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AIM: To study particle statistics in topological phases.
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MOTIVATION

• Particle trajectories modelled by motion groupoids, mapping class
groupoids, (generalised) tangle categories, defect cobordism categories,
embedded cobordism categories...

• Here we are interested in representations of the above categories which
are invariant up to a notion of homotopy equivalence of the
complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten,
Quinn, knot group, Artin rep of braids). Notice such complements are
generally not compact manifolds.

• Such functors may factor through other categories that may be easier to
work with - I will give a construction of a category of cofibrant cospans
of topological spaces. Functors into this category are obtained roughly
by taking the complement of particle trajectories.

• I will also show that Yetter’s TQFTs associated to finite groups generalise
to explicitly calculable functors from this category.
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TALK PLAN

1. Construction of the category CofCos, and subcategory HomCob
2. Functor from the motion groupoid of a manifold to HomCob
3. Family of functors ZG∶HomCob→ VectC
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COFIBRANT COSPANS AND
HOMOTOPY COBORDISMS



COFIBRANT COSPANS

Definition
Let X, Y and M be spaces. A cofibrant cospan from X to Y is a diagram
i∶X→ M← Y ∶ j such that ⟨i, j⟩∶X ⊔ Y→ M is a closed cofibration.
For spaces X,Y ∈ Top, we define the set of all cofibrant cospans

CofCos(X,Y) =
⎧⎪⎪⎨⎪⎪⎩

X Y
Mi j

RRRRRRRRRRRRR
⟨i, j⟩ is a closed cofibration

⎫⎪⎪⎬⎪⎪⎭
.
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COFIBRATIONS

Definition
Let A and X be spaces. A map i∶A→ X has the homotopy extension property,
with respect to the space Y, if for any pair of a homotopy h∶A × I→ Y and a
map f∶X→ Y satisfying (f ○ i)(a) = h(a,0), there exists a homotopy
H ∶ X × I→ Y, extending h, with H(x,0) = f(x) and H(i(a), t) = h(a, t). This is
illustrated by the following diagram.

X

A X × I Y

A × I

ιX0

f
i

ιA0

∃H

i×idI

h

(Where for any space X, ιX0∶X→ X × I is the map x↦ (x,0).)
We say that i∶A→ X is a cofibration if i satisfies the homotopy extension
property for all spaces Y.
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COFIBRANT COSPANS

S1

D2

ji
S1S1S1
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COFIBRANT COSPANS

X

Y

M
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COFIBRANT COSPANS

Example
Let X be a space. The cospan idX∶X→ X← X ∶ idX is not a cofibrant cospan,
unless X = ∅.
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COFIBRANT COSPANS

Proposition
For X a topological space, the cospan ιX0∶X→ X × I← X ∶ιX1 is a cofibrant cospan
(where ιXa∶X→ X × I is the map x↦ (x,a)).

Proof sketch
Suppose there exists a homotopy h∶ (X ⊔ X) × I→ K, and a map f∶X × I→ K,
such that h((x,0),0) = f(x,0) and h((x, 1),0) = f(x, 1). Composition with
below retraction gives homotopy H∶ (X × I) × I→ K.

z = ( 12 ,
3
2)

x′

x

x

x′
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COFIBRANT COSPANS

Proposition
A concrete cobordism canonically defines a cofibrant cospan.
Precisely, let X, Y and M be smooth oriented manifolds, and let M be a
concrete cobordism from X to Y. Hence there exists a diffeomorphism
ϕ∶ X̄ ⊔ Y→ ∂M. Define maps i(x) = ϕ(x,0) and j(y) = ϕ(y, 1). Then, using X, Y
and M to denote the underlying topological spaces, i∶X→ M← Y ∶ j is a
cofibrant cospan.

Example
Any CW complex together with a pair of disjoint subcomplexes and inclusions
gives a cofibrant cospan.
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COMPOSITION OF COFIBRANT COSPANS
Lemma
(I) For any spaces X,Y and Z in Ob(Top) there is a composition of cofibrant
cospans

● ∶CofCos(X,Y) × CofCos(Y,Z)→ CofCos(X,Z)

⎛
⎜
⎝

X Y
Mi j ,

Y Z
Nk l

⎞
⎟
⎠
↦
X Z

M ⊔Y Nĩ l̃

where ĩ = pM ○ i and l̃ = pN ○ l are obtained via the following diagram

X Y Z

M N

M ⊔Y N,

i j k l

pM pN

the middle square of which is the pushout of j∶M← Y→ N∶k in Top.

(II) Hence there is a magmoid CofCos = (Ob(Top),CofCos(−,−), ●). 11



EQUIVALENCE CLASSES COFIBRANT COSPANS

Lemma
For each pair X,Y ∈ Ob(CofCos), we define a relation on CofCos(X,Y) by

⎛
⎜
⎝

X Y
Mi j

⎞
⎟
⎠
ch∼
⎛
⎜
⎝

X Y
Ni′ j′

⎞
⎟
⎠

if there exists a commuting diagram

M

X Y

M′

ψ

i

i′

j

j′

where ψ is a homotopy equivalence. For each pair X,Y ∈ Top the relations
(CofCos(X,Y), ch∼) are a congruence on CofCos.
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EQUIVALENCE CLASSES OF COFIBRANT COSPANS
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EQUIVALENCE CLASSES OF COFIBRANT COSPANS

Proof uses classical theorem (E.g. Brown06, Thm7.2.8):
If

X Y
Mi j ,

X Y
Ni′ j′

are cospans such that ⟨i, j⟩∶X ⊔ Y→ M and

⟨i′, j′⟩∶X ⊔ Y→ N are cofibrations, then the set of homotopy equivalences ψ
such that

M

X Y

M′

ψ

i

i′

j

j′

commutes, is in bijective correspondence with the set of ψ′ such that there
exists ϕ∶N→ M with ψ′ ○ ϕ and ϕ ○ ψ′ homotopic to identity through maps
commuting with cospans.
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CATEGORY OF COFIBRANT COSPANS

Theorem (T.)
The quadruple

CofCos =
⎛
⎜
⎝
Ob(Top) , CofCos(X,Y)/ ch∼ , ● ,

⎡⎢⎢⎢⎢⎣

X X
X × IιX0 ιX1

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠

is a category.
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MONOIDAL CATEGORY OF COFIBRANT COSPANS

There is a functor Φ∶Toph → CofCos which sends a homeomorphism f∶X→ Y
to the cospan

X Y
Y × IιY0○f ιY1

.

Theorem (T.)
There is a symmetric monoidal category (CofCos,⊗,∅, αX,Y,Z, λX, ρX, βX,Y)
where ⎡⎢⎢⎢⎢⎣

W X
Mi j

⎤⎥⎥⎥⎥⎦ch
⊗
⎡⎢⎢⎢⎢⎣

Y Z
Nk l

⎤⎥⎥⎥⎥⎦ch
=
⎡⎢⎢⎢⎢⎣

W ⊔ Y X ⊔ Z
M ⊔Ni⊔k j⊔l

⎤⎥⎥⎥⎥⎦ch
.

All other maps are the images of the corresponding maps in (Top,⊔).
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CATEGORY OF HOMOTOPY COBORDISMS

Definition
A space X is called homotopically 1-finitely generated if π(X,A) is finitely
generated for all finite sets of basepoints A.
Let χ denote the class of all homotopically 1-finitely generated spaces.

Theorem (T.)
There is a (symmetric monoidal) subcategory of CofCos

HomCob =
⎛
⎜
⎝
χ,HomCob(X,Y), ● ,

⎡⎢⎢⎢⎢⎣

X X
X × IιX0 ιX1

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠
.
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MOTION GROUPOIDS

Definition
Fix a manifold, submanifold pair M = (M,A). A flow in M is a map
f ∈ Top(I,TOPhA(M,M)) with f0 = idM. Define,

FlowM = {f ∈ Top(I,TOPhA(M,M)) ∣ f0 = idM}.

Example
For any manifold M the path ft = idM for all t, is a flow. We will denote this
flow IdM.

Example
For M = S1 (the unit circle) we may parameterise by θ ∈ R/2π in the usual way.
Consider the functions τϕ ∶ S1 → S1 (ϕ ∈ R) given by θ ↦ θ + ϕ, and note that
these are homeomorphisms. Then consider the path ft = τtπ (‘half-twist’). This
is a flow.

18
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MOTION GROUPOIDS

Definition
Fix a M = (M,A). A motion in M is a triple f∶NÀ N′ consisting of a flow
f ∈ FlowM, a subset N ⊆ M and the image of N at the endpoint of f, f1(N) = N′.

19



MOTION GROUPOIDS

TOPh(M,M)

TOPh(M,M)

idM (b)

(a)

HomeoM(N,N′)

HomeoM(N,N)

20



EXAMPLE M = D2
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MOTION GROUPOIDS
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MOTION GROUPOIDS

Theorem (.T, Faria Martins, Martin)
Let M = (M,A) where M is a manifold and A ⊂ M a subset. There is a groupoid

MotM = (PM, MtM(N,N′)/ m∼,∗, [IdM]m, [f]m ↦ [̄f]m).

where

(I) objects are subsets of M;
(II) composition of representative morphisms is given by

g∶N′ À N′′ ∗ f∶NÀ N′ = g ∗ f∶NÀ N′′.

where

(g ∗ f)t =
⎧⎪⎪⎨⎪⎪⎩

f2t 0 ≤ t ≤ 1/2,
g2(t−1/2) ○ f1 1/2 ≤ t ≤ 1;

(1)
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MOTION GROUPOIDS

(III) the inverse for each morphism [f∶NÀ N′]m is the motion-equivalence
class of f̄∶N′ À N where f̄t = f(1−t) ○ f−11 .

(IV) morphisms between subsets N,N′ are motion-equivalence classes
[f∶NÀ N′]m of motions; explicitly

f∶NÀ N′ m∼ g∶NÀ N′ if ḡ ∗ f p∼ h;

where ht(N) = N for all t;
(V) the identity at each object N is the motion-equivalence class of

IdM∶NÀ N, (IdM)t(m) =m for all m ∈ M.

24
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where ht(N) = N for all t;

(V) the identity at each object N is the motion-equivalence class of
IdM∶NÀ N, (IdM)t(m) =m for all m ∈ M.

24



MOTION GROUPOIDS

(III) the inverse for each morphism [f∶NÀ N′]m is the motion-equivalence
class of f̄∶N′ À N where f̄t = f(1−t) ○ f−11 .

(IV) morphisms between subsets N,N′ are motion-equivalence classes
[f∶NÀ N′]m of motions; explicitly

f∶NÀ N′ m∼ g∶NÀ N′ if ḡ ∗ f p∼ h;
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MOTION GROUPOIDS

• The motion subgroupoid of a configuration of n points in the disk is
isomorphic to the n strand Artin braid group.
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MOTION GROUPOIDS

• The motion subgroupoid of a configuration of n unknotted unlinked
loops in the 3-ball is isomorphic to the loop braid group with n loops.

26



MOTION GROUPOIDS

Definition
The worldline of a motion f∶NÀ N′ in a manifold M is

W (f∶NÀ N′) = ⋃
t∈[0,1]

ft(N) × {t} ⊆ M × I.

Let W′(f∶NÀ N′) = (M × I) ∖ (W (f∶NÀ N′)) .

Homotopy finite version of MotM
Let M be a homotopy finite space. Let hfMotM be the full subgroupoid of
MotM such that the complement of each object is a homotopy finite space.
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MOTION GROUPOIDS

Theorem (T.)
Let M be a manifold. There is a well-defined functor

MOT AM∶hfMotM → HomCob

which sends an object N ∈ Ob(hfMotM) to M∖N, and which sends a morphism
[f∶NÀ N′]m to the cospan homotopy equivalence class of

M ∖N M ∖N′

W′(f∶NÀ N′)
ιf0 ιf1

where ιft ∶M ∖ ft(N)→W′(f∶NÀ N′), m↦ (m, t).

28
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ZG∶HomCob→ VectC

Definition
Let χχχ be the set of pairs (X,X0) such that X is in χ and X0 is a finite
representative subset.
Let (X,X0), (Y,Y0) and (M,M0) be in χχχ.

A based homotopy cobordism from
(X,X0) to (Y,Y0) is a diagram i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶ j such that:
1. i∶X→ M→ Y∶ j is a homotopy cobordism.
2. i and j are maps of pairs.
3. M0 ∩ i(X) = i(X0) and M0 ∩ j(Y) = j(Y0).
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ZG∶HomCob→ VectC

(D2,D20)

ji
(S1,S10

′)(S1,S10)
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ZG∶HomCob→ VectC

Let G be a group.

For a pair (X,X0) ∈ χχχ, define

Z!G(X,X0) = C (Grpd (π(X,X0),G)) .

31



EXAMPLE

π(X,X0) ≅ (Z ∗Z)⊔ {∗}⊔ {∗}. Maps from π(X,X0) to G are determined by pairs
in G × G, whose elements respectively denote the images of the equivalence
classes of the loops marked x1 and x2 in the figure, so we have
Z!G(X,X0) ≅ C(G × G).

x1 x2

32



ZG∶HomCob→ VectC

Let i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶ j be a based homotopy cobordism, we define
a matrix

Z!G (
(X,X0) (Y,Y0)

(M,M0)
i j ) ∶ Z!G(X,X0)→ Z!G(Y,Y0)

as follows. Let f ∈ Z!G(X,X0) and g ∈ Z!G(Y,Y0) be basis elements, then

⟨g ∣Z!G (
(X,X0) (Y,Y0)

(M,M0)
i j )∣f⟩ =

RRRRRRRRRRRRRRRRRRRRRR

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h ∶ π(M,M0)→ G

RRRRRRRRRRRRRRRRRRRRRR

π(X,X0) π(Y,Y0)

π(M,M0)

G

π(i)

f

π(j)

gh

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

RRRRRRRRRRRRRRRRRRRRRR
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ZG∶HomCob→ VectC

Lemma
The map Z!G preserves composition, extended in the obvious way to a
composition of based cospans.

π(X,X0) π(Y,Y0) π(Z,Z0)

π(M,M0) π(N,N0)

π(M ⊔Y N,M0 ⊔Y0 N0)

G

π(i)

f

π(k)π(j) π(l)

gh

Proof
Thm.9.1.2, Topology and Groupoids, Brown gives that middle square is a push
out.
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ZG∶HomCob→ VectC

Lemma
Let X be a topological space, G a group, X0 ⊆ X a finite representative subset
and y ∈ X a point with with y ∉ X0. There is a non-canonical bijection of sets

Θγ ∶Grpd(π(X,X0),G) × G→ Grpd(π(X,X0 ∪ {y}),G)
(f,g)↦ F

where γ is a choice of a path from some x ∈ X0 to y and F is the extension
along γ and g.
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ZG∶HomCob→ VectC
Consider a concrete homotopy cobordism, i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶ j. It
follows

Z!G(M,M0 ∪ {m}) = ∣G∣Z!G(M,M0).

It follows that for all M′0 and M0, we can write

Z!G(M,M′0 ∪M0) = ∣G∣(∣M
′
0∪M0∣−∣M0∣)Z!G(M,M0)

and
Z!G(M,M′0 ∪M0) = ∣G∣(∣M

′
0∪M0∣−∣M′0∣)Z!G(M,M′0)

which together imply

∣G∣−∣M0∣Z!G(M,M0) = ∣G∣−∣M
′
0∣Z!G(M,M′0)

and that
∣G∣−(∣M0∣−∣X0∣)Z!G(M,M0) = ∣G∣−(∣M

′
0∣−∣X0∣)Z!G(M,M′0).
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ZG∶HomCob→ VectC

Lemma
We redefine the linear map we assign to a concrete based homotopy
cobordisms as

Z!!G (
(X,X0) (Y,Y0)

(M,M0)
i j ) = ∣G∣−(∣M0∣−∣X0∣)Z!G (

(X,X0) (Y,Y0)

(M,M0)
i j ) .

The map Z!!G does not depend on the choice of subset M0 ⊆ M, and this
preserves composition. When the relevant cospan is clear, we will refer to
this as Z!!G(M,X0,Y0) to highlight the dependence on X0 and Y0.
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ZG∶HomCob→ VectC

Lemma
There is a contravariant functor

VX ∶ FinSet∗(X)→ Set

constructed as follows. Let Xα,Xβ ∈ Ob(FinSet∗(X)) with Xβ ⊆ Xα. Let
VX(Xα) = Grpd(π(X,Xα),G). For any vα ∈ VX(Xα) we have a commuting triangle

π(X,Xβ) π(X,Xα)

G.

ιβα

vα○ιβα

vα

Now let VX(ιβα∶Xβ → Xα) = ϕαβ where ϕαβ ∶ VX(Xα)→ VX(Xβ), vα ↦ vα ○ ιαβ .
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ZG∶HomCob→ VectC

Definition
For X ∈ χ define

ZG(X) = colim(V ′X) = C(colim(VX))

where V ′X = FVC ○ VX and VX∶ FinSet∗(X)→ Set.
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ZG∶HomCob→ VectC

Let i∶X→ M← Y ∶ j be a concrete homotopy cobordism. Fix a choice of Yα′ ⊆ Y
such that (Y,Yα′) ∈ χχχ. For each pair Xα,Xβ ⊆ X such that (X,Xα), (X,Xβ) ∈ χχχ we
have the following diagram

Z!G (X,Xα) Z!G (X,Xβ)

ZG(X)

Z!G(Y,Yα′)

ZG(Y).

Z!!G(M,Xα,Yα′)

ϕXαβ

ϕXα

Z!!G(M,Xβ ,Yα′)

ϕXβ

dMα′

ϕYα′

(2)
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ZG∶HomCob→ VectC

Lemma
The assignment

ZG
⎛
⎜
⎝

X Y
Mi j

⎞
⎟
⎠
= ϕYα′dMα′

does not depend on the choice of Yα′ .

Theorem (T.)
ZG is a functor.
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ZG∶HomCob→ VectC

Lemma
Let i∶X→ M← Y ∶ j be a concrete homotopy cobordism,
i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶ j a choice of concrete based homotopy
cobordism, and [f] ∈ ZG(X) and [g] ∈ ZG(Y) be basis elements (so [f], for
example, is an equivalence class in colim(VX)), then

⟨[g]∣ZG(M)∣[f]⟩ = ∣G∣−(∣M0∣−∣X0∣)∑
g∈ϕY−10 ([g])

∣{h∶π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) = g}∣

= ∣G∣−(∣M0∣−∣X0∣) ∑
g∈ϕY−10 ([g])

⟨g ∣Z!G(M,M0) ∣ f⟩

where ϕY0∶Z!G(Y,Y0)→ ZG(Y) is the map into colim(V ′Y).

Equivalently

⟨[g]∣ZG(M)∣[f]⟩=∣G∣−(∣M0∣−∣X0∣) ∣{h ∶ π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) ∼ g}∣
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ZG∶HomCob→ VectC

Lemma
Let i∶X→ M← Y ∶ j be a concrete homotopy cobordism,
i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶ j a choice of concrete based homotopy
cobordism, and [f] ∈ ZG(X) and [g] ∈ ZG(Y) be basis elements (so [f], for
example, is an equivalence class in colim(VX)), then

⟨[g]∣ZG(M)∣[f]⟩ = ∣G∣−(∣M0∣−∣X0∣)∑
g∈ϕY−10 ([g])

∣{h∶π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) = g}∣

= ∣G∣−(∣M0∣−∣X0∣) ∑
g∈ϕY−10 ([g])

⟨g ∣Z!G(M,M0) ∣ f⟩

where ϕY0∶Z!G(Y,Y0)→ ZG(Y) is the map into colim(V ′Y). Equivalently

⟨[g]∣ZG(M)∣[f]⟩=∣G∣−(∣M0∣−∣X0∣) ∣{h ∶ π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) ∼ g}∣
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ZG∶HomCob→ VectC

V(Xα)/≅ V(Xα) V(Xβ)

colim(V)ϕ̂α

ϕαβpα

ϕα ϕβ

Theorem (T.)
For X a space, the map ϕ̂α is an isomorphism. Hence, for a homotopically
1-finitely generated space X ∈ χ

ZG(X) = C((Grpd(π(X,X0),G)/ ≅),

for any choice X0 ⊂ X of finite representative subset, where ≅ denotes taking
maps up to natural transformation.
Further,

ZG(X) = C((Grpd(π(X),G)/ ≅).
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EXAMPLE

x1 x2

Let X be the complement of the embedding of two circles shown. Letting
X0 ⊂ X be the subset shown, Grpd(π(X,X0),G) = G × G as discussed previously.
Since all objects are mapped to the unique object in G, taking maps up to
natural transformation is means taking maps up to conjugation by elements
of G at each basepoint, hence in this case maps are labelled by pairs of
elements of G, up to simultaneous conjugation, so we have
ZG(X) = C((G × G)/G).
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EXAMPLE

X

Y

γ1
γ2

x1 x2

y1

γ3 M

Basis elements in ZG(X) are given by equivalence classes [(f1, f2)] where
f1, f2 ∈ G and [] denotes simultaneous conjugation by the same element of G.
Basis elements in ZG(Y) are given by elements of g taken up to conjugation,
denoted [g1]. We have

⟨[g1]∣ZG(M)∣[(f1, f2)]⟩ = ∣G∣−2 {a,b, c,d,e ∈ G ∣ a = f1,b = f2,g1 ∼ ebae−1}
= {e ∈ G ∣ g1 ∼ ef1f2e−1}

=
⎧⎪⎪⎨⎪⎪⎩

∣G∣ if g1 ∼ f1f2
0 otherwise. 45



UNDERCROSSING BRAID

⟨[g1,g2]∣ZGM∣[f1, f2]⟩ = ∣G∣−1{a,b, c∣a = f1,b = f2, cf1c−1 ∼ g2, cf−11 f2f1c−1 = g1}

=
⎧⎪⎪⎨⎪⎪⎩

1 [g1,g2] = [f−11 f2f1, f1]
0 otherwise
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BRAIDS

Undercrossing

⟨[g1,g2]∣ZGM∣[f1, f2]⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 [g1,g2] = [f−11 f2f1, f1]
0 otherwise

Overcrossing

⟨[g1,g2]∣ZGM∣[f1, f2]⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 [g1,g2] = [f2, f−12 f1f2]
0 otherwise
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