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1. introduction

Let (C,⊗) be a symmetric monoidal m-category. An object X ∈ C is called invertible if there
is another object Y ∈ C, and equivalences X ⊗ Y ≃ 1, and Y ⊗ X ≃ 1. If the m-morphisms
of C are equipped with an involution a 7→ a∗, then we call an m-morphism a unitary if aa∗ = 1
and a∗a = 1. We let C× denote the sub-category of invertible objects, invertible 1-morphisms, . . .
invertible (m− 1)-morphisms, and unitary m-morphisms.

Let Vect be the groupoid of finite dimensional real Hilbert spaces, and suppose that we are given
a symmetric monoidal functor

F : (Vect ,⊕)→ C×.
Then for each V ∈ Vect , we can define a group G(V ) as follows: [GV]

(1) G(V ) :=
{

(g, β)
∣

∣

∣
g ∈ O(V ), F (V )

F (g)
++

1

33⇓β F (V )
}

.

It has an obvious map to O(V ), given by (g, β) 7→ g. We also let G(n) := G(Rn). Strictly speaking,
G(V ) is not a group, but rather a k-group, where k = max(1,m − 1). For example, if C is a
3-category, then G(V ) also has arrows, given by

homG(V )

(

(g, β), (h, γ)
)

:=

{

∅ if g 6= h

{Ξ : β ⇛ γ} if g = h,

We have three situations in mind, where we can apply the above recipe.
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In the first case, C is the category HilbZ

R of Z-graded real Hilbert spaces. Its invertible objects
are the one dimensional Hilbert spaces. We define F (V ) to be the top exterior power of V , put in
degree dim(V ). This yields G(V ) = SO(V ), and is explained in Section 2.2.

Our second situation is the bicategory C = VN2R of Z/2-graded von Neumann algebras over
the reals. Its invertible objects are the type I factors i.e., algebras with minimal projections whose
graded center is R. The functor F : Vect → C× is given by the Clifford algebra construction [cac]

(2) Cℓ(V ) :=
⊕

i≥0

V ⊗i
/

(v ⊗ v − ‖v‖2), v is odd, v∗ = v.

Following our recipe, one finds G(V ) = Spin(V ). This computation is the subject of Section 2.2.
Our last and most interesting example is the 3-category CN3 of Z/2-graded conformal nets. The

functor F is given by the free fermion construction V 7→ Fer(V ), which is the subject of Section
4.1. The resulting 2-group G(V ) is the string group String(V ) i.e., the 3-connected cover of O(V )
(assuming dim V ≥ 5). Modulo a slight reinterpretation of (1), we also produce a model of String(V )
which is topological group.

We summarize the above discussion in the follwing table: [tab]

(3)

m The m-category C C× F : Vect → C× G(n)

1 HilbZ

R:
Z-graded real
Hilbert spaces

Z-graded real lines
∧top

SO(n)

2 VN2R:
Z/2-graded von
Neumann algebras
over R

Z/2-graded type I
factors over R

Clifford algebra Spin(n)

3 CN3 : Z/2-graded
conformal nets

Z/2-graded
conformal nets with
µ-index equal to 1

The Free Fermion String(n)

Perhaps more important than the groups G(V ) is the notion of a G-structure. An SO-structure
on a vector space V ∈ Vect is the same thing as an orientation. If V is n-dimensional, then an
orientation can be described as a unitary isomoprhism between

∧top
V and R[n]. More generally, a

G-structure on V is a 1-morphism

f : F (V )→ F (Rn)

in the groupoid C×. Indeed, if V is equipped with such a 1-morphism f , then the automorphism
group

Aut(V, f) :=
{

(g, β)
∣

∣

∣
g ∈ O(V ),

F (V )
F (g)

//

f ''NNNN β⇒
F (V )

fxxpppp

F (Rn)

}

,

is isomophic to G(V ). We can thus extend table (3): [tab2]

(4)

Objects of C× Arrows of C× F (Rn)
A G-structure

F (V )
∼→ F (Rn) is:

G(V )

Z-graded real lines
Degree preserving
unitary maps

R[n]
An isometry
∧top

V → R[n]
SO(V )

Z/2-graded type I
factors over R

Morita equivalences Cℓ(n)
An invertible
bimodule Cℓ(V )SCℓ(n)

Spin(V )

Z/2-gr. conformal
nets with µ = 1

Invertible defects Fer(n)
An invertible defect

Fer(V )DFer(n)
String(V )
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It is interesting to note that

homVN2R
(1,1) = Hilb

Z/2
R

:=
{

Z/2-graded real Hilbert spaces
}

,

homCN3 (1,1) = VN2C :=
{

Z/2-graded von Neumann algebras over C
}

,

which establishes a connection between each row of (3), (4), and the previous one. The latter
statement is our Theorem 3.19. We also have

homVN2C
(1,1) = Hilb

Z/2
C

:=
{

Z/2-graded complex Hilbert spaces
}

.

2. Statement of results, and sketch of the proofs

2.1. The group SO(n) [sec:SO]. In this section, we take C := HilbZ

R to be the category of Z-graded

real Hilbert spaces and F the top exterior power functor. Since HilbZ

R is just a 1-category, the 2-cell
β in (1) is simply stating the equality of F (g) and 1F (V ). The group (1) then becomes

G1(R
n) =

{

(g, β)
∣

∣

∣
g ∈ O(n),

∧n
Rn

Vng
++

1

33⇓β
∧n

Rn
}

=
{

g ∈ O(n)
∣

∣

∣

∧n
g = 1

}

,

which is the usual definition of SO(n). If V is n-dimensional, an orientation is then an isomorphism
∧top V → R[n] in the groupoid HilbZ,×

R
.

2.2. The group Spin(n) [sec:Spin]. If A is a finite dimensional von Neumann algebra, then its
identity arrow 1A in VN2R (a priori given by the Haagerup L2-space) is a bimodule isomorphic to

AAA. Any trace tr : A→ R provides such an isomorphism, and the induced inner product on A is
given by

〈a, b〉 := tr(a∗b).

Let now AMB and BNC be 1-morphisms that are finite dimensional as vector spaces. Given a trace
on B, one can identify their composition in VN2R (a priori given by Connes fusion) with their usual
tensor product. The inner product on AM ⊗B NC is then given by

〈m⊗ n,m′ ⊗ n′〉 := ∑

i

〈mbi,m′〉〈n, bin′〉,

where {bi} is an orthonormal basis of B with respect to the inner product coming from the trace.
More detail about Connes fusion, and about the 2-category VN2R will be given in Section 3.1.

If G is a group and A a von Neumann algebra, then having an action of G on A means the
following. For each element g ∈ G, we are given an A-A-bimodule Mg, and we have isomorphisms

ag,h : Mg ⊠AMh
∼−→Mhg, u : 1A

∼−→Me

subject to associativity, left unit, and right unit axioms. A homomorphism ρ : G→ Aut(A) induces
such an action: one takes Mg to be the bimodule 1A equipped with its natural right A-action, and
left A-action twisted by ρ(g). The isomorphisms ag,h and u are the obvious ones.

We now wish to analyze the result of our recipe (1) in the case C := VN2R and F (V ) := Cℓ(V ).
Given g ∈ O(n), let Mg be the bimodule coming from the obvious action ρ : O(n) → Aut(Cℓ(n)).
It is given by Mg := Cℓ(n) with left action twisted by ρ(g).

Proposition 2.1. For n ≥ 2, the group

G2(n) :=
{

(g, β)
∣

∣

∣
g ∈ O(n), Cℓ(n)

Mg

++

1

33⇓β Cℓ(n), β is unitary
}

.

is a non-trivial double cover of SO(n), and is therefore isomorphic to Spin(n).
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Proof. Let A2 := AutVN2R

(

Cℓ(n)
)

denote the 2-group of endomorphisms of Cℓ(n) in the 2-groupoid

VN2×
R

. The group G2(n) is the fiber of the homomorphism O(n) → A2, induced by the functor
Cℓ : VectR → VN2R. The natural map

G2(n) = fib
(

O(n)→ A2

)

−→ O(n)

is then given by the projection (g, β) 7→ g. Since Cℓ(n) is an invertible object, its automorphism
2-group is isomorphic to that of the identity object

A2 ≃ AutVN2R
(1) =

({

Z/2-graded lines over R
}

,⊗
)

= Z/2×BZ/2.

We analyze G2(n) by computing the long exact sequence of homotopy groups [tsh]

(5) . . .→ π1(G2(n))→ π1(O(n))
(a)→ π1(A2)→ π0(G2(n))→ π0(O(n))

(b)→ π0(A2).

In order to prove the proposition, it is enough to show that the maps (5.a) and (5.b) are isomorphisms
(except for n = 2, in which case (5.a) is only surjective).

The kernel K := ker(G2(n) → O(n)) consists of the unitary automorphisms of Cℓ(n)Cℓ(n)Cℓ(n).
Equivalently, it is the categorical loop space ΩA2 := homA2(1, 1) = Aut(R[0]) = {±1}. The map
(5.a) can then be identified with the boundary homomorphism

∂ : π1

(

O(n)
)

−→ π0(K).

To see that it is surjective, we first treat the case n = 2. In that case, the Clifford algebra

Cℓ(2) =
〈

e1, e2
∣

∣ e21 = e22 = 1, e1e2 = −e2e1
〉

is isomorphic to the 2× 2 matrix algebra M2(R) via

e1 =

(

1 0
0 −1

)

and e2 =

(

0 1
1 0

)

.

The generator of π1 is represented by the loop

[0, 2π]→ O(2) : θ 7→ rθ :=

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

.

The action of rθ on Cℓ(2) is given by rθ ·e1 = cos(θ)e1 +sin(θ)e2, and rθ ·e2 = − sin(θ)e1 +cos(θ)e2,
and one can check that

rθ · ei = r θ
2
ei r

−1
θ
2

.

The loop θ 7→ rθ lifts to a path γ : [0, 2π]→ G2(2) : θ 7→ (rθ , βθ) with βθ given by

βθ(ei) := r θ
2
ei.

Since γ begins at the identity and ends at the non-trivial element of K, the boundary homomor-
phism ∂ : π1(O(2)) → π0(K) is surjective. For general n, the surjectivity of ∂ follows from the
commutativity of the following diagram

Z = π1

(

O(2)
) ∂

// //

��

π0(K)

��

= Z/2

Z/2 = π1

(

O(n)
) ∂

// π0(K) = Z/2.

To finish the proof, we need to show that (5.b) is an isomorphism for n ≥ 2. For that purpose, we
introduce spaces G2(∞) := colimG2(n) and O(∞) := colimO(n). They have actions of the linear
isometries operad [EKMM], and are thus E∞-spaces. The stack A2 ≃ colim AutVN2R

(Cℓ(n)) also
has such an action, and therefore so does its geometric realization |A2| (which is only well defined
up to homotopy). The homotopy fiber sequence

G2(∞)→ O(∞)→ |A2|
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being compatible with the E∞ structures, it deloops to a fiber sequence of spectra [goa]

(6) g2 → o→ a2.

The generators of π0(o) and π1(o) are related by mutliplication by the Hopf element η ∈ π1(S).
Since π1(o)→ π1(a2) is an isomorphism, it follows that π0(o)→ π0(a2) is also an isomorphism. The
long exact sequence associated to (6) therefore looks like this:

π4 0 // 0 // 0

ssgggggggggggggggggggg

π3 Z ∼
// Z // 0

ssggggggggggggggggggggg

π2 0 // 0 // 0

ssggggggggggggggggggggg

π1 0 // Z/2
∼

//

η

Z/2

sshhhhhhhhhhhhhhhhhhhh

η

π0 0 // Z/2
∼

// Z/2 .

The map π0(O(n))→ π0(o) being an isomoprhism, it follows that (5.b) is also an isomorphism. �

2.3. The group String(n) [sec:String]. We now investigate the 2-group (1) in the case when C is the
3-category CN3 of Z/2-graded conformal nets, and F is the free fermion functor Fer : Vect → CN3×.
Conformal nets will be defined Section 3.2, and their 3-categorical structure will be explained in
Section 3.3. The free fermion will be constructed in Section 4.1. Nevertheless, the only thing needed
in order to understand this section is the knowledge that Fer(n) := Fer(Rn) are invertible nets
(Theorem 4.4), and that homCN3 (1,1) is equivalent to the 2-category of Z/2-graded von Neumann
algebras over C (Theorem 3.19).

Let A3 := AutCN3

(

Fer(n)
)

denote the 3-group of endomorphisms of Fer(n) in the 3-groupoid

CN3×. The functor Fer : Vect → CN3× then induces a homomorphism O(n) → A3 whose fiber is
the 2-group

G3(n) :=
{

(g, β)
∣

∣

∣
g ∈ O(n), Fer(n)

Dg
,,

1

22
⇓β Fer(n), β is invertible

}

.

Here, Dg refers to the 1-morphism in CN3 induced by the automorphism g of Rn. The object
Fer(n) being invertible in CN3 , we have

AutCN3

(

Fer(n)
)

= AutCN3 (1).

By Theorem 3.19, we also have homCN3 (1,1) = VN2C which allows us to compute the homotopy
groups of A3 (or equivalently, of its geometric realization). Namely, we have

AutCN3 (1)
/

iso = VN2×
C

/

iso =
{

CℓC(0),CℓC(1)
}

,

AutAutCN3 (1)(11)/iso = AutVN2C
(1)

/

iso = Hilb
Z/2,×
C

/

iso =
{

C[0],C[1]
}

,

AutAutAutCN3 (1)(11)(111) = AutAutVN2C
(1)(11) = Aut

Hilb
Z/2
C

(1) = End
Hilb

Z/2,×
C

(C[0]) = S1,

which gives us

π0(A3) = π1(A3) = Z/2, π3(A3) = Z, and πi(A3) = 0 for i 6∈ {0, 1, 3}.
Proposition 2.2. The map πi(O(n)) → πi(A3) is an isomorphism for i = 0, 1, 2, 3 and n ≥ 4,
except for i = 3, n = 4 in which case π3(O(4))→ π3(A3) is only surjective.

Proof. Let K := fib
(

G3(n)→ O(n)
)

= ΩA3 be the categorical loop space of A3. It is given by

K ≃ Z/2×BS1.
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The natural map π3(O(n))→ π3(A3) can then be identified with the boundary homomorphism [shj]

(7) ∂ : π3

(

O(n)
)

→ π2(K).

The hardest part of the proof is to show that ∂ : π3(O(4))→ π2(K) is surjective, and will be carried
out in section 4.4. Assuming that fact, it is easy to see from the following commutative diagram

Z
2 = π3

(

O(4)
) ∂

// //

��

π2(K)

��

= Z

Z = π3

(

O(n)
) ∂

// π2(K) = Z

that the other boundary maps (7) are isomorphisms.
Taking the colimit over n, the sequence G3(n) → O(n) → A3 yields a fiber sequence of spectra

[dgn]

(8) g3 → o→ a3.

Let η ∈ π1(S) be the Hopf element. The generators x ∈ π0(o), y ∈ π1(o), z ∈ π3(o) are related by
xη = y, and by the Massey product 〈y, η, 2〉 = z. The map πi(o) → πi(a3) being an isomorphism
for i = 3, it is therefore also an isomorphism for i = 0, 1. Thus, the long exact sequence of (8) looks
as follows:

π7 Z ∼
// Z // 0

ssggggggggggggggggggggg

π6 0 // 0 // 0

ssggggggggggggggggggggg

π5 0 // 0 // 0

ssggggggggggggggggggggg

π4 0 // 0 // 0

ssggggggggggggggggggggg

π3 0 // Z
∼

//

〈 ,η,2〉

Z

ssgggggggggggggggggggg

〈 ,η,2〉
π2 0 // 0 // 0

ssggggggggggggggggggggg

π1 0 // Z/2
∼

//

η

Z/2

sshhhhhhhhhhhhhhhhhhhh

η

π0 0 // Z/2
∼

// Z/2 .

The map πi(O(n)) → πi(o) being an isomorphism for i ≤ 3, n ≥ 4, (i, n) 6= (3, 4), it follows that
πi(O(n))→ πi(A3) is also an isomorphism. �

As a corollary of the above proposition, we get our main result.

Theorem 2.3. For n ≥ 5, the geometric realization of G3(n) = fib
(

O(n)→ A3

)

is the 3-connected
cover of O(n). �

3. The 3-category of conformal nets

In this section, we describe the symmetric monoidal 3-category (CN3 ,⊗). The objects of CN3
are Z/2-graded conformal nets with finite µ-index. The arrows between two nets A and B are called
A-B-defects. The 2-morphisms between A-B-defects D and E are called D-E-sectors. Finally, the
3-morphisms of CN3 are called homomorphisms of sectors. The main result of [BDH] is that CN3
is indeed a symmetric monoidal 3-category.
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3.1. Von Neumann algebras [sec:VNR]. Given a Hilbert space H over R or C, we let B(H) denote
its ∗-algebra of bounded linear operators. We equip it with the σ-weak topology, in other words,
the topology of pointwise convergence with respect to the pairing with trace class operators. If H
is Z/2-graded, then B(H) inherits a corresponding Z/2-grading. The ∗-operation on B(H) is the
same as in the ungraded case.

Definition 3.1. A Z/2-graded von Neumann algebra is a Z/2-graded topological ∗-algebra that
can be embedded as a closed subalgebra of some B(H). A module for a von Neumann algebra A
consists of a Z/2-graded Hilbert space H and a continuous homomorphism A→ B(H).

The graded commutant A′ of a von Neumann algebra A ⊂ B(H) is defined by

A′ := {b ∈ B(H)0 : ab = ba, ∀a∈A} ⊕ {b ∈ B(H)1 : ab = (−1)|a|ba, ∀a∈A}.
The bicommutant theorem then says that A 7→ A′ is an involution on the poset of von Neumann
subalgebras of B(H).

Given von Neumann algebras A ⊂ B(H) and B ⊂ B(K), their spacial tensor product A ⊗̄B is
defined as the closure of the algebraic tensor product A⊗alg B inside B(H ⊗K). It is independent
of the choice of Hilbert spaces H and K. The product and involution are given by the well known
formulas

(a⊗ b)(c⊗ d) = (−1)|b||c|ac⊗ bd , (a⊗ b)∗ = (−1)|a||b|a∗ ⊗ b∗.
We also include the formulas for the graded opposite of a von Neumann algebra

aop bop = (−1)|a||b|(ba)op , (aop)∗ = (−1)|a|(a∗)op .

Note that in the graded case, the map ∗ : A→ A is not an isomorphism between Ā and Aop . If A
is an algebra over C, then Ā and Aop are nevertheless isomorphic. Such natural isomorphisms are
induced by

#j : A→ A, a#j :=

{

a∗ if a is even

ja∗ if a is odd

for j = i and j = −i. They satisfy a#j#j = a and

(ab)#j = (−1)|a||b| b#j a#j .

Every von Neumann algebra A has a canonically associated A-A-bimodule L2(A). It is character-
ized (up to unique isomorphism) by the existence of an isometric antilinear involution J : L2(A)→
L2(A) and a cone P ⊂ L2(A), subject to the following conditions:

- the two actions of A on L2(A) are faithful, and are each other’s commutants,
- the cone P is self-dual, meaning that P = {ξ ∈ L2(A) : 〈p, ξ〉 ≥ 0, ∀p ∈ P},
- J(aξb) = b∗J(ξ)a∗ for a, b ∈ A, and ξ ∈ L2(A),
- aξa∗ ∈ P for a ∈ A, ξ ∈ P ,
- J(ξ) = ξ for ξ ∈ P ,
- cξ = ξc for c in the center of A, and ξ ∈ L2(A).

Any vector ξ ∈ P induces a positive state φ : a 7→ 〈aξ, ξ〉 and, under those circumstances, ξ may be
identified with a formal square root of φ.

Even more, the space L2(A) is the completion of the vector space generated by formal square roots
of positive states, with respect to the following inner product. To define 〈√φ,√ψ 〉, one considers
the function f : R → C, t 7→ φ([Dφ : Dψ]t), where [Dφ : Dψ]t ∈ A denotes the non-commutatie
Radon-Nikodym derivative [Yam Alg asp.]1. The function f(t) has an analytic continuation to the strip
im(t) ∈ [0, 1], and the inner product is given by 〈√φ,√ψ 〉 := f(i/2).

If A is Z/2-graded, the grading involution γ : A → A induces an involution γ : L2(A) → L2(A)
by functoriality, and thus a Z/2-grading on L2(A).

1The Radon-Nikodym derivative formally satisfies [Dφ : Dψ]t = φitψ−it.
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Given a right A-module H , and a left A-module K, their Connes fusion H⊠AK is the completion
of the vector space

hom
(

L2(A)A, HA

)

⊗alg L
2(A) ⊗alg hom

(

AL
2(A),AK

)

with respect to the inner product
〈

φ1 ⊗ ξ1 ⊗ ψ1, φ2 ⊗ ξ2 ⊗ ψ2

〉

:=
〈

(φ∗2φ1)ξ1(ψ1ψ
∗
2), ξ2

〉

.

In the above equation, we have written the action of ψi on the right, which means that ψ1ψ
∗
2 stands

for the composite L2(A)
ψ1−−→ K

ψ∗
2−−→ L2(A). The functor

H ⊠A − : A-modules → Hilbert spaces

is characterized by the existence of an isomorphism H ⊠A L
2(A) ≃ H intertwining the two right

A-actions. Connes fusion also satisfies L2(A) ⊠A K ≃ K.
The collection of Z/2-graded von Neumann algebras forms the objets of a bicategory VN2 . The

arrows between A and B are the A-B-bimodules, and the composition

homVN2 (A,B) × homVN2 (B,C)→ homVN2 (A,C)

is given by Connes fusion. We write VN2R or VN2C if we want to specify that the base field is R

or C, respectively.

3.2. Conformal nets [sec:Nets]. Before describing the objects of our 3-category CN3 , we need a
few facts about pin structures on one dimensional manifolds. All manifolds will be of class C1. By
an interval, we shall always mean a manifold I of class C1 that is diffeomorphic to [0, 1].

Definition 3.2. A pin interval is an interval equipped with a complex line bundle S → I, and an
isomorphism S⊗2 ∼−→ T ∗

C
I between the square of S and the complexified cotangent bundle of I.

An embedding between pin intervals (I ′, S′) and (I, S) consists of an embedding f : I ′ →֒ I,
along with an isomorphism β : f∗S → S′. We allow β to be either C-linear or C-antilinear. If β is
linear, then the first one of the following two diagrams should commute. Otherwise, it is the second
diagram that should commute: [2SQ]

(9)

f∗(S⊗2)
∼

//

β⊗2

��

f∗(T ∗
C
I)

T∗
C
f

��

S′⊗2 ∼
// T ∗

C
I ′

f∗(S⊗2)
∼

//

β⊗2

��

f∗(T ∗
C
I) = f∗(T ∗I)⊗ C

T∗f⊗(z 7→z̄)

��

S′⊗2 ∼
// T ∗

C
I ′ = T ∗I ′ ⊗ C

We say an embedding (f, β) is C-linear, respectively C-antilinear, if β is so.

Let (I, S) be a pin interval. Its pin involution is the map γ given by the identity on I and negation
on S. There are two other non-trivial involutions ci and c−i that restricts to the identity on I. We
call them the conjugating involutions.

In order to distinguish one from the other, we first introduce the notion of a coorientation of
I. By this, we mean a coorientation of T ∗I inside its complexification T ∗

C
I. If the pin intervals

(I, S), (I ′, S′) are equipped with coorientations, we say that an embedding (f, β) preserves the
coorientations if so does the right vertical arrow of the relevant diagram (9).

Remark 3.3. The data of a coorientation is equivalent to that of an orientation. However, it is not
true that an orientation preserving embedding necessarily preserves the coorientation. The latter is
only true for C-linear embeddings.

So let (I, S) be a pin interval equipped with a coorientation, and let v be a section of T ∗
C
I

representing the coorientation. Let
√
v be the section of S (defined up to sign) determined by

the equation
√
v ⊗ √v = v. For j = i or −i, the conjugating involution cj of (I, S) acts by j on

spanR{
√
v } and by −j on spanR{

√−v }.
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Definition 3.4. [diP] We let INTPin be the topological category whose objects are pin intervals
equipped with a coorientation. The morphisms are pin embeddings (either C-linear or C-antilinear)
that do not need to preserve the coorientation.

Example 3.5. [ex:Sigma] Let Σ be a Riemann surface equipped with a chosen square root of T ∗Σ.
Then any embedded interval I ⊂ Σ inherits a pin structure. As a special case of the above situation,
consider an interval I ⊂ C in the complex plane. The trivial line bundle over C being a square root
of the cotangent bundle, I acquires a pin structure.

If I, J ⊂ Σ are two intervals and h : Σ × [0, 1] → Σ is an isotopy mapping J to I, then by the
unique lifting property, h induces an isomorphism of pin intervals J → I. Now consider two intervals
I, J ⊂ C such that ∂I = ∂J , and let f : J → I be a diffeomorphism fixing ∂J (no compatibility
between f and the pin structures on I and J). Then we may pick an isotopy h of C fixing ∂J and
mapping J to I via f . Such an isotopy being unique up to homotopy, it induces a well defined pin
isomorphism between J and I. Thus, we have enhanced f from a mere diffeomorphism to a pin
diffeomorphism.

Convention 3.6. [C:Sigma] Given I ⊂ C we shall always equip it with the pin structure coming from
its embedding. If I, J ⊂ C are intervals such that ∂I = ∂J , and if f : J → I is a diffeomorphism
fixing ∂J , then we shall always upgrade f to a pin diffeomorphism, as explained in Example 3.5.

Let VN denote the category whose objects are complex Z/2-graded separable von Neumann
algebras, and whose morphisms are given by

homVN(A,B) := hom(A,B) ∪ hom(A, B̄) ∪ hom(A,Bop) ∪ hom(A, B̄op).

The hom-sets are given the topology of pointwise convergence.

Definition 3.7. [defCN] A Z/2-graded conformal net is a continuous functor [aivn]

(10) A : INTPin → VN.

To an embedding f : J →֒ I, it assigns a map A(f) : A(J) → A(I) of the kind prescribed by the
following table: [fus]

(11)

f is C-linear. f is C-antilinear.

f respects the
coorientations of I and J .

A(f) ∈ hom
(

A(J),A(I)
)

A(f) ∈ hom
(

A(J),A(I)
)

f does not respect
the coorientations.

A(f) ∈ hom
(

A(J),A(I)op
)

A(f) ∈ hom
(

A(J),A(I)op
)

Moreover, if γ is the pin involution of I, then A(γ) should be the grading involution of A(I), and if

cj is a conjugating involution, then A(cj) should be the map #j : A(I) → A(I)
op

. It is subject to
the following axioms:

• Isotony: The image of an embedding J →֒ I is an injective map A(J) →֒ A(I).

• Locality: If J ⊂ I and K ⊂ I have disjoint interiors, then the images of A(J) and A(K)
graded commute inside A(I).

• Strong additivity: If I = J ∪K, then the images of A(J) and A(K) generate A(I).

• Haag duality: If I = J ∪K and J ∩K is a point, then the image of A(J) is the graded
commutant of A(K) inside A(I).

• Split property: If J , K are disjoint subintervals of I and the inclusions are compatible
with both orientations and coorientations, then the map from the algebraic tensor product
A(J) ⊗alg A(K)→ A(I) extends to the spacial tensor product

A(J) ⊗̄ A(K)→ A(I).

9



• Diff covariance: mIf ϕ : I → I is a diffeomorphism that restricts to the identity in a
neighborhood of ∂I, then A(ϕ) is an inner automorphism of A(I).

• Vacuum: Let S1 ⊂ C denote the unit circle. Following Convention 3.6, every subinterval
of S1 aquires a pin structure from its embedding in C. Let [IIp]

(12) I := exp
(

[0, πi]
)

, I ′ := exp
(

[πi, 2πi]
)

.

Equip I and I ′ with the inward coorientation. Following Convention 3.6, the map j : I ′ → I,
j(z) := z−1 can be upgraded to a pin isomorphism. Since j reverses the coorientation, it
induces a homomorphism

A(j) : A(I ′)→ A(I)op .

Let H0 := L2(A(I)). We then have two left actions

λ : A(I)→ B(H0), ρ : A(I ′)→ B(H0),

given by the formulas λ(a)(ξ) := a ξ and ρ(b)(ξ) := (−1)|b||ξ| ξA(j)(b).
Let J ⊂ I be a subinterval such that J ∩ I ′ = {1} or {−1}, and let J ′ := j(J).'$

&%
I

I ′

 
!

J

J ′

Then the action of the algebraic tensor product

λ⊗ ρ : A(J)⊗alg A(J ′) −→ B(H0)

extends (uniquely) to an action of A(J ∪ J ′).

Remark 3.8. Our definition of conformal net is slightly different from the classical one [K’s survey?].
In the classical definition, one only assigns von Neumann algebras to subintervals of S1, and instead
of (10), one has a map of posets [mopo]

(13) A :
{

subintervals of S1
}

→
{

subalgebras of B(H0)
}

.

Such a net is called Diff -covariant if there is a projective action of (the coorientation preserving
part of) DiffPin(S1) on H0, and the map (13) is equivariant with respect to that group. Under
that condition, one can recover a conformal net in our sense. One first uses the Diff -covariance to
extends (13) to a functor

{

Full subcategory of INTPin

consisting of subintervals of S1

}

→
{

Full subcategory of VN con-
sisting of subalgebras of B(H0)

}

;

the left hand side being equivalent to INTPin , it is then easy to extend it to a functor INTPin → VN.
We refer to (29) for a concrete model.

Like with von Neumann algebras, every conformal net A has a complex conjuate Ā, and an
opposite Aop . They are given by [bno]

Ā(I) := A(I), Ā(f) :=

{

A(f) if f is C-linear,

γ ◦ A(f) if f is C-antilinear,

Aop(I) := A(I)
op
, Aop(f) :=

{

A(f)op if f respects the coorientations,

γ ◦ A(f)op if it doesn’t,

(14)

where γ is the grading involution. There is an isomorphism between Ā and Aop given by applying
#i objectwise.
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3.3. Defects [sec:ds]. The arrows of our 3-category CN3 are called defects: given two conformal
nets A and B there is a notion of A-B-defect. One has an identity defect 1A associated to any
conformal net A, and one can compose an A-B-defect with a B-C-defect to form an A-C-defect.

Remark 3.9. Our defects probably correspond to the conformal defects of [Runkel], as opposed to
the more restrictive topological defects.

Definition 3.10. Equip R with the pin structure coming from its embedding in C. A bicoloring
of a pin interval I is an equivalence class [ı] of pin embeddings ı : I → R, 0 6∈ ı(∂I), where ı ∼ ı′ if
ı(x) > 0⇔ ı′(x) > 0 and ı|N = ı′|N for some neighborhood N of ı−1(0) (the last condition is empty
if 0 6∈ ı(I) since we may then take N = ∅).

Given a bicoloring of I, we let I• := ı−1(R>0) and I◦ := ı−1(R60), where ı is any representative
of the equivalence class. We think of I• as being painted in black, and I◦ as being painted in white.
A bicolored interval can be either entirely black (case I = I•), entirely white (case I = I◦), or it can
have two halves I◦ 6= I 6= I•. In the last case, I is also equipped with a local coordinate around the
point ı−1(0). If (I, [ı]) and (J, []) are bicolored intervals, then we say that an embedding f : J →֒ I
is compatible with the bicoloring if [] = [ı ◦ f ]. This is equivalent to the statement that f(J•) ⊂ I•,
f(J◦) ⊂ I◦, and that f respects the local coordinate. Similarly to Definition 3.4, we have:

Definition 3.11. Let INT
•◦
Pin be the topological category whose objects are pin bicolored intervals

equipped with a coorientation, and whose morphisms are pin embeddings compatible with the
bicolorings, but not necessarily with the coorientation.

Let INT
•
Pin , INT

◦
Pin , and INT

◦H#
Pin denote the full subcategories of INT

•◦
Pin consisting of intervals I

such that I = I•, I = I◦, and I◦ 6= I 6= I•, respectively. When we compose the obvious equivalences
INTPin

∼−→ INT
•
Pin , INTPin

∼−→ INT
◦
Pin with the inclusions INT

•
Pin →֒ INT

•◦
Pin and INT

◦
Pin →֒ INT

•◦
Pin ,

we obtain fully faithful functors

ι• : INTPin → INT
•◦
Pin and ι◦ : INTPin → INT

•◦
Pin .

Informally speaking, ι• paints in black, and ι◦ paints in white.

Definition 3.12. Let A and B be conformal nets. An A-B-defect is a continuous functor [dan]

(15) D : INT
•◦
Pin → VN

equipped with natural isomorphisms D ◦ ι• ≃ A and D ◦ ι◦ ≃ B, and subject to the requirements of
Table (11). It satisfies the following five axioms:

• Isotony: If I, J ∈ INT
◦H#
Pin and f : J →֒ I is an embedding, then D(f) : D(J) → D(I) is

injective.

• Locality: If J ⊂ I and K ⊂ I have disjoint interiors, then the images of D(J) and D(K)
are graded-commuting subalgebras of D(I).

• Strong additivity: If I = J ∪K, then the images of D(J) and D(K) generate D(I).

• Haag duality: If I = J ∪K, J ∩K is a point, and J ∈ INT
◦H#
Pin , then the image of D(J) is

the graded commutant of D(K) inside D(I).

• Vacuum: Let I, I ′ ⊂ C be as in (12). Pick a bicoloring [ı] of I such that ı(z) = Re(z)
in a neighborhood of i ∈ I. Let j : I ′ → I be the map given by z 7→ z̄ (note the use of
Convention 3.6), and let [ı ◦ j] be the induced bicoloring of I ′. Letting H0 := L2(D(I)), we
have two actions

λ : D(I)→ B(H0), ρ : D(I ′)→ B(H0),

given by λ(a)(ξ) := a ξ and ρ(b)(ξ) := (−1)|b||ξ| ξ D(j)(b). Let J ∈ INT
•
Pin ∪ INT

◦
Pin be a

subinterval of I such that J ∩ I ′ consists of a single point. Finally, let J ′ := j(J). Then the
action of the algebraic tensor product

λ⊗ ρ : D(J)⊗alg D(J ′) −→ B(H0)

extends to an action of D(J ∪ J ′).
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Remark 3.13. The split property and diff covariance for defects are consequences of the correspond-
ing axioms for conformal nets.

Remark 3.14. As with (10) versus (13), there is a “big” versus “small” description of defects. In
the latter description, an A-B-defect is a poset map

D :
{

subintervals I ⊂ R, 0 6∈ ∂I
}

→
{

subalgebras of B(H)
}

equipped with natural homomorphisms A(I)→ D(I) for I ⊂ R<0 and B(I)→ D(I) for I ⊂ R>0.

Given a conformal net A, its identity arrow in CN3 is the defect 1A given by 1A(I) := A(I). Let
us use the notation ADB to indicate that D is an A-B-defect. The composition in CN3 of defects

ADB and BEC is denoted AD ⊛B EC and is called the fusion of the two defects. We now explain
how it is defined. Let J1,K1, Ĵ1, J2,K2, Ĵ2 ⊂ C be the pin intervals given by

J1 := [−1, 0], K1 := exp([−πi2 , πi2 ])− i, Ĵ1 := J1 ∪K1

J2 := [0, 1], K2 := exp([πi2 ,
3πi
2 ])− i, Ĵ2 := J2 ∪K2

If I ∈ INT
◦H#
Pin , we can use its local coordinate to form new pin intervals

I ′ := I◦ ∪ J1, Î ′ := I◦ ∪ Ĵ1, I ′′ := J2 ∪ I•, Î ′′ := Ĵ2 ∪ I•,
where the glueing is performed at the points −1 ∈ J1 and 1 ∈ J2 respectively. These intervals
have an obvious bicoloring satisfying I ′◦ = Î ′◦ = I◦ and I ′′• = Î ′′• = I•. Equip I ′, Î ′, I ′′, Î ′′ with
the coorientation induced from I◦ and I•. Similarly, equip K1 and K2 with the coorientation
inherited from Î ′ and Î ′′. Following Convention 3.6, we let the formula k(z) := −z̄ define a map
K2 → K1. Note that k reverses both the orientation and the coorientation. Given our choices, the
pin embeddings

I
:

I ′

→֒ →֒
Î ′

k←
K2 Î ′′

←֓
I ′′

induce homomorphisms D(I ′)op → D(Î ′)op ← B(K2)→ E(Î ′′)← E(I ′′). Pick faithful left modules

M of D(Î ′) and N of E(Î ′′). We define (D⊛B E)(I) to be the von Neumann algebras generated by
D(I ′) and E(I ′′) in their action on the Hilbert space M ⊠B(K2) N , where the right action of B(K2)
on M is induced by D(k). That algebra is independent of the choices of M and N . More generally,
the fusion of D and E is defined by [MN]

(16)
(

D ⊛B E
)

(I) :=



















A(I) I ∈ INT
◦
Pin

C(I) I ∈ INT
•
Pin

D(I ′)⊗ E(I ′′)
B
(

M
B(K2)

⊠ N
)

I ∈ INT
◦H#
Pin ,

where the bar indicates the closure of the algebraic tensor product with the respect to the σ-weak
topology on B(M ⊠B(K2)N). Fusion of defects is associative and unital, modulo the appropriate
2-morphisms of CN3 . For more details, we refer the reader to our future work [BDH].

3.4. Sectors [sec:ds]. Given conformal nets A, B, and A-B-defects D and E, we now introduce the
notion of D-E-sector. These are the 2-morphisms of CN3 between the 1-morphisms D and E.
Given two D-E-sectors, there is also a notion of map between them. These are the 3-morphisms of
CN3 .

Let J1 := exp([0, πi]) and J2 := exp([πi, 2πi]). Following Convention 3.6, we let j : J2 → J1

be the pin isomorphism given by z 7→ z̄. Pick a bicoloring [ı] of J1 such that ı(z) = re(z) in a
neighborhood of i, and let [ı ◦ j] be the induced bicoloring of J2. For every interval I ⊂ S1, i 6∈ ∂I,
−i 6∈ ∂I, such that i 6∈ I or −i 6∈ I, there is a unique bicoloring that is compatible with the chosen
bicolorings of J1 and J2. It satisfies

I◦ =
{

z ∈ I
∣

∣ re(z) 6 0
}

and I• =
{

z ∈ I
∣

∣ re(z) > 0
}

.
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We equip all those intervals with the inward coorientation.

Definition 3.15. Given nets A, B, and defects ADB, AEB, a D-E-sector is a Hilbert space H
equipped with homomorphisms [4rho]

ρI : A(I)→ B(H), I = I◦,

ρI : D(I)→ B(H), i ∈ I,
ρI : B(I)→ B(H), I = I•,

ρI : E(I)→ B(H), − i ∈ I(17)

for every I ⊂ S1, i 6∈ ∂I, −i 6∈ ∂I, such that i 6∈ I or −i 6∈ I. It is subject to the condition
ρI |J = ρJ , whenever J ⊂ I. Moreover, if I ∋ i and J ∋ −i are intervals with disjoint interiors, then
ρI(D(I)) and ρJ(E(J)) should commute. Here, ρI |J is an abbreviation for either ρI ◦ A(J →֒ I),
ρI ◦ B(J →֒ I), ρI ◦D(J →֒ I), or ρI ◦ E(J →֒ I), depending on the position of I in S1.

If H and K are D-E-sectors, a homomorphism of sectors is a bounded linear map H → K that
is equivariant with respect to the actions (17).

We now shortly explain the identity 2-morphisms of an arrow of CN3 , and the vertical composition
of 2-morphisms in CN3 . Let J1 = exp([0, πi]) ∈ INT

◦H#
Pin be as above. The identity sector of a defect

D is given by

1D := L2
(

D(J1)
)

,

and the fact that this is indeed a D-D-sector is a consequence of the vacuum axiom of D. Given
A-B-defects D, E, F , the composition

H ⊠E K ∈ homhom(A,B)(D,F )

of a D-E-sector H with an E-F -sector K is given by H ⊠E(J1) K. Here, the right action of E(J1)
on H is given by E(j), where j(z) := z̄ maps J1 to its complement J2 := exp([πi, 2πi]).

Remark 3.16. [uptoI] The composition of sectors is defined using specific choices of intervals. However,
using diff covariance, one can show that homotopic choices yield isomorphic answers.

We refer to [BDH] for further operations and properties of sectors.

Definition 3.17. We let Rep(A) := EndEndCN3 (A)(1A) denote the 1-category of sectors of A, also
called representations of A.

Remark 3.18. IfX ∈ C is an object in a 3-category, then EndEndC(X)(1X) is always braided monoidal.
As a special case of the above remark, we get the following result: let A be a Z/2-graded conformal
net, then Rep(A) is a braided tensor category.

The 3-category CN3 is symmetric monoidal, with product and unit objects given by

(A⊗ B)(I) := A(I) ⊗̄ B(I), and 1(I) := C.

The following is an important property of CN3 .

Theorem 3.19. [ThDe] Let 1 ∈ CN3 denote the unit object, then homCN3 (1,1) is equivalent to the
2-category VN2C of Z/2-graded von Neumann algebras over C.

Proof. We construct a functor F : VN2C → homCN3 (1,1). Equip R ⊂ C with the downward
coorientation. If a bicolored interval (I, [ı]) is in INT

◦H#
Pin , then it makes sense to ask whether ı is

C-linear, and whether it preserves the coorientation. We record that information in two variables
[CO]

(18) c :=

{

T if ı is C-linear

F if it is C-antilinear,
o :=

{

T if ı respects the coorientations

F if it doesn’t.
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Given an algebra A, the defect F (A) is then given by

F (A)(I) :=



































C I ∈ INT
•
Pin ∪ INT

◦
Pin



















A (c, o) = (T,T)

Ā (c, o) = (F,T)

Aop (c, o) = (T,F)

Āop (c, o) = (F,F)

I ∈ INT
◦H#
Pin .

The functor F (A) is constant on INT
◦H#
Pin in the sense that it assigns the identity map to every

embedding J →֒ I. If H is an A-B-bimodule, then F (H) is the F (A)-F (B)-sector given by the same
Hilbert space H . Thus, F is fully faithful almost by definition. To see that F is an equivalence of
categories, we must show that it is also essentially surjective.

Equip R := [−∞,+∞] with C1 and pin structures extending the corresponding structures on
R. It is bicolored by letting R• := R>0, R◦ := R60, and by letting the local coordinate be the

identity map. Given D ∈ homCN3 (1, 1), let A := D(R). We claim that D is isomorphic to F (A). If
I ∈ INT

•
Pin ∪ INT

◦
Pin , then D(I) = C and there is nothing to show. Otherwise, if I ∈ INT

◦H#
Pin , then

[ı] provides a map
D(ı) : D(I)→ F (A)(I).

That map is an isomorphism because as soon as [−ε, ε] ⊂ ı(I), the algebra D(R) is generated by
D([ε,+∞]) = C, D([−∞,−ε]) = C, and D(I). To see that D(ı) is independent of the choice of
ı, consider another  ∈ [ı]. Since  ∼ ı, there is an inclusion f : J →֒ I, J ∈ INT

◦H#
Pin , such that

 ◦ f = ı ◦ f . D(f) being an isomorphism, it follows that D() = D(ı). We have thus canonically
identified D(I) with F (A)(I) in all cases. �

3.5. µ = 1 and invertibility. Lµµµ. et A be a conformal net. Its vacuum sector

H0 := L2
(

A(exp([0, πi]))
)

is the identity on the identity defect of A. It is an A(I)-module for every I ⊂ S1, where S1 is
endowed with the inward coorientation. We shall say that A is irreducible if its vacuum sector is
irreducible. In other words, A is irreducible if A 6= 0, and if

∨

I⊂S1

A(I) = B(H0).

This is equivalent to the algebras A(I) being factors i.e., having trivial center.
If AHB is a bimodule between factors, then its statistical dimension dim(AHB) is an invariant that

lives in {0} ∪ [1,∞], see [Longo: A theory of dimension] for a definition. The statistical dimension
is additive under direct sums, and multiplicative under tensor product and Connes fusion:

dimA

(

H ⊕K
)

B = dim
(

AHB

)

+ dim
(

AKB

)

,

dimA⊗̄B
(

H ⊗K
)

C⊗̄D = dim
(

AHC

)

· dim
(

BKD

)

,

dimA

(

H ⊠
B
K

)

C = dim
(

AHB

)

· dim
(

BKC

)

.

Furthermore, it satisfies

dim
(

AHB

)

= 0 ⇔ H = 0 and dim
(

AHB

)

= 1 ⇔ Bop = A′,

where A′ denotes the graded commutant of A in B(H). In the latter case, the bimodule BH̄A with
actions [actD]

(19) b ξ̄ a := (−1)|a||ξ|+|a||b|+|ξ||b| a#iξ b#i

is an inverse of AHB with respect to Connes fusion.
Recall that if I, J ⊂ S1 don’t intersect, then A(J)⊗̄A(I) acts on H0 by the split property. Define

intervals [4i]

(20) I1 := exp
(

[0, πi2 ]
)

, I2 := exp
(

[πi2 , πi]
)

, I3 := exp
(

[πi, 3πi
2 ]

)

, I4 := exp
(

[ 3πi2 , 2πi]
)

.
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Definition 3.20. The µ-index µ(A) of an irreducible conformal net A is the square of the statistical
dimension of the bimodule [4I]

(21) A(I1)⊗̄A(I3) H0 A(I2)op⊗̄A(I4)op .

An important result of [KLM] says that for even nets, [klm]

(22) µ(A) = Dim
(

Rep(A)
)

:=
1

2

∑

λ

dim(Hλ)
2,

where the sum runs over all isomorphism classes of irreducible representations of A, and dim(Hλ)
is the categorical dimension

dim(Hλ) = lim
n→∞

n

√

# of irreducible summands in H⊗n
λ .

The latter is also equal to the statistical dimension of Hλ, viewed as an A(
��

)-A(��)-bimodule. The
factor 1/2 in (22) comes from the fact that we consider Z/2-graded representations, and that for
each even sector Hλ there is a corresponding odd sector ΠHλ := Hλ ⊗ R0|1.

Remark 3.21. The (super)conformal nets considered in [KLM], [CKL] are somewhat different than
ours. Thus, even if Kawahigashi-Longo-Mueger had proved the Z/2-graded version of (22), we would
not have been able to quote their result directly.

We expect formula (22) to also hold for our notion of conformal nets, and also in the Z/2-graded
case. The definition of Dim(Rep(A)) being purely categorical, it would imply the invariance of the
µ-index:

A ≃CN3 B ⇒ Rep(A) ≃ Rep(B) ⇒ µ(A) = µ(B).

In this paper, we shall only need the following weaker result.

Proposition 3.22. [IRm1] Let A and B be two irreducible nets that are isomorphic in CN3 . Then
µ(A) = 1 if and only if µ(B) = 1.

Proof. Clearly, we have

A ≃CN3 B ⇒ Rep(A) ≃ Rep(B).

Therefore, it is enough to show that

µ(A) = 1 ⇐⇒ Rep(A) ≃ Hilb
Z/2
C

.

We shall abusively denote the latter condition by Rep(A) = 1. By Proposition 56 of [KLM],
any representation of A decomposes as a direct integral of irreducible representations (this is a
property shared by separable C∗-algebras). Therefore, Rep(A) = 1 if and only if the only irreducible
representations are H0 and ΠH0 := H0 ⊗ R0|1.

Let A have µ-index equal to 1, and let Hλ be an irreducible representation. The isomorphisms

j1 : I1 → I2 ∪ I3 ∪ I4, z 7→ iz + (1 − i)
(1 + i)z − i , j2 : I3 → I4 ∪ I1 ∪ I2, z 7→ −iz + (1 − i)

(1 + i)z + i
.

can be used to form

Hλ ⊠A(I1) H0 and H0 ⊠A(I3)op Hλ = Hλ ⊠A(I3) H0,

where the right actions of A(I1) and A(I3) on Hλ are given by A(j1) and A(j2) respectively.
The remaining left actions of A(I1), A(I2), A(I3), and A(I4) equip these Hilbert spaces with the
structure of representations ofA. By Remark 3.16, those are isomorphic toHλ⊠1A

H0 andH0⊠1A
Hλ

respectively. Since H0 is an identity 2-morphism, it follows that

Hλ ⊠A(I1) H0 ≃ H0 ⊠A(I3)op Hλ

in Rep(A). Fusing with the inverse of (21), the left hand side becomes

Hλ ⊠
A(I1)

L2
(

A(I1)⊗̄A(I3)
)

≃ Hλ ⊠
A(I1)

(

L2
(

A(I1)
)

⊗ L2
(

A(I3)
)

)

≃ Hλ ⊗ L2
(

A(I3)
)
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while the right hand side becomes

Hλ ⊠
A(I3)

L2
(

A(I1)⊗̄A(I3)
)

≃ Hλ ⊠
A(I3)

(

L2
(

A(I1)
)

⊗ L2
(

A(I3)
)

)

≃ L2
(

A(I1)
)

⊗Hλ.

It follows that Hλ ⊗H0 and H0 ⊗Hλ are isomorphic as representations of A ⊗ A. This can only
happen if Hλ = H0 or if Hλ = ΠH0. Therefore Rep(A) = 1.

Now let us assume that µ(A) 6= 1. The bimodule [4J]

(23) A(I2)⊗̄A(I4) H̄0 A(I1)op⊗̄A(I3)op

with actions as in (19) is no longer the inverse of (21). But the statistical dimension being finite, it
is still its adjoint [Longo Index, statistic of q fields, II, page 289] [Nets of subf]. By strong additivity and by the
irreducibility of A, the bimodules (21) and (23) are irreducible. Among other things, this implies
that

hom
(

L2
(

A(I1)⊗̄A(I3)
)

, H0 ⊠A(I2)⊗̄A(I4) H̄0

)

= C,

where the hom is taken in the category of A(I1)⊗̄A(I3)-A(I1)⊗̄A(I3)-bimodules. Upon identifying
the appropriate intervals, we can view L2

(

A(I1)⊗̄A(I3)
)

and H0 ⊠A(I2)⊗̄A(I4) H̄0 as representations
ofA⊗A. The former corresponds to the vacuum, while the latter has statistical dimension µ(A) > 1.
Hence, H0 ⊠A(I2)⊗̄A(I4) H̄0 contains at least one irreducible summand not isomorphic to H0 ⊗H0

or ΠH0⊗H0. It follows that Rep(A⊗A) 6= 1 and hence that Rep(A) 6= 1 (see Lemma 27 of [KLM]
for the details of this very last step). �

Theorem 3.23. [inet] A conformal net A is invertible in CN3 if and only if it is irreducible and
µ(A) = 1.

Proof. Let A be an invertible net. Tensoring with A−1 provides an equivalence EndCN3 (A) ≃
EndCN3 (1) and therefore, by Theorem 3.19, an equivalence

EndCN3 (A) ≃ VN2C.

If A were not irreducible, then C⊕ C would be a subalgebra of the endomorphism algebra

EndRep(A)(H0) = EndEndEndCN3 (A)(1A)(H0),

which is impossible since the latter is isomorphic to EndEndVN2C
(1)(11) = C. Thus A is irreducible.

By Proposition 3.22, we see that

µ(A)µ(A−1) = µ(A⊗A−1) = µ(1) = 1,

which implies µ(A) = 1 since the µ-index is always at least 1.
Now we assume µ(A) = 1, and show that A is invertible in CN3 . The inverse net is given by

A−1 := Aop

as in (14). To show that it is indeed an inverse of A, we construct an invertible defect D from
A⊗A−1 to 1. Given I ∈ INT

◦H#
Pin , we may use its local coordinate to construct a doubled interval

I◦◦ := I◦ ∪
i
exp([−πi2 , πi2 ]) ∪

−i
I◦.

We equip I◦◦ with the coorientation inherited from the first copy of I◦. The two inclusions I◦ →֒ I◦◦
induce maps A(I◦)→ A(I◦◦), A(I◦)op → A(I◦◦), and so it makes sense to define

D(I) :=















A(I) ⊗̄ A(I)op I ∈ INT
◦
Pin

A(I◦◦) I ∈ INT
◦H#
Pin

C I ∈ INT
•
Pin .

The inverse defect is given by

D−1(I) :=















C I ∈ INT
◦
Pin

A(I••) I ∈ INT
◦H#
Pin

A(I) ⊗̄A(I)op I ∈ INT
•
Pin ,

16



where I•• := I• ∪ exp([πi2 ,
3πi
2 ]) ∪ I•. Here is a pictorial description of D and D−1, where the little

arrows indicate the coorientations:

I
: D(I) := A

( )

, D−1(I) := A
( )

.

We must now show that D⊛D−1 and D−1 ⊛D are equivalent to the identity defects of A⊗A−1

and 1 respectively. The begin with the first one:

(

D ⊛1D−1
)

(I) =















A(I) ⊗̄A(I)op I ∈ INT
◦
Pin

A(I◦◦) ⊗̄A(I••) I ∈ INT
◦H#
Pin

A(I) ⊗̄A(I)op I ∈ INT
•
Pin .

To show D ⊛1D−1 ≃ 1A⊗A−1 , we construct an invertible sector K. To construct the actions (17)
on K, it is enough to have actions of A(I) for every

I ∈ .

Here, the last picture is a distorted image of the closed manifold
(

exp([πi2 ,
3πi
2 ]) ∪

i,−i
exp([−πi2 , πi2 ])∪

i,i
exp([πi2 ,

3πi
2 ])

)

∪
(

exp([−πi2 , πi2 ]) ∪
i,−i

exp([πi2 ,
3πi
2 ])∪

i,i
exp([−πi2 , πi2 ])

)

,

and the arrow indicates the chosen coorientation. We identify that manifold with S1 and define K
to be the vacuum representation of A. The invertibility of K as a (D ⊛1D−1)-(1A⊗A−1)-sector is
equivalent to its invertibility as a (D ⊛1D−1)(

������
)-(1A⊗A−1)( ������)-bimodule. The latter follows from

µ(A) = 1 since

(

D ⊛1D−1
)

( )

= A
( )

⊗̄ A
( )

,

(

1A⊗A−1

)

( )

= A
( )

⊗̄ A
( )

,

and the four intervals on the right hand side can be identified with I1, I3, I2, I4 of (21).
We now show that D−1 ⊛A⊗A−1D is equivalent to the identity defect of 1. Given the equivalence

between homCN3 (1,1) and VN2C, it is enough to show that the von Neumann algebra corresponding
to D−1 ⊛A⊗A−1 D is Morita equivalent to C. Pick I ∈ INT

◦H#
Pin with (c, o) = (T,T), as defined in

(18). By the proof of Theorem 3.19, the algebra B corresponding to D−1 ⊛D is given by

B :=
(

D−1
⊛

A⊗A−1
D

)

(I),

and is independent of I. We now show that B is isomorphic to B(H), and hence Morita equivalent
to C. By the definition of fusion of defects, that algebra is given by

B = D−1 ⊛
A⊗A−1

D
( )

= D−1
( )

⊗D
( )B

(

M
(A⊗A−1)(
�� )⊠ N

)

,

where M and N are faithful representations of

D−1
( )

and D
( )
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respectively. Filling in the definition of D and D−1 in the above formula, we get

(24) B = A
( )

⊗A
( )B

(

M
A( )⊗̄A( )

⊠ N
)

,

where M and N are faithful representations of

A
( )

and A
( )

.

Here, these two last pictures represent the intervals

exp([−πi2 , πi2 ]) ∪
i,0

[−1, 0] ∪
−1,i

exp([πi2 ,
3πi
2 ]) ∪

−i,−1
[−1, 0] ∪

0,i
exp([−πi2 , πi2 ])(25)

exp([πi2 ,
3πi
2 ]) ∪

i,0
[0, 1] ∪

1,i
exp([−πi2 , πi2 ]) ∪

−i,1
[0, 1] ∪

0,i
exp([πi2 ,

3πi
2 ])(26)

and the arrows indiciate the coorientations. Let I1, I2, I3, I4 be as in (20), and let us identify (25) and
(26) with I4∪I1∪I2 in such a way that [−1, 0]∪exp([πi2 ,

3πi
2 ])∪[−1, 0] and [0, 1]∪exp([−πi2 , πi2 ])∪[0, 1]

map to I1.
After those identifications, we may pick M to be H0 with actions as in (21), and N to be its

inverse H̄0. The expression (24) then becomes

B = A(I1)⊗A(I1)op
B
(

H0
A(I2)op ⊗̄A(I4)op

⊠ H̄0

)

= A(I1)⊗A(I1)op
B
(

L2(A(I1)⊗̄A(I3))
)

= A(I1)⊗A(I1)op
B
(

L2(A(I1))⊗L2(A(I3))
)

= B
(

L2(A(I1))
)

since L2(A(I1)) is an irreducible A(I1)-A(I1)-bimodule. �

4. Fermionic model for the string group [sec:F]

4.1. The free fermions [sec:ff]. In this section, we construct the free fermion functor

Fer : (VectR,⊕)→ (CN3×,⊗).

Its input is a finite dimensional real Hilbert space V , and its output is an invertible conformal net
FerV .

Let I = (I, S) be a pin interval. The space of continuous sections Γ(I, S) has a canonical
sesquilinear pairing

Γ(I, S)⊗ Γ(I, S) −→ Γ
(

I, S ⊗ S
)

≃ Γ
(

I, densities
)

R

−→ C,

and so we may form the complex Hilbert space L2(I, S). The von Neumann algebra FerV (I) is a
completion of a Clifford algebra on L2(I, S ⊗ V ). To make sense of that Clifford algebra, we first
need to equip L2(I, S ⊗ V ) with a C-bilinear form. For that, we use the coorientation of I.

Define real subbundles S+, S− ⊂ S in the following way. Pick a section v ∈ Γ(I, T ∗I ⊗ C)
representing the coorientation and set [scd]

S+ :=
{

s ∈ S
∣

∣ s⊗ s ∈ R≥0v
}

,

S− :=
{

s ∈ S
∣

∣ s⊗ s ∈ R≤0v
}

.
(27)

The line bundles S+ and S− are orthogonal to each other and satisfy S+ ⊕ S− = S. Being a real
Hilbert space, L2(I, S+) comes with an R-bilinear pairing 〈 , 〉+. Its complexification

( , )+ := 〈 , 〉+ ⊗ C
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is then a C-bilinear pairing on L2(I, S). We define CAR(I) to be the Clifford C∗-algebra

Cℓ
(

L2(I, S); ( , )+
)

:=
⊕

i≥0

(

L2(I, S)
)⊗i/

ξ ⊗ ξ − (ξ, ξ)+, ξ is odd, ξ∗ :=

{

ξ, ξ ∈ L2(I, S+)

−ξ, ξ ∈ L2(I, S−),

where the bar refers to the norm closure in the action on some universal Hilbert space. This can
also be described as the complexified Clifford C∗-algebra CℓC(L2(I, S+)) of the real Hilbert space
L2(I, S+). Similarly, we define

CARV (I) := Cℓ
(

L2(I, S ⊗ V ); ( , )+
)

,

= CℓC

(

L2(I, S+ ⊗ V ); 〈 , 〉+
)

.

The fermion algebra FerV (I) is a completion of CARV (I). Before describing it, we show how
the construction I 7→ CARV (I) extends to a functor

CAR : INTPin →
{

C∗-algebras
}

satisfying the requirements of table (11). Let f : J →֒ I be a morphism of INTPin .
• If f preserves the coorientation then it preserves the subbundles S+ and S−.
◦ If it is C-linear, then the corresponding isometry L2(J, S ⊗ V ) → L2(I, S ⊗ V ) preserves the

bilinear forms ( , )+, and so it induces a map of Clifford algebras CARV (J)→ CARV (I).

◦ If f is C-antilinear, then the linear map L2(J, S ⊗ V ) → L2(I, S ⊗ V ) pulls back the complex

conjugate ( , )+ to the form ( , )+. We therefore get a map CARV (J)→ CARV (I).
• If f doesn’t preserve the coorientation, then it exchanges S+ and S−.
◦ If it is C-linear, then the from that pulls back to ( , )+ is the opposite −( , )+. So we get a

map CARV (J) = Cℓ
(

L2(J, S ⊗ V ), ( , )+
)

→ Cℓ
(

L2(I, S ⊗ V ),−( , )+
)

= CARV (I)op .

◦ If f is C-antilinear, −( , )+ pulls back to ( , )+ and so we get a map CARV (J)→ CARV (I)op .

As an example of the first situation, the pin involution of I acts by −1 on L2(I, S ⊗ V ) and
hence gives rise to the grading involution on CARV (I); as an example of the last situation, the
conjugating involution ci : I → I acts by i on S+ and thus by #i on CARV (I).

We now describe FerV (I) in two steps. We first construct it for subintervals of S1, and then
extend it to the general case. Equip S1 with the inward coorientation, and with the pin structure
induced from its embedding in C. Let S+ denote the line bundle over S1 given by (27). Its topology
being that of a Möbius band, we rename it Möb. Explicitly, its fiber over a point z ∈ S1 is given by

Möbz =
{

w ∈ C
∣

∣

w2

z ∈ R≤0

}

.

Consider the Hilbert transform J : L2(S1,Möb)→ L2(S1,Möb) given by

Jf(z) := 1
π P.V.

∫

S1

f(w)
zw−1

z − w dw,

where P.V. stand for the Cauchy principal value of the singular integral2. The map J is unitary and
satisfies J2 = −1. It can also be described it in terms of the Fourrier transform

J : L2
(

I,Möb
) F−−−→

{

f ∈ ℓ2
(

Z + 1
2

) ∣

∣ f(−n) = f̄(n)
}

← times i on (Z + 1/2)>0, and
times −i on (Z +1/2)<0.

��
{

f ∈ ℓ2
(

Z + 1
2

)
∣

∣ f(−n) = f̄(n)
} F−1

−−−→ L2
(

I,Möb
)

,

where F : f 7→ f̂ is given by f̂(n) = 1√
2π

∫

S1 f(z)zn−
3
2 dz.

2I computed: J : (z − 1) 7→ −i(z + 1)
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Let us expand the definition of the CAR algebra to include CARV (S1) := CℓC
(

L2(S1,Möb ⊗V )
)

.

Given a vector ξ ∈ L2(S1,Möb ⊗ V ), we denote the corresponding element of CARV (S1) by c(ξ).
Consider the fermionic Fock space of L2(S1,Möb⊗V ) with respect to the complex structure J ⊗1V

H
(V )
0 :=

∞
⊕

i=0

∧i

J⊗1V

(

L2(S1,Möb ⊗ V )
)

.

The algebra CARV (S1) acts on H (V )

0 by

π0 : CARV (S1) −→ B
(

H
(V )
0

)

c(ξ) 7→ (ξ ∧ −) + (ξ ∧ −)∗.

The von Neumann algebra FerV (I) is then defined as the closure of CARV (I) ⊂ CARV (S1) with
respect to the σ-weak topology on B(H (V )

0 )

FerV (I) := CℓC
(

L2(I,Möb ⊗ V )
) B(H

(V )
0 )

.

Let INT
S1

Pin be the full subcategory of INTPin whose objects are the subintervals of S1. Given an arrow

f : J → I of INT
S1

Pin , we now show that CAR(f) extends to a continuous map Fer(J) → Fer(I).

Clearly, it is enough to do this for a set of generators of INT
S1

Pin .
i. If f is C-linear and preserves the coorientation, pick a diffeomorphism ϕ ∈ DiffPin(S1) ex-

tending f . Let ϕ∗ denote its action on L2(S1,Möb ⊗ V ) and let CARV (ϕ) denote its action on
CARV (S1). For CARV (f) to induce a map FerV (J)→ FerV (I), we must show that the represen-
tations π0 and πϕ := π0 ◦ CARV (ϕ) are equivalent. By Segal’s quantization criterion, this holds if
and only if J ⊗ 1V − ϕ−1

∗ ◦ (J ⊗ 1V ) ◦ ϕ∗ is a Hilbert-Schmidt operator. That operator is indeed
Hilbert-Schmidt because V is finite dimensional and because its integral kernel

K(z, w) =
zw−1

z − w −
ϕ(z)ϕ(w)−1

ϕ(z)− ϕ(w)

√

ϕ′(z)
√

ϕ′(w)

is continuous on S1 × S1.
ii. Let g ∈ DiffPin(S1) be the map given by complex congugation, both on S1 and on the spinor

bundle. The induced involution on L2(S1,Möb ⊗ V ) anticommutes with J ⊗ 1V , and thus extends
to a map [mnk]

(28) H
(V )
0 −→ H

(V )
0

that intertwines π0 and π0 ◦CARV (g). If f : I ′ → I is the restriction of g to some interval I ′ ⊂ S1,
then by the same argument as above, we see that CARV (f) extends to a map FerV (f) : FerV (I ′)→
FerV (I).

iii. Finally, if ci the conjugating involution of I ∈ INT
S1

Pin , then CARV (ci) = #i, which clearly
extends to a map on FerV (I).

Every arrow f of INT
S1

Pin is a composite of arrows of the form i, ii, and iii. It follows that for
every f , the map CARV (f) extends to a map FerV (f), unique by density.

The identification of H
(V )
0 with the vacuum sector of FerV is a well known result.

Proposition 4.1. Let I := exp([0, πi]), j(z) := z̄, and consider the right action of FerV (I) on H
(V )
0

given by FerV (j). Equipped with this action, the Hilbert space H
(V )
0 is isomorphic to L2(FerV (I))

as a FerV (I)-FerV (I)-bimodule.

Proof. The Fock space H
(V )
0 has a vacuum vector Ω ∈ ∧0(L2(S1,Möb ⊗ V )), and an antilinear

involution J given by (28). The positive cone P is the closure of {aΩa∗ | a ∈ FerV (I)}. By [Takesaki:
Tomita’s...] and [Connes: Caracterization...], it is enough to show that Ω is cyclic for the left action
of FerV (I) and that J is the modular conjugation with respect to Ω.
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The first property is known as the Reeh-Schlieder theorem, and is true under very general as-
sumptions [Corollary 2.8 of G&F] [Thm 1 of Borchers: On the converse of the Reeh Schlieder
theorem].

To see that J agrees with the modular conjugation, we need to
�

Remark 4.2. For the nets FerCn = FerR2n , the fact that Ω is cyclic for FerV (I), and that J is the
corresponding modular conjugation are proved in [Was, Sec 15]

- the two actions of A on L2(A) are faithful, and are each other’s commutants,
- the cone P is self-dual, meaning that P = {ξ ∈ L2(A) : 〈p, ξ〉 ≥ 0, ∀p ∈ P},
- J(aξb) = b∗J(ξ)a∗ for a, b ∈ A, and ξ ∈ L2(A),
- aξa∗ ∈ P for a ∈ A, ξ ∈ P ,
- J(ξ) = ξ for ξ ∈ P ,
- cξ = ξc for c in the center of A, and ξ ∈ L2(A).

To finish the construction of FerV , we must extend it from INT
S1

Pin to INTPin . Given an object I ∈
INTPin , consider the set of all C-linear coorientation preserving embeddings of I → S1. Given two
elements ϕ, ψ of that set, the map FerV (ψ ◦ ϕ−1) determines an isomorphism between FerV (ϕ(I))
and FerV (ψ(I)). We then define [fcf]

(29) FerV (I) :=







(aϕ) ∈
∏

ϕ:I →֒S1

FerV
(

ϕ(I)
)

∣

∣

∣

∣

∣

∣

FerV (ψ ◦ ϕ−1)(aϕ) = aψ ∀ϕ, ψ







.

Alternatively, FerV (I) can be defined as the completion of CARV (I) inside FerV (S1) := B(H
(V )
0 ),

where the map CARV (I)→ FerV (S1) is induced by an arbitrary embedding ϕ : I →֒ S1, as above.

Remark 4.3. Our construction makes it obvious that the orthogonal group O(V ) acts on FerV . But
more is true: the path group

PIO(V ) := {γ : I → O(V ), of class C1}
acts on each algebra FerV (I). Indeed, that group acts on L2(I, S+ ⊗ V ) and hence on CARV (I).
Finally, this action extends to FerV (I) by an application of Segal’s quantization criterion. Equivalent
to the existence of an action

ρ : PIO(n) → Aut
(

FerRn(I)
)

is the fact that one can extend the free fermion construction to intervals with vector bundles [fbu]

Fer :











Intervals I ∈ INTPin equipped
with a bundle V → I of finite
dimensional real Hilbert spaces.











−→ VN

(

V → I
)

7→ FerV (I)

(30)

Indeed, if V → I is a vector bundle one defines

FerV (I) :=







(aϕ) ∈
∏

ϕ:V ≃Rn×I
FerRn(I)

∣

∣

∣

∣

∣

∣

ρ
(

ψ ◦ ϕ−1
)

(aϕ) = aψ ∀ϕ, ψ







,

where the product is indexed by all the possible trivializations ϕ of the vector bundle V .

We finish this section by stating an important property of FerV .
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Theorem 4.4. The free fermion conformal net FerV is an invertible object of CN3 .

Proof. Let m := dim(V ). By Theorem 3.23, it is enough to show that µ(FerV ) = µ(FerRm) = 1.
By the multiplicativity of the µ-index, it is enough to treat the case m = 2n. The net constructed
in [Was, Sec 15] is isomorphic to FerCn = FerR2n , and the fact that µ(FerCn) = 1 follows directly
from [Was, Sec 13-15]. �

4.2. The string group as a 2-group [sec:2g]. Recall the definition of String(n).
Explain the meaning of the defect Dg induced by an element g ∈ O(n).
The groupoid underlying String(n).
String(n) as a topological stack.

4.3. The string group as a topological group [sec:tg]. Replace Dg by its weak version.

4.4. Computation of the boundary homomorphism [sec:bh].
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