

Superinsulation: magnetic monopoles and confinement in condensed matter

Carlo A. Trugenberger

Colloquium NYUAB, February 2025

What is a superinsulator?

A bit of history

't Hooft 1978, Nucl. Phys. B138 (1978) 1

"....absolute confinement is realized in a phase which is in many respects similar to the superconducting phase. In a certain sense it is the extreme opposite ("superinsulator")"

M. C. Diamantini, P. Sodano & C. A. T. 1996 Nucl. Phys. B474 (1996) 641

Predicted superinsulators in condensed matter: specifically at the 2D superconductor-insulator transition (SIT)

V. Vinokur et al. 2008, Nature 452 (2008) 613

Independent prediction of superinsulators in the SIT and experimental confirmation

Large-ε superconductors in the 2D limit

Coulomb interaction in the limit $\varepsilon \rightarrow \infty$, thickness d $\rightarrow 0$, d ε finite

 $(e^2/\lambda_e) \log |x/\lambda_e|$ scree

screening length $\lambda_e = \epsilon d$

For $\lambda_e > L =$ lateral dimension of system \rightarrow pure 2D electromagnetism

Non-perturbative at large distances Condensate breaks up into a granular structure

Type-III superconductors

| X |

M. C. Diamantini et al., Adv. Science 1, 2206523 (2023) M. C. Diamantini, C. A. T. and V. Vinokur, Phys. Rev. B110, 094506 (2024)

Emergent Josephson junction array and type-III vortices

Josephson tunneling currents flow when phases aligned

Material becomes an emergent Josephson junction array (JJA)

Type-III vortices are not standard Abrikosov vortices: these do not even exist for small granules!

K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

Pointlike XY vortices:

- no dissipative core
- vortices can condense

Interaction between vortices (1/ $e^2 \lambda_m$) log | x/ λ_m | $\lambda_m = d/ \lambda_L^2$

Competition between vortices and charges

Magnetic

 $(1/e^2\lambda_m)\log|x|$

Electric

 $(e^2/\lambda_e) \log |x|$

 $g^2 = \lambda_e/e^4 \lambda_m$

g >> 1

g << 1

Magnetic energy high Electric energy low

Charges "condense" (BKT) m_e (e, λ_e , λ_m) $\rightarrow 0$ Electric energy high Magnetic energy low

Vortices "condense" $m_m (e, \lambda_e, \lambda_m) \rightarrow 0$

Quantum effects in granular quantum matter

2D quantum phase slips → vortices highly mobile tunneling on dual lattice

Effective field theory is not XY model but rather a **topological gauge theory**

Magnetic monopole instantons

Instantons = particles in Euclidean space-time = tunnelling events in Minkowski space-time

m_m (e, λ_e , λ_m) \rightarrow 0 means tension \rightarrow 0 in Euclidean space-time

M. C. Diamantini, C. A. T. and V. M. Vinokur, Nat. Comm. Phys. 1, 77 (2018).

Superinsulation = electric confinement

Magnetic monopole instantons \rightarrow linear confinement of electric charge

A. Polyakov, Phys. Lett. 59, 82 (1975).

Electric field squeezed into flux tube dual to Abrikosov vortices Excitations: strings with ± 2e charges at their ends, **electric pions**

Characteristic scales:

- Photon mass: m (gap)
- > String tension: σ
- > Width of string: w = 1/m
- > Length of string: $\ell_s = 1/\sqrt{\sigma}$

Consequences:

Infinite resistance on scales > ls
 below T_{BKT} (point where tension=0)
 BKT scaling of resistance

Experiments

Experiments

Pull two charges bound by linear potential by sudden voltage pulse Constant attractive force $F_a = 2e\sigma = 2eV_{c1}/L$. External repulsive force $\ddot{F_r} = 2eV/L$. Newton, F=ma $r(t) = \frac{2e}{mL}(V - V_{c1})t^2$. r(t) = center of mass distance

Curent passes when r(t) = L \rightarrow delay $t_{\rm cr} = \sqrt{\frac{mL^2}{2e}(V - V_{\rm cl})^{1/2}}$.

A.Yu. Mironov et al. Scient. Rep. 12, 19918 (2022)

NbTiN

Electric Meissner and mixed states

V < V_{c1} only neutral pions no current

V_{c1} < V < V_{c2} flux penetration current passes $V > V_{c2}$ superinsulation destroyed

Two kinks in IV curves

A.Yu. Mironov et al. Nat. Comm. Phys. 4, 142 (2020)

Asymptotic freedom

No force -> metallic saturation

3D superinsulators

Granular superconductors exist in 3D C. Parra et al., PNAS 118, e2017810118 (2021)

2D XY vortices become 1D extended objects, still no dissipative core

Main difference: resistance scaling BKT -> VFT due to behaviour of strings

Nanopatterned materials

Effective JJA as nanopatterned NbTiN film: O(10⁷) granules

Bose metal a.k.a bosonic topological insulator

M. C. Diamantini, P. Sodano and C. A. T. Nucl. Phys. A474, 641 (1996).

Charge or vortex condensates are only possibilities?

No! Charges and vortices can be both out of condensate

Then they are frozen into a topological state by mutual statistics frustration \rightarrow conduction on the edges \rightarrow metallic saturation of the resistance around $R_Q \rightarrow$ Bose metal

Quantum BKT transitions in 2D

Quantum transition in 2D governed by field theory in (2+1)D

Quantum BKT transition in 2D possible because $\epsilon \rightarrow \infty$ effectively lowers by 1 the dimensions

Phase diagram of baryonic matter

Bose metals in materials / JJA

Van der Zant et al. Phys. Rev. B54, 10081 (1996).

Bottcher et al. Nat. Phys. 14, 1138 (2018).

M. C. Diamantini et al., Phys. Lett. A384, 126570 (2020).

Possible technological applications of superinsulators: perfect batteries

Superconductors perfectly store currents Superinsulators perfectly store charge

Superinsulators enable "perfect batteries"

Losses due to self-discharge

This cannot happen if cathode and anode coated with superinsulator

Cutting losses to AC power lines

Two major sources of losses:

- > Conductor losses (CL): finite R of the conductor
- Dielectric losses (DL): electric fields in the dielectric insulator cause currents and heat

CL can be eliminated by **superconducting cables** DL can be eliminated by **superinsulating shields**

Towards AC power lines with no losses....

Ultrafast switches with no energy loss

Dual current - voltage characteristics

Superfast/efficient switch :

 upon local heating current jumps 6 order of magnitude
 no loss of energy apart when switching

Take away

- Magnetic monopoles appear naturally in granular, type-III superconductors
- They lead to electric confinement in materials via the old 't Hooft / Polyakov mechanism
- The ensuing state of matter is dual to superconductors and has
 R = ∞ (even at finite temperatures) : superinsulators
- For the moment T_c and V_c still very low for any real application