S. f is
a relative homotopy equivalence from (S, S(o.)) to (N, B), so there is a homotopy
inverse g : (N, B) — (5,50,). If X € S(cw) is a regular value for g, then g~*(z)
is a one-manifold having intersection number one with f(.S), so it has at least one
component homeomorphic to R, going out toward infinity in N — B on opposite sides
of f(S). Therefore there is a proper function h : (N — B) — R with h restricted to
g~ '(x) asurjective map. One can modify & so that A~1(0) is an incompressible surface.
Since g restricted to h™1(0) is a degree one map to S, it must map the fundamental
group surjectively as well as injectively, so h71(0) is homeomorphic to S. h~1(0)
divides N — B into two components N, and N_ with mN = 7N, = m{N_ = m 5.
We can assume that h~'(0) does not intersect Ny except in B (say, by shrinking
€).

Suppose that N has parabolic elements that are not parabolic on S. The structure
of the extra cusps of N is described by the following:

PROPOSITION 8.11.1. There are geodesic laminations v, and y_ on S with all
leaves compact (i.e., they are finite collections of disjoint simple closed curves) such
that the extra cusps in N, correspond one-to-one with leaves of v.(e = +,—). In
particular, for any element o € w1(S), m1(f)(«) is parabolic if and only if v is freely
homotopic to a cusp of S or to a simple closed curve in vy or vy_.

PrROOF. We need consider only one half, say N,. For each extra cusp of N,,
there is a half-open cylinder mapped into N, , with one end on 27!(0) and the other
end tending toward the cusp. Furthermore, we can assume that the union of these
cylinders is embedded outside a compact set, since we understand the picture in a
neighborhood of the cusps. Homotope the ends of the cylinders which lie on A~1(0)
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so they are geodesics in some hyperbolic structure on A71(0). One can assume the
cylinders are immersed (since maps of surfaces into three-manifolds are appoximable
by immersions) and that they are transverse to themselves and to one another. If
there are any self-intersections of the cylinders on A~1(0), there must be a double line
which begins and ends on A~'(0). Consider the picture in N: there are two translates
of universal covers of cylinders which meet in a double line, so that in particular
their bounding lines meet twice on h~'(0). This contradicts the fact that they are
geodesics in some hyperbolic structure. 0

N
It actually follows that the collection of cylinders joining simple closed curves to
the cusps can be embedded: we can modify g so that it takes each of the extra cusps

to a neighborhood of the appropriate simple closed curve a C 7., and then do surgery
to make g~!() incompressible.
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TORNls

To study N, we can replace S by various surfaces obtained by cutting S along curves
in 74 or y_. Let P be the union of open horoball neighborhoods of all the cusps of
N. Let {S;} be the set of all components of S cut by 7, together with those of S
cut by v_. The union of the S; can be embedded in N — P, with boundary on 0P,
within the convex hull M of N, so that they cut off a compact piece Ny C N — P
homotopy equivalent to N, and non-compact ends F; of N — P, with 0F; C P U S,;.

Let N now be an arbitrary hyperbolic manifold, and let P be the union of open
horoball neighborhoods of its cusps. The picture of the structure of the cusps readily
generalizes provided N — P is homotopy equivalent to a compact submanifold No,
obtained by cutting N — P along finitely many incompressible surfaces {S;} with
boundary 9P.

Applying 8.11.1 to covering spaces of N corresponding to the S; (or applying its
proof directly), one can modify the S; until no non-peripheral element of one of the
S; is homotopic, outside Np, to a cusp. When this is done, the ends {E;} of N — P
are in one-to-one correspondence with the S;.

According to a theorem of Peter Scott, every three-manifold with finitely gen-
erated fundamental group is homotopy equivalent to a compact submanifold. In
general, such a submanifold will not have incompressible boundary, so it is not as
well behaved. We will leave this case for future consideration.

DEFINITION 8.11.2. Let N be a complete hyperbolic manifold, P the union of
open horoball neighborhoods of its cusps, and M the convex hull of N. Suppose
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E is an end of N — P, with OF — OP an incompressible surface S C M homotopy
equivalent to E. Then E is a geometrically tame end if either

(a) EN M is compact, or
b) the set of uncrumpled surfaces S’ homotopic to S and with S/ contained
[e,00)
in E is not compact.

If N has a compact submanifold Ny of N — P homotopy equivalent to N such
that N — P — Ny is a disjoint union of geometrically tame ends, then N and 7N are
geometrically tame. (These definitions will be extended in § ). We shall justify this
definition by showing geometric tameness implies that N is analytically, topologically
and geometrically well-behaved.

8.12. Harmonic functions and ergodicity

Let N be a complete Riemannian manifold, and A a positive function on N. Let
¢ be the flow generated by —(grad k). The integral of the velocity of ¢; is bounded
along any flow line:

o7 (x)
/ | grad bl ds = h(z) — hér(x))
< h(z) (forT >0).

If A is a subset of a flow line {¢:(x)}+>0 of finite length [(A), then by the Schwarz
inequality

1 I(A)? I(A)?
8.12.1. T(A :/—d > >
D= |, Tewadh] © 2 T Teradll ds > (o)

where T'(A) is the total time the flow line spends in A. Note in particular that this
implies ¢;(z) is defined for all positive time ¢ (although ¢; may not be surjective).
The flow lines of ¢; are moving very slowly for most of their length. If A is harmonic,
then the flow ¢; preserves volume: this means that if it is not altogether stagnant, it
must flow along a channel that grows very wide. A river, with elevation h, is a good
image. It is scaled so grad h is small.

Suppose that N is a hyperbolic manifold, and S L, N is an uncrumpled surface
in N, so that it has area —27x(S5). Let a be a fixed constant, suppose also that S
has no loops of length < a which are null-homotopic in N.

ProOPOSITION 8.12.1. There is a constant C' depending only on a such that the
volume of N1(f(S)) is not greater than —C' - x(S). (N1 denotes the neighborhood of
radius 1.)
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PRrROOF. For each point x € 5, let ¢, be the “characteristic function” of an im-
mersed hyperbolic ball of radius 1 + a/2 centered at f(z). In other words, c,(y) is
the number of distinct homotopy classes of paths from z to y of length < 1+ a/2.
Let g be defined by integrating c, over S; in other words, for y € N, 8.75

o) = [ ) da
If v(B,) is the volume of a ball of radius r in H?, then
/ gdV = =2mx(95) U(Bl+a/2)-
N

For each point y € Ny(f(5)), there is a point x with d(fz,y) < 1, so that there is a
contribution to ¢(y) for every point z on S with d(z,y) < a/2, and for each homotopy
class of paths on S between z and x of length < a/2. Thus ¢(y) is at least as great
as the area A(B,/») of a ball in H? of radius a/2, so that

(NL(F(5))) < AWWS—CW@)

1
A(Ba/2)
[l

As a — 0, the best constant C' goes to oo, since one can construct uncrumpled
surfaces with long thin waists, whose neighborhoods have very large volume.

8.76

THEOREM 8.12.3. If N is geometrically tame, then for every non-constant positive
harmonic function h on its convex hull M,

inf A = inf h.
M oM
This inequality still holds if h is only a positive superharmonic function, i.e., if Ah =

divgrad h < 0.
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COROLLARY 8.12.4. If I' = my N, where N 1is geometrically tame, then Ly has
measure 0 or 1. In the latter case, I' acts ergodically on S2.

PrROOF OF COROLLARY FROM THEOREM. This is similar to 8.4.2. Consider any
invariant measurable set A C Lr, and let h be the harmonic extension of the char-
acteristic function of A. Since A is invariant, h defines a harmonic function, also h,
on N. If Ly = S?, then by 8.12.3 h is constant, so A has measure 0 to 1. If Ly # S?
then the infimum of (1 — A) is the infimum on OM, so it is > % This implies A has
measure 0. This completes the proof of 8.12.4. O

Theorem 8.12.3 also implies that when Ly = S?, the geodesic flow for N is ergodic.
We shall give this proof in § | since the ergodicity of the geodesic flow is useful for
the proof of Mostow’s theorem and generalizations.

PROOF OF 8.12.3. The idea is that all the uncrumpled surfaces in M are nar-
rows, which allow a high flow rate only at high velocities. In view of 8.12.1, most of 8.77
the water is forced off M—in other words, OM is low.

Let P be the union of horoball neighborhoods of the cusps of N, and {S;} incom-
pressible surfaces cutting N — P into a compact piece Ny and ends { E;}. Observe that
each component of P has two boundary components of US;. In each end E; which
does not have a compact intersection with M, there is a sequence of uncrumpled
maps f;; : S; — E; U P moving out of all compact sets in F; U P, by 8.8.5. Combine
these maps into one sequence of maps f; : US; — M. Note that f; maps Y _[S;] to
a cycle which bounds a (unique) chain C; of finite volume, and that the supports of
the C;’s eventually exhaust M.

If there are no cusps, then there is a subsequence of the f; whose images are
disjoint, separated by distances of at least 2. If there are cusps, modify the cycles
fi(5_1S:]) by cutting them along horospherical cylinders in the cusps, and replacing
the cusps of surfaces by cycles on these horospherical cylinders.
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8.78
If the horospherical cylinders are sufficiently close to oo, the resulting cycle Z;

will have area close to that of f; > [S;], less than, say, 27 ) [x(S;)| + 1. Z; bounds a

chain C; with compact support. We may assume that the support of Z;,; does not

intersect Ny (support C;). From 8.3.2, it follows that there is a constant K such that

for all j,

v(Ny(support Z;)) < K.

If x € M is any regular point for h, then a small enough ball B about z is disjoint
from ¢1(B). To prove the theorem, it suffices to show that almost every flow line
through B eventually leaves M. Note that all the images {¢;(B)}icny are disjoint.
Since ¢; does not decrease volume, almost all flow lines through B eventually leave
the supports of all the C;. If such a flow line does not cross dM, it must cross
Z;, hence it intersects Ny (support Z;) with length at least two. By 8.12.1, the total
length of time such a flow line spends in

J
U N (support Z;)
j=1
grows as J2. Since the volume of

J
U N (support Z;)

j=1

grows only as K - J, no set of positive measure of flow lines through B will fit—most
have to run off the edge of M. O
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REMARK. The fact that the area of Z; is constant is stronger than necessary to
obtain the conclusion of 8.3.3. It would suffice for the sum of reciprocals of the areas
to form a divergent series. Thus, R? has no non-constant positive superharmonic
function, although R? has.
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CHAPTER 9

Algebraic convergence

9.1. Limits of discrete groups

It is important for us to develop an understanding of the geometry of deforma-
tions of a given discrete group. A qualitative understanding can be attained most
concretely by considering limits of sequences of groups. The situation is complicated
by the fact that there is more than one reasonable sense in which a group can be the
limit of a sequence of discrete groups.

DEFINITION 9.1.1. A sequence {I';} of closed subgroups of a Lie group G converges
geometrically to a group I' if

(i) each v € T" is the limit of a sequence {v;}, with 7; € I';, and
(ii) the limit of every convergent sequence {7;, }, with v;; € I';;, is in I,

Note that the geometric limit I' is automatically closed. The definition means that
[';’s look more and more like I'; at least through a microscope with limited resolution.
We shall be mainly interested in the case that the I';’s and I' are discrete. The
geometric topology on closed subgroups of GG is the topology of geometric convergence.

The notion of geometric convergence of a sequence of discrete groups is closely
related to geometric convergence of a sequence of complete hyperbolic manifolds of
bounded volume, as discussed in 5.11. A hyperbolic three-manifold M determines a
subgroup of PSL(2, C) well-defined up to conjugacy. A specific representative of this
conjugacy class of discrete groups corresponds to a choice of a base frame: a base
point p in M together with an orthogonal frame for the tangent space of M at p. This
gives a specific way to identify M with H?3. Let O(He,o0)) consist of all base frames
contained in M ..y, where M ranges over J{ (the space of hyperbolic three-manifolds
with finite volume). O(H[ )) has a topology defined by geometric convergence of
groups. The topology on H is the quotient topology by the equivalence relation of
conjugacy of subgroups of PSL(2,C). This quotient topology is not well-behaved for
groups which are not geometrically finite.

DEFINITION 9.1.2. Let I be an abstract group, and p; : ' — G be a sequence
of representations of I" into G. The sequence {p;} converges algebraically if for every
v €T, {pi(7)} converges. The limit p: I' — G is called the algebraic limit of {p;}.
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DEFINITION 9.1.3. Let I" be a countable group, {p;} a sequence of representations
of I' in G with p;(I") discrete. {p;} converges strongly to a representation p if p is the
algebraic limit of {p;} and pI is the geometric limit of {p;I'}.

EXAMPLE 9.1.4 (Basic example). There is often a tremendous difference between
algebraic limits and geometric limits, growing from the following phenomenon in a
sequence of cyclic groups.

Pick a point z in H3, a “horizontal” geodesic ray [ starting at x, and a “vertical”
plane through x containing the geodesic ray. Define a sequence of representations 9.3
pi : Z — PSL(2,C) as follows. Let z; be

0;

-
-

&(ﬂe\w e

%

J * ¢ ’

l

the point on [ at distance i from x, and let [; be the “vertical” geodesic through x;:
perpendicular to [ and in the chosen plane. Now define p; on the generator 1 by
letting p;(1) be a screw motion around /; with fine pitched thread so that p;(1) takes
x to a point at approximately a horizontal distance of 1 from z and some high power
pi(n;) takes = to a point in the vertical plane a distance of 1 from z. The sequence
{p:i} converges algebraically to a parabolic representation p : Z — PSL(2,C), while
{piZ} converges geometrically to a parabolic subgroup of rank 2, generated by p(Z)
plus an additional generator which moves z a distance of 1 in the vertical plane.

9.4
This example can be described in matrix form as follows. We make use of one-

complex parameter subgroups of PSL(2, C) of the form

expw asinhw
0 exp—w |’

with w € C. Define p,, by

expw, mnsinhw,
exp — wy,

pu(l) = { 0

o7
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oo - [

This example can be easily modified without changing the algebraic limit so that
{pi(Z)} has no geometric limit, or so that its geometric limit is a one-complex-
parameter parabolic subgroup, or so that the geometric limit is isomorphic to Z x R.

while {p,(n)} converges to

This example can also be combined with more general groups: here is a simple
case. Let I' be a Fuchsian group, with M a punctured torus. Thus I is a free group
on generators a and b, such that [a,b] is parabolic. Let p : I' — PSL(2,C) be the
identity representation. It is easy to see that Tr p'[a, b] ranges over a neighborhood
of 2 as p’ ranges over a neighborhood of p. Any nearby representation determines a
nearby hyperbolic structure for M| ., which can be thickened to be locally convex
except near M. Consider representations p, with an eigenvalue for

pula,b] ~ 1+ C/n® + mi/n.

pnla, b] translates along its axis a distance of approximately 2 Re(C)/n?, while rotat-
ing an angle of approximately

2r 2Im(C)

—

n n
Thus the n-th power translates by a distance of approximately 2 Re(C') /n, and rotates
approximately

2Im(C)

n

2r +

The axis moves out toward infinity as n — oo. For C' sufficiently large, the image of
pn will be a geometrically finite group (a Schottky group); a compact convex manifold
with 71 = p,(I") can be constructed by piecing together a neighborhood of M o) with
(the convex hull of a helix)/Z. The algebraic limit of {p,} is p, while the geometric
limit is the group generated by p(I') = I together with an extra parabolic generator
commuting with [a, b].
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Troels Jgrgensen was the first to analyze and understand this phenomenon. He
showed that it is possible to iterate this construction and produce examples as above
where the algebraic limit is the fundamental group of a punctured torus, but the
geometric limit is not even finitely generated. See § .

Here are some basic properties of convergence of sequences of discrete groups.

PROPOSITION 9.1.5. If {p;} converges algebraically to p and {p;I'} converges ge-
ometrically to T, then T D pI.

ProoF. Obvious. 0

PROPOSITION 9.1.6. For any Lie group G, the space of closed subgroups of G
(with the geometric topology) is compact.

PrOOF. Let {I';} be any sequence of closed subgroups. First consider the case
that there is a lower bound to the “size” d(e,~y) of elements of v € I';. Then there is
an upper bound to the number of elements of I'; in the ball of radius v about e, for
every 7. The Tychonoff product theorem easily implies the existence of a subsequence
converging geometrically to a discrete group.

Now let S be a maximal subspace of T,(G), the tangent space of G at the identity
element e, with the property that for any € > 0 there is a I'; whose e-small elements
fill out all directions in S, within an angle of €. It is easy to see that S is closed under
Lie brackets. Furthermore, a subsequence {I';;} whose small elements fill out S has
the property that all small elements are in directions near S. It follows, just as in
the previous case, that there is a subsequence converging to a closed subgroup whose
tangent space at e is S.

COROLLARY 9.1.7. The set of complete hyperbolic manifolds N together with base
frames in Nic ) is compact in the geometric topology.
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COROLLARY 9.1.8. Let I be any countable group and {p;} a sequence of discrete
representations of I' in PSL(2,C) converging algebraically to a representation p. If
pl' does not have an abelian subgroup of finite index then {p;} has a subsequence
converging geometrically to a discrete group I'" D ol'. In particular, pI' is discrete.

ProOOF. By 9.1.7, there is a subsequence converging geometrically to some closed
group I”. By 5.10.1, the identity component of I'" must be abelian; since pI' C I",
the identity component is trivial. O

Note that if the p; are all faithful, then their algebraic limit is also faithful, since
there is a lower bound to d(p;yz, x). These basic facts were first proved in 7777

Here is a simple example negating the converse of 9.1.8. Consider any discrete
group I' C PSL(2, C) which admits an automorphism ¢ of infinite order: for instance,
" might be a fundamental group of a surface. The sequence of representations ¢' has
no algebraically convergent subsequence, yet {¢'I'} converges geometrically to T

There are some simple statements about the behavior of limit sets when passing
to a limit. First, if ' is the geometric limit of a sequence {I';}, then each point
x € Lr is the limit of a sequence x; € Lr,. In fact, fixed points = (eigenvectors) of
non-trivial elements of v € I' are dense in Lr; for high ¢, I'; must have an element
near v, with a fixed point near x. A similar statement follows for the algebraic limit
p of a sequence of representations p;. Thus, the limit set cannot suddenly increase
in the limit. It may suddenly decrease, however. For instance, let I' C PSL(2,C) be
any finitely generated group. I' is residually finite (see § ), or in other words, it has
a sequence {I';} of subgroups of finite index converging geometrically to the trivial
group (e). Ly, = Lr is constant, but L is empty. It is plausible that every finitely
generated discrete group I' € PSL(2, C) be a geometric limit of groups with compact
quotient.

We have already seen (in 9.1.4) examples where the limit set suddenly decreases
in an algebraic limit.

Let I be the fundamental group of a surface S with finite area and {p;} a sequence
of faithful quasi-Fuchsian representations of T', preserving parabolicity. Suppose {p;}
converges algebraically to a representation p as a group without any additional par-
abolic elements. Let N denote N,r), N; denote N, r), etc.

THEOREM 9.2. N is geometrically tame, and {p;} converges strongly to p.

PRroOF. If the set of uncrumpled maps of S into N homotopic to the standard
map is compact, then using a finite cover of GL(S) carried by nearly straight train
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tracks, one sees that for any discrete representation p’ near p, every geodesic lami-
nation 7 of S is realizable in N’ near its realizations in N. (Logically, one can think
of uncrumpled surfaces as equivariant uncrumpled maps of M? into H?3, with the
compact-open topology, so that “nearness” makes sense.) Choose any subsequence
of the p;’s so that the bending loci for the two boundary components of M, converge
in GL(5). Then the two boundary components must converge to locally convex dis-
joint embeddings of S in N (unless the limit is Fuchsian). These two surfaces are
homotopic, hence they bound a convex submanifold M of N, so p(I') is geometrically
finite.

Since M. o) is compact, strong convergence of {p;} follows form 8.3.3: no un-
expected identifications of N can be created by a small perturbation of p which
preserves parabolicity.

If the set of uncrumpled maps of S homotopic to the standard map is not compact,
then it follows immediately from the definition that N has at least one geometrically
infinite tame end. We must show that both ends are geometrically tame. The possible
phenomenon to be wary of is that the bending loci 8} and 3; of the two boundary
components of M; might converge, for instance, to a single point A in GL(.S). (This
would be conceivable if the “simplest” homotopy of one of the two boundary compo-
nents to a reference surface which persisted in the limit first carried it to the vicinity
of the other boundary component.) To help in understanding the picture, we will
first find a restriction for the way in which a hyperbolic manifold with a geometrically
tame end can be a covering space.

DEFINITION 9.2.1. Let N be a hyperbolic manifold, P a union of horoball neigh-
borhoods of its cusps, ' an end of N — P. E’ is almost geometrically tame if some
finite-sheeted cover of E’ is (up to a compact set) a geometrically tame end. (Later
we shall prove that if E is almost geometrically tame it is geometrically tame.)

THEOREM 9.2.2. Let N be a hyperbolic manifold, and N a covering space of N
such that N — P has a geometrically infinite tame end E bounded by a surface Sle,00) -
Then either N has finite volume and some finite cover of N fibers over S with fiber
S, or the image of E in N — P, up to a compact set, is an almost geometrically tame

end of N.

PRrooOF. Consider first the case that all points of £ identified with S| ) in the
projection to N lie in a compact subset of . Then the local degree of the projection
of F to N is finite in a neighborhood of the image of S. Since the local degree is
constant except at the image of .S, it is everywhere finite.

Let G C m N be the set of covering transformations of H? over N consisting of
elements ¢ such that gE N E is all of E except for a bounded neighborhood of S. G
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is obviously a group, and it contains 7.5 with finite index. Thus the image of E, up
to compact sets, is an almost geometrically tame end of N.

The other case is that S| ) is identified with a non-compact subset of E by
projection to N. Consider the set I of all uncrumpled surfaces in £ whose images
intersect the image of S| ). Any short closed geodesic on an uncrumpled surface
of E is homotopic to a short geodesic of £ (not a cusp), since £ contains no cusps
other than the cusps of S. Therefore, by the proof of 8.8.5, the set of images of [ in
N is precompact (has a compact closure). If I itself is not compact, then N has a
finite cover which fibers over S*, by the proof of 8.10.9. If I is compact, then (since
uncrumpled surfaces cut £ into compact pieces), infinitely many components of the
set of points identified with S| . are compact and disjoint from S.
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S r};:ca?s (den 7"{ l;ea, q-iﬂ S 7

These components consist of immersions of k-sheeted covering spaces of .S injective
on 7, which must be homologous to £k [S]. Pick two disjoint immersions with the
same sign, homologous say to —k [S] and —[ [S]. Appropriate multiples of these cycles
are homologous by a compactly supported three-chain which maps to a three-cycle
in N — P, hence N has finite volume. Theorem 9.2.2 now follows from 8.10.9. U

We continue the proof of Theorem 9.2. We may, without loss of generality, pass to
a subsequence of representations p; such that the sequences of bending loci {3;"} and
{3} converge, in PLy(S), to laminations T and 5. If §T, say, is realizable for the
limit representation p, then any uncrumpled surface whose wrinkling locus contains
G is embedded and locally convex—hence it gives a geometrically finite end of N.
The only missing case for which we must prove geometric tameness is that neither
BT nor 5~ is realizable. Let A§ € PLy(S) (where e = 4+, —) be a sequence of geodesic
laminations with finitely many leaves and with transverse measures approximating
B¢ closely enough that the realization of \{ in [V; is near the realization of 3f. Also
suppose that lim A{ = 8¢ in PLy(S). The laminations A are all realized in N. They
must tend toward co in IV, since their limit is not realized. We will show that they
tend toward oo in the e-direction. Imagine the contrary—for definiteness, suppose
that the realizations of {\]} in N go to oo in the — direction. The realization of each
Al in Nj must be near the realization in N, for high enough j. Connect A]" to Af
by a short path A; j; in PLy(S). A family of uncrumpled surfaces S ;, realizing the
Aijt 1s not continuous, but has the property that for ¢ near ¢y, S; ;; and S; j4, have
points away from their cusps which are close in N. Therefore, for every uncrumpled
surface U between S; ;o and S; ;1 (in a homological sense), there is some ¢ such that
Sij+NUN (N — P) is non-void.
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Let v be any lamination realized in N, and U; be a sequence of uncrumpled
surfaces realizing v in N, and converging to a surface in N. There is a sequence
Si(j).jt) of uncrumpled surfaces in N; intersecting U; whose wrinkling loci tend
toward .

Without loss of generality we may pass to a geometrically convergent subsequence,
with geometric limit Q). @ is covered by N. It cannot have finite volume (from the
analysis in Chapter 5, for instance), so by 8.14.2, it has an almost geometrically tame
end F which is the image of the — end F_ of N. Each element a of m F has a
finite power o* € m E_. Then a sequence {a;} approximating « in m(N;) has the
property that the a¥ have bounded length in the generators of 1.5, this implies that
the a; have bounded length, so « is in fact in mE_, and £ = E (up to compact
sets). Using this, we may pass to a subsequence of Sy ;.’s which converge to an
uncrumpled surface R in E. R is incompressible, so it is in the standard homotopy
class. It realizes 37, which is absurd.

We may conclude that N has two geometrically tame ends, each of which is
mapped homeomorphically to the geometric limit ). (This holds whether or not
they are geometrically infinite.) This implies the local degree of N — (@ is finite one
or two (in case the two ends are identified in @)). But any covering transformation «
of N over ) has a power (its square) in m; N, which implies, as before, that o € m N,
so that N = ). This concludes the proof of 9.2. 0

9.3. The ending of an end

In the interest of avoiding circumlocution, as well as developing our image of a
geometrically tame end, we will analyze the possibilities for non-realizable laminations
in a geometrically tame end.

We will need an estimate for the area of a cylinder in a hyperbolic three-manifold.
Given any map f : S* x [0,1] — N, where N is a convex hyperbolic manifold, we
may straighten each line 6 x [0, 1] to a geodesic, obtaining a ruled cylinder with the
same boundary.
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THEOREM 9.3.1. The area of a ruled cylinder (as above) is less than the length
of its boundary.

PROOF. The cylinder can be CY-approximated by a union of small quadrilaterals
each subdivided into two triangles. The area of a triangle is less than the minimum
of the lengths of its sides (see p. 6.5). O

If the two boundary components of the cylinder C' are far apart, then most of the
area is concentrated near its boundary. Let v, and 7, denote the two components of
oC.

THEOREM 9.3.2. Area (C'—N,71) < e "l(m1) + l(7y2) where v > 0 and | denotes
length.

This is derived by integrating the area of a triangle in polar coordinates from any

vertex: T(6)
A= // sinh ¢ dt df = /(coshT(@) —1)df
0

: ol d8
_sinb(T6) R)

7 sinh T(@) /6

The area outside a neighborhood of radius r of its far edge « is

/cosh (T'(0) —r)—1dO < e_r/sinh T(0)do < e "l(a).

This easily implies 9.3.2
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Let E be a geometrically tame end, cut off by a surface S} ) in NV — P, as usual.
A curve a in F homotopic to a simple closed curve o’ on S gives rise to a ruled
cylinder C,, : S* x [0,1] — N.

Now consider two curves « and 8 homotopic to simple closed curves o/ and [’
on S. One would expect that if o/ and 3 are forced to intersect, then either o must
intersect Cjg or 8 must intersect Cy,, as in 8.11.1

We will make this more precise by attaching an invariant to each intersection. Let
us assume, for simplicity, that o’ and 3" are geodesics with respect to some hyperbolic
structure on S. Choose one of the intersection points, pg, of o/ and 3" as a base point
for N. For each other intersection point p;, let o;; and 3; be paths on o and 3’ from
po to pi. Then a; x5! is a closed loop, which is non-trivial in 7 (S) when 4 # 0 since
two geodesics in S have at most one intersection.

There is some ambiguity, since there is more than one path from oy to «; on
/

o5 in fact, a; is well-defined up to a power of o’. Let (g) denote the cyclic group
generated by an element g. Then o, - 3; " gives a well-defined element of the double
coset space (a/)\71(S)/(5). [The double coset HigHy € H\G/H; of an element
g € G is the set of all elements hyghs, where h; € H;.| The double cosets associated
to two different intersections p; and p; are distinct: if (o/)a;3; 1 (3') = (a)a;B71(6"),

-1 _rk

then there is some loop o« ;573" 3; made up of a path on o’ and a path on
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(' which is homotopically trivial—a contradiction. In the same way, a double coset
D, , is attached to each intersection of the cylinders C, and Cp. Formally, these
intersection points should be parametrized by the domain: thus, an intersection point
means a pair (z,y) € (S* x I) x (S’ x I) such that Cpz = Cyy.

Let i(7y,d) denote the number of intersections of any two simple geodesics v and
d on S. Let D(v,d) be the set of double cosets attached to intersection points of
and 0 (including po). Thus i(v,d) = |D(v,0)|. D(«,Cs) and D(C,, 3) are defined

similarly.
PROPOSITION 9.3.3. |a N Cy| + |Cy N B > i(a/, 3). In fact
D(a,Cs3)U D(C,,3) D D(d/, 3.

PROOF. First consider cylinders Cy, and C}; which are contained in £, and which
are nicely collared near S. Make C7, and C} transverse to each other, so that the
double locus L C (S' x I) x (S x I) is a one-manifold, with boundary mapped
to aU B Ua' U The invariant Dy, is locally constant on L, so each invariant
occurring for o/ N G’ occurs for the entire length of interval in L, which must end on
a or 3. In fact, each element of D(«/, 3’) occurs as an invariant of an odd number of
points a U .

Now consider a homotopy h; of C to Cp, fixing U 3'. The homotopy can be
perturbed slightly to make it transverse to «, although this may necessitate a slight
movement of Uz to a cylinder C5. Any invariant which occurs an odd number of
times for a N C; occurs also an odd number of times for o N Cj. This implies that
the invariant must also occur for a N Cp. O]

REMARK. By choosing orientations, we could of course associate signs to intersec-
tion points, thereby obtaining an algebraic invariant D(o/, 3') € Z{N71S/(%) " Then
9.3.3 would become an equation,

D, ") = D(a, Cg) + D(Cl, ).

Since m(S) is a discrete group, there is a restriction on how closely intersection
points can be clustered, hence a restriction on |D(a, ¢)| in terms of the length of «
times the area of Cp.

PROPOSITION 9.3.4. There is a constant K such that for every curve a in E with
distance R from S homotopic to a simple closed curve o' on S and every curve 3 in
E not intersecting C, and homotopic to a simple curve 3’ on S,

i(o/, B) < K[l(a) + (I(a) + 1) (1(B) + e F+1(3))].
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ProoF. Consider intersection points (z,y) € S'x (S'xI) of @ and Cs. Whenever
two of them, (z,y) and (2’,y), are close in the product of the metrics induced from
N, there is a short loop in N which is non-trivial if D, ) # D (g 4.

Case (i). ais a short loop. Then there can be no short non-trivial loop on Cs near
an intersection point with «. The disks of radius € on C3 about intersection points
with a have area greater than some constant, except in special cases when they
are near 0Cy. If necessary, extend the edges of Cjp slightly, without substantially
changing the area. The disks of radius € must be disjoint, so this case follows from
9.3.2 and 9.3.3.

Case (ii). « is not short. Let E C Cj consist of points through which there
is a short loop homotopic to f. If (z,y) and (2/,y') are intersection points with
D,, # D, , and with y,y’ in E, then z and 2z’ cannot be close together—otherwise
two distinct conjugates of § would be represented by short loops through the same
point. The number of such intersections is thus estimated by some constant times
l(a).

Three intersections of « with Cs — E cannot occur close together. S' x (Cs — E)
contains the balls of radius e, with multiplicity at most 2, and each ball has a definite
volume. This yields 9.3.4. O

Let us generalize 9.3.4 to a statement about measured geodesic laminations. Such
a lamination (7, ) on a hyperbolic surface S has a well-defined “average length”
ls(7, ). This can be defined as the total mass of the measure which is locally the
product of the transverse measure p with one-dimensional Lebesgue measure on the
leaves of . Similarly, a realization of + in a homotopy class f : S — N has a
length {;(y, ). The length lg(7y, ) is a continuous function on MKL(S), and l;(7)
is a continuous function where defined. If 7 is realized a distance of R from an
uncrumpled surface S, then (v, ) < (1/cosh R)lg(y,p). This implies that if f
preserves non-parabolicity, [y extends continuously over all of ML, so that its zero
set is the set of non-realizable laminations.

The intersection number i ((71, f11), (72, p2)) of two measured geodesic laminations
is defined similarly, as the total mass of the measure u; X ps which is locally the
product of py and ps. (This measure py X pg is interpreted to be zero on any common
leaves of v, and 75.)
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(7, My ) g —

= (v, §y)

Given a geodesic lamination v realized in F, let d., be the miniaml distance of an
uncrumpled surface through ~ from S ).

THEOREM 9.3.5. There is a constant K such that for any two measured geodesic
laminations (71, p1) and (72, p2) € MLo(S) realized in E,

Z'((’Yla,ul)a (’Yz,/iz)) < K- 6’2Rls(%,u1) s (72, p12)
where R = inf(d,,,d,,).

PRrOOF. First consider the case that v; and v, are simple closed geodesics which
are not short. Apply the proof of 9.3.4 first to intersections of v; with C,,, then to
intersections of C,, with 7. Note that g(7;) is estimated from below by efl(v;), so
the terms involving I(~;) can be replaced by C'e~l(+;). Since v, and 7, are not short,
one obtains

i(y1,72) < K - e 2 lg(m) ls(),

for some constant K. Since both sides of the inequality are homogeneous of degree
one in ; and 9, it extends by continuity to all of MLy (.S). O

Consider any sequence {(v;,i;)} of measured geodesic laminations in MLy(S)
whose realizations go to co in E. If (Aq, 1) and (g, po) are any two limit points
of this sequence, 9.3.5 implies that (A, A\2) = 0: in other words, the leaves do not
cross. The union A; U Ay is still a lamination.

DEFINITION 9.3.6. The ending lamination €(E) € GL(S) is the union of all limit
points \;, as above.

Clearly, €¢(F) is compactly supported and it admits a measure with full support.
The set A(E) C PLy(S) of all such measures on ¢(F) is closed under convex combi-
nations, hence its intersection with a local coordinate system (see p. 8.59) is convex.
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In fact, a maximal train track carrying ¢(FE) defines a single coordinate system con-
taining A(FE).

The idea that the realization of a lamination depends continuously on the lami-
nation can be generalized to the ending lamination €(F), which can be regarded as
being realized at oo.

PROPOSITION 9.3.7. For every compact subset K of E, there is a neighborhood
U of A(E) in PLy(S) such that every lamination in U — A(E) is realized in E — K.

PROOF. It is convenient to pass to the covering of N corresponding to m.S. Let
S’ be an uncrumpled surface such that K is “below” S’ (in a homological sense). Let
{Vi} be a neighborhood basis for A(F) such that V; — A(FE) is path-connected, and
let \; € V; — A(F) be a sequence whose realizations go to oo in E. If there is any
point m; € V; — A(E) which is a non-realizable lamination or whose realization is not
“above” S’, connect A\; to m; by a path in V;. There must be some element of this
path whose realization intersects ngoo) (since the realizations cannot go to oo while
in E.) Even if certain non-peripheral elements of S are parabolic, excess pinching
of non-peripheral curves on uncrumpled surfaces intersecting S’ can be avoided if S’
is far from S, since there are no extra cusps in E. Therefore, only finitely many
such m;’s can occur, or else there would be a limiting uncrumpled surface through S
realizing the unrealizable. 0

PROPOSITION 9.3.8. Every leaf of €(F) is dense in €(E), and every non-trivial
simple curve in the complement of €(E) is peripheral.

PROOF. The second statement follows easily from 8.10.8, suitably modified if
there are extra cusps. The first statement then follows from the next result:

PROPOSITION 9.3.9. Ifv is a geodesic lamination of compact support which admits
a nowhere zero transverse measure, then either every leaf of v is dense, or there is a
non-peripheral non-trivial simple closed curve in S — .

PROOF. Suppose 6 C v is the closure of any leaf. Then ¢ is also an open subset
of : all leaves of v near § are trapped forever in a neighborhood of §. This is seen
by considering the surface S — §.
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5-4&-

9.25
An arc transverse to these leaves would have positive measure, which would imply
that a transverse arc intersecting these leaves infinitely often would have infinite
measure. (In general, a closed union of leaves § C =y in a general geodesic lamination
has only a finite set of leaves of v intersecting a small neighborhood.)
If § # ~, then ¢ has two components, which are separated by some homotopically
non-trivial curve in S — 7. U

O

COROLLARY 9.3.10. For any homotopy class of injective maps f : S — N from
a hyperbolic surface of finite area to a complete hyperbolic manifold, if f preserves
parabolicity and non-parabolicity, there are n = 0, 1 or 2 non-realizable laminations
€ [1 < i < n] such that a general lamination v on S is non-realizable if and only if
the union of its non-isolated leaves is an ¢;.

9.4. Taming the topology of an end

We will develop further our image of a geometrically tame end, once again to
avoid circumlocution.

THEOREM 9.4.1. A geometrically tame end E C N — P 1is topologically tame. In
other words, E is homeomorphic to the product Sy x [0, 00).

Theorem 9.4.1 will be proved in §§9.4 and 9.5.

COROLLARY 9.4.2. Almost geometrically tame ends are geometrically tame.

PROOF THAT 9.4.1 implies 9.4.2. Let E’ be an almost geometrically tame end,
finitely covered (up to compact sets) by a geometrically tame end E = Sjc ooy x [0,€), 9.26

with projection p : E — E'. Let f : E' — [0,¢) be a proper map. The first step is
to find an incompressible surface S’ C E’ which cuts it off (except for compact sets).
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Choose ty high enough that p : E — E’ is defined on Sy ) X [tg,00), and choose
t1 > to so that p(S[E,OO) X [t1, oo)) does not intersect p(Sie,c) X to).

Let r € [0,00) be any regular value for f greater than the supremum of f op on
Sle,c) X [0,t1). Perform surgery (that is, cut along circles and add pairs of disks) to
f7Y(r), to obtain a not necessarily connected surface S’ in the same homology class
which is incompressible in

E' —p(S[eyoo) X [O,to)).

The fundamental group of S’ is still generated by loops on the level set f = r. S’
is covered by a surface S’ in E. S’ must be incompressible in E— otherwise there
would be a non-trivial disk D mapped into S} ooy X [t1, 00) with boundary on S; poD
would be contained in

El — p(S[QOO) X [O, to])

so S" would not be incompressible (by the loop theorem). One deduces that S’ is
homotopic to Si ) and S’ is incompressible in N — P.

If E is geometrically finite, there is essentially nothing to prove—FE corresponds
to a component of M, which gives a convex embedded surface in E'. If E is ge-
ometrically infinite, then pass to a finite sheeted cover E” of E which is a regular
cover of E'. The ending lamination ¢(E") is invariant under all diffeomorphisms (up
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to compact sets) of E”. Therefore it projects to a non-realizable geodesic lamination

e(E') on S'. O

PROOF OF 9.4.1. We have made use of one-parameter families of uncrumpled
surfaces in the last two sections. Unfortunately, these surfaces do not vary contin-
uously. To prove 9.4.1, we will show, in §9.5, how to interpolate with more general
surfaces, to obtain a (continuous) proper map F: Sy ) x [0,00) — E. The theorem
will follow fairly easily once F' is constructed:

PROPOSITION 9.4.3. Suppose there is a proper map F : S ) x [0,00) — E
with F(Sjec0) % 0) standard and with F(0Sjcx) X [0,00)) C O(N — P). Then E is
homeomorphic to Sy ) % [0,00).

PROOF OF 9.4.3. This is similar to 9.4.2. Let f : E — [0,00) be a proper map.
For any compact set K C E, we can find a t; > 0 so that F(Sj ) X [t1,00)) is
disjoint from K. Let r be a regular value for f greater than the supremum of f o F
on Siee) X [0,81]. Let 8" = fHr) and S” = (fo F)"}r). F:S”" — S is a map
of degree one, so it is surjective on m; (or else it would factor through a non-trivial
covering space on S’, hence have higher degree). Perform surgery on S’ to make it
incompressible in the complement of K, without changing the homology class. Now
S" must be incompressible in E; otherwise there would be some element « of w5’
which is null-homotopic in E. But « comes from an element 5 on S” which is null-
homotopic in Sy ) X [t1,00), so its image o is null-homotopic in the complement
of K. It follows that S" is homotopic to S| ), and that the compact region of E
cut off by S" is homeomorphic to Sjc .y x I. By constructing a sequence of such
disjoint surfaces going outside of every compact set, we obtain a homeomorphism
with S[e,oo) X [0, OO) L]

O

9.5. Interpolating negatively curved surfaces

Now we turn to the task of constructing a continuous family of surfaces moving out
to a geometrically infinite tame end. The existence of this family, besides completing
the proof of 9.4.1, will show that a geometrically tame end has uniform geometry,
and it will lead us to a better understanding of MLy(.S).

We will work with surfaces which are totally geodesic near their cusps, on esthetic
grounds. Our basic parameter will be a family of compactly supported geodesic
laminations in ML(S). The first step is to understand when a family of uncrumpled
surfaces realizing these laminations is continuous and when discontinuous.
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DEFINITION 9.5.1. For a lamination v € MLy(S), let T, be the limit set in GL(.5)
of a neighborhood system for v in ML (S). ( T, is the “qualitative tangent space”
of MLy(S) at v ).

Let ML(S) denote the closure of the image of ML (.S) in GL(.S). Clearly ML (.S)
consists of laminations with compact support, but not every lamination with compact
support is in ML (.S):

not in 7;1? 0

Every element of ML, is in T, for some v € ML,. Let us say that an element
v € MLy is essentially complete if  is a maximal element of MLg. If v € ML, then
7 is essentially complete if and only if T, = 7. A lamination 7 is maximal among all
compactly supported laminations if and only if each region of S — v is an asymptotic 9.30
triangle or a neighborhood of a cusp of S with one cusp on its boundary—a punctured

monogon.
<% ?MPTG‘]"C or Punt‘t‘d\"(d
‘fr"c’w‘lle- = monogqon

(These are the only possible regions with area 7 which are simply connected or whose
fundamental group is peripheral.) Clearly, if S —~ consists of such regions, then = is
essentially complete. There is one special case when essentially complete laminations
are not of this form; we shall analyze this case first.

PROPOSITION 9.5.2. Let T — p denote the punctured torus. An element
v € MLo(T' — p)
is essentially complete if and only if (T — p) — 7 is a punctured bigon.

If v € MLo(T — p), then either v has a single leaf (which is closed), or every leaf
of v is mon-compact and dense, in which case v is essentially complete. If v has a
single closed leaf, then T, consists of v and two other laminations:
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PROOF. Let g € MLy(T — p) be a compactly supported measured lamination.
First, note that the complement of a simple closed geodesic on T' — p is a punctured
annulus,

which admits no simple closed geodesics and consequently no geodesic laminations
in its interior. Hence if v contains a closed leaf, then v consists only of this leaf, and
otherwise (by 9.3.9) every leaf is dense.

Now let a be any simple closed geodesic on T'— p, and consider v cut apart by
a. No end of a leaf of v can remain forever in a punctured annulus, or else its limit
set would be a geodesic lamination. Thus « cuts leaves of v into arcs, and these arcs
have only three possible homotopy classes:

If the measure of the set of arcs of type (a) is m,, etc., then (since the two boundary
components match up) we have 2m, + m, = 2m, —|— myp. But cases (a) and (c)
are incompatible with each other, so it must be that m, = m. = 0. Note that
is orientable: it admits a continuous tangent vector field. By inspection we see a
complementary region which is a punctured bigon.

Since the area of a punctured bigon is 27, which is the same as the area of T — p,
this is the only complementary region.
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It is now clear that a compactly supported measured lamination on 7" — p with
every leaf dense is essentially complete—there is nowhere to add new leaves under a
small perturbation. If v has a single closed leaf, then consider the families of measures
on train tracks:

cet

L

These train tracks cannot be enlarged to train tracks carrying measures. This can
be deduced from the preceding argument, or seen as follows. At most one new branch
could be added (by area considerations), and it would have to cut the punctured bigon
into a punctured monogon and a triangle.

9.33

Can nevey

v\ © Iy reverse
L _r}__' &e-— TeNersc

once

The train track is then orientable in the complement of the new branch, so a train
can traverse this branch at most once. This is incompatible with the existence of a
positive measure. Therefore MLy(T — p) is two-dimensional, so 71 and 7 carry a

neighborhood of .

y

5
on
A

It follows that 7, is as shown. O

PROPOSITION 9.5.3. PLy(T — p) is a circle.
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PROOF. The only closed one-manifold is S*. That PLy(T — p) is one-dimensional
follows from the proof of 9.5.2. Perhaps it is instructive in any case to give a covering
of PLy(T — p) by train track neighborhoods: 9.34

or, to get open overlaps,

[l

PROPOSITION 9.5.4. On any hyperbolic surface S which is not a punctured torus,
an element v € MLy(S) is essentially complete if and only if S — v is a union of
triangles and punctured monogons.

PROOF. Let 7 be an arbitrary lamination in ML (S), and let 7 be any train track
approximation close enough that the regions of S — 7 correspond to those of S — 7.

If some of these regions are not punctured monogons or triangles, we will add extra 9.35
branches in a way compatible with a measure.

First consider the case that each region of S — v is either simply connected or a
simple neighborhood of a cusp of S with fundamental group Z. Then 7 is connected.
Because of the existence of an invariant measure, a train can get from any part of
7 to any other. (The set of points accessible by a given oriented train is a “sink,”
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which can only be a connected component.) If 7 is not orientable, then every oriented
train can get to any position with any orientation. (Otherwise, the oriented double
“cover” of 7 would have a non-trivial sink.)

orienfet; Jé’JE}C

“caver of T
has @ S:"\k.

In this case, add an arbitrary branch b to 7, cutting a non-atomic region (of area
> 7). Clearly there is some cyclic train path through b, so 7 U b admits a positive
measure.

If 7 is oriented, then each region of S — 7 has an even number of cusps on its
boundary. The area of S must be 47 or greater (since the only complete oriented
surfaces of finite area having y = —1 are the thrice punctured sphere, for which MLg 9.36
is empty, and the punctured torus). If there is a polygon with more than four sides, it
can be subdivided using a branch which preserves orientation, hence admits a cyclic
train path. The case of a punctured polygon with more than two sides is similar.

Otherwise, S —~ has at least two components. Add one branch b; which reverses pos-
itively oriented trains, in one region, and another branch by which reverses negatively
oriented trains in another.

There is a cyclic train path through b; and b, in 7 U by U by, hence an invariant
measure.
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Now consider the case when S — 7 has more complexly connected regions. If 937

a boundary component of such a region R has one or more vertices, then a train
pointing away from R can return to at least one vertex pinting toward R. If R is
not an annulus, hook a new branch around a non-trivial homotopy class of arcs in R
with ends on such a pair of vertices.

If R is an annulus and each boundary component has at least one vertex, then add
one or two branches running across R which admit a cyclic train path.

If R is not topologically a thrice punctured disk or annulus, we can add an interior
closed curve to R.

Any boundary component of R which is a geodesic « has another region R’ (which
may equal R) on the other side. In this case, we can add one or more branches in
R and R’ tangent to « in opposite directions on opposite sides, and hooking in ways
similar to those previously mentioned.

From the existence of these extensions of the original train track, it follows that
an element v € ML is essentially complete if and only if S — 7 consists of triangles
and punctured monogons. Furthermore, every v € ML, can be approximated by
essentially complete elements 7/ € ML,. In fact, an open dense set has the property
that the e-train track approximation 7. has only triangles and punctured monogons

248 Thurston — The Geometry and Topology of 3-Manifolds

9.38



9.5. INTERPOLATING NEGATIVELY CURVED SURFACES

as complementary regions, so generically every 7. has this property. The characteri-
zation of essential completeness then holds for ML, as well. O

Here is some useful geometric information about uncrumpled surfaces.

PROPOSITION 9.5.5. (i) The sum of the dihedral angles along all edges of
the wrinkling locus w(S) tending toward a cusp of an uncrumpled surface S
is 0. (The sum is taken in the group S' = Rmod 27.)

(ii) The sum of the dihedral angles along all edges of w(S) tending toward any
side of a closed geodesic v of w(S) is o, where a is the angle of rotation
of parallel translation around 7. (The sign depends on the sense of the
spiralling of nearby geodesics toward -y.)

Proor. Consider the upper half-space model, with either the cusp or the end
of 4 toward which the geodesics in w(S) are spiralling at co. Above some level (in
case (a)) or inside some cone (in case (b)), S consists of vertical planes bent along
vertical lines. The proposition merely says that the total angle of bending in some
fundamental domain is the sum of the parts.

O

COROLLARY 9.5.6. An uncrumpled surface realizing an essentially complete lam-
ination in MLqg in a given homotopy class is unique. Such an uncrumpled surface is
totally geodesic near its cusps.

ProoF. If the surface S is not a punctured torus, then it has a unique comple-
tion obtained by adding a single geodesic tending toward each cusp. By 9.5.5, an
uncrumpled surface cannot be bent along any of these added geodesics, so we obtain
9.5.6.
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If S is the punctured torus 7' — p, then we consider first the case of a lamination
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two closed geodesics going from the vertices of the punctured bigon to the puncture.

If the dihedral angles along the infinite geodesics are #;, 65 and 63, as shown, then

by

where « is some angle. (The signs are the same for the last two equations because

Se”ta”‘)é

Comple

9.5.5 we have

(91+(92:O,

91+93:CY, 92+(93:Oé,

any hyperbolic transformation anti-commutes with a 180° rotation around any per-
pendicular line.)

LWH\

-}; anli-com mu'frs
IS’O ro'haf bW

Thus 6, = 6, = 0, so an uncrumpled surface is totally geodesic in the punctured bigon.
Since simple closed curves are dense in ML, every element g € ML, realizable in
a given homotopy class has a realization by an uncrumpled surface which is totally
geodesic on a punctured bigon. If v is essentially complete, this means its realizing
surface is unique.

PROPOSITION 9.5.7. If v is an essentially complete geodesic lamination, realized
by an uncrumpled surface U, then any uncrumpled surface U’ realizing a lamination

~' near 7 is near U.
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PROOF. You can see this from train track approximations. This also follows from
the uniqueness of the realization of v on an uncrumpled surface, since uncrumpled
surfaces realizing laminations converging to v must converge to a surface realizing
. 0

Consider now a typical path 7 € MLy. The path v, is likely to consist mostly of
essentially complete laminations, so that a family of uncrumpled surfaces U; realizing
v would be usually (with respect to t) continuous. At a countable set of values of
t, v is likely to be essentially incomplete, perhaps having a single complementary
quadrilateral. Then the left and right hand limits U;_ and U, would probably exist,
and give uncrumpled surfaces realizing the two essential completions of ;. In fact,
we will show that any path -, can be perturbed slightly to give a “generic” path in
which the only essentially incomplete laminations are ones with precisely two distinct
completions. In order to speak of generic paths, we need more than the topological
structure of MALjg.

PROPOSITION 9.5.8. ML and MLy have canonical PL (piecewise linear) struc-
tures.

Proor. We must check that changes of the natural coordinates coming from
maximal train tracks (pp. 8.59-8.60) are piecewise linear. We will give the proof for
MLy; the proof for ML is obtained by appropriate modifications.

Let v be any measured geodesic lamination in MLy(S). Let 73 and 75 be maximal
compactly supported train tracks carrying v, defining coordinate systems ¢, and ¢
from neighborhoods of v to convex subsets of R" (consisting of measures on 7, and
Ty ). A close enough train track approximation o of v is carried by 7, and 7.

_—
. ’ ! -
o S e
i "' . vl\‘:“‘;esg\ y A
AN N TT1T1 lw;..v.-a?_s:‘s:ﬁ?:-;ﬁ,
e i T VAN A e ::q_q}-:*:‘.':‘i‘;‘:,;-,--.f"""-‘" ;
. "jilllilﬂﬂ - RSk
et

The set of measures on o go linearly to measures on 7 and 7. If ¢ is a maximal
compact train track supporting a measure, we are done—the change of coordinates
$2 o ¢y' is linear near 7. (In particular, note that if v is essentially complete,
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change of coordinates is always linear at v ). Otherwise, we can find a finite set of
enlargements of o, 01, ..., 0%, so that every element of a neighborhood of ~ is closely
approximated by one of the ;. Since every element of a neighborhood of ~ is carried
by 71 and 7, it follows that (if the approximations are good enough) each of the o; is
carried by 7 and 7. Each o; defines a convex polyhedron which is mapped linearly
by ¢, and ¢, 50 ¢3 0 ¢ " must be PL in a neighborhood of 7. 0

REMARK 9.5.9. It is immediate that change of coordinates involves only rational
coefficients. In fact, with more care ML and ML, can be given a piecewise integral
linear structure. To do this, we can make use of the set D of integer-valued measures
supported on finite collections of simple closed curves (in the case of MLy ); D is
analogous to the integral lattice in R". GL, Z consists of linear transformations of R"
which preserve the integral lattice. The set V, of measures supported on a given train
track 7 is the subset of some linear subspace V' C R™ which satisfies a finite number
of linear inequalities p(b;) > 0. Thus V; is the convex hull of a finite number of lines,
each passing through an integral point. The integral points in U are closed under
integral linear combinations (when such a combination is in U), so they determine an
integral linear structure which is preserved whenever U is mapped linearly to another
coordinate system.

Note in particular that the natural transformations of ML are volume-preserving.

The structure on PL and PLj is a piecewise integral projective structure. We will
use the abbreviations PIL and PIP for piecewise integral linear and piecewise integral
projective.

DEFINITION 9.5.10. The rational depth of an element v € ML, is the dimension
of the space of rational linear functions vanishing on v, with respect to any natural
local coordinate system. From 9.5.8 and 9.5.9, it is clear that the rational depth is
independent of coordinates.

PROPOSITION 9.5.11. If v has rational depth 0, then v is essentially complete.

ProoF. For any v € ML, which is not essentially complete we must construct a
rational linear function vanishing on . Let 7 be some train track approximation of
~ which can be enlarged and still admit a positive measure. It is clear that the set
of measures on 7 spans a proper rational subspace in any natural coordinate system
coming from a train track which carries 7. (Note that measures on 7 consist of
positive linear combinations of integral measures, and that every lamination carried
by 7 is approximable by one not carried by 7.) 0

ProPOSITION 9.5.12. If v € ML has rational depth 1, then either ~y is essentially
complete or v has precisely two essential completions. In this case either
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A. v has no closed leaves, and all complementary regions have area m or 2m.
There is only one region with area 21 unless y is oriented and area(S) = 4w
in which case there are two. Such a region is either a quadrilateral or a
punctured bigon.

or
B. v has precisely one closed leaf v9. Fach region touching vy has area 2.
Either
1. S is a punctured torus

or
2. o touches two regions, each a one-pointed crown or a devils cap.

(a) ‘ or (b) "Y or (e)
£3% ’

(TLLQ d\(ut’l\\.}

wn c*ure
splﬂ eve )

PROOF. Suppose 7 has rational depth 1 and is not essentially complete. Let 7 be a
close train track approximation of v. There is some finite set 7, ..., 7 of essentially
complete enlargements of 7 which closely approximate every 7’ in a neighborhood
of 7. Let o carry all the 7;’s and let V, be its coordinate system. The set of
corresponding to measures carried by a given proper subtrack of a 7; is a proper
rational subspace of V. Since v is in a unique proper rational subspace, V;, the set
of measures V,, carried on any 7; must consist of one side of V. (If V. intersected
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both sides, by convexity v would come from a measure positive on all branches of
7;). Since this works for any degree of approximation of nearby laminations, v has
precisely two essential completions. A review of the proof of 9.5.4 gives the list of
possibilities for v € ML, with precisely two essential completions. The ambiguity in
the essential completions comes from the manner of dividing a quadrilateral or other
region, and the direction of spiralling around a geodesic.

O

REMARK. There are good examples of v € ML, which have large rational depth
but are essentially complete. The construction will occur naturally in another context.

We return to the construction of continuous families of surfaces in a hyperbolic
three-manifold. To each essentially incomplete v € ML, of rational depth 1, we
associate a one-parameter family of surfaces U, with Uy and U; being the two un-
crumpled surfaces realizing . Uy is constant where U, and U; agree, including the
union of all triangles and punctured monogons in the complement of . The two
images of any quadrilateral in S — v form an ideal tetrahedron. Draw the common
perpendicular p to the two edges not in Uy N Uy, triangulate the quadrilateral with 4
triangles by adding a vertex in the middle, and let this vertex run linearly along p,
from Uy to U;. This extends to a homotopy of S straight on the triangles.
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The two images of any punctured bigon in S —~ form a solid torus, with the gen-
erating curve parabolic. The union of the two essential completions in this punctured
bigon gives a triangulation except in a neighborhood of the puncture, with two new 9.48
vertices at intersection points of added leaves.

Draw the common perpendiculars to edges of the realizations corresponding to
these intersection points, and homotope Uy to U; by moving the added vertices lin-
early along the common perpendiculars.

When « has a closed leaf 7, the two essential completions of v have added leaves
spiralling around 7y in opposite directions. U, can be homotoped to U; through
surfaces with added vertices on 7.
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Note that all the surfaces U, constructed above have the property that any point
on Uy is in the convex hull of a small circle about it on U,. In particular, it has
curvature < —1; curvature —1 everywhere except singular vertices, where negative
curvature is concentrated.

THEOREM 9.5.13. Given any complete hyperbolic three-manifold N with geomet-
rically tame end E cut off by a hyperbolic surface Sic ), there is a proper homotopy
F : Sy x [0,00) = N of S to oo in E.

PROOF. Let V, be the natural coordinate system for a neighborhood of ¢(E) in
MLy(S), and choose a sequence v; € V. limiting on €(E). Perturb the ~; slightly so
that the path +; [0 <t < oo] which is linear on each segment ¢ € [i, i + 1] consists of
elements of rational depth 0 or 1. Let U; be the unique uncrumpled surface realizing
~v; when 7, is essentially complete. When ¢ is not essentially complete, the left and
right hand limits U, and U;_ exist. It should now be clear that F' exists, since one can
cover the closed set {U,+} by a locally finite cover consisting of surfaces homotopic
by small homotopies, and fill in larger gaps between U;, and U;_ by the homotopies
constructed above. Since all interpolated surfaces have curvature < —1, and they
all realize a ~;, they must move out to co. An explicit homotopy can actually be
defined, using a new parameter r which is obtained by “blowing up” all parameter
values of ¢ with rational depth 1 into small intervals. Explicitly, these parameter
values can be enumerated in some order {¢;}, and an interval of length 277 inserted
in the r-parameter in place of ¢;. Thus, a parameter value ¢ corresponds to the point

or interval
r(t) = {t+ o2t > 2—9‘].
{ilt;<t} {lt;<t}

Now insert homotopies as constructed above in each blown up interval. It is not
so obvious that the family of surfaces is still continuous when an infinite family
of homotopies is inserted. Usually, however, these homotopies move a very small
distance—for instance, v, may have a quadrilateral in S —~;, but for all but a locally
small number of ¢’s, this quadrilateral looks like two asymptotic triangles to the naked
eye, and the homotopy is imperceptible.

% O drlateral
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Formally, the proof of continuity is a straightforward generalization of the proof
of 9.5.7. The remark which is needed is that if S is a surface of curvature < —1 with
a (pathwise) isometric map to a hyperbolic surface homotopic to a homeomorphism,
then S is actually hyperbolic and the map is isometric—indeed, the area of S is not
greater than the area of the hyperbolic surface. O

REMARKS. 1. There is actually a canonical line of hyperbolic structures on S
joining those of U;; and U;_, but it is not so obvious how to map them into E nicely.

2. An alternative approach to the construction of F' is to make use of a sequence
of triangulations of S. Any two triangulations with the same number of vertices can
be joined by a sequence of elementary moves, as shown.

—_—

Although such an approach involves more familiar methods, the author brutally
chose to develop extra structure.

3. There should be a good analytic method of constructing F' by using harmonic
mappings of hyperbolic surfaces. Realizations of geodesic laminations of a surface are
analogous to harmonic mappings coming from points at oo in Teichmiiller space. The
harmonic mappings corresponding to a family of hyperbolic structures on S moving
along a Teichmiiller geodesic to €(E) ought to move nicely out to co in E. A rigorous
proof might involve good estimates of the energy of a map, analogous to §9.3.

g v\\ The out: ije has many av Ies
‘ < " ; while J j

the imside s smaoﬂ\.

9.6. Strong convergence from algebraic convergence

We will take another step in our study of algebraic limits. Consider the space of
discrete faithful representations p of a fixed torsion free group I' in PSLy(C). The
set II, C I' of parabolics—i.e., elements v € I' such that p(v) is parabolic—is an
important part of the picture; we shall assume that II, = II is constant. When a
sequence p; converges algebraically to a representation p where II = 1I,, is constant
by II, D Il is strictly bigger, then elements v € 1I,—1I are called accidental parabolics.
The incidence of accidental parabolics can create many interesting phenomena, which
we will study later.
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One complication is that the quotient manifolds N,,r need not be homeomorphic;
and even when they are, the homotopy equivalence given by the isomorphism of fun-
damental groups need not be homotopic to a homeomorphism. For instance, consider
three-manifolds obtained by gluing several surfaces with boundary, of varying genus,
in a neighborhood of their boundary. If every component has negative Euler charac-
teristic, the result can easily be given a complete hyperbolic structure. The homotopy
type depends only on the identifications of the boundary components of the original
surfaces, but the homeomorphism type depends on the order of arrangement around
each image boundary curve.

As another example, consider a thickened surface of genus 2 union a torus as
shown.

It is also easy to give this a complete hyperbolic structure. The fundamental
group has a presentation

<a17b17a27b270: [alabl] - [a27b2]7 [[al)bl] - C7j| - ]->

This group has an automorphism

a; +— ay, by — by, cr—c, as— cagc_l, by — cboc™t

which wraps the surface of genus two around the torus. No non-trivial power of this
automorphism is homotopic to a homeomorphism. From an algebraic standpoint
there are infinitely many distinct candidates for the peripheral subgroups.

One more potential complication is that even when a given homotopy equivalence
is homotopic to a homeomorphism, and even when the parabolic elements correspond,
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there might not be a homeomorphism which preserves cusps. This is easy to picture
for a closed surface group I': when II is the set of conjugates of powers of a collection
of simple closed curves on the surface, there is not enough information in II to say
which curves must correspond to cusps on which side of S. Another example is
when I' is a free group, and II corresponds to a collection of simple closed curves on
the boundary of a handlebody with fundamental group I'. The homotopy class of a
simple closed curve is a very weak invariant here.

Rather than entangle ourselves in cusps and handlebodies, we shall confine our-
selves to the case of real interest, when the quotient spaces admit cusp-preserving
homeomorphisms.

We shall consider, then, geometrically tame hyperbolic manifolds which have a
common model, (Ny, Fy). Ny should be a compact manifold with boundary, and P
(to be interpreted as the “parabolic locus”) should be a disjoint union of regular
neighborhoods of tori and annuli on dN,, with fundamental groups injecting into
m Ny. Each component of 0Ny — P, should be incompressible.

THEOREM 9.6.1. Let (N, Py) be as above. Suppose that p; : m N — PSL(2,C)
is a sequence of discrete, faithful representations whose quotient manifolds N; are
geometrically tame and admit homeomorphisms (in the correct homotopy class) to
Ny taking horoball neighborhoods of cusps to Py. If {p;} converges algebraically to
a representation p, then the limit manifold N is geometrically tame, and admits a
homeomorphism (in the correct homotopy class) to Ny which takes horoball neighbor-
hoods of cusps to F,.

We shall prove this first with an additional hypothesis:
9.6.1a. Suppose also that no non-trivial non-peripheral simple curve of a com-
ponent of ONy — Py is homotopic (in Ny) to Fy.

REMARKS. The proof of 9.6.1 (without the added hypothesis) will be given in
§9.8.

The main case is really when all N; are geometrically finite. One of the main
corollaries, from 8.12.4, is that p(m Ny) satisfies the property of Ahlfors: its limit set
has measure 0 or measure 1.

PROOF OF 9.6.1a. It will suffice to prove that every sequence {p;} converging
algebraically to p has a subsequence converging strongly to p. Thus, we will pass to
subsequences whenever it is convenient.

Let Si,..., Sk be the components of Ny — Fy, each equipped with a complete
hyperbolic metric of finite area. (In other words, their boundary components are
made into punctures.) For each i, let P; denote a union of horoball neighborhoods
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of cusps of NN;, and let E;,...,E;; denote the ends of IV; — P; corresponding to
Sl, RN Sk

Some of the F;; may be geometrically finite, others geometrically infinite. We
can pass (for peace of mind) to a subsequence so that for each i, the E;; are all
geometrically finite or all geometrically infinite. We pass to a further subsequence so
the sequences of bending or ending laminations {{;;}; or {€;;}; converge in GLg,.
Let x; be the limit.

If x; is realizable in IV, then all nearby laminations have realizations for all repre-
sentations near p, and the F; ; must have been geometrically finite. An uncrumpled
surface U realizing x; is in the convex hull M of N and approximable by boundary
components of the convex hulls M; Since the limit set cannot suddenly increase in
the algebraic limit (p. 9.8), U must be a boundary component.

If x; is not realizable in N, then it must be the ending lamination for some
geometrically infinite tame end F of the covering space of N corresponding to 5},
since we have hypothesized away the possibility that it represents a cusp. In view of
9.2.2 and 9.4.2, the image E; of £ in N — P is a geometrically tame end of N — P,
and m F = 71.S; has finite index in m F;.

In either case, we obtain embeddings in N — P of oriented surfaces S’ finitely
covered by Sjico). We may assume (after an isotopy) that these embeddings are
disjoint, and each surface cuts off (at least) one piece of N — P which is homeomorphic
to the product S x [0, 00). Since (NN, P) is homotopy equivalent to (No, [p), the image
of the cycle Z[Sj[e,oo)v 85’]-[6700)] in (N, P) bounds a chain C' with compact support.
Except in a special case to be treated later, the S} are pairwise non-homotopic and
the fundamental group of each S; maps isomorphically to a unique side in N — P.
C has degree 0 “outside” each S} and degree some constant [ elsewhere. Let N’ be
the region of N — P where C' has degree [. We see that N is geometrically tame, and
homotopy equivalent to N’.

The Euler characteristic is a homotopy invariant, so x(NV) = x(N') = x(No).
This imples y(ON') = x(0Np) (by the formula x(OM?) = 2x(M?)) so in fact the
finite sheeted covering Sjic o) — 5} has only one sheet—it is a homeomorphism.

Let @ be the geometric limit of any subsequence of the IV;. N is a covering space
of (). Every boundary component of the convex hull M of N is the geometric limit
of boundary components of the M;; consequently, M covers the convex hull of Q.
This covering can have only finitely many sheets, since M — P is made of a compact
part together with geometrically infinite tame ends. Any element a € 71 Q) has some
finite power o* € m N [k > 1]. In any torsion-free subgroup of PSL(2,C), an element
has at most one k-th root (by consideration of axes). If we write a as the limit of
elements p;(g;), g; € m Ny, by this remark, g; must be eventually constant so « is
actually in the algebraic limit m N. Q = N, and p; converges strongly to p.
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A cusp-preserving homeomorphism from N to some N;, hence to Ny, can be
constructed by using an approximate isometry of N’ with a submanifold of N; — P;,
for high enough 7. The image of N’ is homotopy equivalent to N;, so the fundamental
group of each boundary component of N’ must map surjectively, as well as injectively,
to the fundamental group of the neighboring component of (N;, P;) — N'. This implies
that the map of N’ into N; extends to a homeomorphism from N to N;.

There is a special case remaining. If any pair of the surfaces S; constructed
in N — P is homotopic, perform all such homotopies. Unless N — P is homotopy
equivalent to a product, the argument continues as before—there is no reason the
cover of S! must be a connected component of Ny — F.

When N — P is homotopy equivalent to the oriented surface S} in it, then by
a standard argument Ny — Py must be homeomorphic to S} x I. This is the case
essentially dealt with in 9.2. The difficulty is to control both ends of N — P—but
the argument of 9.2 shows that the ending or bending laminations of the two ends
of N; — P; cannot converge to the same lamination, otherwise the limit of some
intermediate surface would realize x;. This concludes the proof of 9.6.1a. O

9.7. Realizations of geodesic laminations for surface groups with extra
cusps, with a digression on stereographic coordinates

In order to analyze geometric convergence, and algebraic convergence in more
general cases, we need to clarify our understanding of realizations of geodesic lami-
nations for a discrete faithful representation p of a surface group m(S) when certain
non-peripheral elements of m(S) are parabolic. Let N = N, s be the quotient
three-manifold. Equip S with a complete hyperbolic structure with finite area. As in
§8.11, we may embed S in N, cutting it in two pieces the “top” N, and the “bottom”
N_. Let v, and 7_ be the (possibly empty) cusp loci for N, and N_, and denote by
Sit,...,Sj+ and S, ..., S,_ the components of S —v; and S — v_ (endowed with
complete hyperbolic structures with finite area). Let Ey4,..., E;j; and Ey_, ..., Ej_
denote the ends of N — P, where P is the union of horoball neighborhoods of all
cusps.

A compactly supported lamination on S;; or S;_ defines a lamination on S. In
particular, €(F;+) may be thought of as a lamination on S for each geometrically
infinite tame end of E,4.

PROPOSITION 9.7.1. A lamination v € GL(S) is realizable in N if and only if v
contains no component of v., no component of y_, and no €(E;;) or e(E;_).

PRrROOF. If 7 contains any unrealizable lamination, it is unrealizable, so the ne-
cessity of the condition is immediate.
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Let v € MLy(S) be any unrealizable compactly supported measured lamination.
If v is not connected, at least one of its components is unrealizable, so we need only
consider the case that 7 is connected. If 4 has zero intersection number with any
components of v, or y_, we may cut S along this component, obtaining a simpler
surface S’. Unless v is the component of v, or v_ in question, S’ supports v, so we
pass to the covering space of N corresponding to 7m1S’. The new boundary components
of S" are parabolic, so we have made an inductive reduction of this case.

We may now suppose that + has positive intersection number with each com-
ponent of v, and ~v_. Let {f;} be a sequence of measures, supported on simple
closed curves non-parabolic in N which converges to 7. Let {U;} be a sequence of
uncrumpled surfaces realizing the ;. If U; penetrates far into a component of P
corresponding to an element « in v, or v_, then it has a large ball mapped into P;
by area considerations, this ball on U; must have a short closed loop, which can only
be in the homotopy class of a. Then the ratio

Is(3:)/i(Bi; @) = 1y, (8:)/i(Bi, @)
is large. Therefore (since i(7, «) is positive and lg(7) is finite) the U;, away from their
cusps, remain in a bounded neighborhood of N — P in N. If v, (say) is non-empty,
one can now find a compact subset K of N so that any U, intersecting N, must
intersect K.

By the proof of 8.8.5, if infinitely many U; intersected K, there would be a convergent
subsequence, contradicting the non-realizability of . The only remaining possibility
is that we have reached, by induction, the case that either N, or N_ has no extra
cusps, and 7 is an ending lamination.

A general lamination v € GL(S) is obtained from a possibly empty lamination
which admits a compactly supported measure by the addition of finitely many non-
compact leaves. (Let § C v be the maximal lamination supporting a positive trans-
verse measure. If [ is any leaf in v — §, each end must come close to § or go to oo
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in .S, otherwise one could enlarge . By area considerations, such leaves are finite in
number.) From §8.10, v is realizable if and only if 0 is. 0

The picture of unrealizable laminations in PLy(.S) is the following. Let A, consist
of all projective classes of transverse measures (allowing degenerate non-trivial cases)
on x+ = vy UUie(E;y). Ay is convex in a coordinate system V. coming from any
train track 7 carrying y..

To see a larger, complete picture, we must find a larger natural coordinate system.
This requires a little stretching of our train tracks and imaginations. In fact, it is
possible to find coordinate systems which are quite large. For any v € PLg, let
A, C PLj denote the set of projective classes of measures on 7.

PROPOSITION 9.7.2. Let v be essentially complete. There is a sequence of train
tracks T;, where 7; is carried by 7,11, such that the union of natural coordinate systems
Sy = U;V,, contains all of PLy — A,.

The proof will be given presently.

Since 7; is carried by 7,41, the inclusion V,, C V, is a projective map (in ML,
the inclusion is linear). Thus S, comes naturally equipped with a projective structure.
We have not made this analysis, but the typical case is that v = A,. We think of S,
as a stereographic coordinate system, based on projection from 7. (You may imagine
PLy as a convex polyhedron in R"™, so that changes of stereographic coordinates
are piecewise projective, although this finite-dimensional picture cannot be strictly
correct, since there is no fixed subdivision sufficient to make all coordinate changes.)

i1

f’|

/
Jh
/

rr

g |/
\ Sy

COROLLARY 9.7.3. PLy(S) is homeomorphic to a sphere.
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PROOF THAT 9.7.2 IMPLIES 9.7.3. Let v € PLy(S) be any essentially complete
lamination. Let 7 be any train track carrying 7. Then PLy(S) is the union of two
coordinate systems V, U S;, which are mapped to convex sets in Euclidean space.
If A, # v, nonetheless the complement of A, in V; is homeomorphic to V; — v, so
PL(S) is homeomorphic to the one-point compactification of S.,. U

COROLLARY 9.7.4. When PLy(S) has dimension greater than 1, it does not have
a projective structure. (In other words, the pieces in changes of coordinates have not
been eliminated.)

PrROOF THAT 9.7.3 IMPLIES 9.7.4. The only projective structure on S™, when
n > 1, is the standard one, since S™ is simply connected. The binary relation of
antipodality is natural in this structure. What would be the antipodal lamination
for a simple closed curve a? It is easy to construct a diffeomorphism fixing o but

moving any other given lamination. (If i(y, @) # 0, the Dehn twist around « will
do.) O

REMARK. When PLy(S) is one-dimensional (that is, when S is the punctured
torus or the quadruply punctured sphere), the PIP structure does come from a pro-
jective structure, equivalent to RP!. The natural transformations of PLy(S) are
necessarily integral—in PSLy(Z).

Proor oF 9.7.2. Don’t blink. Let v be essentially complete. For each region R;
of S —~, consider a smaller region r; of the same shape but with finite points, rotated
so its points alternate with cusps of R; and pierce very slightly through the sides of
R;, ending on a leaf of ~.
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By 9.5.4, 9.5.2 and 9.3.9, both ends of each leaf of v are dense in v, so the regions
r; separate leaves of v into arcs. Each region of S — v — U;r; must be a rectangle
with two edges on Jr; and two on -, since r; covers the “interesting” part of R;. (Or,
prove this by area, x). Collapse all rectangles, identifying the r; edges with each
other, and obtain a surface S’ homotopy-equivalent to S, made of U;r;, where Or;
projects to a train track 7. (Equivalently, one may think of S — U;r; as made of very
wide corridors, with the horizontal direction given approximately by 7).

9.65
If we take shrinking sequences of regions r; ; in this manner, we obtain a sequence
of train tracks 7; which obviously have the property that 7; carries 7, when j > k.
Let 7/ € PLy(S) — A, be any lamination not topologically equivalent to . From the
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density in v of ends of leaves of ~, it follows that whenever leaves of v and +' cross,
they cross at an angle. There is a lower bound to this angle. It also follows that
v U~ cuts S into pieces which are compact except for cusps of S.

When R; is an asymptotic triangle, for instance, it contains exactly one region of
S —~ —~" which is a hexagon, and all other regions of S — v —~' are rectangles. For
sufficiently high j, the r;; can be isotoped, without changing the leaves of v which
they touch, into the complement of +'. It follows that +' projects nicely to 7;.

'i
4,‘

5’“’/

O

Stereographic coordinates give a method of computing and understanding inter-
section number. The transverse measure for v projects to a “tangential” measure v,
on each of the train tracks 7;: i.e., v,(b) is the v-transverse length of the sides of the
rectangle projecting to b.
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It is clear that for any o € ML, which is determined by a measure p, on 7;

9.7.5. i(0,7) =Y pta(b) - 14 (b).

Thus, in the coordinate system V,, in MLy, intersection with v is a linear function.

To make this observation more useful, we can reverse the process of finding a fam-
ily of “transverse” train tracks 7; depending on a lamination . Suppose we are given 9.67
an essentially complete train track 7, and a non-negative function (or “tangential”
measure) v on the branches of b, subject only to the triangle inequalities

a+b—c>0 a+c—b>0 b+c—a>0

whenever a, b and c are the total v-lengths of the sides of any triangle in S — 7. We
shall construct a “train track” 7* dual to 7, where we permit regions of S — 7* to be
bigons as well as ordinary types of admissible regions—Ilet us call 7 a bigon track.

Quintusl
B tured

SP"\E Ye

Tal:
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T* is constructed by shrinking each region R; of S — 7 and rotating to obtain a region
R} C R; whose points alternate with points of R;. These points are joined using one
more branch b* crossing each branch b of 7; branches b7 and b} are confluent at a
vertex of R* whenever b; and b, lie on the same side of R. Note that there is a bigon
in S — 7* for each switch in 7.

The tangential measure v for 7 determines a transverse measure defined on the
branches of 7* of the form b*. This extends uniquely to a transverse for 7* when S
is not a punctured torus. 9.68

Q= G’.&Ql*a.s
C = C_1+C1

B =‘§_(Q+C-b)
C-4@4+b-c)

When §'is the punctured torus, then 7 must look like this, up to the homeomorphism
(drawn on the abelian cover of 7' — p):

Note that each side of the punctured bigon is incident to each branch of 7. Therefore,
the tangential measure v has an extension to a transverse measure v* for 7%, which
is unique if we impose the condition that the two sides of R* have equal transverse
measure.
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A transverse measure on a bigon track determines a measured geodesic lamination,
by the reasoning of 8.9.4. When 7 is an essentially complete train track, an open
subset of ML, is determined by a function g on the branches of 7 subject to a

condition for each switch that
> ) => " pb),
bed beO®

where J and O are the sets of “incoming” and “outgoing” branches. Dually, “tangen-
tial” measure v on the branches of 7 determines an element of ML, (via v*), but two
functions v and v/ determine the same element if v is obtained from v/ by a process
of adding a constant to the incoming branches of a switch, and subtracting the same
constant from the outgoing branches—or, in other words, if ¥ — v/ annihilates all
transverse measures for 7 (using the obvious inner product v - u = > v(b)u(d)). In
fact, this operation on v merely has the effect of switching “trains” from one side of
a bigon to the other.

(Some care must be taken to obtain ¢’ from v by a sequence of elementary “switching”
operations without going through negative numbers. We leave this as an exercise to
the reader.)

Given an essentially complete train track 7, we now have two canonical coordinate
systems V. and V* in MLy or PLy. If v € V. and v* € V* are defined by measures
o and v« on 7, then i(vy,~*) is given by the inner product

i(7,77) = Y iy () (0):

ber
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To see this, consider the universal cover of S. By an Euler characteristic or area
argument, no path on 7 can intersect a path on 7* more than once. This implies the
formula when v and +/ are simple geodesics, hence, by continuity, for all measured
geodesic laminations.

PROPOSITION 9.7.4. Formula 9.7.3 holds for ally € V. and v* € V*. Intersection
number is a bilinear function on V. x V* (in MLy ). O

This can be interpreted as a more intrinsic justification for the linear structure
on the coordinate systems V,—the linear structure can be reconstructed from the
embedding of V; in the dual space of the vector space with basis 7* € V*.

COROLLARY 9.7.5. If v, € MLq are not topologically conjugate and if at least
one of them is essentially complete, then there are neighborhoods U and U’ of v and
~" with linear structures in which intersection number is bilinear.

PROOF. Apply 9.7.4 to one of the train tracks 7; constructed in 9.7.2. 0

REMARK. More generally, the only requirement for obtaining this local bilinearity
near v and 4 is that the complementary regions of v U ' are “atomic” and that
S — =~ have no closed non-peripheral curves. To find an appropriate 7, simply burrow
out regions of r;, “transverse” to v with points going between strands of 4/, so the
regions r; cut all leaves of v into arcs. Then collapse to a train track carrying 7’ and
“transverse” to 7y, as in 9.7.2.

What is the image of R™ of stereographic coordinates .S, for MLy (S)? To under-
stand this, consider a system of train tracks

TL —> Ty —> " —> T —> -

defining S,. A “transverse” measure for 7; pushes forward to a “transverse” measure
for 7;, for j > ¢. If we drop the restriction that the measure on 7; is non-negative,
still it often pushes forward to a positive measure on 7;. The image of S, is the set of

270 Thurston — The Geometry and Topology of 3-Manifolds

9.71

9.72



9.7. REALIZATIONS OF GEODESIC LAMINATIONS FOR SURFACE GROUPS

such arbitrary “transverse” measures on 7; which eventually become positive when
pushed far enough forward.
For 4" € A,, let v,y be a “tangential” measure on 7; defining 7.

PROPOSITION 9.7.6. The image of S, is the set of all “transverse,” not necessarily
positive, measures j1 on 1y such that for all v € Ay, vy - > 0.

(Note that the functions v, - p and v, - p are distinct for 4" # ~".)

In particular, note that if A, = «, the image of stereographic coordinates for ML,
is a half-space, or for PL, the image is R". If A, is a k-simplex, then the image of S,
for PLy is of the form int (A¥) x R, (This image is defined only up to projective
equivalence, until a normalization is made.)

y |8,

PROOF. The condition that v, - u > 0 is clearly necessary: intersection number

i(y,v") for v/ € A,, 4" € S, is bilinear and given by the formula
i) = vy .

Consider any transverse measure p on 7, such that p is always non-positive when
pushed forward to 7;. Let b; be a branch of 7; such that the push-forward of y is non-
positive on b;. This branch b;, for high 7, comes from a very long and thin rectangle
pi- There is a standard construction for a transverse measure coming from a limit
of the average transverse counting measures of one of the sides of p;. To make this
more concrete, one can map p; in a natural way to 77 for j <.

(In general, whenever an essentially complete train track 7 carries a train track
o, then ¢* carries 7*

o—T
of — 1",
To see this, embed ¢ in a narrow corridor around 7, so that branches of 7* do not pass
through switches of 0. Now ¢* is obtained by squeezing all intersections of branches
of 7" with a single branch of ¢ to a single point, and then eliminating any bigons
contained in a single region of S — o.)
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On 77, p; is a finite but very long path. The average number of times p; tranverses
a branch of 7 gives a function v; which almost satisfies the switch condition, but not

quite. Passing to a limit point of {;} one obtains a “transverse” measure v for 77,
whose lamination topologically equals 7, since it comes from a transverse measure on
77, for all 7. Clearly v - p < 0, since v; comes frm a function supported on a single
branch b of 7, and u(b;) < 0. O

For v € MLy let Z, C ML, consist of 4/ such that i(y,~") = 0. Let C, consist
of laminations 4’ not intersecting =, i.e., such that support of 4 is disjoint from the
support of 7. An arbitrary element of Z, is an element of C,, together with some
measure on . The same symbols will be used to denote the images of these sets in

PLo(S).

PROPOSITION 9.7.6. The intersection of Z., with any of the canonical coordinate
systems X containing v is convex. (In MLy or PLy.)

Proor. It suffices to give the proof in ML,. First consider the case that v is
a simple closed curve and X = V., for some train track 7 carrying . Pass to the
cylindrical covering space C' of S with fundamental group generated by . The path
of v on C'is embedded in the train track 7 covering 7. From a “transverse” measure
m on 7, construct corridors on C' with a metric giving them the proper widths.
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For any subinterval I of «, let nxr(/) and nxl(/) be (respectively) the net right
hand exiting and the net left hand exiting in the corresponding to I; in computing
this, we weight entrances negatively. (We have chosen some orientation for 7). Let
i(I) be the initial width of I, and f(I) be the final width.

If the measure m comes from an element 7/, then 7' € Z, if and only if there is no
“traffic” entering the corridor of v on one side and exiting on the other. This implies
the inequalities

i(I) > nxI(1)
and
i(I) > nxr(I)

for all subintervals I.

. Tenferﬂ‘m Ie‘”’
L ) - et o exited on et -

" -% 1;::{?&::!4 [T?n‘fef&l on
W rignt

el v trafhe is focced To

T 3 enter vight, ext left.
@ 9.76

nxl(y) =0,

It also implies the equation
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so that any traffic travelling once around the corridor returns to its inital position.
(Otherwise, this traffic would spiral around to the left or right, and be inexorably
forced off on the side opposite to its entrance.)

Conversely, if these inequalities hold, then there is some trajectory going clear
around the corridor and closing up. To see this, begin with any cross-section of
the corridor. Let x be the supremum of points whose trajectories exit on the right.
Follow the trajectory of x as far as possible around the corridor, always staying in
the corridor whenever there is a choice.

The trajectory can never exit on the left—otherwise some trajectory slightly lower
would be forced to enter on the right and exit on the left, or vice versa. Similarly, it
can’t exit on the right. Therefore it continues around until it closes up.

Y_"Fg_rcec\ to ex(t left
T 9

é ?{%Wll-l‘mﬁ.
x ST TR

B i

— T ™

. ‘-“"‘\?
X \CmrrecJ 'h; ex{f' T\‘jhf"':; g

9.77

Thus when « is a simple closed curve, Z, NV, is defined by linear inequalities, so
it is convex.

Consider now the case X = V, and 7 is connected but not a simple geodesic.
Then ~ is associated with some subsurface M, C S with geodesic boundary defined
to be the minimal convex surface containing . The set C, is the set of laminations
not intersecting int (M,). It is convex in V, since

C, = ﬂ{Za]a is a simple closed curve C int (M,)}.
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A general element ' of Z, is a measure on yU~", so Z,, consists of convex combina-
tions of A, and C,: hence, it is convex.

If v is not connected, then Z, is convex since it is the intersection of {Z., }, where
the v; are the components of ~.

The case X is a stereographic coordinate system follows immediately. When
X =V, consider any essentially complete v € V.. From 9.7.5 it follows that V* is
linearly embedded in S,. (Or more directly, construct a train track (without bigons)
carrying 7*; or, apply the preceding proof to bigon track 7*.) O]

REMARK. Note that when 7 is a union of simple closed curves, C, in PLy(5) is
homeomorphic to PLy(S — 7), regarded as a complete surface with finite area—i.e., 9.78
C, is a sphere. When v has no component which is a simple closed curve, C, is
convex. Topologically, it is the join of PLy(S — |JS,) with the simplex of measures
on the boundary components of the S,,, where the S, are subsurfaces associated
with the components ~; of .

Now we are in a position to form an image of the set of unrealizable laminations
for pmS. Let Up C PLy be the union of laminations containing a component of y
and define U_ similarly, so that v is unrealizable if and only if y €e U, UU_. U, is a
union of finitely many convex pieces, and it is contained in a subcomplex of PLy of
codimension at least one. It may be disjoint from U_, or it may intersect U_ in an
interesting way.

EXAMPLE. Let S be the twice punctured torus. From a random essentially com-
plete train track,

E g 'm }ex
&+)0+(+X‘-d+\]lg j’ A 3-simp )
ga.\-b%-\d'-x-ﬂ/ # by \ /e /: arbrc4x : in pia(—r- iy I“z)
[ =3 R A a d
& = @+\g+c abied T+ %

C

we compute that ML, has dimension 4, so PLg is homeomorphic to S®. For any
simple closed curve o on S, C,, is PLy(S — «),

)
~) D& (=)

where S — « is either a punctured torus union a (trivial) thrice punctured sphere, or
a 4-times punctured sphere. In either case, C, is a circle, so Z, is a disk.

9.79
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Here are some sketches of what U, and U— can look like.

Here is another example, where S is a surface of genus 2, and U (S)UU_(S) has
the homotopy type of a circle (although its closure is contractible):

9.80

In fact, Uy UU_ is made up of convex sets Z, — C, with relations of inclusion as
diagrammed:
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9.9. ERGODICITY OF THE GEODESIC FLOW

=

X

Sy WY
G{}D
, (@ )

The closures all contain the element «; hence the closure of the union is starlike:

9.9. Ergodicity of the geodesic flow
We will prove a theorem of Sullivan (1979):

THEOREM 9.9.1. Let M™ be a complete hyperbolic manifold (of not necessarily
finite volume). Then these four conditions are equivalent:

(a) The series
Z exp(—(n - 1) d(xoﬁffo))
yeETLM™
diverges. (Here, xog € H™ is an arbitrary point, yxq is the image of xo under
a covering transformation, and d(, ) is hyperbolic distance).

(b) The geodesic flow is not dissipative. (A flow ¢y on a measure space (X, )
is dissipative if there exists a measurable set A C X and a T > 0 such that
(AN @(A)) =0 fort >T, and X = Ueya).)

(¢) The geodesic flow on Ty(M) is recurrent. (A flow ¢, on a measure space
(X, ) is recurrent when for every measure set A C X of positive measure
and every T' > 0 there is a t > T such that (AN ¢(A)) > 0.)

(d) The geodesic flow on T1(M) is ergodic.

Note that in the case M has finite volume, recurrence of the geodesic flow is
immediate (from the Poincaré recurrence lemma). The ergodicity of the geodesic
flow in this case was proved by Eberhard Hopf, in 7?. The idea of (¢) — (d) goes

back to Hopf, and has been developed more generally in the theory of Anosov flows
77.
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9. ALGEBRAIC CONVERGENCE

COROLLARY 9.9.2. If the geodesic flow is not ergodic, there is a non-constant
bounded superharmonic function on M.

PROOF OF 9.9.2. Consider the Green’s function g(x) = f;& o) SINAITE AL for
hyperbolic space. (This is a harmonic function which blows up at zy.) By (a), the
series Zy@rl v 9 © 7 converges to a function, invariant by 7, which projects to a
Green’s function G for M. The function f = arctan G (where arctanoco = 7/2 ) is a
bounded superharmonic function, since arctan is convex. O

REMARK. The convergence of the series (a) is actually equivalent to the existence
of a Green’s function on M, and also equivalent to the existence of a bounded super-
harmonic function. See (Ahlfors, Sario) for the case n = 2, and [ | for the general
case.

COROLLARY 9.9.3. IfT' is a geometrically tame Kleinian group, the geodesic flow
on Ty(H™/T") is ergodic if and only if Ly = S*.

PROOF OF 9.9.3. From 9.9.2 and 8.12.3. 0

PRrROOF OF 9.9.1. Sullivan’s proof of 9.9.1 makes use of the theory of Brownian
motion on M™. This approach is conceptually simple, but takes a certain amount
of technical background (or faith). Our proof will be phrased directly in terms of
geodesics, but a basic underlying idea is that a geodesic behaves like a random
path: its future is “nearly” independent of its past.

Teeiere2

(d) — (c). This is a general fact. If a flow ¢; is not recurrent, there is some set A
of positive measure such that only for ¢ in some bounded interval is p(AN@(A)) > 0.
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Then for any subset B C A of small enough measure, Uy¢;(B) is an invariant subset
which is proper, since its intersection with A is proper.

(¢) — (b). Immediate.

(b) — (a). Let B be any ball in H", and consider its orbit I'B where I' = m M.
For the series of (a) to diverge means precisely that the total apparent area of I'G' as
seen from a point zo € H", (measured with multiplicity) is infinite.

In general, the underlying space of a flow is decomposed into two measurable
parts, X = DU R, where ¢, is dissipative on D (the union of all subsets of X which
eventually do not return) and recurrent on R. The reader may check this elementary
fact. If the recurrent part of the geodesic flow is non-empty, there is some ball B in
M™ such that a set of positive measure of tangent vectors to points of B give rise to
geodesics that intersect B infinitely often. This clearly implies that the series of (a)
diverges.

The idea of the reverse implication (a) — (b) is this: if the geodesic flow is
dissipative there are points xy such that a positive proportion of the visual sphere
is not covered infinitely often by images of some ball. Then for each “group” of
geodesics that return to B, a definite proportion must eventually escape I' B, because
future and past are nearly independent. The series of (a) can be regrouped as a
geometric progression, so it converges. We now make this more precise.

Recall that the term “visual sphere” at zy is a synonym to the “set of rays”
emanating from zy. It has a metric and a measure obtained from its identification
with the unit sphere in the tangent space at xg.

Let xg € M™ be any point and B C M™ any ball. If a positive proportion of the
rays emanating from x, pass infinitely often through B, then for a slightly larger ball
B’, a definite proportion of the rays emanating from any point z € M™ spend an
infinite amount of time in B’, since the rays through x are parallel to rays through
xo. Consequently, a subset of T7(B’) of positive measure consists of vectors whose
geodesics spend an infinite total time in 77(B’); by the Poincaré recurrence lemma,
the set of such vectors is a recurrent set for the geodesic flow. (b) holds so (a) — (b)
is valid in this case. To prove (a) — (b), it remains to consider the case that almost
every ray from z, eventually escapes B; we will prove that (a) fails, i.e., the series of
(a) converges.

Replace B by a slightly smaller ball. Now almost every ray from almost every
point x € M eventually escapes the ball. Equivalently, we have a ball B C H" such
that for every point x € H", almost no geodesic through x intersects I' B, or even
['(N.(B)), more than a finite number of times.

Let xg be the center of B and let a be the infimum, for y € H", of the diameter
of the set of rays from xy which are parallel to rays from y which intersect B. This
infimum is positive, and very rapidly approached as y moves away from x.
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Let R be large enough so that for every ball of diameter greater than « in the
visual sphere at x(, at most (say) half of the rays in this ball intersect ' N¢(B) at a
distance greater than R from z. R should also be reasonably large in absolute terms
and in comparison to the diameter of B.

Let x¢ be the center of B. Choose a subset I C I' of elements such that: (i) for
every v € I there is a v/ € I with d(v'zo,vz9) < R. (ii) For any 7, and 7, in I",
d(m1z0, Y220) > R.

Any subset of ' maximal with respect to (ii) satisfies (i).

We will show that > ,p exp(—(n — 1) d(xg,y'z0)) converges. Since for any v/
there are a bounded number of elements v € I' so that d(vxg,v'z9) < R, this will
imply that the series of (a) converges.

Let < be the partial ordering on the elements of [ generated by the relation
7 < Y2 when v, B eclipses 7, B (partially or totally) as viewed from xg; extend < to
be transitive.

Let us denote the image of vB in the visual sphere of zy by B,. Note that when
7' < 7, the ratio diam(B,)/ diam(B,) is fairly small, less than 1/10, say. Therefore
Uy <y B, is contained in a ball concentric with B, of radius 10/9 that of B,.

Choose a maximal independent subset A; C I (this means there is no rela-
tion §; < &9 for any 01,02 € Ay ). Do this by successively adjoining any  whose
B, has largest size among elements not less than any previously chosen member.
Note that area (UseaBs)/ area(U,erv B,) is greater than some definite (a priori) con-
stant: (9/10)""! in our example. Inductively define I'y = I, 7/, = I'; — A;4; and
define A,y C I'; similarly to A;. Then IV = U2 A;.

For any v € I, we can compare the set B, of rays through x, which intersect
v(B) to the set C, of parallel rays through v.X.

Any ray of B, which re-enters I"(B) after passing through +/(B), is within € of
the parallel ray of C., by that time. At most half of the rays of C., ever enter N.(I'B).
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The distortion between the visual measure of B, and that of C is modest, so we can
conclude that the set of reentering rays, B, N J B, has measure less than 2/3
the measure of B,.

v <y

We conclude that, for each 4,

area( U Bv) — area ( U Bﬂ,)

Vel 4 Vel

> 1/3 area ( U Bs)

5€Ai+1

>1/3-(9/10)" " area (| B,).

~ery

The sequence {area(lJ, o B,)} decreases geometrically. This sequence dominates
the terms of the series ) . areaUsen, By = Zver’ area(B,), so the latter converges,
which completes the proof of (a) — (b).

(b) — (c). Suppose R C T} (M™) is any recurrent set of positive measure for the
geodesic flow ¢;. Let B be a ball such that R N T (B) has positive measure. Almost
every forward geodesic of a vector in R spends an infinite amount of time in B. Let
A C Ti(B) consist of all vectors whose forward geodesics spend an infinite time in B
and let v;, t > 0, be the measurable flow on A induced from ¢; which takes a point
leaving A immediately back to its next return to A.

Since v, is measure preserving, almost every point of A is in the image of 1, for
all t and an inverse flow 1 _; is defined on almost all of A, so the definition of A is
unchanged under reversal of time. Every geodesic parallel in either direction to a
geodesic in A is also in A; it follows that A = T7(B). By the Poincaré recurrence
lemma, v); is recurrent, hence ¢; is also recurrent.

(¢c) — (d). It is convenient to prove this in the equivalent form, that if the action
of T on S7' x 8" is recurrent, it is ergodic. “Recurrent” in this context means
that for any set A C S"~! x S"~1 of positive measure, there are an infinite number of
elements v € T such that u(yANA) > 0. Let I C S"! x S"~! be any measurable set
invariant by I'. Let —B; and By C S™ ! be small balls. Let us consider what I must
look like near a general point © = (x1,22) € By X By. If 7y is a “large” element of T’
such that vx is near x, then the preimage of v of a product of small e-ball around ~yx;
and vz, is one of two types: it is a thin neighborhood of one of the factors, (z; x Bs)
or (By X x2). (7 must be a translation in one direction or the other along an axis
from approximately z; to approximately x5.) Since I is recurrent, almost every point
x € By x By is the preimage of elements v of both types, of an infinite number of
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points where I has density 0 or 1. Define
f(z1) :/ X1(1, 22) dzo,
Ba

where x; is the characteristic function of I, for x; € By (using a probability measure
on By ). By the above, for almost every x; there are arbitrarily small intervals
around 1 such that the average of f in that interval is either 0 or 1. Therefore f is
a characteristic function, so I N By X By is of the form S x By (up to a set of measure
zero) for some set S C Bj.

Similarly, I is of the form B; x R, so I is either () x () or By x By (up to a set of
measure zero). O
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NOTE

Since a new academic year is beginning, I am departing from the intended order
in writing these notes. For the present, the end of chapter 9 and chapters 10, 11 and
12, which depend heavily on chapters 8 and 9, are to be omitted. The tentative plan
for the omitted parts is to cover the following topics:

The end of chapter 9—a more general discussion of algebraic convergence.

Chapter 10—Geometric convergence: an analysis of the possibilities for geometric
limits.

Chapter 11. The Riemann mapping theorem; parametrizing quasi-conformal de-
formations. Extending quasi-conformal deformations of S? to quasi-isometric defor-
mations of H?®. Examples; conditions for the existence of limiting Kleinian groups.

Chapter 12. Boundaries for Teichmiiller space, classification of diffeomorphisms
of surfaces, algorithms involving the mapping class group of a surface.
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CHAPTER 11

Deforming Kleinian manifolds by homeomorphisms of the
sphere at infinity

A pseudo-isometry between hyperbolic three-manifolds gives rise to a quasi-con-
formal map between the spheres at infinity in their universal covering spaces. This is
a key point in Mostow’s proof of his rigidity theorem (Chapter 5). In this chapter, we
shall reverse this connection, and show that a k-quasi-conformal map of S% to itself
gives rise to a k-quasi-isometry of hyperbolic space to itself. A self-map f: X — X
of a metric space is a k-quasi-isometry if

Ld(fe, fy) < d(,y) < kd(f, fy)

for all x and y. By use of a version of the Riemann mapping theorem, the space
of quasi-conformal maps of S? can be parametrized by the non-conformal part of
their derivatives. In this way we obtain a remarkable global parametrization of
quasi-isometric deformations of Kleinian manifolds by the Teichmiiller spaces of their
boundaries.

11.1. Extensions of vector fields

In §§8.4 and 8.12, we made use of the harmonic extensions of measurable functions
on S, to study the limit set of a Kleinian group. More generally, any tensor field
on S% extends, by a visual average, over H*. To do this, first identify S? with the
unit sphere in T,(H?), where z is a given point in H®. If y € S2, this gives an
identification ¢ : T,(S%) — T,(H?). There is a reverse map p : T,(H?) — T,(S2)
coming from orthogonal projection to the image of . We can use 7, and p* to take
care of covariant tensor fields, like vector fields, and contravariant tensor fields, like
differential forms and quadratic forms, as well as tensor fields of mixed type. The
visual average of any tensor field 7' on S2% is thus a tensor field av T, of the same
type, on H3. In general, avT needs to be modified by a constant to give it the right
boundary behavior.

We need some formulas in order to make computations in the upper half-space
model. Let z be a point in upper half-space, at Euclidean height h above the bounding
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plane C. A geodesic through x at angle 6 from the vertical hits C at a distance
r = hcot(0/2) from the foot z of the perpendicular from z to C.

Thus, dr = —(h/2) csc?(0/2) d§ = —1(h+7r?/h) df. Since the map from the visual
sphere at x to S2, is conformal, it follows that
2

v, — 4<h n %)_2 dy,

where p is Lebesgue measure on C and V, is visual measure at x.

Any tensor T at the point z pushes out to a tensor field T,, on S% = C by the
maps ¢* and p,. When X is a vector, then X is a holomorphic vector field, with
derivative field, with derivative £||X || at its zeros. To see this, let 7x be the vector
field representing the infinitesimal isometry of translation in the direction X. The
claim is that X, = 7x|S. This may be seen geometrically when X is at the center
in the Poincaré disk model.

% .
this c'\rc\e \S
Q\Pprot'; 24 at‘?"\/

x’.‘ ctran 3 g

Alternatively if X is a vertical unit vector in the upper half-space, then we can
compute that

0 h sinf 0 0 0
Xe=—-8Nl —==- ——— — =r— = (2 — ,
90 T 2 sin? 6/2 or "or (z = 20) 0z
where zy is the foot of the perpendicular from x to C. This clearly agrees with
the corresponding infinitesimal isometry. (As a “physical” vector field, 0/0z is the
same as the unit horizontal vector field, d/0x, on C. The reason for this notation is

that the differential operators d/0x and 0/dz have the same action on holomorphic
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functions: they are directional derivatives in the appropriate direction. Even though 11.4
the complex notation may at first seem obscure, it is useful because it makes it
meaningful to multiply vectors by complex numbers.)

When g is the standard inner product on T,(H?), then

2\ -2

gu(V1,Y2) =4(h+ ) ViV

where Y] - Y5 is the inner product of two vectors on C.

Let us now compute av(9d/0z). By symmetry considerations, it is clear that
av(0/0z) is a horizontal vector field, parallel to d/0z. Let e be the vector of unit
hyperbolic length, parallel to 0/0z at a point x in upper half-space. Then

We have

w5z = Ju ()

av2 e = L goo<£,€oo> dV,
C

SO

0z Am 0z

2

:i CRe(—%(z—zO) - n?) 16<h+%)_4du.

Clearly, by symmetry, the term involving Re(z — z0)? integrates to zero, so we have 115

4
ava e——/ / rdf - 8h h+h> dr
2h2 r

209 - O

Note that the hyperbolic norm of av(9/0z) goes to co as h — 0, while the Euclidean
norm is the constant %
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We now introduce the fudge factor by defining the extension of a vector field X
on S% to be

Sav(X) in H?
= 2 ’
ex(X) { X on S2.

PROPOSITION 11.1.1. If X is continuous or Lipschitz, then so is ex(X). If X is
holomorphic, then ex(X) is an infinitesimal isometry.

PrOOF. When X is an infinitesimal translation of C, then ex(X) is the same
infinitesimal translation of upper half-space. Thus every “parabolic” vector field
(with a zero of order 2) on S2 extends to the correct infinitesimal isometry. A
general holomorphic vector field on S2 is of the form (az? + bz + ¢)(9/9z) on C.
Since such a vector field can be expressed as a linear combination of the parabolic
vector fields 9/0z, 220/0z and (2 —1)? 3/0z, it follows that every holomorphic vector
field extends to the correct infinitesimal isometry.

Suppose X is continuous, and consider any sequence {x;} of points in H? converg-
ing to a point at infinity. Bring z; back to the origin O by the translation 7; along
the line Ox;. If 2; is close to S2,, 7; spreads a small neighborhood of the endpoint y;
of the geodesic from O to z; over almost all the sphere. 7;+ X is large on most of the
sphere, except near the antipodal point to y;, so it is close to a parabolic vector field
P;, in the sense that for any €, and sufficiently high i,

17X = Bl < e+ N,
N

where \; is the norm of the derivative of 7; at y;. Here P; is the parabolic vector
field agreeing with 7, X at y;, and 0 at the antipodal point of y;. It follows that

so X is continuous along 0B3. Continuity in the interior is self-evident (if you see
the evidence).

Suppose now that X is a vector field on S% C R? which has a global Lipschitz
constant

k= sup o= Xvl
y,y' €S2 Hy - y,H
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Then the translates 7;+ X satisfy
|+ X — Pi|| < B,

where B is some constant independent of 7. This may be seen by considering stereo-
graphic projection from the antipodal point of y;. The part of the image of X — TZIIPZ'
in the unit disk is Lipschitz and vanishes at the origin. When 7;« is applied, the re-
sulting vector field on C satisfies a linear growth condition (with a uniform growth
constant). This shows that, on S, ||7;+X — P;|| is uniformly bounded in all but a
neighborhood of the antipodal point of Y, where boundedness is obvious. Then

| ex X (z;) — ex 7 Py(z)|| < B - s,

U at the origin in B3, or 1/A; up to a

where f; is the norm of the derivative of 7,
bounded factor.

Since p; is on the order of the (Euclidean) distance of z; from y;, it follows that
ex X is Lipschitz along S2 .

To see that ex X has a global Lipschitz constant in B2, consider € B3, and let 7
be a translation as before taking x to O, and P a parabolic vector field approximating
7+X. The vector fields 7,X — P obtained in this way are uniformly bounded, so it
is clear that the vector fields ex(7.X — P) have a uniform Lipschitz constant at the
origin in B3. By comparison with the upper half-space model, where 7, can be taken
to be a similarity, we obtain a uniform bound on the local Lipschitz constant for
ex(X — 771P) at an arbitrary point z. Since the vector fields 7! P are uniformly
Lipschitz, it follows that X is globally Lipschitz. 0]

Note that the stereographic image in C of a uniformly Lipschitz vector field on
S2 is not necessarily uniformly Lipschitz—consider 229/0z, for example. This is
explained by the large deviation of the covariant derivatives on S% and on C near the
point at infinity. Similarly, a uniformly Lipschitz vector field on B? is not generally
uniformly Lipschitz on H3. In fact, because of the curvature of H3, a uniformly
Lipschitz vector field on H? must be bounded; such vector fields correspond precisely
to those Lipschitz vector fields on B* which vanish on 0B3.

'——.—“‘ ar \C-]
e Trgr—rel e ol

1
Seo
\-3@.0&65;‘
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A hyperbolic parallel vector field along a curve near S, appears to turn rapidly.

The significance of the Lipschitz condition stems from the elementary fact that
Lipschitz vector fields are uniquely integrable. Thus, any isotopy ¢, of the boundary
of a Kleinian manifold Or = (B? — Lr)/T" whose time derivative ¢, is Lipschitz as a
vector field on I x dOr extends canonically to an isotopy ex¢; on Or. One may see
this most simply by observing that the proof that ex X is Lipschitz works locally.

A k-quasi-isometric vector field is a vector field whose flow, ¢;, distorts distances
at a rate of at most k. In other words, for all x, y and ¢, ¢, must satisfy

e Md(z,y) < d(pix, pry) < eMd(,y).

A k-Lipschitz vector field on a Riemannian manifold is k-quasi-isometric. In fact, a
Lipschitz vector field X on B? which is tangent to dB? is quasi-isometry as a vector
field on H?® = int B3. This is clear in a neighborhood of the origin in B3. To see
this for an arbitrary point x, approximate X near x by a parabolic vector field, as in
the proof of 11.1.1, and translate x to the origin.

In particular, if ¢, is an isometry of OOr with Lipschitz time derivative, then ex ¢,
has a quasi-isometric time derivative, and (¢, is a quasi-isometry.

Our next step is to study the derivatives of ex X, so we can understand how a
more general isotopy such as ex ¢, distorts the hyperbolic metric. From the definition
of ex X, it is clear that ex is natural, or in other words,

ex(TuX) = T (ex(X))

where T is an isometry of H? (extended to S2, where appropriate).
If X is differentiable, we can take the derivative at T' = id, yielding

ex[Y, X] = [Y, ex X]

for any infinitesimal isometry Y. If Y is a pure translation and X is any point on the
axis of Y, then VxY, = 0. (Here, V is the hyperbolic covariant derivative, so VW
is the directional derivative of a vector field W in the direction of the vector field Z.)
Using the formula

Y, X]=VyX —VyY,

we obtain:

PROPOSITION 11.1.2. The direction derivative of ex X in the direction Y,, at a
point x € H3, is
Vy, ex X = ex[Y, X],

where Y is any infinitesimal translation with axis through x and value Y, at x. [
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The covariant derivative VX, which is a linear transformation of the tangent
space T, (H?) to itself, can be expressed as the sum of its symmetric and antisym-
metric parts,

VX =V°X 4+ VX,
where
Vi XY = %(VYX Y +VyX-Y)
and
VXY = %(VyX Y = Vy X Y).
The anti-symmetric part VX describes the infinitesimal rotational effect of the flow

generated by X. It can be described by a vector field curl X pointing along the axis
of the infinitesimal rotation, satisfying the equation

vX = %CurlX xY

where X is the cross-product. If eg,eq, ey forms a positively oriented orthonormal
frame at X, the formula is

curl X = Z (Ve, X -€iy1— Ve, X - €) €ipa.
1€Z/3

Consider now the contribution to ex X from the part of X on an infinitesimal area on
S2 | centered at y. This part of ex X has constant length on each horosphere about
y (since the first derivative of a parabolic transformation fixing y is the identity),
and it scales as e73, where t is a parameter measuring distance between horospheres
and increasing away from y. (Linear measurements scale as e~*. Hence, there is a
factor of e=2! describing the scaling of the apparent area from a point in H?, and a
factor of —e' representing the scaling of the lengths of vectors.) Choose positively
oriented coordinates t, z1, To, so that ds? = dt? 4 €*'(dz? + dz3), and this infinitesimal
contribution to ex X is in the 0/0z; direction. Let ey, €; and ey be unit vectors in
the three coordinate directions. The horospheres ¢ = constant are parallel surfaces,
of constant normal curvature 1 (like the unit sphere in R3), so you can see that

Veoeo = Veoel = Ve(]eg =0

Ve e = +e1, Ve, e1 = —eg, Ve, e =0
and
V62€0 = €9, v6262 = —¢€p, vegel = 0.

(This information is also easy to compute by using the Cartan structure equations.)

The infinitesimal contribution to ex X is proportional to Z = e 3¢y, so

curl Z = (Ve Z - e1 — Ve, Z - €g) €9

_ —3t
= —2e eq.
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(The curl is in the opposite sense from the curving of the flow lines because the effect
of the flow speeding up on inner horospheres is stronger.)

S .

/NN

This is proportional to the contribution of X to exiX from the same infinitesimal
region, so we have

ProproOSITION 11.1.3.
Curl (ex X) = 2ex(iX),
and consequently
Curl® (ex X) = —4ex X
and

Div (ex X) = 0.

PRrOOF. The first statement follows by integration of the infinitesimal contribu-
tions to curlex X. The second statement

curl curlex X = 2curlexiX = 4exi?X = —4ex X,

is immediate. The third statement follows from the identity divcurlY = 0, or by
considering the infinitesimal contributions to ex X. U

The differential equation curl? ex X +ex X = 0 is the counterpart to the statement
that ex f = av f is harmonic, when f is a function. The symmetric part V*X of the
covariant derivative measures the infinitesimal strain, or distortion of the metric, of
the flow generated by X. That is, if Y and Y’ are vector fields invariant by the flow
of X, so that [X,Y] = [X,Y’] =0, then Vy X = VxY and Vy, X = VxY’ so the
derivative of the dot product of Y and Y” in the direction X, by the Leibniz rule is

X(Y -Y)=VyY V' +Y  VyY'
ZVYX-Y/+VY/X-Y
— (V5 X - Y)).

The symmetric part of V can be further decomposed into its effect on volume
and a part with trace 0,

VeX = L Trace(V°X) - [ + VX,
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Here, I represents the identity transformation (which has trace 3 in dimension 3).

Note that trace V°X = trace VX = divergence X = XV, X - e; where {¢;} is an

orthonormal basis, so for a vector field of the form ex X, Vfex X = V% ex X. 11.13
Now let us consider the analagous decomposition of the covariant derivative VX

of a vector field on the Riemann sphere (or any surface). There is a decomposition

VX = VX + 3(trace VX)I + V*X.
Define linear maps 0 and 0 of the tangent space to itself by the formulas
OX(Y) = H{VyX —iVyy X}
and

0X(Y)=HVyX +iVy X}

2
for any vector field Y. (On a general surface, i is interpreted as a 90° counter-clockwise
rotation of the tangent space of the surface.)

ProproOSITION 11.1.4.
0X = 3(trace VX)I + VX
= 1{(div X)I + (curl X)il}

and
0X = V¥ X.
0X s invariant under conformal changes of metric.
REMARK (Notational remark). Any vector field on C be written X = f(2)0/0z,

in local coordinates. The derivative of f can be written df = f,dz + f,dy. This can
be re-expressed in terms of dz = dx + idy and dz = dx — idy as

df = f.dz + fsdz

where
.= %(fz - @fy)

and 11.14
Jz= %(fx +ify).

Then Of = f.dz and Of = f-dZ are the complex linear and complex conjugate linear

parts of the real linear map df. Similarly, X = f.dz9/0z and 0X = f,dz0/0z are

the complex linear and conjugate linear parts of the map dX = VX.
Proor. If L : C — C is any real linear map, then

L=%(L—ioLoi)+i(L+ioLoi)
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is clearly the decomposition into its complex linear and conjugate linear parts. A
complex linear map, in matrix form

i

is an expansion followed by a rotation, while a conjugate linear map in matrix form
a b
b —al’

To see that 0X is invariant under conformal changes of metric, note that VxiY =
1V xY and write 0X without using the metric as

is a symmetric map with trace 0.

OX(Y) = H{Vy X +iViy X}
= H{Vy X — VxY +iVy X —iVxiV}
= H[Y, X] +i[iY, X]}. U

We can now derive a nice formula for V®ex X:

PROPOSITION 11.1.5. For any vector Y € T,(H?) and any C* vector field X on
S2, 11.15

S ex X = 3/47r/ i (X (Vo)) V.
S

2
oo

PRrOOF. Clearly both sides are symmetric linear maps applied to Y, so it suffices
to show that the equation gives the right value for Vy ex X - Y. From 11.1.2, we have

Vyex X Y = ex[Va, X]- Y
- 3/87r/ Yao, X] - Yo dV,
SZ
and also, at the point = (where ex:Y,, = 0),
0= [ex1Yo, X] - exiYy

— 3/8x / (1Yo, X] - Yoo dV,
S’Q

:3/87T/ —i[iYao, X] - Yoo V.
52
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Therefore
yexX Y =Vyex X Y

- 3/87r/ Vo, X] - Yoo +[iVae, X] - Yau dV,
SQ

= 3/4n (/ 0X(Yy) dV;)Y.
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CHAPTER 13

Orbifolds

As we have had occasion to see, it is often more effective to study the quotient
manifold of a group acting freely and properly discontinuously on a space rather
than to limit one’s image to the group action alone. It is time now to enlarge our
vocabulary, so that we can work with the quotient spaces of groups acting properly
discontinuously but not necessarily freely. In the first place, such quotient spaces
will yield a technical device useful for showing the existence of hyperbolic structures
on many three-manifolds. In the second place, they are often simpler than three-
manifolds tend to be, and hence they often give easy, graphic examples of phenomena
involving three-manifolds. Finally, they are beautiful and interesting in their own
right.

13.1. Some examples of quotient spaces.

We begin our discussion with a few examples of quotient spaces of groups acting
properly discontinuously on manifolds in order to get a taste of their geometric flavor.

EXAMPLE 13.1.1 (A single mirror). Consider the action of Zy on R? by reflection
in the y — z plane. The quotient space is the half-space x > 0. Physically, one may
imagine a mirror placed on the y — z wall of the half-space > 0. The scene as
viewed by a person in this half-space is like all of R?, with scenery invariant by the
Zo symmetry.
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ExAMPLE 13.1.2 (A barber shop). Consider the group G generated by reflections
in the planes x = 0 and = 1 in R3. G is the infinite dihedral group Do = Zo * Zs.
The quotient space is the slab 0 < x < 1. Physically, this is related to two mirrors
on parallel walls, as commonly seen in a barber shop.

ExXAMPLE 13.1.3 (A billiard table). Let G be the group of isometries of the
Euclidean plane generated by reflection in the four sides of a rectangle R. G is
isomorphic to Dy, X D4, and the quotient space is R. A physical model is a billiard
table. A collection of balls on a billiard table gives rise to an infinite collection of balls
on R?, invariant by G. (Each side of the billiard table should be one ball diameter
larger than the corresponding side of R so that the centers of the balls can take any
position in R. A ball may intersect its images in R2.)

’

Ignoring spin, in order to make ball x hit ball y it suffices to aim it at any of the
images of y by G. (Unless some ball is in the way.)

EXAMPLE 13.1.4 (A rectangular pillow). Let H be the subgroup of index 2 which
preserves orientation in the group G of the preceding example. A fundamental do-
main for H consists of two adjacent rectangles. The quotient space is obtained by
identifying the edges of the two rectangles by reflection in the common edge.

%__{___h R,
e L,
)

Topologically, this quotient space is a sphere, with four distinguished points or singu-
lar points, which come from points in R? with non-trivial isotropy (Zz). The sphere
inherits a Riemannian metric of 0 curvature in the complement of these 4 points, and
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it has curvature K,, = 7 concentrated at each of the four points p;. In other words,
a neighborhood of each point p; is a cone, with cone angle 7 = 27 — K,,,.

Pi

¢V
A . T

\ \i/
EXERCISE. On any tetrahedron in R? all of whose four sides are congruent, every

geodesic is simple. This may be tested with a cardboard model and string or with
strips of paper. Explain.

a5
-

]

1

ExAMPLE 13.1.5 (An orientation-preserving crystallographic group). Here is one
more three-dimensional example to illustrate the geometry of quotient spaces. Con-
sider the 3 families of lines in R? of the form (¢, n, m+%), (m+%, t,n) and (n, m—l—%, t)
where n and m are integers and ¢ is a real parameter. They intersect a cube in the
unit lattice as depicted.

Let G be the group generated by 180° rotations about these lines. It is not hard
to see that a fundamental domain is a unit cube. We may construct the quotient
space by making all identifications coming from non-trivial elements of G acting on
the faces of the cube. This means that each face must be folded shut, like a book.
In doing this, we will keep track of the images of the axes, which form the singular
locus.
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As you can see by studying the picture, the quotient space is S® with singular locus
consisting of three circles in the form of Borromean rings. S? inherits a Euclidean
structure (or metric of zero curvature) in the complement of these rings, with a
cone-type singularity with cone angle m along the rings.

In these examples, it was not hard to construct the quotient space from the group
action. In order to go in the opposite direction, we need to know not only the quotient
space, but also the singular locus and appropriate data concerning the local behavior
of the group action above the singular locus.

13.2. Basic definitions.

An orbifold” O is a space locally modelled on R™ modulo finite group actions. Here
is the formal definition: O consists of a Hausdorff space X, with some additional
structure. Xo is to have a covering by a collection of open sets {U;} closed under
finite intersections. To each U; is associated a finite group I';, an action of I'; on an
open subset UZ of R™ and a homeomorphism ¢; : U; ~ UZ /Ti. Whenever U; C Uj,

*This terminology should not be blamed on me. It was obtained by a democratic process in my
course of 1976-77. An orbifold is something with many folds; unfortunately, the word “manifold”
already has a different definition. I tried “foldamani,” which was quickly displaced by the suggestion
of “manifolded.” After two months of patiently saying “no, not a manifold, a manifoldead,” we held
a vote, and “orbifold” won.
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there is to be an injective homomorphism
Jij: Ti =Ty
and an embedding
Dij U; — Uj
equivariant with respect to f;; (i.e., for v € I';, ¢;;(vz) = fi;(7)i;(z)) such that the
diagram below commutes.|

U; U;
b, $9= @ij /T 7,1
fii
Pi Uj/rj
Py

U, - U;

We regard ¢;; as being defined only up to composition with elements of I';, and
fi; as being defined up to conjugation by elements of I';. It is not generally true that
it = Pjk © Yij when U; C U; C Uy, but there should exist an element v € I'y, such
that ¥@i, = Qjk 0 Gij and v - fi(g) - v~ = fix o fij(9)-

Of course, the covering {U;} is not an intrinsic part of the structure of an orb-
ifold: two coverings give rise to the same orbifold structure if they can be combined
consistently to give a larger cover still satisfying the definitions.

A G-orbifold, where G is a pseudogroup, means that all maps and group actions
respect G. (See chapter 3).

ExamMmpPLE 13.2.1. ~A closed manifold is an orbifold, where each group I'; is the
trivial group, so that U = U.

EXAMPLE 13.2.2. A manifold M with boundary can be given an orbifold structure
mM in which its boundary becomes a “mirror.” Any point on the boundary has a
neighborhood modelled on R"/Z,, where Z5 acts by reflection in a hyperplane.

"The commutative diagrams in Chapter 13 were made using Paul Taylor’s diagrams.sty package
(available at ftp://ftp.dcs.qmw.ac.uk/pub/tex/contrib/pt/diagrams/). —SL
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==

ProposITION 13.2.1. If M is a manifold and I' is a group acting properly dis-
continuously on M, then M /T has the structure of an orbifold.

PROOF. For any point © € M/T', choose & € M projecting to x. Let I, be the
isotropy group of Z (I, depends of course on the particular choice z.) There is a
neighborhood U, of # invariant by I, and disjoint from its translates by elements
of I' not in I,. The projection of U, = U, /I, is a homeomorphism. To obtain a
suitable cover of M/I', augment some cover {U,} by adjoining finite intersections.
Whenever U,, N...NU,, # (), this means some set of translates ’ylﬁxl N...N ’YkUkk
has a corresponding non-empty intersection. This intersection may be taken to be

P
A

U, N---NU,,,

with associated group v1I, ;" N« Nyly, v, ' acting on it. OJ

The orbifold mM arises in this way, for instance: it is obtained as the quotient
space of the Zy action on the double dM of M which interchanges the two halves.

Henceforth, we shall use the terminology M /T to mean M/T as an orbifold.

Note that each point = in an orbifold O is associated with a group I';, well-
defined up to isomorphism: in a local coordinate system U = U /I, T'; is the isotropy
group of any point in U corresponding to z. (Alternatively I', may be defined as
the smallest group corresponding to some coordinate system containing x.) The set
Yo = {z|l'; # {1}} is the singular locus of O. We shall say that O is a manifold when
Yo = 0. Warning. It happens much more commonly that the underlying space Xo
is a topological manifold, especially in dimensions 2 and 3. Do not confuse properties
of O with properties of Xop.
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The singular locus is a closed set, since its intersection with any coordinate patch
is closed. Also, it is nowhere dense. This is a consequence of the fact that a non-
trivial homeomorphism of a manifold which fixes an open set cannot have finite order.
(See Newman, 1931. In the differentiable case, this is an easy exercise.)

When M in the proposition is simply connected, then M plays the role of universal
covering space and I' plays the role of the fundamental group of the orbifold M/T",
(even though the underlying space of M /I" may well be simply connected, as in the
examples of §13.1). To justify this, we first define the notion of a covering orbifold.

DEFINITION 13.2.2. A covering orbifold of an orbifold O is an orbifold O, with a
projection p : X — X between the underlying spaces, such that each point x € Xp
has a neighborhood U = U/T' (where U is an open subset of R") for which each
component v; of p~*(U) is isomorphic to U /T';, where I'; C T' is some subgroup. The
isomorphism must respect the projections.

Note that the underlying space X5 is not generally a covering space of Xo.

As a basic example, when I' is a group acting properly discontinuously on a
manifold M, then M is a covering orbifold of M/T'. In fact, for any subgroup IV C T,
M /T" is a covering orbifold of M /T". Thus, the rectangular pillow (13.1.4) is a two-fold
covering space of the billiard table (13.1.3).

Here is another explicit example to illustrate the notion of covering orbifold. Let
S be the infinite strip 0 < 2 < 1 in R?; consider the orbifold m.S. Some covering
spaces of S are depicted below.

i

a gquadruple cover an-octuple cover

a triple
cover
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DEFINITION 13.2.3. An orbifold is good if it has some covering orbifold which is
a manifold. Otherwise it is bad.

The teardrop is an example of a bad orbifold. The underlying space for a teardrop
is S%. Yo consists of a single point, whose neighborhood is modelled on R?/Z,,, where
Z,, acts by rotations.

By comparing possible coverings of the upper half with possible coverings of the lower
half, you may easily see that the teardrop has no non-trivial connected coverings.

Similarly, you may verify that an orbifold O with underlying space Xo = S?
having only two singular points associated with groups Z, and Z, is bad, unless
n = m. The orbifolds with three or more singular points on S?, as we shall see, are
always good. For instance, the orbifold below is S? modulo the orientation-preserving
symmetries of a dodecahedron.
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PROPOSITION 13.2.4. An orbifold O has a universal cover O. In other words, if
x € Xo — 2o is a base point for O,

0%o
is a connected covering orbifold with base point * which projects to x, such that for
any other covering orbifold

oo

with base point ¥, p/(¥') = x, there is a lifting q : O — O of p to a covering map of
0.

(o)

The universal covering orbifold O, in some contexts, is often called the universal
branched cover. There is a simple way to prove 13.2.4 in the case ¥ has codimension
2 or more. In that case, any covering space of O is determined by the induced covering
space of Xp — Yo as its metric completion. Whether a covering Y space of Xp — Xp
comes from a covering space of O is a local question, which is expressed algebraically
by saying that m1(Y") maps to a group containing a certain obvious normal subgroup
of m (X — o).

When O is a good orbifold, then it is covered by a simply connected manifold,
M. Tt can be shown directly that M is the universal covering orbifold by proving
that every covering orbifold is isomorphic to M /T’, for some I C T', where T is the
group of deck transformations of M over O.

PROOF OF 13.2.4. One proof of the existence of a universal cover for a space X
goes as follows.
Consider pointed, connected covering spaces

X, x.

For any pair of such covering spaces, the component of the base point in the fiber
product of the two is a covering space of both.
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X3
X X,
X
(Recall that the fiber product of two maps f; : X; — X is the space X; xx Xy =
{(z1,22) € Xy X Xy @ fi(21) = fa(z2)}.)
If X is locally simply connected, or more generally, if it has the property that
every x € X has a neighborhood U such that every covering of X induces a trivial
covering of U (that is, each component of p~!(U) is homeomorphic to U), then one

can take the inverse limit over some set of pointed, connected covering spaces of X
which represents all isomorphism classes to obtain a universal cover for X.

We can follow this same outline with orbifolds, but we need to refine the notion
of fiber product. The difficulty is best illustrated by example. Two covering maps

Slzdlgmi and m; — my

are sketched below, along with the fiber product of the underlying maps of spaces.

(This picture is sketched in R = R? x, R2.) The fiber product of spaces is a circle
but with a double point. In the definition of fiber product of orbifolds, we must
eliminate such double points, which always lie above Y.

To do this, we work in local coordinates. Let U =~ U/I" be a coordinate system.
We may suppose that U is small enough so in every covering of O, p~(U) consists
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of components of the form U/I", T" C T. Let
0; &

be covering orbifolds (i = 1,2), and consider components of p;*(U), which for
notational convenience we identify with U/I'y and U/Ty. Formally, we can write
U/Ty = {I'wy|y € U}. [It would be more consistent to use the notation I'y\U
instead of U /T'1]. For each pair of elements v; and 75 € ', we obtain a map

ffylﬂQ : U — (j/Fl X [j/l—‘g,
by the formula

Sy = (T1my, Favay).
In fact, f,, ,, factors through

O/Vflrl% N3 Taye.

Of course, f,, , depends only on the cosets I'yy; and I'yy,. Furthermore, for any
v € I', the maps f,, 5, and f,,~,, differ only by a group element acting on U: in
particular, their images are identical so only the product 7y, * really matters. Thus,
the “real” invariant of f,, ,, is the double coset

Fl’Yl’yQ_lFQ € Fl\F/FQ

(Similarly, in the fiber product of coverings X; and X, of a space X, the components
are parametrized by the double cosets m X;\m X /71 X5.) The fiber product of U/I‘l
and U /Ty over U /T, is defined now to be the disjoint union, over elements 7 repre-
senting double cosets I'y\I'/T"y of the orbifolds U /T1 N~ 1Tyy. We have shown above
how this canonically covers U/T, and U/Ty, via the map f, .. This definition agrees
with the usual definition of fiber product in the complement of 5. These locally
defined patches easily fit together to give a fiber product orbifold O; xp O3. As in
the case of spaces, a universal covering orbifold O is obtained by taking the inverse
limit over some suitable set representing all isomorphism classes of orbifolds. 0

The universal cover O of an orbifold O is automatically a regular cover: for any
preimage of Z of the base point * there is a deck transformation taking * to Z.

DEFINITION 13.2.5. The fundamental group m(O) of an orbifold O is the group
of deck transformations of the universal cover O.

The fundamental groups of orbifolds can be computed in much the same ways as
fundamental groups of manifolds. Later we shall interpret m1(O) in terms of loops
on O.

Here are two more definitions which are completely parallel to definitions for
manifolds.
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DEFINITION 13.2.6. An orbifold with boundary means a space locally modelled
on R"™ modulo finite groups and R’} modulo finite groups.

When X, is a topological manifold, be careful not to confuse dXo with 0O or
Xs0.

DEFINITION 13.2.7. A suborbifold Oy of an orbifold Oy means a subspace Xp, C
Xo, locally modelled on R? C R™ modulo finite groups.

Thus, a triangle orbifold has seven distinct “closed” one-dimensional suborbifolds,
up to isotopy: one S' and six mI’s.

On T 21? DI‘N
Z, 2
Dy
Note that each of the seven is the boundary of a suborbifold with boundary (defined
in the obvious way) with universal cover D2 13.15

13.3. Two-dimensional orbifolds.

To avoid technicalities, we shall work with differentiable orbifolds from now on.

The nature of the singular locus of a differentiable orbifold may be understood
as follows. Let U = U /T be any local coordinate system. There is a Riemannian
metric on U invariant by I': such a metric may be obtained from any metric on U by
averaging under I'. For any point & € U consider the exponential map, which gives
a diffeomorphism from the € ball in the tangent space at & to a small neighborhood
of . Since the exponential map commutes with the action of the isotropy group of
Z, it gives rise to an isomorphism between a neighborhood of the image of Z in O,
and a neighborhood of the origin in the orbifold R™/T", where T is a finite subgroup
of the orthgonal group O,.

PROPOSITION 13.3.1. The singular locus of a two-dimensional orbifold has these
types of local models:

(i) The mirror: R?/Zy, where Zy acts by reflection in the y-axis.
(ii) Elliptic points of order n: R?/Z,,, with Z, acting by rotations.
(iii) Corner reflectors of order n: R?/D,,, with D, is the dihedral group of order
2n, with presentation

(a,b:a® =b*> = (ab)" = 1).

The generators a and b correspond to reflections in lines meeting at angle 7/n. 13.16

308 Thurston — The Geometry and Topology of 3-Manifolds



13.3. TWO-DIMENSIONAL ORBIFOLDS.

i

] a

-

L

PROOF. These are the only three types of finite subgroups of O,. O

It follows that the underlying space of a two-dimensional orbifold is always a topo-
logical surface, possibly with boundary. It is easy to enumerate all two-dimensional
orbifolds, by enumerating surfaces, together with combinatorial information which
determines the orbifold structure. From a topological point of view, however, it is
not completely trivial to determine which of these orbifolds are good and which are
bad.

We shall classify two-dimensional orbifolds from a geometric point of view. When
G is a group of real analytic diffeomorphisms of a real analytic manifold X, then
the elementary properties of (G, X)-orbifolds are similar to the case of manifolds (see
§3.5). In particular a developing map

D:0— X

can be defined for a (G, X)-orbifold O. Since we do not yet have a notion of paths
in O, this requires a little explanation. Let {U;} be a covering of O by a collection of
open sets, closed under intersections, modelled on U; / T;, with U; C X, such that the
inclusion maps U; C U; come from isometries ¢;; : U, — U Choose a “base” chart
Uy. When Uy D U;, C Uy, D --- C Uy, is a chain of open sets (a simplicial path in
the one-skeleton of the nerve of {U;}), then for each choice of isometries of the form

~ Y0Pig,0 ~ VoPiq.ig

Uy — U, —>U<—---—>Um

one obtains an isometry of Um in X, obtained by composing the transition functions
(which are globally defined on X ). A covering space O of O is defined by the cov-
ering {(¢, p(U;))} € G x X, where ¢ is any isometry of U; obtained by the above
construction.

These are glued together by the obvious “inclusion” maps, (¢, oU;) — (¢, 9U;)
whenever 1! o ¢ is of the form ~; o @;; for some v; € T;.
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The reader desiring a picture may construct a “foliation” of the space {(x,y, g) |
x € X,y € Xo, gis the germ of a G-map between neighborhoods of x and y}. Any
leaf of this foliation gives a developing map.

PRrROPOSITION 13.3.2. When G is an analytic group of diffeomorphisms of a man-
ifold X, then every (G, X)-orbiifold is good. A developing map

D:0—X
and a holonomy homomorphism
H:m(0)—-G
are defined.

If G is a group of isometries acting transitively on X, then if O is closed or
metrically complete, it is complete (i.e., D is a covering map). In particular, if X is
simply connected, then O = X and 7;(O) is a discrete subgroup of G.

PROOF. See §3.5. O

Here is an example. Ay 34 has a Euclidean structure, as a 30°, 60°, 90° triangle. The
developing map looks like this:
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Here is a definition that will aid us in the geometric classification of two-dimen-
sional orbifolds.

DEFINITION 13.3.3. When an orbifold O has a cell-division of X such that each
open cell is in the same stratum of the singular locus (i.e., the group associated to
the interior points of a cell is constant), then the Fuler number x(O) is defined by

the formula
1

_ _ 1\dim(c;)
X(0) = 21"

Cq

where ¢; ranges over cells and |I'(¢;)| is the order of the group I'(¢;) associated to
each cell. The Euler number is not always an integer.

The definition is concocted for the following reason. Define the number of sheets
of a cover to be the number of preimages of a non-singular point.

PROPOSITION 13.3.4. If O — O is a covering map with k sheets, then

X(0) = kx(0).

PROOF. It is easily verified that the number of sheets of a cover can be computed
by the ratio

# sheets = Z (T2 /1T3]),

Zop(Z)=x
where x is any point. The formula [??7] for the Euler number of a cover follows
immediately. 0

As an example, a triangle orbifold Ay, n, ., has Euler number £ (3 (1/n;) — 1):
here +1 comes from the 2-cell, three —1’s from the edges, and 1/(2n;) from each
vertex.

Thus, Ay 35 has Euler number +1/60. Its universal cover is S?, with deck trans-
formations the group of symmetries of the dodecahedron. This group has order
120 = 2/(1/60). On the other hand, x(Az236) = 0 and x(Aq237) = —1/84. These
orbifolds cannot be covered by S2.

The general formula for the Euler number of an orbifold O with k corner reflectors

of orders nq,...,n; and [ elliptic points of orders myq,...,my is

13.3.4. X(0) = x(Xo) = 1> (1= 1/n;) =Y (1 —1/my).

Note in particular that x(O) < x(Xo), with equality if and only if O is the surface
xo or if O = myo.
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If O is equipped with a metric coming from invariant Riemannian metrics on the
local models U, then one may easily derive the Gauss-Bonnet theorem,

13.3.5. / K dA =2mx(0).
o

One way to prove this is by excising small neighborhoods of the singular locus, and
applying the usual Gauss-Bonnet theorem for manifolds with boundary. For O to
have an elliptic, parabolic or hyperbolic structure, x(O) must be respectively positive,
zero or negative. If O is elliptic or hyperbolic, then area (O) = 27|x(O)].

THEOREM 13.3.6. A closed two-dimensional orbifold has an elliptic, parabolic or
hyperbolic structure if and only if it is good. An orbifold O has a hyperbolic structure
if and only if x(O) < 0, and a parabolic structure if and only if x(O) = 0. An orbifold 13.21
is elliptic or bad if and only if x(O) > 0.

All bad, elliptic and parabolic orbifolds are tabulated below, where

(N1, g m, .y y)
denotes an orbifold with elliptic points of orders ny,...,ny (in ascending order) and
corner reflectors of orders my,...,my (in ascending order). Orbifolds not listed are

hyperbolic.

e Bad orbifolds:

— Xo = 5% (n), (n1,ny) with ny < ns.

— Xo = D?* (;n), (;n1,n2) with n; < ny.
e Elliptic orbifolds:

— Xo=25% (), (n,n), (2,2,n), (2,3,3), (2,3,4), (2,3,5).

- Xo =D* (3), (5n,n), (52,2,n), (52,3,3), (;2,3,4), (52,3,5), (n;)
(2:m), (3:2).

— Xo=P2% (), (n).

e Parabolic orbifolds

— Xo = 5% (2,3,6), (2,4,4), (3,3,3), (2,2,2,2).

- Xo = D2- (:2,3,6), (52,4,4), (53,3,3), (;2,2,2,2), (2;2,2), (3;3),
(4:2), (252;).

- XO = ]PQZ (2,2)

- XO = T2I ( )

— Xo = Klein bottle: ()
— Xo = annulus: (;)

— Xo = Maébius band: ()
13.21.a
The universal covering space of D%;4,474) and 5(2474’4) : Wl(D%;4,4,4)) is generated by

reflections in the faces of one of the triangles. The full group of symmetries of this
tiling of H? is 71 (D75 44))-
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This picture was drawn with a computer by Peter Oppenheimer.

‘ [}

»
i

|
a

PROOF. It is routine to list all orbifolds with non-negative Euler number, as in
the table. We have already indicated an easy, direct argument to show the orbifolds
listed as bad are bad; here is another. First, by passing to covers, we only need
consider the case that the underlying space is S?, and that if there are two elliptic

Thurston — The Geometry and Topology of 3-Manifolds 313

13.22



13. ORBIFOLDS

points their orders are relatively prime. These orbifolds have Riemannian metrics of
curvature bounded above zero,

which implies (by elementary Riemannian geometry) that any surface covering them
must be compact. But the Euler number is either 1+ 1/n or 1/n; + 1/ng, which is
a rational number with numerator > 2.

Since no connected surface has an Euler number greater than 2, these orbifolds
must be bad.

QUESTION. What is the best pinching constant for Riemannian metrics on these
orbifolds?

All the orbifolds listed as elliptic and parabolic may be readily identified as the
quotient of S? or E? modulo a discrete group. The 17 parabolic orbifolds correspond
to the 17 “wallpaper groups.” The reader should unfold these orbifolds for himself,
to appreciate their beauty. Another pleasant exercise is to identify the orbifolds
associated with some of Escher’s prints.

Hyperbolic structures can be found, and classified, for orbifolds with negative Eu-
ler characteristics by decomposing them into primitive pieces, in a manner analogous
to our analysis of Teichmiiller space for a surface (§5.3). Given an orbifold O with
x(0O) < 0, we may repeatedly cut it along simple closed curves and then “mirror”
these curves (to remain in the class of closed orbifolds) until we are left with pieces
of the form below. (If the underlying surface is unoriented, then make the first cut
so the result is oriented.)
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A % 5

i . - PP i

ol i ; 0y, D> ")
Y,Qz_, Ce=1] =2

13.24
The orbifolds mP, Ag,,) and Dy, »,;) (except the degenerate case A(,)) and

S(injnwg) have hyperbolic structures paremetrized by the lengths of their boundary

components. The proof is precisely analogous to the classification of shapes of pants

in §5.3; one decomposes these orbifolds into two congruent “generalized triangles”
(see §2.6).
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The orbifold D(Q,m1 ) also can be decomposed into “generalized triangles,”

.M
ma Df‘“\‘
Dn,
Un} '
Bt '
Dmg

for instance in the pattern above. One immediately sees that the orbifold has hy-
perbolic structures (provided y < 0) parametrized by the lengths of the cuts; that

is, (R,)"=3. Special care must be taken when, say, m; = my = 2. Then one of 1325
the cuts must be omitted, and an edge length becomes a parameter. In general any
disjoint set of edges with ends on order 2 corner reflectors can be taken as positive

real parameters, with extra parameters coming from cuts not meeting these edges:

The annulus with more than one corner reflector on one boundary component
should be dissected, as below, into D., . n,) and an annulus with two order two

corner reflectors. D?

(s mamy) 18 analogous.
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13.26

Hyperbolic structures on an annulus with two order two corner reflectors on one
boundary component are parametrized by the length of the other boundary compo-
nent, and the length of one of the edges:

il Ql

(The two all right pentagons agree on a and b, so they are congruent; thus they are
determined by their edges of length l;/2 and [5/2). Similarly, D(Qn;2,2) is determined
by one edge length, provided n > 2. D(Zz;m) is not hyperbolic. However, it has a
degenerate hyperbolic structure as an infinitely thin rectangle, modulo a rotation of
order 2—or, an interval.

N\

X

This is consistent with the way in which it arises in considering hyperbolic structures,
in the dissection of D(QQ,m1 ) One can cut such an orbifold along the perpendicular
arc from the elliptic point to an edge, to obtain D(2;2?27m1’“_’ml). In the case of an

annulus with only one corner reflector, 13.27

() " e

D(n;'ﬂi}
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note first that it is symmetric, since it can be dissected into an isosceles “triangle.”
Now, from a second dissection, we see hyperbolic structures are paremetrized by the
length of the boundary component without the reflector.

By the same argument, D(me) has a unique hyperbolic structure.
All these pieces can easily be reassembled to give a hyperbolic structure on O. [J

From the proof of 13.3.6 we derive

COROLLARY 13.3.7. The Teichmiiller space T(O) of an orbifold O with x(O) < 0
is homeomorphic to Euclidean space of dimension —3x(Xo) + 2k + [, where k is the
number of elliptic points and | is the number of corner reflectors.

PROOF. O can be dissected into primitive pieces, as above, by cutting along dis-
joint closed geodesics and arcs perpendicular to 0.Xo: i.e., one-dimensional hyperbolic
suborbifolds. The lengths of the arcs, and lengths and twist parameters for simple
closed curves form a set of parameters showing that T(O) is homeomorphic to Eu-
clidean space of some dimension. The formula for the dimension is verified directly
for the primitive pieces, and so for disjoint unions of primitive pieces. When two
circles are glued together, neither the formula nor the dimension of the Teichmiiller
space changes—two length parameters are replaced by one length parameter and one
first parameter. When two arcs are glued together, one length parameter is lost, and
the formula for the dimension decreases by one. O

13.4. Fibrations.

There is a very natural way to define the tangent space T'(O) of an orbifold O.
When the universal cover O is a manifold, then the covering transformations act on
T(O) by their derivatives. T(0) is then T(0)/m1(0). In the general case, O is made
up of pieces covered by manifolds, and the tangent space of O is pieced together from
the tangent space of the pieces. Similarly, any natural fibration over manifolds gives
rise to something over an orbifold.

DEFINITION 13.4.1. A fibration, E, with generic fiber F', over an orbifold O is an
orbifold with a projection

p:XE—>XO
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between the underlying spaces, such that each point x € O has a neighborhood
U = U/T (with U c R") such that for some action of I' on F, p~'(U) = U x F/T
(where I' acts by the diagonal action). The product structure should of course be
consistent with p: the diagram below must commute.

UxF — p_l(U )
U U

With this definition, natural fibrations over manifolds give rise to natural fibra-
tions over orbifolds.

The tangent sphere bundle T'S(M) is the fibration over M with fiber the sphere

of rays through O in T'(M). When M is Riemannian, this is identified with the unit
tangent bundle 7' (M).

PROPOSITION 13.4.2. Let O be a two-orbifold. If O is elliptic, then T1(O) is an
elliptic three-orbifold. If O is Euclidean, then T1(O) is Euclidean. If O is bad, then
TS(O) admits an elliptic structure.

PROOF. The unit tangent bundle 7} (S?) can be identified with the grup SO; by
picking a “base” tangent vector V and parametrizing an element g € SO3 by the
image vector Dg(Vp). SO3 is homeomorphic to P, and its universal covering group
os S3. This correspondence can be seen by regarding S® as the multiplicative group
of unit quaternions, which acts as isometries on the subspace of purely imaginary
quaternions (spanned by 4, j and k) by conjugation. The only elements acting trivially
are +1. The action of SOz on T;(S5?) = SOj3 corresponds to left translation so that
for an orientable O = S2/T', T1(0) = Ty(5?/T) = I'\SOs = I'\S? is clearly elliptic.
Here T is the preimage of I' in $3. (Whatever I' stands for, [ is generally called “the
binary I'”—e.g., the binary dodecahedral group, etc.)

When O is not oriented, then we use the model T}(S?) = O3/Z,, where Zs is
generated by the reflection r through the geodesic determined by V. Again, the
action of O3 on T1(S?) comes from left multiplication on O3/Z,. An element gr, with
g € SOs, thus takes ¢'Vp to grg'rVp. But rg'r = sg’s, where s € SOj3 is 180° rotation
of the geodesic through Vp, so the corresponding transformations of S3,

g — (g5) 7 (3), are compositions of left and right multiplication, hence isometries.
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For the case of a Euclidean orbifold O, note that Ty E? has a natural product

structure as E? x S'. From this, a natural Euclidean structure is obtained on T} E?,
hence on T31(0).

The bad orbifolds are covered by orbifolds S(Zn) or S(thm). Then T'S(H), where
H is either hemisphere, is a solid torus, so the entire unit tangent space is a lens
space—hence it is elliptic. T'S (D(zm)), or TSD(Q;MM), is obtained as the quotient by
a Zo action on these lens spaces. O

As an example, T1(5?273’5)) is the Poincaré dodecahedral space. This follows im-

mediately from one definition of the Poincaré dodecahedral space as S® modulo the
binary dodecahedral group. In general, observe that 7'S(0?) is always a manifold if
O? is oriented; otherwise it has elliptic axes of order 2, lying above mirrors and con-
sisting of vectors tangent to the mirrors. In more classical terminology, the Poincaré
dodecahedral space is a Seifert fiber space over S? with three singular fibers, of type
(2,1), (3,1) and (5,1).

When O has the combinatorial type of a polygon, it turns out that Xrg(o) is S?,
with singular locus a certain knot or two-component link. There is an a priori reason
to suspect that Xpg(0) be S?, since m,0 is generated by reflections. These reflections

have fixed points when they act on T'S(O), so m(Xrg(0)) is the surjective image of
mTS(O). The image is trivial, since a reflection folds the fibers above its axis in half.
Every easily producible simply connected closed three-manifold seems to be S3. We

can draw the picture of T'S(O) by piecing.

Over the non-singular part of O, we have a solid torus. Over an edge, we have mI x I,
with fibers folded into m[; nearby figures go once around these mI’s. Above a corner
reflector of order n, the fiber is folded into m/. The fibers above the nearby edges
weave up and down n times, and nearby circles wind around 2n times.
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When the pieces are assembled, we obtain this knot or link:

13.32

lfs N "I';n2 5“"”3

2= N, 31, -n € D0 “C 30,

o
k-2 dtuists

When O is a Riemannian orbifold, this gives T} (O) a canonical flow, the geodesic
flow. For the Euclidean orbifolds with Xy a polygon, this flow is physically realized
(up to friction and spin) by the motion of a billiard ball. The flow is tangent to the
singular locus. Thus, the phase space for the familiar rectangular billiard table is S3:

- 1t_g]jl

= : g
There are two invariant annuli, with boundary the singular locus, corresponding to
trajectories orthogonal to a side. The other trajectories group into invariant tori.
Note the two-fold symmetry in the tangent space of a billiard table, which in the
picture is 180° rotation about the axis perpendicular to the paper. The quotient
orbifold is the same as example 13.1.5. 13.33
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K"\\ r,;"'- _-""‘"\\
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You can obtain many other examples via symmetries and covering spaces. For
instance, the Borromean rings above have a three-fold axis of symmetry, with quotient

=% A

We can pass to a two-fold cover, unwrapping around the Zjs elliptic axis, to obtain
the figure-eight knot as a Zjs elliptic axis.

This is a Euclidean orbifold, whose fundamental group is generated by order 3 rota-
tions in main diagonals of two adjacent cubes (regarded as fundamental domains for
example 13.1.5).

When O is elliptic, then all geodesics are closed, and the geodesic flow comes from
a circle action. It follows that 77 (O) is a fibration in a second way, by projecting to
the quotient space by the geodesic flow! For instance, the singular locus of Tl(D(227375))
is a torus knot of type (3,5):
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Therefore, it also fibers over 5(22’375). In general, an oriented three-orbifold which
fibers over a two-orbifold, with general fiber a circle, is determined by three kinds of
information:

(a) The base orbifold.

(b) For each elliptic point or corner reflector of order n, an integer 0 < k < n
which specifies the local structure. Above an elliptic point, the Z, action
on U x S! is generated by a 1/n rotation of the disk U and a k/n rotation
of the fiber S*. Above a corner reflector, the D, action on U x S! (with
S1 taken as the unit circle in R?) is generated by reflections of U in lines
making an angle of 7/n and reflections of S' in lines making an angle of
km/n.

(c) A rational-valued Euler number for the fibration. This is defined as the ob-
struction to a rational section—i.e., a multiple-valued section, with rational
weights for the sheets summing to one. (This is necessary, since there is not
usually even a local section near an elliptic point or corner reflector).

The Euler number for 7'S(0O) equals x(O). It can be shown that a fibration of non-
zero Euler number over an elliptic or bad orbifold is elliptic, and a fibration of zero
Euler number over a Euclidean orbifold is Euclidean.

13.5. Tetrahedral orbifolds.

The next project is to classify orbifolds whose underlying space is a three-manifold
with boundary, and whose singular locus is the boundary. In particular, the case
when Xo is the three-disk is interesting—the fundamental group of such an orbifold
(if it is good) is called a reflection group. It turns out that the case when O has
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the combinatorial type of a tetrahedron is quite different from the general case.
Geometrically, the case of a tetrahedron is subtle, although there is a simple way
to classify such orbifolds with the aid of linear algebra.

The explanation for this distinction seems to come from the fact that orbifolds of
the type of a simplex are non-Haken. First, we define this terminology.

A closed three-orbifold is irreducible if it has no bad two-suborbifolds and if every
two-suborbifold with an elliptic structure bounds a three-suborbifold with an elliptic
structure. Here, an elliptic orbifold with boundary is meant to have totally geodesic
boundary—in other words, it must be D3/T; for some I' C O3. (For a non-oriented
three-manifold,this definition entails being irreducible and P?-irreducible, in the usual
terminology.) Observe that any three-dimensional orbifold with a bad suborbifold
must itself be bad—it is conjectured that this is a necessary and sufficient condition
for badness. 13.36

SO"_C‘@? o M

o

Frequently in three dimensions it is easy to see that certain orbifolds are good
but hard to prove much more about them. For instance, the orbifolds with singular
locus a knot or link in S? are always good: they always have finite abelian covers by
manifolds.

]

Each elliptic two-orbifold is the boundary of exactly one elliptic three-orbifold,
which may be visualized as the cone on it.

Q
i B
An incompressible suborbifold of a three-orbifold O, when Xy is oriented, is a
two-suborbifold O" C O with x(O’) < 0 such that every one-suborbifold O” C O’

which bounds an elliptic suborbifold of O — O’ bounds an elliptic suborbifold of O’.
O is Haken if it is irreducible and contains an incompressible suborbifold.

PROPOSITION 13.5.1. Suppose Xo = D3, o = 0D3. Then O is irreducible if
and only if:
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(a) The one-dimensional singular locus 3}, cannot be disconnected by the removal 13.37

of zero, one, or two edges, and
b) if the removal of v, 2 and v3 disconnects XL, then either they are incident
( gl g 0

to a commen vertex or the orders ni,ny and ns satisfy

1/711 + 1/712 + 1/713 < 1.

PROOF. For any bad or elliptic suborbifold O" C O, Xo must be a disk meeting
5 in 1,2 or 3 points. X separates Xo into two three-disks; one of these gives an
elliptic three-orbifold with boundary O’ if and only if it contains no one-dimensional
parts of X other than the edges meeting 0 Xo/. For any set E of edges disconnecting
%} there is a simple closed curve on dXo meeting only edges in F, meeting such an
edge at most once, and separating 3}, — E. Such a curve is the boundary of a disk in
X0, which determines a suborbifold. Any closed elliptic orbifold S™/T" of dimension
n > 2 can be suspended to give an elliptic orbifold S™*!/T" of dimension n + 1, via
the canonical inclusion O, 1 C O, 1. O

PROPOSITION 13.5.2. An orbifold O with Xo = D? and Yo = 0D? is Haken if
and only if it is irreducible, it is not the suspension of an elliptic two-orbifold and it
does not have the type of a tetrahedron.

PRrOOF. First, suppose that O satisfies the conditions. Let F' be any face of O,
that is a component of ¥y minus its one dimensional part. The closure F is a disk
or sphere, for otherwise O would not be irreducible. If F' is the entire sphere, then
O is the suspension of D(z; ) Otherwise, consider a curve vy going around just outside
F, and meeting only edges of ¥4, incident to F.

weS
‘(\,;.:‘T:Y:m fe i 0l&

0o 1Oe

If v meets no edges, then X}, = OF (since O is irreducible) and O is the suspension

of D?,n n)- The next case is that v meets two edges of order n; then they must really

be the same edge, and O is the suspension of an elliptic orbifold D(Qmmm). If ~
meets three edges, then v determines a “triangle” suborbifold D? ) of O. O

(sn1,m2,n3
cannot be elliptic, for then the three edges would meet at a point and O would have

the type of a tetrahedron. Since DQ,n1 namg) DS 1O non-trivial one-suborbifolds, it
is automatically incompressible, so O is Haken. If v meets four or more edges, then
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the two-suborbifold it determines is either incompressible or compressible. But if it
is compressible, then an automatically incompressible triangle suborbifold of O can
be constructed.

P

~

If o determines a “compression,” then 0 determines a triangle orbifold.

The converse assertion, that suspensions of elliptic orbifolds and tetrahedral orb-
ifolds are not Haken, is fairly simple to demonstrate. In general, for a curve v on
0Xo to determine an incompressible suborbifold, it can never enter the same face
twice, and it can enter two faces which touch only along their common edge. Such a
curve is evidently impossible in the cases being considered. 0

There is a system of notation, called the Coxeter diagram, which is efficient for
describing n-orbifolds of the type of a simplex. The Coxeter diagram is a graph,
whose vertices are in correspondence with the (n — 1)-faces of the simplex. Each pair
of (n—1)-faces meet on an (n—2)-face which is a corner reflector of some order k. The
corresponding vertices of the Coxeter graph are joined by k—2 edges, or alternatively,
a single edge labelled with the integer k—2. The notation is efficient because the most
commonly occurring corner reflector has order 2, and it is not mentioned. Sometimes
this notation is extended to describe more complicated orbifolds with X, = D™ and
Yo C 0D™, by using dotted lines to denote the faces which are not incident. However,
for a complicated polyhedron—even the dodecahedron—this becomes quite unwieldy.

The condition for a graph with n + 1 vertices to determine an orbifold (of the
type of an n-simplex) is that each complete subgraph on n vertices is the Coxeter
diagram for an elliptic (n — 1)-orbifold.

Here are the Coxeter diagrams for the elliptic triangle orbifolds:
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THEOREM 13.5.3. Every n-orbifold of the type of a simplex has either an elliptic,
FEuclidean or hyperbolic structure. The types in the three-dimensional case are listed

below:
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This statement may be slightly generalized to include non-compact orbifolds of
the combinatorial type of a simplex with some vertices deleted.
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THEOREM 13.5.4. Every n-orbifold which has the combinatorial type of a simplex
with some deleted vertices, such that the “link” of each deleted vertex is a Fuclidean
orbifold, and whose Cozeter diagram is connected, admits a complete hyperbolic struc-
ture of finite volume. The three-dimensional examples are listed below:

PrROOF OF 13.5.3 AND 13.5.4. The method is to describe a simplex in terms of
the quadratic form models. Thus, an n-simplex ¢” on S™ has n + 1 hyperfaces. Each
face is contained in the intersection of a codimension one subspace of E"*! with S™.

Let Vp,...,V, be unit vectors orthogonal to these subspaces in the direction away
from ¢™. Clearly, the V; are linearly indpendent. Note that V; - V; = 1, and when
i # 7, V-V, = —cosaj, where a;; is the angle between face ¢ and face j. Similarly,

each face of an n-simplex in H™ contained in the intersection of a subspace of E™!
with the sphere of imaginary radius X7 +---+ X2 — X2 | = —1 (with respect to the
standard inner product X -Y =>"" | X;-Y; — X,,41 - Y41 on E™). Outward vectors
Vo, ..., V, orthogonal to these subspaces have real length, so they can be normalized
to have length 1. Again, the V; are linearly independent and V; - V; = — cos a;; when
1 # j. For an m-simplex ¢" in Euclidean n-space, let Vp,...,V,, be outward unit
vectors in directions orthogonal to the faces on ¢”. Once again, V; - V; = — cos ;.
Given a collection {e;;} of angles, we now try to construct a simplex. For the
matrix M of presumed inner products, with I’'s down the diagonal and — cos a;;’s off
the diagonal. If the quadratic form represented by M is positive definite or of type
(n,1), then we can find an equivalence to E""! or E™!  which sends the basis vectors
to vectors Vp,...,V, having the specified inner product matrix. The intersection
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of the half-spaces X - V; < O is a cone, which must be non-empty since the {V;}
are linearly independent. In the positive definite case the cone intersects S™ in a
simplex, whose dihedral angles (3;; satisfy cos 3;; = cos c;, hence 3;; = a;;. In the
hyperbolic case, the cone determines a simplex in RP", but the simplex may not be
contained in H™ C RP". To determine the positions of the vertices, observe that
each vertex v; determines a one-dimensional subspace, whose orthogonal subspace is
spanned by Vo, ..., V;, ..., Vu. The vertex v; is on H", on the sphere at infinity, or
outside infinity according to whether the quadratic form restricted to this subspace
is positive definite, degenerate, or of type (n — 1,1). Thus, the angles {«a;;} are the
angles of an ordinary hyperbolic simplex if and only if M has type (n,1), and for
each i the submatrix obtained by deleting the ith row and the corresponding column
is positive definite. They are the angles of an ideal hyperbolic simplex (with vertices
in H" or S1) if and only if all such submatrices are either positive definite, or have
rank n — 1.

By similar considerations, the angles {c;} are the angles of a Euclidean n-simplex
if and only if M is positive semidefinite of rank n.

When the angles {o;;} are derived from the Coxeter diagram of an orbifold,
then each submatrix of M obtained by deleting the i-th row and the i-th column
corresponds to an elliptic orbifold of dimension n — 1, hence it is positive definite.
The full matrix must be either positive definite, of type (n, 1) or positive semidefinite
with rank n. It is routine to list the examples in any dimension. The sign of the
determinant of M is a practical invariant of the type. We have thus proven theorem
13.5.

In the Euclidean case, it is not hard to see that the subspace of vectors of zero
length with respect to M is spanned by (ay, . . ., a,), where a; is the (n—1)-dimensional
area of the i-th face of o.

To establish 13.5.4, first consider any submatrix M; of rank n—1 which is obtained
by deleting the i-th row and i-th column (so, the link of the i-th vertex is Euclidean).
Change basis so that M; becomes

-1 0
1
_O O_
using (ag, ..., a4, ...,a,) as the last basis vector. When the basis vector V; is put

back, the quadratic form determined by M becomes
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Q] =C
AN =C 1

where —C'= =) inji @i COS @vjj 1s negative since the Coxeter diagram was supposed
to be connected. It follows that M has type (n, 1), which implies that the orbifold is
hyperbolic. 0

13.6. Andreev’s theorem and generalizations.

There is a remarkably clean statement, due to Andreev, describing hyperbolic
reflection groups whose fundamental domains are not tetrahedra.

THEOREM 13.6.1 (Andreev, 1967). (a) Let O be a Haken orbifold with
Xo=D3 ¥,=0D3

Then O has a hyperbolic structure if and only if O has no incompressible
Fuclidean suborbifolds.

(b) If O is a Haken orbifold with Xo = D?—(finitely many points) and Yo =
0Xo, and if a neighborhood of each deleted point is the product of a Eu-
clidean orbifold with an open interval, (but O itself is not such a product)
then O has a complete hyperbolic structure with finite volume if and only
if each incompressible Euclidean suborbifold can be isotoped into one of the
product neighborhoods.

The proof of 13.6.1 will be given in §77.

COROLLARY 13.6.2. Let v be any graph in R?, such that each edge has distinct
ends and no two vertices are joined by more than one edge. Then there is a packing of
circles in R? whose nerve is isotopic to v. If v is the one-skeleton of a triangulation
of S, then this circle packing is unique up to Moebius transformation.

A packing of circles means a collection of circles with disjoint interiors. The nerve
of a packing is then a graph, whose vertices correspond to circles, and whose edges
correspond to pairs of circles which intersect. This graph has a canonical embedding
in the plane, by mapping the vertices to the centers of the circles and the edges to
straight line segments which will pass through points of tangency of circles.
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13.45

PROOF OF 13.6.2. We transfer the problem to S? by stereographic projection.
Add an extra vertex in each non-triangular region of S? — v, and edges connecting

it to neighboring vertices, so that v becomes the one-skeleton of a triangulation T" of
S2.

/”:"""--. “_‘N"h.
-
¥ s >
eriva > 2
vertex /=
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o /4
N
N e o
“
\
N
.
S
caa? T =

Let P be the polyhedron obtained by cutting off neighborhoods of the vertices of T,
down to the middle of each edge of T'.
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Let O be the orbifold with underlying space
Xo = D3-vertices of P, and Zlo = edges of P,

each modelled on R3/D,. For any incompressible Euclidean suborbifold O’, 90X,
must be a curve which circumnavigates a vertex. Thus, O satisfies the hypotheses of
13.6.1(b), and O has a hyperbolic structure. This means that P is realized as an ideal
polyhedron in H?, with all dihedral angles equal to 90°. The planes of the new faces
of P (faces of P but not T) intersect S in circles. Two of the circles are tangent
whenever the two faces meet at an ideal vertex of P. This is the packing required
by 13.6.2. The uniqueness statement is a consequence of Mostow’s theorem, since
the polyhedron P may be reconstructed from the packing of circles on S2.. To make
the reconstruction, observe that any three pairwise tangent circles have a unique
common orthogonal circle. The set of planes determined by the packing of circles
on S2 , together with extra circles orthogonal to the triples of tangent circles coming
from vertices of the triangular regions of S? — cut out a polyhedron of finite volume
combinatorially equivalent to P, which gives a hyperbolic structure for O. U
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REMARK. Andreev also gave a proof of uniqueness of a hyperbolic polyhedron
with assigned concave angles, so the reference to Mostow’s theorem is not essential.

COROLLARY 13.6.3. Let T be any triangulation of S*. Then there is a convex
polyhedron in R3, combinatorially equivalent to T whose one-skeleton is circumscribed
about the unit sphere (i.e., each edge of T is tangent to the unit sphere). Furthermore,
this polyhedron is unique up to a projective transformation of R® C P3 which preserves
the unit sphere.

ProoOF oOF 13.6.3. Construct the ideal polyhedron P, as in the proof of 13.6.2.
Embed H? in P, as the projective model. The old faces of P (coming from faces of
T) form a polyhedron in P2, combinatorially equivalent to T'. Adjust by a projective
transformation if necessary so that this polyhedron is in R3. (To do this, transform
P so that the origin is in its interior.) U

REMARKS. Note that the dual cell-division 7™ to T is also a convex polyhedron
in R3, with one-skeleton of T circumscribed about the unit sphere. The intersection
TNT*=P.

These three polyhedra may be projected to R? C P3, by stereogrpahic projection,
from the north pole of S* C P2. Stereographic projection is conformal on the tangent
space of S?, so the edges of T* project to tangents to these circles. It follows that the
vertices of T project to the centers of the circles. Thus, the image of the one-skeleton
of T is the geometric embedding in R? of the nerve ~ of the circle packing.

The existence of other geometric patterns of circles in R? may also be deduced
from Andreev’s theorem. For instance, it gives necessary and sufficient condition for
the existence of a family of circles meeting only orthogonally in a certain pattern, or
meeting at 60° angles.

One might also ask about the existence of packing circles on surfaces of constant
curvature other than S2. The answers are corollaries of the following theorems:
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THEOREM 13.6.4. Let O be an orbifold such that Xo =~ T* x [0,00), (with some
vertices on T? x O having Euclidean links possibly deleted) and Yo = 0Xo. Then O
admits a complete hyperbolic structure of finite volume if and only if it is irreducible,

and every incompressible complete, proper Euclidean suborbifold is homotopic to one
of the ends.

(Note that mS* x [0, o) is a complete Euclidean orbifold, so the hypothesis implies
that every non-trivial simple closed curve on 90X, intersects X}.)

THEOREM 13.6.5. Let M? be a closed surface, with x(M?*) < 0. An orbifold
O such that Xo = M? x [0,1] (with some vertices on M?* x 0 having Fuclidean
links possibly deleted), Yo = 0Xo and X, C M?* x O. Then O has a hyperbolic
structure if and only if it is irreducible, and every incompressible Fuclidean suborbifold
1s homotopic to one of the ends.

By considering m O, O as in 13.6.4, as a Kleinian group in upper half space with
T? x 00 at 0o, 13.6.4 may be translated into a statement about the existence of doubly
periodic families of circles in the plane, or 13.48.a
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13.49
families of circles on flat toruses. Similarly, 13.6.5 is equivalent to a statement about
families of circles in hyperbolic structures for M?; in fact, since M? x 1 has no one-
dimensional singularities, it must be totally geodesic in any hyperbolic structure, so
m1M? acts as a Fuchsian group. The face planes of M? x O give rise to a family of
circles in the northern hemisphere of S2 . invariant by this Fuchsian group, so each
face corresponds to a circle in the hyperbolic structure for M2

Theorems 13.6.1, 13.6.4 and 13.6.5 will be proved in the next section, by studying
patterns of circles on surfaces.

In example 13.1.5 we saw that the Borromean rings are the singular locus for
a Euclidean orbifold, in which they are elliptic axes of order 2. With the aid of
Andreev’s theorem, we may find all hyperbolic orbifolds which have the Borromean
rings as singular locus. The rings can be arranged so they are invariant by reflection
in three orthogonal great spheres in S3. (Compare p. 13.4.)

Thus, an orbifold O having the rings as elliptic axes of orders k, [ and m is an
eight-fold covering space of another orbifold, which has the combinatorial type of a
cube.

13.50
By Andreev’s theorem, such an orbifold has a hyperbolic structure if and only if &,

[ and m are all greater than 2. If k is 2, for example, then there is a sphere in

S3 separating the elliptic axes of orders [ and m and intersecting the elliptic axis

of order 2 in four points. This forms an incompressible Euclidean suborbifold of O,
which breaks O into
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two halves, each fibering over two-orbifolds with boundary, but in incompatible ways

(unless [ or m is 2).
fl@ 8 3D‘Zl

Base spaces of the fibrations

When k£ =1 = m = 4, the fundamental domain, as in example 13.1.5, for m O
acting on H3 is a regular right-angled dodecahedron.

Any of the numbers k, [ or m can be permitted to take the value oo in this
discussion, to denote a parabolic cusp. When [ = m = oo, for instance, then O has
a k-fold cover which is the complement of the untwisted 2k-link chain Dy of 6.8.7.

® K 5o
* = =%

13.7. Constructing patterns of circles.

We will formulate a precise statement about patterns of circles on surfaces of
non-positive Euler characteristic which gives theorems 13.6.4 and 13.6.5 as immediate
consequences.

THEOREM 13.7.1. Let S be a closed surface with x(S) < 0. Let T be a cell-division
of S into cells which are images of immersions of triangles and quadrangles which
lift to embeddings in S. Let © : & — [0, 7/2] (where € denotes the set of edges of T)
be any function satisfying the conditions below:

(i) ©(e) = /2 if e is an edge of a quadrilateral of T.
(i) If e1,eq,e3[e; € &) form a null-homotopic closed loop, and if 3>, ©(e;) >
m, then these three edges form the boundary of a triangle of T.
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(iii) If ey, 9, e3, €4 form a null-homotopic closed loop and if Z?:l O(e;) =2 (&
O(e;) = m/2), then the e; form the boundary of a quadrilateral or of the
union of two adjacent triangles.

Then there is a metric of constant curvature on S, uniquely determined up to a
scalar multiple, a uniquely determined geometric cell-division of S isotopic to T so
that the edges are geodesics, and a unique family of circles, one circle C, for each
verter v of T, so that C,, and C,, intersect at a positive angle if and only if vi and
vy lie on a common edge. The angles in which C,, and C,, meet are determined by
the common edges: there is an intersection point of C,, and C,, in a two-cell o if and
only if vi and vy are vertices of o. If o is a quadrangle and vy and vy are diagonally
opposite, then C,, is tangent to C,,; otherwise, they meet at an angle of ©(e), where
e is the edge joining them in o.

PRrOOF. First, observe that quadrangles can be eliminated by subdivision into
two triangles by a new edge e with ©(e) = 0.

A
T
z z
™
L

There is an extraneous tangency of circles here—in fact, all extraneous tangencies
come from this situation. Henceforth, we assume 7 has no quadrangles. The idea
is to solve for the radii of the circles C,,. Given an arbitrary set of radii, we shall
construct a Riemannian metric on S with cone type singularities at the vertices of
7, which has a family of circles of the given radii meeting at the given angles. We
adjust the radii until S lies flat at each vertex. Thus, the proof is closely analogous
to the idea that one can make a conformal change of any given Riemannian metric
on a surface until it has constant curvature. Observe that a conformal map is one
which takes infinitesimal circles to infinitesimal circles; the conformal factor is the
ratio of the radii of the target and source circles.

LEMMA 13.7.2. For any three non-obtuse angles 01,05 and 63 € [0,7/2] and any
three positive numbers Ry, Ry, and Rs, there is a configuration of 3 circles in both hy-
perbolic and Euclidean geometry, unique up to isometry, having radii R; and meeting
in angles 0;.
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at

ProOOF OF LEMMA. The length [, of a side of the hypothetical triangle of centers
of the circles is determined as the side opposite the obtuse angle m — 6, in a triangle
whose other sides are R; and R;. Thus, sup(R;, R;) < I < R, + R;. The three
numbers [,ly and [3 obtained in this way clearly satisfy the triangle inequalities
lp < l; +1;. Hence, one can construct the appropriate triangle, which gives the
desired circles. U

Proof of 13.7.1, continued. Let 'V denote the set of vertices of 7. For every element
R € RY (i.e., if we choose a radius for the circle about each vertex), there is a singular
Riemannian metric, which is pieced together from the triangles of centers of circles
with given radii and angles of intersetcion as in 13.7.2. The triangles are taken in
H? or E? depending on whether x(S) < 0 or x(S) = 0. The edge lengths of cells of
7 match whenever they are glued together, so we obtain a metric, with singularities
only at the vertices, and constant curvature 0 or —1 everywhere else.

The notion of curvature can easily be extended to Riemannian surfaces with
certain sorts of singularities. The curvature form Kda becomes a measure s on such
a surface. Tailors are of necessity familiar with curvature as a measure. Thus, a seam
has curvature (ki — ks) - p, where p is one-dimensional Lebesgue measure and k; and
ko are the geodesic curvatures of the two halves.

Thurston — The Geometry and Topology of 3-Manifolds 339

13.53

13.54



13. ORBIFOLDS

&>
‘<l ka
>0
<_0 k 70
e—>

(The effect of gathering is more subtle—it is obtained by putting two lines infinitely
close together, one with positive curvature and one with balancing negative curvature.
Another instance of this is the boundary of a lens.)

More to the point for us is the curvature concentrated at the apex of a cone: it
is 2 — «, where « is the cone angle (computed by splitting the cone to the apex
and laying it flat). It is easy to see that this is the unique value consistent with the
Gauss-Bonnet theorem.

Formally, we have a map

F:RY - R".

Given an element R € RK, we construct the singular Riemannian metric on S, as
above; F'(R) describes the discrete part of the curvature measure kg on S, in other
words, F(R)(v) = kg(v). Our problem is to show that O is in the image of F', for
then we will have a non-singular metric with the desired pattern of circles built in.

When x(S) = 0, then the shapes of the Euclidean triangles do not change when
we multiply R by a constant, so F'(R) also does not change. Thus we may as well
normalize so that Y., ., R(v) = 1. Let A C RY be this locus—A is the interior of
the standard |V| — 1 simplex. Observe, by the Guass-Bonnet theorem, that

> kr(v) =0.
veV
Let Z C RY be the locus defined by this equation.

If x(S) < 0, then changing R by a constant does make a difference in . In this
case, let A C RX denote the set of R such that the associated metric on S has total
area 27 |x(S)|. By the Gauss-Bonnet theorem, A = F~1(Z) (with Z as above). As
one can easily believe, A intersects each ray through O in a unique point, so A is a
simplex in this case also. This fact is easily deduced from the following lemma, which
will also prove the uniqueness part of 13.7.1:

LEMMA 13.7.3. Let Cy,Cy and C5 be circles of radii Ry, Ry and Rs in hyperbolic
or Fuclidean geometry, meeting pairwise in non-obtuse angles. If Cy and C5 are held
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constant but Cy is varied in such a way that the angles of intersection are constant
but Ry decreases, then the center of Cy moves toward the interior of the triangle of
centers.

N
N
13.56
Thus we have
day Oy das
— <0 —= >0 — >0
o0R, " OR, T OR, ’

where the a; are the angles of the triangle of centers.

Proor or 13.7.3. Consider first the Euclidean case. Let [;, s and [3 denote the
lengths of the sides of the triangle of centers. The partial derivatives 0ly/OR; and
Ol3/OR; can be computed geometrically.

If v; denotes the center of Cp, then dv;/OR; is determined as the vector whose
orthogonal projections sides 2 and 3 are dly/OR; and 0l3/0R;. Thus,

81}1
R, —%
' OR,

is the vector from v; to the intersection of the lines joining the pairs of intersection
points of two circles.
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| 13.57
When all angles of intersection of circles are acute, no circle meets the opposite
side of the triangle of centers:

max Ry fmax iy

vz_ L
Cl D'F
 max R+

C5 meets 17705 =— (7 and Cy don’t meet.

It follows that dv;/OR; points to the interior of Awvjvyvs.
The hyperbolic proof is similar, except that some of it takes place in the tangent
space to H? at v;. O

Continuation of proof of 13.7.1. From lemma 13.7.3 it follows that when all three
radii are increased, the new triangle of centers can be arranged to contain the old
one. Thus, the area of S is monotone, for each ray in RK. The area near 0 is near
0, and near oo is near m X (# triangles + 2# quadrangles); thus the ray intersects
A = F~Y(Z) in a unique point.

It is now easy to prove that F'is an embedding of A in Z. In fact, consider any two
distinct points R and R’ € A. Let V= C V be the set of v where R'(v) < R(v). Clearly
V= is a proper subset. Let 7y- be the subcomplex of 7 spanned by V~. (7y- consists
of all cells whose vertices are contained in V7). Let Sy- be a small neighborhood of
Ty-. We compare the geodesic curvature of Sy~ in the two metrics. To do this, we
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may arrange 0Sy- to be orthogonal to each edge it meets. Each arc of intersection
of 0Sy- with a triangle having one vertex in V~ contributes approximately «; to the
total curvature, while each arc of intersection with a triangle having two vertices in
V= contributes approximately 5; + v; — 7.

In view of 13.7.3, an angle such as «; increases in the R’ metric. The change in
(1 and ~y; is unpredictable. However, their sum must increase: first, let R; and Rs
decrease; m — 01 — (1 + (B2), which is the area of the triangle in the hyperbolic case,
decreases or remains constant but d; also decreases so (3; + 7, must increase. Then
let R3 increase; by 13.7.3, 31 and 7, both increase. Hence, the geodesic curvature of
0Sy- increases.

From the Gauss-Bonnet formula,

Z k(v) = /as dyds — /s K dA+ 2mx(Sv)
% %

veEV—

it follows that the total curvature at vertices in V~ must decrease in the R’ metric.
(Note that the area of Sy- decreases, so if k& = —1, the second term on the right
decreases.) In particular, F(R) # F'(R'), which shows that F' is an embedding of A.

The proof that O is in the image of F' is based on the same principle as the
proof of uniqueness. We can extract information about the limiting behavior of F' as
R approaches OA by studying the total curvature of the subsurface Syo, where V¢
consists of the vertices v such that R(v) is tending toward O. When a triangle of 7
has two vertices in V° and the third not in V©, then the sum of the two angles at
vertices in V© tends toward .
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13.59

The proof that 0 is in the image of F 1is based on the same principle as
the proof of umiqueness. We can extract informetion about the limiting behaviour
of P as R approaches OA by studying the total curvature of the subsurface
S0 » Where U° consists of the vertices v such that R(v) is tending toward
0 . When a triangle of T has two vertices in 'L/O and the third not in b’o 4

then thesum of the two angles at vertices in 1/0 tends toward w ,

= 7

When a triangle of 7T has only one vertex in 7/0 s then the angle }1:. that vertex

tends toward the value 7 - ©(e) , where e 1is the opposite edge./ Thus, the

el

total curvature of Bazro tends toward the velue 2‘ (m - e(e)) , where

\ eEL(Tw)

L(-rvo) is the "link of T 0 i
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When a triangle of 7 has only one vertex in V©, then the angle at that vertex tends
toward the value 7 — O(e), where e is the opposite edge. Thus, the total curvature
of 0Syo tends toward the value

Z (7T — @(e)),

EEL(TV())

where L(7yo) is the “link of 7yo.”
The Gauss-Bonnet formula gives

Lim Z k(v) = — Z (m —0O(e)) + 2mx(Syo) < 0.

veVO e€L(t,0)

(Note that area (Syo) — 0.) To see that the right hand side is always negative, it
suffices to consider the case that Tyo is connected. Unless myo has Fuler characteristic
one, both terms are non-positive, and the sum is negative. If L(7yo) has length 5 or
more, then
Z T —0O(e) > e,
e€L(ry,0)

so the sum is negative. The cases when L(7yo) has length 3 or 4 are dealt with in
hypotheses (ii) and (iii) of theorem 13.7.1.

When V' is any proper subset of VO and R € A is an arbitrary point, we also
have an inequality

> kr) > = Y (7m—0(e)) + 2mx(Sv).

veV e€L(Tyr)

This may be deduced quickly by comparing the R metric with a metric R in which
R'(V') is near 0. In other words, the image F'(A) is contained in the interior of the
polyhedron P C Z defined by the above inequalities. Since F'(A) is an open set
whose boundary is 0P, F(A) = interior (P). Since O € int(P), this completes the
proof of 13.7.1, and also that of 13.6.4, and 13.6.5. 0

REMARKS. This proof was based on a practical algorithm for actually construct-
ing patterns of circles. The idea of the algorithm is to adjust, iteratively, the radii of
the circles. A change of any single radius affects most strongly the curvature at that
vertex, so this proces converges reasonably well.

The patterns of circles on surfaces of constant curvature, with singularities at
the centers of the circles, have a three-dimensional interpretation. Because of the
inclusions isom(H?) C isom(H?) and isom(E?) C isom(H?), there is associated with
such a surface S a hyperbolic three-manifold Mg, homeomorphic to S x R, with cone
type singularities along (the singularities of S) x R. Each circle on S determines a
totally geodesic submanifold (a “plane”) in Mg. These, together with the totally
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geodesic surface isotopic to S when S is hyperbolic, cut out a submanifold of Mg
with finite volume—it is an orbifold as in 13.6.4 or 13.6.5 but with singularities along
arcs or half-lines running from the top to the bottom.

COROLLARY 13.7.4. Theorems 13.6.4 and 13.6.5 hold when S is a Fuclidean or
hyperbolic orbifold, instead of a surface. (The orbifold O is to have only singularities
as in 13.6.4 or 13.6.5, plus (singularities of S) x I or (singularities of S) x [0,00).)

PROOF. Solve for pattern of circles on S in a metric of constant curvature on S—
the underyling surface of S will have a Riemannian metric with cone type singularities
of curvature 27(1/n — 1) at elliptic points of S, and angles at corner reflectors of S.

An alternative proof is to find a surface S which is a finite covering space of the
orbifold S, and find a hyperbolic structure for the corresponding covering space O
of O. The existence of a hyperbolic structure for O follows from the uniqueness of

the hyperbolic structure on O thence the invariance by deck transformations of O
over O. ]

13.8. A geometric compactification for the Teichmiiller spaces of
polygonal orbifolds

We will construct hyperbolic structures for a much greater variety of orbifolds by
studying the quasi-isometric deformation spaces of orbifolds with boundary whose
underlying space is the three-disk. In order to do this, we need a description of the
limiting behavior of conformal structure on its boundary. We shall focus on the case
when the boundary is a disjoint union of polygonal orbifolds. For this, the greatest
clarity is attained by finding the right compactifications for these Teichmiiller spaces.

When M is an orbifold, M| . is defined to consist of points x in M such that
the ball of radius €/2 about z has a finite fundamental group. Equivalently, no loop
through x of length < € has infinite order in m (M). M is defined similarly. It does
not, in general, contain a neighborhood of the singular locus. With this definition, it
follows (as in §5) that each component of Mg is covered by a horoball or a uniform
neighborhood of an axis, and its fundamental group contains Z or Z & Z with finite
index.

In 85 we defined the geometric topology on sequences of hyperbolic three-mani-
folds of finite volume. For our present purpose, we want to modify this definition
slightly. First, define a hyperbolic structure with nodes on a two-dimensional orbifold
O to be a complete hyperbolic structure with finite volume on the complement of
some one-dimensional suborbifold, whose components are the nodes. This includes
the case when there are no nodes. A topology is defined on the set of hyperbolic
structures with nodes, up to diffeomorphisms isotopic to the identity on a given
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surface, by saying that M; and M, have distance < ¢ if there is a diffeomorphism
of O [isotopic to the identity] whose restriction to Mij¢ o) is a (e°)-quasi-isometry to
My o0y Here, € is some fixed, small number.

REMARK. The related topology on hyperbolic structures with nodes up to dif-
feomorphism on a given surface is always compact. (Compare Jorgensen’s theorem,
5.12, and Mumford’s theorem, 8.8.3.) This gives a beautiful compactification for
the modular space T(M)/ Diff (M), which has been studied by Bers, Earle and Mar-
den and Abikoff. What we shall do works because a polygonal orbifold has a finite
modular group.

For any two-dimensional orbifold O with x(O) < 0, let N(O) be the space of all
hyperbolic structures with nodes (up to isotopy) on O.

THEOREM 13.8.1. When P is an n-gonal orbifold, N(P) is homeomorphic to the
(closed) disk, D™3, with interior T(P). It has a natural cell-structure with open cells
parametrized by the set of nodes (up to isotopy).

Here are the three simplest examples.

If P is a quadrilateral, then T(P) is R. There are two possible nodes. N(P) looks
like this:

— = X

NP

If there are two adjacent order 2 corner reflectors, the qualitative picture must be
modified appropriately. For instance,

. .
s B
‘; l[{ d -—A
> oo o 1
;L:L. = B o Y
0‘? - B

Nne

When P is a pentagon, T(P) is R%. There are five possible nodes, and the cell-
structure is diagrammed below:
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b,d

nep

When there is only one node, the pentagon is pinched into a quadrilateral and a
triangle, so there is still one degree of freedom.
When P is a hexagon, there are 9 possible nodes.

=

Each single node pinches the hexagon into a pentagon and a triangle, or into two
quadrilaterals, so its associated 2-cell is a pentagon or a square. The cell division of
dD? is diagrammed below:

(The zero and one-dimensional cells are parametrized by the union of the nodes of 13.65
the incident 2-cells.)

PROOF OF 13.8.1. It is easy to see that N(P) is compact by familiar arguments,
as in 5.12 and 8.8.3, for instance. In fact, choose e sufficiently small so that P
is always a disjoint union of regular neighborhoods of short arcs. Given a sequence
{P,;}, we can pass to a subsequence so that the core one-orbifolds of the components

348 Thurston — The Geometry and Topology of 3-Manifolds



13.8. GEOMETRIC COMPACTIFICATION

of Py, are constant. Extend this system of arcs to a maximal system of disjoint
geodesic arcs {aq,...,ar}. The lengths of all such arcs remain bounded in {P;}
(this follows from area considerations), so there is a subsequence so that all lengths
converge—possibly to zero. But any set of {l(a;)|l(a;) > 0} defines a hyperbolic
structure with nodes, so our sequence converges in N(P).

Furthermore, we have described a covering of N(P) by neighborhoods diffeomor-
phic to quadrants, so it has the structure of a manifold with corners. Change of
coordinates is obviously differentiable. Each stratum consists of hyperbolic struc-
tures with a prescribed set of nodes, so it is diffeomorphic to Euclidean space (this
also follows directly from the nature of our local coordinate systems.)

Theorem 13.8.1 follows from this information. Here is a little overproof. An
explicit homeomorphism to a disk can be constructed by observing that PL(P)* has
a natural triangulation, which is dual to the cell structure of ON(P). This arises
from the fact that any simple geodesic on P must be orthogonal to the mirrors, so
a geodesic lamination on P is finite. The simplices in PL(P) are measures on a
maximal family of geodesic one-orbifolds.

A projective structure for PL(P)—that is, a piecewise projective’ homeomor-
phism to a sphere—can be obtained as follows (compare Corollary 9.7.4). The set
of geodesic laminations on P is in one-to-one correspondence with the set of cell
divisions of P which have no added vertices. Geometrically, in fact, a geometric
lamination extends in the projective (Klein) model to give a subdivision of the dual

polygon.

Take the model P now to be a regular polygon in R? C R®. Let V be the vertex
set. For any function f : V — R, let C; be the convex hull of the set of points

For definition, and other information, see p. 8.58
$See remark 9.5.9.
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obtained by moving each vertex v of P to a height f(v) (positive or negative along
the perpendicular to R? through v). The “top” of C} gives a subdivision of P.
The nature of this subdivision is unchanged if a function which extends to an affine
function from R? to R is added to f. Thus, we have a map RY /R — GL(P). To lift
the map to measured laminations, take the directional derivative at O of the bending
measure for the top of the convex hull, in the direction f. The global description of
this map is that a function f is associated to the measure which assigns to each edge
e of the bending locus the change in slope of the intersection of the faces adjacent to
e with a plane perpendicular to e.

It is geometrically clear that we thus obtain a piecewise linear homeomorphism,
e: ML(P)~ RV —0.

The set of measures which assigns a maximal value of 1 to an edge gives a realization
of PL(P) as a convex polyhedral sphere @ in RY™3. The dual polyhedron Q*—
which is, by definition, the set of vectors X € RY 3 such that Supyeq X - Y = 1-—1is
the boundary of a convex disk, combinatorially equal to N(P). This seems explicit
enough for now. O

13.9. A geometric compactification for the deformation spaces of certain
Kleinian groups.

Let O be an orbifold with underlying space Xo = D3, Yo C 9D3, and 0%p a
union of polygons.

We will use the terminology Kleinian structure on O to mean a diffeomorphism
of O to a Kleinian manifold B® — Ly /T", where T' is a Kleinian group.

In order to describe the ways in which Kleinian structures on O can degenerate,
we will also define the notion of a Kleinian structure with nodes on O. The nodes
are meant to represent the limiting behavior as some one-dimensional suborbifold
S becomes shorter and shorter, finally becoming parabolic. We shall see that this
happens only when S is isotopic in one or more ways to 0O; the geometry depends on
the set of suborbifolds on 0O isotopic to S which are being pinched in the conformal
geometry of 00O. To take care of the various possibilities, nodes are to be of one of
these three types:

(a) An incompressible one-suborbifold of 0O.

(b) An incompressible two-dimensional suborbifold of O, with Euler character-
istic zero and non-empty boundary. In general, it would be one of these
five:
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but for the orbifolds we are considering only the last two can occur.

(c) An orbifold 7" modelled on Py, x R, k > 2 where Py is a polygon with 2k
sides. The sides of Py are to alternate being on JO and in the interior of
O. (Cases a and b could be subsumed under this case by thickening them
and regarding them as the cases k =1 and k = 2.)

A Kleinian structure with nodes is now defined to be a Kleinian structure in
the complement of a union of nodes of the above types, neighborhoods of the nodes
in being horoball neighborhoods of cusps in the Kleinian structures. Of course, if
O minus the nodes is not connected, each component is the quotient of a separate
Kleinian group (so our definition was not general enough for this case).

Let N(O) denote the set of all Kleinian structure with nodes on O, up to homeo-
morphisms isotopic to the identity. As for surfaces, we define a topology on N(O), by
saying that two structures K; and K5 have distance < € if there is a homeomorphism

between them which is an e® — quasi-isometry on K[ ) intersected with the convex
hull of Kj;.

THEOREM 13.9.1. Let O be as above with O irreducible and 0O incompressible. If
O has one non-elementary Kleinian structure, then N(O) is compact. The conformal
structure on 00 1is continuous, and it gives a homeomorphism to a disk,

N(O) ~ N(9O).

Note: The necessary and sufficiently conditions for existence of a Kleinian struc-
ture will be given in [?77] or they can be deduced from Andreev’s theorem 13.6.1.
We will use 13.6.1 to prove existence.

Proor. We will study the convex hulls of the Kleinian structures with nodes on
O. (When the Kleinian structure is disconnected, this is the union of convex hulls of
the pieces.)

LEMMA 13.9.2. There is a uniform upper bound for the volume of the convex hull,
H, of a Kleinian structure with nodes on O.

PROOF OF 13.9.2. The bending lamination for 0O has a bounded number of
components. Therefore, H is (geometrically) a polyhedron with a bounded number
of faces, each with a bounded number of sides. Hence the area of the boundary of
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the polyhedron is bounded. Its volume is also bounded, in view of the isoperimetric
inequality,

volume (5) < 1/2 area(95)
for a set S C H?. (cf. §5.11). O

Theorem 13.9.1 can now be derived by an adaptation of the proof of Jgrgensen’s
theorem (5.12) to the present situation. It can also be proved by a direct analysis
of the shape of H. We will carry through this latter course to make this proof more
concrete and self-contained.

The first observation is that H can degenerate only when some edges of H become
very long. When a face of H has vertices at infinity, “length” is measured here as
the distance between canonical neighborhoods of the vertices. In fact, if the edges
of H remain bounded in length, the faces remain bounded in shape by (§13.8, for
instance; the components of OH can be treated as single faces for this analysis). If we
view Xy as a convex polyhedron in H? then as long as a sequence {H;} has all faces
remaining bounded in shape, there is a subsequence such that the polyhedra { Xy, }
converge, in the sense that the maps of each face into H? converge. One possibility is
that the limiting map of Xy has a two-dimensional image: this happens in the case
of a sequence of quasi-Fuchsian groups converging to a Fuchsian group, and we do
not regard the limit as degenerate. The significant point is that two silvered faces of
H (faces of H not on 0H) which are not incident (along an edge or at a cusp) cannot
come close together unless their diameter goes to infinity, because any points of close
approach are deep inside Hg.

We can obtain a good picture of the degeneration which occurs as an edge becomes
very long by the following analysis. We will consider only edges which are not in the
interior of OH. Since the area of each face of H is bounded, any edge e of H which is
very long must be close and nearly parallel, for most of its length all but a bounded
part, of its length, on both sides, to other edges of its adjacent faces.

Similarly, these nearly parallel edges must be close and nearly parallel to still
more edges on the far side from e. How long does this continue? Remember that H
has an angle at each edge. In fact, if we ignore edges in the interior of 0H, no angle
exceeds 90°. Special note should be made here of the angles between 0 H and mirrors
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of H: the condition for convexity of H is that 0H, together with its reflected image,
is convex, so these angles also are < 90°. (If they are strictly less, then that edge
of OH is part of the bending locus, and consequently it must have ends on order 2
corner reflectors.) Since H is geometrically a convex polyhedron, the only way that
it can be bent so much along such closely spaced lines is that it be very thin. In
other words, along most of the length of e, the planes perpendicular to e C Xy C H?
intersect X H in a small polygon, which represents a suborbifold. It has 2,3 or 4
intersections with edges of X H not interior to 0H.
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By area-angle considerations, this small suborbifold must have non-negative Euler
characteristic. We investigate the cases separately.

() x=0, 9=10
3
(i) A This is automatically incompressible, and since it is closed,
3 3

it must be homotopic to a cusp. But this is supposed to be avoided by
keeping our investigations away from the vertices of faces of P.
2 2

(ii) Either it is incompressible, and avoided as in (i), or com-
2 2

pressible, so it is homotopic to some edge of H.
But since it is small, it must be very close to that edge. This contradicts
the way it was chosen—or, in any case, it can account for only a small part
of the length of e.

(b) x =0, 90#0:
0

(i) m m (i) m m
22 5
where m denotes a mirror.
These can occur either as small 0-incompressible suborbifolds (repre-
senting incipient two-dimensional nodes) or as small 0-compressible orb-
ifolds, representing the boundary of a neighborhood of an incipient one-

dimensional node.

‘Iﬂ 4 r?mP‘f‘C’S-{-‘.}lolf

(¢) x > 0. This can occur, since O is irreducible and 0O incompressible.

We now can see that H is decomposed into reasonably wide convex pieces, joined
together along long thin spikes whose cross-sections are two-dimensional orbifolds
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with boundary. There also may be some long thin spikes representing neighborhoods
of short one-suborbifolds (arcs) of 00.

Hyq contains all the long spikes. It may also intersect certain regions between
spikes, where two silvered faces of H come close together. If so, then H contains
the entire region, bounded by spikes (since each edge of the two nearby faces comes
to a spike within a bounded distance, as we have seen).

The fundamental group of that part of H must be elementary: in other words, all
faces represent reflections in planes perpendicular to or containing a single axis.

It should by now be clear that N(O) is compact. By [?77], Kleinian structures with
nodes of a certain type on O are parametrized, if they exist, by conformal structures
with nodes of the appropriate type on 0O. Given a Kleinian structure with nodes,
K, and a nearby element K’ in N(O), theer is a map with very small dilation from
all but a small neighborhood of the nodes in 0K to 0K, covering all but a long thin
neck; this implies that 0K’ is near 0K in N(9O). Therefore, the map from N(O) to
N(00) is continuous. Since N(O) is compact, the image is all of N(0O). Since the
map is one-to-one, it is a homeomorphism. [

To be continued. . ..
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cone manifolds, 55-56
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properly discontinuous, 174 convergence
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algebraic hyperbolic manifolds, 168 strong, 226
algebraic limit, 225 convex, 177
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Andreev’s Theorem, 330 implies convex, 177
strictly, 178
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Bers, 111 boundary, 185
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of a convex manifold, 177
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retraction onto convex hull, 174

edge equations, 49-51
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elliptic
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Euclidean triangles, 47
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for a fibration, 323
extension of a vector field, 288

Curl and Div, 292

direction derivative of, 290

fibration
over an orbifold, 319, 323

figure-eight knot, 4-7, 29-31, 120
commensurable with PSL(2,03), 149
complete hyperbolic structure, 54
Dehn surgery on, 5861, 70

yields hyperbolic manifold, 61

fundamental group, 172
gluing diagram, 4
incompressible surfaces in, 72-83
limit set, 172
parametrization space of complement, 52
volume of complement, 164

foliation
developing map for, 63
hyperbolic, 62, 64
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Fuchsian group, 172, 192
fundamental group

acts ergodically on St 111

Gauss-Bonnet
for orbifolds, 312
Gehring, 111
geodesic flow
conditions for ergodicity, 277
geodesic lamination, 186, 200, see also geo-
metric and measure topology, see also lam-
ination
complete, 196
ending, 238
essentially complete, 243, 246
measure on, 207
near a cusp, 201
realizable, 208, 211, 214, 240
criterion for, 261
train track approximation of, 204, 206, 210,
213
with compact support, 239
geodesics
on hyperboloid, 18
geometric limit, 225
geometric structure, 85
geometric topology, 225
and compactness, 228
on geodesic laminations, 208
geometrically finite, 180, 183
and cusps, 182
hyperbolic 3-manifold, 203
geometrically near, 118
geometrically tame, 219, 221, 229
almost, 250, 240
and algebraic convergence, 259
and geodesic flow, 278
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Gieseking, 29
Gromov, 102
Gromov’s
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for manifolds with boundary, 134
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Theorem
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Haken, W., 72 when isotopic to geodesic lamination, 206
Hatcher, 101 on boundary of convex hull , 186-187
Heegaard decomposition, 3 law of cosines
Hilbert, 10 hyperbolic, 22
holonomy, 35, 53, 85, 97-100 law of sines
defines structure, 85 hyperbolic, 25
horoball, 39 Lickorish, 2
horocycles, 40 limit set, 171
horospheres, 38 of a closed hyperbolic manifold, 172
hyperbolic link of a vertex, 42
isometries, 67 of an ideal tetrahedron, 45-46
line, 10, 13, 14 links
metric, 11, 13, 17, 39-40 Ck, 144
plane, 10 Doy, 150
structures on a manifold, 87 F,, 154
hyperbolic Dehn surgery theorem, 104 having isomorphic complements, 149
hyperbolic structure Lobachevsky, 157
with nodes, 346
hyperboloid, 17 manifold
hyperplane, 13 affine, 27-28
and dual point, 16, 19 differentiable, 27
elliptic, 28-29
ideal tetrahedra, 45-48 hyperbolic, 29
parametrization of, 48 Margulis lemma, 113
volume of, 160 measure topology
ideal triangles, 40 on geodesic laminations, 209
identifying faces of polyhedra, 3 measured lamination space, 210, 251
incompressible metric of constant curvature
suborbifold, 324 and patterns of circles, 338
surface, 71 Micky Mouse, 194
and algebraic representations, 143 minimal set, 172
inner product, 18, 21 modular space, 201
intersection number, 267, 270 Mostow’s Theorem, 101-102, 106-112, 129
irreducible 130
3-manifold, 2 Mumford, 201
orbifold, 324
nodes, 346
Jorgensen’s Theorem, 119-120
first version, 116 orbifold, 300
Jorgensen, T., 61, 74, 228 bad, 304, 324
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with boundary, 308
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Papakyriakopoulos, 2
parallel, 14
pared manifolds, 259
pleated surface, see also uncrumpled surface
Poincaré dodecahedral space, 320
Prasad, 102
projective lamination space, 209, 210, 263
properly discontinuous action, 174
pseudo-isometry, 106
pseudogroup, 27
Pythagorean theorem
hyperbolic, 25

quasi-conformal map, 110
quasi-Fuchsian group, 192, 215
mapping surfaces into, 194
quasi-isometric vector field, 290

quasi-isometry, 285

rational depth, 252
reflection group, 323
Riley, R., 29, 74, 168

Schottky group, 173
Seifert fibration, 64
singular locus, 302, 308
smear, 127
sphere at infinity, 11
suborbifold, 308
sufficiently large, 71
Sullivan, 277
symmetry
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tangent space
of an orbifold, 318
Teichmiiller space, 88, 89-92
for hyperbolic orbifold, 318
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of the boundary of a 3-manifold, 97
thick-thin decomposition, 112
characterization of M, 115
for an orbifold, 346
three-punctured sphere, 36
tractrix, 10
train track, 205
dual, 267, 271

transverse measure, 189

ultraparallel, 14
uncrumpled surface [pleated], 200, 219, 249,
see also wrinkling locus

realizing essentially complete lamination, 249—

251
unit tangent bundle
of orbifold, 319-323

visual average, 285

volume
and Gromov’s invariant, 126-128
goes down after Dehn filling, 138
is a continuous function, 119
is well-ordered, 139
of a straight k-simplex, 124

Waldhausen, 142

Whitehead link, 32-33, 120
commensurable with Borromean rings, 141
volume of complement, 165

wrinkling locus, 201, 209
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