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Summary

We prove a ‘slightly non-abelian’ version of the classical Eilenberg-Zilber theorem: if
K, L are simplicial sets, then there is a strong deformation retraction of the funda-
mental crossed complex of the cartesian product K x L onto the tensor product of the
fundamental crossed complexes of K and L. This satisfies various side-conditions and
associativity /interchange laws, as for the chain complex version. Given simplicial sets
K, ..., K,, we discuss the r-cube of homotopies induced on 7(Ky % ... x K,) and show
these form a coherent system.

We introduce a definition of a double crossed complex, and of the associated total
(or codiagonal) crossed complex. We introduce a definition of homotopy colimits of
diagrams of crossed complexes. We show that the homotopy colimit of crossed com-
plexes can be expressed as the total complex of a certain ‘twisted’ simplicial crossed
complex, analogous to Bousfield and Kan’s definition of simplicial homotopy colimits
as the diagonal of a certain bisimplicial set. Using the Eilenberg-Zilber theorem we
show that the fundamental crossed complex functor preserves these homotopy colimits
up to a strong deformation retraction. This is applied to give a small crossed resolution
of a semidirect product of groups.

We consider a simplicial enrichment of the category of crossed complexes, and in-
vestigate the coherent homotopy structure up to which a simplicial enrichment may be
given to the fundamental crossed complex functor.

We end with a definition of homotopy coherent functors from a small category to
the category of crossed complexes, and suggest a definition of homotopy colimits of
such functors and of a small crossed resolution of an arbitrary group extension.
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Chapter 0

Introduction

The motivation for this thesis has come from two directions: firstly, from a wish to give
a definition of homotopy colimits in a situation where cartesian products are replaced
by tensor products, and secondly from an investigation of small resolutions for groups
which arise as products, semidirect products or extensions. Both of these rely on the
Eilenberg-Zilber theorem, and it has turned out that we have considered the second by
translating it into the language of the first.

We have also chosen to carry out this investigation in the context of crossed com-
plexes. This is a category of algebraic objects similar to chain complexes but with
some non-abelian information in dimensions one and two. The crossed complex has
been around since [42], and following [14] and [19] it may also be thought of as a re-
duced form of a simplicial groupoid. The extra structure shared by chain and crossed
complexes which is not available (currently) for simplicial groups is that of having a
“geometrically-motivated” tensor product, and this has been essential for our work.

The Eilenberg-Zilber theorem in its original form [22, 21] gives for simplicial sets

K, L a chain homotopy equivalence

where Cy(K) is the normalised free chain complex on the simplicial set K. This
theorem is now part of the general knowledge of algebraic topology, but although it
seems clear that it is true for crossed complexes also there has been no explicit proof
given. Writing 7K for the fundamental crossed complex of a simplicial set K, we
have obtained a strong deformation retraction of 7(K x L) onto 7K ® wL satisying
certain side conditions and interchange relations, exactly as in the chain complex case
except that in low dimensions the formulse for the tensor product and the homotopy
equivalence contain non-abelian information.

We have also extended some of the basic constructions available for crossed com-
plexes of groupoids, defining a double crossed complex as well as a total crossed complex

which behaves nicely with respect to the tensor product. A total crossed complex func-



tor for simplicial crossed complexes has also been defined, and this has been used in
defining homotopy colimits.

Since limits and colimits of topological spaces, simplicial sets or chain complexes
do not behave well when the spaces, etc., are varied up to homotopy equivalence, it is
natural to consider the notions of homotopy limits and homotopy colimits. For example
the mapping cylinder, double mapping cone and ‘telescope’ are all well known exam-
ples of homotopy colimit constructions. However the topological space or algebraic
structure which represents a particular homotopy colimit will itself only be determined
up to homotopy equivalence, and this has led to much interest in setting up formal
machinery to provide particular nice models for homotopy limits and colimits for arbi-
trary diagrams. In this thesis we have given a definition for homotopy colimits in the
category of crossed complexes.

In fact the diagrams over which the homotopy colimit is taken need only be functorial
up to homotopy rather than on the nose, and there has been a lot of work recently on
notions of lax or homotopy coherent functors and their homotopy limits and colimits.
This work has been carried out mainly in the context of simplicially-enriched categories,
or sometimes Cat- or Top-enriched categories. In this thesis we have tried to extend
such ideas to monoidal closed categories which satisfy an Eilenberg-Zilber type theorem,
although we have not completely achieved this ambition.

The standard crossed resolution [11] C(G) of a group G is defined by applying
the fundamental crossed complex functor to the simplicial set given by the nerve of
G. This gives a complex of groups whose first homology group is G with all higher
homology groups trivial, and which is also free in that it has a presentation where the
only relations are those defining the boundary maps and quotienting out degenerate
simplices.

However C(G) is not the only resolution of G with this freeness property, and there
may be other models which are smaller. For instance an application of the Eilenberg-
Zilber theorem shows that C(G) ® C(H) is a deformation retract of the standard
resolution of G x H, and is free by the definition of the tensor product. We have given
in this thesis a resolution of a semidirect product of groups which is a deformation
retract of the standard resolution and which takes the form of a twisted tensor product.
Also we have given a candidate for a resolution of an arbitrary extension of groups as
a more general twisted tensor product. Both of these arose by considering the data in

terms of a homotopy colimit of an appropriate (lax) functor.

0.1 Structure of Thesis

We begin in chapter 1 by considering the notion of a double crossed complex, analogous
to the bisimplicial set or to the bichain complex in the abelian situation. Our definition

of a double crossed complex is essentially that of a crossed complex of groupoids internal



to the category of crossed complexes of groupoids (similar to the definition of a double
category as a category internal to the category of small categories).

A “total” functor is then defined from the category of double groupoids to the
category of crossed modules, and this is extended to a functor

Tot

Crs®? Crs

from double crossed complexes to crossed complexes. The total crossed complex D
of a double crossed complex C is essentially that given by generators ¢;; € D, for
all elements of C;; with ¢ + j = n, subject to certain “geometrical” relations which
are similar to those in the Brown-Higgins definition of the tensor product of crossed
complexes [12]. In fact our definition is constructed so that given a pair of crossed
complexes A, B there is an obvious double crossed complex whose total crossed complex
is the tensor product A ® B.

We also define a total functor from the category of simplicial crossed complexes.

In chapter 2 the definition of homotopy between crossed complex homomorphisms
is recalled, in terms of homomorphisms h : 7 ® C — D from cylinder objects and
of degree one maps (¢, : C, — D,1), and it is shown that a homotopy from an
idempotent endomorphism to the identity can be replaced by a splitting homotopy,
which satisfies certain extra ‘side-conditions’ of the form h? = 0 and héh = —h. In
particular deformation retractions can be replaced by strong deformation retractions.

For X a bisimplicial set and VX the simplicial set given by the Artin-Mazur di-
agonal [1], a natural comparison map is given from 7V X to the total complex of the
fundamental double crossed complex of X. This is shown to give the diagonal approx-
imation a : 7(K x L) — 7K ® nL in the case X,, = K, x L,. The shuffle map b in
the other direction is given, and b o a is shown to be the identity map on the tensor
product. The associativity relations are also proved for both a and b, as well as an
‘interchange’ relation.

As an elementary application, it is shown how the diagonal approximation map
gives a coalgebra structure on the fundamental crossed complex of a simplicial set, and
a multiplication structure on the simplicial nerve of a crossed complex.

We then show that for simplicial sets K, L, there is a natural homotopy

IT®n(K x L) m(K x L)

between aob and the identity, and it is proved that h satisfies some interchange relations
with respect to a and b.

For simplicial sets K, L, M the deformation retraction h induces two distinct defor-
mation retractions of 7(K x L x M) onto 1K @ rL& 7M. However these are themselves

homotopy equivalent. In fact there is shown to be a coherent system of such homotopies



in each dimension; if Ky, Ky, ..., K, are simplicial sets, then the homotopy coherence

information is recorded by an r-fold homotopy

9" @ m(Ky x Ky x ... x K,) (Ko x Ky x...x K,)

satisfying certain boundary conditions.

In chapter 3 we examine the usual definition of homotopy colimits in the category
of categories [38] and of simplicial sets [4], and consider an alternative definition of the
latter which uses the Artin-Mazur diagonal of a bisimplicial set rather than the usual
diagonal. Thomason [38] showed that the nerve functor from Cat to simplicial sets
preserves homotopy colimits up to weak homotopy equivalence. With the alternative
definition we prove in theorem 3.2.12 that the nerve functor preserves homotopy colimits
up to isomorphism.

We then define a notion of homotopy colimits in the monoidal closed category of
crossed complexes. We show that our first coend definition of homotopy colimits can
be rewritten in terms of the total complex of a particular simplicial crossed complex,
as defined in chapter 1. The main result of this thesis is theorem 3.3.11 in which we
use the Eilenberg-Zilber theorem of chapter 2 to prove that the fundamental crossed
complex functor from simplicial sets to crossed complexes preserves homotopy colimits
up to strong deformation retraction.

We also recall that semidirect products of groups are given by the homotopy colimit
in Cat of the diagram corresponding to the group action. Applying the standard crossed
resolution functor to the diagram and then taking the homotopy colimit in Crs, we
thus obtain a crossed resolution of a semidirect product which is a deformation retract
of the standard one. This is expressed in terms of a twisted tensor product of standard
resolutions.

In chapter 4 we use the Eilenberg-Zilber theorem to investigate a simplicial-set-
enriched structure on the category of crossed complexes. We show that with respect
to such a structure the nerve functor from crossed complexes to simplicial sets has a
simplicial enrichment, but that the fundamental crossed complex functor only has an
enrichment up to a system of higher homotopies given by those of section 2.3.2. We also
investigate how the adjunction between the nerve and fundamental crossed complex
functor behaves with respect to the simplicial enrichment. We do not present any
applications of the results found here, although we expect a tidy treatment of homotopy
colimits of lax functors into crossed complexes would rely on the structures presented
here. Also this chapter is intended as input for the work by Brown, Golasinski, Porter
and the author [7] in which a systematic treatment of equivariant homotopy theory for
crossed complexes is being developed.

In the final chapter we give a tentative ‘low-tech’ definition of homotopy colimits for
lax/coherent diagrams of crossed complexes, taking our inspiration from [39] and [16].

The implications for giving a small resolution of an arbitrary group extension are also



discussed. We end with some remarks about possible future directions for the develop-

ment of the work in this thesis.



Chapter 1

Double Crossed Complexes

1.0 Introduction

In this chapter we introduce double crossed complexes as the “rank 2” generalisation

of crossed complexes of groupoids. The fundamental crossed complex functor

SimpSet T Crs

is extended to functors between the categories of bisimplicial sets, simplicial crossed

complexes and double crossed complexes:

ccas @ (2)
BiSimpSet Crs
TSimp
TCrs
SimpCrs

and the tensor product of crossed complexes is extended to total crossed complex

functors on the categories of simplicial crossed complexes and double crossed complexes:

Crs®?

Tot

. S-Tot,
SimpCrs » Crs

The structure of the chapter is as follows. In the first section, we recall the definitions
of categories, groupoids, crossed modules and crossed complexes. Also the definition of
a double category as a category internal to Cat is discussed. The notion of a double
crossed complex is then introduced, as a crossed complex of groupoids internal to Crs.

In the second section, we show how to associate a crossed module to a double

groupoid, and extend this to a definition of the total crossed complex associated to a



double crossed complex. A construction of a double crossed complex from a pair of
crossed complexes is then given such that the associated total complex is their tensor
product.

In the third section, we begin by recalling the definitions of simplicial and cosim-
plicial objects and the fundamental crossed complex functor on simplicial sets. This
functor is then extended to the categories of bisimplicial sets and simplicial crossed com-
plexes. We also define the total crossed complex associated with a simplicial crossed

complex.

1.1 Definitions

1.1.1 Groupoids and crossed complexes

We begin by recalling some standard definitions.

Definition 1.1.1 A (small) category C consists of
1. an object set Ob(C),
2. a set of arrows (morphisms) Arr(C),

3. source and target functions s, ¢ from Arr(C) to Ob(C),
4. a function Ob(C) —— Arr(C) which gives the identity arrow at an object,

5. a partially defined function Arr(C) x Arr(C) —— Arr(C) which gives the com-

posite of two arrows.

We will usually write e, or 1, for e(z) and a o b or a - b for m(b,a). The data satisfy

the following axioms:

1. The composite a o b of two arrows is defined if and only if ¢(a) = s(b), and then
s(aob) = s(a) and t(a o b) = t(b),

2. s(eg) = t(ey) = w for all 2 € Ob(C), and a 0 eyy) = ey4q) 0 a = a for all a € ArrC,

3. If either of a o (boc¢) or (aob)oc are defined then both are and they are equal.

Definition 1.1.2 A functor C . D between two categories is given by a pair of
functions Ob(C) —— Ob(D), Arr(C) — Arr(D) which commute with the source,

target and identity functions of the two categories and which respect the compositions.

For C a category and x,y € Ob(C), the set of arrows a such that s(a) = = and
t(a) = y is written C(z,y) and termed a hom-set. If C(x,y) is empty whenever z,y
are distinct (that is, if s = t), then C is termed totally disconnected.



A groupoid is a category in which every morphism is an isomorphism, that is, for
any arrow a there exists a (necessarily unique) arrow ¢! such that aoa™"' = €s(a) and
aloa= €i(a)- A monoid is a category whose object set is a singleton, and a group is

a monoid which is a groupoid.
Definition 1.1.3 Suppose C, D are two groupoids over the same object set and C is
totally disconnected. Then an action of D on C is given by a partially defined function

Arr(D) x Arr(C) 2. Arr(C)

(dyc) —— ¢
which satisfies:
1. ¢ is defined if and only if t(c¢) = s(d), and then t(c?) = t(d),

2. (crocy)m =cf o and (e,)" = e,

d od: d
3. ¢ = (cf")% and ¢ = ¢y,

for all ¢;,¢, € C(z, ), dy € D(x,y), dy € D(y, 2).

For example if C' is the largest totally disconnected subcategory of a groupoid C
then C acts on C’' by a® = ¢ ' oaoc. Note that definition 1.1.3 makes sense when C, D
are categories rather than groupoids. However we will not need this extra generality.

Suppose D is a groupoid with object set O and C is a totally disconnected groupoid
over O equipped with a D-action. If each group C(z,x) is abelian then C will be
termed a D-module, and if C,C’' are D-modules then a functor C —— C’ defines a
homomorphism of D-modules iff it is the identity on the object set and respects the
actions of D. The category of D-modules and their homomorphisms will be written
MOdD.

Definition 1.1.4 A crossed module of groupoids consists of a pair of groupoids C,D
over a common object set, with C totally disconnected, together with an action of D
on C and a functor C —— D which is the identity on the object set and satisfies

1. 6(cy=d tobcod,
2. % = 1ocod

for ¢, € C(x,x), d € D(z,y).

A crossed module of groups is a crossed module of groupoids as above in which C,

D are groups.

Definition 1.1.5 A crossed complex of groupoids C' is given by



1. a crossed module of groupoids Cy LN C with object set Cj,

2. for each 7 > 3, a Ci-module C; and a functor C; N C;_1 which is the identity

on the object set and respects the Ci-actions.
These data satisfy the following conditions for ¢ > 3:
1. 6; 0 0;_1 is zero, that is, maps ¢; € C; to ey, € C;_a,

2. the image of 6, acts trivially on C;.

A crossed complex of groups is a crossed complex of groupoids in which Cj is a
singleton, and hence each C;, i > 1, is a group.
A crossed complex of groupoids is often written diagrammatically as follows

O 04 03 09 S

........... > C’4 03 02 Cl C10
t

The category of crossed complexes of groupoids and their homomorphisms will be
denoted by Crs.

1.1.2 Internal categories and double groupoids

If C, D are two small categories, then their product C x D is that category with object
set Ob(C) x Ob(D) and set of arrows Arr(C) x Arr(D) and the structure maps defined
componentwise. The internal hom object [C, D] is the category whose objects are all
functors from C to D and whose arrows are the natural transformations between them.
The category Cat of all small categories is complete, cocomplete and cartesian closed,
as is the full subcategory Gpd of groupoids. In particular the completeness means that

internal categories in Cat may be considered.
Definition 1.1.6 A category C internal to a category D is given by objects and mor-
phisms

s, t

Arr(C) == 0b(C)  Arr(C) xop(c) Arr(C) — Arr(C)

e

where Arr(C) Xop(cy Arr(C) is the pullback in D of (s,). These data are required to
satisfy

1. eos=1and eot =1, the identity morphism at Ob(C) in D,

2. mos=my0s and mot = m ot, where m, Ty are the projection maps from the
pullback to Arr(C),



3. lom =1 and r om = 1, where [,r are the maps to the pullback from Arr(C)
induced by (1,so0e€), (toe, 1) respectively,

4. (I,m)om = (m,1) om.

Thus a category internal to the category of sets is just a small category as in defi-
nition 1.1.1. A category internal to the category of small categories is termed a double

category and may be defined more explicitly as follows:

Definition 1.1.7 A double category A is given by a set A of squares, sets Ay, Ay of
horizontal and vertical arrows, and a set Aq of vertices, and functions s;, t;, e; fore =1, 2

as shown in the diagrams below:

S1 el
A A, A A,
ty
So9 t2 So9 t2 €9 €2
S1
A, Ag A, Ag
tl €1

together with partially defined horizontal compositions o;: A X A — A, o1: Ay X Ay —
A,, and vertical compositions o9: AX A — A, 09: Ay X Ay — Ay, such that the following

axioms are satisfied:

1. The horizontal data (A, Ay, s1,t1,e1,01) and (As, Ag, $1,t1, e1,0;) define category

structures.

2. The vertical data (A, Ay, s9,t9,€9,09) and (Ay, Ag, s9,lo, €9,05) define category

structures.

3. The horizontal structure maps sy, t1, e;, 0; are functorial with respect to the ver-

tical category structures (and hence vice-versa). That is

(a) Si85 = S84, tzt] = t]tz and Sz'tj = t]‘Si for {Z,j} = {1, 2}

(b) si(ao;b) = sa0;s;bfor {i,j} ={1,2}.
)

(

»n

(C tl(a, Oj b) :tia, Oj tzb fOI' {Z,j} = {1,2}
d) e;j(aojb) =eao;eb for {i,57} ={1,2}.
(e) eres = eqeq.

(f) The horizontal and vertical compositions satisfy an interchange law — if the
expressions (a 0, b) oy (c 0oy d) and (a oy ¢) oy (b oy d) are both defined, then
they are equal.

10



A double groupoid is a double category in which all the category structures are
groupoids. Note that taking inverses in one direction is automatically functorial in the
other. In the case that all the category structures are monoids, or groups, we have the

following well-known proposition.
Proposition 1.1.8 Double monoids are abelian monoids.

Proof: Suppose A = (A, {x:}, {*2}, {*0}) is a double monoid, and g,h € A. Then

e1€y = egeq gives eqk; = egkg = % say, and so

golh = (902*)01(*02h) = (gol*)OQ(*olh‘): g o
gorh = (xo0yg)o1(hoyx) = (xo1h)oy(gor*)= hoyg

Thus oy = 0y and the multiplication is commutative. O

1.1.3 Double crossed complexes

The category Crs of crossed complexes of groupoids is also complete, cocomplete and
cartesian closed (see [26] for details of this last construction). In this section we intro-
duce a notion of a double crossed complex of groupoids by considering crossed complexes

of groupoids internal to the category Crs.

Definition 1.1.9 A double crossed complex of groupoids consists of
1. A collection of sets C; ; for ¢, 5 > 0,

2. source, target and identity maps

51,11 9,19
Ci,j COJ C]',i 7,0
€1 €2
for2>1, 5 > 0, with s; = t; and sy = t5 for ¢ > 2,
3. partially defined compositions and actions
©1 aq
Cz',j X Cz',j —_— Cz',j CL]‘ X Ck,j e Ck,j
O2 Q2
C]"i X C]"i _— C]"i Cj,l X Cj,k —_— Cj,k
fore>1,57>0, k> 2,
4. horizontal and vertical boundary maps
of oy
Ci; Ci-1j Cji Cjim

forz>2, 5 >0.

11



These data are such that

1. for each j > 0 the horizontal structure ((C; ;)i>0, 51, t1, €1, 01, @1, (61)i>2) defines a

crossed complex,

2. for each i > 0 the vertical structure ((C;;);j>0, S2, t2, €2, 09, (g, (6;)122) defines a

crossed complex,

3. the horizontal structure maps commute with the vertical structure maps. That
is:
(a) the functions s;,%;,e;, 8" define crossed complex morphisms between the ver-
tical crossed complexes, as do ss, 19, €9, 6" between the horizontal ones,
(b) for each i,j > 1 the structure (C;;, Cy ;,Cio, Coo, (Sk, tk, €k, Ok )—12) defines
a double groupoid,
(¢) the horizontal and vertical actions satisfy an interchange law — if the expres-
sions ap(ay(r, q), aq(p,a)) and ay(az(r,p), as(g, a)) are both defined, then
they are equal.

A double crossed complex of groupoids may be represented diagrammatically as

follows

S SN T T
.......... - 0373 0273 01,3 0073
131
5% 5y oy o3
63 64 63 il
.......... - 0372 > 0272 > Cl,2 0072
ty
53 6y oy b3
63 54 53 il
.......... - 03 1 > 0271 > Cl 1 0071
ty
S9 tg S92 t? 52 t2 2 t2
6 &b 60 51
.......... > 0370 0270 CLO t 007[]
1

The category of double crossed complexes of groupoids and their homomorphisms
will be written Crs'®.
A reduced double crossed complex consists of a double crossed complex as defined

above such that the set Cy( is a singleton. Note that this is not the same as a crossed

12



complex of groups internal to the category of crossed complexes of groups, in which C;
and Cy; are singletons for all 2 > 0 and hence C; ; is an abelian group for all 7,5 > 1.
Our intention is to show that the double crossed complex plays a role similar to
that of the bichain complex in the abelian situation, or to that of the bisimplicial set.
Note that taking the diagonal of a double crossed complex does not define a crossed
complex as we might have liked. In the next section, however, we will see that there
is an appropriate notion of a codiagonal or total crossed complex of a double crossed

complex.

1.2 Some Algebraic Constructions

1.2.1 The total module of a double groupoid

If C, D are categories over a common object set O, then the free product of C and
D, written C %o D, is the coproduct of C and D in the category Caty of categories
over O and functors which are the identity on objects. Alternatively, writing O for the
subcategory of C and D with object set O and no non-identity arrows, the free product
may be defined as the following pushout in Cat

O———C

n

Definition 1.2.1 Suppose that A = (A, A;, Ay, Ag) is a double groupoid. Then define
the total crossed module of A to be the crossed module C LN D where D is the

groupoid A; %4, As. The crossed D-module C has generators a corresponding to the
squares in A with source and target functions both given by t¢,t,, identities given by

e1ey and the boundary map given by
4 -1 -1
at—— tija  0s9a 0 sjaotya,

which are subject to the relations

t .
a1 oay® = ayora; if sja; = tiay,
t1a: )
ai'®oay = ayoyay if tya; = sqay.

for ay,ay € A.
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The base points, boundary maps and composition relations for C may be seen

geometrically from the following diagrams:

O [ ]
tza, tgal
— o ol ° (] a9 tiay
|
|
s1a a tia ! a9 0 aq --09g--@
|
|
~ ay
SQCLil
O——O

We will see below that this definition of the total crossed module generalises a
construction of Brown and Higgins which associates a crossed module to a pair of

groupoids.

1.2.2 The total complex of a double complex

Suppose Dy, Dy are groupoids over a common object set O. Then a functor D, B D,
which is the identity on O induces a functor Modp, AR Modp,. If Cis a Dy-module
then the module f*(C) has the same underlying groupoid as C and D; acts on this by
(d, ¢) — .

The left adjoint f, to the functor f* defines the induced module construction. If C
is a Dyj-module then the induced module f,(C) may be defined as follows. Let E be
the totally disconnected category over O generated by arrows (c¢,d) € E(y,y) for all
c € C(z,x),d € Dy(x,y), subject to the relations

C1, d) o (627 d) — (Cl O Cy, d)?

¢, f(dl) o d2) - (Cdla d2)7
c,d)o(d,d)=(d,d)o(c,d)
where ¢, c1,¢0 € C(x,2), ¢ € Clw,w), d,d; € D(z,y), dy € D(y,z), d € D(w,y).
Then D, acts on E by (¢,d)® = (¢,d o dy), and this defines f.(C).

If C -2 D, is a crossed module and f is as above, then an induced crossed Ds,-
module f,C may also be defined [§]. Let E be the category-with-Dy-action given by the

same presentation as in the previous paragraph except that the commutativity relation

(4) is replaced by
() o (e d)o () = (e.dod o fo(c) o d)

14



Then the induced crossed module f,C is

E

D,

(¢,d) ——d o fé(c)od
In particular, if D is the free product D; %o Dy and C a (crossed) module over Dy,
say, then we write C* for the induced (crossed) module over D.
We can now introduce a total compler functor on the category of double crossed

complexes of groupoids.

Tot

Crs? Crs

Suppose C' is a double crossed complex. Then the associated total complex is the

crossed complex Tot(C') defined as follows
e The set Tot(C)y = O is given by Cp.
e The groupoid Tot(C'); = P is given by the free product of C; o and Cy; over O.

e The crossed module 8,: Tot(C'), — P is given by the coproduct of the induced
crossed P-modules C5, and Cj, and the total crossed P-module associated to the

double groupoid (C4 1,Cy1,C1,Cpp) as discussed in section 1.2.1.

e For m > 3, the abelian P-module Tot(C),, is defined as the coproduct of abelian
P-modules My, My, ..., M,,. Each M; is in turn defined from a P-module N; by
imposing the relation a®’ = a for all a € N;, b € Tot(C), such that t(a) = ¢(b).
The P-modules Ny, N, are given by the induced modules C7, o, Cj ,, respectively.

For 1 <1 < m — 1 we give the abelian P-module N; in terms of generators and

relations. Generators a of IV; correspond to elements of C,,_;;, with source and

target functions given by t;¢, and identities by ej;es. In the case ¢+ = 1 these are

subject to the relations

a? = «ay(b,a) if tia = s;b,
a;0ay = ay01ay Iif tjay = tias,
tiaz _ if ¢ _
(ll O0ay9 = aq 09 ay 1 9201 = SS90y

for a,ai,ay € Cyq1, b € Cy 1, and in the case : = m — 1 to the relations

al = ay(b,a) if tya = syb,
aj 0 a?” = ayoya; if sja; = tyas,
@ 0as = a;09ay 1if tyay = tyas

for a,ai,ay € Cymo1, b € Cy . For 2 <1 < m — 2 the relations are

a? = ay(by,a) if tja = s1by,
atle - ag(bz, CI,) if tza, - Sgbg,
) 0ay = a0 3 if tiay = tias,
@) 0y = Oy (3 if tya; = tyas
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where a,a1,ay € Cpij, by € Cy;, by € Cy—j1. The boundary map 6, is the
module homomorphism induced by the functions N; — Tot(C),, ; given on
generators by
$ha fort =20
ora fori =m
ar— &' a4 o ((tha) "' o (s50)1%) " fori=1
((tia)~' o (s1a)2%) o (&), ya)7" fori=m —1

6h a o (6Ya)D™ for 2 <i<m-—2

Collecting the various formulae together we can give the following definition of Tot

in terms of generators and relations.

Proposition 1.2.2 Suppose C is a double crossed complez of groupoids. Then Tot(C')
is the crossed complex of groupoids given by generators c; ; € Tot(C),, for all ¢; ; € C; ;
with n = p + q, satisfying the following relations

1. scig = sicip
§Co,1 = 82001
tcio = ticip  fori>1
teo; = tacy, for3>1
tCZ'J‘ - tltzci,j fOT Z,j 2 1
2. Soc11 = (ticrn) to(seern) tosierg otyers
0icio = 621-1ci,0 for i > 2
bjcoj = bjco - forj>2
Siv1Cin = Ofciy o ((tacin) to (5201',1)““’1)(71)1 fori>2
bjricry = ((tier;) ™" o (s1e)*) o (8fer;)™" forj =2
6i+jci,j = 62}-161'7]' O (6;-’61'7]')(_1)1 fOT Z,] Z 2
taer s .
8. ai(cry,ciy) = ¢ 70 fori>2
e, ciy) = ¢ forj > 2
toc! . .
4. €101 Cll,j = Cll,j o cljjl’] for 3 >1
Cij 01 c;J = ¢ ’o c;J for =0 o0ri>2
Ci1 09 02,1 = c:jlci’l o 02,1 fori>1
Cij 09 c;J = ;0 c;J fori =0 orj>2

1.2.3 Tensor products and double complexes
In this section we will consider a functor

(2)
Crs x Crs “ Crs?

whose composite with the functor Tot defined above gives the tensor product of crossed

complexes as defined in [12].
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Definition 1.2.3 Suppose C, D are crossed complexes. Then the double crossed com-
plex C @) D is defined as follows

o BEach set (C ®® D), is given by the cartesian product C; x D;. Elements (c, d)
will be written ¢ ® d.

e The horizontal crossed complex structures are defined by the crossed complex
structure on C' and the vertical structures by that on D. That is

si(c®d) = s(c)®d so(c®@d) = c® s(d)
ti(c®d) tlc)®d thiced) = c®t(d)
e1(c®d) = e(c) ®d er(c®d) = c®e(d)
(c®@d)oy (¢ ®d) = (cod)®d (c®d)oy(c®d) = c®(dod)
a(cp®d,e®d) = ' ®d (c®d,c®d) = c®dh
ewd) = Gile)wd 0i(c@d) = c®6;(d)

where defined.

Proposition 1.2.4 The above definitions for the structure maps of C @2 D are con-

sistent with the double crossed complex arioms.

Proof: Clear. As an illustration, note that t;(c ® d) = s;(¢’ ® d') implies d = d' as
well as tc = s/, so we are indeed able to define the horizontal compositions by those of
C. We are actually using the fact that the coproduct of crossed complexes of groupoids
(but not of crossed complexes of groups) is given by disjoint union, and so the copower

can be defined by a cartesian product. O

We now define the tensor product C' ® D of two crossed complexes C, D to be the
total complex of C ®®) D. More explicitly, we have the following presentation.

Proposition 1.2.5 Given crossed complezes of groupoids C, D, the tensor product C'®
D is the crossed complex of groupoids given by generators ¢; ® dj € (C ® D);1; for all
c; € G, d; € Dj, satisfying the following relations

1. S(Cl & dg) == SCq & do
S(CU & dl) = ¢ ® Sdl
tc;®dy) = te;@dy fori>1
tleo®d;) = c®td; forj>1
2 62(01 (034 dl) = (tCl X dl)_l (¢] (Cl (034 Sdl)_l 0 SCy & dl O Cy X tdl
bi(ci ®dy) = bic; ®dy for i > 2
6j(CU & d]) — C(p & 6jdj . fOTj 2 2
biyi1(ci®dy) = bic;®dy o ((Cz ®tdy) o (6 ® Sdl)tci®d1)(_l) fori>2
Sipa(cr @dy) = ((ter ® dj) ™o (se1 ® )4 ) o (¢; @ 6;d;)"" for j > 2
6i+j(ci 2 d]) = 61‘01‘ & dj o (Ci 2 6jdj)(71)1 fOT Z,] 2 2
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8. ¢ ed; = (¢®d)®h fori>2
¢ ® d;-ll = (c;®d;) % forj > 2

4. ;@ (dyod) = (® d1)tci®d’1 oc;®dy fori>1

i ®(djod;) = ¢@djoc;®d] fori=0 orj>2
(od)®d; = ¢ @djo(c @dy)® % forj>1
cocd)®d;, = ¢;®d;oc ®Xd; for 7 =0o0ri>2
) J J 2 J

Proof: Follows directly by substitution of the definitions of 1.2.3 into the formulae of
proposition 1.2.2. O

It should be noted that our definition of Tot in the previous section was guided by
the principle that the definitions of the tensor product in Crs given here and in [12]

should agree.

Remark 1.2.6 If G, H are groupoids, then we may form a double groupoid from them

by considering

Arr(G) x Arr(H) — Ob(G) x Arr(H)

Arr(G) x Ob(H) == Ob(G) x Ob(H)

with the horizontal structure maps induced from G and the vertical ones from H. It is
clear in this case that the associated total crossed module, as defined in section 1.2.1,
is precisely that encountered previously by Brown and Higgins in [12] as the tensor

product of G, H regarded as crossed complexes which are trivial above dimension one.

1.3 Functors from Simplicial Categories

1.3.1 Simplicial sets

Let A be the category with objects the ordered sets [n] = {0 <1< --- <n} forn >0
and arrows the order preserving functions between them. Recall that the arrows are
in fact generated by the injections d(7) : [n — 1] — [n] (0 < i < n) which miss out the
ith element and the surjections s(i) : [n + 1] — [n] (0 <4 < n) which repeat the ith
element.

A simplicial object in a category C is a functor C, from A°P to C. Equivalently, by
considering the images under C, of [n], d(i), and s(i), a simplicial object may be given

by a family of objects (C,,) of C together with arrows d; : C,, — C,_; (face maps) and
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si : Cp — Chyq (degeneracy maps) in C which satisfy the usual simplicial relations:

didj = dj—ldi for ¢ <j
sj_id; fori <y

dis; = id fore=jori=75+1
sjdi—y fori>j
5i5; = 8115 fore <y

We will write SimpC for the category [A°P, C] of simplicial objects in C.

Similarly a cosimplicial object C* : A — C may be given by a family of objects
(C™) and coface and codegeneracy arrows d’, s’ satisfying the dual relations.

In particular, we will consider the category of simplicial objects in Set, the category

of sets, together with the fundamental crossed complex functor
. s
SimpSet —— Crs
from simplicial sets to crossed complexes which is defined as follows:

Definition 1.3.1 For K, a simplicial set, m(K,) is the crossed complex C generated
by lan] € C, for all n-simplices a,, € K,, such that the following relations hold:

[soao] = ejqq) in m(Ka)y
[siay] etfan] 1 T(Ke)npr forn >1
slay] [dya]
tla, [dya,] forn>1
by as] [doas] " o [dyay] ™" o [dyay]
b3laz] = [dyaz]o [d2a3]_1 o [doag]_l o [dgag][dodlaf‘}
bnlan] = nil[dian](—l)i“ o ([dnan][dodh.dn,zan})(*1)"+1 forn > 4

=0

We will often omit the brackets around the generators.
The first two relations say that degenerate simplices in each K, may be ignored. The

other relations are boundary relations and are often known as the homotopy addition
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theorem [41, IV.6]. They may be seen geometrically as follows

dias
aq ’
dl 10— e d0a1
dodi a3
N T T T T S =0
_ doa,_l

d1a2 dg(lz ! 3

a3
[e] 1 O

dzaz .
d3a3 0]

Note that other equivalent presentations of the functor may be given by choosing
alternative basepoints or signs for the generators. The presentation given here is that

which leads to the tidiest formulee later.

1.3.2 Simplicial crossed complexes

We now consider the category SimpCirs of simplicial objects in the category of crossed
complexes of groupoids. To fix the notation we shall consider the crossed complex
structures as being ‘horizontal’” and the simplicial structures as being ‘vertical’, as in

the following definition.
Definition 1.3.2 A simplicial crossed complex (of groupoids) C' is given by
1. A collection of sets C; ; for 7,5 > 0,

2. source, target and identity maps

s, t

Cij Co j

e
fori>1, 5 >0, with s =1t for s > 2,
3. partially defined compositions and actions
Cij % Cij —r C;, Oy % Chj — O
fori>1,7>0, k> 2,

4. (horizontal) boundary maps

forz> 2,5 >0,
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5. (vertical) face maps and degeneracy maps

dp
Cij
S

Cijn

q
fori,j>0,0<p<j+1,0<q<].
These data are such that

1. for each j > 0 the horizontal structure ((C;;)i>0,5,t,€,0,,(6;);>2) defines a

crossed complex of groupoids,
2. for each 7 > 0 the vertical structure ((C; ;);>0, (dp), (s4)) defines a simplicial set,

3. the face and degeneracy maps define homomorphisms between the horizontal

crossed complex structures.

Note that the (horizontal) source maps s should not be confused with the (vertical)
degeneracy maps s,.
The formula of definition 1.3.1 may also be used to also define a functor

T Crs

SimpCrs Crs?

from the category of simplicial crossed complexes to the category of double crossed
complexes, simply by taking the definition of 7 internal to the category Crs. If C
is a simplicial crossed complex, then 7c,(C) has vertical crossed complexes struc-
tures given by applying m to the simplicial sets ((C;;)j>0, (dp), (s4)) for each i > 0,
and horizontal crossed complex structures those induced from the crossed complexes
((Cij)is0, 8.t e,0, 0, (6;)i>2) for each j > 0.

A bisimplicial object C,, in a category C is a simplicial object in SimpC, or
alternatively a functor A°® x A°® — C. We will write C,,,, for the image of ([m], [n])
under C,,, and define the horizontal and vertical face and degeneracy maps dP; s!,
dY, s! by the images of (d(i),1), (s(z),1), (1,d(z)), (1, (7)) respectively. The category
[A°P x A°P_C] of all such bisimplicial objects will be denoted BiSimpC.

Note we can define a functor

TSimp

BiSimpSet SimpCrs

from bisimplicial sets to simplicial crossed complexes by taking definition 1.3.1 internal
to the category of simplicial sets. Furthermore the composite functor mgjy, o Tc,s gives
the fundamental double crossed complex of a bisimplicial set

iSi ' (2)
BiSimpSet » Crs
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If K, L are simplicial sets then we can form a bisimplicial set which in dimension
(1,7) has the set K; x L;, with the horizontal face and degeneracy maps coming from

K and the vertical ones from L. This gives a functor

(2)
X
SimpSet x SimpSet BiSimpSet
Note that the following diagram commutes:
)
SimpSet x SimpSet BiSimpSet
T XT 72
(2)
Crs x Crs e Crs®

1.3.3 The total complex of a simplicial crossed complex

Suppose C is a simplicial crossed complex as in definition 1.3.2. We have seen above
how to define a double crossed complex ¢ (C) from C. We can therefore make the

following definition:

Definition 1.3.3 The (simplicial) total functor from simplicial crossed complexes to
crossed complexes is the composite of the functor m¢,s and the total crossed complex

functor defined in section 1.2.2.

T Crs Tot

Crs?

This construction will play an important part in the definition of homotopy colimits
of crossed complexes in chapter 3.

We have immediately

Proposition 1.3.4 The following diagram commutes

(2)

caus ™ (2)
BiSimpSet » Crs
TSimp Tot

. S-Tot,

SimpCrs » Crs
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Proof: Since S-Tot = 7¢,, o Tot and 7(?) = Tsimp © Ters, the result follows by associa-
tivity of functor composition. (Diagrammatically: putting in the diagonal arrow /ey
gives two commutative triangles). O

We can also present the total complex of a simplicial crossed complex in terms of
generators and relations.

Proposition 1.3.5 Suppose C' is a simplicial crossed complex of groupoids. Then
S-Tot(C) is the crossed complex of groupoids given by generators [c; ;] € S-Tot(C),
for all ¢; j € C; ; with n =1+ 7, satisfying the following relations

1. [socop] = €leeo tn S-Tot(C)y
[Skci,j] = et[ci,j] m S—TOt(C)i+j+1 fOT’ ) +j 2 1, 0 S k S j
2. [Cl 0] = [SCl 0]
[00,1] = [ 1Co 1]
[CU,J] = [dUCO J] for g >1
tlei;] = [tdjeis] fori>1,j>0
3. bilciol = lbiciol fori>2
52[00,2 = [doco 2] [d200,2]71 o [dlco,z] ,
bs[cos] = [di Co 3]0 [d200,3]_1 o [d000,3]_1 o [d300,3][d060’3]

Jj— (71)k+1 [d’;lc } (—1)J+1 '
bjlcos] = [dkco,j] o ([djeo )% c07) forj >4
bolc1a] = [ C1 1]_1 o [dlcl,l]_l o [seyq] o [docy 1] _

(1) )
iv1lein] = [bicia] o ([dOCz’,l]_l o [d1Ci,1][tC“}) fori > 2
53[01 2]
= [doCLQ] (o] [SCLQ][dOdlCl’Z.] (o] [dlcl,Z]_l (0] [tCLz]_l (0] [dgCLQ][tdocl’z]
Sinalers] = ([ter,) " o [ser]%e07)
jfl -1 7
o TIldier )" o ([d 1] Clj})( | Jorj =3
k=0
bivsleig] = 1 [6ici 5]
i oran i —1)itit1
o Tl ] o ([djci,j][tdo Ci’j]>( ) fori,j =2
k=0
4o lalergpen)] = leg)%es) fori>2
5. [eijo 01 = la,lo [ 4457 for j > 1
[cijod j] = [cij]o [c;]] for =0 ori>2

Proof: Fairly routine. The least straight-forward boundary relation is that for 3[c; o]
in Tot 7o (C). In me(C) we have

by lc1 0] = [docl,z]_l 09 [dzcl,z]_l 0y [dycy 9]
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tlc'
) . . . ; 1,1 /
where the inverses are with respect to o,. Using the relation ¢i5 05 ¢}, = ¢ ;" o,

iy -1
from proposition 1.2.2 we see that o,-inverse of ¢; ; is given by taking (0171(“"1*1) 1) in

the total complex, and the above boundary relation becomes
Oy[c10] = ([docm][tdocl’zrlo[tdZCl’Zrl"[tdlcl’ﬂ)_1 o ([dzcm][t‘i261=2}71°[td101,2})_1 o [dyci o]
Note that this is just
5;[01,2] = ([doclg]@[tcl’ﬂ)il o ([d201,2][tdocl’z}msz[tq’ﬂ)71 o [dlcl,z]
Substituting this into the relation
63C19 = ((t1C1,2)_1 o (3101,2)t201’2) o (5501,2)_1

from proposition 1.2.2, and recalling the crossed complex axiom a; 'byas = b52*?, we get

the required result. O
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Chapter 2

The Eilenberg-Zilber Theorem

2.0 Introduction

In this chapter we prove the Kilenberg-Zilber theorem for crossed complexes: given

simplicial sets K, L, there are natural homomorphisms

b
7K @ 7L n(K x L)
a
such that b o a is the identity, and a homotopy
I®n(K x L) (K x L)

between a o b and the identity. Associativity and interchange relations for a, b and h
are also proved.

We also show that any homotopy between an idempotent crossed complex endo-
morphism and the identity may be replaced by a homotopy which satisfies certain
side-conditions, and in particular if h is the deformation retraction of the Eilenberg-
Zilber theorem we may assume that the corresponding degree one map ¢ : z +— h(1®x)

satisfies

¢(x)=e,  ob(z))=e,  a(p(z))=e,  Gbp(x)=(d(z)) "
The Eilenberg-Zilber theorem is also shown to extend to give r-fold homotopies

79" @ (Ko x ... x K,)

(Ko %X ...x K,)

satisfying certain boundary relations.

The structure of the chapter is as follows. In the first section, we begin with a
review of the definitions of homotopy in Crs. This is essentially an exposition of
material dating back to [42]. A splitting homotopy is then defined, and it is proved that
any homotopy between an idempotent endomorphism and the identity may be replaced

by a splitting homotopy. This result for chain complexes may be found in [30].
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In the second section, we define the diagonal approximation map a and the shuffle
homomorphism b. We prove that b is a one-sided inverse to a, and that a and b are
associative and satisfy an ‘interchange’ relation. Some connection is shown between
the Artin-Mazur diagonal of a bisimplicial set and the diagonal approximation map a,
and between a and a construction by Brown and Gilbert of a simplicial group from a
braided regular crossed module.

In the third section the homotopy h between a o b and the identity is defined, using
simplicial operators for the high-dimensional work as in the chain complex situation.
We also show that h satisfies four interchange relations with respect to a and b, two of
which in the chain complex case were shown by Shih [33]. We then use these relations
to show that the higher homotopies on 7(Ky x ... x K, ) induced by h form a coherent

system.

2.1 Homotopy Theory of Crossed Complexes

2.1.1 Homotopy of morphisms

Let 7 be the groupoid

with object set O = {0,1} and non-identity arrows ::0 — 1 and its inverse ¢ ':1 — 0.
We will often regard 7 as a crossed complex which in dimensions > 2 has only the
trivial groupoid over O. Given any crossed complex C' note that there are natural

monomorphisms

lo

C I1®C

i
defined on generators by i,:c+— a ® ¢ for « = 0 or 1.

Definition 2.1.1 Suppose C, D are crossed complexes, and f,g: C — D are homomor-
phisms between them. A homotopy h from f to g, written h: f ~ g, 1s given by a crossed
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complexr homomorphism h:Z ® C — D such that the following diagram commutes

C
/ \
h
I®C D
C
The following proposition is standard.

Proposition 2.1.2 The relation of homotopy given by =~ is an equivalence relation.

Proof: For reflexivity, we note that iq and 7; have a common one-sided inverse e given

by the homomorphism

I1®C C

which maps 0® ¢, and 1 ®¢, to ¢, and maps ¢t ® ¢, to the identity at tc, in C,,;. Thus
if f:C — Cis a crossed complex homomorphism, the composite of e with f defines a
homotopy f ~ f which we will write as 0y.

For symmetry we use the non-trivial automorphism of Z which induces a homomor-

phism

I8C—"TxC

mapping ¢ ® ¢ to 17! ® e¢. Thus if h is a homotopy f ~ ¢, the composite of s with h
defines a homotopy ¢ ~ f which we will write as h.
For transitivity we consider (vertical) composition of homotopies. Let J be the

groupoid

with three objects 0, 1, 2 and non-identity arrows 3 : 0 — 1 and x: 1 — 2 together with
their inverses and composites. As usual J may be regarded as a crossed complex which
is trivial in dimensions > 2. Given crossed complex homomorphisms fq, fi, fo : C — D
and homotopies hy: fy >~ f1 and hy: f; ~ f, their vertical composite h;ohsy is a homotopy

fo = fo defined by

t®id hi V hy

I®C JeC
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where t is given by ¢ — j-x and hy V hy is given by j®c¢ — hi(1®c) and k& c — ha(1®c).
O

Moreover, ~ is a congruence. Suppose f is a crossed complex morphism C — D
and k is a homotopy go =~ ¢g1: D — E. Then we get f-go >~ f - ¢ by considering the
‘horizontal’ composite homotopy /& defined by

def oon ok

I®C E

Similarly if h is a homotopy fo ~ f1:C — D and ¢ is a morphism DD — E we can define
a homotopy hY from fy- g to f1 - g by

h g

I®C D E

Using these definitions, we can define the horizontal composite h-k of the homotopies
h and k as the vertical composite of h%: fy - go ~ f1 - go and "k: fi - g0 ~ f1 - ¢1.
Equivalently, let d be the map

A 1®1

defined by ¢ — (0®¢) - (¢t ® 1). Then h - k may be defined directly as the homotopy

4 id id® h
R o R e i

I®C I®D E

Proposition 2.1.3 The homotopy constructions described above satisfy the following
relations:

1. hlo(h20h3>:(h10h2)0h3
2. hl'(hz'h3> — (hl'h2>'h3
3. OfOOh:hOOflzh

4. "h=0;-h and h9 = h -0,

5. hoh =0y and hoh =0y,

o h.

N
Il
=Nl

6. ho
7 h- (]{31 Ol{iz) - (h ]{31) o (Ofl . ]{32) and (hl Ohg) k= (hl 'Ogo) 0] (hg . ]{3)

Proof: Clear. O

Note that the full interchange law between the horizontal and vertical compositions

does not hold in general and neither does h-k = h - k. This is because there are
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actually two choices for the definition of horizontal composition of homotopies, given
by h9o/tk and Jokoh9'. These are not in general equal, although as morphisms they are
themselves homotopic. Similarly there are two ‘diagonal approximations’ d:7Z — Z ® 7
given by ¢t — (0®¢)-(t®1) and ¢ — (1 ®0)-(1®¢). The non-trivial homotopy between
these possible choices is what leads to Steenrod squares, etc.

The notion of homotopy may also be translated into statements about the elements
of C and D. The formulae which result date back to J.H.C. Whitehead [42].

Proposition 2.1.4 Specifying a homotopy h: f ~ ¢ is equivalent to specifying the mor-
phism g together with a degree one map (p,: C,, — D, y1) which satisfies the following

) = gc

) t(ge,)  form>1
bn(cn) = (dncn)?  form > 2

) = (§75101)gd1 ) ¢1Cl1

) = PuCn- Puc  form > 2

The morphism f is then completely determined by

s(¢oco) = feo
52(¢101) = (901>71 : (6150561)71 : fcl : ¢0t01
6n+1(¢ncn) = (gcn>_1 ' (fcn>¢0tcn ' (qsnfl(sncn)_l fOT n Z 2

Proof: Consider an arbitrary homomorphism 7 ® C' "+ D. The relations of propo-
sition 1.2.5 imply that for all ¢,, ¢/, € C,,, h must satisfy the following

1. sh(t®cy) = h(0® c)
th(t®co) = h(l1® c)
th(t ® c,) = h(l®tcy,)

2. Soh(t@er) = h(1®c) ' h(t®se)™ - h(0®ey) bt ® tey)
bnsth(t @ cpn) = R(1®cy) - h(0® c,)h®tn) o h(1 @ bpey)™" forn > 2

3. ht®cn®) = h(t®c,)"1®) forn > 2

4. b1 ®@(c1-¢)) = hlt® )2 h(L® ¢)
h(t®@ (cp-c)) = h(t®cy) - h(t®d,) for n > 2

The proposition then follows by writing f, ¢ for the homomorphisms
f g

Cp ——— h(0 ® ¢,) Cp ——— h(1 ® ¢,)

and ¢ for the degree one map ¢, &» h(t® &)
The definitions of vertical and horizontal composition of homotopies may be simi-

larly translated by considering the expansion of the expression (- k) ® ¢,.
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2.1.2 Strong deformation retractions and splitting homotopies

Definition 2.1.5 Two crossed complexes C, D are homotopy equivalent if there exist
homomorphisms f : C — D and g : D — C together with homotopies h : f - g ~ id¢
and k : g - f ~idp.

Since the notion of a homotopy from an endomorphism to the identity plays such a

large role, we make the following definition.

Definition 2.1.6 A derivation ¢:C' — C is a degree one map (¢,: C, — Cpi1) which
satisfies the following

) = (o

) = tlen,) forn>1
bn(cn™) = (fnca)”  formn >2

) = (d1c) - i)

) = ¢ncn : ¢nC;L fOT n > 2

Corollary 2.1.7 Gwen f:C — C, a homotopy h from f to the identity 1s given by a
deriwation ¢: C — C' such that

feo = spoco
fcl = ¢0501 cCp 52515101 : (¢0t01)_1
fcn - (Cn ) 6n+1¢ncn ) ¢n—16ncn)(¢0tcn)71 fOT n 2 2

Proof: Follows by substituting ¢ = id into proposition 2.1.4 and by definition of a

derivation. O

Most of the derivations and homotopies we meet will be of a special kind, satisfying

certain ‘side-conditions’.

Proposition 2.1.8 Let f be an endomorphism of a crossed complex C' and h a homo-
topy f ~ ide corresponding to a derivation ¢. Suppose further that ¢1¢oco = e., and
Dnt1PnCn = €y, forn > 1. Then

Jooco = ofco = Posoco
and f¢ncn = (/bnfcn ((,bncn : ¢n6n+1¢ncn)(¢0t0")71 fOT’ n>1

Thus if any one of

1. f¢OCU = €fcq and f¢ncn = Ctfc, fOT’ n2>1
2. QSOfCO = €fcq and anfcn = €tfc, fOT’ n2>1

3. ¢US¢UCO = €f¢ and ¢n6n+1¢ncn - (¢ncn)71 fOT n 2 1
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hold, then all three hold, and furthermore f 1is idempotent.

Proof: From the formula for f in corollary 2.1.7 we get

Jdoco = Pospoco - Poco - 291000 - (¢000)71
f¢ncn - (¢n0n . 6n+2¢n+1¢n Cn ¢n n—l—lqsn n) doten)”
Pofco = Posboco
drfer = (droser) b21c1-(doter)” ((}516 )52¢1C1 (doter) ™t
(¢152¢101> (foter)” ((¢1¢0t01) ) (doter)™
¢nfcn - (¢ncn ) ¢n n+1¢ncn ) ¢n¢n—16ncn)(¢0t0n)
Since the ¢? terms disappear we get the first four equalities as required, and from these

the equivalence of the three conditions is clear. Under such conditions f% = f follows

by some further routine manipulation of the formulae of the corollary. O

Definition 2.1.9 A splitting homotopy s a homotopy h: f ~ id for which the associ-

ated derivation ¢ satisfies

P1pocy = e, and Pni1bPnCn = €4, form>1
¢OS¢OCU = €f¢ and ¢n6n+1¢ncn - (¢ncn)71 f07”n21

As a consequence of proposition 2.1.8, the additional relations /h = Oy, hl = 0y and
f - f = f hold automatically for a splitting homotopy.

Proposition 2.1.10 Suppose h is a homotopy f =~ id which satisfies Th = 0; and
h! = 0;. Then the corresponding derivation ¢ satisfies

(pr162¢p1c1)™ ! = picy - Ozdadrier = (drdoter) - (drdoscy )29 - ey
(¢n6n+1¢ncn)71 = (bncn : 6n+2¢n+1¢ncn = ¢n¢n—16ncn : ¢ncn fOT‘ n>2

Furthermore, the degree one map ¢' defined by

¢6(CU) = ¢0(Co)
¢In(cn) - (¢n6n+1¢ncn)7l fOT n 2 ]-

is a derivation corresponding to a splitting homotopy h': f ~ id.

Proof: The equalities of the first part follow from the formulee in the proof of propo-
sition 2.1.8 and the triviality of f¢ and ¢f. The functions ¢’ clearly define a derivation
f" ~id, where f’is given by

fICU — SQSOCO
flev = oscr-cr - (82h162¢1¢1) " - (doter) ™!
flc” = (C” ’ (6n+1¢n6n+l¢ncn ' ¢n—16n¢n—16ncn)_1)(¢0tcn)71

31



But (6n+1¢n6n+1¢ncn)il - 6n+1¢ncn and (¢n—16n¢n—16ncn)il - ¢n—16ncn follow from
the equalities of the first part, so f' = f. Also ¢'f is trivial, so to show that ¢ gives a

splitting homotopy it only remains to prove that ¢> vanishishes. We can write

idoco = (16201 (doco)) ™"
(¢10h0c0) " - (prdosoca) P20 P27 - by oy
¢ln+1¢;zcn = (¢n+15n+2¢n+1(¢n5n+1¢ncn)il)il
= Gut10n0n41(PnCn * OnyaPni1dncn) - ¢n+1(¢n6n+1¢ncn>il
and so the result follows by the vanishing of 62 and of ¢gspgcy = Pofco. O

Theorem 2.1.11 Suppose f is an idempotent endomorphism of a crossed complex C',
and k a homotopy between f and the identity on C. Then there exists a splitting
homotopy h : f ~ id.

Proof: Consider the homotopies 'k, 7k and k/. Since f is idempotent and k is a
homotopy f =~ id, these are all homotopies f ~ f, and we can consider the homotopy

f ~id given by the vertical composite
E=Tkolkloklok

We now have 7k’ = 0; and k'Y = 0y, and so the result follows from proposition 2.1.10.
|

A homotopy equivalence f:C' «— D: g in which ¢g- f =id is known as a deforma-
tion retraction. The endomorphism f - ¢ of C' is now idempotent, and so the homotopy

h:(f-g)=~idc may be replaced by a splitting homotopy.

Definition 2.1.12 A deformation retraction giwen by f:C «—— D:qg with ¢g- f = idp
and a homotopy h : (f - g) =~ id¢ corresponding to a derivation ¢ is said to be a strong

deformation retraction (SDR) if the following side-conditions are satisfied

¢1¢UCO = €¢ and ¢n+1¢ncn = €, fOT n Z 1
bogdy = egq, and Gngd, = e, form>1
fooco = epe, and fonen = epe, forn>1

PoSPoco = €gfe nd  Ppbyii1Pnc, = (pncn) ' forn >1

We will write these as h> =0, % = 0, b/ = 0 and héh = —h respectively.

Theorem 2.1.13 Any deformation retraction may be replaced by a strong deformation

retraction. O

In the chain complex case, analogous side conditions on chain homotopies have
been very useful in homological perturbation theory, and the result which corresponds
to theorem 2.1.13 may be found in [30]. It is expected that there will also be a ‘non-

abelian’ homological perturbation theory for crossed complexes.
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2.2 Diagonal Approximation and Shuffies

2.2.1 The Artin-Mazur diagonal

We recall from [1] that the Artin-Mazur diagonal V(X)) of a bisimplicial set X is defined
as follows. Each set V(X),, is given by the following subset of [] X

pt+g=n “*p,q

V(X), = {(mg,ml, co @)t € X, dyxy = d?+1mi+1 (0<i<n-— 1)}

where d" and d} are the horizontal and vertical face maps of X. Geometrically the
elements of X, , should be thought of as generalised prisms given by products of a
p-simplex with a ¢-simplex, and the (n + 1)-tuples which define elements of V(X),
should be thought of as connected unions of these with the first vertical face of one
prism identified with the last horizontal face of the next.

For 0 < i < n the faces and degeneracies of an element of V(X), are given by

— v v v h h h
di(ng,Il, - 7:En> - (dz Lo, diflxla SRR dll‘ifla dz Tit1, dz Lit2y - - - dz :En)

— v v v h h h
$i(Toy 1y @y) = (Y0, S T1y oy SYTiy SP Ty S} iyt vy SPTn)

where s!' and s} are the horizontal and vertical degeneracy maps of X. That is, the
ith face map acts on the (n + 1)-tuple (x}) by applying dY_, to the components with
k < i, applying d to the components with & > i, and deleting the ith component.
Similarly the ith degeneracy repeats the ith component and acts via s} , or s! on the
components of the result.

In section 1.3.1 the fundamental crossed complex m(K) of a simplicial set K was
defined, and it was shown how this leads to a definition of the fundamental double
crossed complex of a bisimplicial set. Thus we have the following diagram of categories

and functors

\Y
BiSimpSet — SimpSet

7@ T

Tot

Crs? Crs

where Tot is the total crossed complex functor.

In dimension n, generators of Tot7(?) X are given by elements of X, Where p+q = n,
and generators of VX are given by certain (n + 1)-tuples of these. We can construct
a natural transformation from 7V to Tot 7(2), but this will not be an isomorphism in
general. Intuitively, the comparison map 1VX — Tot7(2) X will send each (n+1)-tuple

to the (non-abelian) sum of its components.
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Proposition 2.2.1 For X a bisimplicial set, there is a natural map

0x

VX Tot 7 X
which is defined on the usual generators by
(CCU) = Ty
(xo,z1) +— w0 1y
dg:l:z d11]$2
(wo, x1,9) — 1% - T - Ty

)
)
)

!

(To, T1y ..oy Ty Hxi-“(r”)

=0

where y;(z) € Tot 7(X); is given by dbdl...d db db,...db_jz € X1 or by the
identity at dbdh ... dV_ .z if i =n.

Proof: We need to check that Ay is well-defined on 7V X, i.e. that 0y respects the
relations between the generators. In dimension one, sb;(zg, z1) and 0ys(xq, 1) are both
given by dYxq, and t0, (9, 7,) and yt(xg, z,) are given by diz;, and in dimensions > 2
the ¥; ensure that t(xi-”(w")) = tx, = Opt(xg,...,x,) for all i. Thus the products on
the right hand side are defined and the functions respect the base points. Also Ox
maps degenerate generators to the appropriate identity elements in Tot 7() X, since if
(o, ..., 1) = 8i(Yo,...,Yn_1) then each z; is s}_,yx or sly, and gives an identity in
T X.

For the boundary relations, 6605(xg, x1,z5) is given by

(dglé)il . 621‘1 . dSIQ . 621‘2 . (dllll'g)il . 62I0 . dllll'g =
(dows) ' - (dgwy) b - (dymy) b - dymy - dymy - (dywy) ' - (dyme) - (dymg) - diag - diy

But since djz; = d;‘:lzz and dyjzy = d}f:lil four of these terms cancel leaving
0y (dbay, dywy) ™ - 0y (dyag, dYzy) - 0y (d 2, d}y)

which is just 6165 (z, x1, x9).
For n > 3, = € X, the groups (Tot 7 X),(x) are abelian. In Tot 7(¥)X the

boundary relations on generators x € X, ,, p + ¢ > 4, may be written as

P . h v
p+qT = H ((d;lx)(fl)ul)z]' (@) H ((dzxﬂfl)p%“)zk(z)

7=0 k=0

q
o

(or only one of these products if p or ¢ is zero) where the z(z) are identities unless

J =p or k =q when they are given by the one-cells
=10 v vq—
() = dy dy'(z)  zy(z) = dy"dy (x)
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Thus 6,0, (xg, ..., x,) is given by

n 1 n—i yi(zn)
)it 20 (g, v )itk Y (g
Il (H«dw 0y () >)

i=0 \j=0 k=0

Some of these terms cancel, since djz; = d?ﬂxiﬂ. Also since the groups are abelian we
: n i—1 n n n n—i n 7—1 : s

can rewrite [[}", [T;Z¢ as II7—o II;=;41, and [I7, [Tx=1 as IT—o II;=0 by putting j = i+ k.

Thus we obtain

n

n j—1 . (-1 +
H (H(d;imi)z}’i(m).yi(wn) . H (d?:ci)zj](mi)'y"(m"))
7=0

1=0 i=j+1

From the boundary relations in 7VX, we have

Jj—1 n
=0 i=j+1
n—1

Opn_1dn(xo,. .. x,) = H (d;_imi)y"(d”"*)
=0

On comparing terms, we need to show that

(dY_gy)oams @ wiCon) — (Y q, yi(Ham1) 01857 o)

for 0 < <n — 1. Noting that

v _ vn—i—1 jht ht ;n m—i—1
Zni(wi) = dy dy wi = dy di, Tn—1

and 0,d} (zo,...,7,) = dgn_lxn,l . dgn_la:n
the result holds for ¢ = n—1 since y;z, = dgnilmn and y;(dYz,_1) disappears. Otherwise
we must compare the terms
dy di
n n—1

h? ;h —1—2 . h hn—1
and dg d diz,_ - dy T,y - dy T,

n—i—1

h? ;h
Tpo1 - dy diyy Ln

n—i—1

The difference between these is precisely the boundary of the element w; given by

Khn—1

ht ;h n—i—2 dg Tn ht ;h 7n—t—2
(dO di+1 x’nfl) ) d[] di+1 T
in Tot7(?)(X),. Since n > 4, dw; acts trivially on d¥_z; and we have 6,0, (zo, ..., z,) =

On_16n(x0, ..., 2,) as required.
It only remains to prove that 8303(xg, 21, s, x3) = 0363(x0, x1, T2, 3). The boundary

relations in Tot 7(2)(X); are

bo,3(T0) = d§fﬂggzm° sy - (dymo) " - (dymg) !
Or2(m1) = d}fl“‘fgzzl (dwy) ™" (dgay) T dgl“ilgdgml ~dyxy
h v h?2
Soa(ws) = (A7) L (dhay) L diay P dby - (das) !
h? ;
d30(xs) = diws- (dhas)™" - (dyas)™" - dbays
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Using the relations dyz; = d?+11‘i+1 together with u=! - v -4 = v* and d3w - v = v - d3w

in dimension 2, we can write 630(xg, x1, T9, 23) as
g - 5200 - (dhxg) gt (dhay) T Sl - dhae
= dhay - (dyg " - Yy - (dywo) )™
(dywy) " <<d§x1>* - <dhx1> gty
()™ - ((dfay) ™ - dyal? ™ - diwy)”

On permuting these terms cyclically and moving dyz¢ two terms to the left and djz,

two terms to the right, by adding the appropriate actions, we get
dhzl‘g'dhzlg
v dhdva VoY dhdya, 70 T2 0 .
<d Fdizy - dywy' ) : dlllxén 'd}11$3 - dy g’
(- by )™ (e - - diat)”

which is precisely 663(zq, x1, 29, 23). O

2.2.2 The Alexander-Whitney diagonal approximation

Suppose K, L are simplicial sets. In this section we define the natural comparison map

7K @ wlL

m(K x L)

between the fundamental crossed complex of a cartesian product and the tensor product
of the fundamental crossed complexes. This is a ‘slightly non-abelian’ version of the
classical diagonal approximation map for chain complexes on a simplicial set [21].

In fact we will define ay ; via the natural transformation 6 of the previous section.
Suppose K, L are simplicial sets and X is the bisimplicial set K x®) L. Then 7 X is
just 7K ®® 7L and Tot 7 X is 7K ® 7w L. Thus fy gives a comparision map

0
VX X

7K @ nlL

Proposition 2.2.2 Suppose K, L are simplicial sets and X = K x® L as above. Then
the Artin-Mazur diagonal VX of X s naturally isomorphic to the diagonal of X, that
18, to the cartesian product of K and L.

Proof: Elements o,, of VX are given by (n + 1)-tuples of pairs (k;, l,_;)o<i<n. Since
these must satisty (k;, dol,—;) = (diz1kis1,ln—i—1), on is completely determined by the
pair (ky, l,) of K x L, and conversely any pair (k,, l,,) gives an element (d;'7} kn, djl,)o<i<n
of VX. This correspondence clearly respects the face and degeneracy maps, and so we
have the result. O

We thus have
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Proposition 2.2.3 For K, L simplicial sets, there 1s a natural comparison map

a
KL 7K @ mL

m(K x L)
defined by 0y 2 -

By the definition of 8 in proposition 2.2.1 and the description of the isomorphism
KxL 2 V(K x(2) L) in the proposition above, the diagonal approximation map a

may be given explicitly as follows:

Proposition 2.2.4 Given simplicial sets K, L, the crossed complex homomorphism

aK.L

m(K x L) K @ nlL

is giwen by the homomorphism which acts on the generators of m(K x L) by

= Ty X Yo

= (dyry ® d0y2)d012®d3y2 "Xy @ d%@/z - (didazy ® Z/z)dl:“@dgy2
[ e, @ diy,)c @02

=0

(%0, o)
(x1,31) — dizy @y - 21 Q@ doyy
( )

)

where ¢;(x) is given by the one-cell df]di";f*la: or by the identity at djz iof 1 = n.
The following proposition gives the associativity of a.

Proposition 2.2.5 For simplicial sets K, L, M, the following diagram commutes.

QK x IL,M

(K x L x M) (K x L)®nM

AR, I x M ag,r @ id

id ® ar m

7K @n(Lx M) K QnlL@mM

Proof: It is only necessary to check the result on generators w, = (Z,,Yn,2,) €
(K x L x M). For n = 0 the result is clear. For n = 1 it holds since both

diz1 @ (diyg ® z1 - 11 @ doz1) - 11 & doys ® doz
and  dyzy @ diyy ® 21 - (dizy @ Y1 - 2 @ doyr) © dozy

are equal to
diz) @ diyy @ 21 - dyry @y ® dozy - 71 @ doyy @ dozy
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For n > 3 consider

n

(ld ® a’L,M)(a'K7L)<Mwn) = H(d’zn—f—_lzxn ® a[(déyn’ dézn))ci(fn)®d8yn®d32n
=0

Consider the term for n — 7 = 1.

Cn—1(Zn d? Yy, QAT zy,
(duv @ (dody My @ i 2 - df g @ dody 12,)) IO

d* Yz, @d?  y, @dod? L2
n—1 n—1 0 e " 0 "

= ((durn @ dydy 'y, @ d ' 2,)

Cn—1(%n)RdY yn QdY z,,

iy ® di @ dodf 2,

The terms for all ¢ can be put in this form, and the product may be written as

TT T (i @ di ™ din @ didiz,) ™

i=0 j=0

where ¢; ; = déd?;fxn ® c;(dyyn) ® Ay d 2y, - ci(1y) © ARy, @ diz,. Similarly

(arr @id)(axxrmw,) = H(a(dﬁf%; dﬁf%) ® dgzn)a(ck(mn’y")mdgzn
k=0

may be written as

n k .
TT I (i b, @ didy iy @ diz,) ™

k=01=0
where ¢} ; = ci(dpiw,) @ didp iy, @ dy bz, - a(ck (20, yn)) @ diz,. Putting k = i+

we have [[", ?:_é =3 | H;C:o and

m—i k—i gn—k m—i—j 7i i gn—k ) i k
dz’+1z = dz’+1zdk+1= dj+f ]df) = df)dk+1a d{]d:] = dy
/
i+j,i
is a loop and must be 05 of some term generated by the 2’ ® vy’ ® 2’ for ', v/,
/ —1

i Cij acts trivially, since n > 3, and the result follows.

and so it only remains to check that the actions of ¢; ; and ¢ agree. But as usual
i G

2! faces of x,,, y,, z,. Thus ¢

C

For n = 2 we have

(id ® ap m)(ax Lxmws)
doz2a®d2ys®d? 2 2 2 dy 2o ®d2ys Qd2
= dywy ® a(doyy, dgzy)0T?P%0P20%%2 1y @ diys @ dizy - dizy @ a(yy, zy) 2P %Y20%=2

dozo®d2ys@d? 2
dod d d? 2 012090a Y2022 2 2
= ((d2$2 ® dodayy ® dozg) 0P T2EWYENZ2 Ly 1y @ doys ® d[]ZZ) Ty @ dgys @ dgzo
2 2
((d%l?z X d2y2 ® dgzz)d%w2®d0y2®d322 . d%UZ ® s ® dgzz . (d%l‘g ® dny ® 22)d?zz®d1y2®d3z2)d1a)2®d0y2®dozz

On moving the fourth term two terms to the left, using u - v = v - u®", this gives

doda 2 @doy2®d2 zo-doz2Qd2ys ®d2 2,
92 d dod d2 0a2x2 0 0 0 0
(dzl“z ® dydyys © dozy - (d7T9 @ dyys @ dyzy)P*2E0®RY2E 022)

(domy ® doyy @ dizy) ©™2EH09%% . 3y @ iy, @ dizy - (dizy @ Yy ® dyzy) ™20 %v20%2

2 2, 2 2
(d%:ﬁz ® diyz ® Zz)dlr2®d1y2®d022 d122Rd5y2®dg 22

= (a(dyzy, days) ® dOZQ)a(dOIZ’d0y2)®d322 ca(xa, y2) ® d(2)22 . (d%u’ﬁz ® d%yQ ® 2‘2)a(dlm’dlyZ)@dgz2
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which is just (ax; ®1d)(axxrpwse). O

2.2.3 Crossed differential graded algebras

In this section we will introduce an example application of the diagonal approximation
map discussed above, and define the notions of crossed differential graded algebras and
coalgebras, which are the translations of differential graded algebras and coalgebras
from the chain complex to the crossed complex situation.
First we define the crossed complex version of the approximation to the diagonal,
which is the natural transformation given by the composite homomorphisms
K -------m- - TK @ TK

(K x K)
for each simplicial set K.
From proposition 2.2.4 the approximation to the diagonal has the following explicit

description.

Proposition 2.2.6 Given a simplicial set K, the crossed complex approximation to

the diagonal

K K@K

15 given by the homomorphism which acts on the generators of TK by
g H— I X Tg
xry dlel ® Tr1 - Ty ® dU:El

2 . 2.,
Ty (dgfl?z (034 d0$2)d0$2®d0$2 ) X d(Q).IQ . (dldgl'Q & $2>d1w2®d0w2
n
n—i i ¢ (Tn )Rd] Tn
z, = (i, ® dyy) ()2
1=0

where c¢;(x) is given by the one-cell dédg:li_la: or by the identity at djz of 1 = n.
Definition 2.2.7 A crossed differential graded algebra is a crossed complex C' together

with a homomorphism C ® C N C, termed the multiplication map, which makes the

associativity diagram

m ® id
CRCxC C®C
d®m m
m
CxC C
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commute. Dually, a crossed differential graded coalgebra is a crossed complex C' to-
gether with a homomorphism C —— C ® C, termed the comultiplication map, which

makes the coassociativity diagram

C CxC

w id®w
w ®id

CxC CCxC

commute.

Our fundamental example of a crossed differential graded coalgebra will be the
following. Suppose that K is a simplicial set. Then the approximation to the diagonal
map 1K — 7K ® 7K is coassociative by proposition 2.2.5. Thus m(K) has a crossed
differential graded coalgebra structure. Also we have naturality of this construction in
K and hence we have a functor from simplicial sets to the category of crossed differential
graded coalgebras.

CDGcA

SimpSet

In particular, consider the case where K is the representable simplicial set A™. Then
we have a crossed differential graded coalgebra 7[n] for each n, together with the coface

and codegeneracy homomorphisms induced between these as n varies. In fact we have

Proposition 2.2.8 The collection of crossed complexes w[n| together with the homo-

morphisms
7[n| —— 7[n] ® 7[n]

and the coface and codegeneracy maps

7 [n] m|n + 1] M

7[n]
define a cosimplicial crossed differential graded coalgebra w(A®).

This idea may be used to give insight into a construction of Brown and Gilbert
in [6]. In this work the notion of a braided regular crossed module is defined, and
the category of such is shown to be equivalent to that of simplicial groups with Moore
complex trivial above dimension two. A braided regular crossed module C' may be
thought of as a crossed differential graded algebra m : C' ® C —— C such that C is
trivial in dimensions > 3 together with a unit e : 0 — C' such that mg : Cy xCy — C

gives Cy a group structure. It is not pointed out, however, that the construction of a
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simplicial group from C' may be regarded in the general context of the Eilenberg-Zilber
theorem.

We will consider a more general situation, and show how to form a simplicial semi-
group from an arbitrary crossed differential graded algebra. Consider the nerve functor
from crossed complexes to simplicial sets, given by (NC), = Crs(w|n|,C). Then an
algebra structure on C' together with the coalgebra structure on each 7[n] induce an

associative multiplication structure on the nerve. Explicitly, we have

Proposition 2.2.9 Suppose C is a crossed differential graded algebra. If f,qg are n-
simplices of NC' given by homomorphisms m[n] — C, then define f - g by the convo-

lution product:

This gives a simplicial map
NC x NC —— NC
which is associative.

In the same way, any homomorphism of crossed complexes C ® D — E will induce
a simplicial map NC x ND —— NF via the cosimplicial coalgebra 7(A®) and the
convolution product. In particular, considering the identity map on C' ® D leads to a
natural comparison map
NC x ND — N(C ® D)

We will return to this idea in section 4.1.

2.2.4 Shuffles and the Eilenberg-MacLane map

In this section we recall the notion of shuffies and hence define the natural maps

bk

K @nlL m(K x L)

This was originally carried out in the chain complex situation by Eilenberg and Mac-
Lane in [20].
Let us write k for the set {0,1,...,k — 1}, and 4g, ¢; for the functions
iy i
q ~p+q 4 ~p+4q

T p+r T T
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for p,q > 0. Then a (p, ¢)-shuffle is any permutation o of the set p + ¢ such that the
functions oy =igoc and 0 =4, 00

7:[] ag il g
p+yq pP+yq p pP+yq pP+yq

q

are both monotonic increasing. We write Shuff(p, ¢) for the set of such shuffles and

Shuff(p, q) i {-1,1}

for the function which gives the signature of each permutation o.

Consider the representable simplicial sets AP and A?, and write x, and y, for the
top-dimensional non-degenerate simplices of each. Their cartesian product AP x A4
has no non-degenerate simplices in dimensions > p+ ¢+ 1, and in dimension p+ g there
is a non-degenerate simplex for each o € Shuff(p, ¢) given by (ss,2p, S0, y,), Where the

maps S,, and s,, are composites of degeneracy maps as follows:

Soo = So(ptq-1)So(p+q-2) - - - So(p) Sor = So(p-1)Sa(p-2) - - - 50(0)
Proposition 2.2.10 For simplicial sets K, L there 1s a natural homomorphism

bk

K ®@nL (K x L)

which is defined on the usual generators by

= (SSIUqu>
= (2, S0Y0)
1
T @y — (s1@1, 80y1) - (Som1, S$191)
'_)

H (S00%ps Soy yq)sg(g)
o€Shuff(p,q)

l‘0®yq
xp®y0

Tp & Yq

Proof: These composites are all defined, since t(u) = (dyz,, djy,) for each term u on
the left hand side, and the functions respect the source and target maps. It is clear
that they respect the degeneracies, for if z, = sz, _;, say, then x,_; and y, generate
no non-degenerate cells in dimension p + ¢. Explicitly for each (p, ¢)-shuffle o define a
(p — 1, ¢)-shuffle 7 by

N oo(i)  for og(i) < ay(k) N o1 (7) fori <k
(i) = { oo(i) — 1 for og(i) > o1(k) n(l) = { o(i+1)—1 fori>k

Then s, (x)s7, = 8o, and Sg,(k)S7y = SooS0,(k)—; Where j is the number of values of o

which are less than oy (k). But there are k values of oy and (k) values of o less than

o1(k), so j = o1(k) — k and
(S0 (58Tp=1), 501 (Yg)) = So1(k) (SmoTp—1, 57, Yq)
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For the boundary relations, the case p = 0 or ¢ = 0 is clear. In the case p = ¢ =1, we

have

bab(z1 @ un) = Oa(s121, 50y1) - O2(S01, 51y1)_1

= (d031$1, dosoyl)_l ’ (d231I1, d250y1)_1 ’ (d151$1, d150y1)
(dlsol“l, d181yl)_1 ’ (d230I1, d251y1) ’ (dOSUIh d051y1)
= (sodoz1,y1) " (71, 80d1y1) " - (sodixr, y1) - (w1, Sodoys) = béa(x1 @ 1)

In the general case, note that for 0 < i < p 4 ¢ any (p, q)-shuffle satisfies precisely

one of the following

—_

=14} ¢ {-1} Ulm(oy

[\

)

A= 1, {1} UIm(og) U{p+ ¢}
3. 1—1¢€Im(oy) and 7 € Im(op)
(

4. 7—1 € Im(oy) and i € Im(oy)

4
and we thus have a partition Shuff(p, ¢ U (7)

r=1

. q)

There is a bijection 7 : Séi)(p, q) = ( where o is given by the permutation

i—1 ifo(j) =i
o)) = 4 i ie()=i-1
o(j) otherwise

and this satisfies d;(5y(0),%p, Sy(0): Yq) = Ai(S00Tp, S0, Yq) and sg(yo) = —sg(o).
For o € S%Z) (p,q) let t(o,7) be the integer such that oq(t) = i, with t(o,p + q) = p,
and let 7(0,7) be the (p — 1, ¢)-shuffle defined by

) ooy if og(y 1 Ny o1(g if o1(y 1
7(0,1)0(j) = { 00(]-)(]) 1 if 0083 i i 7(0,4)1(5) = { o1 (j +({§ —1 if 018% ; i

Thens d(50sps5ost) = (rtot0 ity e)s o (3)) a0 s(r(a,)) = (~1)#0)
sg(o). Also i and o are completely determined by t(o,i) and 7(0,7), and we have a
bijection

p+q

U (8. q) x {i}) = Shuff(p—1,¢) x {0,1,...,p}

i=0
A similar relationship holds between the Séi)(p, q) and Shuff(p,q — 1). Combining
all these results for p + g > 4 gives

p+q

H H (di(SUO:Ep: Sa1yq)(71)i+1'Sg(U))Zi(SUOm%Sﬁyq)

1=0 g€eShuff(p,q)
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- ZtTp g' q
— H H ( Sty dtCCp 57, (yq))(*l)tﬂ”-sg(q—))b( ®dly,)

T€Shuff(p—1,q) t=0

T (). g7 ) 20

T€Shuff(p,q—1) t=0

which is precisely 6,4,0(x), ® y,) = bpiq(zp @ yg).
There remain the non-abelian cases {p,q} = {1,2}. We will verify the result for

p =1, ¢ = 2; the other case is similar. Now 63b(z1 ® y,) may be written as

O3(s150%1, 52Y2) - O3(525071, 51y2>71 - 03(82511, S0Y2)
= do(s18071, 5292)71 - d3(s15071, 5292)($1’d3y2) - dy (515071, 52Y2) - dy(515071, S2y2>71
do(s2501, 51Y2) - da(S25021, 51Y2) - di (52501, Slyz)_l - (d3(s2s0m1, Slyz)_l)(dozl’doyz)
dy (595111, Soya)da (525121, Soyz)_1d0(3231$1, Soyz)_1d3(3231$1, Soyz)(dozl’doyz)

The fifth term can be moved left four places and the eighth right four places, since the

image of 63 is central, and some cancelation now occurs.

= (5121, Sodoys) - (S0z1, S1doys) " - (s2dyzy, )T BV« (s0z1, s1dyys)
(s121, sodhy2) ™" - (spdowr, )™ ((51I1, soday2) - (sox, 51d2y2)_1)(d011,d0y2)
= b1 @ doys) - b(dizy @ o)UY - b(ay @ dyys) !
b(dozy ® yo) 7t by @ dyyy ) doerdov2)

which is b63(z1 ® yo). O

The following proposition gives the associativity of b.

Proposition 2.2.11 For simplicial sets K, L, M, the following diagram commutes.

b id
TKQnlL nM KL 91

(K x L) ®nM

id ® by, m brxr,m

bi,Lxm

7K @n(Lx M) m(K x L x M)

Proof: As usual the result needs only to be checked on generators w,, =z, ® y, ® 2,
for z, € K, y, € L, z, € M. Note that the result is straightforward if any of p, ¢ or r
are zero. Thus we may suppose p 4+ ¢ + r > 3, and so everything is abelian.

Consider the three sets p, ¢, r and the maps jo, j1, j2 into p + ¢ + r given by k — £,
k+— p+k, k — p+ g+ k respectively. Then we define a (p,q,r)-shuffle to be a

permutation o of p + g + r such that each composite j, o ¢ is monotonic increasing.
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Cousider also the map iq from ¢ 4+ r into p + ¢ + r given by k — p + k. It is clear that

the composite iy o o factors uniquely into a (g, r)-shuffle followed by a monotonic map

from ¢ + r into p + ¢ + r. We thus have a bijection

~

Shuff(p, q, ) Shuff(p, ¢ + r) x Shufft(q, r)

(o (waT)

where w and 7 are defined by the diagrams

Lo Jo
q+r ptqg+r P »ptqg+tr
T a a
q-+r p+q+r P p+q+r
Wo - - w1 -
Note that
(Swomp’ Sw1S10Yq) Swy 571ZT) = (3003:10’ Sa1Yq, SUZZT)

and sg(w) -sg(r) = sg(0)

where the monotonic functions og, 01, 09 are defined from ¢ in a similar manner to wq
above.
A similar relationship holds between Shuff(p, ¢, ) and Shuft(p + ¢, r) x Shuff(p, q).

Combining these results gives

I l I l sg(w)-sg(7)
(Swo Tps SwiStoYqs Swy St Zr)
w€eShuff(p,q+r) T€Shuff(q,r)

= H H (Swosmmpa SwoSm1Ygs SwiZr
weShuff(p+q,r) T€Shuff(p,q)

)sg(w)-sg(T)

and we have associativity of b as required. O

As is well known in the chain complex case, the shuffle map b is a one-sided inverse

to the diagonal approximation map a introduced in section 2.2.2.

Proposition 2.2.12 Given simplicial sets K, L, the composite homomorphism

b
K @l Kl (K x L) WKL L rKerL

18 the identity.
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Proof: Suppose z, ® y, is a generator of 7K ® nL for =, € K,, y, € L,. Then

a(b(z, ®vy,)) is given by a composite of terms each of the form

(@25 smtp © diso, )™ ")

for 0 € Shuff(p,q) and 0 < i < p+ ¢q. Now for djs,,y, to be non-degenerate requires

ci(SoqTp)Rdg yq

o(k) <i—1fork<p—1,and for /7 's, x, to be non-degenerate requires o(k) > i
for k > p. Thus for the whole term to be non-degenerate it is necessary to have o = id

and 7 = p. In this case sg(0) = 1, ¢;(s4,p) is degenerate and the term becomes z, ® y,.

Thus boa =1id. O

Furthermore the maps a and b satisty a kind of commutativity or interchange relation
as follows.

Proposition 2.2.13 For simplicial sets K, L, M, the following diagrams commute.

brxr,m

(K x L) ®nM m(K x L x M)

ag,r @ id QK I,x M

id @ by, mr

K nlL@mM TK@n(Lx M)

id ®
! LM TK@nlLaM

7K @ n(L x M)

b Lxm br 1 ®id
a
(K x L x M) —2Y, n(K x L)@ «M
Proof: We will prove the first of these two results; the second is similar.

Let w, = (z,,y,) ® 2z, be a generator of 7(K x L) ® =M for z, € K,, y, € L,,
2 € My, n =p+q. If porqis zero then the result is straightforward. If p = ¢ =1 we

have

aK,LxM(beL,Mw2>
ax Lxm (5171, S191, 5021) - Arc Lxm(SoT1, SoYn, 5121)71

= 21 @ (sodoyr, 21) - (drz1 @ (s191, 5021))1‘1®do(y1,21)

_1\*1®do(y1,21)
: (d1I1 ® (soy1, 121) 1) B
neglecting degenerate terms. Also
(id ® b)(a(w1,91) ® z1)
= (idd®b) (331 ® doyy ® 21 - (12 @ Y1 @ 21>$1®d0y1®d021)
B z1®do(y1,21)
= 1 ® (sodoy1, 21) - (d1$1 ® ((s1y1, 5021) - (Soy1, 5121) 1))
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Thus we have the result for p =g = 1.
For n > 3 we have

UK, LxM (bKXL:M((IP’ yp) ® Z‘])) o ek ( H (Sﬁompa So0Yps 501zq)sg(g))
o€Shuff(p,q)

p+q

: . ci(SonT dPy,.dl z
= TL L s @ il 20 R
o€Shuff(p,q) 1=0

Now for d?f{ 's,,x, not to be degenerate requires (k) > i for k > p. There are no
(p, q)-shuffles which satisfy this condition for i > p, and for ¢ < p the (p, ¢)-shuffles
which satisfy it are precisely those o defined by

k if k<
o(k) = {T(k—i)—Fi if k>

for each (p — 4, ¢)-shuffle 7. Thus the above expression becomes

p . . c;(zp g - gzq
H H ((df‘ijlll‘p ® (STOdE]yp’ S’rl Zq))sg(T)) ( )®(d y d )

1=0 7€Shuff(p—1,q)

P , ' ,
= lde bL,M) ((H(dﬂ_f:cp, dz)yp)q(mp)@?doyp) “ Zq>

=0

which is (id ® by, yr) (a(z,, y,) ® z,)) as required. O

2.3 The Eilenberg-Zilber Theorem

2.3.1 The Homotopy Equivalence

In this section we prove a version of the classical Eilenberg-Zilber theorem for the

fundamental crossed complex functor

SimpSet Crs

Theorem 2.3.1 For simplicial sets K and L the composite

(K x L) 7K ® L (K x L)

is homotopic to the identity on (K x L) via a splitting homotopy

h
T (K x L) B (K x L)

Thus 1K @ wL is a strong deformation retract of m(K x L).
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Proof: We give the derivation ¢ corresponding to the homotopy h:aob ~ idykxr).
For each n > 0, suppose z, = (z,,y,) is a generator in 7(K x L),,, with corresponding
z, € K,, and y,, € L,. We will also write C for the crossed complex 7(K x L) and f
for the idempotent endomorphism a o b of C.

In dimension zero, f is the identity function on Cy, so we define ¢y by
¢020 = €z in C4
In dimension one, f acts on the generators by
(z1,91) = (sodixr,y1) - (z1, sodoyn)
and we define ¢ on the generators by
¢121 = (S071, Slyl)il

Note that this satisfies t¢; 2, = tz; and that if z; is a ‘degenerate’ generator, (zy,y;) =
so(o,yo) say, then ¢z is also degenerate. Thus we can extend ¢; to a function

C; — Cy inductively by

¢1 620 - 6Z0

alw?) = ((6rn)”)
5151(21'11)1) = (¢121>w1'¢1w1

—1
Wy

for any w; € C;. On the generators we have also

Z1 52¢121
(1“1; yl) : (dlsol“l, d181y1>71 : (dzsol“l; d231y1) : (dosol“l; d031y1)
- f121

as required by corollary 2.1.7, with ¢y = e. This relation extends to all of C since

Z1-wy - 52051(21 'wl) = z-w; -0y ((¢121)w1) 0y prwy
= 2Z1- 52515121 R (52¢1w1

To define ¢ in dimensions > 2 we can use the notion of simplicial and derived

operators as in [20, 21]. Consider first a (finite, possibly zero) formal sum
Fd =" i, vi)
i€l

of distinct pairs (u;, v;) of monotonic functions [p| — [¢], with integral coefficients r;.
We will call such a sum a simplicial operator of dimension (p,q), and say that it is
frontal if p;(0) = v;(0) = 0 for all ¢ € I.
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Clearly morphisms A : [r] — [p] or p : [¢] — [s] of A will act on such an F, by
composition with the u; and v; and collecting together like terms, to produce formal
sums AF or Fp respectively. The general composites F!G} can also be defined, as can
sums FI + H!. In fact the collection of all such simplicial operators forms the free
ringoid (abelian-group enriched category) over the category A, where A®) is the full
subcategory of A x A on the objects of the form ([n], [n]).

If each term (p;, v;) of F' with r; # 0 can be written as (\;0;, A;7;) for some \; : [p] —
[p—1] then we say F'is degenerate. We will write F' = G if F'— G is degenerate, and say
that F' preserves degeneraciesif the composite Fp is degenerate for each p : [¢] — [¢—1].

Suppose F'is a simplicial operator of dimension (p, ¢) as above. Then we define the

corresponding derived simplicial operator F” of dimension (p+1,¢+ 1) by

P o= ZT‘Z'(,UJ;,VI{)

i€l
where the monotonic functions u}, v/ : [p+ 1] — [¢ + 1] are given by
wi(0) =0, pi(n +1) = pi(n) +1
Vi(0) =0, vin+1)=wvi(n)+1

2

Clearly taking derived operators respects the addition and composition structure. All
derived operators are frontal, and if an operator is degenerate then so is the correspond-
ing derived operator. The most important property of taking derived operators is the

behaviour on composing with the zeroth coface and codegeneracy maps:

Lemma 2.3.2 Suppose F is a simplicial operator and F' the corresponding derived

operator. Then
1. d(0) F" = Fd(0)
2. If F is frontal, then s(0) F = F's(0).

Now consider the simplicial operators 9, of dimension (p — 1, p) defined by

9 = 21 (40, i)

and note the relation

dp + 30, 1 +(d(0),d(0)) = 0

Proposition 2.3.3 Suppose that ng > 1 and (F,),>n, s a sequence of operators of

dimensions (n,n) which satisfy

anFn - Fn—lan
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and ®,,,_1, ®,, are frontal operators of dimensions (ng, ng — 1), (ng+1,ng) respectively

which satisfy
P,y + @, + F, s(0) =0

and
F’I’LO = ldno + an0+1q)n0 + (bng—la’no

Then the operators ®,, of dimensions (n + 1,n) defined inductively by
®,+@, ,+F,s(0) =0
are all frontal and satisfy

Fn = ldn + 8n—|—1®n + (bnflan

for n > ngy. Furthermore if ®,,,_1 and all the F,, preserve degeneracies, then so do all

the ®,,.

Proof: Since sqg is frontal and any derived operator or sum or composite of frontal

operators is frontal, it follows from their definition that the ®,, are all frontal. Thus by
the lemma and the relations 0+ 9"+ d(0) = 0 and ® + &' + F's(0) = 0 we may rewrite

0P and P9I as follows:
Ouir®y = (d(0)+ D)0, | — 0,1 FLs(0)
(I)n_ld(O) + 3;@;71 - 8n+1F7;5(0)
(bnflan — _(I)nfld(()) + (q);LfQ + Féfls(o))aizfl
= _(I)nfld(()) + CI);L*QaInfl + Féflaﬁfls(o)
Similarly we have
— n+1FTILS(O) + Fé—181/1l—15(0)
= (d(0) +9,)F,5(0) — F,_(9, + d(0))'s(0)
d(0)s(0)F, + 0. F's(0) — F!_,0. 5o — F_,d(1)s(0)
= F,— FTIL—1
and so
1P, + @40, = 0., ,+ P, _,0, ,+F,— F,_,

Thus taking the derivative of the relation
Fn—l = idn—l + an(bn—l + (bn—Qan—l

implies the relation for F;, and so it holds for all n > ng by induction.

For the last part, suppose inductively that &, ; preserves degeneracies.

Then

¢! ,s(i) can be written as (®,_1s(z — 1)) if i > 1 or as s(0)®,_; if ¢ = 0 since
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®,,_; is frontal. Also for all i we have Fs(0)s(i) = F!s(i + 1)s(0) = (F,s(i))'s(0).

Therefore @, = —®! | — F!s(0) preserves degeneracies also. O

By regarding the monotonic functions p;, v; as corresponding to functions p; : K, —
K,, v] : Ly — L, respectively, we note that in sufficiently high dimensions a simplicial

operator defines a map on C.

Proposition 2.3.4 Suppose F' = > ;ri(u;,v;) is a simplicial operator of dimension
(p > 3,9 > 2) which preserves degeneracies. Then F induces a homomorphism of
groupoids-with-C1-action
F
C

q

which is given on the generators by

Flag ) = [T (15 ), 7 () ) 0770

1€l

where the monotonic functions o;,7; : [1] — [q] are given by

(p)

vi(p)

7;(0)

(1) =gq

Y
Y

If G is another simplicial operator of dimension (r > 3,s > 2) which preserves degen-
eracies and G the corresponding homomorphism, then the following relations hold for
w,, € C,

1. If p=r and q = s then F + G(wT) = F(wT) . (a(wr))ﬂ;
2. If g =r then F (@(ws)) = FG(w,),
3. FO,(w,) = F(8,w,).

Proof: Note that C, and C,, are both totally disconnected and that each group C,(z)
is abelian. Since F preserves degeneracies and the (o0;, 7;) ensure that t(u) = t(z,) for
each term u in the product, F is well defined on the generators and may be extended

to a Cj-homomorphism on Cy inductively by

F(ezO) = e,

F w“’l) = (qu)wl

q

F Zg - w,) = qu -qu

0

for any w, € Cy, w, € C.
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The first relation follows trivially from the above. In the second, corresponding
elements of C}, on the left and right hand sides are given by

* % * % di(o% 2,7 yq)
(Niﬂjxs;Vi ijs> R A

* %k %k do(o  xq, 7} yq) d2(0 . g, 7). yq)
and  (p; pmy, V] V] ys) "0 i T e T4 Ya
for i € Iy, j € I, where the monotonic functions o, ;, 7; ; : [2] — [s] are given by

0 (0) = mipi(p), 0i;(1) = pilq), 0i;(2) =s
7i3(0) = vivi(p), 7i;(1) = vilg), Ti;(2) =s

But 6,Cy acts trivially on C

Dy
For the third relation, note that for p > 4 we have 9,(w,) = 6,w, and the result

so the above elements are equal.

follows from the previous relation. In fact the result for p = 3 holds by the same

reasoning, since it is only the intermediate values that lie in the non-abelian Cy. O

Since F' = G for F' = G, we have

Corollary 2.3.5 Suppose ng =1 and &y, ®; and (F,),>1 are simplicial operators as
i proposition 2.5.3, with ®q and the F),, preserving degeneracies. Then the resulting
homomorphisms f, = F, for n >3 and ¢, = ®, for n > 2 satisfy

Hpnwn) = t(wy)
On(wn™) = (fnwn)™
Gn(2n " Wn) = PnZn © Pnty
and fow, = W, * Opi1PpWy = Pp_10,W,

Returning at last to the proof of theorem 2.3.1, define operators @, of dimension

(1,0), ®; of dimension (2,1), and (F,,),>1 of dimensions (n,n) as follows:

b = (5(0),5(0)

Clearly F,, = f, for n > 3, ®; preserves degeneracies, and ®, + ® + F/s(0) = 0.
The relation F; = id + 9,®; + ®y0; holds as for f; and ¢, earlier. The proof that
the F), preserve degeneracies and satisty 0,F, = F,_10, is the same as that for the
homomorphisms a and b. Thus we have ¢,, for n > 2 from the corollary above with all

the required relations for a derivation ¢ : f ~ id except
Jawa = wy - b3¢2w3 - P103ws
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for wy € Cy. In fact it is only necessary to check this relation on the generators since

(22 'wz) : 53¢2(22 'w2) : ¢152(Zz : wz)
= Z2- 53¢222 * Wy - (¢15222)62w2 : 63¢2w2 : ¢162w2

= Z2- 53¢222 : ¢15222 © Wy - 53(]52102 : ¢1527~U2

since 0wy acts as conjugation and 63C73 is central in Cy, and

Wyt 639 (o) - 16y (wy"")
= wy"" - (53¢2w2)w1 ) ¢1(w1_1 - bawy 'wl)
= wy" - (53¢2w2)w1 ’ ((¢1w1)_1)52(w2w1) ) (¢152w2)w1 - Q1w
= (rw1) ™" - (wy - G3paws - Prbywy)™ - drun
= (wy - b3¢9w), - ¢152w2>f1(w1)

since fi(wy) = wy - 63¢1w;. So now consider

bsda(z2) = G3(—F35(0) — D) (22)

_ (doxa,s d2y )
= 03 (((3230612332,313/2) i (3130d2$2,32yz)) B

’ (50I2, 52S1d1y2)_1 : (51I2, 52y2)>

- — S T92,d0Y2 (d0$2750d2y2)
= ((51d2332;y2) . ((Sodﬂm S1d2y2> 1>( ododz2.doy2) (Sldzl“z; Sodoy2) ) (Sodzl“z; yz)) ’

_ _ Lo s (dows,s0d3ys)
’ ((Sodﬂz;yz) b (50d2332751doy2) . (Sgd%%:yz)(@ 2s0dgn) (50d2332; 51d1y2>) e

)71) (dow2,s0d2y2)

) ((Sodzl“z; s1d1Ys ) (332: 53d3y2> ) (50d1332; S1d1y2> ) (172; Sldly2)71

(dow2,s0d3y2)

'(332; 51d1y2> ) (352;92)71 ) (Sodol“m Sldoyzyl ) (51d2332;y2)
(d2z2,50d3y2

(22, 59dgy»)

sododazz,doy2)-(dowa,s0d3y2)

_ (doz2,50d2y2)
= ((31d2$2, Sod0y2) : (Sodzﬂfz, 51d0y2) i (Sgdfl"m?h) )) ’

'(Sodﬂz; 51d1y2) ) (352;92)71 ) (Sodol“z; Sldoy2)71 ) ((Sodﬂm 51d2y2>71>(

on permuting the terms cyclically by two places and cancelling. Using u - v%2%

=v-u
twice more, to move the third term to the right one place and the last term to the left

one place, and composing with

2y - P10929 = 2o - ¢1(d0251 : dzz;1 - dyz9)

b0z dozTtdiz
= 2y - (s0doy, s1doy)™™ - (S0dyy, s1days) 72

: (50d1332; 51d1y2>71

)doZQ

= (Sodol“z; S1doy2) ) (Sodzl“z; s1d2Yys T2 (Sodll“z; 51d1y2)71

leaves

2
1>(d0$2750d0y2) (d1$2,50d8y2)

((Sldﬂm Sod0y2> ) (Sodﬂz; Sldoy2)7 ) (iUz: sﬁdﬁyQ) ) (Sgd%iﬁza yz)

which is just fyz,.
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Thus we have a derivation ¢ corresponding to homotopy h : f ~ id. By the work of
section 2.1.2, h may be replaced by a splitting homotopy, although it may be checked
that the definition of ¢ here is such that it already satisfies the necessary side conditions.
(I

Before we move on to the next section, there are four more commutativity relations
that the above homotopy h satisfies with respect to @ and b. Recall from [12] that the
tensor product of crossed complexes is symmetric, where for crossed complexes C', D
the homomorphism s : C ® D — D ® C'is given on the generators by

C®D b pgcC

¢p @ dy ——r (dy ® Cp)(_l)pq

for ¢, € C,, d, € D,.

Proposition 2.3.6 For simplicial sets K, L, M the following diagrams commute

T@n(K x Lx M) bk Lxm 7K x L x M)
id®a a
IT@n(K xL)®rM ik 1 (K x L)@ M
T@n(K x L x M) hRxLM 7(K x L x M)
id®a a
s ®id id @ hy,

ImK@n(LxM)——n1K®ZI®n(LxM)

7K @ (L x M)

Proof: Suppose as usual that w, = (x,, yn, 2,) is a generator of 7(K x L x M). Then
the results need only be checked on the generators + ® w,, of Z ® m(K x L x M); the
commutativity for 0 ® w,, follows by h(0® —) = aob and propositions 2.2.5 and 2.2.13,

and for 1 ® w, is trivial. For n = 0 the results are also clear. For n = 1 we have

(hicnxm © arxpm)(t @ wy) = agxpm(SoT1, s1Y1, s121)""

= ((30331, 81311) ® d33121)71
([d®a)o(h®id)t®@w,) = (h®id)(t® (di(z1, 1) ® 21 - (x1,y1) @ doz1))

= (som1,s191) ' @ doz
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neglecting the degenerate terms in s;zy, dgs;z1 and (e ® dq(xq1,vy;)). Similarl
g g g ) ' Y Y

(hiexnm o ag nxm)(t @ w,) = ak xm(soz1, Soyi, s121)""

_1\*1®do(y1,21)
= (d%30$1®(30y1,3121) 1) e

(id®a)o(s®id)o(id® h)) (+ ® wy,)
= ((S X ld) (o] (ld X h)) ((L X dll‘l & (yl, Zl))1®a)1®d0(y1,21) L T X dO(yl; Zl))
= (i@ h) ((diz1 @@ (y1,21))' =00 (21 )™ @ do(yr, 1))

i\ 21®do(y1,21)
= (d1I1 ® (s0y1, 5121) 1)
as required.
For the case n > 2 we can again represent everything using a straightforward gen-

eralisation of the notion of simplicial operators above. Recall that h was defined via

b, = =@, —Fs(0) Fo o= > sg(o) (s(o0)d(i+1)"", s(o1)d(0))

0<i<n
oceShuff(i,n—1i)
For a simplicial operator G of dimension (p, q), let G© and GM be the formal sums
given by the first and second components of the terms in G, and write G = (G(©, G())
where the summation here takes place in parallel. Then the actions of hx rxmoarxr,m

and (id ® agxp )0 (hk®id) on ¢ ® w, may be represented by the formal expressions

n+1
S (A6 + )" eD d(j + 1)) @ d(0) o
=0
and Y (@7d(k+1)"*, @{Vd(k +1)"*) @ d(0)"
k=0

For n = 1 an argument as above shows that modulo degeneracies these are both equal

to —(so, $1) ® dy. Suppose inductively that the result holds for n — 1:

S A+ 1), wdoyel), = Z Opd(k +1)""F @ d(0)F
7=0
Taking the derivative of this expression, writing j, k for j — 1, £ — 1, and multiplying
on the left by id ® d(0), gives
n+1 ) n
S d(j 4+ 1), @ d(0) o) Z d(k +1)""* @ d(0)*
j=1 k=1
Thus it remains to show that

S A+ )P E(0) 0 dOYEDs0) = 30 FLs(O)d(k+ 1 @ d(0)f
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The expression d(0)?F()'s(0) is degenerate for j = 0, and if j > k+ 1 consists of terms
of the form d(0)’s(cy)'d(1)'s(0) for 0 < i < n, 0 € Shuff(i,n — ). For d(0)’s(o,)" to
be non-degenerate requires o satisfy o(r) < j — 2 for 0 <r <7 — 1, and for each 1 < j
the restriction to j — 1 gives a bijection between such o and Shuff(z,7 —1—1). It G, ;

is the expression obtained from F,, when only these 7 and o are considered we have

. / o . 1/ .
dOYFED" = doycly = d(oy
and d(j+1)"+1*JG'nJ = F]le(j+1)”+1*]

Hence
A+ 1) T s(0) @ d(0Y FW's(0) = Fld(k +2)" *s(0) @ d(0)*+'s(0)

for k =7 — 1 and the result follows.

For the second result we must show

n+1 n
Z d(] + 1>n+1*jq)glﬂ) ® d(o)jq)n = Z(_Djd(j + 1>n*j ® q)n,jd(O)j
=0 =0

where the (—1)7 comes from the symmetry. By the definition of ®,, we have
Qu = - Fis(0) = Y (-)TEIs0)
i=0

where the superscripts {7} indicate the r-fold derived operator. Now F©) is frontal, so

dj+ 1) IR0 = S (=1)d( + 1) () R

1=0

These terms are degenerate for ¢ < j, and for 2 > j we have

d(j+ 1) s FEY = d(j+ 1) and d0YFIYs() = FVTYs( - j)d(0)

n—1i

Thus

n

S (1) + )" @ BT 5)d(0)

d(j + 1" 700 @ d(0)'®,,

= A+ )" e (1) (f(l)”lFéi*ji}is(i)) a(0)’

= (=1 +1)"7 @ b, ;d(0)

and we have the result. O
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Proposition 2.3.7 For simplicial sets K, L, M the following diagrams commute

hir ®id

ITon(KxL)y®nM (K x L)®nM

id® b b
b 1.
Tomn(K x Lx M) —=2M L o(K x L x M)
S®ld 1d®hL7M

IT@rK ®m(Lx M)

TK®Z@n(Lx M)

7K @n(Lx M)

id®b b

hixr,m

IT@m(K xLx M) » (K x L x M)

Proof: Suppose v,, and w,, are generators in dimension p + g of 7(K x L) @ 1M
and 7K ® m(L x M) as usual. Then the results hold for the generators a ® v, , and
a @ wpq for @ = 0,1 in Zy by propositions 2.2.11 and 2.2.13. Also the results are clear
for 1 ® v, , and + ® w,,, if p or q are zero. Thus we may assume these generators have
dimension at least three and work in terms of simplicial operators as before.

Let B,, = (B(O) B(l)) be the simplicial operators representing the shuffle homo-

p.a’ P,
morphism b in each dimension. Then for the first result we show inductively that

(@4, B, @40, B) = (B8, B )

p,q° ~pP+a—p,q p

Partitioning the set of (p, q)-shuffles o according to whether zero is in the image of oy

or gy, we obtain the following recursive formula for B:

/

0 '/ 1y ! 0 n !
Bpy = <B;(1)1,q ’Béjl,q 5(0)> +(—1) <B;,31 s(0), B;(),gfl )
Together with the inductive hypothesis, this gives

0 51 'pa
(o)., 50082,/ 503)

0) '/ 1 rSa) ! 0) '/ 1 roa) !
(@0 1By 80 B s0)) + (17 (@) B (0,000, 0 BL)

i l 0 i 1 li
p,q Tp—1° Bg(),lq) 5(0)) + (71)10 (B;g—k)l,ql (P;S(O)’ B;g—k)l,qfl )

Il
/N
=
=
=

Also propositions 2.2.11 and 2.2.13 imply the following commutativity relation between
B and F:

(ForBY), F2,BEY)) = (BYF, BY)

g’ ~ p+4p,g
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which since B is frontal gives

(% (0)BL), FyY,

=
)
=
+
(S
Va)
—
[a)
N
Sy
G
N———
Il
/N
Sy
)
!
Va)
—
[a)
N
Sy
G
C,J\
—~
S
~—
N——

/ /
= (BW', B 's(0)) + (—1)*! (B;jlq ! 5(0), BISQLq_l>

But @ 5(0) = 5(0)®,, so using the recursive shuffle relation for B, , gives the required
result.

For the second part, we use similar arguments to show inductively that

(q)(o) BW @, B( )) = (=17 (BZ(J?q)HaBzg,lq)Hq)q)

pP+q9~p,q

Using the recursive formulae for ® and B, and since both ® and B are frontal, this may

be expanded into

- (@“2 B e, B, 's(o)> p (RO T p) e
p+aq / ) p+q—1"p—14 / (—1) (Bp17‘14_1,B]]17[1+1 <I>q5(0)>
ORIN0) (1) _
_(_l)p (q)erq—l Bp7q—1 S( ) q)lp+q 1Bp7q—1) - B (BI()(E:S(U), Blg?tz):q)il—l)
!
- (Fp(i)q BY's(0), F!, B g’s(o)> (B s(0). BYY Fys(0)

which holds by the inductive hypothesis and propositions 2.2.11 and 2.2.13. O

These two propositions 2.3.6 and 2.3.7 will be used in the next section to show that

the Eilenberg-Zilber theorem extends to give a coherent system of higher homotopies

I @m(Ky x ... x K,)

(Ko x ... x K,)

between the 2" endomorphisms of 7(Ky x ... x K,) defined by various composites of a

and b.

2.3.2 Higher Homotopies and Coherence

For simplicial sets K, L, M, there are homotopies between

2 2
K QnL®nM

m(K x L x M) (K x L x M)

and the identity, induced either by hgyy p and hg p, or by hg xam and hp . These
homotopies are not the same, although they are themselves homotopic via a double
homotopy

h
IRTI@n(K x L x M) —=22

(K x L x M)

More generally we make the following definition:
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Definition 2.3.8 An r-fold homotopy of crossed complexes is given by a crossed com-
plex homomorphism

h
%" @ C - D

where C, D are crossed complexes and T is the r-fold tensor product of the crossed
complex T with itself.

Given a p-fold homotopy Z%? @ C " Danda g-fold homotopy 7% @ FE L
we will define h x k to be the (p 4+ ¢)-fold homotopy given by

TP @ CQE ------ - ~D®F

[12

h®k

id id
I®p®I®q®C®EﬂI®p®C®I®q®E

where s is given by the symmetry of the tensor product. Also for 1 < ¢ < p and
a € {0,1} we will write 6%(h) for the (p — 1)-fold homotopy defined by

7P & ¢ - -- @a_(_hz ______ - D
I®P ® C

where f is the natural monomorphism given on generators by

7&((p—1) . TP

L1 QT @ QTp 1 Q- QT AT Q- & Tpy

We will often use the notation 6; for ¢ and &; for 6}.

Note that 0-fold homotopies are given by homomorphisms, and a 1-fold homotopy
h is thus just an ordinary homotopy h: é; (h) ~ 8 (h) as in section 2.1.1.

For convenience in later chapters we will make a change in the conventions of propo-
sition 2.3.1, and write hg j for the homotopy id ~ a o b given by the reverse of the
homotopy denoted hg , in that section. We will also use the notation a and b for
the homomorphisms defined by a and b at the ¢th factor of a product

a®
(Ko X ... XKT)% (Ko % ...x K; 1) @n(K; x...xK,)
b )
and will write A for the homotopy id ~ a(” o b(®,
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Theorem 2.3.9 Suppose that K; are simplicial sets for 0 < ¢ < r. Then there is an
r-fold homotopy

I @m(Ko x ... x K,) ——""" 1(Ky x ... x K,)
These homotopies are natural in the K;, and satisfy the cubical boundary relations

62'_(hK0;---7K7-) - hKO,Kl,...,(Ki,l XKi)7...,KT for T 2 ]-
5 (hio, i) = (d®ad?) o (hgy w, *hw, k) o b forr>1

id®a(®

90D @n(Kox..xK,) IO @u(Kox...xK;_1)Qm(K;x...x K,)

+
61‘ (hKo,---,Kr ) hKo,---,Ki71 *hKi,...,KT

m(KoX..xK;) m(KoX..xKi_1)®m(K;X...xK,;)

together with the relations

th = ldﬂ-KO

(id @ bD) o &7 (hiy,i,) = (@D 0 8F (hiy,..x.)
O (hieo, i) 0 = 8 (higy, k) © a®

Proof:  Suppose Ky, Ky,..., K, are simplicial sets and write Kij for the product
Ki x Kiy1 x ... x Kjfor 0 <¢<j <r. Then the r-fold homotopies hg, .k, may be
defined inductively by

hico k1, i, = (2 ® hit gy k) © Py, Ky

K, 1s the composite of

.....

where hy, = idg, and hg, g, is as defined earlier. Thus hg, k,

the maps

idrei-1) ® ()

I @ n(Ky x ... x K,) 7200 @ (Ko x ... x K,)

fori=r,r—1,...,1.
To prove that the r-fold homotopies h satisfy the appropriate boundary relations,

we need a lemma.

Lemma 2.3.10 The maps a, b, h as above satisfy

hKé,KiH,...,KT oa” = (idger—n ® fl(i)) o(s® idﬂq) o (id,rKéfl ® hgk, k)
hKO,...,Ki,z,Ki[l © a(i) = (idzr@(i—l) ® a(i)) o (hKO,...,Ki,l ® idﬂq)
and
(idzee-n ® b(i)) © hKé,Km,...,KT = (s® ider{) © (idwK;jl ® hKi,...,KT) o b

(idzei-1 © D) o hy,

.....



Proof: We prove the first result of these four; the others are similar. Assume induc-
tively that the result holds with K; and K., replaced by their product

...........

and consider the diagram

‘ 1d®hK¢+1 Kjygo Kr RGi+1)
I8N Rr K] » IQnK) —————————— 7K,
id®a(?
90N @r K "' @r K] idwa(®
id®s®id a(®
‘ . 1d®hKf+1 Koo Kr ,
I@nK, t@I®U—i-DgnK! I@nK, '@nK!
s@id s®id
‘ ‘ 1d®hk'f+1,k'i+2,---,Kr _ ideRG+1D) )
TKi @IS0 gr K] - nKy @IenK] ——> nKy @nK]

This commutes by the inductive hypothesis, by naturality of s and by proposition 2.3.6.
Since the horizontal composites are just the inductive definitions of hKé,Ki+17---7KT and
_____ k, we have the required result. O

Returning to the proof of the proposition, we can write

hKo,...,Kr = (idI®i ® hKé,K KT) © (idz®(i—1) ® h(i)) % hKO,...,Ki,2,K

-
i—1

i1y

Since 67 () =id and ;") = a( o b() this gives

6i_th,...,Kr = (idz®(i71) ® hKé,KH_l ..... K) o hK07---7Ki72:K
+ _ : . i {
0 iy, K, = (1dz®(i71) ® (hKé,KH_l ..... K, © a o bt ))) © hKO7---7Ki—2:KZ,1

= (i[d®ad?)o(id®s®id)o (id ® hk, .k ) o (b, K., ®id) o b?

-
i—1

by first and fourth parts of the lemma, and the 6;—L boundary relations follow. The final
two relations hold by the second and third parts of the lemma since (") o ¢() = id. O

The following additional properties of the r-fold homotopies h are easy consequences

of the relations given in the theorem.
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Proposition 2.3.11 Given simplicial sets K; with corresponding higher homotopies h
as above, the following equations hold

6; (Pky,. ..k, ) © a® o p®
ld®b(l) o hKo ,,,,, Ki1xK;,.. . K, — hKO ..... Ko *hKl ..... K O b(l)
hKO"'WKifl xKi,...,K, © a(l) = id X CL(Z) ¢] hKo,...,Ki71 * hKi,...,Kr

Suppose that hk, i, .k, is an r-fold homotopy of the theorem. Then for each o =

i, of (Ko x ... x K,)
given by restricting the homotopy to the corner a of the r-cube Z®". That is,

.....

(a1, a9, ..., ), a; € {0,1}, there is an endomorphism ho k1

.....

hio i ko (T) = hiori k(01 ® @, @)

We say that the various r-fold homotopies h of the theorem provide a coherent system

of homotopies between the homomorphisms A®.

For simplicial sets Ly, Ly, ..., L; the diagonal approximation and shuffle maps give
homomorphisms
ok
7T(L0 XLl X ... XL]C)T'TL0®7TL1®®7TL]€
b
which are well defined by the associativity of @ and b. Thus for o = (ay, g, ..., @) as

before we have homomorphisms a, and b,

a, -1 in—1 ipg1—1
T(Kogx Ky X ...xK,) —/———n HKZ- KT HKZ- ®R...0mw H

i=iy

b, i=ig i=iy

where 77 < 19 < ... < 7 are those 7 such that o; = 1, and 7g = 0, 441 = r+ 1. In
particular, a, = b, =id if a; =0 for 1 <17 < r.
By using the boundary relations which the A satisfy, we can show that the homo-

morphisms a, and b, give an explicit description of the endomorphisms h®.

Proposition 2.3.12 For h an r-fold homotopy and o € {0,1}" as above, the endo-
morphism given by h® is precisely the composite a, o b,. Thus the r-fold homotopies

h provide a system of coherent homotopies between the various composites a* o b* for
0<k<r.

These results will be used in chapter four to make precise the statement that ‘up to

homotopy’ there is an enriched natural adjunction between simplicial enrichments of 7

and N.
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Chapter 3

Homotopy Colimits and Small
Resolutions

3.0 Introduction

In this chapter we give a definition of homotopy colimits of diagrams of crossed com-

plexes. It is proved that there is a strong deformation retraction
hocolime,(F om) =~ m(hocolimg F')

for F' a small diagram of simplicial sets and hocolimg F' its homotopy colimit as defined
in [4]. We discuss an alternative definition of homotopy colimit in SimpSet, written

hocolim’, such that there is a natural isomorphism
hocolimg(F o Ner) = Ner(hocolimcy, F)

for F' a small diagram of categories and hocolimc,; the usual homotopy colimit in
Cat [38].

As a simple motivating example, these results are applied to a functor corresponding
to a group action. This gives a free crossed resolution for a semidirect product of groups
which is a strong deformation retraction of the standard resolution, and which may be
written as a twisted tensor product of standard resolutions.

The structure of this chapter is as follows. In the first section we set out the
motivation in terms of finding small resolutions of semidirect products of groups.

In the second section, we recall the Bousfield-Kan definition of homotopy colimit in
SimpSet in terms of a coend and of the diagonal of a bisimplicial set . An alternative
(homotopy equivalent) definition is proposed using the Artin-Mazur diagonal of the
transpose W' of W, and it is shown that this behaves better with respect to homotopy
colimits in Cat as defined by the Grothendieck construction.

In the third section, we propose a definition of homotopy colimits in the monoidal

closed category of crossed complexes, both in terms of a coend and of a total complex
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of a simplicial crossed complex. The main result that we prove is that the fundamental
crossed complex functor preserves homotopy colimits up to a strong deformation retrac-
tion. Finally we apply this result to obtain a small crossed resolution of a semidirect
product of groups in terms of a twisted tensor product.

3.1 Motivation: Small Crossed Resolutions

3.1.1 Standard crossed resolutions

Recall the following:

Definition 3.1.1 Suppose C s a small category. Then the nerve of C is the simplicial
set Ner(C) given by strings of composable arrows in C:

Ner(C),, = {[zo, a1, w1, a3, 79, ..., ap, ] 1 a; € C(w;_q, 75)}
The degeneracy maps are given by inserting an identity arrow:
Si[a:‘Oa A1, L1y ..., Qp, In] - [1‘07 A1y Ty e ey Qjy Tgy T4, Ly Qg 15, g1y« -y Ay CCTL]

The first and last boundary maps are given by deleting the first and last arrow respec-

tively, and the others by composing consecutive arrows:

dO[IUaalamla"'aanamn] - [1‘1,@2,562,...,@“,56”]
dn[xﬂaalaxla"'aan:xn] — [l‘Oaalaxla"'aanfl;xnfl]
di[xﬂaalaxla"'aan:xn] =
[330701;5171; ceey Qi1 Ti—1, Qg t Qi1 Tt 1, iy 2, Lig2 - - - flnaﬂvn] Jor1<i<n
The n-simplices [zg, a1, 1, as, Ta, . . ., ap, x,] Will often be written as [a1, as, ..., a,),

or as [|,, in the zero-dimensional case.

The functor Ner : Cat — Simp has a left adjoint ¢ : Simp — Cat termed
categorisation. The category c¢(K) has object set K, and is generated by arrows a;
for each one-simplex a; € K;. Identity arrows are given by degenerate one-simplices,
source and target maps by the boundary maps, and there are relations from the two-
simplicies. Altogether the relations are thus:

Sollg — €Qgq
dia; = say
doa; = tay
dias = dyay - doas

The bijection of hom-sets Cat(c(K),C) = SimpSet(K, Ner(C)) is well known, as is
the isomorphism of categories ¢ (Ner(C)) = C.



In the case where C is a group, the nerve of C is said to give a simplicial set which
resolves the group structure. This simplicial set has a single zero-simplex, and has
fundamental group the original group C and all higher homotopy groups trivial. Taking
the fundamental crossed complex of the nerve thus gives a crossed complex whose
homology is C in dimension one and trivial in higher dimensions. The fundamental
crossed complex of the nerve has been proposed in [27, 11] as an algebraic resolution
of the group structure.

Definition 3.1.2 The standard crossed resolution C(G) of a group G is given by the

fundamental crossed complex of its nerve.

Ner s

SimpSet

We will also write C' for the functor defined on the whole of Cat.
Using definition 1.3.1 we may present the functor C' in terms of generators and
relations.

Proposition 3.1.3 Suppose G is a group. Then C(G) is the crossed complex of groups
generated by elements (g1, g2, - - ., gn| € C(G),, subject to the relations

(91,92, 9] = e in C(G), if any g; is the identity
621,920 = lg2) ™" - on] ™" [g192)]
63(91, 92, 93] = g2, 937" - o, 92][93} 192, 93] - [g1, 9293
1 [gn] (=1)n+t
6n[917927"'agn] - [927"'Jgn] . ([gla"'agnfl] n)
n—1 .
’ H[gla"'agigi-l-la'"Jgn](il)H—l fOT’TLZ4
i—1

Note that the only relations involved are those for boundaries and degeneracies and
so C(G) can be regarded as free in a certain sense. Thus the standard crossed resolution
of GG is termed a free aspherical resolution for GG.

If G, H are groups, then we may form the tensor product of the crossed resolu-
tions C(G) and C(H). Combining propositions 1.2.5 and 3.1.3, this has the following
standard presentation.

Proposition 3.1.4 Suppose G, H are groups. Then the tensor product C(G) ® C(H)
is the crossed complex of groups given by generators a, ® b, in dimension n = p+q for
all ay = [g1, ..., 9, € Ner(G) and by = [hy, ..., hy| € Ner(H), subject to the relations:
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1. a, ® b, = =, the identity element, if any of the g; or h; are identities

2. 8(aa®by) = ([g2) ®[])7 o ([g] @ [])7" o ([9192] ® [])
52(00 by) ([J& o))~ o ([J @ [M])~" o ([] @ [Paha])
b2(ar ®by) = ([J@[m]) " o(lg] @[] o ([]®[M])o (o] ®[])
b3(a1 @ by) = ([¢] @ [ha]) o ([]® [hn, ko)) 0 ([g1] @ [hyhs))
o ([]® [h, ho])™" o ([g1] @ [y])11[R2]
b3(as @ by) = (g2 @ [Ma]) " o ([g1. 2] @ [DIEMT 0 ([g192] @ [ha])
o([g1, 92l @ [])" o (([91] ® [hl])[g2]®“)
Sp(ay @ by) = &"(a, @bo) forp >3
bqlag @b,) = 6%(ag ®b,) forq>3
Sprqla, @b,) = 8"a, ®b,) o (6¥(a, ® bq))(fl)p otherwise

where the abbreviations 6"(a, ® b,) and §"(a, @ b,) stand for the following expressions:
6}1(% ®bg) = (lg2,-- . 9] ® [N, .., hq])il
(1
° (([gl, e Gmt] ® [hry . )

_ Vel
H gl,...,gkgk+1,...,gp]®[hl,...,hq])( 1)+

(Sv(ap@bq) = ([gl,... ] [hz’”" ])—1
(71)q+
o (([91, -+ 99 ® B, - ., gy )21
q—1
© H([glJ sy gp] & [hl; ey hkhk+1, R hqD(il)kjL
k=1

Now consider the standard resolution of the product G x H of the two groups G,

H. Since the nerve functor commutes with products we have
C(G x H) = n(Ner G x Ner H)
Comparing this with C(G)® C(H) = n(NerG) @ m(Ner H) we find that we may replace

the standard resolution of the product by the tensor product of standard resolutions,

as follows.

Theorem 3.1.5 Suppose G, H are groups with product Gx H. Then the tensor product
C(G) ® C(H) defines a free aspherical resolution for G x H.

Proof: From the presentation of C(G) ® C(H) above it can be seen that there are
no relations except those given by the boundary maps and degeneracies, and so we
have freeness. We also know from theorem 2.3.1 that C(G x H) and C(G) ® C(H) are
homotopy equivalent. But the former is the standard aspherical resolution for G x H,
and so the latter is also an aspherical resolution since homotopy equivalence implies

equivalence in homology. O
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3.1.2 Semidirect products and homotopy colimits in Cat

In the previous section it was shown that a resolution for a product of groups may
be obtained from the tensor product of the resolutions. The important point to note
is that the resulting free crossed complex is smaller than the standard resolution of
the product group, and that the Eilenberg-Zilber theorem gives a strong deformation
retraction of the larger onto the smaller. Consider now the case where the group H
acts on the group G, and let E' be the semidirect product of G by H. We would like
to use the semidirect product decomposition to find a free aspherical crossed resolution
for £ which is smaller than the standard resolution C(FE).

An action of a group H on a group G is a function H x G

G, written
(h,g) — g", satisfying

hlhz — hl)hZ

9" =g, g ("), ec" =eq, (g192)" = 91" go"

Note that this is consistent with definition 1.1.3.
The function H x G —— G is not a group homomorphism since we do not have
(g192)"h2 = g ¢g,"2. However regarding the groups G and H as categories we have

the following equivalent formulation:

Proposition 3.1.6 An action of a group H on a group G is given by a functor a from

H to Cat such that a(ey) = G.

Proof: The correspondence is given by ¢g" = (ah)(g). The first two axioms for a
group action given above correspond to the functoriality of a, the other two to the

functoriality of a(h) for each arrow h of H. O

The next construction we need is due to Grothendieck.

Definition 3.1.7 Suppose I is a small category and F' a functor from I to Cat. Then
the Grothendieck construction on F', written [* F, is the category with objects the pairs
(i,2) with i € Ob(I) and z € Ob(F%) and arrows (f,a) : (ig,xg) — (i1,x1) for all
f € I(ig,11) and a € Arr(Fiy) with source (Ff)(xo) and target xy. The composite of

the arrows

(flaal) (f2,a2)

(40, o) (41,21) (42, 22)

is defined by (f1 - fo, (F fy)(ay) - az).

Note that the Grothendieck construction comes equipped with a canonical projec-
tion (‘opfibration’) functor p : [* F' — I defined by (i,z) +— i and (f,a) — f.
Consider again the case of a functor « : H — Cat : ey — G corresponding to

a group action as above. The Grothendieck construction [* « on this functor is the
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category with a single object (eg,eq) and set of arrows (h, g) for all h € H and g € G.

Composition of arrows is given by

(hlagl)(h2792) = (hlhz,gfzgz)

Thus we have

Proposition 3.1.8 The Grothendieck construction applied to a functor o : H — Cat
corresponding to a group action of H on G gives the usual semidirect product E of G
by H. The canonical projection p corresponds to the epimorphism E — H, (h,g) — h,

which gives the usual split short exact sequence of groups
1-G—-E—-H—1
The following definition is due to Thomason [38].

Definition 3.1.9 Suppose that F : I — Cat 1s any diagram of categories and func-
tors. Then the homotopy colimit of F, hocolim(F'), is defined by the Grothendieck
construction on F'.

In particular suppose o« : H — Cat : ey — G is a functor corresponding to a
group action. Then E = hocolim(«) is the semidirect product of G by H. When
considering the effect under the functor C' : Cat — Crs we will see that there is a
definition of hocolim in Crs such that hocolim(« o C) is a strong deformation retract
of C(hocolim(«)). That is, using the semidirect product decomposition we have an
aspherical resolution for £ which is smaller than the standard resolution. It will turn
out that the small resolution has a presentation with the same generators (but different
boundary relations) as that for C(G)®@ C(H). For this reason the new resolution of the
semidirect product may be considered as a perturbation of the small resolution for the
direct product, and will lead to a definition of a twisted tensor product C(G) ®, C(H).

Also the small resolution for the semidirect product will be free in our usual sense.

3.2 Simplicial Homotopy Colimits

3.2.1 Introduction to coends

In this section we give a brief review of the definitions and calculus of certain limits
and colimits termed ends and co-ends respectively. A basic reference for this section
is [32].

Definition 3.2.1 Suppose C is an arbitrary complete category, I a small category, and
F a functor I°° x I — C. Then the end of F over I, written [, F(i,i) is given by the

followning equaliser in C

II Fi, i)

i i€Ob(I) b fEI(iii2)
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where a and b are those arrows defined componentwise by
aomy = m, 0 F(iy,f) and bomy = m, o F(f, i)

Often C will be an ‘algebraically-defined’ category, and in this case, working with
elements, we can define the end as follows. Let A be the object of C formed from the
Ob(I)-indexed product of the objects F'(i,1), and write the elements of A as sequences
(z:)icon(r)- For f an arrow of I(j, k) we write f! : F(i,j) — F(i, k) for the morphism
F(i, f), and fF : F(k,i) — F(j,i) for the morphism F(f,i). Then [, F(i,q) is the
subobject of A consisting of those sequences satisfying the relation f7(z;) = fi(x;) in

F(j, k) for all arrows f:j — kin I.
F(j,7)
fi

Example 3.2.2 If F', GG are functors from I to C, then there is a functor

I°° x I ~ Set

defined by the hom-sets, and the end /C(F(Z), G(i)) is just the set of natural trans-

formations from F to G.
Dually, there is:

Definition 3.2.3 Suppose C is an arbitrary cocomplete category, I a small category,
and F' a functor [°? x I — C. Then the coend of F' over I, written fZF(z, i) is given
by the following coequaliser in C

[ Flini) =——= [] F(i,i)------ . /iF(i,i)

FEI(is iz) b i€Ob(I)

where a and b are those arrows defined componentwise by
tpoa = F(iy, f)ow, and tyob = F(fi1)ou,

In suitable categories C we can define coends more explicitly in terms of generators
and relations. Let A be the Ob(I)-indexed free product of the objects F(i,7) in C. Then
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J"F(i,7) is the quotient object of A given by imposing the relations f¥(x) = fi(x) for
each f:j — kin I and z in F(k,j).

Flk, )~ Pk, )

F(3,5)

Since ends and coends may be viewed in terms of limits and colimits, they are
preserved by the appropriate adjoint functors and by hom-set functors. Suppose F, G
are functors from I°? x [ to C, D respectively, that L : C — D is a functor with right
adjoint R, and that C' is an object of C. Then the following natural isomorphisms hold

when the appropriate ends and coends exist:

R(/ig(i,i)> ~ /iR(G(i,i))
L(/iF(z',z')> = /iL(F(i,i))
c(c, iF(z’,z’)) = /iC(C,F(i,i))

C </iF(i,i),C) S /ic (F(i,i),C)

Ends and coends also have nice properties with respect to natural transformations.
Given functors F,G : I°? x I — C and a natural transformation 6 : F' = G there are

universal morphisms in C

/Z,F(i,i)ﬂ»/ia(i,i) /iF(i,i) J' 6 /iG(i,i)

providing the appropriate ends and coends exist. Furthermore this process is functorial

in that it takes identity and composite natural transformations to the corresponding

identity and composite morphisms.

3.2.2 Homotopy colimits of simplicial sets. ..

In this section we recall the definition of homotopy colimits in SimpSet from [4].
Suppose [ is a small category. Recall that for any object ¢ of I the cocomma category
i/1I is that category with objects given by the arrows f :i — j in I for all objects j of

I, and arrows from f; : 7 — j; to fy : 1 — j5 given by arrows a : j; — j9 of I such that
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the triangle

h f2

J1 J2
a
commutes. Composition in /I is defined by that in I. Now an arrow g : i — 7y induces
a functor g/I : iy/I — iy /1 by precomposition. Thus the cocomma construction defines
a contravariant functor (—/I) : I°? — Cat.

Suppose we have a small diagram of simplicial sets given by a functor F' : I —
SimpSet. Consider the functor Ner(—/I) - F' defined by

1P 5 ] Ner(—/I) x F

SimpSet x SimpSet SimpSet

Definition 3.2.4 The homotopy colimit of a diagram F : I — SimpSet s given by
the coend of Ner(—/1I) - F over I:

hocolim (F) 2 / "Ner(i/I) - F(i)

For F' a functor as above, let W(F') be the bisimplicial set with (p, ¢)-simplices given
by pairs (a,b) where a = [ig, f1,41,. .., fp,1p] € Ner(I), and b € F(ip),. The vertical
face and degeneracy maps are defined by those of the simplicial sets F(ig) and the
horizontal face and degeneracy maps by those of Ner([), except that djj is defined by

(a,b) — (dya, bfl)

where we are writing b/t for (F/(f1))(b). That this does define a bisimplicial set is clear;
dbdh = dbd® follows from the functoriality of F', and the vertical face and degeneracy

functions commute with df since each F(f) is a morphism of simplicial sets.

Proposition 3.2.5 Suppose F is a functor I — SimpSet as above. Then there is a

natural isomorphism .
U(F) = / Ner(i/I) x® F(i)
between the bisimplicial set W(F') and the coend of

Ner(—/I) x F x(2)

I°° x 1 SimpSet x SimpSet

BiSimpSet

Proof: Elements of Ner(i/I), may be written as pairs (fq, a) for fo : 4 — iy an arrow

of I and a = [iy, f1,41,. .., fp, ip] in Ner(I),, and the face and degeneracy maps act by
ST(fUaa') = (fUaSTa)a dr(ana') = (f[]adra')a (T >0)7 dU(ana) = (foofl,doa,)
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Let A be the disjoint union of the Ner(i/I) x(?) F'(i). Then elements of A, , are given
by triples (fo,a,b) for fo, a as above and b € F(i),, and the relation f7(z) ~ fi(z)

becomes
(an a, (Ff)(b)) ~ (f o an a, b)

Each (fo,a,b) is thus related to a unique element of the form (e, a,b’) with e the
identity arrow at iy and b’ € F'(iy),, given by (F(fy))(b). The faces and degeneracies of
an element of the form (e, a,b) are again of this form, except for the zeroth horizontal

face for which we have

dg(e,a,b) = (fi,doa,b) ~ (e, doa, (F(f))(b))

Thus the quotient of A by ~ is naturally isomorphic to W(F), and we have the result.
|

Corollary 3.2.6 The homotopy colimit of a diagram F' as above 1s naturally isomor-
phic to the diagonal of the bisimplicial set W(F).

Proof: The functor Diag : BiSimpSet — SimpSet has a right adjoint, which takes
a simplicial set K to the bisimplicial set X with X, , = SimpSet(A? x A? K). Thus

Diag commutes with coends and we have
/ Ner(i/I) - F(i) = / Diag (Ner(i/I) x? F(i))
>~ Diag ( / Ner(i/T) x® F(z’))

that is, hocolim(F") = Diag W(F'). O

3.2.3 ...using the Artin-Mazur diagonal

In this section we will introduce an alternative definition of homotopy colimits in
SimpSet which has slightly nicer properties with respect to the nerve functor from
Cat.

We considered in section 2.2.1 the Artin-Mazur diagonal BiSimpSet . SimpSet.
Zisman has shown [16, loc. cit.] that the comparison map Diag(X) — V(X)) given by

T — (@) Ty (d5)" A, ()" () T ()"0 )

induces a weak homotopy equivalence between Diag and V. For the bisimplicial sets

which arose in the previous section, we have the following stronger result.

Proposition 3.2.7 Gien a functor F : [ — SimpSet, the simplicial sets Diag W(F)
and VY (F') are naturally isomorphic.
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Proof: Elements of VU(F), are given by those (n + 1)-tuples of pairs (ay, by )o<k<n
with aj, € Ner(l)y, and b, € F(d}ay),_r, and satisfying df(ag, by) = di, 1 (ag41,bk41) In

Writing ay = [fx1, fro,-- -, frx] the conditions (ay, dobg) = (dk+10k41, bkt1) that the
elements must satisfy become f;, = f,r and by = dfby. Thus an n-simplex of VW(F)
is completely determined by the n-simplices a, = [f1, fa,..., fu] and by € F(sf1)n.
Conversely any pair (a,b) with b € F(d}a), gives an n-simplex (dg;fa, dib)o<k<n of
VU (F). Under this correspondence the face and degeneracy maps in VW (F') become
do(a,b) = (dpa, dob’"), d;(a,b) = (d;a, d;b) for i > 1, and s;(a,b) = (s;a, s;b).

But this is precisely a description of the elements and the face and degeneracy maps
of Diag W(F),,. O

Corollary 3.2.8 The homotopy colimit of a diagram F as above is naturally isomor-
phic to the Artin-Mazur diagonal of the bisimplicial set W (F).

We note that this isomorphism may be thought of as an extension of the result that
Diag(K x®* L) 2 K x L = V(K x® L) to a result for a twisted cartesian product.
The existence of the extended result is mainly due to the fact that the twisting only
appears in dj which does not occur in the relation djxy = df,x441 used to define the
Artin-Mazur diagonal.

Suppose instead of the bisimplicial set W(F') we consider its transpose W'(F) ob-
tained by interchanging the roles of horizontal and vertical. Clearly W' (F') and W (F)
are weakly homotopy equivalent. Also W'(F) may be defined as the coend of the com-
posite of F(—) x® Ner(—/I) and the symmetry functor I°® x I — I x I°?. Note that
although Diag W(F') = Diag W'(F), it is not in general true that Diag V'(F) = VW/'(F)
since now the twisting of djj interacts with the definition of V.

We make the following alternative definition of homotopy colimits in SimpSet.

Definition 3.2.9 For F a diagram I — SimpSet, hocolim’'(F) is the simplicial set
given by VU'(F).

Proposition 3.2.10 For F a functor I — SimpSet, there is a natural comparison

map 0" from Diag W'(F') to VU'(F) defined by
(b’ a) = ( (d?b7 a)’ (dg_lbf:l’ I:.fz’ et .fn])’ (dgL—Qbfle’ |:.f3’ et .fn])’ et
(dZ;fbf1f2...fk= [fk-H: fk+2= R fn])? Tt (bflf?“fn? Htfn) )

where a = [fi, fa,-.., fa] € Ner(I), and b € F(sf)),, and we write b for (F(f))(b).
If F(f) is an isomorphism for each arrow f of I (in particular, if I is a groupoid) the

comparison map becomes an isomorphism.
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Proof: Since the twisted face dj is not used in the definition of the faces or degeneracies
of V, it is a routine check that ¢’ is a simplicial map. Suppose (by, ax)o<k<n 1S an
arbitrary n-simplex of VW'(F) with ar = [fi1, fe2, .-+, fon—i] and by € F(sfr1).
Then the condition df(by, ay) = df;(bk41, ar+1) may be written b1 = dj 4 bpyr and
(fr2s s fem—k] = [fes11s-- -, fes1n—k—1]. Clearly these conditions are satisfied by
¢'(b,a). Also if each F'(f) is invertible, then the element (by, ax)o<k<n is determined by
b, and ag, and in particular 6’ has a 2-sided inverse. O

As a special case we have

Corollary 3.2.11 Suppose that H —~—~ Cat is a functor corresponding to a group

action. Then there 1s a natural isomorphism
hocolim(a o Ner) 2 hocolim'(c o Ner)

Thomason has shown in [38] that for an arbitrary diagram F': I — Cat in Cat there
is a weak homotopy equivalence between the nerve of the Grothendieck construction on
F and the homotopy colimit of the diagram F' o Ner in SimpSet, and for this reason
the Grothendieck construction is thought of as defining homotopy colimits in Cat. It
is interesting that replacing hocolim by hocolim’ gives a natural isomorphism rather

than a weak equivalence:

Theorem 3.2.12 Suppose I is a small category and F' an arbitrary functor I — Cat.
Then the nerve of the Grothendieck construction on F' and the Artin-Mazur diagonal
of W'(F o Ner) are isomorphic.

Ner (/] F) ~ V' (F o Ner)

Proof: An n-simplex of VU'(F oNer) is given by an (n+1)-tuple of pairs (b, ax)o<k<n

where . . .
ar = |iko, fons ety fom—ks thn—k) € Ner(I)
by = [l“k,(], Gk, Th1y -5 Gk ks Ik,k] € NBT(F(Zk,U))
and these data must satisfy the conditions
[ik 1y fros b2y s fhnks tkn—k] = [fkt1.05 fht10s tkt11s -« s Shttm—k—1s Uhtln—k—1)
fea fra fra fea Jea o
[Ik,o 7961 5Tk 55 Gk ko Lok ] = [$k+1,0; Jk+1,1, Th41,15 - - - 5 Jk+1.ks 33k+1,k]

where as usual we write the operation of the functor F(f) as a right action z +— a7,

g — g’. These conditions imply that the (n+1)-tuple is completely determined by ay =

[Z.O,Ua fU,la Z.O,la ey fU,na Z.O,TL] and the EIEmentS [1‘0701 gl,la Il,la s 7gn,n7 In,n]- Conversely
any data ¢ = [ig, f1,%1, .-, fn,in) in Ner(I) and d = [zg, g1, %1, ..., gn, Tn] With zp €
Ob(F (i) and g, € (F(ix))(z]*,, z;) determine an n-simplex of V¥'(F o Ner) by

Uk = Ltk

fik = Tit

Tip = :Ejfjﬂ“'fk (3'1>

Gik = gjfj+1"'fk
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and these processes are inverse. Note that if hocolim(F) = [T F is the category given
by the Grothendieck construction on F' then an n-simplex of Ner(hocolim(F)) is given
by a string

[(iﬂv 1‘0), (f1= 91>, (ila 1‘1), (f2792>7 (i2792>7 T (fnagn): (im xn)]

where i, € Ob(1), fr € I(ix_1,ix), T is an object of F(ix), and gy is an arrow of (F'(iy

)

)
with source (F'fy,)(xk_1) and target x;. But this corresponds precisely to the data (¢, d)

above, so (3.1) gives a bijection

Pn

Ner(hocolim(F)),, VU¥'(F o Ner),

It is straightforward to check that this defines a morphism of simplicial sets. O

Thus if we define homotopy colimits in Cat by the Grothendieck construction and
in SimpSet by hocolim’ rather than hocolim, we have that the nerve functor preserves
homotopy colimits up to natural isomorphism, and Thomason’s weak equivalence may
be considered in the context of that of Zisman between Diag and V and also that

between a bisimplicial set and its transpose.

3.3 Homotopy Colimits of Crossed Complexes

3.3.1 Kan extensions and monoidal categories

We recall here a few details of the theories of (left) Kan extensions and of closed
(symmetric) monoidal categories. These concepts will then be used to try to formulate
a general framework for the constructions of the rest of the chapter.

The left Kan extension construction may be considered in a similar way to that of
induced modules discussed in section 1.2.1. Suppose I, C and D are categories, and Y

is a functor I — D. Composition with Y then gives an induced functor
I

Y
[D,C]—>[I,C] Y "}./OG

G “
D - C

between the functor categories. In many cases (for example if C is cocomplete) the

functor Y* will have a left adjoint, written Lany. For a particular functor F' from I to
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C, the functor Lany (F') from D to C is termed the left Kan extension of F' along Y.

I
[1,C] Lany, D, C] / \K
Lany (F')

1 5 IP . C
The case we will be most interested in is when D is itself given as the functor
category [I°P, Set] and Y is the functor

Y

I —— [I°?, Set]

i I(—,1)
defined by the hom-sets and the composition in /. For any functor [°P _ %, Set and
object 7 of I the Yoneda lemma gives a natural bijection between elements of the set
G(7) and natural transformations I(—,i) = G, and taking G to be the representable
functor I(—, j) shows that the functor Y is full and faithful. Thus I may be regarded
as a full subcategory of [I°P, Set]. We note the following well-known result that Kan

extensions along this embedding may be given by a coend formula.

Proposition 3.3.1 Suppose C is cocomplete and F' 1s a functor I — C. Then there is
a natural 1.somorphism between the left Kan extension of F' along the Yoneda embedding
I — [I°?, Set| and the functor

[, Set] C

Gn—»/iF(z’)-G(z’)

where C - S denotes the coproduct of copies of C indexed by the elements of the set S.
Furthermore, Y o Lany (F') = F and Lany (F') itself has a right adjoint given by

C [P, Set]

Cr—I(F(-),C)
Proof: Follows from standard manipulations with the end calculus. See for exam-
ple [32, X.4]. O

In particular consider the embedding of A into SimpSet. Any functor A —— C

then gives a diagram of the following form

=

SimpSet 1L "C
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Note that we could have given definition 1.3.1 in this way, since the presentation there
shows that SimpSet —— Crs is freely generated by its values on the representable
functors modulo their degeneracies and common faces. The categorisation and nerve

functors discussed in section 3.1.1 also fit this pattern.

Definition 3.3.2 A monoidal structure on a category C consists of

1. an object O of C,
2. a functor C x C —2 C,
3. natural isomorphisms O ® C' L Cand C % O — C for each object C of C,

4. a natural isomorphism C ® (D ® E) — (C ® D) @ E for each triple of objects
C.D.E of C

These data are required to satisty the following commutative diagrams

Bo(C®[D®E) ——(BaC)@(D®E) —— (B&C)2D)® E

d®a a ®id
B® ((C® D)® E) ¢ (B® (C®D)®E
Cw (0w D) (C@0)eD
m;>\ ‘/<;m
C®D

Definition 3.3.3 A symmetry for a monoidal structure (C, O, ®,1,r, a) is given by a
natural isomorphism C ® D ——~ D ® C for each pair of objects C, D of C, satisfying

the following commutative diagrams

a S a
C®DRE)— (CD)®E —+E®(C®D) — (ExC)® D

id® s s ®id
C®(E®D) ¢ »(C E)® D
OoxC C®O0 CRD————=C®D
[ r s S
C D®C
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The commutative diagrams in definitions 3.3.2 and 3.3.3 are known collectively as
the MacLane-Kelly equations. It follows from a coherence theorem [31, 29] that any
diagram made up of instances of [, r, s and a will commute.

Note that any category with finite products has a cartesian symmetric monoidal
structure, with ® given by the binary product and O by the terminal object. The

isomorphisms [, r, s and a are given by the universal properties of the limits.

Definition 3.3.4 A symmetric monoidal category (C, O, ®, 1, r, a, s) is said to be closed
if for each object D of C the functor — ® D has a right adjoint, written [D, —|.

C(C®D,E) = C(C,[D,E)

The counits of these adjuctions give an evaluation map [C, D] ® C . D, corre-
sponding to idjc pj. Using this, [, D] can be considered as contravariantly functorial
in the first variable, where for f: C' — C’ the morphism [f, D] corresponds under the

adjunction to

id
o pec—99 o pec— . p
Also we have internal adjunction isomorphisms [C® D, E] — [C, [D, F]| corresponding
to
ev ® id ev
[C,[D, F]] ® (C ® D) ([C,[D,E]]® C)® D [D,E]l® D E
a ! ev
(C®D,El®C)® D [C® D,E|® (C® D) E
and internal composition morphisms [D, E] ® [C, D] — [C, E] corresponding to
a ! id ® ev ev
(D.B) [, D) & C D, B & ((C, D] & C) D,E) @ D P

Our main example of a monoidal closed category is Crs, the category of crossed
complexes of groupoids. The tensor product and internal hom were explicitly defined
for this category in [12] using a natural definition of a monoidal closed structure on the
equivalent category of ‘cubical” w-groupoids [9].

Other examples are given by cartesian closed categories, for example Cat as dis-
cussed earlier. Also note that SimpSet is cartesian closed. In fact for any small
category C and functors F,G: C —— Set the product functor F' X G can be defined
pointwise using the cartesian product of sets, and a functor [F, G] : C — Set can be
defined, using the Yoneda embedding Y, by mapping an object C' to the set of natural
transformations Nat(Ys x F, G). This gives a cartesian closed structure on the functor

category |[C, Set], since
Nat (E, [F,G]) = /Set (EC,Nat(Ye x F,G)) = /Nat (EC - Yo x F,G)
C C

C
~ Nat (/ EC Yo x F. G) ~ Nat(E x F,G)
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We can now state our aim: to investigate the notion of homotopy colimits in co-

complete closed monoidal categories C for which there is a ‘good’ functor

™
A C
As above, 7 induces a pair of adjoint functors
A
T

s

SimpSet s C
N

which can be defined by
w(K) = [" () K, and  N(©), = Cx(n]).C)

We have notions of homotopy and deformation retraction in C, defined by the tensor
product and the unit interval object Z given by 7([1]), and we can make precise the
word ‘good’ above by saying that m must satisty an Eilenberg-Zilber theorem with
repect to these notions.

We will concentrate on the case where C = Crs, the category of crossed complexes,
although we believe a more general theory proceeds similarly. The category of oo-
categories is also believed to be a suitable candidate, using the orientals of Street [37]
and the monoidal biclosed structure of Steiner [34]. This category has been shown by

Golasinski [23] and by Kapranov and Voevodsky [28] to model all homotopy types.

3.3.2 Homotopy colimits in Crs

We now propose a definition of homotopy colimits for diagrams of crossed complexes.

Consider first the functor

Crs x SimpSet SimpCrs

which takes a crossed complex C and a simplicial set K to the simplicial crossed complex
C * K with (C %« K),, = C, x K,, crossed complex structures given by K, -indexed
coproducts of C' and simplicial structures by C,-indexed coproducts of K. Composing

with the simplicial total functor defined in section 1.3.3 gives a functor

Crs x SimpSet Crs

However the definitions of S-Tot and ® given in chapter 1 show that
S-Tot(C x K) = Tot(C®® 7rK) & C®7rK

and we use this as a slightly more explicit definition.
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Definition 3.3.5 If C' is a crossed complex and K a simplicial set, then their tensor
product CRK is given by the crossed complex C ® K.

Crs x SimpSet - ----------- » Crs

idx &

Crs x Crs

Suppose [ is a small category and we have a diagram of crossed complexes given by
a functor I —— Crs. Consider the functor Ner(—/I)®F defined by

o F x Ner(—/1I)

I x [ — [ x [ - Crs x SimpSet Crs

We can now make the following definition

Definition 3.3.6 The homotopy colimit of a diagram [ . Crs of crossed complexes
and their homomorphisms is given by the coend of F@Ner(—/I) over I:

hocolim(F) & / " Pliy@Ner(i/1)

This definition may also be given as the total complex of a ‘twisted’ simplicial crossed
complex ®(F'). In a manner similar to the definition of ¥ (or rather ¥') in section 3.2.2,
we let ®(F') be the simplicial crossed complex with elements in ®(F), , given by pairs
(¢, a) where a = [ig, f1., 41, ..., fy, 14 € Ner({), and ¢ € F(ip),. The (horizontal) source,
target, identity, composition, action and boundary maps are defined by those of the
crossed complexes F(i), and the (vertical) face and degeneracy maps are defined by
those of Ner(I), except for dy which repaces iy by i; and so must also translate the first
component from F'(iy) to F(iy):

do
(c,a) —— (¢, dya)
where we write ¢/t for (F(f1))(c). Clearly this defines a simplicial crossed complex.

Analogously to (the transpose of) proposition 3.2.5 we have

Proposition 3.3.7 Suppose F' is a functor [ — Crs as above. Then there is a natural

1somorphism .
O(F) = / F (i) % Nex(i/I)
between the simplicial crossed complezr ®(F') and the coend over I of

o F x Ner(—/1
I x [ —— o [ x [ er(=/1)

» Crs x SimpSet

SimpCrs
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Before we can show that the total complex of the simplicial crossed complex ®(F')

gives the same thing as the definition of hocolim(F') above we need the following result.
Proposition 3.3.8 The simplicial total functor S-Tot has a right adjoint.

Proof: First note that any simplicial crossed complex C' may be written as a coend

q
C = / Cuy* A

of the representable crossed complexes C,, * A% and that proposition 1.3.5 shows
that the simplicial total functor is freely generated by its values on the representables,

modulo degeneracies and common faces, and so

S-Tot(C) = /q S-Tot(C. , * AY) = /q C., & (A9

For any crossed complex D the functor 7(A®) : A —— SimpSet — "+ Crs defines a
simplicial crossed complex [r(A®), D] : A°® — Crs, and this gives a right adjoint to

the simplicial total functor since

Crs (S-Tot(C), D) = Crs (/ .y ® T(A), D) o /Crs (Cuy ® 7(A9), D)

q

1

(C
/q oy [7(A%), D]) 2 SimpCrs (C, [7(A*), D))

using a version internal to Crs of the result given in example 3.2.2. O

Proposition 3.3.9 The homotopy colimit of a diagram F of crossed complexes 1s nat-

urally 1somorphic to the total complex of the simplicial crossed complex ®(F).

Proof: By the above proposition the simplicial total functor preserves coends, so
S-Tot ®(F) 2 S-Tot (/ F(i) % Nex(i/I) ) / S-Tot (F(i) * Ner(i /T))
= / F(i)®Ner(i/I) = hocolim(F')

as required. O

Following proposition 1.3.5, we can thus give a presentation of the homotopy colimit

of F'in terms of generators and relations.

Proposition 3.3.10 Suppose F' is a functor from a small category I to the category of
crossed complexes of groupoids. Then hocolim(F) is the crossed complex of groupoids
given by generators ¢, ® a, € hocolim(F), for all a, = [ig, fo,i1,.- ., [4, 14 € Ner(l),
and ¢, € F(ip), with n = p + q, satisfying the following relations
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1. ¢, ®@aq = eyc,ma,) Y any fr 18 an identity arrow

2. s(c1®ag) = sci @ ag
s(co®ar) = co® i
t(co ®a,) = (1)”1 i g qu forq>1
t(e,®a,) = tefrli@[ly, forp>1,¢>0
f1 -fq
8 gt ®a; = (cp®ag) @lia forp>2
it
4. (hoc)®a, = ca®ago (] ® aq>cll #lia for g >1
(cpoc,)®a, = c,®ag0¢c,Ra, forq=0 orp>2

5. 8(co®ay) = (co®[fa])  o(co®[f1])7" o (co R [fifo])

by(cr ®ay) = (tcl @A) e (e @[li)™ 0 f f(scl @ [A]) o (el @ []a)
boler @ ) = (! @ [R]) 0 (ser @ [, LT 0 (2 @ [fi])!
o (tey @ [f1, f2]) "o (e & [fa])ter ®IF]
6p(cp, @ ag) = 8"(c, ®ag) forp > 2
bg(co®a,) = 6%(co®a,) forq>3
bprq(cy @ ay) = (¢, ®ay) o (6(c, ® aq))(fl)p otherwise

where the abbreviations §"(c, ® a,) and §"(c, @ a,) stand for the following expressions:

fifa or.
M(er®ag) = (tey ®a) " o (se; @ag) el

6h(Cp ® a,q) = 6pcp ® aq
6V(C:D X al) — (Cgl ® Hi1)_1 o (Cp ® Hio)tcp@al

_1)at+1

0" (cp ®ag) = (C{:l @ [fay o, fq])_l ° ((Cp ® [fr,---, qul])tcilqu*l ®[fq]>( R

k+1

o H(cp® [f1,---;fkfk+1;---;fq])

and ¢! stands for (F(f))(c) as usual.

The remainder of this section will be concerned with the following result, the proof
of which is essentially the fact that a coend of a strong deformation retraction is also

a strong deformation retraction.

Theorem 3.3.11 The functor SimpSet — Crs preserves homotopy colimits up to

strong deformation retraction.

Proof: Given a functor I —— SimpSet we have

hocolim(F o 1) 2 / "r(F(i) ® w(Nex(i/I))
7r (/ F(i) Ner(i/[))
/ " (F(i) x Nex(i/I))

12

7 (hocolim(F))

12
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since m preserves coends.
Consider the functors
7(F(—) X Ner(—/1
I x I ) C/1) > Crs
m(F(=)) @ m(Ner(—/1))

and note that there are natural transformations a, b between these given by the

Eilenberg-Zilber theorem

aj.k

m(F(5) x Ner(k/I)) m(F(5)) ® m(Ner(k/I))

bjk
which satisfy b o a =2 id. Taking coends over I thus gives homomorphisms
/ i Qj 5
I bi

which satisfy (fZ b“) o (fZ am-) = id. That is, we have

/i7r (F(i) x Ner(i/T)) /iw(F(i)) & w(Ner(i/I))

a
7 (hocolim(F)) hocolim(F o 7)
b
with boa 22 id.
Similarly we have natural transformations
Oj,k hj,k

7(F(5) x Ner(k/I)) T ® 7(F(j) x Ner(k/I))

#(F(j) x Nex(k/I))

1],k
satisfying 0o h =2 aob and 10 h = id, and hence homomorphisms

i

/%(F(i) x Ner(i/T)) —= /i1® 7(F(i) x Ner(i/I)) — / 7(F(i) x Ner(i/I))

satisfying the corresponding relations. But Z ® — also preserves coends, so these may

be written as

7 @ m (hocolim(F"))

7 (hocolim(F))

with h:aob~id. O

It is this result which justifies our definition of homotopy colimits of diagrams of

crossed complexes.
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3.3.3 Twisted tensor products

We now apply the machinery of homotopy colimits in the category of crossed complexes

to the functor

Ner

H “ . Cat » SimpSet Crs

where a: H — Cat: ey —— G is a functor corresponding to a group action. We know
by corollary 3.2.11 and theorems 3.2.12 and 3.3.11 that the result is a stong deformation
retract of the standard resolution of the Grothendieck construction on «, which is just
the semidirect product of G by H. Thus we have a small resolution of the semidirect
product.

We can give a presentation of hocolim(w o Ner o 7) as follows:

Proposition 3.3.12 Suppose « is a functor corresponding to an action of a group G
on a group H as above. Then the homotopy colimit of o o C : H —— Crs 1is the
crossed complex of groups given by generators a, & b, in dimension n = p + q for all
ap =[g1,-..,9p) € Ner(G) and b, = [hy, ..., h,| € Ner(H), subject to the relations:

1. a, ®b, = x, the identity element, if any of the g; or h; are identities
2. b(ar®bo) = ([ga] ®[]) o (ln]@[D) " o ([g192] ®[])
8y(ap @by) = ([J® [ha])™ o ([J @ [Ma])™" o ([] ® [h1ho])
bl @b) = ([J@[m]) " e(gl@[]) e (]@m])e (g™ @[])
83(ar @ by) = ([0"] @ [ho]) o ([] @ [, ha]) 9% 0 ([g1] @ [hyhs])~
o ([] @ [P, ha]) ™" o ([g1] ® [Ra])l1%I]
83(az @ b)) = ([g2] @ [m]) 7" o ([9, 9o] @ [])T=™ T 0 ([grg2] © [n])
(91" 92" @ ()7 o (([gn] @ [ha])le2"1200)

8p(ap ®bo) = &"(a, ®
0q(a0 @ by) ®
Optq(ap ®by) = 6h(ap ®

I
(o9
<
—~

<

o

o (6V(a, ® bq))(_l)p otherwise
where the abbreviations §"(c, ® a,) and §"(c, ® a,) stand for the following expressions:
6h<ap ®by) = (g2, 9] @M. .., hq]>71
1. g (71)p+1
o ((1g1: - gpm] © [, ... Bgl) o™ 121

p—1
VR4l
© H([gla"-agkgk+1a--'agp] ® [hla---ahq])( R
k=1

-1

6(a, @b,) = ([o".....g," ] @ [ha, ..., b))

(=1)at+!
o (([g1:- -+ 9] @ [hr, ., g a2

<
|
—

© ([gla SR gp] ® [hl, e hkhk+1, Ceey hq])(_l)k_H

1

e
Il
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By comparing this presentation with that of proposition 3.1.4 it can be seen that
the small resolution of a semidirect product of G by H differs from the tensor product
C(G) ® C(H) only in actions on the terms in the boundary relations, and that the
presentation above reduces to the earlier one when the action is trivial. For this reason
the crossed complex defined above will be termed a twisted tensor product of C(G) by
C(H) over the action, and written as C(G) ®, C(H).

Also it can be seen that our small resolution for the semidirect product is again free
in that it has no relations except for those given by the degeneracies and the boundary
formulae.
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Chapter 4

Simplicial Enrichment for Crossed
Complexes

4.0 Introduction

Much of the categorical machinery developed for homotopy theory is set in the context
of simplicially enriched categories. In this chapter we begin an investigation of the
extent to which such techniques apply to the category of crossed complexes. It is
shown that the monoidal closed structure induces a simplicially enriched structure on

Crs, and that the nerve functor

Crs SimpSet

can then be given a simplicial enrichment. The natural extension of the fundamental
crossed complex functor to the simplicial homs does not respect the enriched composi-
tion except up to homotopy, but using the results of section 2.3.2 it is shown that these
homotopies satisfy appropriate coherence conditions. The extension of the 7 /nerve
adjunction to the simplicially enriched context is also investigated.

Possible applications of the results found here include the abstract formulation of
equivariant homotopy theory in Crs [7], and of homotopy colimits of homotopy coherent
diagrams of crossed complexes analogous to the formulation for simplicially tensored
categories in [3, 15, 16, 17].

The structure of this chapter is as follows. In the first section, we present a simplicial
enrichment of the category of crossed complexes. In the second section, the enrichment
of the nerve functor is given. The fundamental crossed complex functor is then shown
to have a simplicially coherent enrichment. In the third section, the adjunction between

these functors is extended to a deformation retraction of simplicial homs
Crss(rK,C) =~ SimpSety(K,NC)

The rest of the section is devoted to showing that this homotopy equivalence is natural

in C and ‘coherently’ natural in K.
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4.1 A simplicial enrichment for Crs

In this section we show how the Eilenberg-Zilber theorem enables a simplicially-enriched
structure to be given to the category of crossed complexes.
First we use the diagonal approximation map to define a natural transformation €’

from m(N(—) x N(—)) to — ® — as follows:

ec ReEp

7(NC x ND) 7(NC) @ w(ND) C®D

where e¢ is the counit map 7(N(C)) — C corresponding to idy(c) under the 7 4 N

adjunction. Using the adjunction again, we thus obtain a natural transformation

Q
NC x ND ¢.D

N(C ® D)
The natural transformation €2 has the following more explicit description:

Proposition 4.1.1 Suppose m|n| R C, nln] =2~ D are elements of N(C),, N(D),
respectively. Then the image of (f, g) under Q¢ p is given by the composite

([n] x [n])

Proof: For K a simplicial set, elements of K,, correspond to simplicial maps [n] — K,

7[n| ® 7[n]

and elements of N 7(K), correspond to homomorphisms m[n] — 7(K). The unit n of

the m 4 N adjunction may thus be considered as given by

Ui

K - Nm(K)

([n] b 15: (w[nJMw@

Since Q is given by Q' under the adjunction, we have € = 5o NQ', that is

TINCxND N(ec ® ep)

N(a)
N7 (NC x ND) —— N(zNC ® 7ND)
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where a is the diagonal approximation map. Given an element o = (f, g) of (NC xND),,
corresponding to a simplicial map

d kp X 1,

[n] [n] x [n] NC x ND

we have the following commutative diagram by the naturality of the diagonal approxi-

mation

m(NC x ND)

N

w[n] ——— [n]) aNC @ *ND

X A) ® (1)
7[n| ® 7[n]

The upper path is the image of o under Qo p = 7n0N(a)o N(e ® €); the lower path
is the composite of m(d) o a with (nxe¢ o Nec)(f) ® (nnp © Nep)(g). But 7y o Ne is the
identity, so the proposition follows. O

EC®€D

CcC®D

Given any crossed complex homomorphism C®D ™. F the natural transformation
Q) defines a simplicial map from NC' x ND to NE by

QC,D Nm

NC x ND N(C ® D) NE

Using the same arguments as above, it is clear that this construction agrees with that

considered in section 2.2.3.

Corollary 4.1.2 Suppose m|n| AR C, nln] =2~ D are elements of N(C),, N(D),
respectively and m is a homomorphism from C ® D to FE as above. Then the image of

(f,9) under Q¢ p o Nm is given by the composite

mn| ® wln| —— C ® D
] & wfn] — C'

The natural transformation €2 also satisfies an associative law
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Proposition 4.1.3 Given crossed complexes C', D, E, the following diagram commutes

QC,D x 1d

NC x ND x NE - N(C © D) x NE

id x QD,E QC®D,E

Qe per

NC x N(D® E) > N(C®D®FE)

Proof: By the naturality of a and using 7Q0e = Q' = ao (e ®¢e) we have the following

commutative diagram

d®a
7NC ® tTND @ nNFE

7(NC x ND x NE) —+ 7NC @ 7(ND x NE)

m(id x Q) id ® 7Q d®e®e
a d®e
7(NC x N(D® E)) — 7NC @ 7N(D ® E) TINCR®DQFE
e ®id ®id
CRD®E

in which the lower path corresponds to (id x €2) o Q under the adjunction. There is a
similar diagram for (2 x id) o ©Q and so the result follows by the associativity of a and
®. O

We now use these results together with the internal hom structure to define a sim-
plicial enrichment of Crs.
There are natural homomorphisms

id ® ev ev

[D,E|®[C,D]|®C [D,E]l® D E

where the evaluation map eve p is the counit map [C, D] ® C — D corresponding
to idjc,p) under the tensor product-internal hom adjunction in Crs. These give the

internal composition maps of the monoidal closed structure on Crs

OcCrs

D, E|® [C, D]

C, E]

Definition 4.1.4 For crossed complezes C, D the simplicial hom-set Crsg(C, D) is
defined by
Crss(C, D) = N|C, D]
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and for crossed complexes C, D, E the enriched composition is defined by

N[D,E] x N[C,D] - ---nnnmmmm- - N[C, E]

Q N(OCrs)

N(D, E] @ [C, D])

Note that this does indeed define a simplicial enrichment for Crs, since both €2 and
ocys satisfy an associative law and €2 is a natural bijection in dimension zero.
A more explicit definition of the enriched composition may be given using the fol-

lowing natural bijections of hom-sets
Crss(C, D), = Crs(n[n],[C,D]) = Crs(nn]® C,D)

Proposition 4.1.5 Under the correspondence above, the enriched composition in Crsg
takes a pair of homomorphisms (t[n)®D - E, n[n]@C — D) to the homomorphism

T -y qwen by the composite

id® =z Y

w[n] ® D E

m[n] ® C ic» 7[n] ® wln] ® C

where X is the (ordinary) natural transformation whose components A¢ are defined using
the diagonal approximation map a as follows:

w(d) ® id a®id
4>7T

mn] ® C ([n] x [n]) & C

7[n] ® wln] ® C

Proof: Let z, y correspond to the homomorphisms 7[n] B [C, D], n[n] =~ [D, F]

respectively. Then x -y corresponds to the homomorphism

i) —— xln] @ xln) 22 (D, B & [0, D) 2 (0, B

by corollary 4.1.2. Thus x - y may be written as the upper path around the following

diagram.

mn] ® C )\—C> mn| @ 7n] ® C

id® f®id g® feid
C,D|®C —— [D,E|®[C,D] & C
#la] #C.D] 0 € ——— D] [C.D] s

id ® ev id ® ev

D D,El® D
o] ———D.EeD——




By the identities (f ®id¢)oevep = x and (¢®idg)oevp g =y, the lower path around
this diagram is A¢ o (id ® x) o y, and we have the result as required. O

Note that for n = 1 this description of the enriched composition is identical to the

description of horizontal composition of homotopies given in section 2.1.1.

4.2 Enrichment of 7 and Nerve

In this section we discuss how the fundamental crossed complex and nerve functors
between SimpSet and Crs can be extended to the corresponding simplicially enriched
categories. For m this will not work ‘on the nose’ but will involve the coherent systems
of higher homotopies of theorem 2.3.9.

Consider first the nerve functor from crossed complexes to simplicial sets.

Proposition 4.2.1 The nerve functor extends to a simplicial functor

Ns .
Crsg SimpSetg

N, .
Crs(w[n] ® C, D) SimpSet([n] x NC,ND)

where N,, takes a homomorphism m[n] ® C L D to the simplicial map

N(f)

Clnl.c N(r[n] ® ¢) —2. ND

[n] x NC

and ¢ is the natural transformation with (x ¢ giwen by

N(a) N(id ® ¢)

K x NC —L Na(K x NC)

N(rK ® NC)

N(rK ® C)

Proof: Clearly Ng defines a simplicial map on each hom-object. Also since a corre-

sponds to the identity if either component is of dimension zero, we have
Coj,c Z e oaoN(ee) = id
using the triangle identity. Thus Ny = N. It remains to show that Ng respects the

enriched composition structures in Crsg and SimpSetg, and for this we will need the

fact that ( satisfies a type of associativity condition.

Lemma 4.2.2 For simplicial sets K, L and crossed complezes C the following diagram

commutes

id x
K x I x NC 194X ¢ro

- K x N(rL ® C)

CrxrL,C CKxLaC

N(r(K % L) & ¢) 221D

N(rK @ 7L & C)
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Proof: Consider (id x ¢) o (. From the definition of { and naturality we have the

following commutative diagram:

K x L xNC MY Nk @ (L x NOY)
N(id © n)
N(rK @ aNr(L x NC)) L2 =) Nk (L x NOY)
id x ¢ N(id ® a)

N(rK @ nN(nL @ 7NC)) N(rK @ 7L @ mNC)

N(id ® id © ¢)

K xN(rL® C) N(rK @ nN(rL ® C)) N(rK @ 7L ® C)

no N(a) N(id ® ¢)

Thus (id x ()o¢ = noN(a)oN(a®id) o N(id ® id ® &) by the triangle identity and
the associativity of a, and the result follows by the naturality of e. O

Returning to the proof of proposition 4.2.1, suppose we have homomorphisms

f g

mn| ® C E

D m[n| ® D

Then the result N,,(f og) = N,(f) oN,(¢) may be seen by the commutativity of the

following diagram

] x NC — 2 5] x [n] x NCO — . [n] x N(z[n] @ €) 22X 5] x ND
¢ ¢ ¢ ¢
N(x[n] ® €) 299 N(x([n] x [n]) ® €) XU N(x[n] @ 7[n] ® €) X3 N(x[n] ® D)

N(g)
NE

and so Ng defines a simplicial enrichment of the nerve functor. O

For the fundamental crossed complex functor, SimpSet —— Crs, the situation is

more complicated. We can still extend 7 to a collection of simplicial maps on the hom
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objects

T
SimpSetg 5 Crsg

T

SimpSet([n| x K, L) Crs(m|n] @ 7K, wL)

by defining ,([n] x K L L) to be the homomorphism

m[n] @ TK —b> 7([n] x K) mf wL

where b is given by the shuffle map, the homotopy inverse to the diagonal approximation
a in the Eilenberg-Zilber theorem. However the maps 7w, do not respect the enriched

composition structures. For simplicial maps

/ M

n] x K L [n] x L

we have

m(fog) = bow(dxid) o n(id x f) o w(g)
T(f)om(g9) = md®id o a®id o id® (bonf) o b o wg

7([n] x [n]) @ 7K

md ®id dl s Saewid

mn| @ mK w([n]| X [n]) @ TK ~+—— 7w[n| @ w[n] @ 1K

md ® id b®id

b b id®b

m[n] ® m([n] x K)

m(id x f) id®mf

"9 ([n] x L) b

M < w[n] @ TL

The ‘squares’ in this diagram commute by the naturality and associativity of b; the

double arrow in the upper-right triangle is given by the homotopy

hin),n]

T @ 7([n] x [n]) m([n] x [n])
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from the identity to a o b. We thus have a natural homotopy h(f,g) : m,(f o g) ~
.(f) o m.(g) given by

ﬂd@id(h[nL[n} ® idﬂ_K)b'ﬂ'(ide-g)

I ®@m7n]®@rK M

We will show that these homotopies form a coherent system, where the coherence
information is given by the higher homotopies of the Eilenberg-Zilber theorem 2.3.9.
For example given simplicial maps [n| x K;_; N K; for 1 <1 < 3, we can form the

composite homotopies

7T(f1©f20f3) = 7T(f1>o7r(f20f3> = 7T(f1>O7T(f2)O7T(f3)
and 7T(f1©f20f3) = 7T(f1©f2)07T(f3) = 7T(f1)o7r(f2)o7r(f3)

These are not equal, although they are themselves homotopic via a double homotopy

h(fl: f?: f3>

I®I®mnlrK, - TK

Let us generalise the notion of an r-fold homotopy to that of an (7, n)-homotopy,
where an (7, n)-homotopy h is a crossed complex homomorphism

h

I®T®7T[n]®0 D

where C, D are crossed complexes.
Clearly there are (r— 1, n)-homotopies 67 (k) and (r, n—1)-homotopies d;(h) induced
from h by considering the 2r faces of the r-cube and the n faces of the n-simplex. Also

given a (p, n)-homotopy k; and a (¢, n)-homotopy k, as follows

k1 ks

I%? @ w[n] @ C D I%t @ w[n] @ D E

then we can define a (p + ¢, n)-homotopy k; o ky by the following diagram

TP @ rn] @ C - - - B
id ® 7(d) ®id ko
18P+ @ 7 ([n] % [n]) ® C 7% @ w[n] @ D
id ® a ®id id ® ky

id id
I®(p+q) ® W[n] ® W[n] ® C ﬂ, TR ® W[n] ®I®P ® W[n] ® C
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Note that composition of two (0, n)-homotopies in this way agrees with the definition
of the enriched composition of degree n maps in Crsg, since the symmetry of the tensor
product acts as the identity when one of the factors has dimension zero.

Using these notions, we make the following definition of what we mean by a simpli-

cially coherent (or laz) functor from SimpSetg to Crsg.

Definition 4.2.3 A simplicially coherent functor SimpSetg N Crsg is given by the
following data:

o A crossed complex F(K) for each simplicial set K

e An (r — 1,n)-homotopy
Fn(fl:f?a - 'Jfr)

720D @ x[n] @ F(K,) - F(K,)

for each n > 0 and each r-tuple f = (f1, fa2, ..., f»), fi € SimpSety(K; 1, K;),.

such that the F, commute with the simplicial face and degeneracy operators, and the
following cubical boundary relations hold:

ai_(Fn(fla Jas oo, fr)) = Fn(fl: VEIRREE (frfi o fr7i+1); R fr)

aj(Fn(fla foroon ) = Fulfisfor oo foci) © Fulfocign, o os fr)
where o here means enriched composition and composition of (k,n)-homotopies respec-
tively.
The simplicially coherent functor F' 1s said to provide a simplicially coherent enrichment
of an ordinary functor SimpSet %, Crs if the following conditions hold:

e F(K)=G(K) for each simplicial set K

e cvery (r — 1,0)-homotopy Fy(f1, fa,- .., fr) factors through the corresponding ho-
momorphism G(f1 0 fyo---0o f,)

FO(flafZa"'afT) N

720D @ 70] ® F(K,)

0®id ®id G(fiofyo---0f,)

2

720 @ 7[0] @ F(K,) — - F(K,) = G(K,)

Suppose f is an r-tuple (fi, fo,..., f,) of degree n maps and F' is a simplicially
coherent functor as above. Then the enriched composition in SimpSetg and Crsg give
for each o = (ay, v, ..., 1) € {0,1}"7! an element F,(f) of Crsg(F(Ky), F(K,))n
defined by

Fn(.fio+1O.fi0+20"'o.fi1) o Fn(.fi1+lo"'ofi2) © ... 0 Fn(fik+lo---ofik+1)
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where 77 < 19 < ... < 7 are those ¢ such that a,_; = 1, and ig = 0, 741 = 7. Also
there is a (0, n)-homotopy F'(f) given by the (r — 1, n)-homotopy F,(f1, fa,--., f+) at
the corner of the (r — 1)-cube given by . The following proposition follows from the
cubical boundary relations satisfied by F'.

Proposition 4.2.4 The degree n map of Crsg corresponding to F!(f) is precisely
F,(f). Thus, the (r—1,n)-homotopies F,,(f1, fa, - - ., fr) given by a simplicially coherent
functor F' for r > 2 record all the coherent homotopy information between the various

enriched composites of its values on 1-tuples.

We now use the coherent system of homotopies of theorem 2.3.9 to define a sim-
plicially coherent enrichment of m which on 1-tuples agrees with the definition of 7g
above. We write [n|" for the r-fold (cartesian) product of the representable simplicial
set [n] with itself, and h, for the r-fold homotopy obtained from theorem 2.3.9 by
setting Koy = K, = ... = K, = [n].

Theorem 4.2.5 There is a simplicially coherent enrichment m : SimpSety — Crsg
of the fundamental crossed complex functor with m,(f1, fa, ..., fr) given by the following

commutative diagram:

20V @an) @Ky ----------- =022 L - TK,

id @ 7(d") ®@id T[f1i

h,—1 ®id

o1 ® 7 ([n]") ® TK, 7 ([n]") ® 1K, 7 ([n]" x Ky)

where d": [n| — [n|" is the r-fold diagonal and [f|] is the simplicial map given by

ideT,1 fr

()t X Ky e cn? x Ky T ) x K, T K,

id" ! x f,

[n]" x K

Proof: We have to show that the cubical boundary relations of definition 4.2.3 hold
as a consequence of the relations on the n-fold homotopies h in theorem 2.3.9. First
consider the §; boundaries, and let d®:[n]"~! —— [n]" be the map induced by the

diagonal on the ith factor. By the relation 6; ). (o] = hin) 2. [n] and the naturality

e P2,
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of h and b we have the following commutative diagram

7802 @ 7[n] ® 7K,

id @ 7(d—") ®id
7802 m([n]") ® 7K, 2 @ 1d (]! ® 7K, —b> 7([n]"! x Ky)
id ® 7(d®) @ id 7(d¥) @ id 7(d® x id)
790D @ 1([n]") @ 7K, b (1) @i m([n]" x Ko) LN w([n]" x Ko)
T[f]1
K,

The vertical composite on the right of the above diagram may be written as w[g]]™",

where ¢ is the r — 1-tuple obtained from f by replacing f, ; and f, ;;; by their en-
riched composite. Thus the upper path through the diagram gives m,(fi,..., fr—i o
frit1s--, fr). Also the lower path is &; m,(fi, ..., f.), since d"~' o d® = d", so we
have the required relation.

The relations for §; are slightly more complicated to show. Consider the diagram
in figure 4.1, which commutes by naturality of a and s, by the boundary relation for
5;h, by the definition of x, and by associativity and naturality of b. By naturality
of ®, the composite from the “top right” to the “bottom left” of the diagram is just
the composite of id ® id ® 7, (f1, ..., fr—i) with m,(fr—it1,--., fr). Thus the long path
around the diagram is m,(f1,..., froi) omn(fr—it1,- .., fr). The short “vertical” path is
6 ma(f1,..., fr) and so the relation follows. O

4.3 The coherent adjunction m 4 N

The adjunction between the nerve and the fundamental crossed complex functors takes
place at the level of unenriched categories. In this section we will see that when con-
sidering SimpSet and Crs as simplicially-enriched categories the adjunction does not
respect the enrichment precisely, but only up to a system of coherent homotopies.

For all simplicial sets K and crossed complexes C' the ordinary adjunction gives a

natural bijection of hom-sets

Crs(rK,C) = SimpSet(K,NC)
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86

7°0=2) @ x[n] @ 1K,

m(d)
7%0-2 @ 7([n)?) @ 7K, ¢ 7%0=2) @ 7[n] @ n[n] @ 1K, i 72071 @ 7[n] © 780~ @ 7[n] @ 7K,
m(d1) 7(d)) @ 7(d"™?) m(d) @ 7(d™")
52 I®(r—2) ® W([n]r) Q1K a I®(r—2) Q ([ i ® r—i K S I@(i—l) 7 I®(r—i—1) r—i K
& o — m([n]') @ w([n]"™") @ TRy — ®w([n]") ® @ m([n]"™") @ wKy
W
il (65 h,_ hiq % hy_;_
a3 ( g 1 1 hio1 @ hp_j—y
5 b , :
= m([n]") ® 7Ky m([n]') @ w([n]"™") @ 7Ky
& b b
o
=]
g T b 7 r—1
§ m([n]" x Ko) < m([n]') @ ([n]"™" x K)
m(idpy < [f177) id ® 7| f];~
w(n] X K 2) ~(]) & T,
T flr—ita

K,



It is quite easy by using the diagonal approximation and shuffle maps to extend this
to the simplicial hom objects. Recall that there are natural bijections of sets giving us

the following representations of the enriched homs

Crss(nK,C),
SimpSety(K,NC),

Crs(n[n], [t K, C])
SimpSet([n| x K,NC)

Crs(n[n] ® 7K, C)
Crs(n([n] x K),C)

~
~

111

Proposition 4.3.1 Given a crossed complex C and a simplicial set K there is a ho-
motopy equivalence between the simplicial sets Crsg(nmK,C) and SimpSety(K,NC)
which 1s a natural bijection in dimension zero. Moreover, the homotopy 1s a deforma-

tion retraction.

Proof: The simplicial maps a* and b* between the enriched homs are given in each

dimension by

a*

Crss(rK,C), = Crs(rn|®@ 7K, C) — Crs(n([n] x K),C) = SimpSetg(K,NC),
b,

These are defined by precomposing the representing homomorphisms with the maps a
and b of the Eilenberg-Zilber theorem.

(W[n] ® K _f.c> O, <7r([n] x K) 2 zln] @ 1K _f,c>
(st > 1) 2w ) e (st i L 1) 2 0

Clearly the composite simplicial map a* o b* is the identity on Crsg(w K, C), since boa
is the identity on each m[n| ® K. The simplicial homotopy between b* o a* and the
identity on SimpSet(K,NC)

[1] x SimpSetg(K,NC) SimpSet (K, NC)

is defined as follows. Suppose (z, f) represents an element of dimension n of the right
hand side, where z is a simplicial map [n] — [1] and f is a homomorphism 7([n] x K) —

C. Then H,(z, f) is the homomorphism given by

m(d x id) f

m(x) ®id

([n| x [n] x K) 4 mln| @ 7([n] x K) [l ® n([n] x K) —h> 7([n| x K)

using the diagonal approximation again, together with the homotopy A of theorem 2.3.1.
|
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In the unenriched setting, the natural bijection of an adjunction F' 4 G may be
defined in terms of the functors F' and G and the unit and counit maps. We will see in
the next proposition that this is also true in our enriched situation.

For crossed complexes C', D and simplicial sets K, L we will use the notation n*,

74, €° and e, for the four simplicial maps

SimpSet(N7K, L) 7 - SimpSet (K, L)
SimpSet (K, L) i SimpSet (K, N7 L)
6*
Crss(C, D) >~ Crsg(mNC, D)
Ex

Crss(C,7ND) Crss(C, D)

induced by the unit n and the counit € on the enriched homs. For example, n* is the
map which in each dimension n is given by

*

SimpSety (N7 K, L), n SimpSet (K, L),
id
([n]waK / L) ~<[n]><Kl—Xn>[n]><N7rK / L)

We can now state the proposition.

Proposition 4.3.2 The adjunction maps a* and b* are precisely the simplicial maps
given by the composites

*

Ng . U .
SimpSet (N7 K, NC) —— SimpSet (K, NC)

Crss(nK,C)

Ts Ex

and SimpSet (K, NC)

Crsg(m K, NC)

Crss(mK,C)

respectively.

Proof: Suppose 7[n|@7K L. c represents an element of Crsg(w K, C),. Then from
proposition 4.2.1 we have n*(Ng(f)) = (id x 0) 0 (juj.xx © N(f). But (id x n) o (. rx =
n o N(a) by naturality and the triangle identity:

[n] x K ! N7 ([n] x K) M» N(7[n] ® mK) N(7[n| ® TK)
id x n N(id ® 7n)
[n] x NmK N7 ([n] x N7 K) N_(a)» N(7[n] @ TN7K)

Thus n*(Ng(f)) = noN(ao f), which is the simplicial map [n| x K — NC representing

a*(f) as required.
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For [n] x K —4+ NC representing an element of SimpSet (K, NC), the homomor-
phism b*(g) is given by

g €

m[n] @ K 7NC

7([n] x K)

Which is just m,(g) ce. O

Conversely we can reconstruct the definitions of Ng and wg from the adjunction

maps a* and b*.

Proposition 4.3.3 The maps Ng and ws are given precisely by the composite simplicial

maps

Crss(C, D) Crss(mNC, D) SimpSet (NC,ND)

and  SimpSetg(K, L) —"

SimpSetg (K, N7 L)

Crsg(nK,7L)

respectively.

Proof: For 7n[n] ® C J.D representing an element of Crsg(C, D), the homo-
morphism 7([n] x NC) L p given by a o (id ® €) o f corresponds to the simplicial

map

N(a)

1] x NC —Lo Na([n] x NC) 2 N(fn] & mvey 04 2)

NU). p

N(7[n| ® C)

which is Ng(f) as required.
For [n] x K —£+ L representing an element of SimpSetg (K, L),, the simplicial map

[n] x K X% NrL corresponds to a homomorphism

g ™ Ex

7([n| x K) L 7N L wL

which is just w(g) by the triangle identity. Thus v*(n.(g)) = bo7(g), which is precisely
Ws(g). O

Since Ng is a simplicially enriched functor, we have for each simplicial set K a pair
of simplicially enriched functors
Crsg(nK, )

Crss > SimpSetg
SimpSet g( K, N(+))

The following proposition follows from the relation between Ng and a*.

Proposition 4.3.4 Let K be a simplicial set. Then a* defines a simplicially enriched
natural transformation from Crsg(mK,-) to SimpSetq (K, N(-)).
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Proof: The enriched functoriality of Ng and the definition of n* give the following

commutative diagram.

Crss(C, D) x Crsg(nK,C) > . Crss(1K, D)
Ng x Ng Ng
SimpSety(NC,ND) x SimpSet (N7K, NC) SimpSet(N7K,ND)
id x n* n*
SimpSet (NC,ND) x SimpSety(K,NC) > SimpSet(K,ND)

By proposition 4.3.2 the vertical composites are Ng x a* and a*, so we have a*(fog) =

a*f o Ngg as required. O

There is similar argument for b* and 7 in the coherent rather than the strict setting.

Proposition 4.3.5 The maps

sk
K.C

SimpSet (K, NC)

Crsg(nK,C)

of proposition 4.3.1 can be given the structure of a coherent natural transformation in
K.

That 1s, given a crossed complex C, simplicial sets Ko, Ky,..., K, 1, K, = NC, and
maps f; € SimpSety(K;_1, K;), for 1 <i <7 there is an (r — 1,n)-homotopy

b:;(fla B fr)

7%0=D @ 7ln] ® 7K, C

which for r = 1 agrees with the definition of b* above, and which satisfies the cubical

boundary relations

a;(bZ(flanaafr)) - b:;(flaf?a"'a(fr—iOfr—i+1)a-"7fr)
a;—(bZ(flanJ"'afr>> - Tn(fl:f?;“‘:frfa o b:;(frfi—kla-";fr)

Proof: We extend the relation b* = 7 o0e, of proposition 4.3.3 and define b*(f1,..., f,)
to be the (r — 1, n)-homotopy

Wn(.fla"'afr) €

7% @ 7n] @ 7K, wNC C

using the simplicial coherence of mg given in theorem 4.2.5. The boundary relations
follow. O
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Thus in particular for f € SimpSet(K, L) and g € SimpSet(L, NC) of the same
degree we have a homotopy between b*(f o g) and wgf o b*g. In the general case the
2"=1 ‘corners’ of the above homotopies give all the possible results of applying b* to f,
before or after composing with the other f;.

The two cases left to deal with now are the naturality (or otherwise) of a* in K
and b* in C. We approach these from the following intermediate result, in which it is

necessary to use the ‘commutativity’ of a and b as shown in proposition 2.2.13.

Lemma 4.3.6 Given maps f € SimpSetg(K, L), and g € Crsg(nwL,D),, the maps
msfog and b*(f oa*g) in Crsg(nK, D), are equal.

Proof: Suppose f and g are given by

f g

[n] x K L m[n] ® 7L D

then 7, o g and b*(f o a*g) correspond to the two paths around the following diagram

m[n] @ 1K md & id m([n] x [n]) @ 7K 1®id w[n] ® mln] ® TK
b b id®b
([n| x K) M 7([n] x [n] x K) m[n| @ 7([n] X K)
m(id x f) id @ f
w([n] x L) ¢ ln] @ 7L

m(a*g) g
7ND - - D

The bottom square of this diagram commutes since both paths correspond to the map
[n] x L — ND representing a*g. The other squares commute by naturality of a and
b and by the commutativity relation between a and b given in proposition 2.2.13, and

so we have the result. O

It follows from this that the maps b* are natural in C.

Proposition 4.3.7 Let K be a simplicial set. Then b* defines a simplicially enriched
natural transformation from SimpSety(K,N()) to Crsg(nK,-).

103



Proof: Suppose we have crossed complexes C, D and maps = € SimpSety(K,NC),,
y € Crsg(C,D),. Then taking L = NC and applying the lemma to the maps x and

e*(y) gives
msr o ey = b* (x o a*(e"y))

It is clear from the definition of £* and e, that this may be written as
eo(msx) oy = b" (x o a*(e'y))
By propositions 4.3.2 and 4.3.3 this is
b'z oy = b*(xz o Ngy)

and so b* is natural in C' as required. O

Now suppose C'is a crossed complex and consider the maps

*
Ok.c

Crss(nK,C) SimpSety(K,NC)

for varying K. Note that SimpSetg(K, NC) extends to a simplicially enriched functor
in K, but that Crsg(n K, C) does not since 7 gives only a simplicially coherent functor.
We will show however that a* may be given a coherent enriched structure such that it
defines a kind of coherently natural enriched transformation between these functors.

Suppose that K;, 1 < i < r, are simplicial sets and that f; € SimpSety(K;_1, K;)
and g € Crsg(nK,,C) are maps given by

fi

n] x K; | ——— K; 7[n] ® TK, C

Then we define a homomorphism a*(fi,..., fr; g) from Z%" ® 7([n] x Kj) to C by

r,n
2,Kq

T @ 7([n] x Ky) — Z% @ 7([n]"™ x K) 7([n]™ x Ky)

aZ(fla"'afT; g) a(l)

' g o] © 7K, id @ w[f]]

wn] ® 7([n]" x K;)
where [f]} is the simplicial map [n]” x Ky — K, defined by the f; as in theorem 4.2.5,

r = 0 we note that a’(; ¢g) reduces to a’(g) as defined in proposition 4.3.1.
By considering the boundary relations satisfied by these maps we will show that the
‘corners’ correspond to all the simplicial maps [n] x Ky — NC' obtained by applying

a* to g before or after composing with the f;. The 6, boundaries are quite clear:
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Proposition 4.3.8 The homomorphisms a’(f1,..., fr; g) defined above satisfy

61_(a:L(f1ﬂafT’ g)) = a’:L(.fl"“).f’l‘—i Ofr—i+17"'7f7”; g) fOT‘]. S [ S r—1
o, (an(fis for-o i fos 9)) = froan(fa, .. frs 9)

where the second equation is shorthand for the commutativity of

6;012(][17 ey f?‘a g)

790D @ 7([n] x Ky) C

id @ m(d x id) at(fo, s frs 9)

id @ m(id x f)

7201 & m([n] x [n] x Kjy) - 7201 g 7([n] x K)

Proof: The proofis analogous to that for the ¢, in proposition 4.2.5. For1 <1 < r—1,

i+1) 1

we use the naturality of h with the diagonal d®+") : [n]” — [n]"*" and get the following

diagram

7801 & 7([n] x Ky)

id®r(d" xid)
R b 1)
790D @ n([n]” x Ky) ——2— 7([n]" x Ky) — 7[n] @ 7([n]"~" x Ky)
id@n(dt+1) xid) w(d+1) xid) iden(d) xid)
S a(

780-1) g ﬂ_([n]r+1 x Ky) 2 ,ﬂ_([n]r+1 x Ky) — min] @ 7([n]" x Ky)

ider (/1]

C « g 7[n] x 7K,

The right hand vertical composite may be written as id®@[f'];~" where f is the (r —1)-
tuple obtained from f by replacing f. ; and f, ;11 by their enriched composite. Thus

the 6, relation is given by the two paths around the diagram.

For i = r, we have a similar argument for the map [n] x Kj LN K, and we get the
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diagram

901 @x([n]x Ko)

l b hy ke, a®)

80 "Der([n]2?xKo) — I D@xr([n]"t! x Ko) —— n([n]x Ko) w[n]@m([n]" x Kq)

l hrfl,n a(l) l

I®(T’1)®7r([n}xK1) —_— I®(’*1)®7r([n}’><[(1) #1(1’ w([n]"x K1) —> w[n]xw([n]" "1 x K1)

id®ﬂ[f}£{

C +———— 7[n|®7K,

The two paths around this diagram give precisely the 6 relation required. O

Before discussing the &;" relations we need to extend our notation. Suppose we are
given f; € SimpSetg(K;_1, K;), for 1 <i <p and that Z is a (¢, n)-homotopy

A
I®q®7r[n] ® 1K, - C

Then we define the homomorphism a’(fi,..., f,; Z) from Z®*P) @ 7([n] x K;) to C
by

id ® by,

TEWH) @ 1([n)] x Ko) — 20 @ n([n]P+! x K,) T @ w([n]"*! x Ko)

at(fi, .., fp; Z) id ® aW

v 7 id P
C « 7% @ w[n] @ 7K, id @ i

7% @ w[n] @ w([n]? x Kj)

Note that for ¢ = 0, Z = ¢ this reduces to the previous definition. In the next
proposition we use the coherence of mg and take Z to be composite of the (i — 1,n)-
homotopy given by

I@(ifl) R ﬂ'[n] ® 7TKT,Z' ﬂ-n(frfi-kla I fr) _ 7TKr

with the (0, n)-homotopy given by 7[n] ® 1K, —— C.

Proposition 4.3.9 For maps f; and g as above, the homomorphisms a’(f1,..., fr; 9)
satisfy

6z_|—(a2(f177f7”>: g) - aZ(fla"'Jfoi; ﬂ-n(frfz'+1;---;fr) 09)
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Proof: Forl1l <:<r, h;’}o may be written as the composite

idehTn Wt
7er ®7T([TL]T+1 > K[]) 4+2:K0> T ® W([n]ﬂrl > KO) 2,[n]""*x Ko ﬂ_([n]r+1 % KO)
Thus 6i+h227;(0 =id ® h:;’;(o o 6i+h;’,1[1n}rfi><l<o= and this second term may in turn be
written as the composite
(ld ® a(i“)) (¢] (h[n}zv[ } _____ [ } ® ld) (¢] b

Counsider now the diagram in figure 4.2. The triangular region commutes by the above
discussion, and the rectangles commute by naturality and by the commutativity rela-
tions between a and b and between a and h. The lower path around the diagram is just
6 (aX(f1,..., f); g). After a further application of naturality with [f]}™", the upper
path around the diagram can be seen to be a*(f1,..., frs; 7u(fr—it1,-.., fr) 0 g) and
we have the result. O

We can summarise the findings of this section as follows

Theorem 4.3.10 For simplicial sets K and crossed complezes C the strong deforma-
tion retraction

Crss(nsK,C) =~ SimpSetg(K,NgC)

18 natural in C and coherently natural in K.
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80T

‘9 oY, g 23y

13
+

"D I0] uorje[al

-1 ®m([n]x Ko)

id@m(d"—+1 xid)

I®(T*1)®7r([n]’"*i+1 x Ko)

id@m(di+! xid)

=1 @m([n]"t! x Ko)

(id@h;—;on Yo(id®@aM)

(id®h

r—in

i+2,Kq

Yo(id®alit1))

780D @r[n]@n([n]" i x Ko)

id®md®id

(1[d®a®id)o(s®id)

I®E-D @n[n)2@m([n]" ¢ x Ko)

idow(dit! xid)®id

7[n]RT®-D @7[n)@r([n]"~ x Ko)

ider(dit!)®id

(id@a™)o(s®id)

96D g ([n]+ 1 )@m([n]" =" x Ko) ———————> a[n]@T2(=D@m((n] )@n([n]"~ x Ko)

hig2 ... 1) ®id

1A@h],.. [ ®id

5

aMid

(In]"= x Ko)

7 [n]@n([n]")@m([n]"~* x Ko)

id®b

e

w([n]+1 x 0]~ x Ko)

> m[n]@n([n]'x[n]"~ x Ko)
idem(idx[f1])
alnl@n([n) x K, ;)
el

w[n]@m K,




Chapter 5

Homotopy Colimits and Coherent
Diagrams

5.0 Introduction

The idea of considering ‘lax’ functors where the functoriality only holds up to higher
dimensional equivalences (satisfying appropriate associativity/coherence relations) is
already well known in the categories Cat [2], SimpSet [15] and Top [39], and homotopy
limits and colimits for diagrams of this type have been defined in [35, 38, 16, 17, 39].
In this chapter we consider a definition of homotopy coherent diagrams in the category
of crossed complexes and give a tentative definition of the homotopy colimit of such a
diagram. We also show how such a theory relates to crossed resolutions of extensions
of groups.

The structure of this chapter is as follows. In the first section we recall the definition

of homotopy colimits of lax functors in Cat, and show that a group extension

1 G E H 1

corresponds to a lax functor H — Cat such that ey — G. In the second section,
we recall the definition of homotopy coherent diagrams in SimpSet and introduce a
definition of homotopy coherent diagrams in Crs. It is shown how a lax functor in
Cat induces a coherent functor in SimpSet which in turn gives a coherent functor
in Crs. In the third section we recall the definition of homotopy colimits of coherent
diagrams of simplicial sets, and discuss how this carries over to the category of crossed

complexes. We end with some ideas for further development of this work.

5.1 Group Extensions and Lax Functors in Cat

In the chapter 3 it was seen how an investigation of small models for crossed resolutions
of split extensions of groups leads to a definition of homotopy colimits of functors into

crossed complexes, and results in a twisted tensor product. In this chapter we will
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discuss a possible definition of homotopy colimits of lax functors into crossed complexes.
In this section we provide a simple motivational example by explaining how any (not

necessarily split) extension of groups corresponds to a lax functor.

Definition 5.1.1 A lax functor I —— Cat is given by

1. a category F(i) for each object i of I,

2. a functor F (i) ) F(34) for each arrow i . j of I, such that F(f) is the identity

functor iof f is an identity arrow,

F(f, .
3. a natural transformation F(f o g) % F(f)o F(g) for each pair of composable

arrows (f, g) of I, such that F(f,g) is the identity natural transformation if either
of f, g are identity arrows, and such that for any triple (f, g,h) of composable

arrows the associative law holds:
F(fg,h)ao (F(R))(F(f,9)a) = F(f,gh)ao F(g,h) )@ fora € Ob(F(sf))

Note that there is a more general definition of a lax functor (see for example [2]) which
only requires that F' preserve the identity arrows up to a natural transformation, which
must satisfy appropriate left and right identity relations. Also note that the associative

law can be described as the equality of the following diagrams

Al

which may also be read as asserting the commutativity of (the faces of) the obvious

tetrahedron.
Suppose we have a short exact sequence of groups
l P

1 G E H 1

Since p is onto we can choose a function j: H — FE such that jop is the identity on H,
and then by exactness we have a function q: E —— G which takes z € F to the unique

g € G satisfying i(g) = = - (j(pz))~" € ker(p). It is an old and well-known result [25]
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that whereas split extensions of groups are characterised by a group action, a general

group extension is characterised by the pair of functions

kl k?

HxG

G Hx H G

(h,g9) ——— gh (h1, hy) —— {hq, ho}

given by
jh-i(g") = ig-jh and j(hihy) - i({h1,ha}) = jhi - jho
In the following proposition we show how k; and k, translate into the language of lax

functors.

Proposition 5.1.2 Given a group extension F of G by H as above the assignments
1. a(eg) = G,
2. a(h) = (9~ ¢"),
3. alhy,hy)e, = {hi,ho}

define a laz functor H —— Cat.

Proof: For each (arrow) h € H and g1, g, € G we have

(Gh) " ilgige) - jh = (Gh) " igi - jh- (jh) " -igy - jh

and so (g1g2)" = ¢1" - ¢o". Thus a(h) defines an endofunctor of G. Consider the

following diagram in K

(g")"
[} > @
h2 hZ
h1
oI L.
{h17 h?} hl‘ ‘hl {h17 h?}
e ——— 0
g
hihy hihsy
[} ih > @
qg 1ha



where we have omitted the i(—) or j(—) on each arrow for legibility. The diagram
commutes in F by definition of g" and {hy, hy}, and so its perimeter commutes in G
by injectivity of i. Thus a(hy, hy) defines a natural transformation between a(hhs)
and «(hy) o a(hy). Similarly the required associativity of this natural transformation

is shown by the commutativity in G of the perimeter of the following diagram in E:

{h17 h?}hs
[ J > @
h3 h3
{hla h?}
[ ] [
{hihy, hs} hyihy ‘hz {ha, by}
e —M—— 0
hy
hihahsy hahs
[ [ ]
{hb h2h3}

In the case that the extension splits, j may be chosen to be a homomorphism and
S0 ks 1s trivial and « reduces to an ordinary functor. Thus the above result includes
that of proposition 3.1.6.

It is well known that the Grothendieck construction may also be applied to lax
functors.

Definition 5.1.3 Suppose I is a small category and F is a lax functor from I to Cat.
Then the Grothendieck construction on F' is the category fIF with objects the pairs
(¢,2) with i € Ob(I) and © € Ob(Fi) and arrows (f,a) : (ig,x) — (i1, 21) for all
f € I(ig,11) and a € Arr(Fiy) with source (Ff)(xo) and target xy. The composite of
the arrows

(fl,fh) (f2,a2>

~ (12, 72)

- (11, 71)

(ioaﬂfo)
15 defined by (f1 : f2;F(f1; fZ)wo : (Ff2)(f11> : a2>-

Following [38] we can now define homotopy colimits of lax functors in Cat.



Definition 5.1.4 If F : I — Cat is a lax functor, the homotopy colimit of F s the

category given by the Grothendieck construction on F.

Now return to the case where o : H — Cat : ey — G is a lax functor given by
a group extension E as above. Then the Grothendieck construction on « has a single
object (ey,eq), arrows (h,g) for all h € H and g € G, with composition of arrows
given by
(hlagl>(h2:.92) = (hth;{hlahQ}g{ng)

This category is isomorphic to E via (h,g) — j(h) -i(g). Thus the homotopy colimit
of v gives back the extension.

Our aim for the rest of this chapter will be as follows. Firstly, we want a suitable
notion of coherent functors in Crs such that composing with the standard crossed
resolution functor C' takes a lax functor in Cat to a coherent functor in Crs, and
secondly we want to define homotopy colimits of coherent functors in Crs. We suspect
(although we do not prove) that lax/coherent homotopy colimits are preserved (up to
homotopy) by C, and so we should be able to replace the standard resolution of an
arbitrary group extension E by the homotopy colimit in Crs of the composite of C'
with the lax functor a corresponding to the extension.

The ‘intermediate’ case of coherent diagrams and homotopy colimits in SimpSet

will also be discussed.

5.2 Coherent Functors in SimpSet and Crs

In this section we define notions of lax or homotopy coherent functors from small
categories into the categories of simplicial sets and crossed complexes of groupoids.
Both of these will bear some resemblence to the notion of lax functors into the category
of topological spaces given by Vogt in [39].

The simplicial case is based on [15]. First we note that the representable simplicial
set A! has a simplicial multiplication structure I' : A x A! — A'. Suppose z, y are
n-simplices of A' given by monotonic functions [n] — [1]. Then we define their product

xy to be the n-simplex given by the monotonic function

(zy) : k = max(z(k), y(k))
We can extend this to maps between the n-fold cartesian products of Al

g

where I'! = idjjp-1 X I' X idpjn—r-1 for 1 <7 < mn — 1, and we also write I'g and I}, for

the projections onto all but the first and last factor respectively.

113



Also we have simplicial maps

! : )
o

for 1 < r < n induced by the two inclusions A? — Al

Definition 5.2.1 Let I be a small category. A simplicially coherent functor F' from I
to the category of simplicial sets is given by the following data

o a simplicial set F (i) for each object i of I
e a stmplicial map

Flp

Fig) x [1]"" S F(iy)

for each n-simplex [ig, f1,01, .., fn, @] of the nerve of I

such that the following degeneracy and boundary relations are satisfied:

Foo((i) = 1dreo)
Foqnm = (idF(iO) X Ff) o Fliypm for0<i<mn
(idrio) x 67) 0 Fipy = Faqup for1<r<n—1
(idpgoy x 07) 0 Figy = (Fipgg X idpprr ) 0 Figgy,, for 1<r <m—1

A simplicially coherent functor in fact corresponds to a simplicially enriched functor
from a certain simplicial resolution S(I) of I to the category SimpSet regarded as being
enriched over itself. The simplicially enriched category S(I) was introduced in [18], and
is defined as a comonadic resolution with respect to the free/forget adjoint pair between
Cat and the category of graphs with distinguished identity loops. The degeneracy and
6.~ relations above can be seen as arising from the definition of S(7) and the 6, relations
as corresponding to the enriched functoriality of S(I) — SimpSet. See [15] for more
details.

The following result is standard.

Proposition 5.2.2 Given two categories A, B, the nerve of the functor category [A, B
is naturally isomorphic to the simplicial hom-object [Ner A, Ner B|.

Proof: Since the categorisation functor is both a one-sided inverse and an adjoint to

the nerve, we have

Cat(C,D) = Cat(c¢(NerC),D) = SimpSet(NerC,Ner D)
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Thus there are isomorphisms
Cat([n|x A, B) = SimpSet(Ner([n|xA),Ner B) = SimpSet(A" xNer A, Ner B)

which are natural in [n], so the result follows. O

Now suppose [ _%. Cat is a lax functor as in definition 5.1.1. Then applying the
nerve functor gives us a simplicial set Ner(Gi) for each object i of I and a simplicial
map Ner(Gi) — Ner(Gj) for each arrow i — j of I. Also the natural transformation
G(f1, f2) for each pair of arrows of I corresponds by the above proposition to a simplicial

map

Ner(Gig) x A Ner(Gis)

In fact this data uniquely specifies a simplicially coherent functor (cf. [36]):

Proposition 5.2.3 Let I be a small category and I %, Cat a laz functor as above.

Then there is a unique simplicially coherent functor

G o Ner .
1 » SimpSet

such that (G o Ner)(i) = Ner(Gi) for each object i of I, and for n =1 and n = 2 the
simplicial maps (G o Ner) (s, » are defined by the G(f1) and G(f1, f2) as above.

Proof: Suppose [ L SimpSet is a simplicially coherent functor such that F(i) =
Ner(Gt) for i € Ob(I). Then

SimpSet(F(ig) x [1]"", F(i,)) = SimpSet([1]"~", [Ner(Gio), Ner(Giy)])
~  Cat(c([1]"™"), [Gio, Gin))

The category ¢([1]" ') has object set {0,1}" ! and is generated by the arrows
{aMﬂ :0<r<n-—-1,a=pforj#r, o =0,06 =1}

subject to the relations given by commutative diagrams of the form

(a77" /B)

g

(o, 7', 7) (8,7, 6)

(v,7,6)
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Thus specifying the simplicial maps Fiy, = is equivalent to specifying them on the ver-
tices and edges of the (n — 1)-cube  that is, to specifying functors and natural trans-

formations

Gip SO o s g S B, g

satisfying the appropriate commutativity, degeneracy and boundary relations. The

boundary relations here show that the data (and the degeneracy relations) for n > 3
are given by those for n = 1,2. Thus the uniqueness part of the proposition holds. For
existence it only remains to note that the commutativity, degeneracy and boundary
relations required for n = 1,2 follow from the associativity, identity and source and

target relations of definition 5.1.1. O

We now turn to coherent diagrams in the category of crossed complexes of groupoids.
We first define a multiplication structure on the crossed complex Z which is given on

the usual generators by

A -7

max(«, §) if a,0 € Zy
L if {a, 3} ={0,1}
e €14 if {o, 5} ={1,1}
e1 €1, fa=0=1

a®fr—

Using I' (or the projection homomorphisms for » = 0 or n) we obtain

en F? I®(n— 1)

for 0 < r <n.
Note that the homomorphisms I' can be defined from the shuffle map b and the
simplicial multiplication structure above, via

b r
TOI = 7A@ 1Al (Al x Ay )

m(A) =

12
N

Also we have the usual ‘co-face’ homomorphisms

5

T

6+

I®(n71) I®n

for 1 <r <mn.

Using these, we can define what we mean by a coherent diagram in Crs.

Definition 5.2.4 Let [ be a small category. A coherent functor [ . Crs is given by
the following data
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e a crossed complex of groupoids F(i) for each object i of 1

e a crossed compler homomorphism

e,

F(ip) @ 720D - F(i,)

for each n-simplex [ig, f1,01, .., fn,in] of the nerve of I

such that the following degeneracy and boundary relations are satisfied:

Foi) = 1drg)

S0
Fognp = (ideay ®T7) o Fygy for0<r<n
(idF(io) ® 6;) o Fipn = Faqp for1<r<n-—1
(idF(z’g) X (S:r) o F[kaz = (F[fk} & ldmn r— 1) o ka for 1<r<n-1

Using the shuffle homomorphism b from chapter 2, the following proposition shows
that the fundamental crossed complex functor takes a simplicially coherent functor to

a coherent diagram in Crs.

G

I Crs

SimpSet

Proposition 5.2.5 Suppose [ o, SimpSet is a simplicially coherent functor as in
definition 5.2.1. Then there is a coherent functor Gom into Crs with (Gon)(i) = n(Gi)
for each object i of I and with the homomorphisms (G o)y n for [io, f1,41,. .., fn,in] €
Ner (1), given by

b=t m(Fr)

7(Gig) @ 78V m(Gig x [1]"71) Y (Giy)

Proof: The shuffle map b respects the above structure on (tensor) products of Z and

Al and we have the following commutative diagrams:

n n—2

b
7(Gig x [1]") 7(Giy) ® T%"=2)

m(Gig) ® T®" m(Gig x [1]"7?)

id@Tn (d x ") ides; | idest  w(idx6)| |x(d x 6F)

n—1 n—1

b
m(Gig) @ I —— w(Gig x [1]"Y) w(Gig) ® TV

w(Gig x [1]"1)

The required degeneracy and boundary relations for GG o 7 thus follow from those for
G. O

This justifies our definition of coherent functors into Crs.
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5.3 Homotopy Colimits for Coherent Functors

In chapter 3 we gave suitable algebraic models for the homotopy colimits of functors F'
from a small category I to the category of crossed complexes. Models had generators
a, ® b, in dimension p + ¢, for a, an element of an object in the image of F' and
by a g-simplex of the nerve of I, and the boundaries of these generators were given
by elements of the form éa, ® b,, a,’* ® dyb, and a, ® d;b,. In this chapter we will
see that this description may be extended to give models for homotopy colimits of
coherent functors as described in the previous section. The effect on the models of
replacing strict functors by homotopy coherent ones will be that the shape — ® mA?
for the generators will become — ® Z%7, each element b, of the nerve now indexing a
g-dimensional cube rather than a g-simplex. Similarly, instead of having just a twisted
dy face, the generators will now have the §; faces of the cube ‘twisted’ to varying
degrees by the higher coherence data. (Note however that if the coherence data is all
trivial, i.e. the functor is strict, then a standard embedding of simplices into cubes with
degenerate §; faces shows that our model for the homotopy colimit will be isomorphic
to that of chapter 3).

We will discuss the simplicial case first. Suppose we have a simplicially coherent

functor

F
1

SimpSet

given by simplicial sets F'i for i € Ob(I) together with simplicial maps

[fe]t

F?:[] X [1]n71 FZn

for [ig, f1,91, -, fu,in] € Ner(i),.

Definition 5.3.1 The homotopy colimit hocoim(F) of a simplicially coherent functor
F is given by the Ner(I)-indexed coproduct of simplicial sets

[ I Fexpl

" ig,f1,01,--fnsin]
(whose elements we will write as
(aa (xla s 7'In>1 [fﬂ?)
for a € Fiy, x;, € A'), quotiented by the relations
(a, (@1, vma)s s ((AD) = (@ Ui, ma); LA
(CL, 6:(Cclaa1‘n)’ [fk]TlH—l) = (CL, (1‘17"%1‘11); dr([fk]?_l—l))
(CL, 6j(mlaa$n)a [fk]?+1) - (F[fk];(afamla"'amr—l)a (1‘7”7""1‘11); [fk]:ill)
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Note that this is essentially the definition of homotopy colimits of homotopy coherent

functors in Top-enriched categories given by Vogt in [39], which has been presented

for simplicially enriched categories, in a much more categorical framework, by Cordier

in [16].

For the crossed complex case we do not have a simplicially enriched structure ex-

cept up to higher homotopies, as made precise in chapter 4, and so the indexed-limit

machinery of [16, 3, 24] does not give a definition for homotopy colimits of coherent

functors in Crs. In the rest of this chapter we will suggest a ‘bare-hands’ definition,

and leave the necessary generalisation of the work of Cordier et al. as a subject which

requires further investigation.

Suppose we have a coherent functor

F
I Crs

given by crossed complexes F'i for i € Ob(I) together with homomorphisms

[fe]?

Fig @ 7201 Fi,

for [an.flaila H afnazn] € Ner(z)n

Definition 5.3.2 The homotopy colimit hocolim(F') of a coherent diagram F of crossed

complezes is given by the Ner(I)-indexed coproduct

I I Fiy @ I%"

" [0, 1,81, fnin]

(whose elements we will write as
(a®@21 @ - @z [frl])

for a € Figy, xy € ), quotiented by the relations

(a®$1®®$na Sr([fk]rllil)> = (a®rf($1®®mn)a [fk]rll71>
(a@67 (@@ @z (A1) = (@21 @ @an d(fl]™))
(a®6:'(x1®---®xn); [fk]iﬂ'l) = (F[fk];<a®$1®"'®l‘r71>®$r®"'

Recall that a group extension

1 -G - F - H -1

n+1
r+1

corresponds by proposition 5.1.2 (and by the Grothendieck construction) to a lax func-

tor a, and hence gives a coherent functor

F=aqoNerowm: H— Crs
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which takes the unique object ey of the category H to the crossed complex C(G). The
reader is invited to consider the two diagrams used in the proof of proposition 5.1.2 as
cubes depicting elements in dimension three of the crossed complex hocolim(F’). Since
n-tuples of elements of G and H index n-simplices and n-cubes respectively in the

homotopy colimit, the diagrams can be thought of as representing generators given by
[9] @ [h1, ho] and  [[ & [hy, hy, hs]

together with their boundary relations. Thus although we have not proved that C(E)
and hocolim(F') are homotopy equivalent, the latter certainly contains all the com-
position and associativity information in £ and we have some justification for calling
hocolim(F') a small resolution of £ and thinking of it as a twisted tensor product of
C(G) by C(H).

We end by giving a comparison map between the homotopy colimits of coherent
diagrams of simplicial sets and of crossed complexes. We suspect that the fundamen-
tal crossed complex functor preserves these homotopy colimits (up to equivalence in

homology, at least) although this is only a conjecture at the present time.

Proposition 5.3.3 Suppose [ . SimpSet s a simplicially coherent functor, with
F o 7w the corresponding coherent functor into Crs given by proposition 5.2.5. Then

there is a natural comparison map
hocolim (F' o 1) — 7 (hocolim F')

Proof: Consider the shufle homomorphisms

(3

W(FZU) ® I®n

7(Fig x [1]")

for ig an object of I. Since m preserves coproducts, we get a homomorphism

I I m(Fig) @ %" T (]_[ I Fig x [1]")

n [i07f17i17-"7f”7i”} n [ioifliila"':fniin}

To show that this defines a comparison map between the homotopy colimits, we
must prove that # respects the degeneracy and boundary relations. In fact we show
that 6 maps each side of each relation on hocolim(F o 7) to the corresponding side of
a corresponding relation on w(hocolim F'). For the degeneracy and 6, relations, and
for the left hand side of the 6 relation, this follows from the commutativity of the

following diagrams:

n n

w(Fig x [1]") (Fig) © T%"

w(Fig) @ T&" m(Fig x [1]")

id @™ 70d x T d®é| idest  widx )| |r(id x 6)

n—1 n+1

7(Fig) @ T"™Y — n(Fig x [1]"7") 7(Fig) @ T8+ m(Fig x [1]"1)
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For the right hand side of the ;" relation we have the following diagram

b’n
W(FZO) ® I®n

(Fig x [1]")

(Fom)y,; ®id T(Flpyr x id)

T
1

n—r+1

b
m(Fi,) @ 78mr+) m(Fi, x [1]"7"*1)

which commutes by definition of (F' o 7)ppr as b o w(Fippr). O

T T
1 1

In the reverse direction, we have the diagonal approximation maps

an

w(Fig x [1]™)

W(FZU) ® I®n

and so we get a homomorphism

W(L[ I Fiox[l]") Pl wFi) eI

7 i0,f1,810,00 0 fr o] " [io, 1,01, frsin]

However this does not define a homomorphism between 7(hocolim F') and hocolim(For)

since the diagram

7(Fig x [1]") —— - w(Fig) © T
b @ id
m(Flpp x id) m(Fig x [1]771) @ 79—+
m(Fipyy) @id
g+

ﬂ'(Fir > [1]n7r+1) T(FZT) ® I®(n7r+1)

does not commute and so ¢ does not respect the §F relations. However the diagram
does commute up to the system of higher homotopies between the composites a* o b*,
and it would be interesting if the results of section 2.3.2 and chapter 4 could be used
here.

5.4 Conclusions

In this thesis we have presented some new ways in which the algebraic structure of

crossed complexes of groupoids can be used for modelling various situations in topology.
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We have seen that a version of the Eilenberg-Zilber theorem for crossed complexes
holds in a very similar way to the classical theorem for chain complexes, and have
developed the notions of a double crossed complex and of crossed complex models for
homotopy colimits. As an example of their use in non-abelian homological algebra
we have explained how the crossed resolution of a group which arises as a product, a
semidirect product or an extension may be replaced by a smaller model which does
not have the ‘diagonal cells’. One of the basic aims has been to work out some of
the consequences of using tensor products instead of cartesian products wherever the
Eilenberg-Zilber theorem makes this possible.

In this section we would like to give a few ideas, some of quite a speculative nature,
for possible future developments of the work of this thesis. These possible developments
are in two directions, which we may call the abstract development and the topological

application.

Beginning with the applications, we would first like to extend the Eilenberg-Zilber
theorem to a crossed complex version of the twisted Eilenberg-Zilber theorem, as proved
for chain complexes in [5]. This could then be used to develop a non-abelian homological
perturbation theory as mentioned in chapter 2, leading to specific calculations.

Secondly we would like to be able to find a small crossed complex model of the total

space F of a Kan fibration of simplicial sets
F—F—B

The model should have the form of a twisted tensor product of 7F by 7B, and may
arise as an application of the twisted Eilenberg-Zilber theorem or by development of
the theory we have seen for small resolutions of an extension of groups.

Also we would like to investigate further the role in algebraic topology which might
be played by crossed differential graded algebras.

The general aim here is to carry over much of the work which is regarded as ‘main-
stream’ for chain complexes (and which seems to be regarded as only possible by making
all spaces simply-connected and all groups abelian) to crossed complexes. The category
of crossed complexes shares a lot of the formal properties of that of chain complexes,
such as the monoidal closed structure, and may be seen as a quotient of the category
of simplicial groupoids [19]. Thus on the one hand crossed complexes provide finer
information on homotopy types than do chain complexes, including the action of the
fundamental groupoid, but on the other hand they may be regarded as simply one step

towards a good algebraic structure which models all homotopy types.

From the abstract point of view, we believe that the material presented in chapters
4 and 5, together with section 2.3.2, should admit a more categorical treatment. For

example, the extension of the Eilenberg-Zilber homotopy hg 1, to the system of coherent
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homotopies hg,  k, in theorem 2.3.9 has the same form as the extension of a lax functor
to a simplicially coherent functor in proposition 5.2.3, except that the latter is carried
out in the context of much more ‘high-tech’ machinery. Similarly we feel that there is
more underlying the result of theorem 4.3.10 than the pages preceeding it make clear.

Cordier and others in [3, 16, 17| define homotopy colimits for homotopy coherent
functors in the setting of simplicially tensored enriched categories. That is, they assume
that they are working with a simplicially enriched category C together with an enriched
functor

SimpSet x C 2 C

such that there is a natural isomorphism of simplicial homs
[K®C, D] = [K,[C, D]

for each simplicial set K and objects C', D of C. They can then define homotopy

colimits of homotopy coherent functors by a simplicially-enriched coend
: F i N\ =
hocolim (S(I) — () = / Diag (Y (i)) ®F(7)

where Y (7) is the following bisimplicial set defined using the enriched homs of the
simplicial resolution S(7) of I:

Y(i)pe = ]_[' [4,30] X ... X [in 1,00

Now suppose instead that C is a monoidal closed category and 7 is a functor from
SimpSet to C which has a right adjoint Ner and which satisfies an Eilenberg-Zilber

type theorem. Then we may define an ordinary functor ® by
KxC = 7K®C

With respect to the simplicially enriched structure on C defined by applying Ner to
the internal hom, neither 7 or ® become enriched functors except up to some form of
homotopy coherence, and so we do not get an enriched functor ®. Furthermore the iso-
morphism of simplicial homs above is only a coherently-natural homotopy equivalence.
However since we are trying to define homotopy colimits, it is nice to imagine that
there is an extension of the theory such that homotopy colimits of coherent functors
into C may be defined in terms of some form of homotopy coherent coend of homotopy

coherent functors.
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