FOLIATIONS AND GROUPS OF DIFFEOMORPHISMS

BY WILLIAM THURSTON

Communicated by William Browder, July 7, 1973

John Mather has described a close relation between framed codimension-one Haefliger structures (these form a class of singular foliations), and the group of compactly supported diffeomorphisms of R^1 , with discrete topology [11], [12], [14]. In this announcement I will describe generalizations of his ideas to higher codimension Haefliger structures and groups of diffeomorphisms of arbitrary manifolds. See Haefliger [7] for a development of Haefliger structures and their classifying spaces.

I would like to thank Boyd Anderson, André Haefliger and John Mather for long discussions and proddings about this material, and many others for helpful conversations and relevant information.

Let $\operatorname{Diff}^r(M^p)$ denote the group of C^r diffeomorphisms of M^p , a closed manifold. Let $\operatorname{Diff}_0^r(M^p)$ denote the connected component of the identity.

THEOREM 1. Diff $_0^{\infty}(M^p)$ is a simple group.

The proof makes use of both the theorem of Epstein [4] that the commutator subgroup of $Diff_0(M^p)$ is simple, and of the result of M. Herman [9] which gives the case M^p is a p-torus.

THEOREM 2. $B\bar{\Gamma}_p^{\infty}$ is (p+1)-connected, where $B\bar{\Gamma}_p^{\infty}$ is the classifying space for framed, codimension p, C^{∞} , Haefliger structures.

The more usual notation is $F\Gamma_p^{\infty} = B\overline{\Gamma}_p^{\infty}$. Haefliger proved [6] that $B\overline{\Gamma}_p^r$ is p-connected for $1 \le r \le \infty$; Mather proved that $B\overline{\Gamma}_p^{\infty}$ is 2-connected.

Theorem 2 means that two C^{∞} foliations of a manifold coming from nonsingular vector fields are homotopic as Haefliger structures if and only if the normal bundles are isomorphic.

Theorems 1 and 2 are proven by showing they are related; cf. Theorem 4 for a statement of a relationship.

COROLLARY. $P_1^{[p/2]}$ is nontrivial in $H^*(B\Gamma_p^{\infty}; \mathbb{R})$ where P_1 is the first real Pontrjagin class of the normal bundle to the canonical Haefliger structure.

AMS (MOS) subject classifications (1970). Primary 57D30, 57D50.

Thus, Bott's vanishing theorem [1], which says real Pontrjagin classes in $B\Gamma_p^r$ $(r \ge 2)$ vanish above dimension 2p, gives a sharp bound on dimensions.

This corollary in the case p=2 follows easily from Theorem 2. For higher codimensions, product foliations then yield examples.

THEOREM 3. $B\overline{\Gamma}_{v}^{0}$ is contractible.

Again, Mather proved this when the codimension is one.

This means topological Haefliger structures are completely determined up to homotopy by their normal micro-bundles.

Theorem 3 implies that Bott's vanishing theorem is quite false in the topological case—any normal micro-bundle is the normal micro-bundle for a topological foliation. In fact, if the micro-bundle is differentiable, it even admits a Haefliger structure Lipschitz close to being differentiable.

A little background and notation is necessary before the statement of the more general relationships. Let G be a topological group. Let G_b be G with discrete topology. Then the map $G_b \rightarrow G$ is a continuous map which has a homotopy-theoretic fiber G. G is also a topological group: the explicit construction for G is the space of paths α in G ending at the identity $e=\alpha(1)$, with discrete topology on $\alpha(0)$. Then multiplication is pointwise. There are maps, now,

$$\bar{G} \to G_{\delta} \to G \to B\bar{G} \to BG_{\delta} \to BG$$

and any two consecutive arrows define a fibration.

BG is the classifying space for G-bundles. BG_{δ} classifies flat G-bundles: for instance, $B \operatorname{Diff}^{\infty}(M^n)_{\delta}$ has an associated M-bundle, with discrete structure group: i.e., a C^{∞} foliation transverse to the fibers of the bundle. Thus, $B \operatorname{Diff}^{\infty}(M^p)_{\delta}$ classifies "foliated M^p -bundles". Finally, BG classifies G-bundles with a flat structure, together with a global trivialization defined (up to homotopy); e.g. $B \operatorname{Diff}^{\infty}(M^p)$ classifies "foliated M^p -products".

Let $\operatorname{Diff}_K(R^p)$ be the group of diffeomorphisms of R^p with compact support. Then again, $B \operatorname{\overline{Diff}}_K^r(R^p) \times R^p$ has a foliation of codimension p transverse to the R^p -factors. Thus, there is a classifying map

$$B \ \overline{\mathrm{D}}\mathrm{iff}_K^r(R^p) \times R^p \to B \overline{\Gamma}_p^r$$

(The image is in $B\bar{\Gamma}_p^r$ since there is a natural trivialization of the normal bundle to the foliation.)

The foliation agrees with the trivial, product foliation in a neighborhood of ∞ in the R^p factors. Thus, one obtains a map of the p-fold suspension of $B \overline{D}iff_K^r R^p$,

$$S^p(B \ \overline{\mathbb{D}}\mathrm{iff}_K^r R^p) \to B \overline{\Gamma}_p^r$$

This defines an adjoint map $B \ \overline{\mathrm{D}} \mathrm{iff}_K^r(R^p) \to \Omega^p(B \overline{\Gamma}_p^r)$ to the p-fold loop space of $B \overline{\Gamma}_p^r$.

THEOREM 4. The map $B \ \overline{\mathrm{D}} \mathrm{iff}_K^r(R^p) \to \Omega^p(B \overline{\Gamma}_p^r)$ induces an isomorphism on homology.

This theorem is due to Mather in the case p=1.

The map is certainly not a homotopy equivalence since $\pi_1(B \overline{\mathrm{Diff}}_K^r R^p)$ is highly nonabelian while $\pi_1(\Omega^p B \overline{\Gamma}_p^r) = \pi_{v+1}(B \overline{\Gamma}_v^r)$ is abelian.

Similarly, there is a map $B \overline{D}iff^r(M^p) \times M^p \rightarrow B\Gamma_p^r$ which is a lifting of the classifying map for the tangent bundle of M^p , so there is a commutative diagram

Let X be the space of liftings of the classifying map for $T(M^p)$ in BO_p to $B\Gamma_p^r$. Then we have a map $B \overline{D} \text{iff}^r(M^p) \rightarrow X$.

THEOREM 5. The map

$$B \overline{\mathbf{D}} \mathrm{iff}^r(M^p) \to X$$

induces an isomorphism on homology.

Again, this is not a homotopy equivalence since $\pi_1(X)$ is abelian. For the case r=0, we assume M^p is a differentiable manifold.

COROLLARY. (a) B Homeo (M^p) is acyclic, where Homeo (M^p) = Diff⁰ (M^p) is the group of homeomorphisms of M^p .

(b) The map $B \text{ Homeo}(M^p)_{\delta} \rightarrow B \text{ Homeo}(M^p)$ induces an isomorphism on homology.

This corollary is implied by Theorems 3 and 5. Cf. Mather [13], who showed B Homeo_K(\mathbb{R}^p)_{δ} is acyclic.

COROLLARY. The following groups are isomorphic, where k is the first positive integer such that one of them is nontrivial:

- (i) $H_k(B \operatorname{Diff}^r(M^p); Z)$,
- (ii) $H_k(B \overline{\mathrm{Diff}}_K^r(R^p); Z)$,
- (iii) $H_{k+p}(B\Gamma_p^r; Z)$.

Conjecture. This first k is p+1, for $r=\infty$.

Mather's theorem [11] shows this for p=1. Bott and Haefliger showed

that all differentiable characteristic classes (in some sense) vanish below this dimension, $H_{2p+1}(B\bar{\Gamma}_p^r, Z)$ [2], [3].

In [16] I sketched examples showing there is a surjective homomorphism

$$H_3(B\tilde{\Gamma}_1^{\infty};Z) \twoheadrightarrow R$$
,

using the Godbillon-Vey invariant gv [5]. Recently I have extended this to arbitrary codimension, so there is a surjective homomorphism

$$H_{2n+1}(B\bar{\Gamma}_n^{\infty}; Z) \twoheadrightarrow R.$$

BIBLIOGRAPHY

- 1. R. Bott, On a topological obstruction to integrability, Proc. Int. Congress Nice, 1970, 27-36.
- 2. R. Bott and A. Haefliger, On characteristic classes of Γ-foliations, Bull. Amer. Math. Soc. 78 (1972), 1039-1044.
 - Continuous cohomology and characteristic classes, (to appear).
- 4. D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165-173. MR 42 #2491.
- 5. C. Godbillon and J. Vey, Un invariant des feuilletage de codimension 1, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), A92-A95. MR 44 #1046.
- 6. A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183-194. MR 41 #7709.
- -, Homotopy and integrability, Manifolds-Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Math., vol. 197, Springer, Berlin, 1971, pp. 133-163. MR 44 #2251.
- -, Sur les classes characteristiques des feuilletages, Séminaire Bourbaki, No. 412, June 1972,
- 9. M. Herman, Simplicité du groupe des difféomorphismes de classe C^{∞} , isotopes à l'identité, du tore de dimension n, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), A232-A234. MR 44 #4788.
- 10. M. Herman and F. Sergeraert, Sur un théorème d'Arnold et Kolmogorov, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), A409-A411. MR 44 #7586.
- 11. J. Mather, On Haefliger's classifying space. I, Bull. Amer. Math. Soc. 77 (1971), 1111-1115. MR 44 #1047.
- 12. ——, On Haefliger's classifying space. II: Approximation theorems, (preprint).

 13. ——, The vanishing of homology of certain groups of homeomorphisms, Topology 10 (1971), 297-298. MR 44 #5973.
 - 14. —, Integrability in codimension 1, Comment. Math. Helv. (to appear).
- 15. W. Thurston, Noncobordant foliations of S3, Bull. Amer. Math. Soc. 78 (1972), 511-514. MR 45 #7741.
 - 16. —, Variation of the Godbillon-Vey invariant in higher codimension, (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW **JERSEY 08540**

Current address: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139