TOPOLOGICAL QUANTUM FIELD THEORIES & HOMOTOPY COBORDISMS

arXiv:2208.14504

Fiona Torzewska 06/12/23

University of Bristol

AIM: To study particle statistics in topological phases.

AIM: To study particle statistics in topological phases.

• Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Such functors may factor through other categories that may be easier to work with - I will give a construction of a category of *cofibrant cospans* of topological spaces. Functors into this category are obtained roughly by taking the complement of particle trajectories.

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Such functors may factor through other categories that may be easier to work with - I will give a construction of a category of *cofibrant cospans* of topological spaces. Functors into this category are obtained roughly by taking the complement of particle trajectories.
- I will also show that Yetter's TQFTs associated to finite groups generalise to explicitly calculable functors from this category.

Talk Plan

1. Construction of the category CofCos , and subcategory HomCob

- 1. Construction of the category $\operatorname{CofCos}\nolimits$ and subcategory $\operatorname{HomCob}\nolimits$
- 2. Functor from the motion groupoid of a manifold to HomCob

- 1. Construction of the category $\operatorname{CofCos}\nolimits$, and subcategory $\operatorname{HomCob}\nolimits$
- 2. Functor from the motion groupoid of a manifold to $\operatorname{Hom} \operatorname{Cob}$
- 3. Family of functors $Z_G: \operatorname{HomCob} \to \mathsf{Vect}_{\mathbb{C}}$

COFIBRANT COSPANS AND HOMOTOPY COBORDISMS

Let X, Y and M be spaces. A <u>cofibrant cospan</u> from X to Y is a diagram $i: X \to M \leftarrow Y : j$ such that $(i, j): X \sqcup Y \to M$ is a closed cofibration. For spaces X, Y \in **Top**, we define the set of all cofibrant cospans

$$\operatorname{CofCos}(X,Y) = \begin{cases} X & Y \\ i \searrow & \kappa_j \\ M & y \end{cases} \quad (i,j) \text{ is a closed cofibration} \end{cases}.$$

Let A and X be spaces. A map $i: A \to X$ has the <u>homotopy extension property</u>, with respect to the space Y, if for any pair of a homotopy $h: A \times \mathbb{I} \to Y$ and a map $f: X \to Y$ satisfying $(f \circ i)(a) = h(a, 0)$, there exists a homotopy $H: X \times \mathbb{I} \to Y$, extending h, with H(x, 0) = f(x) and H(i(a), t) = h(a, t). This is illustrated by the following diagram.

(Where for any space X, $\iota_0^{X}: X \to X \times \mathbb{I}$ is the map $x \mapsto (x, 0)$.) We say that $i: A \to X$ is a <u>cofibration</u> if *i* satisfies the homotopy extension property for all spaces Y.

COFIBRANT COSPANS

COFIBRANT COSPANS

Example

Let X be a space. The cospan $id_X: X \to X \leftarrow X : id_X$ is not a cofibrant cospan, unless $X = \emptyset$.

Proposition

For X a topological space, the cospan $\iota_0^X: X \to X \times \mathbb{I} \leftarrow X : \iota_1^X$ is a cofibrant cospan (where $\iota_a^X: X \to X \times \mathbb{I}$ is the map $x \mapsto (x, a)$).

Proof sketch

Suppose there exists a homotopy $h: (X \sqcup X) \times \mathbb{I} \to K$, and a map $f: X \times \mathbb{I} \to K$, such that h((x, 0), 0) = f(x, 0) and h((x, 1), 0) = f(x, 1). Composition with below retraction gives homotopy $H: (X \times \mathbb{I}) \times \mathbb{I} \to K$.

Proposition

A concrete cobordism canonically defines a cofibrant cospan. Precisely, let *X*, *Y* and *M* be smooth oriented manifolds, and let *M* be a concrete cobordism from *X* to *Y*. Hence there exists a diffeomorphism $\phi: \overline{X} \sqcup Y \to \partial M$. Define maps $i(x) = \phi(x, 0)$ and $j(y) = \phi(y, 1)$. Then, using *X*, *Y* and *M* to denote the underlying topological spaces, $i: X \to M \leftarrow Y : j$ is a cofibrant cospan.

Example

Any CW complex together with a pair of disjoint subcomplexes and inclusions gives a cofibrant cospan.

COMPOSITION OF COFIBRANT COSPANS

Lemma

(1) For any spaces X, Y and Z in Ob(Top) there is a composition of cofibrant cospans

$$\boldsymbol{\cdot}: \mathsf{CofCos}(X,Y) \times \mathsf{CofCos}(Y,Z) \to \mathsf{CofCos}(X,Z)$$

$$\begin{pmatrix} X & Y & Y & Z \\ {}_{i}^{\times} M & {}_{j}^{\times} {}_{i}^{k} N & {}_{l}^{\times} \end{pmatrix} \mapsto \overset{X}{{}_{i}^{\times}} M \sqcup_{Y} N \overset{Z}{{}_{l}^{\times}}$$

where $\tilde{i} = p_M \circ i$ and $\tilde{l} = p_N \circ l$ are obtained via the following diagram

the middle square of which is the pushout of $j: M \leftarrow Y \rightarrow N: k$ in **Top**.

(*II*) Hence there is a magmoid CofCos = $(Ob(Top), CofCos(-, -), \cdot)$.

Lemma

For each pair $X, Y \in Ob(CofCos)$, we define a relation on CofCos(X, Y) by

$$\begin{pmatrix} X & Y \\ {}_{i} \stackrel{\searrow}{}_{M} \stackrel{\swarrow}{}_{j} \end{pmatrix} \stackrel{ch}{\sim} \begin{pmatrix} X & Y \\ {}_{i'} \stackrel{\searrow}{}_{N} \stackrel{\swarrow}{}_{j'} \end{pmatrix}$$

if there exists a commuting diagram

where ψ is a homotopy equivalence. For each pair $X, Y \in \mathbf{Top}$ the relations (CofCos(X, Y), $\stackrel{ch}{\sim}$) are a congruence on CofCos.

EQUIVALENCE CLASSES OF COFIBRANT COSPANS

Proof uses classical theorem (E.g. Brown06, Thm7.2.8): If $\begin{array}{ccc} X & Y & X & Y \\ i^{Y} & M & \zeta_{j} & , & i'^{Y} & N & \zeta_{j'} \\ M & N & N & N & i' \end{array}$ are cospans such that $\langle i, j \rangle : X \sqcup Y \to M$ and $\langle i', j' \rangle : X \sqcup Y \to N$ are cofibrations, then the set of homotopy equivalences ψ such that

commutes, is in bijective correspondence with the set of ψ' such that there exists $\phi: N \to M$ with $\psi' \circ \phi$ and $\phi \circ \psi'$ homotopic to identity through maps commuting with cospans.

Theorem (T.) The quadruple

$$\operatorname{CofCos} = \left(Ob(\mathsf{Top}) , \operatorname{CofCos}(X, Y) / \overset{ch}{\sim} , \cdot , \begin{bmatrix} X & X \\ \iota_0^X \searrow & \swarrow \iota_1^X \\ \iota_0^X X \times \mathbb{I} & \iota_1^X \end{bmatrix}_{ch} \right)$$

is a category.

There is a functor $\Phi: \mathbf{Top}^h \to \mathrm{CofCos}$ which sends a homeomorphism $f: X \to Y$ to the cospan $X \to Y$ $_{\iota_0^{\gamma} o f} \to Y \times I \to I^{\gamma}$.

Theorem (T.)

There is a symmetric monoidal category (CofCos, \otimes , \emptyset , $\alpha_{X,Y,Z}$, λ_X , ρ_X , $\beta_{X,Y}$) where

$$\begin{bmatrix} W & X \\ {}_{i} \searrow & {}_{M} \swarrow_{j} \end{bmatrix}_{ch} \otimes \begin{bmatrix} Y & Z \\ {}_{k} \searrow & {}_{N} \swarrow_{l} \end{bmatrix}_{ch} = \begin{bmatrix} W \sqcup Y & X \sqcup Z \\ {}_{i \sqcup k} \searrow & {}_{M} \sqcup N \swarrow_{j \sqcup l} \end{bmatrix}_{ch}.$$

All other maps are the images of the corresponding maps in (Top, \sqcup) .

A space X is called *homotopically* 1-*finitely generated* if $\pi(X, A)$ is finitely generated for all finite sets of basepoints A.

Let χ denote the class of all homotopically 1-finitely generated spaces.

Theorem (T.)

There is a (symmetric monoidal) subcategory of CofCos

$$\operatorname{HomCob} = \left(\chi, \operatorname{HomCob}(X, Y), \, \boldsymbol{\cdot} \,, \, \left[\begin{matrix} X & X \\ \iota_0^X \searrow & \boldsymbol{\kappa} \\ \chi \times \mathbb{I} \end{matrix} \right]_{ch} \right) \,.$$

MOTION GROUPOIDS

Fix a manifold, submanifold pair $\underline{M} = (M, A)$. A flow in \underline{M} is a map $f \in \mathbf{Top}(\mathbb{I}, \mathbf{TOP}_{A}^{h}(M, M))$ with $f_{0} = \mathrm{id}_{M}$. Define,

 $\operatorname{Flow}_{\underline{M}} = \{f \in \operatorname{\mathsf{Top}}(\mathbb{I}, \operatorname{\mathsf{TOP}}^h_A(M, M)) \mid f_0 = \operatorname{id}_M \}.$

Fix a manifold, submanifold pair $\underline{M} = (M, A)$. A flow in \underline{M} is a map $f \in \mathbf{Top}(\mathbb{I}, \mathbf{TOP}_{A}^{h}(M, M))$ with $f_{0} = \mathrm{id}_{M}$. Define,

$$\operatorname{Flow}_{\underline{M}} = \{f \in \operatorname{\mathsf{Top}}(\mathbb{I}, \operatorname{\mathsf{TOP}}^h_A(M, M)) \mid f_0 = \operatorname{id}_M \}.$$

Example

For any manifold *M* the path $f_t = id_M$ for all *t*, is a flow. We will denote this flow Id_M .

Fix a manifold, submanifold pair $\underline{M} = (M, A)$. A flow in \underline{M} is a map $f \in \mathbf{Top}(\mathbb{I}, \mathbf{TOP}_{A}^{h}(M, M))$ with $f_{0} = \mathrm{id}_{M}$. Define,

$$\operatorname{Flow}_{\underline{M}} = \{f \in \operatorname{\mathsf{Top}}(\mathbb{I}, \operatorname{\mathsf{TOP}}^h_A(M, M)) \mid f_0 = \operatorname{id}_M \}.$$

Example

For any manifold *M* the path $f_t = id_M$ for all *t*, is a flow. We will denote this flow Id_M .

Example

For $M = S^1$ (the unit circle) we may parameterise by $\theta \in \mathbb{R}/2\pi$ in the usual way. Consider the functions $\tau_{\phi} : S^1 \to S^1$ ($\phi \in \mathbb{R}$) given by $\theta \mapsto \theta + \phi$, and note that these are homeomorphisms. Then consider the path $f_t = \tau_{t\pi}$ ('half-twist'). This is a flow.

Definition Fix a $\underline{M} = (M, A)$. A motion in \underline{M} is a triple $f: N \backsim N'$ consisting of a flow $f \in \operatorname{Flow}_M$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_1(N) = N'$.

MOTION GROUPOIDS

EXAMPLE $M = D^2$

MOTION GROUPOIDS

Theorem (.T, Faria Martins, Martin) Let $\underline{M} = (M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$\operatorname{Mot}_{\underline{M}} = (\mathcal{P}M, \operatorname{Mt}_{\underline{M}}(N, N') / \stackrel{m}{\sim}, *, [\operatorname{Id}_{M}]_{m}, [f]_{m} \mapsto [\bar{f}]_{m}).$$

where

Theorem (.T, Faria Martins, Martin) Let $\underline{M} = (M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$\operatorname{Mot}_{\underline{M}} = (\mathcal{P}M, \operatorname{Mt}_{\underline{M}}(N, N') / \overset{m}{\sim}, *, [\operatorname{Id}_{M}]_{\mathfrak{m}}, [f]_{\mathfrak{m}} \mapsto [\overline{f}]_{\mathfrak{m}}).$$

where (I) objects are subsets of M;

Theorem (.T, Faria Martins, Martin)

Let $\underline{M} = (M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$\operatorname{Mot}_{\underline{M}} = (\mathcal{P}M, \operatorname{Mt}_{\underline{M}}(N, N') / \overset{m}{\sim}, *, [\operatorname{Id}_{M}]_{m}, [f]_{m} \mapsto [\overline{f}]_{m}).$$

where

(I) objects are subsets of *M*;

(II) composition of representative morphisms is given by

$$g\!:\!N' \trianglelefteq N'' * f\!:\! N \trianglelefteq N' = g * f\!:\! N \trianglelefteq N''.$$

where

$$(g * f)_t = \begin{cases} f_{2t} & 0 \le t \le 1/2, \\ g_{2(t-1/2)} \circ f_1 & 1/2 \le t \le 1; \end{cases}$$
(1)

(III) the inverse for each morphism $[f: N \backsim N']_m$ is the motion-equivalence class of $\overline{f}: N' \backsim N$ where $\overline{f}_t = f_{(1-t)} \circ f_1^{-1}$.

- (III) the inverse for each morphism $[f: N \backsim N']_m$ is the motion-equivalence class of $\overline{f}: N' \backsim N$ where $\overline{f}_t = f_{(1-t)} \circ f_1^{-1}$.
- (IV) morphisms between subsets N, N' are motion-equivalence classes $[f: N \backsim N']_m$ of motions; explicitly

$$f: N \smile N' \stackrel{m}{\sim} g: N \smile N' \text{ if } \bar{g} * f \stackrel{p}{\sim} h;$$

where $h_t(N) = N$ for all *t*;

- (III) the inverse for each morphism $[f: N \backsim N']_m$ is the motion-equivalence class of $\overline{f}: N' \backsim N$ where $\overline{f}_t = f_{(1-t)} \circ f_1^{-1}$.
- (IV) morphisms between subsets N, N' are motion-equivalence classes $[f: N \backsim N']_m$ of motions; explicitly

$$f: N \smile N' \stackrel{m}{\sim} g: N \smile N' \text{ if } \bar{g} * f \stackrel{p}{\sim} h;$$

where $h_t(N) = N$ for all *t*;

(V) the identity at each object N is the motion-equivalence class of $\mathrm{Id}_{M}: N \backsim N$, $(\mathrm{Id}_{M})_{t}(m) = m$ for all $m \in M$.

• The motion subgroupoid of a configuration of *n* points in the disk is isomorphic to the *n* strand Artin braid group.

MOTION GROUPOIDS

• The motion subgroupoid of a configuration of *n* unknotted unlinked loops in the 3-ball is isomorphic to the loop braid group with *n* loops.

Definition The worldline of a motion $f: N \hookrightarrow N'$ in a manifold M is

$$W(f: N \backsim N') = \bigcup_{t \in [0,1]} f_t(N) \times \{t\} \subseteq M \times \mathbb{I}.$$

Let $W'(f: N \triangleleft N') = (M \times \mathbb{I}) \setminus (W(f: N \triangleleft N')).$

Definition The worldline of a motion $f: N \hookrightarrow N'$ in a manifold M is

$$W(f:N \triangleleft N') = \bigcup_{t \in [0,1]} f_t(N) \times \{t\} \subseteq M \times \mathbb{I}.$$

Let $W'(f: N \triangleleft N') = (M \times \mathbb{I}) \setminus (W(f: N \triangleleft N')).$

Homotopy finite version of Mot_M

Let *M* be a homotopy finite space. Let $hfMot_M$ be the full subgroupoid of Mot_M such that the complement of each object is a homotopy finite space.

Theorem (T.) Let *M* be a manifold. There is a well-defined functor

 $\mathcal{MOT}^{\mathcal{A}}_{M}{:}\operatorname{hfMot}_{\underline{M}} \to \operatorname{HomCob}$

which sends an object $N \in Ob(hfMot_{\underline{M}})$ to $M \setminus N$, and which sends a morphism $[f: N \backsim N']_{\pi}$ to the cospan homotopy equivalence class of

$$M \sim N \xrightarrow{\iota_{f_0}} W'(f: N \smile N') \xrightarrow{I_{f_1}} V$$

where $\iota_{f_t}: M \smallsetminus f_t(N) \to W'(f: N \backsim N'), m \mapsto (m, t).$

 $\mathsf{Z}_G {:} \operatorname{HomCob} \to \mathsf{Vect}_{\mathbb{C}}$

Let χ be the set of pairs (X, X₀) such that X is in χ and X₀ is a finite representative subset.

Let (X, X_0) , (Y, Y_0) and (M, M_0) be in $\boldsymbol{\chi}$.

Let χ be the set of pairs (X, X₀) such that X is in χ and X₀ is a finite representative subset.

Let (X, X_0) , (Y, Y_0) and (M, M_0) be in $\boldsymbol{\chi}$. A based homotopy cobordism from (X, X_0) to (Y, Y_0) is a diagram $i: (X, X_0) \rightarrow (M, M_0) \leftarrow (Y, Y_0) : j$ such that:

- 1. $i: X \to M \to Y: j$ is a homotopy cobordism.
- 2. *i* and *j* are maps of pairs.
- 3. $M_0 \cap i(X) = i(X_0)$ and $M_0 \cap j(Y) = j(Y_0)$.

Let G be a group.

For a pair $(X, X_0) \in \boldsymbol{\chi}$, define

 $Z_G^!(X,X_0) = \mathbb{C} \left(\mathsf{Grpd} \left(\pi(X,X_0), G \right) \right).$

 $\pi(X, X_0) \cong (\mathbb{Z} * \mathbb{Z}) \sqcup \{*\} \sqcup \{*\}$. Maps from $\pi(X, X_0)$ to *G* are determined by pairs in $G \times G$, whose elements respectively denote the images of the equivalence classes of the loops marked x_1 and x_2 in the figure, so we have $Z^{l}_{G}(X, X_0) \cong \mathbb{C}(G \times G)$.

Let $i: (X, X_0) \rightarrow (M, M_0) \leftarrow (Y, Y_0) : j$ be a based homotopy cobordism, we define a matrix

$$Z_G^! \begin{pmatrix} (X, X_0) \\ & i \\ & i \\ & (M, M_0) \end{pmatrix} : Z_G^! (X, X_0) \to Z_G^! (Y, Y_0)$$

as follows. Let $f \in Z_G^!(X, X_0)$ and $g \in Z_G^!(Y, Y_0)$ be basis elements, then

$$\left(g \left| Z_{G}^{!} \begin{pmatrix} (X, X_{0}) & (Y, Y_{0}) \\ i \searrow_{(M, M_{0})} & j \end{pmatrix} \right| f \right) = \left| \left\{h : \pi(M, M_{0}) \rightarrow G \right| \begin{array}{c} \pi(X, X_{0}) & \pi(Y, Y_{0}) \\ \pi(X, X_{0}) & \pi(Y, Y_{0}) \\ \pi(X, M_{0}) & f \end{pmatrix} \right| f \right\}$$

Lemma

The map $Z_G^!$ preserves composition, extended in the obvious way to a composition of based cospans.

Proof Thm.9.1.2, Topology and Groupoids, Brown gives that middle square is a push out.

Lemma

Let X be a topological space, G a group, $X_0 \subseteq X$ a finite representative subset and $y \in X$ a point with with $y \notin X_0$. There is a non-canonical bijection of sets

$$\Theta_{\gamma}: \mathbf{Grpd}(\pi(X, X_0), G) \times G \to \mathbf{Grpd}(\pi(X, X_0 \cup \{y\}), G)$$
$$(f, g) \mapsto F$$

where γ is a choice of a path from some $x \in X_0$ to y and F is the extension along γ and g.

$Z_G: \operatorname{HomCob} \to \operatorname{Vect}_{\mathbb{C}}$

Consider a concrete homotopy cobordism, $i: (X, X_0) \rightarrow (M, M_0) \leftarrow (Y, Y_0) : j$. It follows

$$Z^!_G(M,M_0\cup\{m\})=|G|Z^!_G(M,M_0).$$

It follows that for all M'_0 and M_0 , we can write

$$Z^!_G(M,M'_0\cup M_0)=[G]^{(|M'_0\cup M_0|-|M_0|)}Z^!_G(M,M_0)$$

and

$$Z^!_G(M,M_0'\cup M_0)=|G|^{(|M_0'\cup M_0|-|M_0'|)}Z^!_G(M,M_0')$$

which together imply

$$|G|^{-|M_0|} Z^!_G(M, M_0) = |G|^{-|M'_0|} Z^!_G(M, M'_0)$$

and that

$$|G|^{-(|M_0|-|X_0|)}Z_G^!(M,M_0) = |G|^{-(|M_0'|-|X_0|)}Z_G^!(M,M_0').$$

Lemma

We redefine the linear map we assign to a concrete based homotopy cobordisms as

The map $Z_G^{!!}$ does not depend on the choice of subset $M_0 \subseteq M$, and this preserves composition. When the relevant cospan is clear, we will refer to this as $Z_G^{!!}(M, X_0, Y_0)$ to highlight the dependence on X_0 and Y_0 .

Lemma There is a contravariant functor

 $\mathcal{V}_X : \mathsf{FinSet}^*(X) \to \mathsf{Set}$

constructed as follows. Let $X_{\alpha}, X_{\beta} \in Ob(\mathsf{FinSet}^*(X))$ with $X_{\beta} \subseteq X_{\alpha}$. Let $\mathcal{V}_X(X_{\alpha}) = \mathsf{Grpd}(\pi(X, X_{\alpha}), G)$. For any $v_{\alpha} \in \mathcal{V}_X(X_{\alpha})$ we have a commuting triangle

Now let $\mathcal{V}_X(\iota_{\beta\alpha}:X_\beta \to X_\alpha) = \phi_{\alpha\beta}$ where $\phi_{\alpha\beta}: \mathcal{V}_X(X_\alpha) \to \mathcal{V}_X(X_\beta)$, $v_\alpha \mapsto v_\alpha \circ \iota_{\alpha\beta}$.

Definition For $X \in \chi$ define $Z_G(X) = \operatorname{colim}(\mathcal{V}'_X) = \mathbb{C}(\operatorname{colim}(\mathcal{V}_X))$ where $\mathcal{V}'_X = F_{\mathcal{V}_C} \circ \mathcal{V}_X$ and \mathcal{V}_X : FinSet* $(X) \to$ Set.

$Z_G: \operatorname{HomCob} \to \operatorname{Vect}_{\mathbb{C}}$

Let $i: X \to M \leftarrow Y : j$ be a concrete homotopy cobordism. Fix a choice of $Y_{\alpha'} \subseteq Y$ such that $(Y, Y_{\alpha'}) \in \chi$. For each pair $X_{\alpha}, X_{\beta} \subseteq X$ such that $(X, X_{\alpha}), (X, X_{\beta}) \in \chi$ we have the following diagram

Lemma The assignment

$$Z_G\begin{pmatrix} X & Y \\ {}_{i} \searrow & {}_{j} \end{pmatrix} = \phi_{\alpha'}^Y d_{\alpha'}^M$$

does not depend on the choice of $Y_{\alpha'}$.

Theorem (T.) Z_G is a functor.

Lemma

Let $i: X \to M \leftarrow Y : j$ be a concrete homotopy cobordism, $i: (X, X_0) \to (M, M_0) \leftarrow (Y, Y_0) : j$ a choice of concrete based homotopy cobordism, and $[f] \in Z_G(X)$ and $[g] \in Z_G(Y)$ be basis elements (so [f], for example, is an equivalence class in $\operatorname{colim}(\mathcal{V}_X)$), then

$$\begin{split} \langle [g] | Z_G(M) | [f] \rangle &= |G|^{-(|M_0| - |X_0|} \sum_{g \in \phi_0^{\gamma - 1}([g])} \left| \left\{ h: \pi(M, M_0) \to G \mid h \mid_{\pi(X, X_0)} = f \land h \mid_{\pi(Y, Y_0)} = g \right\} \right| \\ &= |G|^{-(|M_0| - |X_0|)} \sum_{g \in \phi_0^{\gamma - 1}([g])} \left\langle g \mid Z_G^!(M, M_0) \mid f \right\rangle \end{split}$$

where $\phi_0^{\mathsf{Y}}: \mathsf{Z}_G^!(\mathsf{Y}, \mathsf{Y}_0) \to \mathsf{Z}_G(\mathsf{Y})$ is the map into $\operatorname{colim}(\mathcal{V}'_{\mathsf{Y}})$.

Lemma

Let $i: X \to M \leftarrow Y : j$ be a concrete homotopy cobordism, $i: (X, X_0) \to (M, M_0) \leftarrow (Y, Y_0) : j$ a choice of concrete based homotopy cobordism, and $[f] \in Z_G(X)$ and $[g] \in Z_G(Y)$ be basis elements (so [f], for example, is an equivalence class in $\operatorname{colim}(\mathcal{V}_X)$), then

$$\begin{split} \langle [g] | Z_G(M) | [f] \rangle &= |G|^{-(|M_0| - |X_0|)} \sum_{g \in \phi_0^{\gamma - 1}([g])} \left| \left\{ h: \pi(M, M_0) \to G \mid h \mid_{\pi(X, X_0)} = f \land h \mid_{\pi(Y, Y_0)} = g \right\} \right| \\ &= |G|^{-(|M_0| - |X_0|)} \sum_{g \in \phi_0^{\gamma - 1}([g])} \left\langle g \mid Z_G^!(M, M_0) \mid f \right\rangle \end{split}$$

where $\phi_0^{\gamma}: Z_G^!(\gamma, Y_0) \to Z_G(\gamma)$ is the map into $\operatorname{colim}(\mathcal{V}'_{\gamma})$. Equivalently

$$\left\{ [g] | Z_G(M) | [f] \right\} = |G|^{-(|M_0| - |X_0|)} \left| \left\{ h : \pi(M, M_0) \to G \, | \, h |_{\pi(X, X_0)} = f \wedge h |_{\pi(Y, Y_0)} \sim g \right\} \right|$$

$Z_G: \operatorname{HomCob} \to \operatorname{Vect}_{\mathbb{C}}$

Theorem (T.)

For X a space, the map $\hat{\phi}_{\alpha}$ is an isomorphism. Hence, for a homotopically 1-finitely generated space X $\in \chi$

$$Z_{G}(X) = \mathbb{C}((\mathbf{Grpd}(\pi(X, X_{0}), G) / \cong),$$

for any choice $X_0 \subset X$ of finite representative subset, where \cong denotes taking maps up to natural transformation. Further,

$$Z_G(X) = \mathbb{C}((\mathbf{Grpd}(\pi(X), G)/\cong).$$

Let X be the complement of the embedding of two circles shown. Letting $X_0 \,\subset X$ be the subset shown, $\operatorname{Grpd}(\pi(X, X_0), G) = G \times G$ as discussed previously. Since all objects are mapped to the unique object in G, taking maps up to natural transformation is means taking maps up to conjugation by elements of G at each basepoint, hence in this case maps are labelled by pairs of elements of G, up to simultaneous conjugation, so we have $Z_G(X) = \mathbb{C}((G \times G)/G)$.

Basis elements in $Z_G(X)$ are given by equivalence classes $[(f_1, f_2)]$ where $f_1, f_2 \in G$ and [] denotes simultaneous conjugation by the same element of G. Basis elements in $Z_G(Y)$ are given by elements of g taken up to conjugation, denoted $[g_1]$. We have

$$\begin{aligned} \langle [g_1] | Z_G(M) | [(f_1, f_2)] \rangle &= |G|^{-2} \{ a, b, c, d, e \in G \mid a = f_1, b = f_2, g_1 \sim ebae^{-1} \} \\ &= \{ e \in G \mid g_1 \sim ef_1 f_2 e^{-1} \} \\ &= \begin{cases} |G| & \text{if } g_1 \sim f_1 f_2 \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

45

UNDERCROSSING BRAID

$$\langle [g_1, g_2] | Z_G M | [f_1, f_2] \rangle = |G|^{-1} \{ a, b, c | a = f_1, b = f_2, c f_1 c^{-1} \sim g_2, c f_1^{-1} f_2 f_1 c^{-1} = g_1 \}$$

$$= \begin{cases} 1 & [g_1, g_2] = [f_1^{-1} f_2 f_1, f_1] \\ 0 & \text{otherwise} \end{cases}$$

Undercrossing

$$\langle [g_1, g_2] | Z_G M | [f_1, f_2] \rangle = \begin{cases} 1 & [g_1, g_2] = [f_1^{-1} f_2 f_1, f_1] \\ 0 & \text{otherwise} \end{cases}$$

Overcrossing

$$\langle [g_1, g_2] | Z_G M | [f_1, f_2] \rangle = \begin{cases} 1 & [g_1, g_2] = [f_2, f_2^{-1} f_1 f_2] \\ 0 & \text{otherwise} \end{cases}$$

TOPOLOGICAL QUANTUM FIELD THEORIES & HOMOTOPY COBORDISMS

arXiv:2208.14504

Fiona Torzewska 06/12/23

University of Bristol