TOPOLOGICAL QUANTUM FIELD THEORIES \& HOMOTOPY COBORDISMS
 arXiv:2208.14504

Fiona Torzewska
06/12/23
University of Bristol

MOTIVATION

AIM: To study particle statistics in topological phases.

MOTIVATION

AIM: To study particle statistics in topological phases.

MOTIVATION

- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Such functors may factor through other categories that may be easier to work with - I will give a construction of a category of cofibrant cospans of topological spaces. Functors into this category are obtained roughly by taking the complement of particle trajectories.
- Particle trajectories modelled by motion groupoids, mapping class groupoids, (generalised) tangle categories, defect cobordism categories, embedded cobordism categories...
- Here we are interested in representations of the above categories which are invariant up to a notion of homotopy equivalence of the complement of the particle trajectory (Yetter, Kitaev, Dijkgraaf-Witten, Quinn, knot group, Artin rep of braids). Notice such complements are generally not compact manifolds.
- Such functors may factor through other categories that may be easier to work with - I will give a construction of a category of cofibrant cospans of topological spaces. Functors into this category are obtained roughly by taking the complement of particle trajectories.
- I will also show that Yetter's TQFTs associated to finite groups generalise to explicitly calculable functors from this category.

1. Construction of the category CofCos, and subcategory HomCob
2. Construction of the category CofCos, and subcategory HomCob
3. Functor from the motion groupoid of a manifold to HomCob
4. Construction of the category CofCos, and subcategory HomCob
5. Functor from the motion groupoid of a manifold to HomCob
6. Family of functors $Z_{G}:$ HomCob \rightarrow Vect $_{\mathbb{C}}$

Cofibrant cospans and HOMOTOPY COBORDISMS

Definition

Let X, Y and M be spaces. A cofibrant cospan from X to Y is a diagram $i: X \rightarrow M \leftarrow Y: j$ such that $\langle i, j\rangle: X \sqcup Y \rightarrow M$ is a closed cofibration.
For spaces $X, Y \in T$ Top, we define the set of all cofibrant cospans

$$
\operatorname{CofCos}(X, Y)=\left\{\left.\begin{array}{cc}
X_{i}> & \\
{ }_{M} & { }_{j}^{Y}
\end{array} \right\rvert\,\langle i, j\rangle \text { is a closed cofibration }\right\} .
$$

COFIBRATIONS

Definition

Let A and X be spaces. A map $i: A \rightarrow X$ has the homotopy extension property, with respect to the space Y, if for any pair of a homotopy $h: A \times \mathbb{I} \rightarrow Y$ and a map $f: X \rightarrow Y$ satisfying $(f \circ i)(a)=h(a, 0)$, there exists a homotopy $H: X \times \mathbb{I} \rightarrow Y$, extending h, with $H(x, 0)=f(x)$ and $H(i(a), t)=h(a, t)$. This is illustrated by the following diagram.

(Where for any space $X, \iota_{0}^{X}: X \rightarrow X \times \mathbb{I}$ is the map $x \mapsto(x, 0)$.)
We say that $i: A \rightarrow X$ is a cofibration if i satisfies the homotopy extension property for all spaces Y.

COFIBRANT COSPANS

COFIBRANT COSPANS

COFIBRANT COSPANS

Example

Let X be a space. The cospan id $x: X \rightarrow X \leftarrow X$:id X is not a cofibrant cospan, unless $X=\varnothing$.

COFIBRANT COSPANS

Proposition

For X a topological space, the cospan $\iota_{0}^{X}: X \rightarrow X \times \mathbb{I} \leftarrow X: \iota_{1}^{X}$ is a cofibrant cospan (where $\iota_{a}^{X}: X \rightarrow X \times \mathbb{I}$ is the map $x \mapsto(x, a)$).

Proof sketch

Suppose there exists a homotopy $h:(X \sqcup X) \times \mathbb{I} \rightarrow K$, and a map $f: X \times \mathbb{I} \rightarrow K$, such that $h((x, 0), 0)=f(x, 0)$ and $h((x, 1), 0)=f(x, 1)$. Composition with below retraction gives homotopy $H:(X \times \mathbb{I}) \times \mathbb{I} \rightarrow K$.

Proposition

A concrete cobordism canonically defines a cofibrant cospan.
Precisely, let X, Y and M be smooth oriented manifolds, and let M be a concrete cobordism from X to Y. Hence there exists a diffeomorphism $\phi: \bar{X} \sqcup Y \rightarrow \partial M$. Define maps $i(x)=\phi(x, 0)$ and $j(y)=\phi(y, 1)$. Then, using X, Y and M to denote the underlying topological spaces, $i: X \rightarrow M \leftarrow Y: j$ is a cofibrant cospan.

Example

Any CW complex together with a pair of disjoint subcomplexes and inclusions gives a cofibrant cospan.

COMPOSITION OF COFIBRANT COSPANS

Lemma

(I) For any spaces X, Y and Z in $O b$ (Top) there is a composition of cofibrant cospans

$$
\cdot: \operatorname{CofCos}(X, Y) \times \operatorname{CofCos}(Y, Z) \rightarrow \operatorname{CofCos}(X, Z)
$$

where $\tilde{i}=p_{M} \circ i$ and $\tilde{l}=p_{N} \circ l$ are obtained via the following diagram

the middle square of which is the pushout of $j: M \leftarrow Y \rightarrow N: k$ in Top.
(II) Hence there is a magmoid $\operatorname{CofCos}=(\operatorname{Ob}(\operatorname{Top}), \operatorname{CofCos}(-,-), \cdot)$.

Equivalence classes cofibrant cospans

Lemma

For each pair $X, Y \in O b(\operatorname{CofCos})$, we define a relation on $\operatorname{CofCos}(X, Y)$ by
if there exists a commuting diagram

where ψ is a homotopy equivalence. For each pair $X, Y \in$ Top the relations $(\operatorname{CofCos}(X, Y), \stackrel{\text { ch }}{\sim})$ are a congruence on CofCos.

EQUIVALENCE CLASSES OF COFIBRANT COSPANS

EQUIVALENCE CLASSES OF COFIBRANT COSPANS

Proof uses classical theorem (E.g. Brown06, Thm7.2.8):
If ${ }_{i} \Downarrow_{M}{ }^{\searrow}{ }_{j}^{Y},{ }_{i^{\prime} \searrow{ }_{N}} \swarrow_{j^{\prime}}^{Y}$ are cospans such that $\langle i, j\rangle: X \sqcup Y \rightarrow M$ and
$\left\langle i^{\prime}, j^{\prime}\right\rangle: X \sqcup Y \rightarrow N$ are cofibrations, then the set of homotopy equivalences ψ such that

commutes, is in bijective correspondence with the set of ψ^{\prime} such that there exists $\phi: N \rightarrow M$ with $\psi^{\prime} \circ \phi$ and $\phi \circ \psi^{\prime}$ homotopic to identity through maps commuting with cospans.

CATEGORY OF COFIBRANT COSPANS

Theorem (T.)
The quadruple
is a category.

MONOIDAL CATEGORY OF COFIBRANT COSPANS

There is a functor $\Phi:$ Top $^{h} \rightarrow$ CofCos which sends a homeomorphism $f: X \rightarrow Y$

Theorem (T.)

There is a symmetric monoidal category $\left(\operatorname{CofCos}, \otimes, \varnothing, \alpha_{X, Y, Z}, \lambda_{X}, \rho_{X}, \beta_{X, Y}\right)$ where

All other maps are the images of the corresponding maps in (Top,ப).

Definition

A space X is called homotopically 1-finitely generated if $\pi(X, A)$ is finitely generated for all finite sets of basepoints A.
Let χ denote the class of all homotopically 1-finitely generated spaces.

Theorem (T.)

There is a (symmetric monoidal) subcategory of CofCos

$$
\operatorname{HomCob}=\left(\chi, \operatorname{HomCob}(X, Y), \cdot,\left[\begin{array}{lll}
X & & \\
\iota_{0}^{x} \searrow & & \\
{ }_{0} & X \times \mathbb{I} & \iota_{1}^{x}
\end{array}\right]_{\mathrm{ch}}\right) .
$$

Motion groupoids

MOTION GROUPOIDS

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map $f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

MOTION GROUPOIDS

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map
$f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right) \mid f_{0}=\mathrm{id}_{M}\right\} .
$$

Example

For any manifold M the path $f_{t}=\mathrm{id}_{M}$ for all t, is a flow. We will denote this flow Id_{M}.

MOTION GROUPOIDS

Definition

Fix a manifold, submanifold pair $\underline{M}=(M, A)$. A flow in \underline{M} is a map
$f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right)$ with $f_{0}=\operatorname{id}_{M}$. Define,

$$
\operatorname{Flow}_{\underline{M}}=\left\{f \in \operatorname{Top}\left(\mathbb{I}, \operatorname{TOP}_{A}^{h}(M, M)\right) \mid f_{0}=\operatorname{id}_{M}\right\} .
$$

Example

For any manifold M the path $f_{t}=\mathrm{id}_{M}$ for all t, is a flow. We will denote this flow Id_{M}.

Example

For $M=S^{1}$ (the unit circle) we may parameterise by $\theta \in \mathbb{R} / 2 \pi$ in the usual way.
Consider the functions $\tau_{\phi}: S^{1} \rightarrow S^{1}(\phi \in \mathbb{R})$ given by $\theta \mapsto \theta+\phi$, and note that these are homeomorphisms. Then consider the path $f_{t}=\tau_{t \pi}$ ('half-twist'). This is a flow.

MOTION GROUPOIDS

Definition

Fix a $\underline{M}=(M, A)$. A motion in \underline{M} is a triple $f: N \backsim N^{\prime}$ consisting of a flow $f \in$ Flow $_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of $f, f_{1}(N)=N^{\prime}$.

MOTION GROUPOIDS

MOTION GROUPOIDS

MOTION GROUPOIDS

Theorem (.T, Faria Martins, Martin)

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{\underline{M}}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, *,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto[\bar{f}]_{m}\right) .
$$

where

MOTION GROUPOIDS

Theorem (.T, Faria Martins, Martin)

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{\underline{M}}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, *,\left[\mathrm{Id}_{M}\right]_{m},[f]_{m} \mapsto[\bar{f}]_{m}\right) .
$$

where
(I) objects are subsets of M;

MOTION GROUPOIDS

Theorem (.T, Faria Martins, Martin)

Let $\underline{M}=(M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$
\operatorname{Mot}_{\underline{M}}=\left(\mathcal{P} M, \operatorname{Mt}_{\underline{M}}\left(N, N^{\prime}\right) / \stackrel{m}{\sim}, *,\left[\operatorname{Id}_{M}\right]_{m},[f]_{m} \mapsto[\bar{f}]_{m}\right) .
$$

where
(I) objects are subsets of M;
(II) composition of representative morphisms is given by

$$
g: N^{\prime} \backsim N^{\prime \prime} * f: N \backsim N^{\prime}=g * f: N \backsim N^{\prime \prime} .
$$

where

$$
(g * f)_{t}= \begin{cases}f_{2 t} & 0 \leq t \leq 1 / 2 \tag{1}\\ g_{2(t-1 / 2)} \circ f_{1} & 1 / 2 \leq t \leq 1\end{cases}
$$

MOTION GROUPOIDS

(III) the inverse for each morphism [f:N $\left.N N^{\prime}\right]_{m}$ is the motion-equivalence class of $\bar{f}: N^{\prime} \backsim N$ where $\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1}$.

MOTION GROUPOIDS

(III) the inverse for each morphism [f: $\left.N \backsim N^{\prime}\right]_{m}$ is the motion-equivalence class of $\bar{f}: N^{\prime} \cup N$ where $\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1}$.
(IV) morphisms between subsets N, N^{\prime} are motion-equivalence classes [$\left.f: N \backsim N^{\prime}\right]_{m}$ of motions; explicitly

$$
f: N \backsim N^{\prime} \stackrel{m}{\sim} g: N \backsim N^{\prime} \text { if } \bar{g} * f \stackrel{p}{\sim} h ;
$$

where $h_{t}(N)=N$ for all t;

MOTION GROUPOIDS

(III) the inverse for each morphism [f:N $\left.N N^{\prime}\right]_{m}$ is the motion-equivalence class of $\bar{f}: N^{\prime} \cup N$ where $\bar{f}_{t}=f_{(1-t)} \circ f_{1}^{-1}$.
(IV) morphisms between subsets N, N^{\prime} are motion-equivalence classes [$\left.f: N \backsim N^{\prime}\right]_{m}$ of motions; explicitly

$$
f: N \backsim N^{\prime} \stackrel{m}{\sim} g: N \backsim N^{\prime} \text { if } \bar{g} * f \stackrel{p}{\sim} h ;
$$

where $h_{t}(N)=N$ for all t;
(V) the identity at each object N is the motion-equivalence class of $\operatorname{Id}_{M}: N \backsim N,\left(\operatorname{Id}_{M}\right)_{t}(m)=m$ for all $m \in M$.

MOTION GROUPOIDS

- The motion subgroupoid of a configuration of n points in the disk is isomorphic to the n strand Artin braid group.

MOTION GROUPOIDS

- The motion subgroupoid of a configuration of n unknotted unlinked loops in the 3-ball is isomorphic to the loop braid group with n loops.

MOTION GROUPOIDS

Definition

The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
W\left(f: N \backsim N^{\prime}\right)=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Let $\mathbb{W}^{\prime}\left(f: N \backsim N^{\prime}\right)=(M \times \mathbb{I}) \backslash\left(\mathbb{W}\left(f: N \backsim N^{\prime}\right)\right)$.

MOTION GROUPOIDS

Definition

The worldline of a motion $f: N \backsim N^{\prime}$ in a manifold M is

$$
\mathrm{W}\left(f: N \backsim N^{\prime}\right)=\bigcup_{t \in[0,1]} f_{t}(N) \times\{t\} \subseteq M \times \mathbb{I} .
$$

Let $\mathbf{W}^{\prime}\left(f: N \backsim N^{\prime}\right)=(M \times \mathbb{I}) \backslash\left(\mathbb{W}\left(f: N \backsim N^{\prime}\right)\right)$.

Homotopy finite version of $\mathrm{Mot}_{\underline{M}}$
Let M be a homotopy finite space. Let $\operatorname{hfMot}_{\underline{\underline{M}}}$ be the full subgroupoid of $\operatorname{Mot}_{\underline{\underline{M}}}$ such that the complement of each object is a homotopy finite space.

MOTION GROUPOIDS

Theorem (T.)

Let M be a manifold. There is a well-defined functor

$$
\mathcal{M O} \mathcal{T}_{M}^{A}: \operatorname{hfMot}_{\underline{M}} \rightarrow \text { HomCob }
$$

which sends an object $N \in O b\left(\operatorname{hfMot}_{\underline{M}}\right)$ to $M \backslash N$, and which sends a morphism [$\left.f: N \backsim N^{\prime}\right]_{\mathrm{m}}$ to the cospan homotopy equivalence class of

where $\iota_{f_{t}}: M \backslash f_{t}(N) \rightarrow \mathrm{W}^{\prime}\left(f: N \backsim N^{\prime}\right), m \mapsto(m, t)$.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Definition

Let χ be the set of pairs $\left(X, X_{0}\right)$ such that X is in χ and X_{0} is a finite representative subset.
Let $\left(X, X_{0}\right),\left(Y, Y_{0}\right)$ and $\left(M, M_{0}\right)$ be in χ.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathrm{C}}$

Definition

Let χ be the set of pairs $\left(X, X_{0}\right)$ such that X is in χ and X_{0} is a finite representative subset.
Let $\left(X, X_{0}\right),\left(Y, Y_{0}\right)$ and $\left(M, M_{0}\right)$ be in χ. A based homotopy cobordism from $\left(X, X_{0}\right)$ to $\left(Y, Y_{0}\right)$ is a diagram $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ such that:

1. $i: X \rightarrow M \rightarrow Y: j$ is a homotopy cobordism.
2. i and j are maps of pairs.
3. $M_{0} \cap i(X)=i\left(X_{0}\right)$ and $M_{0} \cap j(Y)=j\left(Y_{0}\right)$.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Let G be a group.
For a pair $\left(X, X_{0}\right) \in \chi$, define

$$
Z_{G}^{!}\left(X, X_{0}\right)=\mathbb{C}\left(\operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right)\right)
$$

$\pi\left(X, X_{0}\right) \cong(\mathbb{Z} * \mathbb{Z}) \sqcup\{*\} \sqcup\{*\}$. Maps from $\pi\left(X, X_{0}\right)$ to G are determined by pairs in $G \times G$, whose elements respectively denote the images of the equivalence classes of the loops marked x_{1} and x_{2} in the figure, so we have $Z_{G}^{!}\left(X, X_{0}\right) \cong \mathbb{C}(G \times G)$.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Let $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ be a based homotopy cobordism, we define a matrix
as follows. Let $f \in Z_{G}^{!}\left(X, X_{0}\right)$ and $g \in Z_{G}^{!}\left(Y, Y_{0}\right)$ be basis elements, then

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

The map $Z_{G}^{!}$preserves composition, extended in the obvious way to a composition of based cospans.

Proof
Thm.9.1.2, Topology and Groupoids, Brown gives that middle square is a push out.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

Let X be a topological space, G a group, $X_{0} \subseteq X$ a finite representative subset and $y \in X$ a point with with $y \notin X_{0}$. There is a non-canonical bijection of sets

$$
\begin{aligned}
\Theta_{\gamma}: \operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right) \times G & \rightarrow \operatorname{Grpd}\left(\pi\left(X, X_{0} \cup\{y\}\right), G\right) \\
(f, g) & \mapsto F
\end{aligned}
$$

where γ is a choice of a path from some $x \in X_{0}$ to y and F is the extension along γ and g.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow \mathrm{Vect}_{\mathrm{C}}$

Consider a concrete homotopy cobordism, $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$. It follows

$$
Z_{G}^{!}\left(M, M_{0} \cup\{m\}\right)=|G| Z_{G}^{!}\left(M, M_{0}\right) .
$$

It follows that for all M_{0}^{\prime} and M_{0}, we can write

$$
Z_{G}^{!}\left(M, M_{0}^{\prime} \cup M_{0}\right)=\left.|G|\right|^{\left|\left|M_{0}^{\prime} \cup M_{0}\right|-\left|M_{0}\right|\right)} Z_{G}^{!}\left(M, M_{0}\right)
$$

and

$$
Z_{G}^{!}\left(M, M_{0}^{\prime} \cup M_{0}\right)=\left.|G|\right|^{\left|\left|M_{0}^{\prime} \cup M_{0}\right|-\left|M_{0}^{\prime}\right|\right)} Z_{G}^{!}\left(M, M_{0}^{\prime}\right)
$$

which together imply

$$
|G|^{-\left|M_{0}\right|} Z_{G}^{!}\left(M, M_{0}\right)=|G|^{-\left|M_{0}^{\prime}\right|} Z_{G}^{!}\left(M, M_{0}^{\prime}\right)
$$

and that

$$
|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} Z_{G}^{!}\left(M, M_{0}\right)=|G|^{-\left(\left|M_{0}^{\prime}\right|-\left|X_{0}\right|\right)} Z_{G}^{!}\left(M, M_{0}^{\prime}\right) .
$$

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

We redefine the linear map we assign to a concrete based homotopy cobordisms as

The map $Z_{G}^{!!}$does not depend on the choice of subset $M_{0} \subseteq M$, and this preserves composition. When the relevant cospan is clear, we will refer to this as $Z_{G}^{!}\left(M, X_{0}, Y_{0}\right)$ to highlight the dependence on X_{0} and Y_{0}.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

There is a contravariant functor

$$
\mathcal{V}_{X}: \text { FinSet }^{*}(X) \rightarrow \text { Set }
$$

constructed as follows. Let $X_{\alpha}, X_{\beta} \in O b\left(\right.$ FinSet $\left.^{*}(X)\right)$ with $X_{\beta} \subseteq X_{\alpha}$. Let $\mathcal{V}_{X}\left(X_{\alpha}\right)=\operatorname{Grpd}\left(\pi\left(X, X_{\alpha}\right), G\right)$. For any $v_{\alpha} \in \mathcal{V}_{X}\left(X_{\alpha}\right)$ we have a commuting triangle

$$
\pi\left(X, X_{\beta}\right) \xrightarrow{\iota_{\beta \alpha}} \pi\left(X, X_{\alpha}\right)
$$

Now let $\mathcal{V}_{\chi}\left(\iota_{\beta \alpha}: X_{\beta} \rightarrow X_{\alpha}\right)=\phi_{\alpha \beta}$ where $\phi_{\alpha \beta}: \mathcal{V}_{\chi}\left(X_{\alpha}\right) \rightarrow \mathcal{V}_{\chi}\left(X_{\beta}\right), v_{\alpha} \mapsto V_{\alpha} \circ \iota_{\alpha \beta}$.

Definition
For $X \in \chi$ define

$$
\mathrm{Z}_{G}(X)=\operatorname{colim}\left(\mathcal{V}_{X}^{\prime}\right)=\mathbb{C}\left(\operatorname{colim}\left(\mathcal{V}_{X}\right)\right)
$$

where $\mathcal{V}_{x}^{\prime}=F_{V_{C}} \circ \mathcal{V}_{x}$ and $\mathcal{V}_{X}:$ FinSet $^{*}(X) \rightarrow$ Set.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Let $i: X \rightarrow M \leftarrow Y: j$ be a concrete homotopy cobordism. Fix a choice of $Y_{\alpha^{\prime}} \subseteq Y$ such that $\left(Y, Y_{\alpha^{\prime}}\right) \in \chi$. For each pair $X_{\alpha}, X_{\beta} \subseteq X$ such that $\left(X, X_{\alpha}\right),\left(X, X_{\beta}\right) \in \chi$ we have the following diagram

Lemma

The assignment

$$
Z_{G}\left(\begin{array}{ccc}
X & & \\
& { }_{i} & \\
& \swarrow_{j}^{Y}
\end{array}\right)=\phi_{\alpha^{\prime}}^{Y} d_{\alpha^{\prime}}^{M}
$$

does not depend on the choice of $Y_{\alpha^{\prime}}$.
Theorem (T.) Z_{G} is a functor.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

Let $i: X \rightarrow M \leftarrow Y: j$ be a concrete homotopy cobordism, $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ a choice of concrete based homotopy cobordism, and $[f] \in Z_{G}(X)$ and $[g] \in Z_{G}(Y)$ be basis elements (so [f], for example, is an equivalence class in $\operatorname{colim}\left(\mathcal{V}_{X}\right)$), then

$$
\begin{aligned}
\langle[g]| Z_{G}(M)|[f]\rangle & =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right.} \sum_{g \in \phi_{0}^{Y-1}([g])}\left|\left\{h: \pi\left(M, M_{0}\right) \rightarrow G|h|_{\pi\left(X, X_{0}\right)}=\left.f \wedge h\right|_{\pi\left(Y, Y_{0}\right)}=g\right\}\right| \\
& =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} \sum_{g \in \phi_{0}^{Y-1}([g])}\langle g| Z_{G}^{!}\left(M, M_{0}\right)|f\rangle
\end{aligned}
$$

where $\phi_{0}^{Y}: Z_{G}^{!}\left(Y, Y_{0}\right) \rightarrow Z_{G}(Y)$ is the map into $\operatorname{colim}\left(\mathcal{V}_{Y}^{\prime}\right)$.

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

Lemma

Let $i: X \rightarrow M \leftarrow Y: j$ be a concrete homotopy cobordism, $i:\left(X, X_{0}\right) \rightarrow\left(M, M_{0}\right) \leftarrow\left(Y, Y_{0}\right): j$ a choice of concrete based homotopy cobordism, and $[f] \in Z_{G}(X)$ and $[g] \in Z_{G}(Y)$ be basis elements (so [f], for example, is an equivalence class in $\operatorname{colim}\left(\mathcal{V}_{X}\right)$), then

$$
\begin{aligned}
\langle[g]| Z_{G}(M)|[f]\rangle & =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right.} \sum_{g \in \phi_{0}^{Y-1}([g])}\left|\left\{h: \pi\left(M, M_{0}\right) \rightarrow G|h|_{\pi\left(X, X_{0}\right)}=\left.f \wedge h\right|_{\pi\left(Y, Y_{0}\right)}=g\right\}\right| \\
& =|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)} \sum_{g \in \phi_{0}^{Y-1}([g])}\langle g| Z_{G}^{!}\left(M, M_{0}\right)|f\rangle
\end{aligned}
$$

where $\phi_{0}^{Y}: Z_{G}^{!}\left(Y, Y_{0}\right) \rightarrow Z_{G}(Y)$ is the map into $\operatorname{colim}\left(\mathcal{V}_{Y}^{\prime}\right)$. Equivalently

$$
\langle[g]| Z_{G}(M)|[f]\rangle=|G|^{-\left(\left|M_{0}\right|-\left|X_{0}\right|\right)}\left|\left\{h: \pi\left(M, M_{0}\right) \rightarrow G|h|_{\pi\left(X, x_{0}\right)}=\left.f \wedge h\right|_{\pi\left(Y, Y_{0}\right)} \sim g\right\}\right|
$$

$\mathrm{Z}_{\mathrm{G}}: \mathrm{HomCob} \rightarrow$ Vect $_{\mathbb{C}}$

$$
\mathcal{V}\left(X_{\alpha}\right) / \cong \stackrel{p_{\alpha}}{\cong} \mathcal{V}\left(X_{\alpha}\right) \xrightarrow{\phi_{\alpha \beta}} \mathcal{V}\left(X_{\beta}\right)
$$

Theorem (T.)

For X a space, the map $\hat{\phi}_{\alpha}$ is an isomorphism. Hence, for a homotopically 1-finitely generated space $X \in \chi$

$$
Z_{G}(X)=\mathbb{C}\left(\left(\operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right) / \cong\right),\right.
$$

for any choice $X_{0} \subset X$ of finite representative subset, where \cong denotes taking maps up to natural transformation.
Further,

$$
Z_{G}(X)=\mathbb{C}((\operatorname{Grpd}(\pi(X), G) / \cong) .
$$

Let X be the complement of the embedding of two circles shown. Letting $X_{0} \subset X$ be the subset shown, $\operatorname{Grpd}\left(\pi\left(X, X_{0}\right), G\right)=G \times G$ as discussed previously. Since all objects are mapped to the unique object in G, taking maps up to natural transformation is means taking maps up to conjugation by elements of G at each basepoint, hence in this case maps are labelled by pairs of elements of G, up to simultaneous conjugation, so we have $Z_{G}(X)=\mathbb{C}((G \times G) / G)$.

EXAMPLE

Basis elements in $Z_{G}(X)$ are given by equivalence classes [$\left(f_{1}, f_{2}\right)$] where $f_{1}, f_{2} \in G$ and [] denotes simultaneous conjugation by the same element of G. Basis elements in $Z_{G}(Y)$ are given by elements of g taken up to conjugation, denoted [g_{1}]. We have

$$
\begin{aligned}
\left\langle\left[g_{1}\right]\right| Z_{G}(M)\left|\left[\left(f_{1}, f_{2}\right)\right]\right\rangle & =|G|^{-2}\left\{a, b, c, d, e \in G \mid a=f_{1}, b=f_{2}, g_{1} \sim e b a e^{-1}\right\} \\
& =\left\{e \in G \mid g_{1} \sim e f_{1} f_{2} e^{-1}\right\} \\
& = \begin{cases}|G| & \text { if } g_{1} \sim f_{1} f_{2} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

UNDERCROSSING BRAID

$$
\begin{aligned}
\left\langle\left[g_{1}, g_{2}\right]\right| Z_{G} M\left|\left[f_{1}, f_{2}\right]\right\rangle & =|G|^{-1}\left\{a, b, c \mid a=f_{1}, b=f_{2}, c f_{1} c^{-1} \sim g_{2}, c f_{1}^{-1} f_{2} f_{1} c_{1} c^{-1}=g_{1}\right\} \\
& = \begin{cases}1 & {\left[g_{1}, g_{2}\right]=\left[f_{1}^{-1} f_{2} f_{1}, f_{1}\right]} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

BRAIDS

Undercrossing

$$
\left\langle\left[g_{1}, g_{2}\right]\right| Z_{G} M\left|\left[f_{1}, f_{2}\right]\right\rangle= \begin{cases}1 & {\left[g_{1}, g_{2}\right]=\left[f_{1}^{-1} f_{2} f_{1}, f_{1}\right]} \\ 0 & \text { otherwise }\end{cases}
$$

Overcrossing

$$
\left\langle\left[g_{1}, g_{2}\right]\right| Z_{G} M\left|\left[f_{1}, f_{2}\right]\right\rangle= \begin{cases}1 & {\left[g_{1}, g_{2}\right]=\left[f_{2}, f_{2}^{-1} f_{1} f_{2}\right]} \\ 0 & \text { otherwise }\end{cases}
$$

TOPOLOGICAL QUANTUM FIELD THEORIES \& HOMOTOPY COBORDISMS
 arXiv:2208.14504

Fiona Torzewska
06/12/23
University of Bristol

