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Introduction. The purpose of this paper is to obtain some necessary conditions for
a link in Buclidean 3-space to be spanned by a locally unknotted surface of given
type in one half of 4-space. In particular necessary conditions for two links to be
cobordant are proved.

In section 1 the problem is reduced to one concerning ribbon immersions in 3-space,
in which form it is amenable to an algebraic approach. In section 2 some new algebraic
invariants of link type are introduced. These generalize the signature and nullity,
defined by Murasugi(8). Their relation to the geometric problem and the fact that
they are cobordism invariants are shown. Sections 3 and 4 are devoted to computation
of the invariants in certain cases and to corollaries arising from these computations.
The most important corollaries concern the embeddability of 2-spheres in 4-manifolds
to represent certain homology classes.

The results of section 2 can be improved and expanded in certain cases and this
will be the object of a further paper.

1. Geometry. This section deals with aspects of link geometry. Definitions and
certain proofs are given in some detail in an attempt to create a reference for future
use. All maps and spaces are in the P.L. category and I have used the terminology
introduced by Hudson and Zeeman (4, 5,12).

Definition 1-1. If N is a manifold 2N will denote its boundary and int N will denote
N-aN.

Definition 1-2. If g: M — N is a map of manifolds, g is proper if g(0M) < ON and
glint M) < int V.

Definition 1-3. If X is a topological space x(X) will denote the number of its com-
ponents.

Definition 1-4. A link of n-componenis is the oriented image in Euclidean 3-space,
R8, of an embedding I: S, R® where S, = Cj 8}, a disjoint union of n copies of the
i=1
1-sphere. For the purposes of this paper if k: §, > 8, is an orientation preserving
homeomorphism of §,, then I(S,,) and I2(S,,) are the same link. A knot is a link of one
component,

Definition 1-5. Two links are said to be equivalent, =, if they have ambient isotopic
defining embeddings. Little distinction will be drawn between a link and its
equivalence class.
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Definition 1.6, If L is a link defined by I: 8, > R® and k: R®*— R? is an orientation
reversing homeomorphism denote by pL the link defined by Al.

Defination 1-7, L is amphiceiral if L = pL(2).

For the purposes of this and the ensuing sections N denotes a compact, oriented
2-manifold such that every component of ¥ has a non-empty boundary. The genus
of N, 2(N) is the sum of the genera of its components. The genus of a connected sur-
face N is 3(k(N)+ 1 —x(6N)) where H,(N) is free Abelian of rank L(N).

If there exists an embedding ¢: N — B3 such that g(0N) = L (8N inherits an orienta-
tion from N) g{N)is said to span L. Every link is spanned by some orientable surface (2).

Definition 1-8. The genus of a link, (L), is the minimum integer, m say, such that
L is spanned by a surface of genus m.

Definition 1-9. The degeneracy of a link, d(L), is the maximum integer, m say, such
that L is spanned by a surface with m components.

Definition 1-10. If a link L is spanned by a surface, g(N) say, such that A(N) =0
and p(L) = #(N) = »n say then L is the trivial link and will be denoted by U,.

Definition 1-11. Let L be a link and b: I x I->R? an embedding. b is said to be
compatible with Lif b(I x I 0 L = b(I x 8I) and if the orientations inherited from L on
b(I x oI induce the same orientation on b(f x I'}. In this case the link

(L - b xa)) u bAI x I,

its orientations inherited from L, will be denoted by bL. It is clear that the map
bT; I x I - R3 defined by bT(x, y} = b(y, x) is compatible with bL and that bT(bL) = L.
Compatibility implies that |#(L)—#(dL)] = 1.

Let L, and L, be links such that L,n L, = . Put L = L,y L,. It is possible to
impose restrictions on L,, L, and b as follows.

(A) B(Ix0)<= L;and (I x 1) < L,

(B) There exists a 2-plane R? < R3such that R2n L = @, L, and L, are separated
by R? and b(I x I) n B?is an arc of K2,

Definition 1-12. If (A) holds define L, + L, to be bL.

If (B) holds define L, # L, to be bL.

If K, and K, are knots then K, # K, = K, # , K, is independent of the choice of b.

Definition 1-13. A ribbon map of N into R? is & map, ¢ say, with no triple points
satisfying: the doublepoint set consists of mutually disjoint arcs in N which may be
paired (I, I;) so that g(I;) = g{I}), with I, properly embedded in ¥ and I; contained in
int N, for all ¢ in some finite indexing set. It is also assumed that the self-intersections
of g(N) at g(I;) = g(I;) are transverse.

Definition 1-14. g(N) will be called a ribbon of type N and g(2N), denoted by o(g(N}),
a rebbon link of type N. This generalizes the concept of ribbon disc and ribbon knot ((1),
(2, p-172, (3)).

In the following definition »B denotes the disjoint union of » copies of the 2-dise,

. n
ie. U B,
i=1
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Definition 1-15. L > L' if for some integer » there exists a ribbon map g: 2B -~ R3—L
such that L’ = {...((L+,,8B1) +,,9B;) ...) +, 8B, where B; = g(B,).

Definition 1-16. L is ribbon equivalent to L', denoted by L £ I/, if there exists a
sequence of links, L;(j = 1, ...,m)say,suchthat L, = L, L, = L’ andforj =1, ...,m -1
either L; > L, or L, > L.

= is an equivalence relation on the set of links which preserves the number of
components,

In what follows R* denotes Euclidean 4-space, a general point w having Cartesian
coordinates (w,, w,, wy, w,). R? is the subspace {w|w,; = 0} of R* and R% the subspace
{w|w, 2 0}. The general surface, N, will have the same properties as before.

Let g:N—>R% be a proper simplicial embedding. Put R} = {w|w, =} and
Rj 14 = {Ww]t; € wy < by} Let y: R*— R® be the map defined by

Y(wy, wy, wy, wy) = (0, w,, wy, w,)

and put g(N); = B n g(N), g(Nig, 40 = Blyyin 0 g(V) and L, = p(g(N),). It is now

assumed (cf. (8)) that ¢ has been modified to satisfy the following condition.
Condition 1-17. L, is either a link, inheriting its orientation from g(¥);, ., or a graph

with a single vertex of order other than two. This order may only be zero or four.

Definition 1-18. Let X? denote the subset of real numbers {z]L, is not a link}. X is
2 finite set. X¢ will be called the singular sef of g(N) and z€ X¢ a singular poind.

Let & be a positive number such that & is less than the difference between any two
members of the set {z|xe X¢orx = 0}. Itis easy to show that L, = L, if [{,, %] n X?= &
using the theorem of Zeeman and Hudson that 1.u. isotopy implies ambient isotopy
{(5), Theorem 2).

Put

X9 = {x|ze X? and L, has a vertex of order zero}

and X¢ = {r|lxe X? and L hag a vertex of order four}.
It is clear that X¥, and X¢ partition X? The next step is to examine the relationship
between L,_; and L, , when ze X?, and e X¢.
Proposition 1-19, If ze X§, then the l.u. condition on g(¥) implies that
Lz-!-a = Lz-—é‘ vk

where k has one component, is unknotted and is unlinked with Z,_, (that is, k spans
a dise in R2—L__,), or L,_, = L_,, Uk with the same conditions. In the first case
(N )ip—s ris) 8 the union of u(L,_,) annuli, each with a boundary in both B}, and
R}_,, and a disc with boundary k. A similar situation (upside down) holds in the
second case.

Proposition 1-20. The converse of Proposition 1-19 is true. That is, if 7, and L, are
links in B} and R} (@ > b) so that ¥(L,) = y(L,) U k where k spans a disc in R - y(L,),
there is a surface in R}, ;, spanning them of the type described in Proposition 1:19.

Proposition 1-21. If ze X¢ then, again using the Lu. condition on g(¥), it is possible
to show that L, = bL,_, for some b: I xI— R?, compatible with Z__,. In this case
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G(V)iz—s, 24418 8 union of annuli each with a boundary in B} _;and R , ;and a punctured
disc with three boundaries meeting both BL_; and R}, ,.

Proposition 1-22. The converse of 1-21 is also true. In this case if L, and L, are links
in R} and R} (¢ < d) such that y(L,) = by(L,) for some b then there is a surfacein R}, ;
of the type described in 1-21 if ge{L;) = (L) + 1.

Proofs of these propositions are not given. Fox(2) and Murasugi(s, 9) state some
of the results involved and it is easy to supply proofs.

It is necessary to have a further partition of X¢.

Definition 1-.23. Define:

X9 to be {z|xe X¢ and w(L,,,) = (L, ;) + 1},

X4 to be {z|re Xv and p(L, ;) = p(L,_4)—1},

X4, to be {z|xe X§ n X{ and A{g(N)p, ,—n) = B(G(N o, z481)}

X4, to be {x|ze X4, and p(g(N ), ;- V Bs) = #g(N)ig, z1s1 U B3} + 1},
and %9 to be the set of subsets X{,, X¢, X¢, X¢ X9 X9 of X¢.

It follows from Propositions 1-19 and 1-21 that X4 and X¥ partition Xv.

Definition 1-24. Define the fype of xe X¢ to be the subset of ¥7 to whose members
it belongs.

THEOREM 1-25. Given a link L in R3 there exists a Lu. proper embedding g: N — R%
such that g(dN) = L if and only if L = L' where L’ i3 o ribbon link of type N.

The proof of Theorem 1-25 depends on lemmas to be stated. The vertices corre-
sponding to points of X¢ can be regarded as handles in a handle decomposition of
N moddN. In this light the points of XY n X% correspond to 0-handles, the points of
X%, n X4 to 2-handles and those of X¢ to 1-handles. It is possible to carry this analogy
further by ‘swapping’ handles, the object of the next two lemmas.

LeMMA 1-26, If ,€ X9, n X9 and 2, X¢ are singular points of g: N— RY such that
Xy < Xy and (X, 20) N X0 = 5 then there exisis ¢': N — R4 such that:

(1) 9o, ze-s1 = G (N0, 2,81 8 (N iz, 15, 01 = 9 (W )im, 8, o)

(2) X% has two points ¢, < Yy, # [x,— 8,2, + 6] and y,; has the same type as x; for
i=1,2.

Proof. If xyc X2 then L, ., = (bL,,_;) Uk, where k spans a disc in R*—bL,,_, Now
(bLy, )V k=0b(L,_,Uk’) where k' spans a disc in R*—(L, _;Ub(IxI)). So by
propositions 1-20 and 1-22 (N )5, _, ,, 45 can be replaced by a surface with the required
properties.

If 2, X,, a similar argument can be used.

LevMma 1-27. If X045 the singular subset of g: N— R and x,e X4, x,e X0 — (X9 n X9)
are such that x, > x, and (%,,2,) " X9 = 3 then there exists g': N~ RY suck that ¢’
satisfies conditions (1) and (2) of Lemma 1-26.

Proof. If xye X§ then L, .y = by(b, L, _,). It is possible to show that there exists
by: I x I > R3, isotopic to b, (as embeddings compatible with b,L, ,), so that
byIxDnb(IxI)= g.
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Then by(b, L,, ) = by(b; L, ;). The isotopy can be constructed by sliding by(f x o)
off 5,(8I x I) if necessary and pushing intersections of the bands off through b,(Z x 0).
L, .; may now be regarded as b,(6;L,,_,) and g(¥)y, 4 . .5 can be replaced by a
surface with the required properties, using two applications of Proposition 1-22. If
x,€ X¥, n X9 then 2-13 follows from Lemma 1-26 (upside down).

It is possible to arrange in both Lemmas 1-26 and 1-27 that the embeddings g and ¢’
are isotopic but this is unnecessary for the purposes of this paper.

Lenvma 1-28, If L s a link in R® there exists a proper Lu. embedding g: N— R,
satisfying Condition 117 such that X4 0 X% = @ and g(oN) = L< L s a ribbon link
of type N.

Proof. = : X? is a finite set of points, =, (¢ = 1,...,m) say, such that z; > x,,, for
all i. The proof is by induction on 4. Assume that L, ; spans a ribbon, B, say, of type
(N )eeis, 1 in B If ;€ X7, then by the hypothesis of the lemma ;€ X4 and therefore
L, _s=L,,;Uk where k spans a disc in B®—L__,. This disc is ambient isotopic in
R3_L,.,, %o a disc D with boundary ¥’ say not meeting B, Now L,. , =L, , 0 ¥
and L, ; spans R,u.D, which is a ribbon of type g(¥N),,_; . The existence of
R;,; = B,u Dspanning L, ,; = L,,_; proves the inductive step in this case.

Ifx;e X then L,, ;, = bL, ,,forsomebd: I x I R Itis possible to isotop b so that
b(I x I} meets R; transversely and d({int I)x I} n (R¥ U@R,) = & where R} is the
doublepoint set of B,. Then b( x I) U R, is a ribbon of type g(N),,_s oi(b(I xI) is &
1-handle of the same type as that of g(N) at ,). Putting R,,, = &(I x I) U R, in this
case completes the induction because L, ., = @ and L, _, = L.

< : Let ¢y: I x I - R}, 1) be the proper embedding such that g,(L x0) =L and
(gL x I} < L. g,(L x I) spans a ribbon, R say, in R defined by g,: N — R}, Let N
be subdivided so that the doublepoint set of g, is a subcomplex. Let .D; be the second
derived neighbourhood of I in N for all 4 (using the notation of Definition 1-13. Then
go| (N — liJ D,) is an embedding as is gz|(LiJ D,). Let v, be a point of B% above (with

respect to w,)} go(D,). Then g,(Ix I) Y g(N— lij D)y v (U D;) where D; = v,4,(0D,) is
a L.u. properly embedded copy of ¥ in R% . It is not difficult to modify this to meet the
conditions of the lemma.

Remark 1-.29, For every link L there is a surface N and a lLu. proper embedding
g: N - R% such that g(6N) = L. This well known result follows from the remark after
Definition 17 and Lemma 1-28,

Definition 1-30. Two links L and L’ are cobordant if for some N there exists a Lu.
proper embedding g: N — B suchthat L, = L, L, = L’ and g(V) is aregular neighbour-
hood of g(N), ) in g(HV).

It is easy to check that cobordism is an equivalence relation on the set of links. The
next step is to show that this equivalence relation is identical to ribbon equivalence.

Lemua 1-31. If L and L’ are links such that L > L’ then L is cobordant to L.
Proof. Using the notation adopted in Lemma 1-15 L’ = (L u U 2B)) - J J; where
3 i
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B; = g(B,) and g is a ribbon map of U Bys being disjoint 2-discs. J; is L n B}, an arc
of B;. 7
Let g, and ¢, be proper embeddings,
gy L' xI—>RY, g, go: LxI—>Riyy,

such that yg,(L’ x 8) = L’ and yg,(L x §) = Liorallse I. Let D;, v, and Dj(v;eint Bfy y))
be defined as in the proof of 1-28 for theribbon B} in R* By Remark 1:29 ¢,(L x I) n B}
spans a Lu. properly embedded surface, N' say, in B}, ). Then the embedded surface

Hig(L'x v (L;J B;—UD)y (LjJDi) UgelLx I) U N')

where H: Rt~ R1is defined by
Hw,, wy, w,y, w,) = (w0, +1, Wy, Wy, Wy)

satisfies the criteria (¢ = 2) of Definition 1-30 and L is cobordant to L',

Lemma 1-32. If two links L and L' are cobordant then L = L.

Proof. Using the notation of Definition 1-30 let N’ be g—'(R}, ), a union of disjoint
annuli. Put ¢’ = g|N’, and modify ¢ to satisfy Condition 1-17,

By Lemmas 1-26 and 1-27 ¢* may be modified further so that

z,€X0n XY, x,eXinXy, 2,cX¢nX? and =x,eX%n X%

implies that #, < x, < ¥ < 23 < x,. (Note that for ¢', X' n X = X§ = X9} It is
now possible to show, using a similar induction to that in the proof of Lemma 1-28,
that L, > Ly, and Ly~ Ly, Thus L . L'. From Lemmas 1-31 and 1-32 the following
corollary can be deduced.

COROLLARY 1-33. L = L' < L is cobordant to L’.

Proof of Theorem 1-25, If g: N — R is a L.u. proper embedding it may be modified,
keeping g(éN} fixed, to satisfy Condition 1-17. Again using Lemmas 1-26 and 1-27
g may be modified, keeping ¢(é.N) fixed so that

reXin Xy, zeXf, %eX?-((X%nX9yIXE)
implies that @, < @, < 1 < 23 Then L, is cobordant to L, and g(N});,, , satisfies the
hypothesis of Lemma 1-28. So L = Lo = L, and L, is a ribbon link of type N.

This proves one implication of Theorem 1:25. The converse follows directly from
Lemmas 1-28 and 1-33.

2. Algebra. In what follows Z™ with any subseript will denote a free Abelian group
of rank n. Z will denote the integers, C' the complex numbers and P the ring of integral
polynomials of a single variable £.

Definition 21, A bilinear form is a triple (I, Z», ) where R is a commutative ring
with unit and ! is a bilinear mapping I: Z* x Z*-> R. Where no ambiguity arises the
form will be denoted by I.

Two forms (I}, Z¢, R) and (5, 2%, R) are equal, denoted by I, = l,, if there is an
isomorphism ¢: Z¢ - Z% such that I(¢{z),i(y)) = {,{z, y) for all »,  in Z}.
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If Z™ is a subgroup of Z» and ! a bilinear form on Z* the induced form on Z* will be
denoted by I|Z™.

Definition 2-2. A bilinear form (I, Z®, B) has a well-defined determinant, denoted by
det (1), the determinant of any matrix of [ computed from some basis of Z*. The rank
of lis the maximum integer, m say, such that there exists Z» = Z* with det (I[Z™) # 0.
The rullity of 1 is defined to be » —m and is denoted by =(l).

Definition 2-3. Let (I, Z*, Z) be a bilinear form and w a complex number such that
f2o] = 1 and w % 1. Then (¥, Z#, C) denotes the form given by

wz(x’ ?/) = %‘( 1- E) {I(I, y) - wz(.% Z‘)}

and is Hermitian. (¢, Z», P} is the form given by ¥*(x, y) = I(z, y) —il{y, x).

Let w, = exp (2m#ni/2m + 1) for all odd prime p where p = 2m + 1 and let w, = —1.
Then o, ({) will denote the signature of *»{ for all prime p and n,(I) its nullity. These are
integral invariants of {.

Definition 2-4. (I, Z», Z) is proper if the polynomial det (*) evaluated at ¢ = 1 has
modulus 1.

Levma 2-5. If (I, 2%, Z) 13 proper then n,(l) = 0 for all prime p and hm opll) = oo(l),
where p, is the sequence of primes in ascending order.

Proof. Let f(¢) = det (). Then [f(1)] = 1. If, for some prime p, n,(}) > O then
det (#l) = 0 for that p. This implies that w, is a root of f(t) = 0. Put

Fplt) = £0).F(@) ... ),

Then |f,(1)] =1 (*).(w,)" is a primitive root of unity for all »r = 1,...,p—1. Thus
(1+2+25... +¢1) is a factor of f,(f) which contradicts (*). The proof of the second
statement of the lemma requires only simple analysis.

There now follows a definition of an equivalence relation between bilinear forms
which is important in the context of later sections.

Definition 2-6. Given two hilinear forms (I,, Z#, Z) and (I,, 2™, Z), with m > » and
m = n+ 2r for some integer r, write I, - I, if there exists a decomposition

AR~ R AL TACY A

such that:

(@) L|Z¢ =1,

() | Z1®Z; is proper,

{¢) 15| Z% is the zero form, and

(@) Lz, y) = Ly, z) = 0if xeZ} and yeZj.
Two forms (I, 27, Z) and (I, Z™, Z) are equivalent, denoted by I = 7', if there exists
a sequence of forms I =1,,1,...,5, = I’ such that for all i = 1, ..., 1 either I,_, 1, or

;- 1;_,. This is clearly an equivalence relation and it is easy to prove the following
lemma.

Lemma 2-7. If L =1 then o (1) = o,(I') and n, (1} = n,(l') for oll prime p.
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Definition 2-8, (I, ZmH, Z) is an extension of (I, Zm, Z) if there is a decomposition
ZmH ~ ZP@Z  such that |27 = 1.

Levma 2:9. If lis an extension of U then for all prime p either
o)=Y =1 and n,(l) = n,(l'),

or [y —ny(F) =1 and  o,() = o, (1),

Definition 2-10. If (1,, Z™, Z) and (I, Z*, Z) are bilinear forms then (I, ®l,, Z"®H 2, Z)
is defined by:

(@) L®,|Z7 = 1, and [, ®1,|Z" = 1,

&) Loz y) =L, ®lly,2) = 0 if xeZ™ and yeZn.

Lemma 2-11. If 1 = 1, @1, then

o) = apth)+oplls)

or all prime p.
and np(l) = ny() +7,(L) } % ¥ ¥

The proofs of Lemmas 2-9 and 2-11 are straightforward, requiring only simple
manipulation.

The rest of this section is devoted to definitions and discussion of algebraic in-
variants of link type. These invariants generalize the signature and nullity of links
defined by Murasugi (8).

Let g: N— R3 be an embedding of a connected surface spanning a link L. N is
orientable and can be identified with the subset ¥ x 0 of N x I with ¥ x I oriented
suitably. There exists an embedding &: N x I — R? such that @{(xz, 0) = g(x) for all
xeN. @ is unique up to ambient isotopy (rel ¥ x 0). This may be proved by the
collaring techniques introduced in chapter 5 of (12).

Let ¢: g(N)— E® — g(N) be the embedding defined by i(g(x}) = G(x, 1).

Definition 2-12. Let &, 7 H,(g(N)) be represented by cycles  and y respectively on
g(N). Then define (), H,(g(N)), Z} by L,(Z,7) = {x,i(y)), where if ¢ and b are cycles
in R? {a, b} denctes the algebraic linking number of @ and b. Iy is a well-defined bilinear
form on H,(g(N)) and will be referred to as a form for the link L.

Levma 2:13. If I, and , are forms for equivalent links L and L' corresponding to
embeddings of connected surfaces spanning L and L' then 1, =1,

No proof of this will be given. A proof using projections of links is summarised by
Murasugi in (8). A proof using the above definitions is given in (11).

Definition 2-14. If L is a link spanned by a connected surface g(N) define

o,(L) to be a,(l,)

and n,(L) to be n, (1) +1

LemMa 2:15. o,(L) and n,(L) are well defined. This is a consequence of Lemmas 2-7
and 2°13.

Lemma 2-16. If K <5 a knot then o ,(K) 1s even and n,(K) = 1 for all prime p. Further-
more, Pm {0, (K}~ 05(K).

} for all prime p.
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Proof. If g(N) spans K then H,(g(N)) has even rank. The form (%, %) —,(7,%) is
the intersection form for H,(g(N})) and so is unimodular. Thus I, is proper and the
results follow from Lemma 2-5.

Levma 2:17. (L) 2 d(L) for any link L and all prime p.

Proof. Let d(L) = m+ 1. Then L is spanned by ¢g(N) where g(N) has m+1 com-
ponents. A connected surface ¢'(N') spanning L can be constructed from g{(¥N') by
piping components of g(N') together using m pipes. H,(¢'(N’)} has a direct summand
Z™ generated by simple closed curves, one on each pipe. Then I,(Z,7) = 0 if £eZ™ or
yeZ™. The result follows immediately.

The following three lemmas are proved by Murasugi in (8), using projections. They
may be proved directly from the above definitions by manipulation of the relevant
spanning surfaces.

Lemwma 2-18. If L' = pL then there exist forms I, and 1, for L and L' respectively such
that 1, = —~1,.

CoroLLary 2:19.  o,(L)=— p(pL)} for all links L and
and n,(L) = ny{pL) all prime p.

Lemma 2:20. If L = Ly % L, there exist forms L, I, and I, for L, Ly and L, respec-
tively such that 1, = 3m®3or

CoroLLARY 2-21. For all prime p, any two links L, and L, and any allowable b
oLy % pLg) = 03 (Ly) +op(Ly)
and B ( Ly # pLg) = 1y (L) +mp(Ls) — 1.

Lumma 2-22. If L' = bL for some link L and compatible b then there exist forms 1, and
I, for L and L' respectively such that I, is an ewtension of ;.

CoroLLaRY 2:33. With L and L' as in Lemma 2-22 ¢ follows from 2-9 that for all
prime p
either te{LY—0, (L'} =1 and n,(L)=n,{L),

or |uglL)—n (L) =1 and o,(L) =, (L)

CoroLLARY 2-24. It can be deduced at once from Corollary 2-23 and Lemma 2-16 that
Jor any link L and prime p, n,(L) < p(L).

The following lemma can be deduced from a result of Murasugi (8). It is also proved
in (11).

Lemma 225, If L and L' are links such that I 5 I then there exists form 1, and 1, for
L and L' respectively such that I,—>1,.

CoroLLARY 2-26, It follows from Lemma 2-25 and Corollary 1:33 that if two links L
and L are corbordant then for all prime p o ,(L) = 0, (L) and n,(L} = n,(L").

The main result of this section is the following generalization of a theorem of
Murasugi (8).
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TrroREM 2-27. If g: N > R is a proper locally unknotted embedding and L = g(8N)

then for all prime p.
lo (L) + | L) — p(N)| < pdL)— p(N) + 2R(N)  (*).

This is a consequence of Theorem 1-25 and the following lemma.

Leayma 2-28, If L spans ¢ ribbon of type N then the ineguality (*) kolds.

Proof. Let g: N — R® be the ribbon map such that d(g(¥)) = L. It is possible to
embed properly in N arcs J; (j = 1,...,{) where ¢ = p(L)— p(N)+ 2h(N)} with open
regular neighbourhoods N(J;) so that ¥ — ) N(J}) is the disjoint union of x(N) dises.

i
This is proved by induction on #. It is possible to ensure at the same time that
UJnUI; = & (Definition 1-13) and that the intersections of U J; with | I; are
i i 5 @

transverse. This condition implies that g|(N — U N(J;)) is & ribbon map. Furthermore,
the closure of g(N(J))) is the image of a map bj: Ix I R® compatible with
by y(b;_ol...(6yL)...)) foreach j=1,.,¢

Now a(g(N) —ljJN(J;)) i by(b,_y(...(b, L)...)), L' say. By Corollary 2-23

|oo(D) — 0o L) + |y (L) = np(L)| < ¢ forall p.
L’ is, by definition, ribbon equivalent to U,y for which

(U} =0 and 2, (Ugy) = p(N).

By Corollary 2:26 o,(L') = 0 and n,(L) = g(N). Therefore

|op(L)| + |y (L) — p(N)| < ¢ = u(L)— (V) + 20(N).

3. Computation. This section concerns the computation of o, and =, for certain
types of link. The first result is useful in the study of certain properties of 4-manifolds
and its use is illustrated in section 4.

Definition 3-1. Let L be a link, K one of its components and A: S! x I - B3 an embed-
ding such that (8 x 0) = K = (S < I)nL. Let K, = h(S'x }} and K, = A(81x 1)
oriented in ‘opposite directions’ so that K, and X induce different orientations on
k(S x I). Then the link L y K, U K, is a (n, L, K)-pair where n = (K,, L) (2-12).

THEOREM 3-2. With the notation of 3-1 and n + 0 put L' = LU K, U K,; then if pin
o (L) = 0,(L) and n,(L') = n,(L)+ 2.

Proof. Let g(N) be a connected surface spanning L and let 4 = A(8? x [1,I]). Then
it can be assumed without loss of generality that 4 intersects g(&N) in s ribbon inter-
sections where m = |n| (Figure 1). It is possible to use A and g{/V) to create a connected
gurface g'(N’) spanning L' (Figure 2). It can be seen that k(N') = k(N)+2m. It is
possible to choose a regular neighbourhood 7" of K containing 4 such that g'(¥’) and
() coincide outside 7' and

1. Hy(g{N))is generated by elementsE, (j = 1,..., k(N)) represented by cycles ¢; on
N in the complement of 7';
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2. The cyclesa; (i = 1,...,m)and &, (¢ = 1,...,m) (b,,,, = b,) of ¢'(V') indicated in
Figure 2 are contained in 7. Then the totality of elements &, @,, b, H(g'(N")) repre-
sented by ¢;, #; and b; respectively, each with an orientation form a basis for H,{g'(N"})).
Let ZM™Mbe the direct summand of H)(g'(N')) generated by ¢, (j = 1,..., k(N)) and Z*"
the direct summand generated by &, (¢ = 1,...,m) and b,{¢ = 1,...,m). Then clearly
I |29 =1, and I{x, y) = L (y, %) = 0 if x€Z¥™ and yeZ*". It can be checked from
Figure 2 that (with appropriate conventions for orientation and linking number and
with b, = b,,))

W@ B) = 8. Up(bios, @) = — 8y,
I‘r(@‘, &j) = 0, l(b{, bj) = 0.

These formulae define I,|Z** and it is easy to check that n,(l,|Z*") > 2 if p|n. This
proves that n,(L') 2 n,(L)+2.

} forall 4,35=1,...,m,

&

- Ky oy il ///

/SR AN
TR T

L)

If L* = Ly U, where U, is spanned by a disc in B3~ L it is clear that there is an
embedding b: I x I > R? compatible with L* (with ends on U)) such that b(L*) = L.
ny(L¥) = ny(L) + 1 and o,(L*) = o,(L). By Corollary 2:23 n,(L'} < n,(L)}+ 2. There-
fore n,(L') = n,(L)+2 and, again by 223,

o,(L') = o,(L*) = o,(L).

Remark. It is possible to show that if » = 0 then for all p, n,(L') = n,(L)+ 2 and
o,(L} = o,(L’). The proof is similar to that given above.
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Definition 3-3. Let L, , be the link with the projection shown in Figure 3. The shaded
regions of the projection indicate a Seifert surface (2), g{N) say, spanning L_ .

LEMa 3-4. oLy ) 2 q+r—1 forall primep
and oLy 22 if plg or pir

g fomponents
e

D, ... D

e
A YA Y. 2 L
7/ '

2
7/ /% % DA T
r components < 7/4 |// % ‘[7///
:

V. VA ... W4 A
// ///// ... A_VA 1

Y. 2, - V5 VA
AV, V///, % AV
% % G

Fig. 3

Proof. Let @, (i = 1, ..., gr)e Hy(g(N)) be those elements represented by the dotted
curves in Figure 3. Then I (a;, @;) = &; (with an appropriate convention for linking
number). Also @, (: = 1,...,¢7) generate a direct summand Z# of H,(g(N)) and
MN) = 2gr—q-r+1. For all p, 6,,(1,] Z%) = ¢r. This implies that o,,(L) > g+r—1. It
can be shown using this projection of L, , and an induction argument that det (%)
contains a factor of the form (t2— 1) (¢ —1). This is sufficient to show that »,(L ,) > 2
if p|g or p|r.

This section is concluded with one further result which is easily computed.

LEmMa 3-5. Let K, be the torus knot determined by the pair of inlegers (2, 2n + 1), that
8 (2n+ 1), tn Reidemeister’s table (10). Then for odd primes |o (K )| = 2(n—~[2n+1/2p])
(where [ ] means ‘integral part of ') and |oo(K,)| = 2n. The sign depends on conventions.

Remark. By 3-5 |pi0'pj(K1)—o-,,j(Km)| =2ifi=4,0ifi <4,

4. Corollaries. This section is concerned with two applications of the results of
section 2,

Definition 4-1. Let & be the set of cobordism classes of knots. Then it is well known (2)
that ® forms a group under the addition operation.
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Definition 4-2. Let Z® be the abelian group of infinite sequences of integers, {n,}
say, such that lim %, exists and is finite. Addition is defined by {n;} +{m;} = {n; +m;}.

fra )

THEOREM 4-3. T'here exists an epimorphism k. § > Z=.

Proof. Let k,({K}) = {}0,(K)} where p; is as before the sequence of primes in
ascending order. This is well defined by 2-5 and 2-6 and is a homomorphism
by Corollary 2-21. The remark at the end of section 3 shows that {g, (K,)} for
n = 1,...,00 form a generating set for Z* and so & is an epimorphism,

The inequality of Theorem 2-27 has several simplifications in particular circum-
stances, The one of use in the second corollary follows.

Definition 4-4. L is a weakly slice link (8) if there exists a locally unknotted proper
embedding g: N — R% such that g(8N) = L and A(N) = 0. Then if L is weakly slice by
2-27 it follows that for all prime p |o(L)| +n,(L) < p(L).

The problems to which the following results give partial answers were posed by
Wall and published in ((7), problem 8). Theorem 4-15 is an improvement of a result of
Kervaire and Milnor’s ().

Let @ denote the 4-manifold S x $2 and let & be a point of S2. & and & will denote
the generators of H,(Q) represented by 8% x x and « x §? respectively.

TEEOREM 4-5. Given integers g and r there does not exist a locally unknotied embedding
of 8% in @ whose image represents q@+7b in Hy(Q) if ged. (g, 7) > 1.

Proof. It can be assumed without loss of generality that ¢ > 0 and r > 0. Let D be
a disc in §° such that xeint D. Then (8% x D) u (D x §2), @' say, is a regular neighbour-
hood of (82x 2) U {xx 8% in @ and (S2x z) U (x x 82} is a spine of Q. Let g: 82— @ be
a locally unknotted embedding such that g(8%) represents ¢@ + 5 in Hy(Q). ¢ may be
madified isotopically so that g(S?) n (D x D) = @ and the intersections of ¢g(S%) with
(82— D) x = and x x (8% — D) are transverse (with respect to the product structure on
@'). Let r + 2n, and g + 2n, be the number of points of

g8Hn (($2=Dyxz), ¢(8)n (xx(S*-D))
respectively. L, , again denotes the link described in Figure 1 with named components
K and K’. Let L,, be the link obtained by adding n,(g, L, ,, K)-pairs and =,
(r, L, ,, K')-pairs to L, , in such a way that the embedded annuli used to define each
pair intersect mutually in K, K’ or not at all,

Q- (int Q') is a 4-ball and 8Q’ a 3-sphere. It is easily shown that the link 8@’ n ¢(8?),
with orientations inherited from g(S%)n (@ —int Q') is equivalent to L, , or pL, ..
Without loss of generality it will be assumed to be L ,. The genus of g(S%) n (¢ —int @}
is zero. This is equivalent to saying that L, , is weakly slice.

Choose a prime p such that p divides both ¢ and r. By Theorem 3-2 and Lemma 3-4

O'p(L;,r) = Up(Lq,f) Zq+r— 1,
np(L;, r) = np(Lq, f) + 2"’1 + 2‘”’2 2 2("7’1 +n,+ l)
and wlLy ) = q+r+2n, 1+ 2n,,

Thus the invariants of L, , do not satisfy the inequality of 4-4 and this contradicts
the existence of the embedding g.

17 Camb. Philos. 66, 2
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The drawback to using the above technique if g.c.d. (g,7) = 1 is that 3-2 cannot be
applied. It is known that locally unknotted embeddings do exist whengorr = 0or 1.
Using the same technique it is possible to prove the final theorem, also solved by
Kervaire and Milnor (6) in a number of cases.

Note. If ¢ is a generator of Hy(C'P?) it is not possible to embed a locally unknotted
copy of 82 in CP? to represent 7¢ if |r| > 3.

To prove this it is necessary to use o, and »,, where p divides r. It is eagy to show
that embeddings do exist when |7| < 3 and this therefore provides a complete solution
to the problem concerning CP?2.
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