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The purpose of this first lecture is to present a general formalism of higher stacks based on the
theory of simplicial presheaves introduced by A. Joyal and developped by many authors after him.
My main purpose will be to explain throught examples why the homotopy theory of simplicial
presheaf is actually a very good model for a theory of higher stacks. For this, I will present the
homotopy category of stacks and investigate its relations with the usual theory of (1)-stacks, sheaf
cohomology and non-abelian cohomology.

Some references on the subjects are [Ja1], [S2], [H-S], [Ja2], [Hol], [Du].

Terminology remarks:

• The stacks of this talk will probably have a different flavor than usual. Indeed, instead
of considering stacks from a geometrical point of view (e.g. algebraic stacks) they will be
considered as coefficients for cohomology and will not be endowed with geometrical structure
(algebraic, topological . . . ). In the future they will serve to study other geometrical objects
(varieties, spaces, possibly other stacks . . . ) exactly as sheaves are used to study schemes.
The theory of higher stacks should actually be understood as part of higher topos theory.

• The expression non-abelian cohomology can be quite ambiguous. One could try to make
it clearer by the following observation. Abelian cohomology is certainely dual to (abelian)
homology. On the other side, homology is nothing else than the abelianization of homotopy,
or abelian homotopy. Therefore, non-abelian cohomology should really be understood as dual
to homotopy. This is why homotopy theory will play an imporant role in this lecture.

In the following I will be using the homotopy theory of simplicial sets. If one is not familliar
with it, one can simply replace simplicial sets by topological spaces, and equivalences of simplicial
sets by weak equivalences of topological spaces. The category of sets will be denoted by Set, and
the category of simplicial sets by SSet. As any set can be considered as a discrete simplicial set
one can considered Set as embedded in SSet.

To fix the ideas we will work over the big site T := (Top) of all topological spaces. However,
everything will be valid over any Grothendieck site.

1 Sheaves

Let us start by a very formal construction of the category of sheaves on T . We consider first
Pr(X), the category of presheaves of sets on X . Inside this category one consider a certain set of
morphisms W defined by the following. A morphism f : A −→ B in Pr(X) belongs to W if for any
X ∈ T and any point x ∈ X the map induced on the fibers fx : Ax −→ Bx is bijective. In other
words, W consists of local isomorphisms. To such a categorical data (Pr(X), W ), of a category
and a subset of morphisms, one can construct the localized category W−1Pr(X). By definition, it
is a category together with a functor

L : Pr(X) −→W−1Pr(X),
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which sends elements of W into isomorphisms, and which is universal for such property. The
universal property 1 means that any functor F : Pr(X) −→ C sending W into isomorphisms
factors in a unique (up to unique isomorphism) way throught L

Pr(X) F ��

L ����
��

��
��

��
C

��
W−1Pr(X).

It is a general fact that such a category W−1Pr(X) always exists, but might be quite difficult
to describe (see [Ho, Def. 1.2.1]). Roughly speaking, W−1Pr(X) has the same objects as Pr(X),
and morphisms between A and B are certain equivalence classes of strings of morphisms in Pr(X),
A · · · → An ← Bn → An+1 ← . . . B, where each arrow from the right to the left belongs to W .

Let us consider now the category Sh(X) of sheaves of sets on X . There exists an associated
sheaf functor a : Pr(X) −→ Sh(X) that sends precisely W to isomorphisms. This functor factors
throught W−1Pr(X), giving rise to a functor W−1Pr(X) −→ Sh(X).

Proposition 1.0.1 The above functor is an equivalence of categories.

Another way to state this proposition is to say that the localization functor L : Pr(X) −→
W−1Pr(X) has a right adjoint j : W−1Pr(X) −→ Pr(X) which is fully faithful and whose image
is the sub-category of sheaves. One can actually recognize the image of j as the category of W -local
objects in Pr(X). More precisely one can check that

Sh(T ) = {F ∈ Pr(X)/∀(f : E → E′) ∈W, f∗ : Hom(E′, F )→ Hom(E, F ) is bijective}.

The striking conclusion of this proposition is that one can construct the category of sheaves,
up to an equivalence, without even mentioning the sheaf condition (the construction only depends
on Pr(X) and the set of morphisms W ). In other words, it is not necessary to know what a sheaf
is in order to talk about the category of sheaves. We will follow the same point of view in order
to work with higher stacks, and therefore will define the category of stacks as a certain localized
category.

2 The homotopy category of stacks

Let SPr(T ) be the category of presheaves of simplicial sets on T , or equivalentely of simplicial
presheaves on T . In other words, an object F in SPr(T ) is the data of a simplicial set F (X)
for any topological space X , together with transitions morphisms f∗ : F (X) −→ F (Y ) for any
continuous map f : Y −→ X , such that (f ◦ g)∗ = g∗ ◦ f∗. Inside the category SPr(T ), one defines
a set of morphism W in the following way. A morphism f : F −→ F ′ belongs to W if for any space
X ∈ T and any point x ∈ X the induced morphism on the fiber fx : Fx −→ F ′

x is an equivalence2.
The morphisms in W might reasonably be called local equivalences.

In the same way, one defines the set W pr of global equivalences, to be the set of all morphisms
f : F −→ F ′ such that for any X ∈ T the induced morphism fX : F (X) −→ F ′(X) is an
equivalence. One has W pr ⊂W .

1The correct way to state this universal property is to claim that for any category C, the induced functor on the
categories of functors

L∗ : Hom(W−1Pr(X), C) −→ Hom(Pr(X), C)

is fully faithful, and its image consists of functors sending elements of W to isomorphisms in C.
2Recall that an equivalence of simplicial sets is a morphism inducing an isomorphism on all homotopy groups

for all base points.
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Definition 2.0.2 1. The homotopy category of stacks (on T ) is the localized category

Ho(T ) := W−1SPr(T ).

Objects of Ho(T ) will simply be called stacks, and morphisms in Ho(T ) will be denoted by
[−,−], or by [−,−]Ho(T ).

2. The homotopy category of pre-stacks (on T ) is the localized category

Hopr(T ) := (W pr)−1SPr(T ).

Objects of Hopr(T ) will simply be called pre-stacks.

Remarks:

• One should not confuse Ho(T ) defined above and the homotopy category of spaces Ho(Top)
used in homotopy theory and obtained by inverting weak equivalences of topological spaces.

• In order to avoid confusion, we will use the expression 1-stack to refer to the usual notion of
stacks in groupoids defined in the previous lectures (see also [L-M]). If necessary the same
terminology applies to distinguish between pre-stacks and 1-pre-stacks.

As an inductive colimit of equivalences is an equivalence, one has W pr ⊂ W , and therefore a
natural functor

a : Hopr(T )(W pr)−1SPr(T ) −→W−1SPr(T ) = Ho(T ).

One can prove that a possesses a right adjoint j which is fully faithful. The image of j consists
precisely of simplicial presheaves which are W -local in Hopr(T ) (the definition is the same as in the
previous paragraph). In particular, a local equivalence between those is always a global equivalence
(this is the local-to-global principle for simplicial presheaves). In other words, there is a full sub-
category SPr(T )desc of SPr(T ), consisting of W -local simplicial presheaves such that Ho(T ) is
equivalent to (W pr)−1SPr(T )desc 3. One should note that the adjunction morphism F −→ ja(F )
in Hopr(T ) has to be understood as an associated stack construction.

3 Sheaves vs stacks

Recall that a sheaf F on the site T is nothing else but a presheaf such that each restriction of F
on a space X ∈ T is a sheaf in the usual sense. The category of sheaves on T will be denoted by
Sh(T ).

To a stack F ∈ Ho(T ) one associates its sheaf of connected components π0(F ) ∈ Sh(T ). This
defines a functor π0 : Ho(T ) −→ Sh(T ), which possesses a right adjoint j0 : Sh(T ) −→ Ho(T ).
The functor j0 simply sends a sheaf of sets to the corresponding presheaf of discrete simplicial sets.

For the purpose of the following proposition, we recall that a stack F ∈ Ho(T ) is 0-truncated
if for any space X ∈ T and any point x ∈ X the fiber Fx is acyclic (i.e. for any y ∈ Fx one has
πn(Fx, y) = 0 for all n > 0).

Proposition 3.0.3 The functor j0 is fully faithful. Its image consists of 0-truncated stacks.

One has the Yoneda embedding h : T −→ Sh(T ), sending a space X to the sheaf Y �→ hX(Y ) :=
Hom(Y, X). When compose with the functor j0 one obtains a full embedding h : T −→ Ho(T ).
This shows that Ho(T ) contains the category of spaces as a full sub-category, which by definition
consists of the representable stacks.

3One can actually characterize these local simplicial presheaves as objects with possess a certain descent property
for hyper-coverings (this result is very unfortunately still un-published: [Du] or [Hi]). This descent property is
nothing else but a homotopy analog of the sheaf condition.
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4 1-Stacks vs stacks

Recall that a 1-stack of groupoids on T is by definition a fibered category in groupoids X −→
T which satisfies certain decsent conditions. These form a category, where morphisms are just
(strictly) commutative diagrams of functors

X

���
��

��
��

�

f �� Y

����
��
��
�

T.

Two such morphisms f and g are homotopic if there exist a natural isomorphism from f to g,
compatible with the two projections to T . Being homotopic is an equivalence relation on the set
of morphisms, compatible with composition. We will denote by Ho(1−St(T )) the category whose
objects are 1-stacks (in groupoids) over T and morphisms are homotopy classes of morphisms. We
are going to embedd Ho(1− St(T )) into Ho(T ).

Even if a fibered category in groupoids X is not strictly speaking a presheaf of groupoids, one
can always replace it, in a functorial way, by an actual presheaf of groupoids. This process is
the strictification of fibered categories which possesses the following easy and explicit description
(which is nothing else than the so called 2-Yoneda lemma). For a 1-stack X one defines a presheaf
of groupoids FX on T by the formula

FX (X) := HomT (X,X ) for anyX ∈ T,

where HomT (X,X ) is the category of functors from the fibered category X represented by X to
X . It is an exercice to check this defines a (2-)functor from 1− St(T ) to Gpd(T ), the category of
genuine presheaves of groupoids on T .

Any groupoid G possesses a classifying simplicial set (or topological space) BG, defined in a
very analog way than the usual classfying space of a group (not to be confused with the classifying
stack !). By definition BG is a simplicial set whose fundamental groupoid is naturally equivalent to
G and which does not have any non-trivial higher homotopy groups. This construction G �→ BG
is a functor from groupoids to simplicial sets, and therefore can be applied to the presheaf FX .
Puting these constructions all together one gets a functor

1− St(T ) −→ SPr(T ) −→ Ho(T )
X �→ BFX ,

which is easily checked to induce a functor on the level of homotopy categories

Ho(1− St(T )) −→ Ho(T ).

Theoreme 4.0.4 The above functor is fully faithful. Its essential image consists exactely of n-
truncated stacks (i.e. stacks F such that for each X ∈ T and each x ∈ X the fiber Fx is 1-truncated
4).

There are some generalization of the previous theorem relating n-stacks in groupoids and n-
truncated stacks (2-stacks in groupoids where introduced in [Br], and n-stacks in groupoids might
be defined using any good definition of n-groupoids, see e.g. [Le]). For n = ∞ I do not know
any definition of ∞-stacks in groupoids, but there is no doubt that an equivalence between the
homotopy category of such and Ho(T ) exists. This last statement strongly suggests that our notion
of stacks is actually a reasonnable notion of ∞-stacks in groupoids.

4A simplicial set or a space S is 1-truncated if it does not have non-trivial homotopy groups other than π0 and
π1.
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5 Enriched structures and non-abelian cohomology

Though the category Ho(T ) contains the homotopy category of 1-stacks Ho(1 − St(T )), it is too
coarse to reconstruct the 2-category 1 − St(T ). This means that Ho(T ) does not allow one to
consider 2-morphisms. These 2-morphisms are actually a very important structure of stack theory,
and neglecting them is not a good idea. Another related problem is that the category Ho(T ) does
not have fibered products, whereas we have seen that fibered product of 1-stacks does exists in a
certain way. There exists several ways to solve this problem. One is to work with the simplicial
localization of Dwyer and Kan (see [D-K], and also [S1]) rather than the usual localization of
categories. From this point of view, the true homotopy category of stacks on T is not the category
Ho(T ) but the simplicial enriched category LSPr(T )5, obtained from SPr(T ) by inverting the
equivalences using the simplicial localization of categories. The relation between these two local-
ization process is that Ho(T ) is the category of connected components of LSPr(T ) (i.e. they have
the same object and the morphisms in Ho(T ) are the set of connected components of the simplicial
sets of morphisms in LSPr(T )). One important properties of LSPr(T ) is that it induces a sort of
non-abelian triangulated structure on Ho(T ). In particular it allows one to talk about homotopy
fiber products, and more generally about homotopy limits and colimits in a very intrisic way (see
[H-S, §8,14]). It also allows to reconstruct the whole 2-category 1− St(T ) (up to an equivalence),
as well as the (n + 1)-category n−St(T ), but we will not go further in that direction. Though the
Dwyer and Kan localization technique is a very elegant and powerful way of taking into account
higher categorical structures on Ho(T ) we will use a more down to earth approach that will be
enough for our purposes. Another solution would be to use a reasonnable model category structure
on the category SPr(T ), which is a less intrinsic structure than LSPr(T ), but more workable in
practice (working with model categories instead of simplicially enriched categories is very similar
to working with sites rather than topoi).

Simplicially enriched structures and internal Hom’s: For any simplicial presheaf F ∈ SPr(T )
and simplicial set A ∈ SSet, one can form a simplicial presheaf A × F , defined by the formula
(A×F )(X) := A×F (X), for X ∈ T . This induces an action of the homotopy category of simplicial
sets Ho(SSet) on Ho(T ). Using this additional structure one can define for any F, F ′ ∈ Ho(T )
the following functor

RHom(F, F ′) : Ho(SSet)op −→ Set
A �→ [A× F, F ′].

One can prove that this functor is representable by an object RHom(F, F ′) ∈ Ho(SSet). These
derived simplicial Hom’s naturally define a structure of a Ho(SSet)-enriched category on Ho(T )
that will be of fundamental importance for us (in particular for the purpose of non-abelian coho-
mology). Note that one has

[F, F ′] 	 π0RHom(F, F ′),

for any F, F ′ ∈ Ho(T ).
One can also prove that the category Ho(T ) is cartesian closed. This means that for any pair

of objects F, F ′ ∈ Ho(T ), the functor

RHOM(F, F ′) : Ho(T )op −→ Set
G �→ [G× F, F ′]

is representable by an object RHOM(F, F ′) ∈ Ho(T ), called the stack of morphisms between F
and F ′.

5A simplicially enriched category is a category where the morphisms sets have a structure of simplicial sets
compatible with the compositions maps.
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Homotopy limits and colimits: Let I be a category, and consider Ho(T × Iop), where the
topology on T × Iop is the product of the topology of T and the trivial topology on I (i.e. a
presheaf F : T op × I −→ Set is a sheaf if and only if for any i ∈ I, the presheaf F (−, i) on
T is a sheaf). There is a natural functor c : SPr(T ) −→ SPr(T × Iop) 	 SPr(T )I , which
sends a simplicial presheaf F to the I-diagram with values constant equal to F . In formula, for
any F ∈ SPr(T ) and (X, i) ∈ T × Iop, one has c(F )(X, i) := F (X). The functor c sends local
equivalences to local equivalences and therefore induces a functor on the homotopy categories

c : Ho(T ) −→ Ho(T × Iop).

One can prove that this functor possesses adjoints on the left and on the right, respectively denoted
by

HocolimI : Ho(T × Iop) −→ Ho(T ) HolimI : Ho(T × Iop) −→ Ho(T ),

and called homotopy colimits and homotopy limits along I. The existence of these two functors is a
kind of homotopy cocompletness and completness property of the homotopy category of stacks. To
make this assertion really meaningful one has to come back to the simplicially enriched category
LSPr(T ), which is actually cocomplete and complete in a very reasonnable sense (see [S1, p. 29]).

An important special case is when I is the category 1→ 0← 2. Then, the homotopy limit of a
diagram F1 → F0 ← F2 is called the homotopy fibered product of F1 and F2 over F0. It is denoted
by F1 ×h

F0
F2, and is such that for any global section s, any space X ∈ T and any x ∈ X there

exists a natural long exact sequence

. . . �� πn((F0)x, s) �� πn((F1)x, s)× πn((F2)x, s) �� πn((F1 ×h
F0

F2)x, s) �� πn−1((F0)x, s) �� . . . .

In other words, the fibers of F1 ×h
F0

F2 at x ∈ X is equivalent to the homotopy fibered product of
the fibers (F1)x ×h

(F0)x
(F2)x.

The homotopy fibered product F1×h
F0
∗ is called the homotopy fiber of the morphism F1 −→ F0

at the global section ∗ −→ F0.

Definition 5.0.5 A fibration sequence of stacks is a commutative diagram in SPr(T ) (not in
Ho(SPr(T ))

F0

����
��

��
��

��
��

��
�

�� F1
�� F2

•,

��

such that the induced natural morphism in Ho(T )

F0 −→ F1 ×h
F2
∗

is an isomorphism. We will simply refer to such as a fibration sequence

F0 −→ F1 −→ F2

.

As the datas of triangles in the derived categories determines a triangulated structure, one
should think of the data of the fibration sequences as a kind of non-abelian triangulated structure
on Ho(T ).
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6 Non-abelian cohomology

We will end this talk by the definition of non-abelian cohomolgy. We also give some examples.

Definition 6.0.6 Let F and F ′ be two stacks in Ho(T ). The simplicial set of cohomology of F
with values in F ′ is defined to be RHom(F, F ′) ∈ Ho(SSet).

Examples:

1. Let F be the sheaf represented by a space X ∈ T , and let us consider the constant simplicial
presheaf of value K(Z, n)6. Then one has

πiRHom(F, K(Z, n)) 	 Hn−i(X, Z) (sheaf cohomology).

In particular
[F, K(Z, n)] 	 Hn(X, Z).

In case F is now a 1-stack X then

πiRHom(F, K(Z, n)) 	 Hn−i(X , Z),

where the right hand side is the sheaf cohomology defined by Kai Behrend in his first lecture.

These two isomorphisms generalizes to the case of sheaf cohomology with coefficients any
sheaf of abelian groups on T . For any sheaf of abelian groups A on T , one conctruct the
stack K(A, n) that sends Y ∈ T to K(A(Y ), n). Then one has

πiRHom(F, K(Z, n)) 	 Hn−i(X , Z).

2. Let F be represented by a space X ∈ T and G any sheaf of groups on T (maybe non-abelian).
Let K(G, 1) be the simplicial presheaf of classfying simplicial sets associated to it. In formula
one has K(G, 1)(Y ) := K(G(Y ), 1) for any Y ∈ T . Then one has

[F, K(G, 1)] := π0RHom(F, K(G, 1)) 	 H1(X, G),

where H1(X, G) denotes the set of isomorphisms classes of G-torsors over X . One can also
prove that the fundamental groupoid of RHom(F, K(G, 1)) is equivalent to the groupoid of
G-torsors on X . Also πiRHom(F, K(G, 1)) = 0 for any i > 1.

3. Let still G be any group, X ∈ T , and let us consider the simplicial set K(Z(G), 2), where
Z(G) is the center of G. The group of outer automorphisms Out(G) acts on Z(G) and
therefore on the simplicial set K(Z(G), 2). This action corresponds to a fibration sequence

K(Z(G), 2) −→ GG −→ K(Out(G), 1),

that defines the simplicial set GG (one can check that GG is equivalent to the classifying
space of the group of self-equivalences of K(G, 1)). One proves that [X,GG] is naturally in
bijection with the set of equivalences classes of gerbes of group G on the space X (i.e. of
1-stacks X −→ X that are locally equivalent to the classifying stack BG). A more general
result is true: the 2-fundamental groupoid of RHom(X,GG) is equivalent (as a 2-groupoid)
to the 2-groupoid of gerbes of group G over X . This example of course generalizes to the
case where G is a sheaf of groups.

From this last equivalence one can prove also reinterpret the non-abelian cohomology group
H2(X, G) defined by J. Giraud in our context. More precisely, if b ∈ H1(X, Out(G)) is a
bound, then H2(X, G) is in bijection with the set π0(F ), where F is the homotopy fiber of
the projection

RHom(X,GG) −→ RHom(X, K(OUt(G), 1))

at the point corresponding to b.
6Recall that K(�,n) denotes a connected simplicial set whith πi(K(�,n)) = 0 if i �= n and πn(K(�,n)) = �.
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4. Let us go back to the previous example. There is a fibration sequence

K(Z(G), 2) −→ GG −→ K(Out(G), 1),

that induces a fibration sequence on cohomology spaces

RHom(X, K(Z(G), 2)) −→ RHom(X,GG) −→ RHom(X, K(Out(G), 1)).

This sequence shows that RHom(X,GG) is an extension of RHom(X,GG) (which computes
non-abelian cohomology in degree 1) by RHom(X, K(Z(G), 2)) (which computes abelian
cohomology). Therefore, the previous example is simply a mixture of the first and second
examples.

5. The previous decomposition of GG into abelian cohomology and non-abelian cohomology in
degre 1 is a general fact. Let F ∈ Ho(T ) be a pointed and connected stack (i.e. there is a
morphism ∗ → F which induces isomorphisms ∗ 	 π0(Fx) for any X ∈ T and x ∈ X). Let
us suppose that F is n-truncated for some n (i.e. πi(Fx) = 0 for all i > n and all X ∈ T ,
x ∈ X). Then, there exists a Postnikov tower

F = Fn −→ . . . Fi −→ Fi−1 −→ . . . F1 −→ F0 = ∗,
such that for each i there exists a fibration sequence

K(πi, i) −→ Fi −→ Fi−1,

where πi are certain sheaves of groups on T (in particular F1 	 K(π1, 1)). These diagrams
induce fibration sequences

RHom(X, K(Ai, i)) −→ RHom(X, Fi) −→ RHom(X, Fi−1),

showing that in general the cohomology space RHom(X, F ) is a successive extension of spaces
of the form RHom(X, K(πi, i)). This is of course still valid if X is replaced by a topological
1-stack X , or even by any other stack F ′ ∈ Ho(T ).

From this we deduce the very important

Whitehead principle: Non-abelian cohomology is controlled by non-abelian cohomology in degree
one (i.e. torsors theory) and usual abelian cohomology.
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