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“The first principles of the universe are atoms and empty space;
everything else is merely thought to exist.”

-Diog. Laér., Democritus, Vol. IX, /4
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Abstract

We can study the relation between reversible computational models and the conservative
dynamics of identical particles in order to shed light on the physical constraints of com-
putation. From a theoretical perspective, it can help determine what types of physical
resources are necessary for universal computation, in both classical and quantum mod-
els. This relation has been investigated since the nineteen-eighties and, in the quantum
case, has led to the formulation of restricted models of computation that stem from the

behavior of both fermionic and bosonic systems of free, identical particles.

This behavior is, in both cases, modelled by sequences of unitary maps, generated from
Hamiltonians that are quadratic on creation and annihilation operators, also called Gaus-
sian Hamiltonians. It is believed that, in both cases, computational models that use
Gaussian unitaries to process information are not universal for quantum computation. For
fermions, non-Gaussian unitaries are required for universality while, for bosons, Gaussian
unitaries are enough if we allow for adaptive protocols. These unitaries are also used to
model passive, linear optical devices in photonics, meaning that sequences of Gaussian

unitaries model networks of optical devices.

In this thesis, I study computational models based on the use of sequences of Gaussian
unitaries defined for one-dimensional systems of identical particles possessing fractional
exchange statistics. Particles having fractional exchange statistics are, in general, called
anyons, regardless of any specific particle model. Here, I investigate two specific families
of one-dimensional anyons, called fermionic anyons and bosonic anyons, which are related
to standard fermions and bosons by a Jordan-Wigner transformation. First, I propose the
use of unitaries generated by quadratic Hamiltonians over anyonic oscillator algebras in
order to define anyonic equivalents of optical devices. And later, I show how to calculate

the action of some simple anyonic devices on the Fock-states of both anyon types.

The principal result in this work is the proof of universality for quantum computing with
anyonic optical networks, for both anyon types, without requiring non-Gaussian unitaries
nor adaptive protocols. I prove this by devising networks that exploit a one-dimensional
analogue of the Aharonov-Bohm effect for both types of anyons. The secondary result is
a theory of coherent states for bosonic anyons, together with a study of their behavior
under optical networks and an application to the generation of cat-states, which are hard

to obtain for coherent states of regular bosons.






Resumo

Podemos estudar a relacao entre modelos de computacgao reversivel e a dindmica conser-
vativa de particulas idénticas para ajudar a esclarecer os limites fisicos da computacao.
Do ponto de vista tedrico, isto pode ajudar a determinar que tipos de recursos fisicos sao
necessarios para fazer computacao universal, tanto para modelos classicos quanto para
quanticos. Esse relagao tém sido investigada desde a década de oitenta e, no caso quantico,
levou a formulagao de modelos de computagao restrita provenientes do comportamento

de sistemas tanto de férmions quanto de bésons livres nao-interagentes.

Esse comportamento é, em ambos os casos, modelado por sequéncias de mapas unitarios
gerados por Hamiltonianas quadraticas nos operadores de criagao e aniquilagao, também
chamadas de Hamiltonianas Gaussianas. Acredita-se que, em ambos os casos, modelos de
computacao que se utilizam de mapas unitarios Gaussianos para processar informagao nao
sao universais para a computagao quantica. Para férmions, unitarios nao-Gaussianos sao
necessarios para obter a universalidade, enquanto que para bdsons, os unitarios Gaussianos
sao suficientes apenas se permitirmos protocolos adaptativos. Tais unitarios também sao
utilizados para modelar elementos Opticos passivos e lineares em fotonica, o que implica

que sequéncias de unitarios Gaussianos sdo um modelo para redes de elementos épticos.

Nesta tese, eu estudo modelos computacionais baseados no uso de sequéncias de unitarios
Gaussianos definidos para sistemas unidimensionais de particulas idénticas que tém es-
tatistica de troca fraciondaria. Particulas que tém estatistica de troca fracionaria sdao, em
geral, chamadas de anyons, independentemente de qualquer modelo. Aqui, eu estudo duas
familias especificas de anyons unidimensionais, chamados de dnyons fermionicos e anyons
bosonicos, que estao relacionados a férmions e bdsons comuns através de uma transfor-
macao de Jordan-Wigner. Primeiro, eu proponho o uso de unitarios gerados por Hamilto-
nianas quadraticas nas algebras de osciladores anyonicos a fim de definir os equivalentes
anyonicos de elementos opticos. E, depois, eu mostro como calcular a acao de elementos

opticos anyonicos simples sobre os estados de Fock de ambos os tipos de anyon.

O resultado principal deste trabalho é a prova de universalidade para a computacao
quantica com redes épticas anyonicas, para ambos os tipos de anyon, sem requerer o uso
de unitarios ndo-Gaussianos nem protocolos adaptativos. Eu provei isso fornecendo duas
redes que explorem um analogo unidimensional do efeito Aharonov-Bohm para ambos os
tipos de anyon. O resultado secundério é uma teoria de estados coerentes para anyons
bosonicos, junto com o estudo do comportamentos deles sobre a acao de redes Opticas e
uma aplicagdo na geracao de cat-states, que sao dificeis de obter com estados coerentes

de bdsons comuns.
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1 Introduction and thesis outline

Quantum computing is a rapidly developing field at the intersection of physics,
mathematics, and computer science, which aims to engineer and control quantum phe-
nomena in order to solve computational problems. By quantum phenomena I mean some-
thing very specific, since, although the miniaturization of circuit components is reaching
its quantum limits, this does not imply that standard computers will become "quantum'
any time soon. Instead, the quantum part of quantum computing refers to the way in-
formation is stored and processed in such devices, which is fundamentally different from

how it is done in both commercial and industrial-grade computers.

The idea of quantum computing first came around in the 80’s, most notably in
a work of Feynman [76]. In it, he proposed that a suitably-controllable quantum sys-
tem could simulate another quantum system, in a way that is much more efficient than
any classical computer. This was due to (but not only to) the prohibitive memory and
processing-time requirements for solving Schrodinger’s equations for a system of many
quantum particles. Such suitably-controllable systems became known as quantum simula-
tors, and they provided the first example of a quantum machine that could, in principle,
have a computational advantage over any classical computer in a particular task. In fact,
quantum simulators might be the first type of special-purpose quantum computers to

have real-world applications, given the current level of technological development [93].

General-purpose quantum computers were first theorized by Deutsch in [57], where
he generalized a classical computation model called the Turing machine, which was used
to build the foundations of modern computer science [221]. The first proposed applications
of a general quantum computer that were not related to physics were Grover’s |[115] and
Shor’s [219] algorithms. The first is an algorithm for the problem of searching in an
unstructured database, and it has a polynomial advantage over the best possible classical
algorithm, in terms of running time as a function of the database size. The second is
an algorithm for prime factorization] that has an exponential advantage over the best
known classical algorithm, in terms of running time as a function of the input’s number of
digits. These two algorithms showed that quantum computers could have very relevant,

real-world applications, and they sparked the interest on quantum computing as a whole.

Nevertheless, both algorithms required a very high degree of control over each
individual quantum system used in them. In fact, such necessity for control would make
quantum computing as a whole unfeasible. Soon after his algorithm, Shor [220] showed how

to encode quantum information in order detect and correct errors during computation.

1 Prime factorization plays an important role in commercial encryption protocols.
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This discovery sparked the possibility of doing fault-tolerant quantum computing, which
was confirmed for a broad class of systems by the threshold theorem in [4]. Since then,
many quantum systems were proposed as platforms for quantum computing, such as
neutral atoms [210], nitrogen-vacancy centers in diamonds [49], superconducting circuits

[152] and trapped ions [40], just to name a few.

At the time this thesis is written, the field of quantum computing is assumed to be
in what is called its NISQ (short for noisy intermediate-scale quantum) era. It is assumed
that quantum devices are advanced enough to be tested for specific tasks where they
might offer some advantage over classical computer, but are still too crude for sustained,
general use. Some examples of devices that are claimed to have achieved this type of
specific advantageﬂ are the Sycamore chip, made of superconducting circuits [14], and the
Jiuzhang sampler, built in an optical setup [265]. There has been a wave of excitement in
the field due to some of the previously mentioned developments. Nevertheless, even with
all of these advancements, there are some fundamental questions regarding the connection

between quantum computing and physics that have not been fully addressed.

One of the fundamental questions lying in the intersection of physics and com-
puter science is what exactly defines the computational properties of models based on the
dynamics of identical particle systems. For classical systems, the prototypical example of
such a model is the billiard ball computer [85] proposed by Fredkin and Toffoli, which
was proven to be able execute any algorithm using elastic (and therefore conservative)
collisions between identical classical particles. The consequences of this formalism was
best put by them in the abstract of [85]:

Quite literally, the functional behavior of a general-purpose digital computer
can be reproduced by a perfect gas placed in a suitably shaped container and

given appropriate initial conditions.

In the quantum case, linear optical computers, for both standard bosons [151] and fermions
[62], can be regarded as the quantum versions of the billiard ball model, where the identical
classical particles are replaced by identical quantum particles, and the "suitably shaped
container" is replaced by sequences of linear optical devices, such as beam splitters and

phase shifters.

However, unlike billiard balls, computers built on the basis of linear dynamical
maps acting over systems of fermions and bosons are not believed to be able to execute
all possible quantum computational processes. In other words, perfect classical gases can
mimic classical computers, but perfect fermionic or bosonic gases do not seem to mimic
quantum computers. Investigations into the nature of these models [35,|149}258] brings

credence to the belief that the statistical properties of bosons and fermions are largely

2 Also called quantum supremacy.
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the reason why they are not usable for general purpose computation without introducing

complicated interactions or measurement protocols.

This thesis aims to generalize those billiard-like models of quantum computing
to non-standard models of identical particles, which are generically named anyons. The
concept of anyon is commonly attributed to Wilczek [2504251}253], due to his coinage of
the term, but the idea itself goes back to the works of Leinaas and Myrheim [159,/160,(162].
Basically, anyons are particles, or particle-like objects such as solitons or monopoles, where
the many-body wave-functions describing identical anyons acquires non-trivial phase fac-
tors under particle permutations. Anyons can be broadly classified into two types, those
that are obtained from topological interactions in two dimensions, and those that are

obtained in exactly solvable models in one dimension.

Two-dimensional anyons play a major role in explaining some of the most impor-
tant phenomena in condensed matter physics, such as the fractional quantum Hall effect
[228,231], and are related to frontier subjects in mathematical physics, such as topologi-
cal quantum field theories [209}256] and topological order [17,/18]. But perhaps the most
relevant role of two dimensional anyons is their possible application in intrinsically fault-
tolerant models of quantum computing [86|,88,/146], which has been the major drive for

experimental research in the subject |19,184,211].

One-dimensional anyons can also be broadly divided into two classes, those arising
from two-body interactions, and those arising from three-body interactions. The two-
body, one-dimensional anyons have been closely related to two-dimensional anyons as
boundary theories [118]. They are also connected to Calogero-Sutherland-Moser systems
of exactly solvable models, and are intimately connected to the algebra of observables
in such systems [200]. Finally, three-body, one-dimensional anyons were first given by
Kundu |155], as an exactly solvable system generalizing the well known Lieb-Liniger model
[165,|166]. Gases of such particles have been studied for a long time [20}21},42./122}196],
and are examples of systems whose dynamics is interesting to simulate in optical lattice
devices [46,|112}/114},168].

This last type of one-dimensional anyon is the one for which we generalize the
linear-optical quantum computing models defined for fermions and bosons. They can be
divided into fermionic anyons, which obey the Pauli exclusion principle, and bosonic
anyons, which do not. Fermionic and bosonic anyons are related to fermions and bosons,
respectively, by what is known as a fractional Jordan-Wigner transformation |79,/178|,
which was shown to simplify many of our results. The results of our research showed that
by generalizing the linear optical model from fermions to fermionic anyons, we are able
to explain their computing power in terms of the anyonic character of the particle, more
specifically, on the intensity of a one-dimensional analogue of the Aharonov-Bohm effect

[5]. In particular, this shows that quantum computing with qubits, which is equivalent
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to quantum computing with hard-core bosons [258], can also be seen as deriving their
power from an inherent Aharonov-Bohm effect. This is proven by obtaining a protocol
for a two-qubit entangling gate that takes advantage of this effect for both fermionic and
bosonic anyons. Our research also shows that we can generalize the notion of coherent
states from standard bosons to bosonic anyons, and exploit the intrinsic Aharonov-Bohm
effect for building cat-states [182}206], which are resource states for quantum computing

in continuous variables.

1.1 Thesis outline

By necessity, this thesis contains a great deal of material reviewing previous results.
Chapters [2] and [3] contain revision material pertaining to the physics and history of alter-
nate theories of identical particle statistics, quantum computing, bosonic and fermionic
linear optics, and matchgates. Chapter 4| is based on my co-authored paper [238], pub-

lished in Physical Review A, as well as [239], currently submitted for publication.

In chapter [2, T make a historical account of the development of the contemporary
theories on the statistics of identical particles. In section 2.1} I do a brief review of the
standard theory of quantum statistics. In section [2.2] I review the first theories of non-
standard quantum statistics, made by Gentile [91] and Green [103]. In section [2.3] I review
the theories of quantum statistics that appeared after the development of the topological
theory, by Leinaas and Myrheim in [162]. Finally, in section , I introduce the type of
non-standard statistics that is used for the new computing models in chapter 4] The main
purpose of chapter [2] is to be a comprehensive, historical introduction to the subject of
non-standard quantum statistics, in order to dispel any confusion with regard to the type

of particle that is studied in this work.

In chapter I review some basic definitions, which are standard in quantum
computing research, and the computational models based on the physics of standard
identical particles. In section [3.1], I review the basics of classical and quantum circuits,
focusing on the notion of circuit universality, as well as quantum entanglement and its role
in universal gate constructions. In section [3.2} I review the optical network formalism for
standard particles, how they are used in quantum computing, and the differences between
bosons and fermions in this regard. Finally, in section[3.3] I review the equivalence between
quantum circuits for qubits and optical networks for hard-core bosons, which is a non-
standard type of particle, as well as their relationship with fermionic optical networks and

a set of quantum circuits known as matchgates.

In chapter [ T present our original results concerning quantum computing with
fermionic and bosonic anyons, defined in section 2.4l In section [.1], T present the ex-

act solutions to the Heisenberg equations of motion for quadratic Hamiltonians of both
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bosonic and fermionic anyons. In section .2 T present a generalization of the optical net-
works model for fermionic and bosonic anyons. I also provide two protocols for building
two-qubit entangling gates without using non-linear devices, nor adaptive measurements,
based on the presence of a one-dimensional analogue of the Aharonov-Bohm effect. Finally,
In section I present a study about generalized coherent states for bosonic anyons, and
their behavior under anyonic optical networks, proving that Gaussian devices for anyons

generate cat-states, which cannot be done do using Gaussian devices for bosons.

Finally, chapter [5| is devoted to concluding remarks. I make a brief summary of
the results obtained here, and how they fit into the larger picture of current research in
quantum computing. I also describe a few more questions that are left open, as well as

directions in which our results can be expanded.

1.2 Notations and conventions

In this section, I summarize the basic notation and conventions that are consis-
tently used throughout this Thesis. Since I touch upon many different subjects notational
conflicts appear, and it is necessary to depart from them to maintain consistency. States
of classical systems, bit strings, and vector quantities in general are given by lowercase
or uppercase Latin letters in wvector bold A,x. Quantum states are always be written
using both Dirac’s notation or wave-functions depending on the context. Operators are
written using a "hat', (like in O) over their corresponding classical version, including field

operators, except in the case of qubit or optical element operators.

Some specific notation for operators are as follows. The symbol "a" is used for
creation and annihilation operators in general, while " f " and 'D" denote operators for
standard fermions and bosons, respectively. The "é "and ' B " symbols denote creation and
annihilation operators for anyonic fermions and bosons respectively. The "z" symbol is
used to denote creation and annihilation operators for either standard bosons or fermions
whenever an expression or identity is valid for both types of particles, while the "x" symbol
is used when the same happens for both anyonic bosons and fermions instead. Finally,
the symbol "¢" is used to denote creation and annihilation operators for second quantized

qubits.

Single-qubit operators have their circuit representation as in figure (a), where
the lines indicate the qubit it acts on. Some examples of unitary gates are the following.
The Pauli operators are represented by X, Y and Z. Their matrix representation on the

Hilbert space basis generated by the vectors |0), |1) is

X] = [(1) ;] v] = [O ;] 2)= E _01], (11)
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The phase, hadamard and "7 /8" gates are represented by the symbols P, H and T'. Their

matrix representation on the Hilbert space basis generated by the vectors |0) , |1) is

10 1 |1 1 1 0
. ] [H]:ﬂll _J, 7] = ] (1.2

0 eiw/4
The two most relevant two-qubit gates are the CNOT and SWAP gates, with
their implementations given in the figures [Ia,b,d) and [Ifc) respectively. Their matrix

P] =

representation over the Hilbert space generated by the vector basis |00),/01),]10),|11) is

1000 1000
0100 0010

[CNOT] = ., [SWAP] = . (1.3)
000 1 0100
0010 000 1

Similarly, the most relevant three-qubit gate gate is the TOFFOLI gate, with imple-
mentations given in the figures [I(e,f). Its matrix representation over the Hilbert space
generated by the vector basis |000),|001),|010),|011),/100),/101),|110),|111) is

[TOFFOLI] = (1.4)

oS O O O O o o
o O O O o o = O
O O O O O = O O
o O O O = O O O
o O O = O O o o
SO O = O O O o O
_— o O O O o o o
S = O O O o o O
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1 1§1i1§1——1
S RN T D
(a) | (b) | (c)
111 i 1
2——252 252 2
3 ——313 313 3
(d) (e) ()

Figure 1 — Notation for classical gates. (a) Controlled-not gate CNOT} o, with control bit
1 and target bit 2 . (b) Controlled-not gate CNOT5;, with control bit 2 and
target bit 1. (c) SWAP; 5 gate between bits 1 and 2. (d) Controlled-not gate
CNOT, 3, with control bit 1 and target bit 3. (e) Toffoli gate TOFFOLI, 5 3,
with control bits 1,2 and target bit 3 . (f) Toffoli gate TOFFOLI, 55, with
control bits 1,3 and target bit 2.

1 U 1 i
1 1
(a) !
"""""""" T 9 H Ru(a) -2
1 - Ru(a) —1 i )
(b) |

Figure 2 — Notation for quantum gates. (a) Arbitrary single-qubit gate. (b) General rota-
tion gate of axis n and angle a. (c) Controlled rotation gate A(Ry(a))1,2, with
control qubit 1 and target qubit 2.

11HKHZHHF1=1 X 1
(a)
11— T """ RS
Q#Q_Q—H ZWik2 o- i -2
(b)
""""""" e 1 | —ePe—1
2 2 9 ij@ 2
(c)

Figure 3 — Some circuit identities: (a) HZH = X. (b) CNOT 2 = HyA(Z)12Hy =
HlHQCNOTQJHlHQ. (C)SWAPLQ = CNOTLQCNOTQJCNOTLQ
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2 Review: The theories of non-standard

quantum statistics

The concept of quantum statistics originates from Bose’s discovery that the correct
statistical distribution of Planck’s light quanta is not the Maxwell-Boltzmann distribution
[32]. At that time, neither Schrédinger’s formulation of quantum mechanics [213] nor
Heisenberg’s matrix mechanics [29}30,/127] had been developed. So, even before proper
quantum particle models were built, both Bose-Einstein [32/69] or Fermi-Dirac [61}75]
distributions were required as ad hoc assumptions of semiclassical explanations for both

atomic and solid state systems.

The experimental success obtained from the models that used these ad hoc distri-
butions established them as the standard, expected statistical behavior of many-particle
systems without strong, long-range interactions. In this work, the statistical behavior de-
fined by Bose-Einstein or Fermi-Dirac distributions are called standard quantum statistics.
After quantum mechanics was formalized, it became necessary to express these ad hoc
behaviors in terms of quantum theory, and in this process new forms of quantum statistics

arose, which here we call non-standard quantum statistics.

To understand non-standard quantum statistics we require concepts and methods
borrowed from many areas of physics and mathematics. So much, in fact, that it would
be impossible to cover all of the different definitions of "non-standard" statistics without
going outside the scope of this work. At the same time, I must also introduce specific
concepts and methods of quantum computation and information theory which are not
common, and require attention on their own. This chapter’s purpose, then, is to lay
out a historical/conceptual narrative about the development of non-standard quantum
statistics, culminating in the definition of the kind of statistics that will be the actual

subject of this work.

This chapter is organized as follows. First, I briefly review standard quantum
statistics from the semiclassical, many-body and field theory points of view in section [2.1]
Then, I proceed with the history of non-standard quantum statistics and divide it in two
periods. The first period, which I call the early period (1940-1971), is treated in section
and begins with Gentile’s intermediate statistics [91], the first known proposal of a
non-standard quantum statistics. This period also contains the history of the rise and fall

of Green’s Parastatistics [103].

The second period, which I call the modern period (1971-), is treated in section
2.3} It is set to begin in 1971, because it was the year when it was demonstrated that
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Green’s Parastatistics could be understood in terms of standard quantum statistics [63].
It is also the same year when the configuration space model of classical identical particles
was proposed |156], which eventually lead to the form of non-standard quantum statistics
that would later be called fractional statistics |162].

The chapter ends in section 2.4 where I depart from the historical narrative and
introduce the general family of non-standard quantum statistics that include our model.
In this section I also define what is a particle interpretation of an arbitrary quantum
system. Section is the most important section of the chapter, and will be referred to
frequently throughout this work.

2.1 Review on standard quantum statistics

As stated previously, in this section we discuss standard quantum statistics from
three different points of view. I call these the semiclassical formalism, the many-body
formalism, and the field formalism[l] of standard quantum statistics. Each is discussed on
its own terms in subsection and in subsection we show why all formalisms give

equivalent definitions of standard quantum statistical behavior.

This section is not intended to be a historical account of any of these formalisms,
but the division itself will be used as part to build the arguments in sections and
All assertions in this section are proved in traditional textbooks about statistical me-
chanics/thermodynamics, such as [111,/195]. Whenever I use more complex mathematical

methods additional references will be given.

2.1.1 Three definitions of quantum statistics

The first point of view on the theory of standard quantum statistics it the one
I called the semiclassical formalism. In it, particles obey classical equations of motion,
but only some trajectories, indexed by a set of quantum numbers taking discrete values,
is allowed, as in the Bohr atomic model. From now on, we refer to this description as
the isolated particle model of the semiclassical formalism. For simplicity, we will describe
this formalism for a system with N semiclassical particles having only the single-particle
energy € as the relevant quantum number, where the energy spectrum is {¢; };e; for some

index set [ € N with the lowest energy state being .

A semiclassical N-particle system is said to satisfy the indistinguishability assump-
tion if all particles have the same energy spectrum. This same system is said to satisfy
the no-interaction assumption if it is completely described by specifying the number of

particles n; (i.e., occupation numbers) that are in a classical state with energy ¢;. The se-

1 This subdivision in three points of view was made specifically for the argument in this section and for

historical comparisons in the next two sections, it is not standard in the literature.
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quence of numbers (n;);cr, is the set of allowed microstates of the N-particle system, and
its total energy is ' = >",c;€;. The properties just described are called the fundamental

assumptions of the semiclassical formalism.

A particle system satisfying these fundamental assumptions is called fermionic if
the occupation numbers n; are restricted to be either 0 or 1 for all 7 € I. When there is
no restriction on the image set of any of the n;, the system is called bosonic. It is a fact
from statistical mechanics, then, that the occupation number distribution for a fermionic
semiclassical system is the Fermi-Dirac distribution, and the Bose-Einstein distribution

for a bosonic one.

The second point of view is called the many-body formalism. In it, individual par-
ticles are represented by a Hilbert space 7 with basis labelled by the particle’s quantum
numbers. Assuming the same convention about quantum numbers made in our description
of the semiclassical formalism, the Hilbert space of a quantum particle H will be given by
the set of vectors {|€;) }ier. I call this quantum description the isolated particle model of

the many-body formalism.

A system of N particles, each described by the Hilbert space .7 defined in the last
paragraph, satisfied the no-interaction assumption, is the N-particle system as a whole is
described by the tensor product space J#y = H ® Yol @ 2 whose basis is given by the

set

{é eip>p, such that p € {1,- N}} : (2.1)

p=1
The index p labels the order of the tensor factors in J#y and each ¢;, is an arbitrary state

of the basis of .. The basis states of .7 will also be written as |e;,, ..., €).

One example of N-particle system satisfying the no-interaction assumption is the

one described by the Schrodinger equation

L OU(xy,. .., XN, t) N R _,
ih o = —pZ:l —%VP—FV(Xp,t) U(xq,...,XN,t), (2.2)
where V(x,t) is an external potential, and the coordinate labels x, with p = 1,..., N,

describe the position of each individual particle. The lack of an inter-particle potential is

the hallmark of the no-interaction assumption of the many-body formalism.

Indistinguishability in the many-body formalism is expressed by a type of sym-
metry. To see this, take for example a three particle system in a state |u), ® |v), ® |w)s,
where all of the |u) , |v) and |w) are orthonormal. The state |u), ® |v), ® |w), implies that
measurement of each particle state would determine that particle 1 is in state |u), particle

2 in state |v) and particle 3 is in state |w).

If the three particles just mentioned are indistinguishable, the only thing a mea-

surement of the system’s state can show is that some particle is in each one of the afore-
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mentioned states, without specifying which. Therefore, no physical process would be able

to distinguish between any of the three particle states

|u>1 ® |U>2 ® |w>3, ‘U>1 ® |u>2 ® |w>3= |w>1 ® |U>2 ® \u>3,

(2.3)
|u>1 ® |w>2 ® |U>37 |w>1 ® |u>2 ® |U>37 |U>1 ® |w>2 ® |u>3

This property of indistinguishable particles is called permutation degeneracy and, in quan-

tum mechanics, degeneracy is the consequence of a system’s symmetry.

A non-interacting N-particle system is said to satisfy the indistinguishability as-
sumption of the many-body formalism if any physical observable is invariant under per-
mutations of particle labels. In other words, the Hilbert space of a system of N indis-
tinguishable particles is a subspace of 7y, invariant with respect to the action of the
symmetric group of N elements, denoted by S¥. Such a system is said to satisfy the

fundamental assumptions of the many-body formalism

To properly define what are fermions and bosons in the many-body formalism, we
briefly discuss group representation theory. The symmetric group of N elements, SV, is
generated by special elements called transpositions 1; with ¢ = 1, ..., N — 1, which satisfy

the equations

TiTi+1Ti = Ti+1TiTi+1, (2.4a)
iy = 7T, for [i — jl = 1, (2.4b)
(TZ')2 =e, (2.4c)

where e is the identity element of the group. An arbitrary element o € SV is called even if

it can be written as a product of an even number of transpositions, otherwise it is called
odd.

The action of SV as a symmetry group over the Hilbert space %y is defined by the
fundamental representation map pyy, : S~ — U(H#y), where U(H#y) is the unitary group
over . This map is completely determined by its action on transpositions psu,(7;),

which is defined by its action on the basis of Jy, given by

Prun(Ti) |€6s - s €1y €y - - .,61N> = €05 ey €l s €Ly - - - ,61N>. (2.5)

The fundamental representation ps,, of SV can be decomposed into a direct sum
of irreducible representations pi. : S~ — U (i), where ¥, C Hy is one of the many
irreducible, simultaneous eigenspaces of all operators in the image set p ., (SY) C U(H#y).
The number of irreducible representations of any finite group is finite, and in the case of

SN each of them correspond to a specific integer partition of the number N.

Then, a system of N particles that satisfy the fundamental assumptions of the

many-body formalism is called bosonic, if it described by the invariant subspace Sy C
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Hy of the symmetric representation pg : SN — U(S#y). This subspace is generated by

all non-zero vectors of the form

1

|S<€i17---;€iN)> = ﬁ 6i5(1)7-~-7€iU(N)>- (26)

T oeSN

This irreducible representation is determined by
pS(Ti) |S(Ei1v Tt 761'N)> = |S(€i1> SRR EiN)> ) (27>

for all transpositions. Therefore, the symmetric representation is such that the action of

all permutations o € SV leave the basis vectors of S invariant.

Similarly, a system of N particles that satisfies the fundamental assumptions of
the many-body formalism is called fermionic if it is described by the invariant subspace
Aty C Hy of the antisymmetric representation py : S~ — U(Ay). This subspace is

generated by all non-zero vectors of the form

1
| A€y, .oy €iy)) = N > sgn(o) €, ), - - - ,eia(N)> , (2.8)
T oeSN
where sgn(o) = 1 if o is an even permutation, and sgn(c) = —1 if it is odd. This
irreducible representation is determined by
pA(Ti) |A(6i17 Tt ’eiN)> == |A(€i17 T 7€iN>> ) (29>

for all transpositions. Therefore, in this representation all even permutations o € SV leave
the basis vectors of A.7y invariant, while odd permutations multiply each basis vector
by —1.

The field formalism is very different from both the semiclassical and many-body
formalisms, mainly because the quanta of a quantum field may not be a well defined
particle. Therefore, I will at first limit the definition of standard quantum statistics for

quantum fields obtained from linear field equations.

The simplest example of quantum field is obtained by quantizing three-dimensional
Schrodinger’s wave function ¢(x,t). The canonical quantization procedure for this field is
to postulate the existence of an operator function Q,E(X, t) that satisfies the same equation
as the classical field 1 (x, t), which is the equation

U (x, 1) R - 5
h—— 2 = - V(x,t) + V(x,t 1). 2.10
' S V1) + V(6,1 (x, 1 (2.10)

The next step is to express all physical observables in terms of this new operator

field. This is done by studying the Hamiltonian formulation of the classical field theory.

Schrodinger’s wave-function ¥ (x, t), obeys the classical Lagrangian density

SR :
LW, V,0) = b S — SV V= Vix )l (2.11)
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where 1) = 1)(x,t) and 1) is its complex conjugate.

From this Lagrangian density, one obtains the canonical conjugate field of ¥ (x,t)
by the identity 7(x,t) = 0.2 /0%, giving 7(x,t) = iha)(x,t). After a Legendre transform

of £ and integration by parts, we obtain the Hamiltonian function

H= /d3X1Z(x, t) {—;;V2 + V(X,t)} »(x,1). (2.12)

This Hamiltonian is then used to write the equations of motion for ¢ and 7, with the use

of Poisson brackets for fields.

In single particle classical mechanics, all dynamical variables are written as func-
tions of generalized coordinates and their associated canonical momenta. Similarly, in
Hamiltonian classical field theory, all dynamical variables are written as function of the
fundamental fields and their canonical conjugate fields. Then, by postulating the operator
function T/A)(X, t), and replacing it in every function written in terms of the classical field

1 (x,t), we can define all physical observables.

However, there is more then one way to replace classical field variables by field
operators, due to the non-commutativity of operator functions. The canonical choice is to
simply replace the classical field by the quantum one in the classical Hamiltonian, leading
to the Hamiltonian operator H, and using this operator to fix all ordering ambiguities in

all other operator functions using the equations of motion.

Enforcing this canonical choice of Hamiltonian and expanding the equations of

motion, .

WD _ gy T ey, (2.13)
in terms of the field variables &,fr, is enough to fix the operator ordering ambiguity
for all physical observables. The requirement of linearity for the equations of motion in
terms of the fundamental field variables, and the imposition of a canonical choice for
the Hamiltonian, are the fundamental assumptions of the field formalism for standard

quantum statistics.

For any field zﬁ(x, t), satisfying the fundamental assumptions of the field formalism,
there are only two choices for fixing operator ordering ambiguities. The field is called

bosonic, if it satisfy equal time commutation relations

[(x, 1), (%', 1)] = 8 (x — x'), (2.14a)

[W(x, ), o(x, )] = [1(x,1), 9" (x', £)] = 0. (2.14b)

or fermionic, if it satisfies equal time anticommutation relations

{U(x0),0"(x, )} = 8*(x — x) (2.15a)
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{v(x. 1), 0, 1)} = {¥(x, 1), ¥'(x, 1)} = 0. (2.15b)

These are the only relations for which products of fundamental field variables maintain the
form of the equations of motion given the canonical choice of Hamiltonian. Generically,
we call canonical commutation and anticommutation relations as bosonic and fermionic

commutation relations, respectively.

To sum up, in this section we saw three different formalisms for studying quantum
statistics. The first was the semiclassical formalism, were fermionic and bosonic behavior
are characterized by the ad hoc imposition of either Fermi-Dirac or Bose-Einstein statisti-
cal distributions, respectively. The second was the many-body formalism, were fermionic
and bosonic behavior are characterized, respectively, by antisymmetric and symmetric
representations of permutation groups, which act as a symmetry group of an identical
particle system. And the last was the field formalism, were fermionic and bosonic behavior
are characterized, respectively, by canonical anticommutation and commutation relations
of fundamental field operators. It is worth mentioning that for relativistic field equations,
locality imposes bosonic commutation relations on integer spin fields, and fermionic com-
mutation relations on half-integer spin fields. This is known as the spin-statistics theorem,

and is always valid for relativistic field equations.

2.1.2 The equivalence of the three definitions

In this section, I prove that the three different definitions of standard quantum
statistics described in the last subsection are equivalent. When I say that they are equiv-
alent, I mean that there exists at least one physical system that can be described in any
of the three formalisms, and that for this system, all definitions of what are bosonic and

fermionic statistics agree.

The equivalence is proven for the system of N non-interacting identical particles
described by the many-body Schrédinger’s equation . First we show how the many-
body definitions of fermions and bosons imply the semiclassical definitions. Then we show
that the quantum Schrodinger field entails the many-body description of the system, and

then show how the field definition of quantum statistics implies the many-body one.

The system of interest obeys the fundamental assumptions of the many-body for-
malism, stated in the last subsection [2.1.1] Therefore, our system is described by either
the symmetric of antisymmetric invariant subspaces of %, which has basis states given
by €, ..., €iy). Define the state

n; ®n;
e Yier) = @ (Je)™™) (2.16)
iel

®mn;

where each ¢; is bigger than ¢;_1, and ;)" is the n;-th tensor power of |e;). This state

is called a primitive state of the coefficient set {n;};cs, and it is unique for each set.
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Primitive states are such that the first ny particles have energy ¢y, the next n,
have energy €; and so on. It’s easy to see that any basis state of ., can be written as

permutation of some primitive state. The subspace .77, C ¢y of all states generated

i}iGI
by the action of permutation operators in the the fundamental representation over the

primitive state |{€;" }ics), is called the subspace of microstates with occupation numbers
{ni}ier-

These subspaces of microstates are invariant under the action of permutation op-
erators in the fundamental representation, and are orthogonal to each other. These sub-
spaces end up being the ones corresponding to the microstates defined in the semiclassical
formalism in subsection and, therefore, are uniquely specified by the set of occupa-
tion numbers. To show that the many-body definition of quantum statistics is the same as
the semiclassical one, we need to show how to obtain from each subspace of microstates
a unique microstate. Then, for the fermionic case, we need to show how the maximum
occupation number for each energy level caps at 1, and show why there is no restriction

on the maximum occupation number in the bosonic case.

Given the fundamental representation of S¥, one can define special operators

called symmetrizers

1
= Y prunlo), (2172)
T oesN
1
A= N ) sgn(o) prun(0). (2.17Db)
oesSN

They are special because they are orthogonal projection operators, and satisfy both
Sprun(0) = S and Apsun(c) = sgn(c)A for all o € SN.

Using these properties, it is easy to see that S projects an arbitrary state |1)) €
AN into the symmetric subspace S#y. Similarly, A projects any |¢) € J#y into the
antisymmetric subspace A7y . Given any subspace £ C .y, let’s define its symmetric
component as the set S = {S|¢), with [¢p) € X'}, and its antisymmetric component
as the set A = {A|¢), with [¢) € H}.

For any subspace of microstates 7, all basis states are permutations of

}i€I7

[{€!" }ier). Therefore, applying the operator S on any basis state yields the unique vector

[{nitier) s = S |{€" tier) , (2.18)

which exists for all possible sets {n;};cs, and we identify with the semiclassical microstate

for bosonic systems.

Similarly, applying A to any state in J#7,,),., yields the unique vector

Hnitier) s = AR bier) (2.19)
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However in this case, if some n; is bigger than 1, there is some odd permutation o € SV
such that

A€ Yier) = Alprun(0) {€" ier)) = (Appun(0)) {€i" Yier) = A€ hier), (2.20)

implying that A |{€]" };c;) = 0 in those cases.

Therefore, Ai,,,., is one-dimensional only when all n; are either 0 or 1, and
in all other cases A|{€]"};c;) contains only the zero vector. This allows us to identify
[{ni}ier) , with the semiclassical microstate for fermionic systems. Now that I showed
how to write the definition of quantum statistics in the many-body formalism in terms of
the semiclassical one, we only have to show how the system’s many-body description can
be obtained from the Schrodinger field, and how their respective definitions of quantum

statistics align.

To show why the Schrodinger field is indeed the correct field, we must find its
particle representation. Since this field is linear, we can expand it as a sum of energy

eigenstates

(x,t) = > biug(x)e’it (2.21)

iel
where the operators {b;} are the coefficients of this expansion, the set {e;}ie; is the
energy spectrum of the field, and the functions w;(x), are the spatial part of the energy

eigenfunctions of the Schrodinger equationﬂ
Assuming bosonic commutation relations, we can see that the operator coefficients
{b;}, as well as their conjugates {b!}, must also obey bosonic commutation relations

[bi; 0] = 655, [bis by] = [bl; b1) = 0. (2.22)

17 7]

Then, by the canonical prescription defined in subsection and the field expansion
just defined in equation ([2.21]), the Hamiltonian operator can be written as the sum
=3 eblb. (2.23)
iel
The Hamiltonian H is a sum of terms of the form €;7;, where the operator n; is given by
l;j b Then, applying the field expansion and the recently obtained commutation relations

for the operator coefficients eq. (2.22) in the equations of motion for the field variables,

we can show that

Therefore, the set {f;};c; forms a commuting set of operators that generate the

Hamiltonian. We can use this fact to build the bosonic Fock space representation for the

2 For the Maxwell field, the u;(x) are eigenfunctions of the spatial part of wave equations obtained from

Maxwell’s equations in the vacuum.
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algebra of physical observables Osun of the Schrodinger field, which is the algebra of all

convergent Taylor series over the field variables.

The bosonic Fock representation is a function pb, ;. : Osen — GL(.Z%,,) that takes
an arbitrary observable into an arbitrary linear operator over the Hilbert space .#%,,,
called the bosonic Fock space. This space is generated by the bosonic Fock basis
By (B ...

10), (2.25)

|n1,...,ni,...>b:

where [ may, or may not have infinite size (i.e., infinite energy levels), and the numbers

n; are the eigenvalues of the operators n; whose representations can be calculated using
equations (2.24)).

The state |0), is called the bosonic vacuum state, and it satisfies the equations
b; 0), = 0 for all 4 € I. Its physical interpretation comes from the fact that
Hing,ooni, oy =Y emning, om0y, (2.26)
iel
which implies that the states in the Fock basis are eigenstates of H with total energy
E =3 ,c;€in;. This property allows us to interpret the eigenvalues n; are the occupation
numbers for bosonic microstates, fixing the interpretation of the vacuum state as a state

without any particles.

The actions of b; and 131 in the Fock basis are calculated using the bosonic com-
mutation relations in eq. (2.22)), and are given by

IA?Z' |n1,n2, .y Ny, > = \/n_i|n1,n2, ey Ny — ]_, > s (227&)
ZA)I |7’Ll,’I’LQ, Ny > =Vvn; + 1 |n1,n2, B 1, > . (227b)

Therefore, the expansion operator coefficients {BI} can be interpreted as creation operators
that create a particle with energy ¢;. Similarly, the operators {5,} can be interpreted as
annihilation operators, that destroy a particle with energy ¢;. What we just showed is that
the bosonic Fock basis contain states that can be identified with the bosonic microstates

of the many-body formalism.

In the fermionic case we do exactly the same process. First, we expand the Schrodinger

field in a basis of energy eigenfunctions

D(x,t) = frus(x)et, (2.28)

icl
where this time we use { fZ} for the operator coefficients of this expansion, and the func-

tions w;(x), are the spatial part of the energy eigenfunctions of the Schrodinger equation.

However, now we impose fermionic commutation relations on the field, which forces

the operator coefficients to have the same fermionic relations

{fz’; fj} = 0ij, {fu fj} = {ﬁ; f;} = 0. (2.29)
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If we still assume the canonical choice of Hamiltonian, apply the field expansion and use
the fermionic commutation relations on the field equations of motion, we find that the

Hamiltonian operator is written as a sum of number operators n; = ﬁ fi, satisfying the
same relations as eq. ([2.24)).

Therefore, we can build a fermionic Fock representation for the operator algebra,
with a fermionic Fock basis given by the simultaneous eigenstates of number operators.
However, due to the fermionic commutation relations, we have that ( f,LT)2 = 0 for all 7,
implying that (7;)? = 7; and that the only possible eigenvalues of the number operators
are 0 or 1. So what we just showed is that the fermionic Fock basis contain states that
can be identified with the fermionic microstates of the many-body formalism. And this

finished the proof of equivalence.

2.2 A history of non-standard quantum statistics: The early period
(1940-1971)

In the last section, we showed three different formalisms for defining standard
quantum statistics. They were, respectively, the semiclassical, the many-body and the
field formalisms. I have also shown that all of them give the same concept of fermionic and
bosonic behavior when applied to the equivalent descriptions of the same physical system.
In this section and the next, I use these formalisms to illustrate the differences between
standard quantum statistics, and the multitude of non-standard quantum statistics we

will see in this work.

In this section I begin by describing what I have decided to call the early period
(1940-1971) of the history of non-standard definitions of quantum statistics. It is further
divided into two sub-periods. The sub-period of Gentile’s intermediate statistics (1940-
1952), marks the beginning of the history of non-standard quantum statistics with the
1940 paper of Gentile’s showcasing his semiclassical model. The sub-period of Green’s
parastatistics (1953-1971), marks the transition from semiclassical to quantum models
of non-standard statistics with Green’s 1953 paper introducing parastatistics, the most
general type of field quantum statistics compatible with Hamiltonian equations of motion

of linear fields.

As we see in the next section, and as foreshadowed in this chapter’s introduction,
the year of 1971 also marks the beginning of a new type of formalism for quantum statis-
tics, which eventually led to the concept of fractional statistics. The main purpose of this
section, then, is to lay the groundwork for understanding how this transition happened,

and the motivations behind it.
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2.2.1 Gentile's intermediate statistics (1940-1952)

Gentile’s 1940 paper [91] details a new model of quantum statistics based directly
on Bose’s approach to the distribution of light quanta [32]. Essentially, it presupposes
all of the fundamental assumptions of the semiclassical formalism for standard quantum
statistics described in subsection [2.1.1] However, instead of assuming Pauli’s exclusion
principle for the occupation numbers n; or choosing to impose no restriction on their
domain, he introduces the ad hoc assumption that n; can take values from 0 up to some

integer d.

He called the assumption by the name of generalized exclusion principle, and the
statistical theory derived from it intermediate statistics. In this same paper, he used the

technique of Bose’s 1924 paper [32] to deduce the associated distribution function

1 d+1
-G B
a {6_(“_61')5 —1 e w—e)@d+)s 1} ) (2.30)

where ' is Gentile’s mean value of the occupation number n;, 3 is the inverse temperature

and p is the chemical potential]

It is easy to see, from Gentile’s distribution, that when d = 1 it reduces to the
Fermi-Dirac distribution

1
—FD __
n; - 6_(,u_5i)/5 + 17 (231&)

and in the limit d — oo, it becomes the Bose-Einstein distribution
_BE 1
L ers SR (2.31b)
Two years latter, in [92], Gentile proposed that, formally, the condensed state of
a Bose-Einstein gas of NV particles is a system described by his statistics with d = N. He
proposed that this could explain the superfluidity of Helium II. It was Caldirola’s paper
[43] however, that made the case for using Gentile’s statistics for a real gas, instead of an
ideal gas, to model Helium II, showing how it was better than the best real gas model at

the time.

There were two main criticisms of Gentile’s statistics. First, it was realized that
Bose’s method for obtaining the distribution function for occupation numbers is a very
inaccurate approximation in the low-temperature regime [222], where Bose-Einstein con-
densation occurs. In fact, even the best method known at the time, the Darwin-Fowler
method, also failed in this regime [214,215]. This method was also proven to be incom-

patible with intermediate statistics.

The second main criticism was the incompatibility of Gentile’s intermediate statis-

tics with many-body quantum mechanics. It was argued in Borsellino’s paper [31] that a

3 This calculation assumes variable total energy and particle number, but is done in the microcanonical

ensemble
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system of particles obeying a generalized exclusion principle would be described by a wave
function with mixed symmetry type, since a totally symmetric wave-function is bosonic,
and a totally antisymmetric one is fermionic (see subsection . In the representa-
tion theory of the symmetric group, there are many different representations with mixed
symmetry, but they either are not irreducible, which means that a system can be taken
from one mixed symmetry representation to another by even small interactions, or they
are multidimensional, and do not describe scalar particles. That meant that there were
no stable definition of quantum statistics in the many-body formalism compatible with

Gentile’s statistics for general d.

These criticisms were summarized in Ter Haar’s Letter "Gentile’s intermediate
statistics" [116], and eventually led to it being sidelined as a theory for Helium II [58].
The idea of generalizing the exclusion principle would remain, however, given that the
quantum statistics is still ad hoc. In the next subsection we see that generalized exclusion

principles tend to reappear in other models of non-standard quantum statistics.

2.2.2 Green's parastatistics (1953-1971)

As we saw in the previous subsection, one of the main criticisms of Gentile’s
intermediate statistics was its incompatibility with quantum mechanics. The semiclassical
treatment was just too coarse to deal with the subtleties implied by the many-body
formalism. It is natural then to expect that the next models of non-standard quantum

statistics would be done in either the many-body or field formalisms.

The first theory of non-standard quantum statistics made in one of the two quan-
tum formalisms was proposed by Okayama in (1952-1953) [187,|188]. As a non-standard
theory of statistics in the many-body formalism, his main concern was to build a gen-
eralized exclusion principle. Okayama’s statistics avoided the problems with Gentile’s
statistics described in subsection by generalizing the multiparticle wave-function to
a square matrix [U] instead of a scalar, with probability amplitude given by Tr{\IJT\IJ}.
Then, instead of representing permutations in the symmetric or antisymmetric represen-
tations, he allowed irreducible representations of higher order to act on the wave-matrices,
and deduced conditions for them to obey generalized exclusion principles. From this new
formalism, he also deduced a second quantized, equivalent formulation of his statistical

theory in the field formalism.

Okayama’s statistics, however, was overshadowed by its most famous cousin, Green’s
parastatistics. In his 1953 paper [103], Green proposed a solution to what was known at
the time as Wigner’s problem. This problem was defined in a 1950 paper [249] by Wigner,
where he showed that the form of the classical equations of motion in Hamiltonian mechan-
ics was not enough to determine the form of the quantum Hamiltonian in the Heisenberg
picture [29,304/127].
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Wigner’s problem then, is basically the problem of how to choose a unique quan-
tization prescription for classical Hamiltonian mechanics. Green took a non-canonical
prescription for the field Hamiltonian, and used it to find more general commutation re-
lations compatible with the equations of motion for field operators. In other words, he
developed a theory of non-standard statistics in the field formalism, by forgoing the as-
sumption of a canonical Hamiltonian. Green’s theory gives not just new types of quantum

statistics, but also gives standard quantum statistics in particular limits.

To make all of the previous points clear, let us follow Green’s argument more
closely. If we take a relativistic free field ¢(z°,x) (or a non-linear relativistic field in the

interaction picture), the equations of motion for the fields will be linear and given by
Oub = i[P*; 4], (2.32)

where P* is the energy-momentum 4-vector operator, with PO acting as the Hamiltonian.

If we ignore the canonical quantization prescription for the P# operators, and

instead chose the paraquantization prescriptions
B plos
Pt = sz' 5[%; ai), (2.33a)
for half-integer spin fields, and
.\ 1
pr=3"pio{akad, (2.33b)

for integer spin fields, the equations of motion could still be satisfied if, given an energy
eigenstate expansion of the field operator ﬁ(mo, x), its operator coefficients a; obeyed the

trilinear commutation relations
[a; [dj; agl] = 20;;a,  [ai;[a;;ax)] =0, (2.34a)
for the half-spin case, and
[as; {al; an}]) = 2601, [as; {a;;ax}] = 0, (2.34b)

for the integer-spin case.

Green also showed that the trilinear commutation relations had a particle repre-

sentation with number operators defined by

1
o= glalal, (2.350)
for half-integer spin fields, and
1
hy = ={al;a,}, (2.35b)
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for integer spin fields. However these trilinear commutation relations are not enough to
determine a field statistics. In fact, there are many algebraic relations over the parastatis-

tical operators compatible with them. In particular, fermionic and bosonic commutation
relations satisfy eqs. (2.34al2.34Db)) respectively.

Green shows examples of non-standard statistics using an ansatz for solving the
trilinear commutation relations, obtaining operators with bilinear commutation relations.
Green’s ansatz consists on choosing particular forms for the matrix representations of the
operators {a;}. In the half-spin case, this leads to theories of non-standard statistics with
a generalized exclusion principle. These are called para-Fermi statistics of order d, with
d being the maximum eigenvalue of the number operators. Green’s ansatz for para-Fermi
fields can also be given as a decomposition of the operators a; as a sum of components
a\" with r = 1,..., k that satisfy

24\ =0 for all 4, j with r # s
N o a4l 5. (2.36)
} ’ {az ’a’] } VN

He then uses the same strategy to obtain the theories of non-standard statistics
(r)

%

for integer spin fields. In that case, the decomposition of @; into a sum of k operators a

with » = 1, ..., k leads to relations

{af.’”); &;s)} = {a'(r);; &gs)} =0 for all ¢, 5 with r # s
[ (2.37)

=0, [a”;al") =6,

These relations determine what is called para-Bose statistics of order k. Para-Bose fields
are interpreted as models of particles that organize into £k different groups that fit any
integer number of particles, but with particles on different groups being anti-symmetric

with respect to one another.

At the time, it was not known if there were other solutions for the trilinear com-
mutation relations besides Green’s ansatz. In fact, the operator components in equations
eqs. do not have a particle representation since the number operators exist
only for the para-fields themselves, not their components. This was seen as a problem
because even if the para-fields had a proper particle representation, no specific algebraic
relations were known for them besides the examples given in Green’s paper. Even worse,
since these were not known, the many-body formulation of Green’s parastatistics was

impossible to obtain.

A proposal for finding specific algebraic relations for para-fields was first made in
Kamefuchi and Takahashi’s 1962 paper [141},142]. They found an algorithm to calculate
these algebraic relations by studying the Lie algebra structure of the infinitesimal linear

transformations leaving para-particle Hamiltonians invariant. These transformations have
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the form
&k — Cz/k = &k: — 19 Z &mfkm — 1 Z &jnnk’m’ (2.38&)
m=1 m=1
m=1 m=1

which can be written as @/, = G~ta,G for the operator G given by

0 1 = .
G=1-1iY Nu&m— ZE > Limim — Z M Ciom.- (2.39)

I,m=1 I,m=1 lm 1
The operators Nlm, f/lm and Mlm end up being the generators of such Lie-algebras.

The transformations that leave the para-Fermi Hamiltonian invariant are said to be
of R-type, because they form the Lie algebra of a rotation group, while the ones preserving
the para-Bose Hamiltonian are of S-type, and form the Lie algebra of a symplectic group.
In each case, the generators N;, = Ny are shown to obey characteristic equations that
allowed them to develop the algorithm responsible for producing the algebraic relations

for para-fields.

Kamefuchi’s theory of parastatistics still could not answer if the algebraic relations
they found for para-field operators are different from the ones produced from Green’s
ansatz. This question was answered in the negative by Bialynicki-Birula’s 1963 paper
[24], proving that the field operators obtained from Green’s ansatz obeyed exactly the
same algebraic relations as the ones found by Kamefuchi’s theory. Therefore, Green’s
theory of parastatistics was already complete, and no other form of parastatistics was

possible.

One question still remained, and that was how to find the many-body version para-
Fermi and para-Bose statistics for orders above 2. Many authors have proposed solutions
to this problem. The first, decisive step was taken by Messiah and Greenberg’s 1964 paper
[179]. Before this paper, the many-body formalism introduced the definition of bosonic
and fermionic behavior by imposing the symmetry type of multiparticle states directly.
This ad hoc imposition was named the symmetrization postulate, and was believed to be
an necessary extra postulate of quantum mechanics to deal with identical particle systems

found in nature.

Messiah and Greenberg where the first to, instead, impose the permutation in-
variance of physical observables as the foundational postulate of the many-body theory
of quantum statistics. In this perspective (also used in sections [2.1.1] and [2.1.2] - the per-
mutation operators & € pr.,(SY), acting on the Hilbert space %N, will commute not
just with the Hamiltonian, but with all observables of a system of N indistinguishable
non-interacting particles. Therefore, no physical process can change a system from one
symmetry type to another, imposing what is called a superselection rule on the types of

symmetry allowed on nature.
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Using the superselection theory of standard quantum statistics, Messiah and Green-
berg showed that entire invariant subspaces of irreducible representations of SY should
represent the same physically observable state, which generalizes the global phase in-
variance of scalar wave-functions. The next step in building the many-body theory of
parastatistics came from the work of Landshoff and Stapp. In their 1967 paper [157], they
provided a response to another paper, by Steinmann [226], that argued for the impossi-
bility of parastatistics. Steinmann showed that particle systems described by non-trivial
irreducible representations of the symmetric group cannot be decomposed into two smaller

systems with independent descriptions, which is a necessary condition for a local theory.

To counter this assertion, Landshoff argued that the label permutations, the kinds
of permutations used in Messiah’s approach, are not the same type of permutation that
should act over the Fock states obtained from para-fields. Given a general basis state
[{€:}ier) of the Hilbert space 7y for an N-particle system with energy spectrum {e;} ey,
a label transposition 7 will act on all basis states by taking whatever energy label is
in position i, and exchanging it by the energy label in ¢ + 1. A particle transposition
71, as defined by Landshoff and Stapp, exchanges the specific label ¢;, with the label €;,,
regardless of their position in the state vector. They argued that this type of transposition
is the correct one, and then developed a theory of many-body statistics that encompasses

both Steinmann’s approach and the Fock representation of para-fields.

However, Landshoft’s work did not address the question of whether the Fock space
representation of para-fields and the superselection approach to a many-body theory of
quantum statistics are compatible. In a 1968 paper, Yamada [262] provided an argument
in the negative, but the question was only settled by Stolt and Taylor’s 1970 paper [230].
In this paper they showed that one could choose a specific Vectorﬂ inside any subspace
invariant under the action of label permutations, and build the representation of par-
ticle permutations inside of them, giving a equivalent representation to the Fock-space

representation of para-fields.

In parallel to the development of the statistical theory itself, there have been some
applications of parastatistical models in physical problems. The most important one was
the alternative model of particle physics developed by Greenberg [106] to explain problems
with the quark model. Throughout the 70’s there was a dispute between the para-quark
model and the SU(3) global gauge theory quarks. The final resolution was given by
Doplicher, Haag and Roberts [63,/64], proving that para-Fermi or para-Bose theory is
equivalent to theory with bosonic and fermionic fields together with a non-abelian global

gauge symmetry.

4 This "choice of vector" technique is essentially equivalent to the definition of a "primitive vector" I

have made in proving the equivalence of many-body and field formalisms for bosons and fermions in

section @
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The fact that quarks could be used to build a local gauge theory of the strong force,
while para-quarks could not [90], made the para-quark model, and parastatistics itself,
go out of favor. After these events, parastatistics was still studied in the mathematical
physics community [9,23}[163], and even a local gauge theory based on para-fields was

found [107], but the attention of the physics community in general faded considerably.

To sum up, parastatistics was a quantum statistical theory developed in the field
formalism, which tried to explore the freedom of quantization prescriptions consistent
with linear equations of motion. The equivalent many-body formalism only came up after
the superselection approach to the theory of standard quantum statistics was developed,
introducing a new type of permutation symmetry generated by the so-called particle
transpositions. However, it was proved that theories with para-fields were completely

equivalent to theories with standard statistics under the action of global gauge field.

2.3 A history of non-standard quantum statistics: The modern pe-

riod (1971-)

As seen in the last section, the main characteristic of theories of non-standard
statistics in the early period was the attempt at finding consistent generalizations of
Pauli’s exclusion principle. These attempts led to many general results regarding the free-
dom of choice in quantization methods, as seen with parastatistical models. Nonetheless,
all forms of quantum statistics up to this point have been introduced by assuming that

particle identity was a quantum effect.

What characterizes the part of history the I chose to call the modern period (1971-
) is the development of a classical model for particle identity. As we will see, this model
allowed the creation of theories of quantum statistics not just for classical particles, but
also for special particle-like field configurations collectively known as solitons. The myriad
of applications of the theory of solitons in many different areas of physics is the main reason
why the prototypical type of non-standard quantum statistics today is taken to be the

one developed in the modern period, known as fractional statistics.

This section is divided in three subsections. The first one , comprises the
period from the first appearance of the classical model of particle identity, made by Laid-
law and DeWitt in 1971 [156], up to the first use of this model to define a new theory of
quantum statistics by Leinaas and Myrheim in 1977 [162]. The second and the third ones
comprise two simultaneous timelines where the development of the concepts can be taken

in parallel.

The second subsection (2.3.2) deals with theories of non-standard statistics devel-

oped in the context of so-called topological solitons and topological defects. In this context,
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non-trivial statistics arise from the topological properties of defects coupled to gauge inter-
actions. We say that these theories comprise the topological trend (1977-) of non-standard
quantum statistics. The modern concept of anyons comes from this trend, and it will be

analysed in detail.

The third, and last subsection deals with the theories of non-standard
quantum statistics arising from the theory of quantum integrable models in one dimension.
We say that these theories comprise the non-topological trend (1977-) of non-standard
quantum statistics in the modern period. This is the trend from where the model of non-
standard statistics we study in subsequent chapters comes from, which are also considered

a model of anyonic particles.

The main purpose here is to clarify possible confusions arising from the use of the
word anyons, by the theories of quantum statistics coming from the two different trends.
We see that while in statistical terms, all types of anyons obey fractional statistics, the

particle models themselves are very different depending on what trends they belong to.

2.3.1 The classical model of identical particles and its quantizations (1971-
1977)

As pointed out earlier in this section’s introduction, what marks the beginning
of the modern period of non-standard statistics is the development of a classical model
for identical particle systems. In a 1971 paper [156], Laidlaw and DeWitt showed that
the configuration space of N distinguishable classical particles could be used to build a

configuration space that models a system of N indistinguishable classical particles.

An intuitive description of Laidlaw-DeWitt’s construction goes roughly as follows.
The set of allowed classical configurations of N non-interacting distinguishable particles
moving in m dimensions is the set Y/(N,m) = R™ — A(N,m), where A(N,m) is the
set of configurations where at least one pair of particles occupy the same position. If
the configuration space Y (N, m) were used to model indistinguishable particles, then the
configurations (xi,...,xy) and (X,q), ..., Xs(n)), Where o is some permutation of the N
particles, should be physically the same, and therefore this pair of configurations would
be redundant. This implies that the space Y (N, m) contains N! copies of a configuration
space, called Y(N,m)/SY, where all points (Xy, ..., Xy) identify a unique configuration of

a system with N identical particles.

In the configuration space Y (N, m), all allowed classical trajectories taking some
(X1,...,xn) to some of its N! permuted counterparts (X,(1),...,Xs(n)), are represented
by continuous curves 7, beginning at the point (xi,...,xy) and ending at the point
(X0(1), -, Xo(n))- But if the particles are identical, any such path v in Y'(IV,m) can be
reduced to a path 4 in Y/(N,m)/SY that begins and ends at the same point (X, ..., Xx).
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Therefore, in contrast to the many-body formalism of subsection [2.1.1] the identity of the
particles is imposed before any quantization, by going from the description in terms of

the configuration space Y (N, m) to one in terms of Y/ (N, m)/S™. A partial description of
the Y/(N,m)/S™ spaces for N = 2, with m = 1,2 and 3 is given in Figs and @

The spaces Y (N, m) have the property of being simply connected, meaning that any
closed paths v and +' based at the same endpoint (xy, ..., X ), can be continuously mapped
to one another, without finding any singularities. However, Y (N, m)/S" do not have this
property, and are what we call multiply connected spaces. Such spaces possess spatial
singularities that obstruct the path of maps trying to continuously deform one closed curve
into another. The structure of singularities of multiply connected spaces divide all paths,
not just the closed ones, into classes such that paths in one class cannot be continuously
mapped onto paths in another. These classes of paths are called homotopy classes, and in
the case of closed paths, an operation of path-composition can be defined such that the
set of homotopy classes of closed paths becomes a group, called the fundamental group of

the space.

The way the Y(N,m)/SY spaces are built does not change the classical dynamics
of the particles in any meaningful way, apart from the redundancy of the particle co-
ordinates. However, according to Laidlaw and DeWitt, the path-integral quantization of
classical systems in multiply connected spaces has very special features. In such spaces,
the propagation amplitude K(a,t,,b,t,) from system configuration "a" at time ¢, to con-

figuration "b" at time ¢, in a multiply connected configuration space T' must have the form

K(a,t,, b, ty) = Z X([y])KM(a,twb, ty), (2.40)
[ylem (T)
where KD are partial amplitudes corresponding to propagation from configuration a to

b via the curves in [y], and x([7]) are unknown weight factors.

Using the fact that for particles in three dimensions, m = 3, one has 7, (Y (N, 3)/SV) =
SN (see [73,74]), Laidlaw and DeWitt showed that the weight factors x[v] in the ampli-
tudes must correspond to one-dimensional representations of S¥. Since the only such
representations are the symmetric and antisymmetric ones, this implies that the only
types of quantum statistics compatible with such formalism are standard bosons and
fermions. Therefore, using the classical model of identical particles and the assumptions
of path-integral quantization, they have developed a new formalism of standard quantum

statistics, which we hereby call the configuration space path-integral formalism.

The advantages of this configuration space formalism over the many-body and
field formalisms are pointed out in a famous 1977 paper by Leinaas and Myrheim [162].
In it, they argue that this classical model of indistinguishability can be used, for exam-

ple, to justify the 1/N! Gibbs correction factor to the total number of microstates of
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a classical ideal gas. For them, however, a more important fact is that this formalism
avoids the problems pointed out in another paper, which we discuss first. In the 1973
paper [181], Mirman offers a critique of the alternative formulations of the many-body
formalism presented in subsection [2.2.2] The most important of his criticisms was that
neither the concept of permutation invariance nor the difference between particle and
label permutations have experimental meaning, since in both cases they do not specify

what kind of physical transformation is a "permutation”.

But in the configuration space formalism, the physical permutations are given by
curves corresponding to classical trajectories, which always have operational meaning.
This prompts Leinaas and Myrheim to offer a new quantization method adapted for
multiply connected spaces. In their paper [162], they proceed to discuss the topology of
the spaces Y (N, m)/SY, showing that for N = 2, one can use center-of-mass coordinates
to prove that

Y(2,m)/S* =R™ x P,,_; X (0,00) (2.41)

where the first space is the domain of the center-of-mass coordinate, and the other product
is the domain of the relative coordinate, with P,,_; being the real projective space of
dimension d — 1, which end up determining the fundamental group of the Y (2,m)/S?

spaces.

For m = 1, the associated real projective space Py is a single point. Therefore
Y(2,1)/5% is in fact simply connected. However, using the previous decompositions, we
can see that this space is topologically equivalent to R X (0, 00), which is a half-plane, as
in FigQ] Therefore Y'(2,1)/5? has a natural boundary, and its quantization must account
for this fact. To be more precise, a point in Y(2,1)/S5? is given by the center-of-mass

coordinates (z, 2)

1
T = i(xl + 3), (2.42a)
z = |r] — mo), (2.42b)

where (1, z3) are the Cartesian coordinates in Y'(2, 1). In these coordinates, the boundary
line 1 = x5 is now given by z = 0. The quantization is done in the Schrédinger picture by
postulating a multiparticle wave function ¢ (x, z), that represents the two-particle system

as a whole.

The free particle Hamiltonian acting on functions defined over Y (2,1) can be

written in center-of-mass coordinates, assuming the form

h? (1 02 0?
g (Lo o7y 9.43
m (4 J%*x + 822') (243)
However, restricting this Hamiltonian to have as its domain the functions defined in
Y(2,1)/S?% forces us to pick a boundary condition. If we demand that ¢(x,0) = 0, we
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w7
3

Figure 4 — Configuration space Y(2,1)/5%: Solid line represents the trajectory of two iden-
tical particles in the configuration space. The dashed line represents the con-
tinuation of the particle trajectory in the upper half of boundary line 1 = x5,
which is identified with the lower half. The vector v, gets reflected to the vector
v’ when the trajectory hits the boundary x; = x5. Figure obtained from the
work [162], on page 7.

are automatically describing fermions, since this condition is equivalent to the exclusion
principle. On the other hand, if we demand that 0, (x,0) = 0 we automatically describ-
ing bosons, because it implies that 9,9 (x,0) = 0_,¢(x,0), which can only be true if
¢($1, 1752) = ¢($27 331)'

However, Leinaas and Myrheim argue that the most general boundary condition
comes from demanding the global conservation of probability, which imposes the vanishing
of the probability current component J,(x,0) normal to the boundary. The continuity

equation for the probability current

oY(z,0)  9¢Y*(x,0)

J.(x,0) = ¢*(x,0) P(x,0) =0 (2.44)

0z 0z
has as its general solution the boundary condition
oY(x,0

with 7 € R. Since this equation is linear, the value of n is independent of x, and its
value describes the quantum statistic of the particle pair. For n = 0 we have bosons,
for 1/n — 0 we have fermions. Therefore, for all intermediate values this system has

non-standard quantum statistics.
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(a) Planar view (b) Folding of the identified
plane

(c) Spatial view

Figure 5 — Relative coordinate space of Y (2,2)/5%: (a) Planar view of P; X (0,00), the
points x, and —x are identified. Parallel transport of the velocity vector v over
the path C leads to the vector —v, while parallel transport over Cy (which
connects identified points) leads to v. (b) Represents the identification of the
configuration space as the folding of the planar view, [ is a line whose positive
part gets glued to the negative part, transforming the plane into a cone without
the origin. (c) Spatial view of P; X (0, 00), with the paths C and Cj represented
on the conical surface. Since C5 circles around the cone without the origin, it is
topologically different from C;, which shows that P; X (0, c0) is not connected.
Figures obtained from the work [162], on page 8.

The configuration spaces Y (2,m)/S? for m = 2 and m = 3 have as 'relative
coordinate spaces' (see eq.(2.41)) the spaces P; X (0,00) and Py X (0, 00), and have as
fundamental groups the integers under addition Z, and the permutation group S?, respec-
tively, as seen in Figs. 5] and [6] Since neither of these spaces are simply connected, the
previously used method of quantization does not apply, and a new prescription is neces-
sary. Leinaas and Myrheim’s proposal is to use those multiply connected configuration
spaces as a basis for building a multiparticle Hilbert space, generalizing the many-body

formalism of quantum statistics.

Since the quantization prescription makes sense for any multiply connected space
T, we describe the method itself first, and then talk about the particular cases Y(2,2)/5?
and Y(2,3)/5%. First, assume that the particles have no internal degrees of freedom. In-
formally speaking, the prescription consists of "attaching" a copy 7, of a one-dimensional
Hilbert space ¢ to every single point x of the space T'. The state of the particle system

is assumed to be described by the continuum of vectors

V(%)) = () [h), . (2.46)

where |h) is the basis vector of the space J%, and the coefficients ¢(x) are the system’s

multiparticle wave-function.

The set of basis vectors {|h), } is completely arbitrary, implying that the wave-
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Figure 6 — Projective plane Py, a factor of the relative coordinate space of Y (2,3)/S5%:
The projective plane is pictured as the upper half of a spherical surface, with
opposite points in the equator identified. Path C is topologically trivial, but
Cs is not, in fact [Cy)? is the identity element in 7 (Y'(2, 3)/S?), with the curve
C3 being an intermediate step in a homotopy transformation between a curve
in the class [C5]? and a single point.

function 1 (x)" defined by the equation

(x)" = exp{[ip(x)]}¥(x), (2.47)

must be a completely equivalent description of the particle system as the wave-function
1(x). This fact establishes the Leinaas-Myrheim quantization prescription as a gauge

theory of quantum statistics.

As any gauge theory, there exists a gauge field by(x) that tells us how to relate the
Hilbert spaces %, and 75 | 4x, which are separated by an infinitesimal displacement in the
configuration space T'. The basis vectors |h), and |h), ;. are related by the infinitesimal

parallel displacement
P(x,x + dx) = (1 + ib(x)dz"), (2.48)

such that ), .
path v :[0,1] — T is given by

= P(x,x+dx) |h),. Then, the displacement operator along an arbitrary

P,(3(0).7(1)) = Pesp{i [ bi(x)de’ . (2.49)

where P exp is the path-ordered exponential.

Restricting ourselves to the gauges where the above formula of infinitesimal parallel
displacement is valid, one can deduce the form of the gauge-covariant differential operator
D 0 b (X) (2.50)
= — —iby(x). :
k D k
This operator is the canonical momentum operator in the Schrédinger formalism, and it

can be used to build gauge-invariant Hamiltonians. To every gauge field, there is also an



2.8. A history of non-standard quantum statistics: The modern period (1971-) 49

associated gauge-invariant force tensor field

fur =il Dy = 5~ O (2.51)

Given this description of a gauge theory, Leinaas and Myrheim argue in [162]

that to model a theory of identical particles the gauge field by(x) must always be pure
gauge, meaning that f;(x) = 0 for all non-singular points x € 7. This is because, under
this condition, the displacement operator P, for any closed path + is trivial if the path
does not enclose a singular point. In fact, for all closed paths in an equivalence class
[7] the associated displacement operators are the same. Because of these facts, the set
of distinct operators { P }pjer () forms a representation of the fundamental group of
7m1(T"). Their conclusion is that the statistics of the quantized system is determined by
the representation of m;(7") realized by the displacement operators of closed paths, and

to each representation, one obtains a different type of statistics.

Now we are in the position to discuss the two and three dimensional two-particle
systems. In the two dimensional case, the wave function is defined over the base space
Y(2,2)/S% A wave-function in Y (2,2)/5? has coordinates (X.m, 7, ¢), where x.,, are the
coordinates of the system’s center-of-mass and (r, ) are the relative coordinates in polar
form. Since the particles have no degrees of freedom, any operator acting on the wave-

function must be a phase factor.

The physical permutations are determined by the displacement operators on closed
loops. In the two-dimensional case, these form the set { Py }iez since m(Y'(2,2)/5?) = Z.
Therefore, if we choose Py = exp{i{}, for some £ € R, it automatically follows that
Py = exp{in&} for all integers n, meaning that the parameter £ is what determines
the type of statistics in the system. By eq. (2.49)), it follows that a possible gauge field
generating Py is given by by (Xem:7, @) = bp(Xem,7,9) = 0 and by(x,7,¢) = =§/27.
Therefore the gauge-covariant Hamiltonian for a system of two free identical particles in
center-of-mass, polar coordinates, must be

H:_m<32+13+4<3+2-5>>, (2.52)

m \or2  ror r?

where we omitted the center-of-mass part x.,, for brevity’s sake.

The last calculation shows that the effect of quantum statistics in two dimensions
is a shift in the angular momentum operator L. However, to connect this effect with
the usual many-body formalism we must find a description where the role of statistics
appears in the symmetry of the wave-function, and not on the Hamiltonian. This is done
by a change of gauge, where the new gauge has by(Xm,7,¢)" = 0. In this gauge, the

wave-function assumes the form

V(Xem, 75 0) = exp{z';?r(p}w(xcm,r, ©). (2.53)
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One of the exchange transformations corresponding to closed paths in the class that
generates 71(Y(2,2)/5?%), is the one taking ¥(Xem, 7, ©)’ t0 ¥ (Xem, 7, ¢ + 27)’, and because

(Xem, T, ) s periodic, we have that

W (Xem, Ty 0 + 2m)" = exp{i& Y (Xem, 7, ) (2.54)

Therefore, in this gauge, the wave-function acquires a non-trivial exchange phase when

the particles are permuted along a path in class [1].

Similarly, in the three dimensional case, we have that (Y (2,3)/S5?) = S? implies
all closed paths belong to the class of trivial loops [e], or the class of transpositions [¢;],
such that P2 = Pj = P = 1. Therefore, in the gauge where by(x) = 0 the wave
functions ¥ (X.m,z) are either symmetric or antisymmetric with respect to exchanges in
the class of transpositions [¢]. In fact, in the three dimensional case we end up re-obtaining

the standard behaviors associated to fermions and bosons in the many-body formalism.

Therefore, in Leinaas and Myrheim’s theory of quantum statistics, which we hereby
call the topological formalism, wave-functions of two-particle systems in three-dimensions
must be either bosonic or fermionic, but in one and two dimensions they can have non-
standard quantum statistics. In the one-dimensional case the statistics is determined by
the boundaries of the identical particle configuration spaces, while in the two and three
dimensional cases, they are determined instead by the representations of the fundamental
groups of those spaces. In both cases the topology of the classical model for identical

particles developed by Laidlaw and DeWitt plays a crucial role in the statistical theory.

The interpretation of physical permutations in the one-dimensional case are not
very clear, since there is not really a physical way to permute classical particles confined in
one dimension. However, in all other cases physical permutations correspond to classical
trajectories of particles, and in the two dimensional case the wave-function acquires non-
trivial phase factors governed by a parameter £ under these exchanges. When £ = 0, the
particles are bosons, when £ = 7 they are fermions, and for all other values of £ they would

be later called anyons, particle with a new type of statistics called fractional statistics.

2.3.2  The topological trend (1977-)

From the topological formalism, at least two new branches of theories of non-
standard quantum statistics came forward. The first branch, called the topological trend,
is the one from which most physicists learn non-standard quantum statistics, since it is
the one that led to the most important applications in condensed matter and quantum
computation. As stated in this section’s introduction , here in subsection we
deal with this branch, leaving the remainder for subsection [2.3.3]

The first interesting application of the topological formalism was to solve problems

related to the statistics of charge-monopole composites, and were also made by Leinaas
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in [159]. Before we discuss this paper, we need a little bit of context. Monopoles are a
type of topological defect, which are singular configurations of classical fields that have
been studied since Dirac’s 1931 work on the subject [59], where he showed that particles
bearing magnetic monopole fields can explain the apparent quantization of the electron’s

charge.

In 1948, Dirac [60] also gave a formal Hamiltonian description of the relativistic
equation of motion for magnetic monopoles, and built a quantum theory for them. Since
then, many other physicists were trying to find quantum Dirac monopoles in Nature, with
no success. The importance of monopoles in this part of history is due to an alternative
analysis of the physics of quantum Dirac monopoles made by Goldharber, first in 1965
[99] and latter in 1976 [98].

In his 1965 paper, Goldhaber studied the scattering of a charged particle by a
magnetic monopole and showed that, when they form a bound state, the interaction shifts
the angular momentum spectrum of the pair by a half-integer unit of A relative to the
spectrum of uncharged particles. This poses a paradox, since the exchange of a pole and a
charge in the bound state has bosonic behavior but half-integer total angular momentum,
which violates the spin-statistics theorem. In his 1976 paper, Goldhaber showed that pairs
of bound charge-monopole composites have, indeed, an antisymmetric wave-function with

respect to permutations of the composites.

Leinaas’ 1978 contribution was an interpretation of Goldhaber’s solution in terms
of the topological formalism. He models a system of two charge-monopole composites with
the configuration space Y (2,3)/S? (see subsection [2.3.1)), while the configuration space of
the relative motion between charges and monopoles in the composites are taken as internal
degrees of freedom. Then, the monopole gauge fields play the role of the statistical gauge
field present in the topological formalism, which ends up changing the statistics of the
composite as a whole. This was the first time the topological formalism was applied to a

problem relating topological defects.

The next noteworthy application of the topological formalism was made by Leinaas
in a 1980 paper, where he compared his theory of identical particles, the topological
formalism, with both general topological defects and topological solitons in gauge field
theories. Solitons are configurations of non-linear classical fields that have finite total
energy and are localized in a finite region of space [77,/78] (or decay sufficiently fast).
Topological solitons, in particular, are soliton solutions connecting distinct zero-energy
configurations of the non-linear field and, as a result, they are acquire a new degree of

freedom called topological charge, which is affected by a non-trivial conservation law.

At the time of Leinaas’ work, topological solitons had been studied in connection to
problems in cosmology [186] and particles physics [197], as well as with non-perturbative

quantum field theory in general [205]. However, their role in the history of non-standard
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quantum statistics begins in a series of papers [124,/135] which showed that the same type
of charge quantization that occurs for Dirac monopoles also occurs in some theories of
topological solitons, but with a charge quantum of a fraction of the electron’s charge. Even
if Leinaas’ 1980 paper made the first connection between topological solitons, topological
singularities and identical particles, it was Wilczek who, independently, solved the mystery

of charge fractionalization in these soliton theories.

In a series of three papers from 1982 to 1983 [250}251,1253|, Wilczek showed that,
for many different kinds of soliton configurations, the rise of fractional charge, fractional
angular momentum and fractional statistics [101] can be explained by the same heuristic
model. In the first paper, he pointed out that a charged particle orbiting the gauge
potential of a solenoid has its quantized angular momentum spectra shifted by a value
proportional to its magnetic dipole moment. Then he showed how the classical derivation
of this result could be used to explain the statistics of electron-vortex composites in a
superconductor, the Dirac monopole quantization condition and the fractionalization of

charge in fields with soliton solutions.

In his second 1982 paper [251], Wilczek showed how that composites made of
tightly bound electrically charged particles and very thin, infinite solenoids carrying a
constant magnetic flux behave like the particles with fractional statistics in the topological
formalism. The magnetic vector potential played the role of the statistical gauge field, and
the wave-function exchange phase was interpreted as coming from the Aharonov-Bohm
effect generated by the statistical field of one composite interacting with the charge of the
other [5]. It was in this paper where the word "anyon" was used for the first time, and he
used it to call all particles (in a broad sense) that acquired fractional statistics via this
mechanism, the he called fictitious flux attachment. This specific flux-charge composite
model of anyons was later called a "cyon', in [136,/167], to differentiate then it from the

monopole-charge composites that also behave as anyons, and were called "dyons".

Finally, in the last work of this series [253], Wilczek showed that soliton solutions
for the non-linear O(3) o model in (24 1) dimensions, which are not gauge theories, could
also exhibit fractionalized charge, angular momentum and statistics. When interpreted
as particles, the soliton spin is defined in a semiclassical path-integral approximation by
adiabatically rotating the solution in the two dimensional plane by an angle of 27. The
conservation of topological charge for solitons allows the introduction of a new term in
the model’s Lagrangian that does not affect the equations of motion, and is described by

a fictitious abelian gauge field.

The action of this new Lagrangian leaves the equations of motion unchanged, but it
appears as an extra fractional spin for the solitons of the theory, as a quantum field effect.

Wilczek also showed that this extra Lagrangian is a topological invariant, called the Hopf
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invariant, representing the linking numbelﬂ of the trajectories associated to soliton anti-
SOlitOI]H pair creation-annihilation events. Later, this Lagrangian would be recognized as
the Chern-Simons Lagrangian, and this realization led to profound changes in the theory

of quantum statistics, as we will see shortly.

After these three works by Wilczek, the topological formalism of quantum statistics
became intrinsically linked with the theory of topological solitons, or defects in general.
Therefore, anyons started appearing more and more in connection to problems that were
previously unrelated to the theory of quantum statistics. So, from now on, we only consider
works whose primary concern is fractional statistics itself, leaving applications to the end.
Chronologically, the first of these works was Wu’s 1984 papers [259,260].

The first of Wu’s papers [259] was primarily an extension of Laidlaw and DeWitt’s
path-integral quantization (see subsection from N identical particles in three di-
mensions to two dimensions. This generalization was possible due to the fact that the
fundamental group of the identical particle configuration spaces Y (IV,2)/SY was already
known at the time. These fundamental groups are called the braid groups on N letters
BY, and Wu showed that it was because they are very different from the symmetric group

SN that fractional statistics exists.

The braid groups BY, were first described by Artin in 1947 [12] as the symmetry
groups of set of N identical lines that can braid around each other by moving their

endpoints, as seen in figure [7] They can be described algebraically in terms of generators

z

>

r==-="=1=--=-=-=--

e}

1 2 4 i+IN—1 N 7

Figure 7 — Geometric description of a set of N strands in space. This diagram also repre-
sents the trivial braid 1.

0;, given geometrically in figure 8, that behave according to the equations

ol £1 (2.55a)
oi0; = 0j0;, for |i —j| > 1, (2.55b)
0;0;4+10; = 0410041, (255C)

which are represented geometrically by figure [9] Notice how these conditions are similar
to the ones defining transpositions in eq. (2.4)).

This number measures the number of crossings in a three dimensional knot.

Since topological solitons are field configurations, they can interfere and annihilate each other in
the same way as classical waves, meaning that when interpreted as particles, there are also solitons
corresponding to anti-particles.

6
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1 2 ¢t 1+1IN—-1 N

(a) Diagram of o;

o; ! X

1 2 i 1+1N-1 N

(b) Diagram of o; !

Figure 8 — Geometric description of generators.

7 1+ 1 2 1+ 1

o1 +1 ¢ i+1
(a) Representation of equation o? # 1

N

TR

i i+1j j+1 i i+1j j+1

(b) Representation for the equation o;0; = 0j0;

T 1+1 1+2 T 1 +1 1+ 2

(c) Representation for the equation o;0;110; = 0410041

Figure 9 — Braid group identities for generators

In this same work [259], it was shown that the weight factors x([v]) associated
to homotopy classes of paths in the path-integral formalism discussed in subsection [2.3.]]
were equal to the path displacement operators P, of the topological formalism. It was
also shown that, for the two dimensional case, the set of all x([y]) are a one-dimensional
representation of the braid group, with the geometric presentation of the generators o;
corresponding to the actual classical motion of the particles under physical permutations.
It was from this time onward that any type of topological defect that when quantized had

their many-particle wave-functions transforming as an abelian representation of the braid
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group under physical permutations were called abelian anyons.

Then, in his second work [260], Wu showed that because of this correspondence

between weight factors and physical permutations, the x([y]) can be written as

x(]) = eXp{i/dthm}, (2.56)
¥
with the statistical Lagrangian L, being

£d

Lsa:_*
! wdt

> (eilt) — (1)) (2.57)
i<j

The parameter £ is called the statistical parameter of the anyon, and ;(t) is the polar
angle of the i-th particle with respect to the origin. Since this Lagrangian is a total time
derivative, it does not affect the classical equations of motion for the particles in any way,
but in path integral quantization, it is the origin of fractional statistics, and it was used

to build a many-body theory of non-interacting anyons.

The multiparticle theory of anyons was further developed by Arovas et al in 1985
[11], where they showed that a gas of N free anyons ('cyons') has a non-trivial virial
coefficient, making it a non-ideal gas. In the same paper they have realized that the U(1)
statistical gauge field A, (x) of the o model described by Wilczek in 1983 [253] obeys the
action

Sos = 257 / Pre A0, A, (2.58)

called the Chern-Simons action. And they showed, using this action, that a soliton gas
with topological charge () = +1 in the limit of "point solitons" has exactly the same virial

coefficient as N free anyon gas, in the semiclassical path-integral quantization.

Later this result would be generalized by Bowick et al in 1986 [33]. They described
the canonical quantization of the O(3) non-linear o model with a Hopf term and showed
that the spin fractionalization happens not just for solitons with topological charge Q) =
+1, but for any charge. Another work, by Wu and Zee in the same year [261], extended
this result to 34 1 dimensions where instead of the Hopf term, the topological action had
the Wess-Zumino form, a type of action studied in conformal field theories. However, the
connection between conformal field theories and Chern-Simons fields was only completely
revealed by Witten in 1989 [255]. This work was so groundbreaking that it lead to a new

area of mathematical physics called quantum topology.

For our purposes, another important work was done by Krauss and Wilczek in
[154], where they studied a special type symmetry called discrete local gauge symmetry.
These symmetries were important for understanding special soliton configurations called
non-abelian vortexes that arise from partial symmetry breaking of a continuous gauge
group to a discrete local non-abelian gauge symmetry. Discrete gauge theories are also

relevant for models of quantum gravity, and to the study of symmetries of black holes
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[202]. However the most important property of theories with discrete gauge fields was
that non-abelian vortex could have another type of quantum statistics, as described by

Wilczek in 1990 [252).

In that paper, Wilczek provided a simple generic particle model for non-abelian
vortexes called non-abelian flux-charge composites. These are classical objects labelled by
(a,(), where a is an element of the discrete gauge group G representing a generalized
magnetic flux and ¢ is the representation space that transforms under the action of G,
playing the role of a generalized electric charge. Then, suppose that two such composites
labelled, by (a,¢) and (b,n) undergo scattering. The probability amplitude of such a
process can be decomposed into a sum of terms, each of which corresponding to successive
exchanges of the particle pair. For a single counterclockwise winding of composite (a, ()

over (b, ), the non-abelian fluxes interact, and after a full turn they get transformed to

(a®,¢W) = ((ba)a(ba) ", D (ba) D™ (a™")C), (2.59)
(', V) = ((ba)b(ba)™", D (ba) DT (6™")n), (2.60)

where D®(g) is the matrix representation of g in the representation R acting over ¢ and
n.

The point is that the flux label is not gauge invariant, so even if we fix a gauge
and label each flux-tube with a unique element of GG, it seems that the effect of winding
two composites with fluxes a and b such that there is an g € G with a = gbg~! (i.e., a and
b are conjugates) is trivial. However this is not the case, because a gauge transformation
that transforms the flux labels a( and b into their unwound configurations a and b,
would deform the flux lines and force test charges to feel the transformed flux instead.
Therefore, the transformed flux is physically different, but it is not detectable by local
observables with support near either of the composites. This implies that such objects are

indistinguishable without being identical, which appears to be a paradox.

This problem was solved with further analysis by Lo and Preskill in 1993 [170],
where the behavior of non-abelian flux-charge vortexes (assumed to be solitons) was es-
tablished via a series of mental experiments. First, they showed that flux-charge vortexes
(a, () passing trough a double-slit over the region of another vortex (b,n) can only feel
the effect of b over ( if a and b commute. This implies that R must be a representation

of the subgroup of G that commutes with all a, called the centralizer N(a) of a.

Therefore, throwing a vortex with a flux over a double-slit onto the region of
another a vortex yields an interference pattern of abelian anyons since DR<a)(a), where
R is a representation of N (a), must be proportional to the identity due to a being in the

center of its centralizer N (a)[]. This property implies that two vortexes with flux labels a
7

Arbitrary elements of N(a) are not required to commute with each other but only with a. Therefore
being an element of the center of N(a) is a non-trivial property, and the only element we know is
there for certain is a itself.
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and b are indistinguishable only if they are conjugate, if N(a) is isomorphic to N(b) and if
they are in the same charge representation R(® = R® . However, these indistinguishable
particles are not identical, since a vortex with flux a=! can annihilate one with flux a, but

not one with flux b, even if @ and b are conjugate.

Lo and Preskill argue then that this occurs because the indistinguishable labelling
scheme does not correspond to irreducible representations of a symmetry group, but to
the irreducible representations of the quantum double algebra D(G) of the gauge group
G, which is a quantum group. The first connection between non-abelian vortexes and
quantum groups was made by Bais in [15], but it was Lo and Preskill that saw how this
structure solved the paradox of the existence of non-identical indistinguishable objects.
An intuitive definition of quantum groups, together with the first construction of the
quantum double algebra of a finite groups. was made in [65]. The intuitive definition goes

roughly as follows.

A classical system is thought of as a mathematical object made of states and
observables, usually with the space of states being a manifold .# with a phase-space
structure, and the observables being the algebra of dynamical functions on this mani-
fold. When we quantize a classical system, we are essentially substituting the observable
algebra over the phase space, which is a commutative algebra, by a non-commutative
algebra that in some sense preserves the 'equations of motion" of the theory. Then, a
non-commutative algebra becomes the quantum algebra of observables and their Hilbert

space representations become the spaces of quantum states.

It so happens that one can do a mathematical procedure that is formally iden-
tical to this kind of quantization with mathematical objects that are not manifolds and
their functions. If one chooses a non-abelian finite group G' as a "phase space', where
the "dynamical structure' is given by the group multiplication, the associated space of
"dynamical observables" that is a special type of algebra, and the quantization of this

algebra gives the quantum double algebra D(G).

Therefore, in the analysis of the statistics of non-abelian vortexes, the internal
Hilbert spaces 74, associated to the types of vortexes labelled by a = ([a], R*), with [a]
being a flux conjugacy class and R being the charge label, are such that when two
vortexes a and b are brought into contact to "fuse" with one another, the resulting vector

space is decomposed as

a® Vo= DN Te. (2.61)

where the coefficients N7, are called the fusion coefficients, and are positive integers.
These equations are called the fusion rules of the types of indistinguishable vortexes, and

the labels "a" themselves are the topological charges of the theory in the soliton sense.

The wave-functions of particles with these properties transform under non-abelian
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irreducible representations of the braid group, and for that reason are called non-abelian
anyons. The existence of such type of statistics was shown to be an expression of the
general fact that the soliton-like sectors of any local field theory in (2+1) dimensions have
their statistical properties completely determined by an abstract mathematical structure,

first described by Fredenhagen et al in [8384], called unitary modular tensor categories

[208][209].

This structure was latter exploited in a series of works by Freedman [86-89)] to
create a model of quantum computation using non-abelian anyons. This fact, together
with Kitaev’s proposal for a fault-tolerant quantum memory [145,/146,184] and the role in
explaining topological phases of matter, which include the fractional quantum Hall states
and spin liquids [245246], is largely the reason for why the topological trend is the most

studied form of non-standard quantum statistics.

2.3.3  The non-topological trend (1977-)

In this subsection, we deal with the other, minor trends on theories of non-standard
quantum statistics which are not, at least directly, related to the topological trend. In
contrast to the previous subsection, a historical periodization is less meaningful due to
the sub-trends themselves being less correlated. This is the reason why I refer to sub-trends

instead of sub-periods.

In the sub-trend of 2.3.3.1] I deal with theories of non-standard statistics arising
from the physics of integrable systems, showing as best as possible its connection with
statistical theories of the topological trend when they exist. I finish this subsection in
with the sub-trend of theories of non-standard statistics arising from deformed
commutation relations, which play a minor role in the models of the topological trend,

but has an importance of its own, specially for this work.

2.3.3.1 Statistics coming from many-body quantum integrable systems

As shown before in subsection [2.3.1] the classical configuration space of two one-
dimensional identical particles are equivalent to the half-plane R X [0,00). Here, the
space singularity is not localized, but an infinite boundary, and therefore, it makes sense
to canonically quantize the particles and defined their statistics to a choice of boundary
condition. This is a very unusual way of defining quantum statistics, since it has nothing

to do with particle exchange, and will be referred to as the boundary formalism.

In fact, the notion of quantum statistics itself is not so well defined in one-
dimensional systems, as noted by Girardeau in 1960 [95]. In this work, he showed the
existence of a one-to-one mapping between one-dimensional fermionic models and one-

dimensional bosonic models with hard-core interactions of any kind. Calling the hard-
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core bosonic wave-function for N particles by ¥g((x1,...,xy)) and the fermionic one by

Yp(xq, ..., xx) this map is expressed by

N
V(21,0 TN) = (H sign(z; — mz)) Yr(21, .y TN), (2.62)
i<j

or in other words, the two functions are the same up to a sign, which appears whenever
there is a odd permutation of the coordinates of the particles relative to the standard

crescent order z1 < ... < xy.

In this work, Girardeau also proved that this map is spectrum preserving, which
allowed him to give an exact solution to the interacting boson problem with extreme
hard-core interactions. This was latter recognized as an early example of what is called
bosonization, where theories of local free fermionic fields can be described by soliton solu-
tions of bosonic fields. Soon after this, Lieb and Liniger [165,[166] generalized Girardeau’s
result, giving the exact solution to less intense two-particle hard-core repulsive potential

in a system of /N bosons in one-dimension, given by the Hamiltonian

N 82
Hiio =3 o +21 3 0w — 1), (2.63)
=1 1 <t,5>

where 7 measures the intensity of repulsion.

The case n — oo gives exactly the same result as Girardeau’s model, while all other
cases can be solved by replacing Hp;., with a free particle Hamiltonian and introducing the
delta potentials as boundary conditions on the multiparticle wave-function ¢ (1, ..., xy).

The form of those boundary conditions is given in the equations bellow

0 0
( - ) 77Z}|ﬂ%+1:ﬂfi = n¢|mi+1:$i‘ (264)

041 Oz;

Later, after the development of the concept of anyon it will be pointed out by Aneziris
et. al [§], that such boundary conditions can be used to define multiparticle statistics,
being an application of the boundary formalism. In fact, a version of what could be
considered an anyonic phase factor already appeared on Lieb’s ansatz for the multiparticle
wave-functions, where the angle ¢ appears as a function of n regulating the exchange of

momentum coordinates.

If we believe in Leinaas and Myrheim, and take the choice of value for n as the
definition of quantum statistics in one-dimension, them we are forced to agree that local,
two-particle interactions are able to change the quantum statistics of those particles.
Therefore, they fulfill a role analogous to the fictitious gauge potential generated by
topological charges in two-dimensional models of fractional statistics, without being gauge
interactions themselves. These models also exhibit fractional statistics in the sense that

multiparticle wave-functions acquire non-trivial exchange phases under permutations of
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particle coordinates. In these cases, however, the exchange operation is not geometric, but

an abstract permutation of the order of the coordinates on the line.

This transmutation of quantum statistics made by local potentials was proven to be
a feature not just of the Lieb-Liniger model, but of class of two-body potentials collectively
known as Calogero-Sutherland-Moser (CSM) systems [189]. These are one-dimensional,

exactly solvable models of the form

2

+ > (i — xy), (2.65)

Ty 1<J

1 N
Hesy = —3 > 52y
i=1

where ¥(() are functions proportional to §(¢) (Lieb-Liniger), (2 +v2(? (Calogero [44,45]),
or sin~%(¢) (Sutherland [233]).

The connection of these systems to fractional statistics in the boundary formalism
was proven by Polychronakos in [198-200]. His method was successfully applied to the
Calogero Hamiltonian by Brink et al [36}[37] and to CSM systems in general by himself in
1992 [200]. The method itself consists of expanding the canonical algebra [z;; p;] = id; j,
where p; = —id/0x;, to include operators M, ; that satisfy

M;;=M;; =M}, M =1, (2.66a)
M jx; = x;My 5, M p; = p; M, (2.66b)
(M, j;xi] = [M; ;0] =0, for k #14, 7. (2.66¢)

In this extended algebra it is possible to define an effective momentum operator

with the form
= E , 2.67
(8[@ J) ( )

i#]
where the function v(() is chosen such that Hcogys assumes the form of a harmonic oscil-

lator
1 N N
Hesu = —5 (Z 4> x?) : (2.68)
i=1 i=1

Then, the statistical character of the particles are determined by the action of M, ; on the

multiparticle wave-functions.

In the case of the Calogero model, it was already known that its states are in a one-
to-one mapping to anyons states in the fractional quantum Hall effect [161]. In fact, the
effective momentum has the form of an analogue of the minimal coupling prescription for
gauge fields, even though the interactions are not gauge interactions. Additionally, both
the Lieb-Liniger and Calogero models can be obtained from confining two-dimensional

anyons to one-dimensional subspaces in two different ways [117].

Even if anyons obtained in this way are not described by gauge theories, they are

intimately related to it. It is therefore not surprising that someone would try to find a
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many-body theory in one dimension that couples to a gauge field of zero curvature, to
give a gauge theory model for such anyons. The main such proposal was given by Rabelo
in [204], which tried to postulate a one-dimensional form of the Chern-Simmons potential
and couple it to a Schrodinger field. However, as it was pointed out by Aglietti et al in
[2], this procedure does not succeed on generating anyons, giving instead a special class

of soliton solutions without fractional statistics.

The first theory of one-dimensional anyons that could be defined as a bona-fide
theory described by statistical gauge fields, was given by Kundu in [155]. There, he showed

that the version of the Lieb-Liniger model with the form given below

H ——i o (x, — ) |+ ik ijti + N[0 (g — 1))+
Kundu = 2 P, = 1) (N Orn | Oz 2 k l
+ > Mz — x)d(z — zy), (2.69)
<Gkd>

where 7 is the intensity of the Lieb-Liniger potential, and < k,I > is the nearest-
neighbours symbol, could be solved exactly using the techniques of the theory of integrable

systems if \; = Ay = k2.

He noticed that this many-body quantum Hamiltonian could be derived from a

bosonic quantum field theory with Hamiltonian given by

T
H= /d ( il 8¢ +77,0 + kD (@N 8136 881/} ¢) + k(Y A%)) (2.70)

where p = Q/AJWAJ and the symbol :: is the normal ordering symbol. The operators 1/3 are
bosonic in the sense that : [{)(z); ¥1(y)] = d(z — y).

Then, by executing a gauge transformation with the density p playing the role of
a gauge field,
D(x) = e S PR Gy (2.71)

Kundu showed that the transformed Hamiltonian had the form
90t o L
fi= [ (¢¢ " ww) (272

where the normal ordering ::, is now with given respect to the anyonic commutation

relations

O (1)1 () — e () (1) = 0, (2.73a)
Gan) Pl (wg) — e TE G () (1) = 6wy — 32). (2.73b)

The multiparticle wave-functions ®(z;, , ..., 25, ) = (0| ¥f (x;,) - - - T (23, ) |N), given

in terms of the gauge transformed operators with |/N) being an arbitrary multiparticle



62 Chapter 2. Review: The theories of non-standard quantum statistics

state are then determined by the Lieb-Liniger Hamiltonian. Therefore, Kundu showed that
a gauge transformation of the original field changes the Hamiltonian from a complicated
interaction in terms of bosonic wave-functions, into an simpler Hamiltonian in terms of

anyonic wave-functions, which have fractional statistics in the form

. j ) j—1 .
ik . osign(zi—xg)— . . sign(zj—xg)
CI)(ZEl,...,IL‘]‘,...7ZIIZ‘,...,JZN) =e Zkal g Zk71+1 J q)($1,...7$i,...,J]j,...,l’N>.

(2.74)

In this case the statistics is defined by the permutation of particle labels, as it
is with other models of quantum statistics in one-dimension. However, since these wave-
functions are not multi-valued, the particles are not transforming under a representation
of the braid group, making them a completely different kind of anyon as the ones discussed
in section

2.3.3.2 Statistics from deformed commutation relations

As we just saw with the Kundu model and with Green’s ansatz for parastatistics
in subsection [2.2.2] non-standard theories of quantum statistics also arise from creation
operators obeying non-standard commutation relations. Such theories of quantum statis-
tics can be roughly classified into three groups, which we discuss now. The first group is
what can be called quantum group particle statistics, and are mostly related commuta-
tion relations for creation and annihilation operators that can represent quantum group

symmetries, which were briefly discussed in subsection [2.3.2]

The best example of such particles are the g-deformed harmonic oscillator Bieden-

harn [26] and Macfarlane [174], given by the commutation relations
axa  1/2aax _ —N/2
a*a—q’caa* =q , (2.75)

where N # a*a acts as a number operator and a*,a are creation and annihilation oper-
ators respectively, but with a* # a'. Using two uncoupled g-deformed oscillators (af,a;)
and (@3, dy), they have built the generators J,, J,, J_ of SU,(2) using the Schwinger rep-
resentation

J. = ;(ala’; —a003), J.=aas, Jo = aal. (2.76)
that becomes the traditional Schwinger representation of angular momentum generators
when ¢ = 1. They have also discussed possible applications of these commutation relations
as representing oscillators in a non-commutative phase space, or as variables in exactly

solvable models.

The second group of statistical theories encompasses commutation relations broadly
referred to as quonic commutation relations, due to its first example being Greenberg’
quons [105], which were used to model the possibility for small violations of the Pauli

principle. The existence of such violations was considered a possible solution to explain
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some problems in high energy physics at the time [104}|108-110,(134]. The commutation
relations are
ard] — qafag = O, (2.77)

where ¢ € R with —1 < ¢ < 1. This algebra is also called the quon algebra.

Greenberg then proceeds to show that a field theory quantized using these commu-
tation relations would violate locality, but they would still uphold the CPT and clustering
theorems, which meant that they could be used to build local non-relativistic field theo-
ries describing small violations of the Pauli principle. Other application of quons are as
models for Brownian motion of particles in non-commutative spaces [34]. Some attempts

at describing free quon gases were made, but they suffer from Gibbs’ paradox [248].

The third are the commutation relations associated to fields describing anyons,
both in one and two dimensions. This includes the commutation relations for field opera-
tors in the Kundu model, as well as other anyons arising from integrable models. However,
two-dimensional anyons coming from the topological formalism of quantum statistics also
give rise to non-trivial commutation relations for soliton and defect fields. The first ex-
ample of these types of theories was provided [217], but to our purposes we study the one
defined by Fradkin in [79-81].

Fradkin studied an abelian Chern-Simons field A;(x) couple to a spinless fermion
field f (x) on an arbitrary two-dimensional lattice L of points x with principal directions
€;, with ¢« = 1,2. He showed that the Hamiltonian of these fields could be by mapped
to the Hamiltonian of XY interactions between lattice sites by transforming the f (x)

operators into the anyonic operators
() = exp{ § X061 x) | 70 (2.75)
i106) = exp - § 0011 70) 1), 2750)
where ©(x,1’) is an angle variable between the vector r’ living in the dual lattice to the

vector x in the direct lattice, and @ is the statistical parameter for Chern-Simons.

This map from fermion to anyon operators is called a Jordan- Wigner transforma-

tion, and the anyon operators are bound to satisfy the commutation relations
a(x)al (x) + e“al (x)a(x") = b, (2.79)

where the phase § is given by

1 1
§= 5(@(){,1") - 0(x',r)) = % (2.80)
These operators are multi-valued, and generate multi-valued anyonic wave-functions, typ-

ical of the topological formalism. This type of transformation was of the same type as
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the one used by Kundu to solve his model. Since statistical theories coming from the
topological formalism have been thoroughly studied, there are many applications of this
type of commutation relations, a few of which could be found in [70}71}/125|128,203,247]

The point, however, is that all of these three types of commutation relations can
be studied without reference to any specific physical model or problem by studying the
commutation relations themselves. As shown first by Van der Jeugt in |138], and later
developed by Meljanac in [178], all of the previously mentioned commutation relations

can be described by the family

aia; — pRy T aray = 0 (2.81a)
@ — p' R ana = 0y (2.81b)

of commutation relations for N oscillators or modes, where the coefficients Rf]l form the

R-matrix R and, together with p, p’, satisfy the equations

> RUGRUIRY, = > RyGRPURYY (2.81c)
(PPR — 1) (PR +1) =0 (2.81d)
where P is the permutation operator with coefficients P,i:l' = 6/6). This family is called

the family of braided commutation relations, since they have a similar form to one of the

defining equations of the braid group, represented in figure (9¢)).

However, not all possible Fock-space-representable commutation relations are con-
tained in these braided families. The analysis of all possible relations with this property
was made, first for single then for multi-mode oscillator modes, by Meljanac et al in
[176,/177]. A multi-mode oscillator algebra generated by {af,a;}i—1,. n is Fock-space-

representable if it satisfies

where the set of operators {7;|i € {1,...,d}} are functions of the generators. They have
showed that all algebras with this property, together with norm positivity conditions,
have a normal form and can be described by a finite groups of parameters, where each
group may contain infinite parameters. Therefore, in terms of a field theory of quantum

statistics, all such algebras describe a sensible type of non-standard quantum statistics.

2.4 Conclusion and the definition of non-standard statistics used

in this thesis

In conclusion, in the early period of non-standard quantum statistics, discussed in

section [2.2] the statistical theories were not able to describe true forms of non-standard
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statistics. This means that either the models were in principle incompatible with the
postulates of quantum mechanics, or were equivalent to either fermions or bosons. However
in the modern period, which was discussed in section [2.3] true forms of non-standard
statistics were indeed developed. Most of them can be directly related to the work of
Leinaas and Myrheim, discussed in subsection [2.3.1] From it, the statistical theories get
divided into those related to the quantization of classical identical particle systems in
two-dimensions, giving origin to the topological trend, and those to the quantization of
identical particles systems in one dimension, generating most of the other interesting

statistical theories.

The theories of statistics in the topological trend, discussed in subsection [2.3.2]
became inextricably related with gauge theory. Due to this fact, the concept of quan-
tum statistic itself became a type of gauge interaction, that can confer statistics to all
types of physical objects studied in quantum theory, most notably solitons and other
extended objects. From these models two general classes of non-standard types of quan-
tum statistics have flourished. The abelian and non-abelian anyons, which are particle or
particle-like quantum objects that are described by multi-valued functions transformed
by either abelian, or non-abelian irreducible representations of the braid groups when
changed by a physical permutation. The non-abelian anyon case is peculiar, in the sense
that the notion of particle identity depends on the local or non-local nature of the particle

interactions.

For the theories in the non-topological trend, discussed in subsection [2.3.3] many
can be seen as standard particles acquiring non-trivial exchange statistics via the action
of a type of statistical interaction. However, they are anyons in the same sense as the ones
related to the topological trend, either because the associated interactions are not gauge
interactions, or because the multi-particle wave-functions exchange factors did not come
from the braid group. However, all models considered here can still be defined in terms

of multi-mode oscillator algebras, either discrete of continuous.

Having finished the general description of all relevant models of non-standard
quantum statistics in the last section, I can proceed to discuss the type of statistics that
will be studied in this thesis from an information and computation theory perspective.
This theory is defined in terms of multi-mode oscillator algebras, and form two distinct

families of statistical models.

We call the first family fermionic anyons, they are described by the algebra

§i&) +eTPElE = by, (2.83a)
§i&j + ;€ = 0, (2.83b)
el + ereeadlél = 0 (2.83¢)

where the ¢, j labels the lattice sites, ¢ € [0, 27] is called the statistical parameter, and ¢; ;
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is the sign of i — 5. When ¢ = 0 the commutation relations become the one for standard
fermions, given in eq.([2.29)).

The operators for fermionic anyons are related to operators by standard fermions

via the Jordan-Wigner transform

1—1
Y. exp{_w S i fk} fi (2.84a)
k=1
1—1
fi L £ = eXp{icp > f,lfk}fi. (2.84b)
k=1

Using the fact that .J,, is an algebra homomorphism, or in other words J,(ab) = J,(a).J,(b),
we can deduce that J,( f;f ﬁ) = éj él which implies that the number operators n; = éj él for

fermionic anyons have the same form as the ones for standard fermions.

The Fock space for fermionic anyons is built from a vacuum state |0) ¢ being acted

upon by of creation operators, implying the Fock basis states have the form

101, ooy e = (€)™ (€1,)™ 10) . (2.85)

Using fermionic anyon commutation relations, we can deduce that the action of creation

and annihilation operators over the Fock basis is

éi |n1,...70,...7nm>€ :O

R - (2.86a)
& |nl,...,1,...,nm>£ :exp{—zkpzz;lnk}]nl,...,O,...,nm>£

ot _ il

B S T O I ;e = expy? T oA T S AR IR

éi 1 >§ P{ DIy} k}| 1 >§ (2.86b)
&l n1, s nm)e =0

The model for particles in one-dimensional lattice was defined for the first time
by Amico in [7], inspired by the discussion on one-dimensional fractional statistics done
for the Calogero model in [117], and in the results of |[100]. He showed that a Hubbard
Hamiltonian for such particles was exactly solvable, and studied other deformed models
in [190-193]. In the limit of ¢ = 7, this Hamiltonian models a gas called a hard-core boson
gas, which is equivalent to a Lieb-Lineger gas with ¢ — co (see section .

The second family is called bosonic anyons, and they are described by the algebra

BBl — emiewa 313 = 6y, (2.87a)
Bif3; — €% B3, = 0, (2.87b)
BIA) — el =0, (287c)

with ¢ and ¢;; being the same as in the fermionic anyon case
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The standard and anyonic boson operators are related by the Jordan-Wigner map

1—1
B 75 ot = exp{_w 3 z;;ak}zsg (2.88)
k=1
~ J, A =l ).
bi l> ﬁz = exp{up Z b};bk}b“ (288b)
k=1

as with fermionic anyons, J,, is an algebra homomorphism, implying that Jdl;jl%) = BZT Bi.
Therefore, the number operators 7n; = /@J ﬁ, have the same form as their standard boson

counterpart.

This Fock space for bosonic anyons is built from a vacuum state |0) 5, being acted

upon by creation operators, implying that the Fock basis states have the form

(B ()

nil..ny,!

0)5, (2.89)

115y ) g =

Using bosonic anyon commutation relations, we can deduce that the action of creation
and annihilation operators in the Fock basis states is given by

i—1

B; In1, ooy ) g = exp{igpz nk}\/n_i|n1, e = L ) (2.90a)

k=1

i—1
ﬁj In1, ...,nm>6 = exp{—z’gpkz:nk}\/ni +1|ny,....,n; + 1, ...,nm>5. (2.90b)
-1

This model is essentially a discrete version of the Kundu commutation relations
for field operators in eq.. They were further studied by Batchelor et al in [20-22], as
well as by Calabrese et al in [41,42], after the first experimental synthesis of an strongly
interacting ultracold gas with non-standard statistics was realized by Paredes [194] in an

optical lattice setting.

Renewed interest in both fermionic and bosonic anyons developed after Keilmann
[143] demonstrated that the variation of the anyonic statistical phase for bosonic anyons
under a Hubbard interaction induced a phase transition. Lattice anyon models has been
an active research topic by the ultracold gas/optical lattice community ever since [10,28,
46,66,112-114},/119-121,|123}126|, 164, 171,[234].

From now on, unless otherwise stated, the terms "fermionic anyons" and "bosonic
anyons" will refer specifically to these one-dimensional lattice anyon models. Anyons from
the topological trend, or other non-standard theories of quantum statistics, will not be
mentioned again. A detailed study of relevant Hamiltonian dynamics over these systems

will be done in chapter 4] and are a part of this thesis’ results.
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3 Review: The computing power of standard

quantum statistics

After discussing the concepts necessary for understanding the anyon models stud-
ied in this thesis, the last topic I need to address before proceeding is quantum computing
and information theory. In this chapter I aim to introduce the basics of quantum infor-
mation, and quantum computation with standard identical particles. In contrast to the

last chapter, here I give an expository tone without aiming for historical continuity.

The organization of this chapter is as follows. In section [3.1] T introduce qubits as a
quantum analog of classical bits. Next, I define the circuit model of quantum computing,
studying quantum gates and their properties. I finish this section with a discussion on
quantum entanglement and its role as a resource in the circuit model, showing how to

define and measure the amount of entanglement produced by two-qubit gates.

In section [3.2] T describe the optical network formalism and its use in quantum
computing with standard identical particles. First, I do a brief review of quantum in-
terferometry of light to motivate the modeling of optical devices, such as beam-splitters
and phase shifters, in terms of multi-mode, bosonic oscillator algebras. Then, I discuss
optical networks and the ways they are used to represent quantum circuits. I finish this
section with the generalization of optical networks to systems of identical fermions and

their properties.

I finish this chapter in section where I prove the equivalence between the
quantum circuit model and the optical network model for hard-core bosons. First, I show
how to describe qubits by an oscillator algebra, giving them a particle representation.
Then, I generalize the optical network model to this algebra and provide an alternate
description of quantum circuits. I finish this section by representing a family of quantum
circuits called matchgates and discuss their relation with optical networks for fermionic

oscillators.

3.1 Introduction to quantum computing in the circuit model

This goal of this section is to be a review on the basics of quantum information and
computation theory. Almost every statement mentioned here can be found in reference
books about these subjects, such as [148,/185,254]. In subsection , I recall the basic
concepts of classical information theory in order to introduce quantum information theory

as its quantum analogue. Then, I use this analogy to motivate the definition of qubits and
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gates, comparing them to classical bits and their transformations. I finish by laying out

an exposition of the most useful properties of single-qubit and two-qubit unitary gates.

In subsection [3.1.2] T define the circuit model of quantum computing proper. First,
I give a definition of reversible classical circuits, and introduce the concept of universal
gates. Then, I explain quantum circuits as a quantum analog of reversible classical circuits,
and proceed to define the circuit model of quantum computing. To finish this discussion,
[ introduce the problem of approximating arbitrary single-qubit maps and the Solovay-

Kitaev theorem.

Finally, in subsection [3.1.3] I review the density operator formalism, quantum
entanglement, and their role in deciding the universality of gate sets. First, I describe
the density operator as a model for classical ensembles of quantum states, and show the
difference between pure and mixed states. Next, I use the definition of partial trace, and
the description of subsystems to differentiate between product, separable and entangled
states. Finally, I show how to measure the amount of entanglement in a two-qubit state
and the entangling power of a two-qubit gate, which is related to the problem of deciding

the universality of a gate set.

3.1.1 Qubits and gates

Here I argue, in an informal way, that quantum information theory is the quantum
analogue of classical information theory. This is not a new idea, and it has been used as
a way to highlight the differences and incompatibilities between them. In order to make
sense of the analogy, we must first see classical information theory as a theory about
physical processes, described by classical mechanics. Then, we need to see in what sense

this theory can (or cannot) be quantized.

In order to use physical systems to process information, we must be able to describe
them as reliably as possible, otherwise we can not manipulate information in a controllable
way. This necessity for reliable description, contrary to intuition, does not create the need
for restricting the set of computationally useful physical systems to only deterministic
ones. In fact, probabilistic descriptions of a system’s behavior can count as reliable, if the

system outputs values according to a given probability distribution in a consistent way.

For us, the main prerequisite for a classical system to be considered suitable for in-
formation processing is that the system is closed and controllable. Controllable means that
the system is characterized by measurable parameters with values that can be changed
according to well defined processes. And closed means that these processes do not oc-
cur unintentionally. Information theory requires that we divide the phase space of such
systems into some finite number of sub-spaces, and map them into a new, discrete phase-

space. These sub-divisions may overlap into each other and, in the case they overlap, an
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approximation scheme is necessary for the map to be valid. This scheme is called the
digital approximation, and is an integral component of the design of digital circuits, for

example.

Discrete phase spaces, then, model classical systems suitable for information pro-
cessing. For example, the space B = {0, 1}, called a classical bit, represents a classical
system whose phase space can be approximately divided into two representative sets, la-
beled by the symbols 0 and 1. This is the most fundamental of the discrete phase spaces,

because it entails a mechanical representation of a Boolean logical variable.

Boolean variables are symbols standing for values in a Boolean ring. This ring
is generated by two elements, 0 and 1, and has two operations called the Boolean sum

(written using @) and the Boolean product (written using )E], represented in the tables:

A A [Aod ] [ A ] A [ A4
00 0 0 ] 0

= oo O

0 1 1 0 1
110 1 1 0
1 1 0 1 1

Table 1 — Boolean operations

where the variables A; and A, are Boolean. Boolean variables and operations are an
algebraic way to represent propositional logic, where logical sentences and deductions are

translated as polynomiald?|

A physical system whose phase-space is given by the N-fold Cartesian product
BY is a physical representation of a system with N Boolean variables. This phase space
is called an N-bit system, and its coordinates are the N-tuples (Aj,..., Ay) called bit
strings of length N, or N-bit strings. Bit strings are also represented as sequences of
symbols without in-between spaces A --- Ay. An N-bit system can hold the values used
to evaluate Boolean expressions and, therefore, can be used to do propositional calculus.
The conclusion is that, if we can automate the physical processes that maps N-bit strings
into each other, we can automate formal reasoning, at least to the extent covered by

propositional logic.

Logical operations on Boolean variables are induced by classical dynamical maps
on the underlying physical system. Logical operations, then, are modelled by functions
f:BYN — BM from N-bit strings to M-bit strings. For example, when N = M = 1, there

are four such functions, given by

Id(A) = A, c(A) =0, e (A)=1, NOT(A)=Aa1, (3.1)

The Boolean ring is isomorphic to the ring of integers modulo 2, where the Boolean sum and product
are isomorphic to sum and multiplication modulo 2.
Boolean variables form a polynomial ring under Boolean sums and products.

1

2
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where the first is the identity function, the next two are constant functions, and the last

one is the transposition, or negation (NOT') function.

The identity and the negation have inverses, and for that reason are called re-
versible functions, while functions that do not have inverses, such as the constant func-
tions, are called drreversible. The set Ry of reversible Boolean maps f : BY — BY on
N-bit strings is isomorphic to the permutation group SQN, since the number of distinct
N-bit strings is 2/V. The most important examples of reversible Boolean functions are the

SWAP, CNOT and the TOFFOLI functions, given by the formulas

SWAP(Al, Ag) = (AQ, Al) (32&)
CNOT(Ay, As) = (A1, A1 @ As), (3.2b)
TOFFOLI(Al, AQ, Ag) = (Al, AQ, [Al . AQ] D Ag) (320)

The physical model of Boolean algebras and reversible Boolean maps forms the basis of

the physical analysis of information-processing tasks.

We are now we in position to state what we mean by a quantum analogue. Given
a discrete phase space, we can take its points as basis of an Hilbert space, and define a
quantum state space. For example, we can take the classical bit B = {0,1}, and define
the Hilbert space 4, generated by the basis elements |0) , |1). This Hilbert space is called

a qubit, or quantum bit, and a general state is given by the linear combination
) = al0) +b[1), (3.3)

where a,b € C with |a|” + [b]* = 1.

From a classical phase space of two points we arrive at a continuous Hilbert space
with a particular geometry. To see this geometry, notice that the normalization condition
and the global phase invariance of quantum states allow us to describe any single-qubit

state using only two real parameters, called 6, ¢, by the formula

6, p) = cos (Z) |0) + €' sin (Z) 1) . (3.4)

The two angles give coordinates for a two-dimensional sphere, called the Bloch sphere.

The structure of the Bloch sphere is represented in figure Fig. [I0] This parame-
terization for single-qubit states might suggest we interpret the pair of angles (6, ) as
the analogues of Boolean variables. This seems intuitive, mostly because Boolean vari-
ables are, essentially, coordinate functions for a discrete phase space. However, Boolean
variables form a ring structure, and this ring structure does not easily translate into an

algebraic structure for quantum states, as we will see shortly.

Let us introduce the quantum state variable |A), where A is a Boolean variable.

Given the Boolean sum A; & A, and the Boolean product A;As, one can define the
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quantum state variables |A; & As) and |A; Ay), without any problems. However, trying to
create operations such as [A;) ®|As) = |A; @ As) and |Ay) - |Asy) = |A; - Ay) fails, as they
are always incompatible with the state normalization. Therefore, the quantum analogy

between bits and qubits is not a formal quantization procedure.

Figure 10 — Bloch sphere: The qubit basis states |0) and |1) are the north and south poles
respectively, fixing the direction of the Z axis. The angles 6, © are the typical
angles of the spherical coordinate system in R3.

With this in mind, let us push the quantum analogy further, and define the Hilbert
space BN | given by the N-fold tensor product of 4, as the analogue of the N-bit phase
space BV. Since a general point in BY has as its coordinates the string variable A; - - - A,
a general basis state of %Y is parametrized by

N

(A1, AN)) = |4 Ay) = Q) |A). (3.5)

i=1
This basis is called the computational basis, and plays an important role in the theory of

quantum computing in general.

An interesting feature of the quantum analogy in the multi-qubit case is seen by
defining the concatenation operation o, on Boolean strings A, B of size N and M. This
operation is such that Ao B = Ay --- AyB; --- By and it implies, using the definition of

the computational basis, that
|[AoB) =[A;---AyBi---Bu) = [A) ® |B). (3.6)

Since the tensor product is compatible with a Hilbert space structure and is essentially

uniqueP] it is the most natural choice of structure to replace the concatenation o in a

3 The tensor product is universal [6] in the category of Hilbert spaces, and this makes it the unique

natural analogue of concatenation.
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quantization procedure. Therefore, the failure of quantization happens precisely at the

single-bit level.

In other to obtain a better understanding on the lack of a natural quantization
procedure from classical to quantum bits, we must discuss the structure of quantum bit
maps, called gates. As we saw before, single-bit maps f : B — B can be either reversible or
irreversible. The reversible subset has the structure of the permutation group S2, which
is generated by the NOT function. In the quantum case however the set of all maps
U: % — % must preserve the Hilbert space structure of %. This implies that any map
U must be unitary, and the set of all such maps has a group structure, given by SU(2).

In other words, all qubit maps are necessarily reversibld'}
Now let us proceed to examples. The simplest single-qubit map is the quantum
version of the NOT gate, which is called the X gate, and is given by
X|A)=|A®1). (3.7)

In general, any reversible Boolean map has a quantum version, obtained by exchanging
their action over Boolean variables with an action over quantum state variables. This

gives us, for example, the two-qubit and three-qubit gates

However, almost all single-qubit maps have no classical reversible Boolean function
as an analogue. The simplest example of these non-classical maps is the Z operator, defined
by

Z|A4) = (-1)"]4). (3.9)

The X and Z operators, together with the Y = iX 7, satisfy X2 = Y2 = Z2 = I, where
I is the identity operator over . They also satisfy the equations [J;; J;] = €, J; with
Ji =X, J, =Y and J3; = Z, implying that they are a vector space basis of the Lie
algebra of angular momentum, in the spin-1/2 representation. The X, Y and Z maps are
called Pauli operators, since their matrix representations are the Pauli matrices given in
eq. (L.1).

These three maps, the X, Y and Z operators, are associated to the X, Y and Z
axes in the Bloch sphere of Fig. [I0] in the sense that the intersection points of each axis
with the sphere are the eigenvectors of the corresponding operator. If the eigenstate is
obtained from the positive part of its respective axis, it will have eigenvalue 1, otherwise it

will have eigenvalue —1. The positive and negative eigenstates of Z are the basis states |0)

4 For closed systems.
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and |1) respectively, while for X and Y they are given in terms of Bloch sphere coordinates
by
1 1

9. =[5:0) = 50 +10). 1) =|5m) = 50 - ). for X (310)
=[5 50 = i, ), =|F-F) = J500 i) for v, @)

The identification of the Pauli operators with axes in Bloch sphere allows us to give

a simple geometric representation of single-qubit operators. First, consider the operators

Rx(a) = exp {—igX} = COS (g) I —isin (g) X, (3.12a)
Ry (@) = exp {—i‘;‘y} = cos (;‘) [ —isin (;‘) Y, (3.12b)
Rz(a) = exp {—igZ} = coS (g) I —isin (g) Z. (3.12¢)

They act as rotations on the (0, ¢) angles, and are suitably called rotation operators with

rotation angle o around the XY and Z axis respectively.

Since X,Y and Z are generators of rotations in the Bloch sphere, an arbitrary

operator U can be written as
U = Rn(a) = exp {—ig(an +n,Y + nZZ)} , (3.13)

where the triple n = (n,,n,,n.), satisfying |n.|> + |n,|> + |n.|> = 1, is the rotation
axis. However, it is more convenient to write these transformations as decompositions of
rotations along the X,Y and Z axis. One of these decompositions is given by finding

angles «, § and 7y such that

where n, m can be any pair of non-parallel axis in the Bloch sphere.

This characterization of single-qubit unitaries as rotations allows us to think about
them as rotations in a more general sense, but in order to see this, we must first discuss
more about Pauli operators. Pauli operators are also known to satisfy the anticommutation
relations

{%i; %'} = 20;;1, (3.15)
if we take 49 = I 41 = X, 42 = —1Y and 43 = Z. These relations define what is called a
Clifford algebra [257], labelled by Cliff(2), where the number 2 refers to the number of
algebraic generators (when we also consider products between vectors), given by X and
Z.

We can use the Clifford algebra structure of Pauli operators to see single-qubit
gates as special algebra elements K, acting as a group over the algebra itself by the

conjugate action
Kxv=KvK', (3.16)
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where v is any complex linear combination of Pauli operators. This group is called the

spin group, or Spin(3) (because there are three Pauli operators), and it is isomorphic to

SU(2).

For us, the point of introducing Clifford algebras is that they are the quantization
of a structure known as the Grassmann algebra [257]. This Grassmann algebra is used to
define the classical mechanics of fermions, and it is not equivalent to a Boolean algebra. It

is this fact that explains why qubits are not quantized classical bits, in the formal sense.

An important sub-group of Spin(3) is the single-qubit Clifford group, labelled by
Cl(1), given by the set of unitaries that preserve the Pauli operators under conjugate
action. In other words, given the set of Pauli operators {X,Y, Z}, K € CI(1) if and only
if K{X,Y,Z}K" = {X,Y,Z}. The Clifford group is also the normalz’zerﬁ of the Pauli
group P, which is the group formed by all products of single-qubit Pauli operators.

The C1(1) group is generated the Hadamard gate H, and the phase gate S, which
have matrix representations given in eq. , and is the symmetry group of the octa-
hedron of eigenstates of Pauli operators in Fig. [T1} This group has many applications in
quantum computing and quantum error correction, as well as having an important role in
measurement based quantum computing. The last important single-qubit gate example
for us is the 7/8 gate, also represented by T', with matrix given in eq. . The role of

this gate is discussed in the next subsection.

Z

A

10)

1)

Figure 11 — Octahedron preserved by the single-qubit Clifford group. The vertices are
eigenstates of Pauli operators.

Now we proceed to discuss multi-qubit gates. As we saw earlier, all reversible

® The normalizer of a subset S of group G is the set of elements {g € G|gS = Sg}.
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Boolean maps have direct quantum analogues. Just as in the single-qubit case, all N-
qubit maps are reversible due to unitarity, and form the unitary group SU(2"). Before
talking about the N-qubit gates, let us describe a special family of reversible Boolean

maps.

Controlled gates A”(G), are N-bit reversible maps conditioned by value of the
product of P bits, called control bits, which act non-trivially over target bits ), according

to the rule

Ay, AN A =0
AP(G)(Ay,..., Ay) = (4 w), i Ilicy . (3.17)
(A17 e ,AP, G(Aerl, e 7AN>>7 lf Hle A?, - 1
where G : B¢ — B is a reversible map on @Q-bit strings, and P4+@Q = N. Both the CNOT
and TOFFOLI are controlled gates, given by A(NOT) and A?(NOT), respectively.

Controlled gates can be generalized to the quantum setting by exchanging Boolean
variables for quantum states variables in the definition. In other words, a controlled quan-
tum gate AT(G) is an N-qubit unitary of the form

Ay An) L if TIZ, A4 =0

AP(G) Ay Ay) = ' . . (3.18)
Ay Ap) @ G(|Apgr--- An)), if TTim; Ai =1

One of the simpler types of controlled quantum gates are the two-qubit controlled rotation

gates A(Rn()). These are defined by
A(Rn(@)) |A1) ® |A2) = A1) @ (Ra(a))™ [As) | (3.19)
and have the A(X)(=CNOT) and A(Z)(=CZ) gates as the most important examples.

To sum up, here we established the basic concepts of quantum information the-
ory as quantum analogues of classical concepts. We proved that this analogy cannot be
extended to a formal quantization procedure due to the non-equivalence of Grassmann
and the Boolean algebras. We analyzed the structure of single-qubit gates and presented

some examples of two-qubit and three-qubit gates.

3.1.2 Classical and quantum circuits

Here, I present quantum circuits as the quantum analogue of classical reversible
Boolean circuits. Instead of discussing the formal definitions of computational problems
and tasks in the circuit models, my intent is to give an account of which ingredients,
or primitives we need for circuits in order to express these problems in the first place.
Therefore, I will not discuss classical, or quantum computability and complexity theory,

and restrict myself to the subjects of circuit expressiveness, synthesis and cost analysis.

In order to define what is a classical circuit, first we need to extend the action of

reversible maps over a small number of bits into a larger number of bits. This is done in
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the following way. Given an arbitrary N-bit string A; --- Ay, a reversible Boolean map f
over M-bits, with M < N, is said to act as a map in B if it acts as f over an M-sized

subset of the N bits, while acting as the identity over the remaining N — M bits.
For example, the 2-bit CNOT map can act as the 7-bit map CNOT}3 5, given by

CNOTS,S(AL A27 A37 A47 A57 Aﬁa A7) = (Ala AQa A37 A47 A3 ¥ A57 A67 A7)7 (320)

where bit 3 is the control bit and bit 5 is the target bit. Similarly, we can invert the
control and target bits in CNOT}j 5, obtaining the map CNOT}; 3, given by

CNOT5,3(A17 A27 A37 A47 A55 A67 A7) = (A17 A27 AS s> A37 A47 A5> A67 A?) (321)
As a last example, consider the following three 7-bit versions of the 3-bit TOFFOLI gate

TOFFOLIQ,4,5(A17 A27 A3) A47 A57 A67 A7) = (A17 A27 A37 A47 [A2A4] @ A57 Aﬁa A7> (322)
TOFFOLIs 1 5(Ar, Ag, A3, Ay, A5, Ag, A7) = (Ay, [A3A1] © Az, A3, Ay, A5, Ag, A7) (3.23)
TOFFOLI; 7,1 (A1, Ag, Az, Ay, As, As, A7) = ([AsA7] @ A1, Az, As, Ay, As, Ag, A7) (3.24)

In general G, is an N-bit version of the the M-bit maps G, acting over the ordered

7777 I
subset of bits labelled by the ¢; indices.

Using this construction we can define a classical reversible circuit W as the function
composition

W =Gy o 0Gy, (3.25)

where G"Ii are N-bit maps such that the sets I;, with ¢ = 1,..., L, are ordered subsets of
|I;] < N bits, and the G are |I;|-bit maps. The number L is the called the circuit size.
Any sequence of two maps, G} and Gﬁ:;ll, of a circuit W is called parallel if and only if
I;NI; 1 = (0. Sub-sequences of parallel gates form the circuit layers of W, and the number
of layers is called its depth (d). The width (w) of a circuit is the number of bits over which
W acts non-trivially. An example of circuit is given in fig. [I2] it has size 9, depth 5 and
width 5.

The main advantage of expressing reversible maps as circuits is to exhibit them as
compositions of gates acting over fewer bits. This implies the possibility of implementing
any N-bit reversible map by using a small, fixed set of M-bit maps, for some values of
M, that can be executed reliably in the physical system of interest. An M-bit map G is
called universal if and only if any N-bit map can be written as a circuit using only the
N-bit versions of G, for every N € N. This is equivalent to saying that an M-bit map
G is universal if and only if its N-bit versions generate the permutation group S2", for
every N € N.

In [244], there is a characterization theorem for reversible universal circuits. It says

that any map that is not affine-linear is universal for reversible circuits. An M-bit map
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A P— A2 ® (A1 @ Ay ® A5) (A2 @ As)
A, +—1 * Ay @ As

A3 S, * ¢ Ay

Ay $H H—e A0 (1 Ay @ A3) A5

As ¢ b A0 (1 Ay @ Az) A5

Figure 12 — Example of reversible classical circuit. Input Boolean variables are on the
left end, and the output is on the right end. This circuit contains 3 CNOT
gates, 3 SWAP gates and 3 TOFFOLI gates, with different arrangements
of control and target bits.

is affine-linear if its action over M-bit strings can be put in the form
A a ool Ay
=1:1D|: o s (3.26)

/ n
A o c

=3

where the cf; are Boolean constants. The set of all affine-linear M-bit maps form a group
called the affine-linear general group AGL(M,B), which is a strictly smaller subgroup
of §2" for every M. It happens that all 2-bit maps are affine-linear, and therefore the
universal maps with smallest width are 3-bit non-linear maps, such as the TOFFOLI

gate.

The idea of an N-bit version of an M-bit maps used up to this point only really
applies to the case where N > M. In order for a universal M-bit reversible map to have
an N-bit version with N < M, we need to designate some M — N sized subsets of input
and output bits as either ancilla or garbage bits. Ancillary bits are input bits designated
to have a predefined value, while garbage bits are output bits whose value is irrelevant for
the implementation of a particular function. An example of use is given in fig. where
we implement a version of the CNOT gate using the universal TOFFOLI gate, ancilla,
and garbage bits.

Ay Ay
Ay AL B Ay
1 1

Figure 13 — Implementation of a CNOT'; 5 gate using the TOFFOLI, 3 5 gate with input
bit 3 designated as an ancillary bit and the output bit 3 as a garbage bit.

The existence of universal gates allow us to objectively measure the cost of im-

plementing any particular N-bit map over an N-bit system. This measure is obtained
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by finding the circuit decompositions of this map in terms of the universal gate, and
computing their circuit size, depth and width. However, the physical requirements for im-
plementing any particular version of an M-bit universal gate may lead to different figures

of merit that are only significant for the system in question.

For example, suppose that a physical system only allows the implementation of
gates between bits that are nearest neighbours with respect to some spatial ordering. The
implementation of versions of a universal gate G’ that connect non-nearest-neighbour bits
will require the ability to perform sequences of SWAP gates, and this will invariably add
to the circuit size and depth. If for some reason SWAP gates cannot be built using the
available versions of GG, then we may require ancillas, which increase the circuit depth, or

we may just not be able to express all maps, which forfeits the universal property of G.

Now we are in position to discuss the quantum case. Just as with M-bit maps, M-
qubit unitaries have many different N-qubit versions, for N > M. This is done defining the
G action over a subset I of quantum state variables {‘A,J>} j=1,...m in the computational
basis states of the N-qubit system. For example, the 3-qubit controlled rotation gate
A?(Ry()), given by

A*(Ra(a)) |A1 A2 As) = |A1Az) @ (Ra(a)) ™7 |As) (3.27)
has as one of its 5-qubit versions the map A%(Ry(a))134, given by

AQ(Rn(Oz))LgA |A1A2A3A4A5> = |A1A2A3> X ((Rn(a))A1A3 |A4>) X |A5> . (328)

Therefore, the definition of a quantum circuit has exactly the same form as the
definition of a reversible classical circuit, found in eq. , but with G”I being N-qubit
unitaries instead of N-bit reversible gates. However, in contrast to the classical case, it is
impossible to build an exact circuit decomposition of an N-qubit unitary map using gates

from a finite set, due to the continuous nature of the SU(2Y) group.

Therefore, we instead speak of strict universality only when dealing with circuits
built from N-qubit versions of gates that belong to a continuous gate set. As shown in
[185], any N-qubit unitary W can be exactly decomposed as a circuit in terms of the
gate set Gsy2),cnor = {U,CNOT|U € SU(2)}. Notice that, while in the classical case,
universal gates must be non-linear, in the quantum case, a universal gate set only needs

single-qubit operations and the lineai’] CNOT gate.

This implies, in particular, that non-linear gates, such as TOFFOLI, must have
a quantum circuit decomposition in terms of the linear CNOT gates (fig. , which is
impossible for classical circuits. The decomposition of classical maps into quantum circuits
leads to some very important circuit identities which are necessary for many types of exact

circuit synthesis tasks. The most common of circuit identities are summarized in Fig[3]

6 In terms of its action over Boolean variables.
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T

B AL AL A0S s = VA s =
1H =1 = T b1 e T A

Figure 14 — Quantum circuit decomposition for the TOFFOLI gate.

Strict universality, although important to understand the structure of quantum
circuits, is not the most practical notion of circuit universality. This is because it requires
the capacity to implement any single-qubit map with arbitrary precision. A more useful
notion is the concept of computational universality, where we only require that our circuit
approximates the desired unitary map up to some non-zero precision € > 0. To measure
the degree of precision we need to define what it means for two unitaries to be "close" to

one another. This is done by the operator norm
U=Vl = sup [|[(U=V) )], (3.29)
[v)es

which measures the distance between two unitaries V' and U.

The concept of computational universality also allows universal gates sets with a
discrete number of elements. This is due to the existence of discrete gate sets that generate
circuits that are dense over SU(2V), for every N. A set of N-qubit circuits is dense over
SU(2N) if, for every € > 0 and every unitary U € SU(2Y), there exists a circuit W of size
I(e) built from this gate set, such that ||[U — W|| < e.

However, we must also impose that the circuit W, written in terms of a dense gate
set, can be found in a reasonable amount of time by some synthesis method, and have a
reasonable size. By reasonable, I mean an execution time and output circuit size that do
not grow exponentially fast as the approximation gets more precise. This problem can be
solved for single-qubits, and by extension for N-qubits (with N fixed) [147], by employing
the Solovay-Kitaev algorithm.

It shows how to synthesize a circuit W built from a computationally universal set,
for any U € SU(2") with fixed N, such that the size of the circuit, as well as its synthesis
run-time, is bounded by a function that grows no faster than an polynomial over In(1/¢).
For example, in the single-qubit case, the circuit sizes grow as In*?7(1/¢), and the syn-
thesis run-time as In*™(1/¢) [56]. The three most common examples of computationally
universal gates sets are {H, A*(X)} [3,218], {G, A(X)} where G is any single-qubit gate
such that [G?; Z] # 0 [218], and {H, T, A(X)}.

The last difference between classical reversible circuits and quantum circuits we

need to discuss is the role of quantum measurements. Up to this point, whenever we

talked about reversible circuits, we assumed that the input bits could be deterministically
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prepared in any desired state. Then, since reversible transformations were assumed to also

be deterministic, the output is observed to be deterministic as well.

However, when we do quantum information processing with circuits, the end result
is a probability distribution over the set of all N-bit strings, even if the input state
preparation, the circuit itself and the output state are obtained deterministically. This
could seem as a weakness of quantum information processing, but if we have the freedom
to measure the output state of circuit with respect to a basis that is not the computational

basis, we can exploit this as a resource [50,(139].

The essential concept used to exploit the nature of quantum measurement in infor-
mation processing is that of adaptivity. An adaptive quantum circuit Woq for an N-qubit
unitary U, is defined in the following way. We start with an input state over a bigger
qubit system, with the number of qubits being at most a polynomial on N. We designate

all but N qubits as ancilla, and prepare the ancilla in some pre-defined initial state |init).

Given a choice of initial state, we implement a circuit V! over the poly(N)-qubit
system and, after it, measure a set of d; qubits. This measurement give us a d;-bit string
Al = A}--- A}, which will be used to produce another quantum circuit V?(A'), acting
on the poly(N) — d; qubits that were left unmeasured. After that, we measure dy qubits,
obtaining a by-bit string A? that is used, together with A!, to produce another circuit
V3(Al, A%) on the remaining qubits. The process is repeated until all ancilla are measured,

which will necessarily happen for some number £, called the number of rounds of W,,.

Adaptivity does not allow us to create more quantum circuits than any universal
set. However, if we are capable of implementing certain special initial states and special
measurement basis, we are able to achieve computational universality using only single-
qubit gates [102,235]. In this sense, being able to implement adaptive circuits is a resource
in itself, and plays an important role in computational models based on the physics of
standard identical particles. The special initial states and measurements that we just
mentioned are obtained using another resource obtained from quantum states that does

not exist for classical bit-states. This resource is called quantum entanglement.

3.1.3 Quantum entanglement and entanglement power

In order to understand quantum entanglement, we must introduce a generalization
of the description of quantum systems known as the density operator formalism. This for-
malism allows us to deal with situations where a system is not described by a well defined
quantum state, but by a statistical ensemble of quantum states. In classical information

theory, a statistical ensemble {d(A), A} of states on a bit is represented by a random
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Boolean variable A, given by a probability distribution
d(A) = , (3.30)

where pg is the probability of outcome A = 0 and p; the probability of A = 1. We also
must have that py,p1 € R, pg,p1 > 0 and py + p; = 1.

In the quantum case, a statistical ensemble {p;, [1;) }, where |¢/), are a collection
of quantum states of size K € N, each occurring with probability p;, is described by the

density operator
K
p=_pilvifvil, (3.31)
i=1

where we require that each p; > 0, and % | p; = 1. These two conditions imply that any
operator p, over any Hilbert space, can represent an ensemble of quantum states if they
have unit trace (Tr{p} = 1), and are positive operators ( (¢|p|yp) > 0, for all |¢)). The
positivity condition ensures that p is Hermitian and has real, non-negative eigenvalues
and, because of that, the eigensystem of any such p describes an ensemble of quantum

states.

Given any observable O, its expected value in the density operator formalism is
given by
(O) = Tr{Op}. (3.32)

An ensemble that has a single quantum state |¢) is called a pure state, and the corre-
sponding density operator is p, = [)(¢|. So, in general, pure states are the ones that
satisfy p?> = p. Non-pure states are called mized, and represent a classical "mixture" of
more than one quantum state. The action of measurements over density operators is also

described using traces, but we will not need it here.

Using density operators as descriptions of ensembles of quantum states entails a
fundamental redundancy. Suppose that a quantum system is described by an ensemble
{pi, pi}, where each p; describes an ensemble {q?, pi, }. It is easy to see that the quantum
system must be described by both

Pays = P _Dipi, and  peys = > pidipl, . (3.33)
7 1,7

Notice that, in both cases, pgys is a linear combination of density matrices, where
the sum of all coefficients is always 1. We call such linear combinations convex combi-
nations, and what this argument exemplifies is the fact that the same density operator
can be described by many different convex combinations or, in other words, many ensem-
bles are described by the same density operator. These ensembles are considered to be

equivalent, and are characterized by an equivalence theorem which can be found in [185].
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Density operators are used to describe settings in which the quantum state of a
physical system is unknown, but are also useful for describing the states of sub-systems,
as we see now. Let p; o be the density operator representing a state of a two-qubit system.
Suppose that we want to find the expectation value of an observable O; that depends
only on the first qubit. We can use eq. to write the general formula

(O1) = Tr12{O1p12}, (3.34)

where the trace is taken over the computational basis state of the two-qubit system.

However, given any p; o, it is possible to find a density operator p; that only

represents the state of the first qubit, in the sense that
(O1) = Tri{O1p1}, (3.35)

where the trace is taken over the basis of the first qubit only, which is called the sub-system

operator for the first qubit. The operator p; itself is given by the partial trace

P1 = Trg{pl’g}. (336)

Similarly, one can define a ps = Tri{p12} that gives description of the second qubit as a

sub-system with respect to observables acting on the second qubit alone.

Having introduced the density operator formalism, we are now in position to define
what is quantum entanglement. Let |¢)) be an arbitrary two-qubit (pure) state in .

Using the canonical basis, such a state has the form
|¢> = Co,0 |00> + Co,1 |01> + C1,0 |10> + C1,1 |11> s (337)

where |zy) = |z) ® |y). A two-qubit state is said to be a product state if there exists two
single-qubit states, |(),|n) € £ such that,

) =1¢) @ n), (3.38)

otherwise the state is said to be entangled. Product states describe a physical situation

where measurements made locally in each qubit are uncorrelated.

Any pure, product state of the form |{) ® |n) is described by a density operator

pr2 = (IO @ [m) (¢ @ (n]) = [CXC @ [n)n] - (3-39)

It is easy to see that, for this p; 2, one has p; = [()((] and ps = |n)(n|. Notice that both

p1 and po are pure states or, in other words, both satisfy p? = p; and p3 = ps.

This observation allows us to introduce the concept of separable states. A separable

state of two-qubits is any p; o that can be written as a convex combination

pra = pr(ph @ ph), (3.40)
k
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where each p¥ and p& represent pure states. In other words, a separable state is a classical
ensemble of product states {py, (|¢)*®|n))*}. Separable states describe a physical situation

where measurements made locally on each qubit have classical probabilistic correlations.

An important set of examples of entangled states are the states of the Bell basis,

given by
1Boo) = j§<\oo> L), (o) = j§<|01> +[10)). (3.41)
Bio) = —=(j00) — [11)), |Bu) = —=(j01) — [10)). (3.42)

2 2

&l
&l

Some applications of these states are on super-dense coding and quantum teleportation
protocols, but their importance goes beyond them and encompasses the foundations of
quantum theory itself. In fact, the special initial states needed for the single-qubit gate
universality of adaptive quantum circuits (see subsection need to be entangled

states.

This characterization of product and separable states implies that two-qubit en-
tangled states, either pure or mixed, cannot be described by classical ensembles of pure,
product states. This fact is easy to see, for example, in the case of the Bell state |5no),
where the sub-system decomposition of pg,, leads to two mixed sub-system states. There-
fore, entangled states represent a physical situation where measurements made locally
on each qubit have non-classical probabilistic correlations. This implies that such corre-
lations play some crucial role in the applications where entangled states are necessary,

which means that they can also be treated as resources.

Among applications of entangled states, it was shown that entanglement is crucial
for understanding the strict universality of gate sets of the form Ggy)v = {U,V|U €
SU(2)}, which contain all possible single-qubit gates and a specific two-qubit gate V. We
saw earlier, in subsection that when V' = CNOT this gate set is universal, but
this is not the case for all V. For example, if V= SWAP, the gate set is not universal,
because applying two single-qubit gates U; and U 5 on qubits 1 and 2, respectively, and
then applying the SWAP, 5, gate, is equivalent to just applying U ", and U, for any pair

of unitaries.

Another way of explaining why this true is realizing that the SWAP gate always
sends product states into product states. Therefore, if we initialize every circuit in the
computational basis, we can never reach any entangled state. This means that not all
SU(2™) are described by such a circuit, since many operations in SU(2V) create entangled
states from product states. In fact, it was shown by Brylinski in [48], that any two-qubit
gate V capable of creating an entangled state from some product state makes the gate set

Gsu(e),v universal for quantum computing. An example is the CNOT gate since, given
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the product state |[+), ® |0) we have

CNOT([+), @10)) = [5oo) - (3.43)

To give a general description of the gates possessing this property, we must intro-
duce an entanglement measure, a function that classifies the strength of the non-classical
correlations that can be obtained from entangled states. Of all of the existing entangle-
ment measures, the one which is commonly used for proving the universality of gates sets

is the linearized entanglement entropy, defined by

E([p)) = 1 = Tri{(Tro{ |9 )¥[})}- (3.44)

The linearized entanglement entropy E(|1)) is 0 if [¢) is separable, but non-zero if en-

tangled.
The maximum of E(|¢)) occurs when Trof|1)v|} = I/2, which is the mazimally

mixed state. For a maximally mixed state the classical mixture contains all orthogonal
quantum states with equal probability. In this case the original two-qubit state is said
maw) = 1/2, with the Bell
states |Boo) , |Bo1) , |Bi0) , |B11) as examples. Therefore, we will scale E(|1))) by a factor of
2, such that it always stays between 0 and 1.

to be mazimally entangled, and its linearized entropy is E(|¢)

Using the (scaled) linearized entanglement entropy, Zanardi [263] proposed a way
to measure if a particular two-qubit gate is capable of generating entanglement or not.
The measure is called the entangling power e,(V') of a two-qubit gate V' given by the

expression

ep(V) = E(V 1) @ [da)) "

where the mean-value is taken over a classical probability distribution p(v1,s) over

: (3.45)

separable quantum states. It can be shown that, if the average is taken over the Haar
distribution, the entangling power is both a local invariant and SWAP invariant (that is,

it remains the same if U is conjugated by SWAP or by single-qubit gates).

This invariant can be easily calculated in terms of simpler invariants, which was

done in [16]. Two-qubit gates have two local invariant quantities, given by

T VEVE
=_— 5% 4
G1(V) 16 det(V)" (3.46)
and ,
T2 VEVE — Ted (VEV)?
(V)= —27° VA Vo)) (3.47)

4 det(V) ’
where Vg is the matrix representation of the gate V' written in the Bell basis. With these
invariants, the entangling power e,(V') of a two-qubit gate V' over the uniform distribution
is just given by

ep(V)=1—|Gy(V)]. (3.48)
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This expression can be further simplified by finding a canonical form for arbitrary
two-qubit unitaries which allows for easy calculation of GG;. Luckily, this was already done
by Kraus and Cirac in [153], where they showed that any two-qubit gate can be put in

the form
V = (Ul & Ug) exp{i(aXl X X2 + b}/1 Y }/2 + CZl X Zg)}(Wl & WQ), (349)

where the U and W operators are called the local part, and the exponential in the middle
is called the non-local part, which is invariant up to permutation of a,b and ¢ generated

by local transformations.

Using this decomposition, one finds that the entangling power is given by
ep({a,b,c}) = 1 — cos?(a) cos?(b) cos?(c) — sin?(a) sin?(b) sin*(c), (3.50)

where {a,b,c} is the unique parametrization with @ > b > ¢ of the non-local part of V.
For the CNOT gate, we have {n/4,0,0} and e,(CNOT) = 1, while for the SWAP gate
we have {7/4,7/4,7/4} giving e,(SWAP) = 0.

3.2 Introduction to the optical network model

Having introduced the quantum circuit model, we are now in position to discuss
how it is implemented in systems of standard identical particles. In subsection [3.2.1] I
introduce the quantum theory of optical devices, motivated by the classical description
of a simple interferometer. Next, I present the Hamiltonian model of optical devices as
quantum dynamical maps over a multi-mode system of bosonic oscillators. By the end of
this subsection, I give explicit Hamiltonians representing the action of the most common

optical devices, as well as their classification, and define the concept of optical networks.

In subsection [3.2.2] T calculate the action of optical devices over Fock-states, and
use the results to obtain the general transmission amplitudes for linear multi-mode inter-
ferometers. I also discuss a special phenomena called the Hong-Ou-Mandel effect. Next,
I make a brief introduction to the development of photonic computers, the definition of
dual-rail qubits and logical qubit operations. I finish by pointing out that, up to this mo-
ment, the use of optical networks for implementing universal quantum gate sets requires
the use of either non-linear devices or media, or off-line preparation of resource states via

adaptive schemes, such as the KLM-protocol [150].

Then, in subsection I finish by extending the concept of optical networks
to systems of identical fermions, and studying their computing power. First, I give an
isomorphism between the Hilbert space of an m-qubit system and the Fock-space of m
fermionic modes. Next, I define fermionic optical devices, and networks, via the same

Hamiltonian formalism applied to the bosonic case. Then, I explain why fermionic linear
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networks are easy to simulate in classical computers, and finish with a brief comparison

between computation with bosonic and fermionic optical networks.

3.2.1 Quantum interferometry of light and optical networks

As put by Prasad, Scully and Martiessen in [201], interferometers have revolution-
ized technology of precision measurements, and their sensitivities are ultimately limited
only by quantum mechanical rules. The development of optical technology led to the ne-
cessity for a fully-quantum description of optical devices. My purpose here in subsection
.2.1] is to lay out this quantum description. Before doing so, let us do a review of the

classical model of a general two-mode interferometer.

For the purpose of illustration, assume that we are dealing with a single-mode,
travelling-wave electromagnetic field with wave-vector k and a given linear polarization
labelled by A. For both classical and quantum theories of interferometry, the relevant
observables are written in terms of the electric field part of the wave, which is given in

complex form by the expression

1
hw )2 {aei(kq—wt+w/2) + a*e—i(kq—wt+7r/2)}'

2€0V
(3.51)

In this expression, ¢ is the coordinate along an arbitrary direction of propagation q in

E(gt,w) = E(¢,t,w) + E™(¢,t,w) = (

three-dimensional space, and the Et and E~ are conventionally called the positive and

negative-frequency parts of F.

The classical, lossless, most general type of beam splitter can be understood in
terms of the figure Fig. [I5] A general beam splitter has four arms. Arms 1 and 2 host
the input fields E, and Ey, which are assumed to have the form of eq. , but with
propagation directions x and y, respectively. Due to the linearity of the field, we must

have the output fields F5 and FE, satisfying the relations
Es = R3 1B +T5.Fy FEy=Ty1E + RysEs, (3.52)

where R3 1, R42 and Ty 1,755 are called the reflection and transmission coefficients of the

beam splitter, respectively.
Due to energy conservation, the matrix of coefficients below

Rsq1 T35

) (3.53)
Ti1 Rao

must be a unitary matrix. This implies, given the polar decompositions R; ; = |R; ;|e'?"i
and ﬂ’j = ’T;;’j|€i¢i’j, that |R3,1| = |R4,2| = R, |T4,1| = |T372| = T, T2 + R2 = 1 and
G031 + Pa2 — (P32 + ¢d41) = £m. Therefore an arbitrary beam splitter can be written in
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terms of four real parameters: R, and three angles.

Rei¢3,1 V1 — R2€i¢3,2

V1 — R2¢i%s1  — Rei(ds2t¢a1-¢5.1) (3.54)

Es

Figure 15 — A spatial depiction of a generic beam splitter. The arms labelled by the fields
Ey and Es, are input arms, and the ones labelled by E3 and E, are output
arms.

Each F; can be canonically quantized, which implies that each field operator E,
corresponds to a pair of creation and annihilation operators aj ,a; that satisfy bosonic
commutation relations. The action of the beam splitter, therefore, is relating output op-

erators to input operators via the beam-splitter matrix in eq.(3.53)), giving us

as
Qg

This result can be seem as a spatial description of the action of this device in the quantum

Ry, T3,
Ty1 Rap

f“] . (3.55)

a2

regime, in the sense that the modes are associated to the input and output arms. For our
purposes, the most useful description is in terms of the scattering matriz associated to
the time evolution of field operators under a particular Hamiltonian. To show this, we

generalize the previous setting in the following way.

First, instead of talking about a quantized electric field we talk about system of
generalized modes described by bosonic oscillators Bi, BI with commutation relations given
in eq. . Then we consider only two modes instead of four, where the operators
corresponding to the input and output arms are taken as operators before and after the
time evolution. Calling the initial operators by by (0) and by(0) we have that the beam-

splitter dynamics must correspond to

h(®)| _ [Ri Tia| [0a(0) (3.56)
ba(t) Ty1 Raa| |b2(0) ’

where the reflection and transmission coefficients are functions of £. Since, after passing

through the beam-splitter, the fields do not change, this model only makes sense if the
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interaction begins and ends in a finite time. Therefore, we presuppose that the dynam-
ics generating the beam splitter matrix comes from adiabatically turning on and off an

interaction Hamiltonian, in a controllable way.

Using this new formulation of the behavior of a general beam splitter, we see that

its matrix must come from a time evolution operator U(t) such that
bi(t) = U)b;(0)UT(2). (3.57)

Since the beam-splitter matrix is unitary, it must also be the case that U (t) is a unitary
operator acting over the algebra of bosonic oscillators. Therefore, we can look for an

effective Hamiltonian, written in terms of bosonic operators, whose action generates the
matrix in eq. (3.56]). The form of the Hamiltonian is given by two properties of eq. (3.56]).

First, the time evolution affects only two modes. Second, since eq. is linear
in the operators, the commutators [I:ILQ, 51] and [IA{LQ, 132] must be linear combinations of
by and by. These properties imply that the Hamiltonian describing a general beam splitter
must be a Hermitian linear combination of the operators 5{31, 3;52, lA)J{l?)g and 5251 Any
such linear combination can be rewritten as a real linear combination of the Hermitian

basis of operators given by

~ 1 arn At A

Ty = 5(01by + B5b), (3.584)
. N

T}, = — (biby — i), (3.58b)
R VU

17y = §(b1b1 — byby), (3.58c¢)
NLQ - 8161 + B;gg (358d)

This basis has the very special property of being a representation of the an-

gular momentum algebra or, in other words, we have that [T fQ,TfZ] = ei7j7kT {fQ and
[N172;T1i72] = ng for all 4,7,k = 1,2,3. This construction is famous, and is called the

Schwinger representation of the angular momentum algebra [216]. Each of the four real

parameters in the linear combination
[:—71,2 = aNl,Q + blj11,2 + b2j12,2 + b3ji3,2» (3.59)

are a function of the four real parameters that describe a general beam splitter. However,
it is more convenient to represent a general beam splitter dynamics as being a composition

of action of single-parameter devices that can be independently controlled.

Hereby, we define the single-parameter beam splitter, or just beam splitter for

short, the unitary acting in modes i, j given by

BS, 5(0) = exp{i20.J{,} = exp{i6(b]b, + biby) }, (3.60)
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where 60, is the effective interaction time, or the beam-splitter angle, with a pictorial
representation given in Fig. [I6] The action of this specific device over bosonic creation

operators is

35172(6)513512(9) = cos 951 + 4 sin 9(3;, (3.61a)
BS12(0)b5 BS! 5(0) = cos b, + i sin 6b]. (3.61b)

ROS
2 2
Figure 16 — Graphical representation of a beam-splitter acting on a pair of modes labelled
by integers 1 and 2. The direction of time goes from left to right.

We also define a device phase shifter that, besides being a physical device, is also
given by the operators describing the free propagation of a traveling-wave in a single

mode. This operator is
PS;(1) = exp{iﬂ;ﬁ%}, (3.62)

and it corresponds to the Hamiltonian NLQ + 2J1372 in the Schwinger basis, where the sign
depends on the mode the phase shifter acts on. This operator is represented graphically

in Fig. [I7 The action of this device over bosonic creation operators is

PSy(1)bIPSi(—7) = e (3.63)

1 T )

Figure 17 — Graphical representation of a phase-shifter, acting on a single mode labelled
t. Time flows from left to right.

Using these two devices, a general beam-splitter can be written as the sequence of
operators PSy(a) BS12(8)PS2(7), as in Fig. This decomposition has the same form
as the single-qubit unitary decomposition in eq. (3.14]), but with n = z and m = x. This

fact is crucial for the quantum computing applications that we will see shortly.
1 1

2 a m 2

Figure 18 — Optical network decomposition of a general two-mode passive linear device.
The order of elements in the network is the opposite of the order of operators
in the operator decomposition.

Many other types of optical devices are described in terms of dynamical maps

generated by second-quantized bosonic Hamiltonians. For a two-mode system, the most
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general Hamiltonian is a polynomial of arbitrary degree over l;l, 132, B{ and 5; In other

words, the most general Hamiltonian is a Hermitian polynomial of the form

Hio= 3 ks (0D (852 (b1)" (bo)*. (3.64)
k1 ka k3 ka
From this general Hamiltonian we can obtain a description of many general classes of
optical devices. For two-mode systems, we call Gaussian devices all which are described
by Hamiltonians of the form
2 2
A=Y Aublbn+ 3 (Busbibs +Conbliil). (5.65)
i1,ia=1 i1,ia=1

Among the Gaussian devices, the ones for which 4, ;, # 0 and B;, ;, = Cj, 4, =0
are called passive, or number-preserving, since they commute with the total number op-
erator ]\7172. The ones for which A;,;, = 0, By, 4, # 0 and C;,;, # 0 are called active,
or parity-preserving, since they commute with the total parity operator (—1)]\71’2. As we
already saw, the set of passive Gaussian Hamiltonians forms a Lie algebra that is isomor-
phic to the direct sum u(1) ®su(2), with the u(1) generator being Ny , and the generators

of su(2) being Tllg,ffg and T132

The single-parameter beam splitter (BS) and phase shifter (PS) are the prime
examples of passive Gaussian devices, while for active Gaussian devices we have the

squeezers (SQ), and the two-mode down-converters (DC'), given respectively by

SQi(v) = exp{ir(b* + 8)}, (3.66a)
DC () = exp{in(Bibh + babr) }. (3.66b)

The complete set of Gaussian Hamiltonians also forms a Lie algebra, which is isomorphic

to the real symplectic algebra sp(4, R).

Multi-mode interferometers can also be described by dynamical maps generated
by Hamiltonians. In the case of m modes, the most general Hamiltonian is a polynomial
of the form .
H= > aupu [T (00). (3.67)

{ki}{li} =1
The set of all of these polynomials forms an algebra under operator multiplication and
complex conjugation called the Weyl algebra Weyl(m), which plays and important role

in bosonic quantization [257].

In a way similar to the two-mode case, Gaussian devices are described by Hamil-
tonians in eq. , but with the summation going through all the modes. The definition
of active and passive devices is also the same as the one in the two-mode case, passive
devices form a Lie algebra isomorphic to u(1) @ su(m), while the full set of Gaussian

devices forms one isomorphic to sp(2m, R).
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The action of passive Gaussian devices over bosonic creation operators is linear,

and given by
Z Ui.;05(0) (3.68)

For that reason, they are also called linear optz'cal devices. The matrix U with coefficients
Ui ; is an element of the unitary group U(m). General Gaussian devices, on the other

hand, act over bosonic creation operators by the equations

Ubl(t)UT = Z(Wub;( ) + Viib;(0)), (3.69)
7j=1
where the matrices of coefficients W and V are such that this transformation is canonical

which implies that, taken together, they form a representation of the real symplectic group
Sp(2m, R).

It is known [183] that any unitary matrix of size m X m can be decomposed as a
product of m(m — 1)/2, 2 X 2 unitaries, and one unitary diagonal matrix of size m X m.
Using this result, Reck showed in [207] that the action of any passive Gaussian multi-mode
device can be decomposed in terms of sequences of single-parameter beam splitters and
phase shifters. In general, an m mode passive Gaussian device can be decomposed into
the successive applications of 2m? —m of beam spliters of the form BS; j(7/4) (known as

a balanced beam splitter), and 2m? phase-shifters PS;(7).

The devices that act on arbitrary pairs of modes of an m-mode system are defined

by the operators

3 (370&)
BS; ;(0) = exp{i0(blb; + bibi) }, (3.70D)

and are analogous to the N-qubit versions of M-qubit maps discussed in subsection [3.1.2]
Sequences of the optical devices defined above are called passive linear optical networks,
and provide an alternate implementation of any m-mode passive Gaussian device U. When
we allow other types of devices, we just call it an optical network. Optical networks are
to general optical devices what quantum circuits are to general multi-qubit unitaries, and

they can also be measured in terms of size, depth and width, as we will see shortly.

3.2.2 Quantum computing with bosonic optical networks

The purpose of this subsection is to show how optical networks are used in quantum
computing and information theory. Up to this point, our description of optical devices was
done in terms of their Hamiltonian, and classified according to their action over bosonic
creation operators. In this section we discuss the action of optical devices over the bosonic

Fock-space, with basis states given in eq. ([2.25)).
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When considering the effects of devices over Fock-states, we will be primarily
interested in devices whose action preserve the bosonic vacuum state. Given the general
Hamiltonian of eq. , maps will only preserve the vacuum state if, for every monomial
term, the sum of the degree of annihilation operators is the same as the sum of the degree of
creation operators. This is equivalent to saying that the Hamiltonians describes a process
that conserves the number of particles which, in the Gaussian case, corresponds to the

set of passive devices. Therefore, all devices discussed in this subsection are passive.

Call the Fock-space for a set of m bosonic modes by the name .#?. The action
of an m-mode Gaussian device U over the single-particle subspace Ni(%?) generated by
the basis states {|i) = b} 0),}, with ¢ = 1,...,m, can be obtained directly by applying
eq. , which yields

|8 ot = Z Ui 13)in - (3.71)
j

In fact, since the matrix of coefficients U;; rules the transformation law over the cre-
ation operators themselves, the probability amplitudes for multi-particle states must be
functions of these coefficients. This is why we call the matrix defined by the U;; the

characteristic matriz of the device.

In order to make the point about the role of U; ; more clear, consider the following
example. Consider a balanced beam splitter (# = m/4) between modes 1 and 2. The

characteristic matrix for this device is

(BS, (r/4)] = ¢1§ [1. ] (3.72)

7 1

Now take the scenario where two particles are sent through this device. There are three
different possible input states. In two of them, the two particles are sent into the same

mode and, in the third, each particle goes into a different mode.

We can calculate the action of this device over all possible states using eq. (3.57)),
but let us restrict ourselves to the third of the aforementioned states. This third state has
the form [1,1), = bibk |0) »» and its behavior under the balanced beam splitter exhibits an

interesting effect. Doing the calculation we obtain
o 1 . A
BSy2(m/4)[1,1), = BS1o(m/4)0{} [0), = S(i(b])* + bID] — Lo} +i(BL)*) [0), . (3.73)

The last result can be further simplified by applying egs. (2.22)), leading to

V2

This result implies that two identical bosons, coming in trough different arms of a balanced

BS, 5(m/4) [1,1), = —=(12,0), +[0.2),). (3.74)

beam splitter, always come out of together, as if there was an attractive force between

the particles. This phenomena is called the Hong-Ou-Mandel [129], or bunching effect.
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Now let us go to the general case. Given an arbitrary Fock state |nq, ..., n,y,), of
N = >, n; particles over m modes, and a Gaussian device U let 2, = (1™,...,m"™™) be
the ordered set of N elements, such that the first n; elements are 1, the next n, elements
are 2 and so on, up to the last n,, elements which are given by m. In [212] it was proven

that
_ perm[{Uq, ) 2(5) }igj=1,...V]

(ko kUl L)y =
W;ﬂ L XTI k!

where the N X N matrix {Ugq, i).0,(j) }i,j=1,...~ is such that Q4(¢) equals the i-th element
in the list ; and () equals the j-th element in €);.

(3.75)

The function perm(A) of an N X N matrix A is called the permanent of A, and
is given by the expression
N
perm(A) = > [[Ai-q), (3.76)
geSN i
where S% is the permutation group over N elements. The permanent is very similar to

the determinant of A, which, for the sake of completeness, is given by

det(4) = (—1)59”<”>fv[Ai,o(i). (3.77)

oceSN
Later, we will see how the difference between permanents and determinants play a major

role in the describing the computing power of standard identical particle systems.

Using the general formula for Fock-state amplitudes, we can see how the Hong-Ou-
Mandel effect is determined by the permanent of the characteristic matrix in eq. (3.72)).
For the amplitude (1,1|BS;2(7/4)|1,1), we have Qy ; = {1, 2}, which implies that

1 (1 =2
{BS12(7/4) 01 (0),00.1G) bij=12 = [BS12(7/4)] = 72 L 1] : (3.78)
and therefore
1 (1 4 1 y
(1,1|BS, o(7/4)|1,1), = perm i1 =51+ =0. (3.79)

When the probability amplitude of a state with relation to a particular interferometer
and input is zero, we have what we call a suppressed state. The suppression of the state

11,1),, signals the Hong-Ou-Mandel effect, and is a different way to state it.

As we saw in subsection [3.2.1], linear optical networks are an alternative implemen-
tation of a passive Gaussian device. Therefore, these networks also have a characteristic
matrix, implying that the formula we presented for calculating transition amplitudes be-
tween IN-particle states also applies the networks themselves. This fact was used to provide

the first examples of application of bosonic systems in quantum computing [151].

Several works [47,53,|72],224.|227]232,240] used single photons and linear optical

network over 2™ modes to simulate the action of of an m-qubit unitary. The idea is that
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every single particle state in Nj(%5.) encodes a single computational basis state of an
m-qubit system. Therefore, the characteristic matrix of an 2™-mode linear optical network
becomes the unitary matrix of a general m-qubit map. Since these networks generate all
passive Gaussian maps, which in this case form the group U(2™), the set of all BS, ;(0)

and PS;(7) is universal for quantum computing in this encoding scheme.

The single-photon encoding, discussed above, is extremely inefficient in terms of
network resources, due to the exponential growth of the number of necessary modes.
Therefore, realistic models of photonic computation use the so called dual-rail encoding.
In this encoding, n qubits are mapped to the states of n particles in 2n modes, such that
each logical qubit is supported in a pair of neighboring modes. The logical single-qubit
states are defined by

0) =11,0),, (3.80a)
1) = [0,1),. (3.80b)

while a two-qubit system needs four modes, with corresponding logical states

0) ®|0) =1,0,1,0),, |0)®[1)=11,0,0,1),, (3.81a)
1) ®10) =10,1,1,0),, [1)®]1)=10,1,0,1),, (3.81b)

and so on.

It was shown that, with this encoding, it is possible to perform any logical single-
qubit gate using only phase shifters and beam splitters. To prove this, consider a qubit

encoded in modes 1 and 2. A phase shifter on mode 2 acts on the logical basis states as

PSy(r) [1,0), = [1,0),, (3.82a)
PSs(7)10,1), =€ 0,1),, (3.82b)

which is a logical Z rotation on the Bloch sphere by 7. A beam splitter between modes 1

and 2 acts on the logical basis states as

BS15(0)]1,0), = cosd|1,0), +isinf|0,1),, (3.83a)
BS15(0)10,1), = isinfd|1,0), + cos 0, 1), , (3.83b)

which is a logical X rotation in the Bloch sphere by an angle #. Therefore, in this encoding,
the general beam splitter decomposition in Fig. [I8 maps into the single-qubit unitary
decomposition of eq. (3.14]) over logical states.

To build a universal computer, we must also be able to synthesise an entangling
two-qubit gate. But this task showed itself to be much harder than in the case of the single-
photon encoding. This was mostly due to the Hong-Ou-Mandel effect not preserving the
encoded subspaces used for computation. The works [51152,67,(132}[133//180] circumvented

the problem by introducing non-Gaussian optical elements into their optical networks.
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One type of non-Gaussian device that was used in these works is the cross-Kerr

media, described by the Hamiltonian
f{ = lil;];gll;;gg, (384)

which is a quartic operator. These devices leave the single-particle subspace invariant,
but generate non-trivial transformations in the two-particle subspace. This fact allows
them to implement the CZ gate in the dual-rail encoding. One of the problems with this
approach, though, is that the x parameters tends to be very small for most materials,

making them hard to use in practice.

Another approach, which did not require the use of non-Gaussian devices, was
introduced by Knill, LaFlamme and Milburn in |[150]. They provided a protocol to generate
an encoded CZ gate, which is an entangling gate, by executing the network in figure
Fig. [I9 This network only works if the non-linear sign gate NS in Fig. [20] is correctly

implemented, which is not a deterministic process.

|¢h1)

{ NS
M{ B0, N j%(w»

Figure 19 — Optical implementation of a CZ gate. The states [¢);) and [¢,) are arbitrary
logical qubit states, and the NS gate is such that NS(a|0) +b|1) + ¢|2)) =
a|0) + b|1) — ¢|2). Therefore, if a single photon hits any of the two arms of
the first 7/4 beam-splitter the state is left unaltered, but if two photons hit
each arm, the Hong-Ou-Mandel effect forces both to pass through the NS
gates, in both output arms, which introduces the —1 characteristic of the CZ
gate.

V) |[¥)
o
ROMIROW

Figure 20 — Optical implementation of the NS gate. Of the three modes, the bottom
two are ancillas prepared in a specific single-photon state. The three beam-
splitters are such that cos(¢;) = 1/(4 — 2v/2) and cos((;) = 3 — 2v/2. To
obtain the desired gate, one needs to measure the number of photons in the
bottom modes using the photodetectors illustrated by the small semi-circles.
The gate is applied correctly if one obtains the measurement indicated on the
figure, which occurs with probability 1/4.
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Since the NS gate is probabilistic, one cannot use it directly in the network without
making the probability of implementing a general circuit exponentially small. Instead, the
protocol is used to prepare an entangled resource state, that is used in a bigger network,
together with adaptive measurements. Therefore, the KLM protocol has the advantage of
not requiring non-Gaussian devices in its networks, but has the disadvantage of having to

prepare states previously to any computation, and using it in an adaptive circuit scheme.

Even if we lack the capacity to reliably implement arbitrary quantum circuits
using linear optical networks, the capacity of implementing linear networks themselves
appears to offer some type of computational advantage over classical computation. This
was discovered by Aaronson and Arkhipov in [1], where they showed that sending n
bosons trough a random[| multi-mode interferometer generates samples of a probability
distribution that cannot be efficiently sampled by any classical algorithm. This is known
as the Boson Sampling problem, and its difficulty is attributed to, among other factors,

the fact that the amplitudes are proportional to permanents of large matrices [243].

3.2.3 Generalized quantum interferometry and Fermionic linear optics

We have just seen how systems of standard identical bosons can be used to repre-
sent quantum circuits. Interestingly, systems of identical fermions can also be used to do
the same, as we see now [35,/62,236]. For bosonic systems, quantum circuits were defined
in terms of networks of optical devices, which are themselves described as dynamical maps
generated by Hamiltonians of the form shown in eq. . From this representation, the
definition of an optical device can be extended from bosonic systems to fermionic systems
[149].

We define m-mode fermionic optical devices as dynamical maps generated by

Hamiltonians of the form

H= Y My IT(5F). (3.85)
{kih i) =1

This set of polynomials forms an algebra called the Clifford algebra Cliff(m), which plays
an important role in fermionic quantization [257]. By analogy to the bosonic case, we call

fermionic Gaussian devices the maps generated by

2 2
H = Z Aihhﬁlfiz + Z (Bi17i2fi1fi2 + Cil,i2fz'T1fi];) ) (386)
i1,i2=1 i1,i2=1
which are further classified into passive (A4;, 4, # 0, and B;,;, = Ci, 4, = 0) and active
(Ai, i, =0, and By, 4, = C;, 4, # 0) devices.

11,12

7 In the Haar measure [130,131].
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In two-mode systems, Hamiltonians of passive Gaussian devices a real vector space
with basis { Ny, T}, TE9, TP}, given by

T, = ;(ff F2+ fif), (3.87a)
12 = S (flh - ), (3.57h)
TPy = ;(ff = fif), (3.87¢)
Nia= fifi+ fifo. (3.87d)

These basis elements are, as in the bosonic case, generators of the Lie algebra u(1) @ su(2).

Interestingly, the real vector space of Hamiltonians given by the basis elements

~ 1 A A A
Ry, = i(fffg + faf1), (3.88a)
A —1  as A ~ A~
/Y, = (1= Rf), (3.88b)
~ 1 A At A
R, =S (fh+ Bh-1), (3.88¢)

is also isomorphic to su(2) as a Lie algebra. The set of all two-mode, fermionic Gaussian
Hamiltonians is a real vector space with basis {N12, T}y, 75, 17, R1 5, R7 5. R} 5}, and is
isomorphic to u(1) ® su(2) ® su(2) as a Lie algebra. This contrasts with the bosonic case,

where the corresponding algebra is sp(4, R).

The action of an m-mode fermionic passive Gaussian device over creation operators

has the form

THOED M ATHO! (3.89)

where the matrix U of coefficients U, ; belongs to the unitary group U(m), which is iden-
tical to the bosonic counterpart. On the other hand, general fermionic Gaussian devices

act as .
UfiUT =3 (Wi f1(0) + Vi, £50)), (3.90)

j=1
where the matrices W and V, with coefficients W;; and V;, are such that this map

is canonical, which implies that, taken together, the pair gives a representation of the
SO(2m) group.

As pointed out in [258], while the group of passive Gaussian devices for fermions
is isomorphic to the one for bosons, the group of all Gaussian devices is not. This is true
because the dimensions of the Lie groups SO(2m) and Sp(2m,R) are different, being
given respectively by 2m? — m and 8m? — 2m. The difference in the size is due to the
differences between the fermionic and bosonic oscillator algebras, given that Gaussian

devices act as linear canonical transformations for both bosons and fermions. These maps
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are also called Bogoliubov transformations, and play an important role in characterizing

entanglement for identical particle systems [68].

Fermionic, passive linear optical networks are built from the fermionic beam split-

ters and phase shifters defined bellow

PS;(1) =exp (zrﬁﬁ) )
BS.,(0) = exp (0(f1f, + 1)

Their actions over fermionic creation operators are given by

PSi(7)f]PS}(r) = ¢ f] (3.91)
BSi,j(@)ﬁTBS;- 0) = cos 2] + isin&f}, (3.92)

(
J
BS,;(0)f]BS!;(0) = cos0f] +isinff]. (3.93)

which are identical to their bosonic counterparts. Again, just as in the bosonic case, the
group structure of passive Gaussian devices implies that every linear network over m
modes has an m X m unitary characteristic matrix U, defined in terms of the network

action over the single-particle subspace Ny(.Z/) with basis {f] |0) i

To understand the action of a general network over an arbitrary fermionic Fock
state, we begin with an example. As explored in the bosonic case (see , consider
a scenario where two fermions are sent through a balanced fermionic beam-splitter. The
only two-particle fermionic state allowed by the exclusion principle is given by [1,1), =

fifi0) ;- The action of the beam splitter over this state is given by

BSya(r/4)1.1), = BSyale/ L7 10), = SR + FIFE - LA+ DD o), (399

which is equal to |1, 1) - In fact, for any 0, the fermionic two-particle state is unaltered

under propagation through a fermionic beam splitter, an effect called anti-bunching.

In the general case, using the notation in eq. (3.75]), we have that the action of a
general m-mode fermionic linear network, with characteristic matrix U, over the states

k) and |1), each of N particles, is given by

N det [{Uﬂk(i),Ql(j)}i,j:l,...,N}
<k1,...,km|U|l17-'-vlm>b: mj | m .| ’
VI G XTI k!

(3.95)

The denominator is often omitted, due to restriction on the values of occupation numbers
imposed by the exclusion principle. But here I chose to maintain it, to emphasize the
structural similarity with eq. (3.75)). Using this general result, we can show that the

previous calculation of the anti-bunching effect is given by

(1, 1|BSya(r/4)[1,1), = det [;5 F ﬂ Y (3.96)
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Having the general behavior of fermionic linear networks, we are now in position
to discuss how they can simulate quantum circuits. First, in contrast to the bosonic case,
for fermions there exists natural correspondence between the m-fermion Fock space %/,
and the m-qubit Hilbert space #™. This is true because the Pauli exclusion principle
limits the maximum occupation number per mode to be one, which allows fermionic Fock

states to represent computational basis states using the correspondence

We hereby call this map the fermion-qubit correspondence, and use it to define a natural

encoding of m-qubit systems, called the single-rail encoding.

In the single-rail encoding, all fermionic Gaussian devices yield encoded circuits
for m-qubits. To take this fact into consideration, we extend the definition of fermionic
linear networks to include networks that are also built using the fermionic two-mode down

converter
Dy (k) = exp{in(f f] + ;) }. (3.98)
This element, together with fermionic phase shifters and beam splitters, generate networks

capable of implementing any general fermionic Gaussian map.

The most general, two-mode Gaussian device U, o has the form
ULQ = exp{iqbﬁl,g} exp{ia . TLQ} exp{zb . RLQ}, (399)

where a = (al, as, ag), a = (bl, bQ, bg) and TLQ = <T11,27T12,27 T13,2>, RLQ = (R%’Q, R%’Q, R?’Q).
The action of such device over the two-particle subspace Ny(.Z ) of basis (|0, 0) £ 10,1) 4,
11,0)4, [1,1) ) has the form

Ul (b) 0 0 Uy (b)
0 Uf:l(a) Ufy(a) 0
0 Ui (a) Uj,(a) 0
Us (b) 0 0 Us(b)

U=¢e? : (3.100)

where the matrix functions U7 (a) and U#(b) both belong to SU(2), for all coefficients
a and b. The corresponding two-qubit gate is called a matchgate, and we discuss their

properties in the next section.

Since the group of all fermionic Gaussian operators in m-modes is SO(2m), whose
dimension is exponentially smaller than SU(2™), the set of fermionic linear optical net-
works is not universal for quantum computing. Universality is achieved using non-Gaussian

devices (H = kfyfip) [35] but it is not achieved using adaptivity. This was shown in [149]

and [236] by noticing that any post—measurementﬂ state of a fermionic linear network is a

8  Measurements of individual occupation numbers.
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computational state of a fermionic system with less modes, up to linear optical transfor-
mations [62]. Therefore, the use of fermionic number measurements does not change the
group structure of the transformations, and it stays in a group with dimension exponen-
tially smaller than SU(2™).

To compare this result with the computing power of bosonic linear optics, we must
restrict ourselves to passive networks, and qubits in dual-rail encoding. For 2m mode sys-
tems of fermions and bosons in the dual-rail encoding (which has m particles), passive
networks forms a high dimensional representation a subgroup of the U(m), but the group
dimension (which is related to the number of different group elements) is exponentially
smaller than SU(2™). On the other hand, adjoining the capacity of implementing oc-
cupation number measurements during computation leads bosonic linear networks into
computational universality, while it does not do the same for the fermionic case. It appears
that, even with the higher dimensionality of the associated representations, the restriction

to networks that preserve the encoding spoils their universality in the bosonic case.

Another way to compare both systems is to ask if there exists an efficient clas-
sical algorithm that samples the distribution of obtaining particular occupation number
outcomes for particular subsets of modes. For bosonic systems, this is equivalent to the
Boson Sampling problem, for which there is strong computational evidence of the non-
existence of an efficient classical sampling algorithm. As mentioned in subsection [3.2.2]
this is mostly due to this distribution being given by the permanents of large matrices.
On the other hand, it was shown in [236] that, for the fermionic case, such algorithms
do exist, since the relevant distribution involves functions of the determinant, for which

efficient algorithms are known [13].

3.3 The optical equivalent of the quantum circuit model

After discussing quantum circuits and optical networks, now I discuss under what
conditions they are equivalent. In subsection [3.3.1] I introduce a multi-mode oscillator
algebra of qubits and show that they describe a system of hard-core bosons. Next, I
define Gaussian optical devices and optical networks for hard-core bosons and show that

their generators do not form a closed Lie algebras.

In subsection [3.3.2] I prove that the action of linear optical devices over creation
and annihilation operators for hard-core bosons is not linear due to the particle statistics.
I demonstrate that arbitrary quantum gates are equivalent to dynamical maps for hard-
core bosons, giving single-qubit gates as an example. Finally, I exhibit the hard-core
boson algebra as a fermionic anyon algebra via a Jordan-Wigner transform and explain

the nature of their relationship with matchgate circuits.
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3.3.1 Qubits and particles

As we saw in section [3.1] the Hilbert space ™ of an m-qubit system has as its
canonical basis the states
A1) @ - @ |An), (3.101)

where the A; are Boolean variables. We also saw, this time in section[3.2] that the fermionic
Fock space .#/ is isomorphic to 2™, via the fermion-qubit correspondence. Since the Fock
space is the representation space of a multi-mode oscillator algebra, it makes sense to ask
if the multi-qubit space A™ can also be seen in this way. In other words, one might ask

if there exists a multi-mode oscillator algebra which has %™ as its representation space.

The existence of the Fock space representation for an oscillator algebra entails a
natural particle interpretation, as discussed in subsection [2.3.3.2] Therefore, if such an
algebra exists, we must interpret the Boolean variables A; in the last equation, as the i-th
occupation number n; for a type of particle system. This new interpretation entails, for
example, that the vacuum state of this particle system must be

0), =10y ®--- ® |0), (3.102)

q —_———
m

where ¢ means qubit. Similarly, single-particle states must be defined as

a0y, =10y ®0)e)®]0)®- - @ 0), (3.103)
—_— — — —
i—1 m—(i+1)

where (jj is the creation operator for the qubit oscillator algebra.

By using the properties of computational basis states, we can obtain the commu-

tation relations for the qubit oscillator algebra. These were first stated in [258], and are

6::4)) = g3 @5) = [l 4)) = 0, (3.104)
for all modes 7, j with ¢ # j, [compare with eq. (2.22))] and
Gial +alai =1, (3.105a)
(a1)? = (a:)> =0, (3.105b)
for each mode i [compare with eq.([2.29))].

The particles described by these commutation relations satisfy the Pauli exclusion
principle, just as standard fermions do, but do not acquire any exchange phase under
particle permutation, just as standard bosons do. Therefore, these particles are called

hard-core bosons, and their Fock-space .#¢ has basis given by

01, e ) = (G1)™ . (@0)" 10),, (3.106)



104 Chapter 3. Review: The computing power of standard quantum statistics

which is also isomorphic to #™, as expected.

Given this construction for the hard-core boson algebra, we can treat it as an
abstract particle system and study the structure of quantum circuits in terms of the
operator algebra alone, as done in [258]. In order to accomplish this, we define optical
devices for hard-core bosons as unitary operators generated by the Hamiltonians of the
form

2 T (At Al
H= Y My ]I (@"a). (3.107)
{ki}.{l:} =1

Just as before, Gaussian devices are generated by
A 2 2
H = Z Ai1,i2q\;q\i2 + Z (Bil,iquilinz + Cil,iQéjlq\;Q) ) (3108)
i1,12=1 i1,12=1

which are further classified into passive (4;, 4, # 0, and B;, ;, = Ci,;, = 0) and active
(A; i, =0, and B;, ;, = C;, 4, # 0) devices.

The set of two-mode Gaussian Hamiltonians is a real vector space with basis
1 2 3 pl 2 p3
{N1,2, T1,27 T1,27 T1,2a R1,27 R1,27 R1,2}7 where

A 1 At A~ N A 1 AT A~ PN
T11,2 = 5@1612 + ngl)a R%,Q = §(QIC]§ + G241), (3.109a)
A Ata PP DU - —U, 4 A A
Nip =l + @ T2, = 7(61&2 —dhar), R, = 7(61@ — G2G1), (3.109b)
A 1 RN AT A A 1 AT A AT A~
7Yy = 5(@la — dla). Bl = (@0 +dbd— 1. (3.109)

Using the commutation relations for hard-core bosons, is not hard to see that the these

basis elements are generators of the Lie algebra u(1) & su(2) & su(2).

We saw, in sections [3.2.1] and [3.2.3, that m-mode bosonic and fermionic passive
Gaussian devices are described by Hamiltonians that belong to the u(1) @ su(m) Lie alge-

bra. Nonetheless, m-mode passive Gaussian Hamiltonians for hard-core bosons, written as
Hermitian linear combinations of the operator basis {qu 4;}ij=1,..m, do not form a closed
Lie algebra. To see this, notice that the commutators of this basis have quartic operators

in them, as shown below
(fay: ala) = 05xald — 0iadlas + AL 4 sdldlana, (3.110)

where
2 Jifi=1#k#7
Alji=4-2 |ifitj=k#I. (3.111)

0 , otherwise

Interestingly, when we look at general, Gaussian Hamiltonians for hard-core bosons

acting on a specific pair of modes ¢ and 7, in place of modes 1 and 2, the real vector space
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with basis {N;;, T, T, T7;, Ri ;, R? ;, R} ;} forms the Lie algebra u(1) @ su(2) @ su(2).

Z?]’ 17‘77 /L?]’ /L?]’ /L?]’

Therefore, we can still define Gaussian optical networks as sequences of phase shifters,

beam splitters and two-mode down converters, given respectively by

PSj(7) = exp{irdld; . (3.112a)
BS;;(0) = exp{if(dld; + 4}a:) (3.112b)
Dij(k) = eXP{@"‘G(CﬁQA} + @j@z‘)}- (3.112¢)

Using this definition, we are able to reinterpret the quantum circuit model in terms of the

optical networks model, which we explore next.

3.3.2 Quantum circuits and Gaussian networks for hard-core bosons

Having understood the oscillator algebra of hard-core bosons in their own terms,
we can now see how they can be written in terms of qubit unitary maps. We can see, from
the matrix representations of creation and annihilation operators for single qubits, that

these operators can be written as linear combinations of the Pauli matrices below

1

ql = 5 (X +iY5), (3.113a)
1

4 = i(Xi — 1Y), (3.113b)

= 4la; = 2(Z; — 1), (3.113c)

where 7n; is the number operator for qubit oscillators.

These identities allow us to write any m-qubit map in terms of qubit oscillators.
For example, the most general single-qubit gate, proportional to the one given in eq.
(3.13), can be written as the the unitary
U = exp{i(a+bj+cg' +dq'q)}, (3.114)
for some set of coefficients a, b, ¢, d.

The map in eq. (3.113al) also allows us to do the opposite, write hard-core boson

Hamiltonians in terms of Pauli operators. For example, the beam splitter, has the form
it A At a 0
BS; ;(0) = exp{i6(glg; + qla)) } = exp{z2(Xin + mfj)}. (3.115)

Using it, we can calculate the action of the beam splitter over linear combinations of Pauli
operators, and then rewrite this in terms of hard-core bosons operators. This procedure
allows us to obtain the action of passive Gaussian devices over creation and annihilation

operators, which are given by
PSi()q)PS](r) = €7}, (3.116a)
BS,;(0)d] BS!(0) = cos 0] +isin 0! (1 — 241d;), (3.116b)
i

BS,;(0)diBS!(0) = cos 03! + isin 03] (1 — 2414)). (3.116¢)
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Therefore, in contrast to both bosonic and fermionic devices, the action of hard-core
bosonic beam splitters is non-linear over creation operators. Using these equations for
beam splitters, and their analogues for two-mode down converters, we deduce that two-

quit unitary associated to a general two-mode Gaussian device U; o has exactly the same
form as eq. (3.100)).

The reason behind the isomorphism between these two algebras is the fermion-

qubit correspondence, which in terms of oscillators can be put as the map

i—1
gl = exp{—m 3 f,jfk}fj, (3.117a)
k=1
i—1
fi 554 = exp{me;Ifk}fi- (3.117b)
k=1

which is the Jordan-Wigner map .J,,, defined in section 2.4} with ¢ = 7. This characterizes
hard-core bosons in one-dimensions as anyonic particles, in the sense of section [2.4] but

their specific anyonic properties will be described only in the next chapter.

Nevertheless, the fact that all two-mode Gaussian devices for hard-core bosons
are matchgates poses an interesting paradox. This is because we known that fermionic
linear networks are not universal for quantum computing, since the group they generate
has dimension exponentially smaller than SU(2™). But it can be proven that matchgate
circuits acting over qubits (hard-core bosons) are universal for quantum computing, if we
allow them to act between pairs of modes that are not nearest-neighbours [38}39,/140,241,
242].

This paradox is only apparent, though, as proven in [38,140]. The reason is that,
although the Fock-space representation of Gaussian devices acting over a particular pair
of modes is the same in both fermionic and hard-core bosonic systems, the action over
the remaining modes is not. To show this, consider the states |1, 1, O)q, and |1, 1, O>f. The

action of a beam splitter between modes 1 and 3, for each type of particle, has the form

BS;3(0)[1,1,0), = cos0|1,1,0) +isind[0,1,1) , (3.118a)
BS,5(0)[1,1,0), = cosf[1,1,0), — isin6]0,1,1),. (3.118b)

In the last equation, the commutation relations for standard fermions force the appearance
of an exchange phase, which changes the way a beam-splitter normally acts. In fact, in

the absence of a fermion, both actions would be identical.

This last example shows that the exchange statistics of the particles play an im-
portant role in determining the behavior of networks containing Gaussian devices between
non-nearest-neighbour modes. However, when acting on nearest-neighbour modes, the ac-

tion of Gaussian devices for both types of particles are identical, and this is due to the
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Jordan-Wigner map, that implies the identities

Alivr = Jo(fl firr) = fl finn, (3.119a)
dlal, = J(f1 i) = fi7t (3.119D)

The difference between the standard fermions and hard-core bosons, when non-
nearest-neighbour devices are used in networks, comes from the way exchange of creation
operators happen. This was first noticed in [35], where it was shown that a generalized

k,k+1
Pa

swap transformation, which here we call SWA , could be defined in terms of their

action over creation and annihilation operators. This action is given by defined by

(SWAPL"1a( )
(SWAPFF )4, (SWAPRY — 4,1,
(SWAPFFal ( )
(SWAPE* a4 ( )

where the a symbol stands for b, f or q.

With this definition, we can find the Hamiltonian that generates the dynamical
map responsible for the swap transformation. For both standard bosons and fermions, this
Hamiltonian is Gaussian, and given by the network PSy(—m/2)BSk j+1(7/2) P Sk41(—7/2).
For hard-core bosons however, the dynamical map is

T . . 1, R 1.
SWAP ™! = eXP{Z2 ([ + (Ghdrsr + Ghaadi) + o (ki) + 4nknk+1> }, (3.124)

which contains a quartic term ngfg, 1 in the Hamiltonian, and therefore is not Gaussian.

For fermions, the fact that the swap transformation is Gaussian,means that one
cannot leave the group of fermionic Gaussian transformations by introducing non-nearest-
neighbour devices. This is the reason why matchgates obtained from fermionic devices are
not universal, while the ones defined in terms of standard quantum circuits (or hard-core
boson devices) are. In fact, by the Jordan-Wigner mapping, the swap transformation for
hard-core bosons is mapped into a quartic Hamiltonian over fermions, which is known to

make fermionic optical networks universal.
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4 Results: The computing power of non-

standard quantum statistics

I have introduced the theories of non-standard quantum statistics in chapter[2], and
the models of quantum computing based on the dynamics of particles with standard quan-
tum statistics in chapter [3| In this chapter, I introduce a generalization of such quantum
computing models to two particular families of particles having non-standard quantum
statistics. In I recapitulate the definitions in section [2.4] and do a brief review of some
mathematical properties necessary for expressing this thesis’ results. In particular, I show
how to use these properties to calculate the action of the unitary dynamics generated by

two-mode, quadratic Hamiltonians for fermionic and bosonic anyons.

In[4.2] T use the unitaries generated by quadratic Hamiltonians to define abstract
anyonic optical devices and an optical network model. Next, I give an interpretation of
the action of these devices in terms of anyonic phenomena. I finish the section showing
the action of anyonic optical devices in encoded qubits, and prove that using only anyonic
beam-splitters and phase-shifters allows for universal quantum computing, which is our

main result.

In .3 T study bosonic anyon coherent states and their behavior under optical
devices. First, I give a review of the quantum theory of optical coherence, introducing the
concept of generalized coherent states. Next, I explain that single-mode coherent states
for both standard and anyonic bosons are equivalent, but that there is no natural physical
definition of multi-mode coherent states for anyons. I finish this chapter by discussing the

action of anyonic optical devices on single-mode coherent states.

4.1 Mathematical properties of anyonic operators

In subsection .11} T review the definition of anyonic oscillator algebras and com-
pare them with standard quantum oscillators (bosons and fermions), as well as with
hard-core boson oscillators. I end this subsection showing that a sub-algebra of quadratic
operators acting on pairs of modes is isomorphic to a direct sum of two su(2) sub-algebras,

and use them to define anyonic optical devices.

In subsection I explore the structure of quadratic fermionic operators to
find explicit expressions for anyonic beam-spliters, phase shifters and two-mode down
converters. I also show how to use these expressions to calculate the action of these

devices over creation and annihilation operators for fermionic anyons.
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In subsection [£.1.3] T extend the algebraic analysis done for quadratic operators
over fermionic anyons to the bosonic anyon case. First, I show remark that the absence of
an exclusion principle for bosonic anyons makes it impossible to write explicit expressions
for operators that define optical devices. Next, I show that the action of optical devices
over creation operators can still be obtained by recursion relations for commutations
between them and optical operations. I end this section with a comment on the exact

solubility of non-linear dynamics of one-dimensional anyons.

4.1.1 Quadratic Hamiltonian algebras over anyonic oscillators

In order to compare anyonic, standard and qubit multi-mode oscillator algebras,
I introduced a special notation for their generators. As explained in section [1.2] standard
fermionic and bosonic oscillators can be represented by the symbolic variable "z", which
can stand for both the letter "f" and "b" in expressions involving fermionic and bosonic
operators. For example, the commutation relations for N oscillators in egs.

can be expressed jointly by the system of equations

JATZ‘ A;r- — (—I)Sgn(x)i;[i‘z = (51‘7]', (41&)
#lal — (1) @3lal =0, (4.1b)
Tty — (=1)"@ 35, =0 (4.1c)

where sgn(f) = 1 and sgn(b) = 0.
Similarly, fermionic and bosonic anyon oscillators, as well as qubit oscillators
(see subsection [3.3.1)), are represented by the symbolic variable "x.,,", which is short-

ened to y, and is a stand-in for all possible types of bosonic ("8") and fermionic ("¢")

anyons, parametrized by the statistical angle ¢. The anyonic commutation relations in

eqs. (2.83[2.87)) are expressed by

Rkl = (m1)yemieaigly = 6y, (4.2a)
XIS — (m1prWeraagisd = o0, (4.2b)
Rixy — (—1)r¥eig; g, =0, (4.2¢)

where sgn(§) = sgn(q) = 1 and sgn(f8) = 0. In the case x = ¢ we have ¢ = 7, which
reproduces the commutation relations in eqs. (3.104}}3.105a]).

The Jordan-Wigner mappings defined in eqs. (2.84}2.88) can be compactly de-
scribed by

L exp{—igp S f:;aek}:f;j (4.3a)

1—1
278 %, = exp{igp s :c};xk}x (4.3b)
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whenever the condition sgn(x) = sgn(z) is valid.

Due to the existence of these Jordan-Wigner maps, which are algebra homomor-

phisms, the polynomial algebra
] T (i o .
H= % My [T (R"%0), (4.4)

is isomorphic to their standard counterpart. In other words, the polynomial algebra of
general fermionic-anyon and bosonic-anyon interactions over m modes are, respectively,
the Clifford algebra Cliff(m), and the Weyl algebra Weyl(m). Therefore, essentially,

anyonic operators are an alternative choice of generators for these algebras.

However, the specification of dynamical maps over particles are made by finding
representations of the Lie algebras of physical observables over sub-algebras of both Weyl
and Clifford algebras, and this process depends explicitly on the choice between standard
and anyonic generators. To illustrate this point, we must first discuss two sub-algebras
of importance, the sub-algebra of number-preserving operators and the sub-algebra of

parity-preserving operators, both of which were defined in section [3.2.1]

The sub-algebra of number-preserving operators can be expressed in terms of stan-
dard oscillators by the generators {fj Zj}ij=1,..m- This sub-algebra carries a representation

of a Lie algebra, given by the commutation relations
T8, — 0,214, 4.5
i LT ( . )

The elements of the number-preserving sub-algebra that belongs to this Lie algebra are
always quadratic. Therefore, its Hermitian elements describe passive, Gaussian devices,
for both bosonic and fermionic oscillators. The sub-algebra of parity-preserving operators
on the other hand, is generated by {i:j T, 0535, i:j :i';-}i,jzlwm, and also entails a Lie algebra
representation given by linear combinations of quadratic polynomials, whose Hermitian

elements are Hamiltonians for general Gaussian devices.

Both the number-preserving and parity-preserving sub-algebras contain monomials
of degree 2n over creation and annihilation operators, with n € N for bosons, and n €
{1,...,m} for fermions. But the sub-algebra of Gaussian devices, which is also a Lie
algebra in both cases, contains only real linear combinations of monomials of degree 2.
This implies we can never obtain non-Gaussian dynamical maps from composing Gaussian

devices alone, a point that was made in subsections [3.2.2] and [3.2.3]

However, in terms of anyonic generators, the situation is quite different. First, it
is worth noticing that the Jordan-Wigner maps are such that J(&!2;) = {i%; = 2l2; for
all 7. And not just that, but the )ZZT X; also behave as number operators for anyonic oscil-
lators. Therefore, the sub-algebra of number-preserving and parity-preserving operators

for anyonic oscillators are also isomorphic to their standard counterparts and generated,

respectively, by {X!%;}ijc1,..m and {X1%;, XXy, X0 et m.
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The differences begin when we consider the commutation relations of those sets of

generators. In the case of generators for the number-preserving sub-algebra, we have that

[XI%s hxa] = 0kt — Gaukhxy + A?fj,k,lf(jf(}f(kf(l; (4.6)
where AY; ;= (—1)59m00 (e=#ek — emi#l@i=ki=e5)) Therefore, the set of Hamiltonians
given by the Hermitian linear combinations of quadratic anyonic generators does not close
into a Lie algebra by itself since, by taking commutators, we can generate monomials of
higher degree. This means that the equations of motion for creation and annihilation
operators under Gaussian Hamiltonians are non-linear, and this fact makes obtaining

exact solutions of these equations intractable.

In spite of the non-linearity of equations of motion determined by general Gaussian
Hamiltonians for anyons, two-mode Gaussian Hamiltonians satisfy algebraic properties
that enables us to find exact solutions in those cases. We saw in sections [3.2.1] and [3.2.3]

that the set of Gaussian Hamiltonians has the Hermitian basis given by

A 1 e N 1, .. A . . .

Til,j 2(:1} xj + xTxZ) Ril,j = §<x1x; + xsz')a Pal = 9 (($2)2 + (xa>2) ) (4'73)
B U PO Sy R
T2 = 5 (@l - alen), B = (@la) - 2580, PY= - (@17 - (22)°).  (47b)
~ 1 1 ~

T3 = 2(:@*@ #li;), RS, :i(ﬁ:j@m}@j+(—1)59”<2>1), Ny ; =@z, + 212, (4.7¢)

where ¢ and j are an arbitrary pair of modes, a is an index that can take either ¢ or j as

values, and the f’f generators only exist for bosonic particles.

The generators Tf and Ii’k satisfy the commutation relations [Tfj, Tl i = iek,l,mﬁf’;,
and (R BL] = ey ()R, with nl(x) = 72(2) = 1, gi(x) = —(—1)"® and all
other elements equal to zero. This tells us that for both fermionic and bosonic oscillators,
the equations of motion where the generators Tfj and ]%f ; are the dynamical variables
are linear and exactly solvable. The point is that the two-mode Lie algebra structure of
Gaussian maps for anyonic particles are isomorphic to their standard counterparts. To

see this, notice that the generators

I VT I PO BBV
b= (R + R, B = SR/ + k), Bl =5 ()7 + (), (48a)
B O PR S A
T = 5 (/% - ), B = 5 (I8 - k), B2 = (R~ ()?) . (48D)
T = 5 (Rl = /%), B2 = (R + 808 + (000, Nijy = %1% + )%,
(4.8¢)
satisfy the relations [T}%; T% )] = depym D)%, [RE 3 RL ] = e mni () R, and, when sgn(x) =
[Rf], ;1 =0.

These properties are proven by using the non-trivial commutation relations

K ki) = %I =t It = =0+ (D)0 + 28y), (4.9)
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together with identities involving the number operators )2;[)@, foralli =1,..., m. However,
these are the only commutation relations that have the same form as their standard
”, R’“- and Pf] for

bosonic anyons do indeed depend on the statistical parameter. Nevertheless, there is an

counterparts. The commutation relations between the generators T;

isomorphism between the Lie algebra of Gaussian Hamiltonians for fermions and fermionic
anyons, and between the Lie algebra of passive Gaussian Hamiltonians for bosons and
bosonic anyons. These isomorphisms enable us to give an exact solution for the dynamical
map used to define the optical network models for such particles, which we use in section
4.2l

4.1.2 Two-mode sub-algebras of fermionic anyons

Let ¢ and j be two specific modes of an m mode fermionic anyon system. The
fermionic nature of the same-site commutation relations imposes (£)? = (é} )2 = 0. This
implies that the dimension of the sub-algebra of parity-preserving, two-mode operators,

as a vector space, is finite. A general element A of this sub-algebra has the form
A = apl + ayi; + asnj + agfm + a4t + ast; ; + a67" -+ ariynyg, (4.10)

where tAZ-,j = éj éj and 7; ; = éj é; Therefore, this sub-algebra has dimension 8 over C.

From the isomorphism described in section we infer that the generators
Tfj, Rk for fermionic anyons form two commuting copies of the angular momentum alge-
bra 5u(2). Then, we can write the Hermitian elements H of this sub-algebra as the sum

H = (aol + alﬁiﬁj) (blTl + b2T2 + bgT?:]) + (Clﬁiil’j + Cgﬁiij + Cgﬁi?’j), (411)

where all terms between parentheses commute with each other. In particular both I and

n;n; commute with all operators, and are the center of the sub-algebra.

The most general dynamical map over two fermionic anyons modes is given by

U = exp{if#H }, and therefore, we can write any two-mode map as the decomposition

U = exp{ifay} exp{if(aim;n;)} exp{i@(b . ’i‘”)} exp{z’@(c : IA%”)}, (4.12)
where T, ; = (Tzlj, TfJ,T3 )and R, ; (Rzlj, Rfj, Rij) are vector operators. Since (;7,)* =

fif;, we have that exp{if(a1n;n;)} = 1 — ("% — 1)7,;n,. Therefore, to understand all
two-mode dynamical maps, we only need to describe the maps generated by Gaussian

Hamiltonians.

In the case of passive Gaussian Hamiltonians, the dynamical maps have the form
exp{z’@(b T, J)} and, without loss of generality, we can impose that |b| = 1. Due to the
angular momentum algebra of the T’“ operators, this unitary is a rotation map, and one

can find a decomposition of any such unitary into a sequence of three rotation maps given
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by eq. (3.14)), as discussed in sections [3.1.1] and [3.2.1| Therefore, to characterize all such

maps we need only to study the rotations around Tzlj and rotations around Tf]

Consider rotations around T1 first. The rotation operator has the form

0 A A
Qu(0) = exnf i5€é; + 6 . (1.13

To find the explicit expression of (Q1(f) as a vector in the parity-preserving sub-algebra,
we must first find the powers of the term é;r éj + f}fl Using the commutation relations for

quadratic operators we find that
(€& + &) = & + ¢, — 28 &€1¢, (4.14a)
(& + €6)* = €l¢; + &é. (4.14D)
Therefore, the rotation operator @1(#) has the decomposition

Q1(0) =1 +isin - (fTéj + ST&) (COSZ —1)(Eé+ é;ég - Qéjézéjéa) (4.15)

Using this decomposition, we can obtain how this dynamical map evolves the

anyonic oscillators. Using the commutation relations for fermionic anyons we obtain
. 0 -~ 0 s
Qi(O)]Q1(=0) = cos SE] +isin e, (4.16a)

A 0 ~ 0~ _oete.
Qu(O)EQ1(~6) = cos 5€] +isin igje—wfka. (4.16b)
while the respective identities for annihilation operators are obtained by taking the con-

jugate of these equations.

A few comments are in order. First, these formulas are the solutions of the non-

linear Heisenberg equations of motion

icclzge (14,61 = {1 + (e — D&} = glevtis, (4.17a)
I T S ) i

Second, the appearance of the non-linear factors exp{:l:igpé}éj} can also be understood
by noticing that simple linear combinations of éj and é; do not preserve the anyonic

commutation relations, and the non-linear factors appear to solve this problem.

Similarly, the rotation operator associated to T34 is given by the formula
Qs(0) =1+ (ew/z - 1)5& + (e—i9/2 - 1)@@‘ + (1 — cos 9)257515;5], (4.18)

which gives us the action

Q01 Qs(—0) = {}5 (4198)

QuO)Eu(-0) = exv{ i3 1. (4.190)
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For completeness’ sake, the general rotation around an axis b has the form
, . 0 0 9
exp{zG(b : Tiyj)} =1 +1i2sin - (b T.;) + 4(cos 5 1)(b-T;,)? (4.20)

since it can also be proven that (2b-T;;)? = (2b-T; ;). Similarly, for the case of number-

destroying Hamiltonians we find that
. ay . . 9 A 0 N 2
exp{zG(c : Ri,j)} = I +12sin 5(0 ‘R, ;) + 4(cos 5 (c-R;j)”. (4.21)

These are the preliminary results of my work with fermionic anyons, and they are used

when we discuss how to perform quantum computing with such systems.

4.1.3 Two-mode sub-algebras of bosonic anyons

Let 7 and 7 be two specific modes of an m-mode bosonic anyon system. The bosonic
nature of the same-site commutation relations implies that both the number-preserving
and parity-preserving sub-algebras are infinite dimensional as vector spaces. Therefore,
the analysis carried out for the fermionic anyon case is not feasible, and a new method
for obtaining the action of dynamical maps over creation and annihilation operators is

required.

Let us restrict to the case of passive, Gaussian Hamiltonians for bosonic anyons,
generated by 77.. As with the fermionic anyon case, we only need to describe the maps
generated by Tllj and Tfj to obtain the action of the general case. From the anyonic

commutation relations we obtain

(2T}) 3! =B [2(cos T}, — sin QDT2~)] + 41 (4.222)
(21};)B1 =B} [2(cos T} — sinpT?)| + B (4.22b)

Next, we sum and subtract the two equations to get

(2T1)(B ﬁ ) =(3! Bj) {2(003 goTl — sin <,0T2 )+ 1} , (4.23a)
(2T1)(B! = B1) =(B = B]) [2(cos T}, — sin T?2) — 1] . (4.23b)

We can use the equations above to commute any power of (Qﬁlj) with the sum
and difference of creation operators. This allows us to commute any function of (QTle)
by commuting each term of its Taylor series expansion. Then, by using this property for
exp{iQ(ZTi{j)} we obtain

exp{if(2T}) } (BT + B1) = (B + B]) exp{i6 |2(cos T}, —sin T2) + 1]}, (4.24a)

exp{z’@(QT;j)}(B;f - B]T) = (B — ﬁ;) exp{z’@ [2((:03 goT — sin goT2 ) — 1} } (4.24b)
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Finally, after taking the sum and subtraction of the last two equations, and after a re-

scaling of 8, we obtain

exp{i@f}%j}@ (cos BT + ¢sin 5 ) exp{z@(cos (pT — sin cpT )} (4.25a)
ol Lot o 2 AT z ; _ 72
exp{z@Tivj}Bj = (isin 2@ + cos 2@)exp{z@(cos <pTi sin T )} (4.25b)

The linear combination cos (pTil,j —sin ngQ can be seen as the result of applying a

Tf’] rotation by an angle ¢ over T}, since
3 1 o3 TN
exp{@ng }T exp{ 1T } = cos pT; ; — sinpT; ;. (4.26)
Therefore, defining the compound rotation operator

G (0) = exp{iaT?, } exp{itT}; } exp{—iaT?}, (4.27)

allows us to rewrite eq. (4.26]) in the form

GO (0)5] =(cos B“rzsm ﬁ*)GEiL(e)) (4.28a)
Eg)ll( )BT =(isin BT-I—COS BT) Z]‘1(9) (4.28b)

These identities allow us to write the formal solutions

Gion(0)BIG) (—6) =(cos @msm 5>G§9§{1<9>Gm1< 0), (4.292)
1]|1( )/BTGZ]H( 9) (ZSIH BT+COS 5) z]\l(e)Ggg)\l(_e) (429b)

However, these are not useful to do more complex calculations. The action of a rotation

by T3 over bosonic anyon oscillators is trivially given by
exp{zg@T3 }5 exp{—zng?’ } = exp ZQ &l (4.30a)
2

exp{z¢T3 }§ exp{—zng?’ } = exp{—z'g}é}. (4.30b)

Then, using the above formula is easy to see that, by induction on n,

E?ﬁ( )81 =(cos BT—He "% gin ﬁT) l;ﬁrl)“")(ﬁ), (4.31a)
G (0)B] =(cos ﬁT—i-zem‘Psm /3T) (9 (g), (4.31b)

These identities are called the propagation identities, and I use them to propagate the
action of a dynamical map through any polynomial of creation particle operators. This is
another of my preliminary results, and it enables us to calculate the dynamical evolution

of any two-mode bosonic-anyon Fock-state.
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To sum up, the effects of two-mode, passive, Gaussian dynamical maps, and also
of active Gaussian maps in the case of fermionic anyons, are exactly solvable, and their
solutions resemble the action of their standard counterparts to some degree. However, in
contrast to standard oscillators, these actions have an explicit non-linear nature, leading

to unexpected consequences that are treated in the next section.

4.2 Anyonic optics and quantum computation

In this section we apply the algebraic facts demonstrated earlier in the context of
optical networks. In subsection 4.2.1} I give the definition of anyonic optical devices, and
analyze their action on anyonic states. I prove that we can describe these results using the

language of optical and of anyonic effects, such as bunching and Aharonov-Bohm phases.

In subsection[£.2.2] I describe the properties of anyonic optical networks in contrast
to networks for standard particles. First, I argue that networks of anyonic beam-splitters
can be crafted to act trivially in the presence of one particle, but non-trivially in the
presence of two or more. I also provide an example of such network, and show that it

gives a one-dimensional representation of the braid group.

In subsection [£.2.3] T define the computational model of anyonic optical circuits.
First, I give a general description of single-qubit operators for logical qubits in the dual-
rail encoding for both fermionic and bosonic anyon modes. Next, I provide two networks
using only anyonic beam-splitters and phase-shifters that create entangling two-qubit
gates. The first one applies only to the fermionic anyon case, while the second applies
to both fermionic and bosonic anyons. I finish this section by highlighting the differences

between standard and anyonic optical computing models.

4.2.1 Phenomenology of anyonic optical devices

Since the algebras of two-mode, passive and active Gaussian Hamiltonians are the
same for standard and anyonic particles, it makes sense to define the optical elements
for anyons analogously to those of fermions and bosons. Thus we have the anyonic phase

shifters and beam splitters described respectively by
PS(7) = exp (itx%:) , (4.32)
BS;;(6) =exp [i0(%]%; + X5%)] - (4.32b)

The graphical notation for these devices is the same as the one in figs. [16|and [I7] Similarly,

we can define squeezers and two-mode down converters by

Si(v) = exp{iv((B))* + (6:)")}. (4.33a)
12+ 2;8:) }, (4.33b)
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but we do not include them in our analysis directly.

With the results of section [{.I| we can calculate the effect of these devices over
anyonic Fock-space basis states. First, let us restrict ourselves to single-particle, two-mode
systems, with the modes labelled 1 and 2. In this subspace, generated by {|1, 0>x , |0, 1>x}

with y indicating the anyon type, the action of general passive devices is simple, and is

given by
PSi(7)[1,0), =€ [1,0),, PSy(7)[1,0), =[1,0),, (4.34a)
PSy(7)[0,1), =10,1),, PSy(7)[0,1), =€7[0,1),, (4.34b)
and
BS12(0)11,0), =cosf|1,0) +isind|0,1) (4.34c)
BS12(0)0,1), =isin|1,0), +cos0|0,1) . (4.34d)

To prove the last six identities for fermionic anyons (x = &), we need to rewrite
egs. (4.16al}4.19a)) in terms of the definitions for passive devices, which gives us

PSZ-(T)Q“]T-PSZ»(—T) = 6”5“5;, (4.35a)

BS, ;(0)¢ BS!(6) = cos b¢! + isin el et (4.35b)

BS,;(0)¢! BS!;(0) = cos 0€! + isin el e #8&, (4.35¢)

However, it is more convenient to rewrite the last three equations as propagation relations,
obtaining

PSy(1)€] = (e el PS;(7), (4.36a)

BS, ;(0)¢} = (cos 6€] + i sin 6¢le#5i4) BS, 1(0), (4.36b)

BS”(H) = (cos HST +isinf¢e —igé] éz)BSZJ(H) (4.36¢)

Then, since [1,0), = él 0)¢ and [0,1), = él |0)¢, we just need to propagate the device
operators through &), €}, and use the fact that PS; 0), = BSi;10), = 10), for all i and j.

Putting the equations for the action of device operators as propagation relations
allows us to use the same calculation method for both fermionic and bosonic anyons. To

see this, notice that for bosonic-anyon beam-splitters we can define the operator
BS{(0) = PS;(a)PS;(a)BS; () PSi(—a) PS;(—a), (4.37)

such that the propagation relations become

BS"(0) 5] =(cos 053] + ie= % sin 051 BS D9 (9), (4.38a)
() at _ Bt in Aty B g((1+1)%)

BS;7(0)3) =(cos 053] +ie™ sin05])BS; ;7 (6). (4.38b)

BS"(0)3] =BiBST(9), if k <ior k> j (4.38¢)

BSTA(0)5] =pLBS90), it i < k< j (4.384)
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Since for bosonic anyons we can also write
PSi(r)8} = (e g1 PS;(7), (4.38¢)

the propagation relations for these device operators determine the action over single-

particle states in the same way as for fermionic anyons.

For single-particle states, the action of anyonic optical devices is identical to their
standard counterparts. However, this changes drastically when we deal with states of two
or more particles. Let us discuss fermionic anyons first. Since the only two-particle states

of two-mode fermionic anyon system is |1,1),, it is not hard to see that

BS0)EE] 10 — (co 6616] - sin?06le 66l oy, (4300
= (0052 OEIES — sin? 96“"@5{) 10)¢ (4.39b)
= &fel o), (4.39¢)

This result shows that the anti-bunching phenomenon persists in fermionic anyon optics.

The new behaviors begin to appear for fermionic anyons when we consider the
case of two particles in three modes. The Hilbert space in such case is generated by
{]0, 1, 1)5 .11, 0, 1)£ 1,1, O>£}. For beam-splitters acting in nearest-neighbour modes the
action is identical to the standard fermion case. On the other hand, the action of the

beam-splitter BS 3() is this subspace is given by

BS15(0)[1,1,0), = cos1,1,0), —ie"*sinf|0,1,1),, (4.40)
BSL?)(G) |17 07 1)5 = |]-7 07 1>5 ) (44].)
BS15(0)10,1,1), = cosf0,1,1), —ie*’sin 0 [1,1,0), . (4.42)

In the last result, the statistical angle of the anyon type appears explicitly on the
coefficients of the states. Therefore, these extra phases must be somehow related to the
anyonic character of the particles. To see how this anyonic character appear, consider the
previous example in the case of § = 7/2, which behaves as a mirror up to a global phase.

We have in this that the states transforming non-trivially under the mirror are such that

BS13(m/2)[1,1,0), = —ie™*]0,1,1),, (4.43)
BS13(7/2)10,1,1), = —ie™ [1,1,0), . (4.44)

So, in the first equation, when the particle in mode 1 hits the mirror it gets reflected
upward, in terms of the mode ordering, tunneling trough mode 2, which is occupied by
a single particle. If we think of this process as one-dimensional generalization of particle
exchange, the —e™* phase can be seem as an exchange phase. Similarly, in the second
equation, the particle in mode 3 gets reflected downward, and tunnels trough the particle

occupying mode 2, acquiring an exchange phase —e'?.
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Our claim is that the phase —e™ can be seen as an Aharonov-Bohm phase that
arises from the anyonic character of the particles. In other to prove this, we need to show
that the presence of more particles in intermediary modes adds up to the total relative

phase. Consider the set of l-mode states

k
‘17 kQ,Zfla O>§ = éI (H éj]) ‘O>§ : (445)
j=1

where £ is the number of particles occupying k& modes ¢; lying between 2 and [ — 1. We

can calculate the action of an beam-splitter B.S;,(f) in the following way

k
BSy14(0) |1, ky4-1,0) = BS1(0)é] (H fs;) 0 =
j=1

= 0080 |1, kyy-1,0), + isin O * 0, ko q, 1), .

The previous calculation proves that the action of a beam-splitter over two distant
modes 1 and [, where mode 1 is occupied, under the presence of k particles induces a
relative phase e?*(#+7) Therefore, it makes sense to consider fermionic anyons as particles
with a effective magnetic ﬂuxﬂ of ¢, that undergo an Aharonov-Bohm effect under the
action of beam-splitters between distant modes. This interpretation has a deep implication
in terms of quantum computing, not just for fermionic anyons, but also for fermions and

qubits, as we will see in subsection 4.2.3|

Now let us analyze the action of beam-splitters over two-particle states for bosonic
anyons. As we saw in section [3.2] the action of a balanced beam-splitter over the two-

particle state |1, 1), exhibits the Hong-Ou-Mandel effect. For bosonic anyons, the action

1 The terminology is a bit misleading, since there is no "magnetic field" in one-dimensional theories,

however, we maintain the use due to the fact that the particle-number dependent phases appearing
in one dimensional theories of interacting anyons are called "Aharonov-Bohm" phases [21].
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of a balanced beam-splitter over [1,1); is given by

BSi5(m/4)[1,1)5 = BS, 2(7r/4)

v
= 7(6 v ‘270>5 + ’072>5)

where the last equality follows from the commutation relations and the fact that BS%O ) (0)

acts trivially on the vacuum state.

Note that this recovers the original bosonic Hong-Ou-Mandel effect when ¢ = 0,
as expected. Interestingly, however, the |1, 1) 5 state is still suppressed for any value of the
exchange phase. The only difference to the bosonic case is a relative phase between states
2,0) 5 and [0,2) ;. This phase has, up to this moment, not been given an interpretation
in terms of the anyonic character of the particles. Nevertheless, we can establish the
existence of a one-dimensional Aharonov-Bohm effect for bosonic anyons in the following

way. Consider the three mode state

R Y
1,k,0), =B (@%) 10)5 . (4.48)

and the beam-splitter BS; 5(6).
We have that,

BS13(0)1,k,0) 5 = BSl,S(Q)BI ((B;f)k) 0)5 =

ot
= (cos 0] + isin 53] BSY) () ((\ﬁ/%k) 0)5 =

_ QAT .. QAT (BT) BS ((2k+1)¢ _
(cos 03] + isin033) NG ( )|0>ﬁ

= cos 03] ((52]%> |0)5 + isinfe’ ik (<\B/Ql)53|0)

= cos0[1,k,0), + isinfe "0, k,1),.

This proves that bosonic anyons undergo the one-dimensional Aharonov-Bohm effect un-
der the same conditions as fermionic anyons. In particular, bosonic anyons can be un-
derstood to have effective magnetic flux ¢. As in the fermionic anyon case, this also has

striking implications for quantum computing with anyonic optical networks.
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4.2.2 Anyonic optical networks and interferometry

Now we proceed to describe the action of anyonic optical networks. As already
discussed in section [4.1] the algebra of m-mode, passive, Gaussian Hamiltonians does not
form a Lie algebra. For standard particles this algebra does indeed form a Lie algebra, and
this fact enables us to characterize a general m-mode passive, Gaussian devices by their
matrix of single-particle amplitudes, defined in subsection This happens exactly
because the commutation relations for m-mode anyonic Gaussian generators do not close,
which means that the action of general Gaussian devices over creation operators is non-
linear, and the coefficients of non-linear factors may appear in multi-particle amplitudes

without appearing in single-particle amplitudes.

To see this consider, for example, the network in fig. 21 Its interferometer ma-
et 0, 170>z,x .10, 0, 1>z,x) is the identity

matrix, and therefore this network describes a trivial interferometer for all single-particle

trix in the single-particle ordered basis (|1,0,0)

subspaces for both standard and anyonic particles. This implies, for standard particles,
that its action over all multi-particle subspaces is also the identity. However, for fermionic
and bosonic anyons, the action of this network is not the identity, for example, in the

two-particle subspace.

Figure 21 — Decomposition of the trivial interferometer. This is equivalent to the network
found in [238], up to phase-shifters

In the fermionic anyon case, the two-particle subspace is written in the ordered
basis (|1,1,0),,1,0,1),,[0,1,1),), and the interferometer matrix has the form.

1 0 0
0 et () 450
0 ¢ (fne) o ioicme

where ¢ is the statistical parameter for the anyon. Notice that the bottom 2 X 2 block is
by itself a unitary matrix, that can be written in the form Ro.1)(7/2) Rsin ¢,0,c0s 0) (—7/2)
in terms of products of rotations. Given this form, it is easy to see that for ¢ = 0, we

recover the identity matrix.

For bosonic anyons, the two-particle interferometer matrix is a 6 X 6 matrix, that
can be written in block diagonal form with an appropriate ordering of the two-particle
basis vectors [2,0,0)4,[1,1,0)4,[1,0,1)4,[0, 2, 0>ﬁ,|0, 1, 1>6’|07 0,2) 5. The first block is writ-
ten in terms of the subspace generated by the ordered basis (|2, 0,0)4,[1,1,0)4,[0,2,0),),
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and has the form

1_i\ (14 1 (1efe _ i-eiw)  _ (1-e¥e | L (1-)?
(2 4)+<2—|—4. Ccos \/5( 7l (s ) ( T Tl
1 [eTt—1 + i(e_’Q“’—l) 1+cosp 1 (1= _ sing
V2 2 2 V2 2 2

4
(= +il ) (s e) (B4 (3 1) eose

The second block is written in the subspace generated by the remaining basis vectors in
the order ([1,0,1)4,[0,1,1)4,[0,0,2),), and is given by

i (zs\l/niso> 62‘%1*1% 0] . (4.51)
0 0 1

As in the fermionic anyon case, it is simple to verify that for ¢ = 0, both blocks are

identity matrices.

This example proves the point about the existence of non-trivial decompositions
of the trivial interferometer, which can be adjoined to any non-trivial network. Therefore,
we can always find alternate decompositions of a multi-mode interferometer defined by
a single-particle matrix, where each of them act differently in the multi-particle anyonic
subspaces. However, this example does not help us to understand this behavior in terms

of the anyonic properties of the particles. To this end, we can consider the interferometer

in fig. (22).

51—
Figure 22 — Another decomposition of the trivial interferometer. This is the same network
found in [239]

This network has the very convenient property of being composed only of mirrors
and phase-shifters. This means that each component acts as a permutation over basis
states of the Fock-space, up to a multiplication by complex phases. This particular network
acts as a trivial interferometer in the single-particle subspace, as in the last example. The
matrix of this network for all other multi-particle bosonic anyon and fermionic anyon
subspaces is diagonal. Most importantly, the matrix for the two-particle subspace spanned
by the basis vectors (|1,1,0),,1,0,1),,]0,1,1) ) is the same matrix for both bosonic and
fermionic anyons, given by

e 0 0
0 e 0 (4.52)
0 0 1
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The explanation for this effect can be obtained by using the physical interpretation
of the action of a mirror, given in subsection Consider the state |1,1,0) " The first
mirror sends the particle from mode 2 to mode 3, while leaving the particle in mode 1
alone. The second mirror sends the particle in mode 1 to mode 2, leaving the one at
3 alone. The non-local mirror in the middle leads to a downward exchange, taking the
particle from mode 3 to mode 1, tunneling through the particle at mode 2, which leads to
the state acquiring the exchange phase e?¥. A similar reasoning also applies for the state

11,0,1) +» Where what occurs is a upward exchange, leading to a phase of e v,

In both examples, the presence of a non-local gate was fundamental to achieve
the results. For fermionic anyons this is mandatory, since fermionic particles are unable
to exchange meaningfully under beam-splitters due to the exclusion principle. However,
for the bosonic anyon case, it may be the case that local beam-splitters are enough to

generate these types of non-local effects. This possibility is still open.

4.2.3 Anyonic optical networks and quantum computation

Given our understanding of the distinct properties possessed by anyonic optical
networks, and the differences from their standard counterparts, we can now see how to
use them to build quantum computing models. Since the single-particle behavior of all
types of networks are equivalent, it makes sense to define logical qubits with a dual-rail
encoding

0) = 1,0, (4.53a)

1) =10, 1>x' (4.53b)

The encoding of more qubits is straightforward. A two-qubit system needs four modes,
with corresponding logical states

10) ® |0) = |1,0, 1’0>x’ 0) ® |1) = |1,0,0, 1>X, (4.54a)

1®10)=10.1,1,0), [1)@[1)=]0,1,01), (1.54b)

Three qubits need six modes, and so on, as exemplified in subsections |3.2.2] and [3.3.2]

Following subsection [3.2.2] single-qubit gates are generated by networks of phase
shifters and beam splitters in mode pairs that encode a logical qubit. Phase-shifters lead

to Z rotations in the Bloch sphere, as indicated by
PSl(0>|1>O>X:€w|17O>X7 PSZ(G)“?(D = |17O>X7 (455&)

X
PS1(0)[0,1), = [0,1),, PSs(8)]0,1), =€ [0,1)_, (4.55b)

X

while a beam splitter between modes 1 and 2 acts in the logical basis states as

BS15(0)]1,0) = cos#]1,0) +isinf0,1),
BS15(0)|0,1) =isinf |1,0) + cosf|0,1),
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which is a logical X rotation in the Bloch sphere by an angle 6.

To build a universal quantum computer, we must also have an entangling two-qubit
gate [169], as explained in subsection [3.1.3] We also saw in subsections |3.2.2| and [3.3.2]

that, for standard particles, deterministic entangling gates require non-linear interactions.

However, for anyonic particles we can generate these entangling gates using only passive,

Gaussian anyonic networks.

To see this, first consider the network in fig. [23] This network acts as the one found
in fig. 21] over the first three modes. The (), indicates the modes encoding the first logical
qubit and ()9 indicates the second. Given the results in subsection for this specific

network, it is easy to see that its action over the encoded subspace is given by the gate

_im (144 cos ) — i jsin

e 4 T@ 0 € 4 7248 0

0 1 0 0
[C(QO)] = iT 4 sin @ 0 im (144 cos @) 0 ) (457)

€ 4 VR €4 2
0 0 0 1
which can be written as the quantum circuit decomposition

Clp) = Xo(A(Ro,0,1(7/2)))2,1 (A(Rsin 0,005 (—7/2)) ) 2,1 Xo. (4.58)

Figure 23 — Optical network acting over two logical qubits (); and (). This network the
same as the one found in [238], up to phase-shifters.

This circuit decomposition helps us to build intuition about the gates properties.
For example, its easy to see that when ¢ = 0, the gate is trivial, and when ¢ = 7 it is
locally equivalent to the A(S)2; gate (see subsection for notation). To determine
the entangling power of this gate, we need to calculate the G1(C(y)) invariant. First, in
order to use the formula in eq. (3.46), we need to write the matrix of C(¢) in the Bell

basis (given in eq. (3.41])). We have that

€fcosp 0 0 —e'Zsing
0 0
C = 4.59
Cls Coo (4.59)
e 2sing 0 0 €% cos @
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Then, since det{[C(¢)]} = 1, we obtain from eq. (3.46) the entanglement power formula

e(C(p)) =1 — cos4§ (4.60)

Therefore, passive, Gaussian optical networks for fermionic anyons is universal for
quantum circuits with respect to the dual-rail encoding, for all values ¢ # 0, even if very
small. This fact has a nice interpretation in terms of the anyonic character of the particles.

First, notice that for fermionic anyons specifically, we have that

J@(ﬁfiﬂ + fjﬂfz) = é;réiﬂ + éleéi = ﬁfiﬂ + ﬁ'trlfia (4.61)
J@(ﬁﬁﬂ =+ fz‘+1fi> = éjéjﬂ + éHléi = ﬁﬁﬂ + fiJrlfi- (4.62)

for all modes i. This means that nearest-neighbour fermionic devices act in the same way

on all Fock-spaces, regardless of them being anyonic or standard.

In particular, as was argued in subsection [3.3.2], optical networks built from Gaus-
sian devices acting on nearest-neighbour modes generate a special, classically simulable
family of circuits called matchgates. It was also shown in subsection [3.3.2) that extending
the class of devices to include next-to-nearest-neighbour mode pairs allows the synthesis
of gates outside the group of matchgates in the case of hard-core bosons, but not in the
case of standard fermions. Therefore, our result suggests that one way of interpreting why
non-local beam-splitters create different encoded gates for different particles is to see that
next-to-nearest-neighbour Gaussian devices induce the one-dimensional Aharonov-Bohm

effect, which is only present for non-standard particles.

However, the network of Fig. [23| only works to prove the encoded universality of
fermionic anyons. In order to prove that this is also true for bosonic anyons, we need
a network that preserves the dual-rail encoding for both bosonic and fermionic cases.
Luckily, this is achieved by the network given in fig. In fig. it is shown how the
network of fig. [22] is applied to the three modes in the middle, leaving the outermost two
untouched. The first and last pairs of modes encodes the first and second logical qubits,
respectively. Therefore, if we initialize the auxiliary mode A with one particle, the results
of section show that it generates the two-qubit gate

100 0
010 0
CP@=10 01 o
00 0 e

This gate is a controlled phase gate, which is an entangling gate for all ¢ # 0.

The protocol explained in fig. [24] proves quantum universality for both fermionic
and bosonic anyons for any ¢ # 0, using only optical networks and one auxiliary mode,

with one particle that never leaves the circuit. Besides also holding for bosonic anyons,
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of

A

of

Figure 24 — Optical network acting over two logical qubits ()7 and Q5. This network the
same as the one found in [239).

it improves the protocol given in fig. in terms of simplicity, with a minor resource

addition given by the presence of an auxiliary mode.

4.3 Bosonic anyons and coherent states

In this section we depart from the previous discussion on the action of optical
devices over Fock states, and move onto the theory of coherent states for standard bosons
and for bosonic anyons. In subsection [4.3.1 I review the theory of optical coherence
for standard bosons, with a particular focus on the difference between eigenstates of
annihilation operators and generalized coherent states. The actual definition of coherent

states lie in the concept of n-th order coherence coefficients.

In subsection I discuss the meaning of coherence for bosonic anyons. First,
I point out that the eigenstate of a single annihilation operator for bosonic anyons is a
coherent state. Next, I show that two-mode coherent states are harder to define, since
annihilation operators for different modes do not commute. Nevertheless, by the use of

anyonic displacement operators, we can define multi-mode anyonic coherent states.

Finally, in subsection [4.3.3] T discuss the action of optical devices on anyonic co-
herent states. First, I review the action of beam-splitters and phase-shifters on annihila-
tion operator eigenstates for standard bosons, and calculate the action of anyonic beam-
splitters over single-mode coherent states. Next, I discuss how to transform between the
different classes of generalized coherent states. I finish by showing an applications where
cat-states are obtained from passive Gaussian devices acting over single-mode anyonic

coherent states.

4.3.1 Review of the theory of coherence

Coherent states are usually defined as eigenstates of annihilation operators. For

example, for standard bosons, a coherent state satisfies

blg), = g9y - (4.63)
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Here g, known as the amplitude of the coherent state, can be any complex number (due

to the non-Hermiticity of B) In the Fock basis, the coherent state can be written as
12 gZA)T "
lg), = 219" Y" (n') 10),, (4.64)

The states defined by eq. , however, are only a particular kind of coherent
state. The theory of optical quantum coherence arose from the task of discriminating
experimentally between different states of the electromagnetic field by the amplitude of
n-photon absorption events [96,97]. Given a single-mode input state |input), coming
from some field source, the probability of detecting n photons is given by the n-th order

correlation function
Cy(n) = (input| (0" (D)" |input), .

These correlators can be used, for example, as a measure to attest the quality of
single-photon sources [55,223,225], since for such sources we should have Cjy(1) as high
as possible. It is more common, however, to use the so-called n-th order single-mode

coherence functions < R . >
(o1)"(b)"
cp(n) = ~——7—L, (4.65)
(")b

where ¢,(n) is calculated relative to some specific state. We say that a state [¢), is n-order

coherent if ¢,(m) = 1 for all m < n.

In the general theory of coherence, a coherent state is one for which ¢,(n) = 1 for
all n € N. In other words, this state has full coherence in the sense that it is n-order

coherent for all n. The most general single-mode coherent state is of the form

—1ig2 i gET”
ooty = e 30" e g, (4.66)

where the notation g|{p,}, indicated that g is the amplitude of the coherent states, and p,,
is an arbitrary sequence of real numbers [25,237]. Note that we recover the states defined

in eq. (4.63)) in the particular case of p, = 0 for all n.

Coherent states that are also eigenstates of annihilation operators satisfy a mini-

mum uncertainty relation with respect to the quadrature operators

g = ;(IST +b) (4.67)
1 - ~

H — — T —

p= 5 (0 D). (4.68)

The quadrature operators satisfy the commutation relation [§, p] = 1, and form a repre-
sentation of the quantum harmonic oscillator. Only eigenstates of b can be simultaneously
single-mode coherent states and minimum uncertainty states [25], which is a property that

sets them apart from more general coherent states.
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Eigenstates of the annihilation operator can be created from the vacuum by the

action of the displacement operator

Dy(g) = exp{gb" — b}, (4.69)
which can be written in the equivalent forms
Dy(g) = e~ 3lol’ exp{gBT} exp{—g*i)}, (4.70a)
Dy(g) = ezlo’ exp{—g*l;} exp{gl;T}. (4.70b)

Note that Dy (g) is a unitary operator, with D] (g) = Dy(—g).

Several properties of displacement operators can be derived from those identities.
The most important is that these operators “displace” the vacuum state. This follows

from the equations

+9 (4.71a)
Dy(—g)b' Dy(g) = bt + g7, (4.71b)

called the displacement identities, from which we can show that the state

A 1) 2 pHym
) = Du(g) 0), = 45" - 190 oy, (1.7

is, in fact, an eigenstate of b.

Displacement operators form an algebra, given by the relation

A A

Dy(g) Dy(h) = e~ D(g + ). (4.73)
From this algebra, one can calculate the overlap function
(hlg), = ez lal" kI =20h7) (4.74)

which shows that coherent states are not orthogonal in general. Nonetheless they still

with I as the identity operator, which makes them an over-complete basis for the single-

mode state space.

As pointed out in [229], generalized coherent states can be written in terms of the
action of an operator over annihilation operator eigenstates. For every sequence of real

numbers {p, }nen, define the operator

Tipyuen = D_ €7 In)nl,. (4.76)

neN
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It is not hard to see that this operator has the aforementioned property, and by using it,
we are able to describe different classes of generalized coherent states. We will be mainly
interested in generalized coherent states for which the sequence {p, }nen is periodic, with

period p € Z.

Due to the over-completeness of annihilation eigenstates, it was proven in [25] that

any generalized coherent state can be written as a superposition

ooy = o [ drfn]lole™, (4.77)

where f(7v) is the Fourier series

fly) = erme™™, (4.78)

neN

and the state ||g|e”), is an eigenstate of b with eigenvalue ¢"|g].

When the state is periodic with period p € Z, the Fourier series can be summed
and described as a linear combination of p Dirac delta functions of the form &(y — k27 /p)
with £ = 0,...,p — 1, each with a different weight. This fact implies that the general

superposition formula can be simplified to

p—1
ik
91{on}sp)y = 2 wilgle™ ), (4.79)
k=0
where the notation g|{p,}, p implies that the sequence {p, } has period p € Z, and wy, are
the respective weights. Such states also have the property of being eigenstates of . In
fact, by doing cyclic permutations of the weights in the previous equations, we obtain a

set of p orthonormal eigenstates of bP. This fact will be very important later on.

Now let us go to the multi-mode case. In this case, the definition of coherent states

is given in terms of the multi-mode n-th order coherence coefficients

A~

(@ (b)),

cp,(n) = N (4.80)

-3

A multi-mode coherent state must satisfy the condition ¢;,(n) = 1 for all n and for all
modes ¢. Since, for standard bosons, annihilation operators commute with each other,
we can define simultaneous eigenstates of annihilation operators, and they happen to be

multi-mode coherent states of this kind.

The most general type of multi-mode coherent states over an m mode system is

given by the expression

191+ 9l {Pn})y = Tioutacsm [1 Doi(9:) 10}y, (4.81)

i=1
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where the sequence {py,} is a real number sequence indexed by vectors of natural number
coefficients, lA)bi (g;) are displacement operators over the modes 7, which also commute

with each other, and Tj,.1, . is an operator having the form

Tipatnenm = Z eiPntsmm S TP £ (' S 7 Yo F (4.82)

4.3.2 Anyonic coherent states

After describing the theory of coherent states, let us now consider its generalization
for bosonic anyons. For single-mode systems, we may define eigenstates of annihilation

operators:
Bla)s =9lga) (4.83)

where again ¢ is any complex number. These states have full coherence if we define the

n-th order coherence coeflicients cg(n) in the analogous form

. (CORODY s
cg(n) = ———. :

’ (n);

We can take these states as the first examples of single-mode bosonic anyons coherent

states.

In fact, since single-mode commutation relations for bosonic anyons are the same
as their standard bosonic counterparts, the algebra of anyonic, single-mode displacement
operators ﬁﬁ(g) is isomorphic to the standard version. Therefore, as long as we only
consider a single mode, coherent states for anyonic bosons have exactly the same properties
as those of standard bosons. In particular, we can also define the anyonic version of T}, }, .

(see eq. (4.76])) by the same expression as the standard case. This implies that single-mode

generalized coherent states for anyons are also analogous to the standard case.

Since, in the single-mode case, the theory is exactly the same, to look for mean-
ingful differences we must proceed to the multi-mode case. Consider first the case of
two-mode bosonic anyons. Using the form of displacement operators for anyonic modes,

we can define the set of states
u;0)$* = Dy, (u) D, (v) [0) 5, (4.85)

for any u,v € C. By defining multi-mode n-th order coherent coefficients for bosonic

anyons, it is not hard to see that this state is two-mode coherent.

However, in contrast to the standard case, this state is not a simultaneous eigen-

state of 31 and Bg. In particular, we have that
3 oy 0y (12 ) (1,2)
51 ‘U, U>ﬁ =u ’u7 U)ﬁ ) (486)

B e )22 — o ye—ie: )P
Ba |u;v) —v‘ue “",v>6 . (4.87)
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These expressions are obtained from the propagation relation
02D, (u) = Dy, (ue') B, (4.88)

In this example, the system is an eigenstate of the annihilation operators in the first mode,
but not of the second. In particular, this means that such state is a minimum uncertainty

state for the quadrature variables of the first mode, but not for the second.

The lack of commutativity between 1551 (u) and 3, translates into a lack of com-

mutativity between Dj, (u) and Dg,(v). This prompts us to define the state

s v) Y = D, (v) D, (u) 0)5, (4.89)

which ends up being different from |u; v)gm). This seems to imply that multi-mode coher-

ent states for anyonic bosons are, in one way or another, generalized coherent states.

Similarly to first example, the state |u; 'U>(BQ’1) is only an eigenstate of 32, and not

of 31. In fact, the action of these operators is given by

A @) i\ (1)
Bilusv)g ™ =u S0>ﬂ : (4.90)
Ba lu; 0) 3V = wlu; ). (4.91)

Whatever choice we make, both of these states are coherent, but none is a simultaneous

eigenstate of both of the annihilation operators.

The lack of a common eigenstate changes the way we treat generalized eigenstates
in the case of anyonic system, since in order to define a T" operator, characterizing the
relative phases of each power in the coherent state expansion, we used the eigenstates as
reference states. However, since we still have the notion of normal ordering for bosonic
anyon operators, we can choose |u; v>(ﬂl’2) as a reference state for two-mode coherent states.

With this choice in mind, consider the identities

I Qf At

)3 = |3 N0 @i?)k] 0}, (4.92a)
I ! !

|u;v>(52’1) _ ZN —ipkl \WP1)" Uﬁl) (U%) ] |0> (4.92D)

where N = exp{—1/2(|u|2 + |U|2)}

It is easy to see that the |u; v)g’l) can be written as
;)50 = Ty [ 0)5? (4.93)
where
T—Wlmz = Z e—itpnlm |n1, n2><n1, n2|5, (4.94)

ni,n2
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is the operator associated to the sequence of relative phases {—@nins}, ny)enz. This
operator has exactly the same representation as the time evolution of the state |u; v}él’z)
under the cross-Kerr interaction I:IC_ Kerr = —M1My with time parameter given by the

statistical angle .

This shows us that, in some way, the anyonic character of the particles is intro-
ducing an effective quartic interaction that depends on the order of the modes. However,
to make this statement more precise, we need to discuss the effects of optical devices on

anyonic coherent states.

4.3.3 Anyonic coherent states under optical networks

First, let us do a quick review on the action of beam-splitters and phase-shifters
on standard bosonic coherent states. Take a system initialized in either of the coherent

states

Dy, (9)10),,
Dy, (h) 10),,

|g7 0>b
|07 h>b

The action of a phase shifter PS;(7) on |g,0), is simply given by

PSl(T) ‘g>0>b = ’96”,0>b,

and the action of PSy(7) on |0, k), is, similarly, given by |0, he'™).
More interesting is the action of the beam splitter B.S12(6), which can be obtained
using eq. (3.56)), resulting in

BS15(0) 1g,0), = |cos (#)g,isin (0)g),
BS15(0) 0, h), = |isin (0)h,cos (8)h), .
It is easy to see that this state is two-mode coherent, in the sense that ¢j(n) = 1 and

c2(n) = 1 for all n. We now depart from standard naming conventions and call any state

of the form .
’91,---79m>b = HDi(gi) ‘O>b7 (4.97)
i=1
an exact multi-mode coherent state, or exact coherent state for short.

In general, the action of an arbitrary two-mode linear map A over an arbitrary

two-mode coherent state is then
A |U, ’U>b = |A1,1U + ALQU, AQJU -+ A2’2U>b s (498)

where A is determined by the coefficient matrix A = [A;]. It is a simple fact of linear

algebra that, for any nonzero complex vector, there is a unitary matrix which rotates it
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into a vector with a single nonzero component. Therefore, given any |u,v),, one can find

two linear maps A'(u,v) and A2(u,v), such that

AMuyo) ), = [Vl + 10, 0) (4.992)
b

AQ(uv U) ‘u7 U>b =10

ul® + |v\2> : (4.99h)
b

This observation motivates the following definition. When, for a bosonic state
4),, a linear dynamic A(t) can be found such that A(¢)[¢), is a single-mode coherent
state, we say that [¢), is a dynamically coherent state. It is not hard to see that all
dynamically coherent states are exactly coherent. These two notions of coherent state—
dynamic and exact—are not standard in the quantum optics literature, since there they
coincide. However, as we already saw, annihilation operators do not commute for bosonic

anyons. This suggests that these definitions might not agree, as we now show.

Naturally, exact single-mode coherent states for bosonic anyons should be defined

in the same way as they were defined for standard bosonic ones

19:0)5 = Dy, (9)10)4, (4.100a)
10,h) 5 = D, (h)|0),. (4.100b)

The action of a phase shifter on these states is exactly the same as in the standard case,
due to their diagonal action over creation and annihilation states.

The action of a beam splitter operator can be calculated from the propagation

identities of eq. (2.87)), leading to the expressions

BS15(0)19:0)5 = N Z H gcos(0)B] +ie~ " gsin(6)B1) [0) 5, (4.101a)
BS15(0)[0,h)5 = Ny Y E H(ieik“"hsin(e)ﬂ + hcos(0)5) [0)4, (4.101b)
n © k=0

where N, = exp{—l/Q\xF} for any x.
In order to get rid of the binomial product, we need to prove the deformed binomial

identity below. Let a,b be arbitrary complex numbers and ¢ < j, then

n—1

n(n—1) n—1
2

[T (aB] + e ™eb5i) = e [1(¢*%apf + b3l) (4.102a)
k=0 k=0

where
T (ke At 4 AT N e A
[T (e*ap] + b3)) Z = (aBl) (bBhH (4.102b)
k=0 =0

This is proven in the following way. For the first equality, is easy to prove see that

aff] + e7 bl = eme(e*ea Bl 4 bpl), (4.103)
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which implies

n—1 n—1
[T (aBf + e *eb3]) = []‘[ e_wk] [T (e*2a5] +b31). (4.104)
k=0 k=0
Now just notice that
n_l . - k= - n(n—
H e ik _ v SoTik e"P%. (4.105)

The next identity though is a bit more challenging, and requires the use of induc-
tion over n. Is easy to see that the identity is trivial for n = 1, now suppose it is valid for

the n case. The n + 1 can be written as

n . z(z ) oA ~ ) ~ ~
> < ) " (aB) 68" (¢ a ] + bBY), (4.106)
1=0

where we used the induction hypothesis for n. Expanding the factors and rearranging the

operators such that they are normally ordered we obtain

5 (1) eyt £ (1) adesy et o

=0

To proceed we take the terms [ = n from the first summation and [ = 0 from the
second summation, writing then explicitly. After that we make the substitution £k =1+ 1

in the first sum and k& = [ in the second sum, obtaining

i "H+ZK ) <Z>]€i@’“%“<aéz>k<b@><"“>’“+<b3}>”“7 (4.108)

() (=00 )

it easy to see that the case n + 1 is also valid, thus proving the theorem.

then, using the identity

Direct application of the deformed binomial identities lead to the results

(cos(0)gB])! (isin(0)g )"
BS15(0)19,0)5 = [Z Nyt 0 ! o 2 110), (4.110a)
n ! !
isin (0)hBN! (cos (9)hBI)k
BS15(0) [0, h), = [ZNhCik( OIAY teos OR%) ] 0),. (4.1100)
1k : :
where we have
L = ettt )
Cik _ ewl(l 1)

Due to the group property of beam splitters, the form of the states in eqgs. (4.110))

stay the same, even after successive applications of beam splitters with different angles.
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This observation allows us to find at least two different types of states with that have

dynamical coherence, represented by the equations
L 1 At ikoy At
u,v) g = NY. ] [T (uB] + e7403;) 0)5,
n " p—o

1 n—1 ; R R
ol = NS T + 08 0,
© k=0

n

where N = exp{—( \u|2 + ]0]2)} We refer to these states as type 1 and type 2 dynamically

coherent states, respectively. The action of a general two-mode interferometer A is then
Alu, v)g = [(Anu + Arpv), (Anu + A22“)>§3 5

fori=1,2.
By the definition, its easy to see that the unitary T = exp{igpf( } with K given by

the anyonic Kerr Hamiltonian

A (Ry + M) (Mg + 7 — 1)
12 — 2 )

is such that

2 1
u, ) =T u,v)5.

Therefore, there is no passive, Gaussian Hamiltonian that can convert a type 1 dynami-

cally coherent state into a type 2 dynamically coherent state. By inspection, we see that

no exactly coherent state can be mapped into a dynamically coherent state using passive,

Gaussian anyonic Hamiltonians.

This fact seems to indicate that introducing the capacity of "displacing the any-
onic vacuum" in passive, Gaussian optical networks for bosonic anyons is in some sense
equivalent to introducing quartic interactions. However, the details of such construction
are not yet clear, and will be left for future research. On a last note, however, notice that
both dynamically coherent states can also be mapped into the reference exact coherent

state |u, v)él’g) by quartic two-mode, number-preserving interactions.

We believe that this incursion into the different kinds of two-mode coherent states
of bosonic anyons is enough to illustrate the drastic effects the anyonic exchange phase
has on coherent state dynamics. As a last example, let us study the effect of a mirror, i.e.
the network given by PS(m/2)BS1a(m/2)PSs(7/2), on single-mode coherent states:
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From our previous discussion it follows that the output states are given by

ot (uB)
yo,u>}3:Nu;e G /j 10)5,

)

ATk
i EE=1) (U
|U,O)z:Nv§6‘p 2 kll 0)5,

where the first state is a reflection of |u,0); and the second a reflection of |0,v) .

For all values of ¢, we can use the Fourier representation of eq.(4.77) with f;(~)

given by

ERPL.A i) R
filty) =2 e e e, (4.115)
neN

where the value of & depends on whether 2 = 1 or ¢« = 2. However, this representation can
be further simplified in case of ¢ = 2pm/q for integers p,q. In this case, the generalized
single-mode coherent states are periodic with period ¢, and must have the form in eq.
(4.79). Interestingly, for this specific example, the associated weights wy can be obtained

by finding the solutions to the quadratic congruence
kE(k—1)=0 mod 2q. (4.116)

The full description of the solutions would involve the use of theory of quadratic residues,

and is outside the scope of this work.

For the sake of illustration, let us take the simplest case ¢ = . We see that the

mirror acts as
1 1 1 . 3.
0.w5 = 575 [(=1)7 [0, —iu), — (=1)7 [0, iu),]
2 1 1, 3.
0,00 = 575 [(=1)7 [=iv,0), — (—=1)¥ |iv,0),] .

up to a normalization factor N. Such states are called cat states, and they have multi-
ple applications in quantum information theory, such as encoding logical qubits or as a
resource for teleportation protocols [94}137]144,[158,|173}/175|,182,1206].

To sum up, the theory of coherent states for bosonic anyons has many interest-
ing and surprising features, due to the intrinsic non-linearities imposed by the anyonic
character of the particles. The extent to which this framework can be used to explain the
computing power of quantum information processing with continuous variables, as it was

used for discrete ones in subsection [£.3.2] remains largely unknown.
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5 Conclusion, open questions, and final re-

marks

In the end, our research suggests a physical way of understanding the comput-
ing power of both ballistic (billiard-ball-like) quantum computing modes, and the quan-
tum circuit model itself. I believe to have successfully demonstrated that: (i) the optical
network model can be consistently generalized for systems of identical particles with
one-dimensional, anyonic exchange statistics, as argued in section , (ii) the action of
Gaussian optical devices over such systems can be interpreted using the physics of one-
dimensional anyons, and (iii) that it is this physics that determines the expressive power
of optical network models, as argued in section [4.2] Our results also suggest that this
understanding can be used as another bridge between the physics of one-dimensional
quantum systems and quantum computer science. We have began to cross this bridge,
showing some results about the effects of anyonic exchange statistics over the dynamics

of coherent states for bosonic anyons in section (4.3

But such a bridge can be walked down much further. For example, we might ask
whether further extensions of the optical network formalism are possible. As described in
subsection [2.3.3.2] a simple, general class of particle systems with non-standard statistics
is given by the braided commutation relations of eq. . There is no a priori reason
to believe that the formalism developed here could not be generalized to these classes of
particles, especially if they can be obtained via more general Jordan-Wigner maps from
commutation relations for standard bosons and fermions. Another interesting type of
identical particles for which an extension might be interesting are the Fock parafermions
defined in [54]. These particles have both anyonic exchange statistics, and fractional exclu-
sion statistics, obeying a generalized exclusion principle of the type proposed by Gentile
in [91].

We can also take the bridge backwards, and instead look for results in quantum
computer science and translate them into results about the physics of exotic particle
systems. We can, for example, ask if one can use the optical network model to provide
quantum algorithms for simulating the behavior of one-dimensional, anyonic-Hubbard
models [10,264]. Or, we could also ask if results about random quantum circuits |27] can
tell us anything about disorder in gases of hard-core bosons, due to their equivalence with
the quantum circuit model. Finally, we could also take this bridge to another directions,
and see if our results can help elucidate the debates around the quantum entanglement
and the physics of identical particles. We could ask, for example, what the presence of

the one-dimensional Aharanov-Bohm effect in fermionic anyons tells us about the one-
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particle-reduced entropy [68482}/172},263] of particles as we vary the statistical parameter
from standard fermions to hard-core bosons. The list of potential connections is limited
only by the imagination and mathematical tractability of the non-commutative algebras

involved.

As a final thought, I point out that as quantum technologies progress, the pos-
sibilities of simulating exotic particle systems grow larger by the day, and with it, the
possibility of exploring bridges, such as the one opened by this work, grow too. As we
have not yet found the ways to build reliable, fault-tolerant computers, bridges between
the physics of condensed matter systems and the structure of quantum computers will

become increasingly important in overcoming the challenges posed to us in the NISQ era.



141

Bibliography

1 AARONSON, S.; ARKHIPOV, A. The computational complexity of linear optics.
In: Proceedings of the forty-third annual ACM symposium on Theory of computing. New
York, NY, USA: Association for Computing Machinery, 2011. (STOC ’11), p. 333-342.
ISBN 978-1-4503-0691-1. Available at: <https://doi.org/10.1145/1993636.1993682> .

2 AGLIETTI, U. et al. Anyons and Chiral Solitons on a Line. Physical Review Letters,
v. 77, n. 21, p. 4406-4409, nov. 1996. ISSN 0031-9007, 1079-7114. Publisher: American
Physical Society. Available at: |<https://link.aps.org/doi/10.1103/PhysRevLett.77.
4406>|.

3 AHARONOV, D. A simple proof that Toffoli and Hadamard are quantum universal.
arXiv preprint quant-ph/0301040, 2003.

4 AHARONOV, D.; BEN-OR, M. Fault-Tolerant Quantum Computation with Constant
Error Rate. SIAM Journal on Computing, v. 38, n. 4, p. 1207-1282, jan. 2008. ISSN
0097-5397. Publisher: Society for Industrial and Applied Mathematics. Available at:
<https://epubs.siam.org/doi/abs/10.1137/50097539799359385>.

5 AHARONOV, Y.; BOHM, D. Significance of Electromagnetic Potentials in
the Quantum Theory. Physical Review, v. 115, n. 3, p. 485491, ago. 1959.
ISSN 0031-899X. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRev.115.485> .

6 ALUFFI, P. Algebra: chapter 0. Providence, R.I: American Mathematical Society,
2009. (Graduate studies in mathematics, v. 104). OCLC: ocn301705973. ISBN
978-0-8218-4781-7.

7 AMICO, L.; OSTERLOH, A.; ECKERN, U. One-dimensional XXZ model for
particles obeying fractional statistics. Physical Review B, v. 58, n. 4, p. R1703-R1706,
jul. 1998. ISSN 0163-1829, 1095-3795. Publisher: American Physical Society. Available
at: <https://link.aps.org/doi/10.1103 /PhysRevB.58. R1703>.

8 ANEZIRIS, C.; BALACHANDRAN, A.; SEN, D. Statistics in one dimension.
International Journal of Modern Physics A, v. 06, n. 26, p. 4721-4751, nov.
1991. ISSN 0217-751X. Publisher: World Scientific Publishing Co. Available at:
<https://www.worldscientific.com /doi/abs/10.1142/s0217751x91002240> .

9 ANTONIADIS, I.; BACHAS, C. Conformal invariance and parastatistics in two
dimensions. Nuclear Physics B, v. 278, n. 2, p. 343-352, dez. 1986. ISSN 0550-3213.
Available at: |[<http://www.sciencedirect.com /science/article/pii/0550321386902178>.


https://doi.org/10.1145/1993636.1993682
https://link.aps.org/doi/10.1103/PhysRevLett.77.4406
https://link.aps.org/doi/10.1103/PhysRevLett.77.4406
https://epubs.siam.org/doi/abs/10.1137/S0097539799359385
https://link.aps.org/doi/10.1103/PhysRev.115.485
https://link.aps.org/doi/10.1103/PhysRev.115.485
https://link.aps.org/doi/10.1103/PhysRevB.58.R1703
https://www.worldscientific.com/doi/abs/10.1142/s0217751x91002240
http://www.sciencedirect.com/science/article/pii/0550321386902178

142 Bibliography

10 ARCILA-FORERO, J.; FRANCO, R.; SILVA-VALENCIA, J. Critical points of the
anyon-Hubbard model. Physical Review A, v. 94, n. 1, p. 013611, jul. 2016. Publisher:

American Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevA.
94.013611>.

11 AROVAS, D. P. et al. Statistical mechanics of anyons. Nuclear Physics B, v. 251,
p. 117-126, jan. 1985. ISSN 0550-3213. Available at: <http://www.sciencedirect.com/
science/article/pii/0550321385902524 >

12 ARTIN, E. Theory of Braids. The Annals of Mathematics, v. 48, n. 1, p. 101, jan. 1947.
ISSN 0003486X. Available at: |[<https://www.jstor.org/stable/19692187origin=crossref>.

13 ARTIN, M. Algebra. 1. ed. Englewood Cliffs, N.J: Prentice Hall, 1991. ISBN
978-0-13-004763-2.

14 ARUTE, F. et al. Quantum supremacy using a programmable superconducting
processor. Nature, v. 574, n. 7779, p. 505-510, out. 2019. ISSN 1476-4687. Number: 7779
Publisher: Nature Publishing Group. Available at: <https://www.nature.com/articles/
$41586%20019%201666%205>.

15 BAIS, F. A.; DRIEL, P. van; PROPITIUS, M. de W. Quantum symmetries in
discrete gauge theories. Physics Letters B, v. 280, n. 1, p. 63-70, abr. 1992. ISSN
0370-2693. ArXiv: hep-th/9203046. Available at: <http://www.sciencedirect.com/

science/article/pii/037026939290773W >

16 BALAKRISHNAN, S.; SANKARANARAYANAN, R. Entangling power and
local invariants of two-qubit gates. Physical Review A, v. 82, n. 3, p. 034301, set.
2010. ISSN 1050-2947, 1094-1622. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevA.82.034301>.

17 BARKESHLI, M.; FREEDMAN, M. Modular transformations through
sequences of topological charge projections. Physical Review B, v. 94, n. 16, p.
165108, out. 2016. ISSN 2469-9950, 2469-9969. ArXiv: 1602.01093. Available at:
<http://arxiv.org/abs/1602.01093>.

18 BARKESHLI, M. et al. Symmetry Fractionalization, Defects, and Gauging of
Topological Phases. Physical Review B, v. 100, n. 11, p. 115147, set. 2019. ISSN 2469-9950,
2469-9969. ArXiv: 1410.4540. Available at: <http://arxiv.org/abs/1410.4540>.

19 BARTOLOMEI, H. et al. Fractional statistics in anyon collisions. Science,

v. 368, n. 6487, p. 173-177, abr. 2020. ISSN 0036-8075, 1095-9203. Publisher:
American Association for the Advancement of Science Section: Report. Available at:
<https://science.sciencemag.org/content /368 /6487 /173>


https://link.aps.org/doi/10.1103/PhysRevA.94.013611
https://link.aps.org/doi/10.1103/PhysRevA.94.013611
http://www.sciencedirect.com/science/article/pii/0550321385902524
http://www.sciencedirect.com/science/article/pii/0550321385902524
https://www.jstor.org/stable/1969218?origin=crossref
https://www.nature.com/articles/s41586%20019%201666%205
https://www.nature.com/articles/s41586%20019%201666%205
http://www.sciencedirect.com/science/article/pii/037026939290773W
http://www.sciencedirect.com/science/article/pii/037026939290773W
https://link.aps.org/doi/10.1103/PhysRevA.82.034301
http://arxiv.org/abs/1602.01093
http://arxiv.org/abs/1410.4540
https://science.sciencemag.org/content/368/6487/173

Bibliography 143

20 BATCHELOR, M. T.; GUAN, X.-W. Fermionization and fractional statistics
in the strongly interacting one-dimensional Bose gas. Laser Physics Letters, v. 4,
n. 1, p. 77, set. 2006. ISSN 1612-202X. Publisher: IOP Publishing. Available at:
<https://iopscience.iop.org/article/10.1002/1apl.2006100681 /meta>.

21 BATCHELOR, M. T.; GUAN, X.-W.; OELKERS, N. One-Dimensional Interacting
Anyon Gas: Low-Energy Properties and Haldane Exclusion Statistics. Physical
Review Letters, v. 96, n. 21, p. 210402, jun. 2006. ISSN 0031-9007, 1079-7114.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
PhysRevLett.96.210402>.

22 BATCHELOR, M. T.; GUAN, X.-W. Generalized exclusion statistics and degenerate
signature of strongly interacting anyons. Physical Review B, v. 74, n. 19, p. 195121, nov.
2006. ISSN 1098-0121, 1550-235X. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevB.74.195121>.

23 BECKERS, J.; DEBERGH, N. Parastatistics, supersymmetry and parasupercoherent
states. Journal of Mathematical Physics, v. 31, n. 6, p. 15131523, jun. 1990.

ISSN 0022-2488. Publisher: American Institute of Physics. Available at: <https:
//aip.scitation.org/doi/abs/10.1063/1.528694 > .

24 BIALYNICKI-BIRULA, I. Elementary particles and generalized statistics.
Nuclear Physics, v. 49, p. 605-608, nov. 1963. ISSN 0029-5582. Available at:
<http://www.sciencedirect.com/science/article/pii/002955826390124 X >

25 BIALYNICKA—BIRULA, Z. Properties of the Generalized Coherent State. Physical
Review, v. 173, n. 5, p. 1207-1209, set. 1968. Publisher: American Physical Society.
Available at: |[<https://link.aps.org/doi/10.1103/PhysRev.173.1207>

26 BIEDENHARN, L. C. The quantum group SUq(2) and a g-analogue of the
boson operators. Journal of Physics A: Mathematical and General, v. 22, n. 18,
p. L873-L8&78, set. 1989. ISSN 0305-4470. Publisher: IOP Publishing. Available at:
<https://doi.org/10.1088,/0305-4470/22/18 /004>

27 BOIXO, S. et al. Characterizing Quantum Supremacy in Near-Term Devices.
Nature Physics, v. 14, n. 6, p. 595-600, jun. 2018. ISSN 1745-2473, 1745-2481. ArXiv:
1608.00263. Available at: <http://arxiv.org/abs/1608.00263>.

28 BONKHOFF, M. et al. Bosonic continuum theory of one-dimensional lattice anyons.
arXiv:2008.00003 [cond-mat, physics:quant-ph/, jul. 2020. ArXiv: 2008.00003. Available
at: <http://arxiv.org/abs/2008.00003>.


https://iopscience.iop.org/article/10.1002/lapl.2006100681/meta
https://link.aps.org/doi/10.1103/PhysRevLett.96.210402
https://link.aps.org/doi/10.1103/PhysRevLett.96.210402
https://link.aps.org/doi/10.1103/PhysRevB.74.195121
https://aip.scitation.org/doi/abs/10.1063/1.528694
https://aip.scitation.org/doi/abs/10.1063/1.528694
http://www.sciencedirect.com/science/article/pii/002955826390124X
https://link.aps.org/doi/10.1103/PhysRev.173.1207
https://doi.org/10.1088/0305-4470/22/18/004
http://arxiv.org/abs/1608.00263
http://arxiv.org/abs/2008.00003

144 Bibliography

29 BORN, M.; JORDAN, P. Zur Quantenmechanik. Zeitschrift fiir Physik, v. 34,
n. 1, p. 858-888, dez. 1925. ISSN 0044-3328. Available at: <https://doi.org/10.1007/
BF01328531>.

30 BORN, M.; HEISENBERG, W.; JORDAN, P. Zur Quantenmechanik. II.
Zeitschrift fir Physik, v. 35, n. 8, p. 557615, ago. 1926. ISSN 0044-3328. Available at:
<https://doi.org/10.1007/BF01379806>.

31 BORSELLINO, A. Sulle ipotesi poste a fondamento delle statistiche intermedie. I
Nuovo Cimento (1943-1954), v. 4, n. 1-2, p. 5262, 1947. Publisher: Springer.

32 BOSE. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift fiir Physik, v. 26,
n. 1, p. 178-181, dez. 1924. ISSN 0044-3328. Available at: <https://doi.org/10.1007/
BF01327326>|.

33 BOWICK, M. J.; KARABALI, D.; WIJEWARDHANA, L. C. R. Fractional
spin via canonical quantization of the O(3) nonlinear sigma model. Nuclear
Physics B, v. 271, n. 2, p. 417-428, jun. 1986. ISSN 0550-3213. Available at:
<http://www.sciencedirect.com/science/article/pii/055032138690324 X >

34 BOZEJKO, M.; SPEICHER, R. Completely positive maps on Coxeter
groups, deformed commutation relations, and operator spaces. Mathematische
Annalen, v. 300, n. 1, p. 97-120, set. 1994. ISSN 1432-1807. Available at:
<https://doi.org/10.1007/BF01450478>.

35 BRAVYI, S. B.; KITAEV, A. Y. Fermionic Quantum Computation. Annals
of Physics, v. 298, n. 1, p. 210-226, maio 2002. ISSN 0003-4916. Available at:
<http://www.sciencedirect.com /science/article/pii/S0003491602962548 > .

36 BRINK, L. HANSSON, T. H.; VASILIEV, M. A. Explicit solution to the N-body
Calogero problem. Physics Letters B, v. 286, n. 1, p. 109111, jul. 1992. ISSN 0370-2693.
Available at: |<http://www.sciencedirect.com/science/article/pii/0370269392901662>.

37 BRINK, L. et al. The Calogero model — anyonic representation, fermionic extension
and supersymmetry. Nuclear Physics B, v. 401, n. 3, p. 591-612, jul. 1993. ISSN 0550-3213.
Available at: |[<http://www.sciencedirect.com /science/article/pii/055032139390315G>.

38 BROD, D. J.; GALVAO, E. F. Extending matchgates into universal quantum
computation. Physical Review A, v. 84, n. 2, p. 022310, ago. 2011. ISSN 1050-
2947, 1094-1622. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103/PhysRevA.84.022310> .

39 BROD, D. J.; GALVAO, E. F. Geometries for universal quantum computation
with matchgates. Physical Review A, v. 86, n. 5, p. 052307, nov. 2012. ISSN


https://doi.org/10.1007/BF01328531
https://doi.org/10.1007/BF01328531
https://doi.org/10.1007/BF01379806
https://doi.org/10.1007/BF01327326
https://doi.org/10.1007/BF01327326
http://www.sciencedirect.com/science/article/pii/055032138690324X
https://doi.org/10.1007/BF01450478
http://www.sciencedirect.com/science/article/pii/S0003491602962548
http://www.sciencedirect.com/science/article/pii/0370269392901662
http://www.sciencedirect.com/science/article/pii/055032139390315G
https://link.aps.org/doi/10.1103/PhysRevA.84.022310
https://link.aps.org/doi/10.1103/PhysRevA.84.022310

Bibliography 145

1050-2947, 1094-1622. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevA.86.052307> .

40 BRUZEWICZ, C. D. et al. Trapped-ion quantum computing: Progress and challenges.
Applied Physics Reviews, v. 6, n. 2, p. 021314, maio 2019. Publisher: American Institute
of Physics. Available at: <https://aip.scitation.org/doi/abs/10.1063/1.5088164>.

41 CALABRESE, P.; CAUX, J.-S. Correlation Functions of the One-Dimensional
Attractive Bose Gas. Physical Review Letters, v. 98, n. 15, p. 150403, abr. 2007.
ISSN 0031-9007, 1079-7114. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevLett.98.150403>.

42 CALABRESE, P.; MINTCHEV, M. Correlation functions of one-dimensional anyonic
fluids. Physical Review B, v. 75, n. 23, p. 233104, jun. 2007. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevB.75.233104>.

43 CALDIROLA, P. Su alcune proprieta fisiche dell’'He I1. Il Nuovo Cimento
(1943-1954), v. 1, n. 3, p. 205, 1943. Publisher: Springer. Available at: <https:
//link.springer.com /article/10.1007/BF02958692>.

44 CALOGERQO, F. Ground State of a One-Dimensional N -Body System. Journal of
Mathematical Physics, v. 10, n. 12, p. 2197-2200, dez. 1969. ISSN 0022-2488, 1089-7658.
Available at: |[<http://aip.scitation.org/doi/10.1063/1.1664821>.

45 CALOGERO, F. Solution of a Three-Body Problem in One Dimension. Journal of
Mathematical Physics, v. 10, n. 12, p. 2191-2196, dez. 1969. ISSN 0022-2488, 1089-7658.
Available at: <http://aip.scitation.org/doi/10.1063/1.1664820>.

46 CARDARELLI, L.; GRESCHNER, S.; SANTOS, L. Engineering interactions and
anyon statistics by multicolor lattice-depth modulations. Physical Review A, v. 94, n. 2,
p- 023615, ago. 2016. ISSN 2469-9926, 2469-9934. Publisher: American Physical Society.
Available at: <https://link.aps.org/doi/10.1103/PhysRevA.94.023615>.

47 CERF, N. J.; ADAMI, C.; KWIAT, P. G. Optical simulation of quantum logic.
Physical Review A, v. 57, n. 3, p. R1477-R1480, mar. 1998. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevA.57.R1477>.

48 CHEN, G. Mathematics of Quantum Computation. Chapman and Hall/CRC,
2002. ISBN 978-0-429-12279-8. Available at: <https://www.taylorfrancis.com/
books/mathematics-quantum-computation-ranee- brylinski-goong-chen/10.1201/
97814200353 77>

49 CHILDRESS, L.; HANSON, R. Diamond NV centers for quantum com-
puting and quantum networks. MRS Bulletin, v. 38, n. 2, p. 134-138,


https://link.aps.org/doi/10.1103/PhysRevA.86.052307
https://link.aps.org/doi/10.1103/PhysRevA.86.052307
https://aip.scitation.org/doi/abs/10.1063/1.5088164
https://link.aps.org/doi/10.1103/PhysRevLett.98.150403
https://link.aps.org/doi/10.1103/PhysRevB.75.233104
https://link.springer.com/article/10.1007/BF02958692
https://link.springer.com/article/10.1007/BF02958692
http://aip.scitation.org/doi/10.1063/1.1664821
http://aip.scitation.org/doi/10.1063/1.1664820
https://link.aps.org/doi/10.1103/PhysRevA.94.023615
https://link.aps.org/doi/10.1103/PhysRevA.57.R1477
https://www.taylorfrancis.com/books/mathematics-quantum-computation-ranee-brylinski-goong-chen/10.1201/9781420035377
https://www.taylorfrancis.com/books/mathematics-quantum-computation-ranee-brylinski-goong-chen/10.1201/9781420035377
https://www.taylorfrancis.com/books/mathematics-quantum-computation-ranee-brylinski-goong-chen/10.1201/9781420035377

146 Bibliography

fev. 2013. ISSN 0883-7694, 1938-1425. Publisher: Cambridge University
Press. Available at: <https://www.cambridge.org/core/journals/mrs-bulletin/

article /diamond-nv-centers-for-quantum-computing-and-quantum-networks /
978 A4B94242CF28F9C60F0DIEISE9CBD > .

50 CHILDS, A. M.; LEUNG, D. W.; NIELSEN, M. A. Unified derivations of
measurement-based schemes for quantum computation. Physical Review A, v. 71, n. 3,
p. 032318, mar. 2005. ISSN 1050-2947, 1094-1622. Publisher: American Physical Society.
Available at: |<https://link.aps.org/doi/10.1103/PhysRevA.71.032318>.

51 CHUANG, I. L.; YAMAMOTO, Y. Simple quantum computer. Physical Review A,
v. 52, n. 5, p. 3489-3496, nov. 1995. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevA.52.3489>.

52 CLAUSEN, J.; KNOLL, L.; WELSCH, D.-G. Quantum state conversion by
cross-Kerr interaction. Journal of Optics B: Quantum and Semiclassical Optics, v. 4,
n. 2, p. 155-163, mar. 2002. ISSN 1464-4266. Publisher: IOP Publishing. Available at:
<https://doi.org/10.1088%2F1464-4266%2F4%2F2%2F312>.

53 CLAUSER, J. F.; DOWLING, J. P. Factoring integers with Young’s N-slit
interferometer. Physical Review A, v. 53, n. 6, p. 45874590, jun. 1996. Publisher:
American Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevA.
53.4587>..

54 COBANERA, E.; ORTIZ, G. Fock parafermions and self-dual representations
of the braid group. Physical Review A, v. 89, n. 1, p. 012328, jan. 2014. ISSN
1050-2947, 1094-1622. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevA.89.012328> .

55 CRESPI, A. et al. Integrated multimode interferometers with arbitrary designs
for photonic boson sampling. Nature Photonics, v. 7, n. 7, p. 545-549, jul. 2013.
ISSN 1749-4893. Number: 7 Publisher: Nature Publishing Group. Available at:
<https://www.nature.com/articles/nphoton.2013.112>|

56 DAWSON, C. M.; NIELSEN, M. A. The Solovay-Kitaev algorithm. Quantum
Information & Computation, v. 6, n. 1, p. 81-95, jan. 2006. ISSN 1533-7146. ArXiv:
quant-ph/0505030. Available at: <http://arxiv.org/abs/quant-ph/0505030>.

57 DEUTSCH, D.; PENROSE, R. Quantum theory, the Church—Turing principle
and the universal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, v. 400, n. 1818, p. 97-117, jul. 1985. Publisher:
Royal Society. Available at: <https://royalsocietypublishing.org/doi/abs/10.1098 /rspa.
1985.0070>.


https://www.cambridge.org/core/journals/mrs-bulletin/article/diamond-nv-centers-for-quantum-computing-and-quantum-networks/978A4B94242CF28F9C60F0D9E95E9CBD
https://www.cambridge.org/core/journals/mrs-bulletin/article/diamond-nv-centers-for-quantum-computing-and-quantum-networks/978A4B94242CF28F9C60F0D9E95E9CBD
https://www.cambridge.org/core/journals/mrs-bulletin/article/diamond-nv-centers-for-quantum-computing-and-quantum-networks/978A4B94242CF28F9C60F0D9E95E9CBD
https://link.aps.org/doi/10.1103/PhysRevA.71.032318
https://link.aps.org/doi/10.1103/PhysRevA.52.3489
https://doi.org/10.1088%2F1464-4266%2F4%2F2%2F312
https://link.aps.org/doi/10.1103/PhysRevA.53.4587
https://link.aps.org/doi/10.1103/PhysRevA.53.4587
https://link.aps.org/doi/10.1103/PhysRevA.89.012328
https://link.aps.org/doi/10.1103/PhysRevA.89.012328
https://www.nature.com/articles/nphoton.2013.112
http://arxiv.org/abs/quant-ph/0505030
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070

Bibliography 147

58 DINGLE, R. B. Theories of helium II. Advances in Physics, v. 1, n. 2, p. 111-168,
1952. Publisher: Taylor & Francis.

59 DIRAC, P. A. M. Quantised singularities in the electromagnetic field,. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, v. 133, n. 821, p. 60-72, set. 1931. Publisher: Royal Society. Available
at: <https://royalsocietypublishing.org/doi/abs/10.1098 /rspa.1931.0130>.

60 DIRAC, P. A. M. The Theory of Magnetic Poles. Physical Review, v. 74,
n. 7, p. 817-830, out. 1948. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRev.74.817>.

61 DIRAC, P. A. M.; FOWLER, R. H. On the theory of quantum mechanics. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, v. 112, n. 762, p. 661-677, out. 1926. Publisher: Royal Society.
Available at: |<https://royalsocietypublishing.org/doi/10.1098 /rspa.1926.0133>.

62 DIVINCENZO, D. P.; TERHAL, B. M. Fermionic Linear Optics Revisited.
Foundations of Physics, v. 35, n. 12, p. 1967-1984, dez. 2005. ISSN 1572-9516. Available
at: <https://doi.org/10.1007 /s10701-005-8657-0>.

63 DOPLICHER, S.; HAAG, R.; ROBERTS, J. E. Local observables and particle
statistics I. Communications in Mathematical Physics, v. 23, n. 3, p. 199-230, set.
1971. ISSN 0010-3616, 1432-0916. Available at: <http://link.springer.com/10.1007/
BFO1877742>.

64 DOPLICHER, S.; HAAG, R.; ROBERTS, J. E. Local observables and particle
statistics II. Communications in Mathematical Physics, v. 35, n. 1, p. 49-85, mar.
1974. ISSN 0010-3616, 1432-0916. Available at: |<http://link.springer.com/10.1007/
BF01646454> .

65 DRINFEL’D, V. G. Quantum groups. Journal of Soviet Mathematics, v. 41,
n. 2, p. 898-915, abr. 1988. ISSN 1573-8795. Available at: <https://doi.org/10.1007/
BF01247086> .

66 DUTTA, O. et al. Toolbox for Abelian lattice gauge theories with synthetic matter.
Physical Review A, v. 95, n. 5, p. 053608, maio 2017. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevA.95.053608>.

67 D’ARIANO, G. M.; MACCHIAVELLO, C.; MACCONE, L. Quantum Computations
with Polarized Photons. Fortschritte der Physik, v. 48, n. 5-7, p. 573-577, 2000. ISSN
1521-3978. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%
291521-3978%28200005%2948%3A5 /7%3C573%3A%3AAID-PROP573%3E3.0.CO%
3B2-C>|


https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1931.0130
https://link.aps.org/doi/10.1103/PhysRev.74.817
https://royalsocietypublishing.org/doi/10.1098/rspa.1926.0133
https://doi.org/10.1007/s10701-005-8657-0
http://link.springer.com/10.1007/BF01877742
http://link.springer.com/10.1007/BF01877742
http://link.springer.com/10.1007/BF01646454
http://link.springer.com/10.1007/BF01646454
https://doi.org/10.1007/BF01247086
https://doi.org/10.1007/BF01247086
https://link.aps.org/doi/10.1103/PhysRevA.95.053608
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28200005%2948%3A5/7%3C573%3A%3AAID-PROP573%3E3.0.CO%3B2-C
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28200005%2948%3A5/7%3C573%3A%3AAID-PROP573%3E3.0.CO%3B2-C
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28200005%2948%3A5/7%3C573%3A%3AAID-PROP573%3E3.0.CO%3B2-C

148 Bibliography

68 ECKERT, K. et al. Quantum Correlations in Systems of Indistinguishable
Particles. Annals of Physics, v. 299, n. 1, p. 88-127, jul. 2002. ISSN 00034916. ArXiv:
quant-ph/0203060. Available at: <http://arxiv.org/abs/quant-ph/0203060>.

69 EINSTEIN, A. Quantentheorie des einatomigen idealen Gases. S. B. Preuss.
Akad. Wiss. phys.-math. Klasse, v. 261, 1924. Available at: |<https://ci.nii.ac.jp/naid/
10017606624 />

70 ELIEZER, D.; SEMENOFF, G. Anyonization of lattice Chern-Simons theory.
Annals of Physics, v. 217, n. 1, p. 66-104, jul. 1992. ISSN 0003-4916. Available at:
<http://www.sciencedirect.com/science/article/pii/000349169290339N >

71 ELIEZER, D.; SEMENOFF, G.; WU, S. Anyonization and superfluidity of
lattice chern-simons theory. Modern Physics Letters A, v. 07, n. 06, p. 513-520,
fev. 1992. ISSN 0217-7323. Publisher: World Scientific Publishing Co. Available at:
<https://www.worldscientific.com/doi/abs/10.1142/S0217732392000471 >

72 EKERT, A. Quantum interferometers as quantum computers. Physica Scripta,
v. 1998, n. T76, p. 218, 1998. ISSN 1402-4896. Publisher: IOP Publishing. Available at:
<https://iopscience.iop.org/article/10.1238 /Physica.Topical.076a00218 /meta>.

73 FADELL, E. Homotopy groups of configuration spaces and the string problem
of Dirac. Duke Mathematical Journal, v. 29, n. 2, p. 231-242, jun. 1962. ISSN
0012-7094, 1547-7398. Publisher: Duke University Press. Available at: <https:

/ /projecteuclid.org/euclid.dmj/1077470129>.

74 FADELL, E.; NEUWIRTH, L. Configuration spaces. Mathematica Scandinavica,
v. 10, p. 111-118, 1962. ISSN 0025-5521. Publisher: Mathematica Scandinavica. Available
at: <https://www.jstor.org/stable/24489273>.

75 FERMI, E. Zur Quantelung des idealen einatomigen Gases. Zeitschrift fiir
Physik, v. 36, n. 11, p. 902-912, nov. 1926. ISSN 0044-3328. Available at:
<https://doi.org/10.1007/BF01400221 >

76 FEYNMAN, R. P. Simulating physics with computers. International Journal of
Theoretical Physics, v. 21, n. 6, p. 467-488, jun. 1982. ISSN 1572-9575. Available at:
<https://doi.org/10.1007/BF02650179>.

77 FINKELSTEIN, D. Kinks. Journal of Mathematical Physics, v. 7, n. 7, p. 1218-1225,
jul. 1966. ISSN 0022-2488. Publisher: American Institute of Physics. Available at:
<https://aip.scitation.org/doi/abs/10.1063/1.1705025>

78 FINKELSTEIN, D.; RUBINSTEIN, J. Connection between Spin, Statistics,
and Kinks. Journal of Mathematical Physics, v. 9, n. 11, p. 1762-1779, nov.


http://arxiv.org/abs/quant-ph/0203060
https://ci.nii.ac.jp/naid/10017606624/
https://ci.nii.ac.jp/naid/10017606624/
http://www.sciencedirect.com/science/article/pii/000349169290339N
https://www.worldscientific.com/doi/abs/10.1142/S0217732392000471
https://iopscience.iop.org/article/10.1238/Physica.Topical.076a00218/meta
https://projecteuclid.org/euclid.dmj/1077470129
https://projecteuclid.org/euclid.dmj/1077470129
https://www.jstor.org/stable/24489273
https://doi.org/10.1007/BF01400221
https://doi.org/10.1007/BF02650179
https://aip.scitation.org/doi/abs/10.1063/1.1705025

Bibliography 149

1968. ISSN 0022-2488. Publisher: American Institute of Physics. Available at:
<https://aip.scitation.org/doi/abs/10.1063/1.1664510>.

79 FRADKIN, E. Jordan-Wigner transformation for quantum-spin systems in two
dimensions and fractional statistics. Physical Review Letters, v. 63, n. 3, p. 322-325,
jul. 1989. ISSN 0031-9007. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevLett.63.322>.

80 FRADKIN, E. Superfluidity of the Lattice Anyon Gas. International Journal of
Modern Physics B, v. 03, n. 12, p. 19651995, dez. 1989. ISSN 0217-9792. Publisher:
World Scientific Publishing Co. Available at: <https://www.worldscientific.com/doi/
abs/10.1142/S0217979289001275>.

81 FRADKIN, E. Superfluidity of the lattice anyon gas and topological invariance.
Physical Review B, v. 42, n. 1, p. 570-586, jul. 1990. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevB.42.570>.

82 FRANCO, R. L.; COMPAGNO, G. Quantum entanglement of identical particles by
standard information-theoretic notions. Scientific Reports, v. 6, n. 1, p. 20603, ago. 2016.
ISSN 2045-2322. Available at: <http://www.nature.com/articles/srep20603>.

83 FREDENHAGEN, K.; REHREN, K. H.; SCHROER, B. Superselection sectors
with braid group statistics and exchange algebras. Communications in Mathematical
Physics, v. 125, n. 2, p. 201-226, jun. 1989. ISSN 1432-0916. Available at:
<https://doi.org/10.1007/BF01217906>.

84 FREDENHAGEN, K.; REHREN, K.-H.; SCHROER, B. Superselection sectors
with braid group statistics and exchange algebras ii: geometric aspects and conformal
covariance. Reviews in Mathematical Physics, v. 04, n. specOl, p. 113-157, dez.
1992. ISSN 0129-055X. Publisher: World Scientific Publishing Co. Available at:
<https://www.worldscientific.com/doi/abs/10.1142/S0129055X92000170>.

85 FREDKIN, E.; TOFFOLI, T. Conservative logic. International Journal of
Theoretical Physics, v. 21, n. 3, p. 219-253, abr. 1982. ISSN 1572-9575. Available at:
<https://doi.org/10.1007/BF01857727>.

86 FREEDMAN, M. H. Quantum Computation and the Localization of Modular
Functors. Foundations of Computational Mathematics, v. 1, n. 2, p. 183-204, jan. 2001.
ISSN 1615-3375. Available at: <https://doi.org/10.1007/s102080010006 >

87 FREEDMAN, M. H. P/NP, and the quantum field computer. Proceedings of the
National Academy of Sciences, v. 95, n. 1, p. 98-101, jan. 1998. ISSN 0027-8424,
1091-6490. Publisher: National Academy of Sciences Section: Physical Sciences. Available
at: <https://www.pnas.org/content,/95/1/98>.


https://aip.scitation.org/doi/abs/10.1063/1.1664510
https://link.aps.org/doi/10.1103/PhysRevLett.63.322
https://www.worldscientific.com/doi/abs/10.1142/S0217979289001275
https://www.worldscientific.com/doi/abs/10.1142/S0217979289001275
https://link.aps.org/doi/10.1103/PhysRevB.42.570
http://www.nature.com/articles/srep20603
https://doi.org/10.1007/BF01217906
https://www.worldscientific.com/doi/abs/10.1142/S0129055X92000170
https://doi.org/10.1007/BF01857727
https://doi.org/10.1007/s102080010006
https://www.pnas.org/content/95/1/98

150 Bibliography

88 FREEDMAN, M. H.; LARSEN, M.; WANG, Z. A Modular Functor Which is
Universal for Quantum Computation. Communications in Mathematical Physics,
v. 227, n. 3, p. 605622, jun. 2002. ISSN 1432-0916. Available at: |<https:
//doi.org/10.1007 /s002200200645>.

89 FREEDMAN, M. H.; MEYER, D. A. Projective plane and planar quantum
codes. arXiv:quant-ph/9810055, out. 1998. ArXiv: quant-ph/9810055. Available at:
<http://arxiv.org/abs/quant-ph/9810055>.

90 FREUND, P. G. O. Quark parastatistics and color gauging. Physical Review D,
v. 13, n. 8, p. 2322-2324, abr. 1976. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevD.13.2322>.

91 GENTILE, G. Osservazioni sopra le statistiche intermedie. Il Nuovo Cimento,
v. 17, n. 10, p. 493-497, dez. 1940. ISSN 0029-6341, 1827-6121. Available at:
<http://link.springer.com/10.1007/BF02960187>.

92 GENTILE, G. Le statistiche intermedie e le proprieta dell’elio liquido. I Nuovo
Cimento (1924-1942), v. 19, n. 4, p. 109125, 1942. Publisher: Springer. Available at:
<https://link.springer.com/article/10.1007/BF02960192>.

93 GEORGESCU, I.; ASHHAB, S.; NORI, F. Quantum simulation. Reviews of Modern
Physics, v. 86, n. 1, p. 153-185, mar. 2014. Publisher: American Physical Society.
Available at: |[<https://link.aps.org/doi/10.1103/RevModPhys.86.153> .

94 GILCHRIST, A. et al. Schrodinger cats and their power for quantum information
processing. Journal of Optics B: Quantum and Semiclassical Optics, v. 6, n. 8,

p. S828-S833, jul. 2004. ISSN 1464-4266. Publisher: IOP Publishing. Available at:
<https://doi.org/10.1088%2F1464-4266%2F6%2F8%2F032>.

95 GIRARDEAU, M. Relationship between Systems of Impenetrable Bosons and
Fermions in One Dimension. Journal of Mathematical Physics, v. 1, n. 6, p. 516-523,
nov. 1960. ISSN 0022-2488, 1089-7658. Available at: |<http://aip.scitation.org/doi/10.
1063/1.1703687>.

96 GLAUBER, R. J. Coherent and Incoherent States of the Radiation Field. Physical
Review, v. 131, n. 6, p. 27662788, set. 1963. Publisher: American Physical Society.
Available at: |[<https://link.aps.org/doi/10.1103/PhysRev.131.2766>.

97 GLAUBER, R. J. The Quantum Theory of Optical Coherence. Physical Review,
v. 130, n. 6, p. 2529-2539, jun. 1963. ISSN 0031-899X. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRev.130.2529>.


https://doi.org/10.1007/s002200200645
https://doi.org/10.1007/s002200200645
http://arxiv.org/abs/quant-ph/9810055
https://link.aps.org/doi/10.1103/PhysRevD.13.2322
http://link.springer.com/10.1007/BF02960187
https://link.springer.com/article/10.1007/BF02960192
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://doi.org/10.1088%2F1464-4266%2F6%2F8%2F032
http://aip.scitation.org/doi/10.1063/1.1703687
http://aip.scitation.org/doi/10.1063/1.1703687
https://link.aps.org/doi/10.1103/PhysRev.131.2766
https://link.aps.org/doi/10.1103/PhysRev.130.2529

Bibliography 151

98 GOLDHABER, A. S. Connection of Spin and Statistics for Charge-Monopole
Composites. Physical Review Letters, v. 36, n. 19, p. 1122-1125, maio 1976.
ISSN 0031-9007. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevLett.36.1122> .

99 GOLDHABER, A. S. Role of Spin in the Monopole Problem. Physical Review, v. 140,
n. 5B, p. B1407-B1414, dez. 1965. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRev.140.B1407>.

100 GOLDIN, G. A.; SHARP, D. H. Diffeomorphism Groups, Anyon Fields, and
q Commutators. Physical Review Letters, v. 76, n. 8 p. 11831187, fev. 1996.
ISSN 0031-9007, 1079-7114. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevLett.76.1183>.

101 GOLDSTONE, J.; WILCZEK, F. Fractional Quantum Numbers on Solitons.
Physical Review Letters, v. 47, n. 14, p. 986-989, out. 1981. ISSN 0031-9007.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
PhysRevLett.47.986>|

102 GOTTESMAN, D.; CHUANG, I. L. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature, v. 402,
n. 6760, p. 390-393, nov. 1999. ISSN 1476-4687. Number: 6760 Publisher: Nature
Publishing Group. Available at: <https://www.nature.com/articles/46503>.

103 GREEN, H. S. A Generalized Method of Field Quantization. Physical Review,
v. 90, n. 2, p. 270273, abr. 1953. ISSN 0031-899X. Publisher: American Physical Society.
Available at: <https://link.aps.org/doi/10.1103/PhysRev.90.270>.

104 GREENBERG, O. W. On the surprising rigidity of the Pauli exclusion principle.
Nuclear Physics B - Proceedings Supplements, v. 6, p. 83-89, mar. 1989. ISSN 0920-5632.
Available at: |[<http://www.sciencedirect.com /science/article/pii/0920563289904052> .

105 GREENBERG, O. W. Particles with small violations of Fermi or Bose statistics.
Physical Review D, v. 43, n. 12, p. 4111-4120, jun. 1991. ISSN 0556-2821. Publisher:
American Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevD.
43.4111>.

106 GREENBERG, O. W. Spin and Unitary-Spin Independence in a Paraquark
Model of Baryons and Mesons. Physical Review Letters, v. 13, n. 20, p. 598-
602, nov. 1964. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevLett.13.598>


https://link.aps.org/doi/10.1103/PhysRevLett.36.1122
https://link.aps.org/doi/10.1103/PhysRevLett.36.1122
https://link.aps.org/doi/10.1103/PhysRev.140.B1407
https://link.aps.org/doi/10.1103/PhysRevLett.76.1183
https://link.aps.org/doi/10.1103/PhysRevLett.47.986
https://link.aps.org/doi/10.1103/PhysRevLett.47.986
https://www.nature.com/articles/46503
https://link.aps.org/doi/10.1103/PhysRev.90.270
http://www.sciencedirect.com/science/article/pii/0920563289904052
https://link.aps.org/doi/10.1103/PhysRevD.43.4111
https://link.aps.org/doi/10.1103/PhysRevD.43.4111
https://link.aps.org/doi/10.1103/PhysRevLett.13.598
https://link.aps.org/doi/10.1103/PhysRevLett.13.598

152 Bibliography

107 GREENBERG, O. W.; MACRAE, K. I. Locally gauge-invariant formulation of
parastatistics. Nuclear Physics B, v. 219, n. 2, p. 358-366, jun. 1983. ISSN 0550-3213.
Available at: |[<http://www.sciencedirect.com/science/article/pii/0550321383906466>.

108 GREENBERG, O. W.; MOHAPATRA, R. N. Difficulties with a Local Quantum
Field Theory of Possible Violation of the Pauli Principle. Physical Review Letters,

v. 62, n. 7, p. 712-714, fev. 1989. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevLett.62.712>.

109 GREENBERG, O. W.; MOHAPATRA, R. N. Local Quantum Field Theory
of Possible Violation of the Pauli Principle. Physical Review Letters, v. 59, n. 22,
p. 25072510, nov. 1987. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevLett.59.2507>.

110  GREENBERG, O. W.; MOHAPATRA, R. N. Phenomenology of small
violations of Fermi and Bose statistics. Physical Review D, v. 39, n. 7, p. 2032—
2038, abr. 1989. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103 /PhysRevD.39.2032>.

111 GREINER, W.; NEISE, L.; STOCKER, H. Thermodynamics and statistical
mechanics. New York: Springer-Verlag, 1995. (Classical theoretical physics). ISBN
978-0-387-94299-5 978-3-540-94299-3.

112 GRESCHNER, S. et al. Density-Dependent Synthetic Gauge Fields Using
Periodically Modulated Interactions. Physical Review Letters, v. 113, n. 21, p. 215303,
nov. 2014. ISSN 0031-9007, 1079-7114. Publisher: American Physical Society. Available
at: <https://link.aps.org/doi/10.1103/PhysRevLett.113.215303>.

113 GRESCHNER, S. et al. Density-dependent synthetic magnetism for ultracold
atoms in optical lattices. Physical Review B, v. 92, n. 11, p. 115120, set. 2015. Publisher:
American Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevB.
92.115120>\

114 GRESCHNER, S.; CARDARELLI, L.; SANTOS, L. Probing the exchange
statistics of one-dimensional anyon models. Physical Review A, v. 97, n. 5, p.
053605, maio 2018. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevA.97.053605> .

115 GROVER, L. K. A fast quantum mechanical algorithm for database search. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing. New
York, NY, USA: Association for Computing Machinery, 1996. (STOC ’96), p. 212-219.
ISBN 978-0-89791-785-8. Available at: <https://doi.org/10.1145/237814.237866> .


http://www.sciencedirect.com/science/article/pii/0550321383906466
https://link.aps.org/doi/10.1103/PhysRevLett.62.712
https://link.aps.org/doi/10.1103/PhysRevLett.59.2507
https://link.aps.org/doi/10.1103/PhysRevD.39.2032
https://link.aps.org/doi/10.1103/PhysRevD.39.2032
https://link.aps.org/doi/10.1103/PhysRevLett.113.215303
https://link.aps.org/doi/10.1103/PhysRevB.92.115120
https://link.aps.org/doi/10.1103/PhysRevB.92.115120
https://link.aps.org/doi/10.1103/PhysRevA.97.053605
https://link.aps.org/doi/10.1103/PhysRevA.97.053605
https://doi.org/10.1145/237814.237866

Bibliography 153

116 HAAR, D. ter. Gentile’s intermediate statistics. Physica, v. 18, n. 3, p. 199-200,
mar. 1952. ISSN 0031-8914. Available at: <http://www.sciencedirect.com/science/
article/pii/S0031801452800242>

117 HANSSON, T. H.; LEINAAS, J. M.; MYRHEIM, J. Dimensional reduction in
anyon systems. Nuclear Physics B, v. 384, n. 3, p. 559-580, out. 1992. ISSN 0550-3213.
Available at: |[<http://www.sciencedirect.com/science/article/pii/055032139290581 U >

118 HANSSON, T. H.; SPORRE, M.; LEINAAS, J. M. Anyons from Dirac
fermions. Modern Physics Letters A, 1991. Publisher: World Scientific. Available at:
<https://www.worldscientific.com/doi/abs/10.1142/S0217732391002608>.

119 HAO, Y. Ground-state properties of hard-core anyons in a harmonic potential.
Physical Review A, v. 93, n. 6, p. 063627, jun. 2016. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevA.93.063627>.

120 HAO, Y.; CHEN, S. Dynamical properties of hard-core anyons in one-
dimensional optical lattices. Physical Review A, v. 86, n. 4, p. 043631, out. 2012.
ISSN 1050-2947, 1094-1622. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevA.86.043631>.

121 HAO, Y.; SONG, Y. One-dimensional hard-core anyon gas in a harmonic trap at
finite temperature. The Furopean Physical Journal D, v. 71, n. 6, p. 135, jun. 2017. ISSN
1434-6079. Available at: <https://doi.org/10.1140/epjd/e2017-70501-8>.

122 HAO, Y.; ZHANG, Y.; CHEN, S. Ground-state properties of one-dimensional
anyon gases. Physical Review A, v. 78, n. 2, p. 023631, ago. 2008. ISSN 1050-
2947, 1094-1622. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103/PhysRevA.78.023631> .

123 HARSHMAN, N. L.; KNAPP, A. C. Anyons from three-body hard-core interactions
in one dimension. Annals of Physics, v. 412, p. 168003, jan. 2020. ISSN 0003-4916.
Available at: <http://www.sciencedirect.com /science/article/pii/S0003491619302581> .

124 HASENFRATZ, P.; HOOFT, G. ’t. Fermion-Boson Puzzle in a Gauge Theory.
Physical Review Letters, v. 36, n. 19, p. 1119-1122, maio 1976. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.36.
1119>.

125 HATSUGAI Y.; KOHMOTO, M.; WU, Y.-S. Braid group and anyons on a
cylinder. Physical Review B, v. 43, n. 4, p. 2661-2677, fev. 1991. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevB.43.2661>.


http://www.sciencedirect.com/science/article/pii/S0031891452800242
http://www.sciencedirect.com/science/article/pii/S0031891452800242
http://www.sciencedirect.com/science/article/pii/055032139290581U
https://www.worldscientific.com/doi/abs/10.1142/S0217732391002608
https://link.aps.org/doi/10.1103/PhysRevA.93.063627
https://link.aps.org/doi/10.1103/PhysRevA.86.043631
https://doi.org/10.1140/epjd/e2017-70501-8
https://link.aps.org/doi/10.1103/PhysRevA.78.023631
https://link.aps.org/doi/10.1103/PhysRevA.78.023631
http://www.sciencedirect.com/science/article/pii/S0003491619302581
https://link.aps.org/doi/10.1103/PhysRevLett.36.1119
https://link.aps.org/doi/10.1103/PhysRevLett.36.1119
https://link.aps.org/doi/10.1103/PhysRevB.43.2661

154 Bibliography

126 HAUG, T. et al. Aharonov-Bohm effect in mesoscopic Bose-Einstein condensates.
Physical Review A, v. 100, n. 4, p. 041601, out. 2019. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevA.100.041601>.

127 HEISENBERG, W. Uber quantentheoretische Umdeutung kinematischer und
mechanischer Beziehungen. Zeitschrift fir Physik, v. 33, n. 1, p. 879-893, dez. 1925.
ISSN 0044-3328. Available at: [<https://doi.org/10.1007/BF01328377>.

128 HO, C. L.; HOSOTANI, Y. Anyon equation on a torus. International
Journal of Modern Physics A, 1992. Publisher: World Scientific. Available at:
<https://www.worldscientific.com/doi/abs/10.1142/S0217751X92002647> .

129 HONG, C. K.; OU, Z. Y.; MANDEL, L. Measurement of subpicosecond time
intervals between two photons by interference. Physical Review Letters, v. 59, n. 18, p.
2044-2046, nov. 1987. ISSN 0031-9007. Publisher: American Physical Society. Available
at: <https://link.aps.org/doi/10.1103 /PhysRevLett.59.2044 >

130 HORN, R. A.; JOHNSON, C. R. Matriz analysis. 2nd ed. ed. Cambridge ; New
York: Cambridge University Press, 2012. ISBN 978-0-521-83940-2.

131 HORN, R. A.; JOHNSON, C. R. Topics in Matriz Analysis. Cambridge: Cambridge
University Press, 1991. ISBN 978-0-521-46713-1. Available at: |[<https://www.cambridge.
org/core/books/topics-in-matrix-analysis/BI88495A235F1C3406 EA484A2C477B03>.

132 HOWELL, J. C.; YEAZELL, J. A. Quantum Computation through Entangling
Single Photons in Multipath Interferometers. Physical Review Letters, v. 85,

n. 1, p. 198-201, jul. 2000. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevLett.85.198>.

133 HOWELL, J. C.; YEAZELL, J. A. Reducing the complexity of linear optics quantum
circuits. Physical Review A, v. 61, n. 5, p. 052303, abr. 2000. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevA.61.052303>.

134 IGNATIEV, A. Y.; KUZMIN, V. A. Is a weak violation of the Pauli principle
possible. Sov. J. Nucl. Phys. (Engl. Transl.); (United States), v. 46:3, set. 1987.
Institution: Institute of Nuclear Research, Academy of Sciences of the USSR. Available
at: <https://www.osti.gov/biblio/5343135> .

135 JACKIW, R.; REBBI, C. Solitons with fermion number 1/2. Physical Review D,
v. 13, n. 12, p. 3398-3409, jun. 1976. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevD.13.3398>.

136 JACKIW, R.; REDLICH, A. N. Two-Dimensional Angular Momentum
in the Presence of Long-Range Magnetic Flux. Physical Review Letters, v. 50,


https://link.aps.org/doi/10.1103/PhysRevA.100.041601
https://doi.org/10.1007/BF01328377
https://www.worldscientific.com/doi/abs/10.1142/S0217751X92002647
https://link.aps.org/doi/10.1103/PhysRevLett.59.2044
https://www.cambridge.org/core/books/topics-in-matrix-analysis/B988495A235F1C3406EA484A2C477B03
https://www.cambridge.org/core/books/topics-in-matrix-analysis/B988495A235F1C3406EA484A2C477B03
https://link.aps.org/doi/10.1103/PhysRevLett.85.198
https://link.aps.org/doi/10.1103/PhysRevA.61.052303
https://www.osti.gov/biblio/5343135
https://link.aps.org/doi/10.1103/PhysRevD.13.3398

Bibliography 155

n. 8, p. 555-559, fev. 1983. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevLett.50.555>.

137 JEONG, H.; KIM, M. S. Efficient quantum computation using coherent states.
Physical Review A, v. 65, n. 4, p. 042305, mar. 2002. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevA.65.042305>.

138 JEUGT, J. V. d. R-matrix formulation of deformed boson algebra. Journal
of Physics A: Mathematical and General, v. 26, n. 8, p. L405-L411, abr. 1993.
ISSN 0305-4470. Publisher: IOP Publishing. Available at: <https://doi.org/10.1088/
0305-4470/26/8/003>.

139 JOZSA, R. An introduction to measurement based quantum computation.
arXiv:quant-ph/0508124, set. 2005. ArXiv: quant-ph/0508124. Available at:
<http://arxiv.org/abs/quant-ph /0508124 >

140 JOZSA, R.; MIYAKE, A. Matchgates and classical simulation of quantum circuits.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
v. 464, n. 2100, p. 3089-3106, dez. 2008. ISSN 1364-5021, 1471-2946. Publisher: Royal
Society. Available at: <https://royalsocietypublishing.org/doi/10.1098 /rspa.2008.0189>.

141 KAMEFUCHI, S.; STRATHDEE, J. A generalization of field quantization and
statistics:(II) Interacting fields. Nuclear Physics, v. 42, p. 166-176, 1963. Publisher:
Elsevier. Available at: <https://www.sciencedirect.com/science/article/abs/pii/
0029508263907259>

142 KAMEFUCHI, S.; TAKAHASHI, Y. A generalization of field quantization and
statistics. Nuclear Physics, v. 36, p. 177-206, jun. 1962. ISSN 0029-5582. Available at:
<http://www.sciencedirect.com/science/article/pii/0029558262904479>.

143 KEILMANN, T. et al. Statistically induced Phase Transitions and Anyons in 1D
Optical Lattices. Nature Communications, v. 2, n. 1, p. 361, set. 2011. ISSN 2041-1723.
ArXiv: 1009.2036. Available at: <http://arxiv.org/abs/1009.2036>.

144 KETTERER, A. et al. Quantum information processing in phase space: A modular
variables approach. Physical Review A, v. 94, n. 2, p. 022325, ago. 2016. Publisher:
American Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevA.
94.022325>|.

145 KITAEV, A. Anyons in an exactly solved model and beyond. Annals of Physics,
v. 321, n. 1, p. 2-111, jan. 2006. ISSN 00034916. ArXiv: cond-mat/0506438. Available at:
<http://arxiv.org/abs/cond-mat /0506438 >.


https://link.aps.org/doi/10.1103/PhysRevLett.50.555
https://link.aps.org/doi/10.1103/PhysRevA.65.042305
https://doi.org/10.1088/0305-4470/26/8/003
https://doi.org/10.1088/0305-4470/26/8/003
http://arxiv.org/abs/quant-ph/0508124
https://royalsocietypublishing.org/doi/10.1098/rspa.2008.0189
https://www.sciencedirect.com/science/article/abs/pii/0029558263907259
https://www.sciencedirect.com/science/article/abs/pii/0029558263907259
http://www.sciencedirect.com/science/article/pii/0029558262904479
http://arxiv.org/abs/1009.2036
https://link.aps.org/doi/10.1103/PhysRevA.94.022325
https://link.aps.org/doi/10.1103/PhysRevA.94.022325
http://arxiv.org/abs/cond-mat/0506438

156 Bibliography

146 KITAEV, A. Fault-tolerant quantum computation by anyons. Annals of
Physics, v. 303, n. 1, p. 2-30, jan. 2003. ISSN 00034916. Available at: <https:
//linkinghub.elsevier.com /retrieve/pii/S0003491602000180>.

147 KITAEV, A. Y. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys, v. 52, n. 6, p. 1191, dez. 1997. ISSN 0036-0279.
Publisher: IOP Publishing. Available at: <https://iopscience.iop.org/article/10.1070/
RM1997v052n06 ABEH002155/meta>.

148 KITAEV, A. J.; SEN, A. C.; VJALYJ, M. N. Classical and quantum computation.
Providence, RI: American Mathematical Society, 2002. (Graduate studies in mathematics,
47). OCLC: 611603364. ISBN 978-0-8218-3229-5 978-0-8218-2161-9.

149 KNILL, E. Fermionic Linear Optics and Matchgates. arXiv:quant-ph/0108033,
ago. 2001. ArXiv: quant-ph/0108033. Available at: |<http://arxiv.org/abs/quant-ph/
0108033>|.

150 KNILL, E.; LAFLAMME, R.; MILBURN, G. J. A scheme for efficient quantum
computation with linear optics. Nature, v. 409, n. 6816, p. 46-52, jan. 2001.

ISSN 1476-4687. Number: 6816 Publisher: Nature Publishing Group. Available at:
<https://www.nature.com/articles/35051009>.

151 KOK, P. et al. Linear optical quantum computing with photonic qubits.
Reviews of Modern Physics, v. 79, n. 1, p. 135-174, jan. 2007. ISSN 0034-
6861, 1539-0756. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103/RevModPhys.79.135>.

152 KRANTZ, P. et al. A quantum engineer’s guide to superconducting qubits. Applied
Physics Reviews, v. 6, n. 2, p. 021318, jun. 2019. Publisher: American Institute of
Physics. Available at: <https://aip.scitation.org/doi/abs/10.1063/1.5089550>.

153 KRAUS, B.; CIRAC, J. I. Optimal creation of entanglement using a two-
qubit gate. Physical Review A, v. 63, n. 6, p. 062309, maio 2001. ISSN 1050-
2947, 1094-1622. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103/PhysRevA.63.062309> .

1564 KRAUSS, L. M.; WILCZEK, F. Discrete gauge symmetry in continuum theories.
Physical Review Letters, v. 62, n. 11, p. 1221-1223, mar. 1989. ISSN 0031-9007.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
PhysRevLett.62.1221>

155 KUNDU, A. Exact Solution of Double $\ensuremath{\delta}$ Function
Bose Gas through an Interacting Anyon Gas. Physical Review Letters, v. 83,


https://linkinghub.elsevier.com/retrieve/pii/S0003491602000180
https://linkinghub.elsevier.com/retrieve/pii/S0003491602000180
https://iopscience.iop.org/article/10.1070/RM1997v052n06ABEH002155/meta
https://iopscience.iop.org/article/10.1070/RM1997v052n06ABEH002155/meta
http://arxiv.org/abs/quant-ph/0108033
http://arxiv.org/abs/quant-ph/0108033
https://www.nature.com/articles/35051009
https://link.aps.org/doi/10.1103/RevModPhys.79.135
https://link.aps.org/doi/10.1103/RevModPhys.79.135
https://aip.scitation.org/doi/abs/10.1063/1.5089550
https://link.aps.org/doi/10.1103/PhysRevA.63.062309
https://link.aps.org/doi/10.1103/PhysRevA.63.062309
https://link.aps.org/doi/10.1103/PhysRevLett.62.1221
https://link.aps.org/doi/10.1103/PhysRevLett.62.1221

Bibliography 157

n. 7, p. 1275-1278, ago. 1999. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevLett.83.1275>.

156 LAIDLAW, M. G. G.; DEWITT, C. M. Feynman Functional Integrals for
Systems of Indistinguishable Particles. Physical Review D, v. 3, n. 6, p. 1375—
1378, mar. 1971. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevD.3.1375>.

157 LANDSHOFF, P. V.; STAPP, H. P. Parastatistics and a unified theory of identical
particles. Annals of Physics, v. 45, n. 1, p. 72-92, out. 1967. ISSN 0003-4916. Available
at: <http://www.sciencedirect.com/science/article/pii/000349166790317X>.

158 LAU, H.-K.; PLENIO, M. B. Universal Quantum Computing with Arbitrary
Continuous-Variable Encoding. Physical Review Letters, v. 117, n. 10, p. 100501, ago.
2016. Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.
1103/PhysRevLett.117.100501 >

159 LEINAAS, J. M. Statistics of charge-monopole composites. Il Nuovo Cimento
A (1965-1970), v. 47, n. 1, p. 19-34, set. 1978. ISSN 1826-9869. Available at:
<https://doi.org/10.1007/BF02896224 >

160 LEINAAS, J. M. Topological Charges in Gauge Theories. Fortschritte der
Physik, v. 28, n. 11, p. 579-631, 1980. ISSN 1521-3978. Available at: <https:
//onlinelibrary.wiley.com/doi/abs/10.1002/prop.19800281102>.

161 LEINAAS, J. M.; MYRHEIM, J. Intermediate statistics for vortices in
superfluid films. Physical Review B, v. 37, n. 16, p. 9286-9291, jun. 1988.
ISSN 0163-1829. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103/PhysRevB.37.9286>.

162 LEINAAS, J. M.; MYRHEIM, J. On the theory of identical particles. Il Nuovo
Cimento B (1971-1996), v. 37, n. 1, p. 1-23, 1977.

163 LEVINE, R. Y.; TOMOZAWA, Y. Supersymmetry and parastatistics. Physics
Letters B, v. 128, n. 3-4, p. 189-193, 1983. Publisher: Elsevier.

164 LI, Y. Ground-state properties of hard-core anyons in one-dimensional periodic
lattices. The Furopean Physical Journal Plus, v. 128, n. 8, p. 94, ago. 2013. ISSN
2190-5444. Available at: <https://doi.org/10.1140/epjp/i2013-13094-0>.

165 LIEB, E. H. Exact Analysis of an Interacting Bose Gas. II. The Excitation
Spectrum. Physical Review, v. 130, n. 4, p. 1616-1624, maio 1963. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRev.130.1616>.


https://link.aps.org/doi/10.1103/PhysRevLett.83.1275
https://link.aps.org/doi/10.1103/PhysRevD.3.1375
https://link.aps.org/doi/10.1103/PhysRevD.3.1375
http://www.sciencedirect.com/science/article/pii/000349166790317X
https://link.aps.org/doi/10.1103/PhysRevLett.117.100501
https://link.aps.org/doi/10.1103/PhysRevLett.117.100501
https://doi.org/10.1007/BF02896224
https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.19800281102
https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.19800281102
https://link.aps.org/doi/10.1103/PhysRevB.37.9286
https://link.aps.org/doi/10.1103/PhysRevB.37.9286
https://doi.org/10.1140/epjp/i2013-13094-0
https://link.aps.org/doi/10.1103/PhysRev.130.1616

158 Bibliography

166 LIEB, E. H.; LINIGER, W. Exact Analysis of an Interacting Bose Gas.
[. The General Solution and the Ground State. Physical Review, v. 130, n. 4,
p. 1605-1616, maio 1963. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRev.130.1605>.

167 LIPKIN, H. J.; PESHKIN, M. Angular momentum paradoxes with solenoids and
monopoles. Physics Letters B, v. 118, n. 4, p. 385390, dez. 1982. ISSN 0370-2693.
Available at: |[<http://www.sciencedirect.com/science/article/pii/037026938290209X > .

168 LIU, F. et al. Asymmetric Particle Transport and Light-Cone Dynamics Induced
by Anyonic Statistics. Physical Review Letters, v. 121, n. 25, p. 250404, dez. 2018.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
PhysRevLett.121.250404>.

169 LLOYD, S. Almost Any Quantum Logic Gate is Universal. Physical Review Letters,
v. 75, n. 2, p. 346-349, jul. 1995. ISSN 0031-9007, 1079-7114. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.75.346>.

170 LO, H.-K.; PRESKILL, J. Non-Abelian vortices and non-Abelian statistics. Physical
Review D, v. 48, n. 10, p. 4821-4834, nov. 1993. ISSN 0556-2821. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevD.48.4821>.

171 LONGHI, S.; VALLE, G. D. Anyons in one-dimensional lattices: a photonic
realization. Optics Letters, v. 37, n. 11, p. 2160-2162, jun. 2012. ISSN 1539-4794.
Publisher: Optical Society of America. Available at: <https://www.osapublishing.org/
ol/abstract.cfm?uri=ol-37-11-2160>.

172 LOURENCO, A. C.; DEBARBA, T.; DUZZIONI, E. I. Entanglement of
indistinguishable particles: A comparative study. Physical Review A, v. 99, n. 1, p.
012341, jan. 2019. ISSN 2469-9926, 2469-9934. Publisher: American Physical Society.
Available at: |[<https://link.aps.org/doi/10.1103/PhysRevA.99.012341>.

173 LUND, A. P.; RALPH, T. C.; HASELGROVE, H. L. Fault-Tolerant Linear Optical
Quantum Computing with Small-Amplitude Coherent States. Physical Review Letters,
v. 100, n. 3, p. 030503, jan. 2008. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevLett.100.030503>.

174 MACFARLANE, A. J. On g-analogues of the quantum harmonic oscillator and
the quantum group SU(2)q. Journal of Physics A: Mathematical and General, v. 22,

n. 21, p. 45814588, nov. 1989. ISSN 0305-4470. Publisher: IOP Publishing. Available at:
<https://doi.org/10.1088,/0305-4470/22/21 /020>

175 MENICUCCI, N. C. Fault-Tolerant Measurement-Based Quantum Computing
with Continuous-Variable Cluster States. Physical Review Letters, v. 112, n. 12,


https://link.aps.org/doi/10.1103/PhysRev.130.1605
http://www.sciencedirect.com/science/article/pii/037026938290209X
https://link.aps.org/doi/10.1103/PhysRevLett.121.250404
https://link.aps.org/doi/10.1103/PhysRevLett.121.250404
https://link.aps.org/doi/10.1103/PhysRevLett.75.346
https://link.aps.org/doi/10.1103/PhysRevD.48.4821
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-37-11-2160
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-37-11-2160
https://link.aps.org/doi/10.1103/PhysRevA.99.012341
https://link.aps.org/doi/10.1103/PhysRevLett.100.030503
https://doi.org/10.1088/0305-4470/22/21/020

Bibliography 159

p. 120504, mar. 2014. Publisher: American Physical Society. Available at: |<https:
//link.aps.org/doi/10.1103/PhysRevLett.112.120504> .

176 MELJANAC, S.; MILEKOVIC, M. A unified view of multimode algebras with
fock-like representations. International Journal of Modern Physics A, v. 11, n. 08, p. 1391—
1412, mar. 1996. ISSN 0217-751X. Publisher: World Scientific Publishing Co. Available
at: <https://www.worldscientific.com/doi/abs/10.1142/50217751X9600064X > .

177 MELJANAC, S.; MILEKOVIC, M.; PALLUA, S. Unified view of deformed
single-mode oscillator algebras. Physics Letters B, v. 328, n. 1, p. 55-59, maio 1994.
ISSN 0370-2693. Available at: <http://www.sciencedirect.com/science/article/pii/
0370269394904278>|.

178 MELJANAC, S.; MILEKOVIC, M.; PERICA, A. On the R -Matrix Formulation
of Deformed Algebras and Generalized Jordan-Wigner Transformations. Furophysics
Letters (EPL), v. 28, n. 2, p. 79-83, out. 1994. ISSN 0295-5075. Publisher: IOP
Publishing. Available at: <https://doi.org/10.1209%2F0295-5075%2F28%2F2%2F001 >,

179 MESSIAH, A. M. L.; GREENBERG, O. W. Symmetrization Postulate and
Its Experimental Foundation. Physical Review, v. 136, n. 1B, p. B248-B267,
out. 1964. ISSN 0031-899X. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRev.136.B248>.

180 MILBURN, G. J. Quantum optical Fredkin gate. Physical Review Letters, v. 62,
n. 18, p. 2124-2127, maio 1989. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevLett.62.2124>.

181 MIRMAN, R. Experimental meaning of the concept of identical particles. Il Nuovo
Cimento B (1971-1996), v. 18, n. 1, p. 110122, 1973. Publisher: Springer.

182 MIRRAHIMI, M. et al. Dynamically protected cat-qubits: a new paradigm
for universal quantum computation. New Journal of Physics, v. 16, n. 4, p.
045014, abr. 2014. ISSN 1367-2630. Publisher: IOP Publishing. Available at:
<https://doi.org/10.1088%2F1367-2630%2F 16%2F4%2F045014> .

183 MURNAGHAN, F. D. The Orthogonal and Symplectic Groups. Communications
of the Dublin Institute for Advanced Studies, 1958. ISSN Series A (Theoretical Physics)
0070-7414. Available at: |<https://dair.dias.ie/27/>.

184 NAYAK, C. et al. Non-Abelian anyons and topological quantum computation.
Reviews of Modern Physics, v. 80, n. 3, p. 1083-1159, set. 2008. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103/RevModPhys.80.
1083>1.


https://link.aps.org/doi/10.1103/PhysRevLett.112.120504
https://link.aps.org/doi/10.1103/PhysRevLett.112.120504
https://www.worldscientific.com/doi/abs/10.1142/S0217751X9600064X
http://www.sciencedirect.com/science/article/pii/0370269394904278
http://www.sciencedirect.com/science/article/pii/0370269394904278
https://doi.org/10.1209%2F0295-5075%2F28%2F2%2F001
https://link.aps.org/doi/10.1103/PhysRev.136.B248
https://link.aps.org/doi/10.1103/PhysRevLett.62.2124
https://doi.org/10.1088%2F1367-2630%2F16%2F4%2F045014
https://dair.dias.ie/27/
https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://link.aps.org/doi/10.1103/RevModPhys.80.1083

160 Bibliography

185 NIELSEN, M. A.; CHUANG, I. L. Quantum computation and quantum information.
10th anniversary ed. ed. Cambridge ; New York: Cambridge University Press, 2010.
ISBN 978-1-107-00217-3.

186 NIELSEN, H.; OLESEN, P. Vortex-line models for dual strings. Nuclear
Physics B, v. 61, p. 45-61, set. 1973. ISSN 05503213. Available at: <https:
//linkinghub.elsevier.com /retrieve/pii/0550321373903507 >

187 OKAYAMA, T. Generalization of Statistics. Progress of Theoretical Physics,
v. 7, n. 5-6, p. 517-534, maio 1952. ISSN 0033-068X. Available at: |<https:
//doi.org/10.1143 /PTP.7.5.517>!

188 OKAYAMA, T. The Distribution Function of Degenerating Ensemble (An
Addition to “Generalization of Statistics”). Progress of Theoretical Physics, v. 10, n. 5,
p. 583-585, nov. 1953. ISSN 0033-068X. Publisher: Oxford Academic. Available at:
<https://academic.oup.com/ptp/article/10/5/583/1899912>.

189 OLSHANETSKY, M. A.; PERELOMOV, A. M. Quantum integrable systems
related to lie algebras. Physics Reports, v. 94, n. 6, p. 313404, mar. 1983. ISSN 0370-1573.
Available at: |[<http://www.sciencedirect.com /science/article/pii/0370157383900182>.

190 OSTERLOH, A.; AMICO, L.; ECKERN, U. Bethe Ansatz solution of a new
class of Hubbard-type models. Journal of Physics A: Mathematical and General, v. 33,
n. 9, p. L87-L92, fev. 2000. ISSN 0305-4470. Publisher: IOP Publishing. Available at:
<https://doi.org/10.1088%2F0305-4470%2F33%2F9%2F101>.

191 OSTERLOH, A.; AMICO, L.; ECKERN, U. Exact solution of generalized
Schulz—Shastry type models. Nuclear Physics B, v. 588, n. 3, p. 531-551, nov. 2000.
ISSN 0550-3213. Available at: <http://www.sciencedirect.com/science/article/pii/
S055032130000496X>.

192 OSTERLOH, A.; AMICO, L.; ECKERN, U. Fermionic long-range correlations
realized by particles obeying deformed statistics. Journal of Physics A: Mathematical and
General, v. 33, n. 48, p. L487-1.492, nov. 2000. ISSN 0305-4470. Publisher: IOP Publishing.
Available at: |[<https://doi.org/10.1088%2F0305-4470%2F33%2F48%2F 104> .

193 OSTERLOH, A.; AMICO, L.; ECKERN, U. Integrable long-range correlations and
generalized statistics. In: Symmetry and Structural Properties of Condensed Matter.
WORLD SCIENTIFIC, 2001. p. 275-279. ISBN 978-981-02-4569-6. Available at:
<https://www.worldscientific.com/doi/abs/10.1142/9789812811479 0030>.

194 PAREDES, B. et al. Tonks—Girardeau gas of ultracold atoms in an optical
lattice. Nature, v. 429, n. 6989, p. 277-281, maio 2004. ISSN 1476-4687. Number: 6989


https://linkinghub.elsevier.com/retrieve/pii/0550321373903507
https://linkinghub.elsevier.com/retrieve/pii/0550321373903507
https://doi.org/10.1143/PTP.7.5.517
https://doi.org/10.1143/PTP.7.5.517
https://academic.oup.com/ptp/article/10/5/583/1899912
http://www.sciencedirect.com/science/article/pii/0370157383900182
https://doi.org/10.1088%2F0305-4470%2F33%2F9%2F101
http://www.sciencedirect.com/science/article/pii/S055032130000496X
http://www.sciencedirect.com/science/article/pii/S055032130000496X
https://doi.org/10.1088%2F0305-4470%2F33%2F48%2F104
https://www.worldscientific.com/doi/abs/10.1142/9789812811479_0030

Bibliography 161

Publisher: Nature Publishing Group. Available at: |<https://www.nature.com /articles/
naturel2530>.

195 PATHRIA, R. K.; BEALE, P. D. Statistical mechanics. 3rd ed. ed. Amsterdam ;
Boston: Elsevier/Academic Press, 2011. ISBN 978-0-12-382188-1.

196 PATU, O. I. Correlation functions and momentum distribution of one-dimensional
hard-core anyons in optical lattices. Journal of Statistical Mechanics: Theory and
Ezperiment, v. 2015, n. 1, p. P01004, jan. 2015. ISSN 1742-5468. Publisher: IOP
Publishing. Available at: <https://doi.org/10.1088/1742-5468/2015/01/p01004>.

197 POLYAKOV, A. M. Particle Spectrum in the Quantum Field Theory. JETP Lett.,
v. 20, p. 194-195, jan. 1974. Available at: <https://inspirehep.net/literature/90679>.

198 POLYCHRONAKOS, A. P. Non-relativistic bosonization and fractional statistics.
Nuclear Physics B, v. 324, n. 3, p. 597622, out. 1989. ISSN 0550-3213. Available at:
<http://www.sciencedirect.com /science/article/pii/0550321389905221 >

199 POLYCHRONAKOS, A. P. Exact anyonic states for a general quadratic
hamiltonian. Physics Letters B, v. 264, n. 3, p. 362-366, ago. 1991. ISSN 0370-2693.
Available at: |[<http://www.sciencedirect.com/science/article/pii/037026939190362T> .

200 POLYCHRONAKOS, A. P. Exchange operator formalism for integrable systems of
particles. Physical Review Letters, v. 69, n. 5, p. 703-705, ago. 1992. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.69.703> .

201 PRASAD, S.; SCULLY, M. O.; MARTIENSSEN, W. A quantum description of the
beam splitter. Optics Communications, v. 62, n. 3, p. 139-145, maio 1987. ISSN 0030-4018.
Available at: |[<http://www.sciencedirect.com /science/article/pii/0030401887900150>.

202 PRESKILL, J.; KRAUSS, L. M. Local discrete symmetry and quantum-mechanical
hair. Nuclear Physics B, v. 341, n. 1, p. 50-100, set. 1990. ISSN 0550-3213. Available at:
<http://www.sciencedirect.com/science/article/pii/055032139090262C> .

203 PRYOR, C. Fractional flux lattice and the anyon mean-field approximation.
Physical Review B, v. 44, n. 22, p. 12473-12480, dez. 1991. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevB.44.12473>.

204 RABELLO, S. J. A gauge theory of one-dimensional anyons. Physics
Letters B, v. 363, n. 3, p. 180-183, nov. 1995. ISSN 0370-2693. Available at:
<http://www.sciencedirect.com/science/article/pii/0370269395012620 > .

205 RAJARAMAN, R. Some non-perturbative semi-classical methods in quantum
field theory (a pedagogical review). Physics Reports, v. 21, n. 5, p. 227-313, out. 1975.


https://www.nature.com/articles/nature02530
https://www.nature.com/articles/nature02530
https://doi.org/10.1088/1742-5468/2015/01/p01004
https://inspirehep.net/literature/90679
http://www.sciencedirect.com/science/article/pii/0550321389905221
http://www.sciencedirect.com/science/article/pii/037026939190362T
https://link.aps.org/doi/10.1103/PhysRevLett.69.703
http://www.sciencedirect.com/science/article/pii/0030401887900150
http://www.sciencedirect.com/science/article/pii/055032139090262C
https://link.aps.org/doi/10.1103/PhysRevB.44.12473
http://www.sciencedirect.com/science/article/pii/037026939501262O

162 Bibliography

ISSN 0370-1573. Available at: <http://www.sciencedirect.com/science/article/pii/
0370157375900162>.

206 RALPH, T. C. et al. Quantum computation with optical coherent states. Physical
Review A, v. 68, n. 4, p. 042319, out. 2003. Publisher: American Physical Society.
Available at: |<https://link.aps.org/doi/10.1103/PhysRevA.68.042319>.

207 RECK, M. et al. Experimental realization of any discrete unitary operator. Physical
Review Letters, v. 73, n. 1, p. 5861, jul. 1994. ISSN 0031-9007. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevLett.73.58>.

208 ROWELL, E. C. An Invitation to the Mathematics of Topological Quantum
Computation. Journal of Physics: Conference Series, v. 698, p. 012012, mar. 2016. ISSN
1742-6588, 1742-6596. ArXiv: 1601.05288. Available at: <http://arxiv.org/abs/1601.
05288>..

209 ROWELL, E.; WANG, Z. Mathematics of topological quantum computing.
Bulletin of the American Mathematical Society, v. 55, n. 2, p. 183238, 2018.
ISSN 0273-0979, 1088-9485. Available at: |<https://www.ams.org/bull/2018-55-02/
S0273-0979-2018-01605-4 />

210 SAFFMAN, M.; WALKER, T. G.; MOLMER, K. Quantum information with
Rydberg atoms. Reviews of Modern Physics, v. 82, n. 3, p. 2313-2363, ago. 2010.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
RevModPhys.82.2313> ]

211 SARMA, S. D.; FREEDMAN, M.; NAYAK, C. Majorana Zero Modes
and Topological Quantum Computation. npj Quantum Information, v. 1, n. 1,
p. 15001, dez. 2015. ISSN 2056-6387. ArXiv: 1501.02813. Available at: [<http:
/ /arxiv.org/abs/1501.02813>.

212 SCHEEL, S. Permanents in linear optical networks. arXiv:quant-ph/0406127,
jun. 2004. ArXiv: quant-ph/0406127. Available at: |<http://arxiv.org/abs/quant-ph/
0406127>|.

213 SCHRODINGER, E. Quantisierung als Eigenwertproblem. Annalen der
Physik, v. 384, n. 4, p. 361-376, 1926. ISSN 1521-3889. Available at: <https:
/ /onlinelibrary.wiley.com/doi/abs/10.1002/andp.19263840404 > .

214 SCHUBERT, G. Zur Bose-Statistik. Zeitschrift fiir Naturforschung A, v. 1, n. 3,
p. 113-120, mar. 1946. ISSN 0932-0784, 1865-7109. Publisher: De Gruyter Section:
Zeitschrift fur Naturforschung A. Available at: <https://www.degruyter.com/view/
journals/zna/1/3/article-p113.xml>|


http://www.sciencedirect.com/science/article/pii/0370157375900162
http://www.sciencedirect.com/science/article/pii/0370157375900162
https://link.aps.org/doi/10.1103/PhysRevA.68.042319
https://link.aps.org/doi/10.1103/PhysRevLett.73.58
http://arxiv.org/abs/1601.05288
http://arxiv.org/abs/1601.05288
https://www.ams.org/bull/2018-55-02/S0273-0979-2018-01605-4/
https://www.ams.org/bull/2018-55-02/S0273-0979-2018-01605-4/
https://link.aps.org/doi/10.1103/RevModPhys.82.2313
https://link.aps.org/doi/10.1103/RevModPhys.82.2313
http://arxiv.org/abs/1501.02813
http://arxiv.org/abs/1501.02813
http://arxiv.org/abs/quant-ph/0406127
http://arxiv.org/abs/quant-ph/0406127
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19263840404
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19263840404
https://www.degruyter.com/view/journals/zna/1/3/article-p113.xml
https://www.degruyter.com/view/journals/zna/1/3/article-p113.xml

Bibliography 163

215 SCHUBERT, G. Zur Bose-Statistik (Nachtrag). Zeitschrift fir Naturforschung
A, v. 2, n. 5, p. 250-251, maio 1947. ISSN 0932-0784, 1865-7109. Publisher:

De Gruyter Section: Zeitschrift fiir Naturforschung A. Available at: <https:
//www.degruyter.com/view /journals/zna/2/5/article-p250.xml>.

216 SCHWINGER, J. On Angular Momentum. [S.l.], 1952. Available at: <https:
/ /www.osti.gov/biblio/4389568>.

217 SEMENOFF, G. W. Canonical Quantum Field Theory with Exotic Statistics.
Physical Review Letters, v. 61, n. 5, p. 517-520, ago. 1988. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevLett.61.517>.

218 SHI, Y. Both Toffoli and Controlled-NOT need little help to do universal quantum
computation. arXiv:quant-ph/0205115, maio 2002. ArXiv: quant-ph/0205115. Available
at: <http://arxiv.org/abs/quant-ph/0205115>.

219 SHOR, P. W. Algorithms for quantum computation: discrete logarithms and
factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.
[S.1: s, 1994. p. 124-134.

220 SHOR, P. W. Scheme for reducing decoherence in quantum computer memory.
Physical Review A, v. 52, n. 4, p. R2493-R2496, out. 1995. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevA.52.R2493>.

221 SIPSER, M. Introduction to the theory of computation. 3rd ed. ed. Boston, MA:
Course Technology Cengage Learning, 2012. ISBN 978-1-133-18779-0.

222 SOMMERFELD, A. Die Quantenstatistik und das Problem des Heliums II. Berichte
der deutschen chemischen Gesellschaft (A and B Series), v. 75, n. 12, p. 1988-1996, fev.
1942. ISSN 03659488. Available at: <http://doi.wiley.com/10.1002/cber.19420751278>.

223 SPAGNOLO, N. et al. Experimental validation of photonic boson sampling. Nature
Photonics, v. 8, n. 8, p. 615-620, ago. 2014. ISSN 1749-4893. Number: 8 Publisher: Nature
Publishing Group. Available at: <https://www.nature.com/articles/nphoton.2014.135>.

224 SPREEUW, R. J. C. A Classical Analogy of Entanglement. Foundations
of Physics, v. 28, n. 3, p. 361-374, mar. 1998. ISSN 1572-9516. Available at:
<https://doi.org/10.1023/A:1018703709245>.

225 SPRING, J. B. et al. Boson Sampling on a Photonic Chip. Science, v. 339,
n. 6121, p. 798-801, fev. 2013. ISSN 0036-8075, 1095-9203. Publisher: American

Association for the Advancement of Science Section: Report. Available at: <https:
/ /science.sciencemag.org/content /339/6121 /798> .


https://www.degruyter.com/view/journals/zna/2/5/article-p250.xml
https://www.degruyter.com/view/journals/zna/2/5/article-p250.xml
https://www.osti.gov/biblio/4389568
https://www.osti.gov/biblio/4389568
https://link.aps.org/doi/10.1103/PhysRevLett.61.517
http://arxiv.org/abs/quant-ph/0205115
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
http://doi.wiley.com/10.1002/cber.19420751278
https://www.nature.com/articles/nphoton.2014.135
https://doi.org/10.1023/A:1018703709245
https://science.sciencemag.org/content/339/6121/798
https://science.sciencemag.org/content/339/6121/798

164 Bibliography

226 STEINMANN, O. Symmetrization postulate and cluster property. Il Nuovo
Cimento A (1965-1970), v. 44, n. 3, p. 755-767, ago. 1966. ISSN 1826-9869. Available at:
<https://doi.org/10.1007/BF02911201>.

227 STENHOLM, S. Polarization coding of quantum information. Optics Com-
munications, v. 123, n. 1, p. 287-296, jan. 1996. ISSN 0030-4018. Available at:
<http://www.sciencedirect.com/science/article/pii/0030401895005277>.

228 STERN, A. Anyons and the quantum Hall effect—A pedagogical review.
Annals of Physics, v. 323, n. 1, p. 204-249, jan. 2008. ISSN 00034916. Available at:
<https://linkinghub.elsevier.com /retrieve /pii/S0003491607001674>.

229 STOLER, D. Generalized Coherent States. Physical Review D, v. 4, n. 8§,
p. 2309-2312; out. 1971. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevD.4.2309>.

230 STOLT, R. H.; TAYLOR, J. R. Correspondence between the first- and second-
quantized theories of paraparticles. Nuclear Physics B, v. 19, n. 1, p. 1-19, maio 1970.
ISSN 0550-3213. Available at: <http://www.sciencedirect.com/science/article/pii/
0550321370900246>.

231 STORMER, H. L.; TSUI, D. C.; GOSSARD, A. C. The fractional quantum
Hall effect. Reviews of Modern Physics, v. 71, n. 2, p. S298-S305, mar. 1999.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
RevModPhys.71.5298>.

232 SUMMHAMMER, J. Factoring and Fourier transformation with a Mach-Zehnder
interferometer. Physical Review A, v. 56, n. 5, p. 4324-4326, nov. 1997. Publisher:
American Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevA.
00.4324>.

233 SUTHERLAND, B. Quantum Many-Body Problem in One Dimension:

Ground State. Journal of Mathematical Physics, v. 12, n. 2, p. 246-250, fev.
1971. ISSN 0022-2488. Publisher: American Institute of Physics. Available at:
<https://aip.scitation.org/doi/abs/10.1063/1.1665584 >

234 TANG, G.; EGGERT, S.; PELSTER, A. Ground-state properties of anyons in a
one-dimensional lattice. New Journal of Physics, v. 17, n. 12, p. 123016, dez. 2015. ISSN
1367-2630. ArXiv: 1509.01888. Available at: <http://arxiv.org/abs/1509.01888>.

235 TERHAL, B. M.; DIVINCENZO, D. P. Adptive quantum computation, constant
depth quantum circuits and arthur-merlin games. Quantum Information & Computation,
v. 4, n. 2, p. 134-145, mar. 2004. ISSN 1533-7146.


https://doi.org/10.1007/BF02911201
http://www.sciencedirect.com/science/article/pii/0030401895005277
https://linkinghub.elsevier.com/retrieve/pii/S0003491607001674
https://link.aps.org/doi/10.1103/PhysRevD.4.2309
http://www.sciencedirect.com/science/article/pii/0550321370900246
http://www.sciencedirect.com/science/article/pii/0550321370900246
https://link.aps.org/doi/10.1103/RevModPhys.71.S298
https://link.aps.org/doi/10.1103/RevModPhys.71.S298
https://link.aps.org/doi/10.1103/PhysRevA.56.4324
https://link.aps.org/doi/10.1103/PhysRevA.56.4324
https://aip.scitation.org/doi/abs/10.1063/1.1665584
http://arxiv.org/abs/1509.01888

Bibliography 165

236  TERHAL, B. M.; DIVINCENZO, D. P. Classical simulation of noninteracting-
fermion quantum circuits. Physical Review A, v. 65, n. 3, p. 032325, mar. 2002.
ISSN 1050-2947, 1094-1622. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103/PhysRevA.65.032325>.

237 TITULAER, U. M.; GLAUBER, R. J. Density Operators for Coherent Fields.
Physical Review, v. 145, n. 4, p. 1041-1050, maio 1966. Publisher: American Physical
Society. Available at: | <https://link.aps.org/doi/10.1103/PhysRev.145.1041>.

238 TOSTA, A. D. C.; BROD, D. J.; GALVAO, E. F. Quantum computation from
fermionic anyons on a one-dimensional lattice. Physical Review A, v. 99, n. 6, p. 062335,
jun. 2019. ISSN 2469-9926, 2469-9934. Publisher: American Physical Society. Available
at: <https://link.aps.org/doi/10.1103 /PhysRevA.99.062335>.

239 TOSTA, A. D. C.; GALVAO, E. F.; BROD, D. J. Linear-optical dynamics of
one-dimensional anyons. arXiv:2012.12967 [quant-ph], dez. 2020. ArXiv: 2012.12967.
Available at: <http://arxiv.org/abs/2012.12967>.

240 TORMA, P.; STENHOLM, S. Quantum logic using polarized photons. Physical
Review A, v. 54, n. 6, p. 4701-4706, dez. 1996. Publisher: American Physical Society.
Available at: <https://link.aps.org/doi/10.1103/PhysRevA.54.4701>.

241 VALIANT, L. G. Expressiveness of matchgates. Theoretical Computer
Science, v. 289, n. 1, p. 457-471, out. 2002. ISSN 0304-3975. Available at:
<http://www.sciencedirect.com/science/article/pii/S0304397501003255> .

242 VALIANT, L. G. Quantum Circuits That Can Be Simulated Classically in
Polynomial Time. SIAM Journal on Computing, v. 31, n. 4, p. 1229-1254, jan.
2002. ISSN 0097-5397, 1095-7111. Available at: <http://epubs.siam.org/doi/10.1137/
50097539700377025> .

243 VALIANT, L. G. The complexity of computing the permanent. Theoretical
Computer Science, v. 8, n. 2, p. 189-201, jan. 1979. ISSN 0304-3975. Available at:
<http://www.sciencedirect.com/science/article/pii/0304397579900446 > .

244 VOS, A. d. Reversible computing: fundamentals, quantum computing, and
applications. Weinheim; Chichester: Wiley-VCH ; John Wiley [distributor, 2010.
OCLC: 704285019. ISBN 978-3-527-63400-2 978-3-527-63399-9. Available at:
<http://site.ebrary.com/id /10438358

245 WEN, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Reviews of
Modern Physics, v. 89, n. 4, p. 041004, dez. 2017. Publisher: American Physical Society.
Available at: |<https://link.aps.org/doi/10.1103/RevModPhys.89.041004 >


https://link.aps.org/doi/10.1103/PhysRevA.65.032325
https://link.aps.org/doi/10.1103/PhysRev.145.1041
https://link.aps.org/doi/10.1103/PhysRevA.99.062335
http://arxiv.org/abs/2012.12967
https://link.aps.org/doi/10.1103/PhysRevA.54.4701
http://www.sciencedirect.com/science/article/pii/S0304397501003255
http://epubs.siam.org/doi/10.1137/S0097539700377025
http://epubs.siam.org/doi/10.1137/S0097539700377025
http://www.sciencedirect.com/science/article/pii/0304397579900446
http://site.ebrary.com/id/10438358
https://link.aps.org/doi/10.1103/RevModPhys.89.041004

166 Bibliography

246 WEN, X. G. Topological orders in rigid states. International Journal of Modern
Physics B, v. 04, n. 02, p. 239271, fev. 1990. ISSN 0217-9792. Publisher: World
Scientific Publishing Co. Available at: <https://www.worldscientific.com/doi/abs/10.
1142/50217979290000139>.

247 WEN, X. G.; DAGOTTO, E.; FRADKIN, E. Anyons on a torus. Physical Review
B, v. 42, n. 10, p. 6110-6123, out. 1990. ISSN 0163-1829, 1095-3795. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103 /PhysRevB.42.6110>.

248 WERNER, R. F. The free quon gas suffers Gibbs’ paradox. Physical Review D,
v. 48, n. 6, p. 2929-2934, set. 1993. Publisher: American Physical Society. Available at:
<https://link.aps.org/doi/10.1103 /PhysRevD.48.2929>.

249 WIGNER, E. P. Do the Equations of Motion Determine the Quantum
Mechanical Commutation Relations? Physical Review, v. 77, n. 5, p. 711-

712, mar. 1950. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103 /PhysRev.77.711>.

250 WILCZEK, F. Magnetic Flux, Angular Momentum, and Statistics. Physical Review
Letters, v. 48, n. 17, p. 1144-1146, abr. 1982. ISSN 0031-9007. Publisher: American
Physical Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.48.
1144>|

251 WILCZEK, F. Quantum Mechanics of Fractional-Spin Particles. Physical Review
Letters, v. 49, n. 14, p. 957-959, out. 1982. ISSN 0031-9007. Publisher: American
Physical Society. Available at: |[<https://link.aps.org/doi/10.1103 /PhysRevLett.49.957>.

252 WILCZEK, F.; WU, Y.-S. Space-time approach to holonomy scattering. Physical
Review Letters, v. 65, n. 1, p. 1316, jul. 1990. ISSN 0031-9007. Publisher: American
Physical Society. Available at: |<https://link.aps.org/doi/10.1103 /PhysRevLett.65.13>.

253 WILCZEK, F.; ZEE, A. Linking Numbers, Spin, and Statistics of Solitons. Physical
Review Letters, v. 51, n. 25, p. 22502252, dez. 1983. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.51.2250>.

254 WILDE, M. Quantum information theory. Second edition. Cambridge, UK ; New
York: Cambridge University Press, 2017. OCLC: 0cn973404322. ISBN 978-1-107-17616-4.

255 WITTEN, E. Quantum field theory and the Jones polynomial. Communications in
Mathematical Physics, v. 121, n. 3, p. 351-399, set. 1989. ISSN 1432-0916. Available at:
<https://doi.org/10.1007/BF01217730>.

256 WITTEN, E. Topological quantum field theory. Communications in Mathematical
Physics, v. 117, n. 3, p. 353-386, set. 1988. ISSN 1432-0916. Available at:
<https://doi.org/10.1007/BF01223371>.


https://www.worldscientific.com/doi/abs/10.1142/s0217979290000139
https://www.worldscientific.com/doi/abs/10.1142/s0217979290000139
https://link.aps.org/doi/10.1103/PhysRevB.42.6110
https://link.aps.org/doi/10.1103/PhysRevD.48.2929
https://link.aps.org/doi/10.1103/PhysRev.77.711
https://link.aps.org/doi/10.1103/PhysRev.77.711
https://link.aps.org/doi/10.1103/PhysRevLett.48.1144
https://link.aps.org/doi/10.1103/PhysRevLett.48.1144
https://link.aps.org/doi/10.1103/PhysRevLett.49.957
https://link.aps.org/doi/10.1103/PhysRevLett.65.13
https://link.aps.org/doi/10.1103/PhysRevLett.51.2250
https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01223371

Bibliography 167

257 WOIT, P. Quantum Theory, Groups and Representations. Cham: Springer
International Publishing, 2017. ISBN 978-3-319-64610-7 978-3-319-64612-1. Available at:
<http://link.springer.com/10.1007/978-3-319-64612-1>.

258 WU, L.-A.; LIDAR, D. A. Qubits as parafermions. Journal of Mathematical
Physics, v. 43, n. 9, p. 45064525, ago. 2002. ISSN 0022-2488. Publisher: American
Institute of Physics. Available at: <https://aip.scitation.org/doi/10.1063/1.1499208>.

259 WU, Y.-S. General Theory for Quantum Statistics in Two Dimensions. Physical
Review Letters, v. 52, n. 24, p. 2103-2106, jun. 1984. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.52.2103>.

260 WU, Y.-S. Multiparticle Quantum Mechanics Obeying Fractional Statistics.
Physical Review Letters, v. 53, n. 2, p. 111-114, jul. 1984. Publisher: American Physical
Society. Available at: <https://link.aps.org/doi/10.1103/PhysRevLett.53.111>

261 WU, Y.-S.; ZEE, A. Abelian gauge structure and anomalous spin and statistics
of solitons in non-linear sigma models. Nuclear Physics B, v. 272, n. 2, p. 322-328, jul.
1986. ISSN 0550-3213. Available at: <http://www.sciencedirect.com /science/article/pii/
0550321386900052>.

262 YAMADA, M. On the connection between formulations of generalized statistics
in quantum mechanics and field theory. Nuclear Physics B, v. 6, n. 5, p. 596-606, ago.
1968. ISSN 0550-3213. Available at: <http://www.sciencedirect.com /science/article/pii/
0550321368903039>..

263 ZANARDI, P.; ZALKA, C.; FAORO, L. Entangling power of quantum
evolutions. Physical Review A, v. 62, n. 3, p. 030301, ago. 2000. ISSN 1050-
2947, 1094-1622. Publisher: American Physical Society. Available at: <https:
//link.aps.org/doi/10.1103/PhysRevA.62.030301> .

264 ZHANG, W. et al. Ground-state properties of the one-dimensional unconstrained
pseudo-anyon Hubbard model. Physical Review A, v. 95, n. 5, p. 053614, maio 2017.
Publisher: American Physical Society. Available at: <https://link.aps.org/doi/10.1103/
PhysRevA.95.053614>.

265 ZHONG, H.-S. et al. Quantum computational advantage using photons. Science,
v. 370, n. 6523, p. 1460-1463, dez. 2020. ISSN 0036-8075, 1095-9203. Publisher:
American Association for the Advancement of Science Section: Report. Available at:
<https://science.sciencemag.org/content /370/6523/1460>.


http://link.springer.com/10.1007/978-3-319-64612-1
https://aip.scitation.org/doi/10.1063/1.1499208
https://link.aps.org/doi/10.1103/PhysRevLett.52.2103
https://link.aps.org/doi/10.1103/PhysRevLett.53.111
http://www.sciencedirect.com/science/article/pii/0550321386900052
http://www.sciencedirect.com/science/article/pii/0550321386900052
http://www.sciencedirect.com/science/article/pii/0550321368903039
http://www.sciencedirect.com/science/article/pii/0550321368903039
https://link.aps.org/doi/10.1103/PhysRevA.62.030301
https://link.aps.org/doi/10.1103/PhysRevA.62.030301
https://link.aps.org/doi/10.1103/PhysRevA.95.053614
https://link.aps.org/doi/10.1103/PhysRevA.95.053614
https://science.sciencemag.org/content/370/6523/1460

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction and thesis outline
	Thesis outline
	Notations and conventions

	Review: The theories of non-standard quantum statistics
	Review on standard quantum statistics
	Three definitions of quantum statistics
	The equivalence of the three definitions

	A history of non-standard quantum statistics: The early period (1940-1971)
	Gentile's intermediate statistics (1940-1952)
	Green's parastatistics (1953-1971)

	A history of non-standard quantum statistics: The modern period (1971-)
	The classical model of identical particles and its quantizations (1971-1977)
	The topological trend (1977-)
	The non-topological trend (1977-)
	Statistics coming from many-body quantum integrable systems
	Statistics from deformed commutation relations


	Conclusion and the definition of non-standard statistics used in this thesis

	Review: The computing power of standard quantum statistics
	Introduction to quantum computing in the circuit model
	Qubits and gates
	Classical and quantum circuits
	Quantum entanglement and entanglement power

	Introduction to the optical network model
	Quantum interferometry of light and optical networks
	Quantum computing with bosonic optical networks
	Generalized quantum interferometry and Fermionic linear optics

	The optical equivalent of the quantum circuit model
	Qubits and particles
	Quantum circuits and Gaussian networks for hard-core bosons


	Results: The computing power of non-standard quantum statistics
	Mathematical properties of anyonic operators
	Quadratic Hamiltonian algebras over anyonic oscillators
	Two-mode sub-algebras of fermionic anyons
	Two-mode sub-algebras of bosonic anyons

	Anyonic optics and quantum computation
	Phenomenology of anyonic optical devices
	Anyonic optical networks and interferometry
	Anyonic optical networks and quantum computation

	Bosonic anyons and coherent states
	Review of the theory of coherence
	Anyonic coherent states
	Anyonic coherent states under optical networks


	Conclusion, open questions, and final remarks
	Bibliography

